]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/scsi/libata-core.c
[PATCH] libata: PHY reset requires writing 0x4 to SControl
[net-next-2.6.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
1da177e4 53#include "scsi_priv.h"
193515d5 54#include <scsi/scsi_cmnd.h>
1da177e4
LT
55#include <scsi/scsi_host.h>
56#include <linux/libata.h>
57#include <asm/io.h>
58#include <asm/semaphore.h>
59#include <asm/byteorder.h>
60
61#include "libata.h"
62
d7bb4cc7 63/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
64const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 67
3373efd8
TH
68static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
72
73static unsigned int ata_unique_id = 1;
74static struct workqueue_struct *ata_wq;
75
453b07ac
TH
76struct workqueue_struct *ata_aux_wq;
77
418dc1f5 78int atapi_enabled = 1;
1623c81e
JG
79module_param(atapi_enabled, int, 0444);
80MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
81
95de719a
AL
82int atapi_dmadir = 0;
83module_param(atapi_dmadir, int, 0444);
84MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
85
c3c013a2
JG
86int libata_fua = 0;
87module_param_named(fua, libata_fua, int, 0444);
88MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
89
a8601e5f
AM
90static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
91module_param(ata_probe_timeout, int, 0444);
92MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
93
1da177e4
LT
94MODULE_AUTHOR("Jeff Garzik");
95MODULE_DESCRIPTION("Library module for ATA devices");
96MODULE_LICENSE("GPL");
97MODULE_VERSION(DRV_VERSION);
98
0baab86b 99
1da177e4
LT
100/**
101 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
102 * @tf: Taskfile to convert
103 * @fis: Buffer into which data will output
104 * @pmp: Port multiplier port
105 *
106 * Converts a standard ATA taskfile to a Serial ATA
107 * FIS structure (Register - Host to Device).
108 *
109 * LOCKING:
110 * Inherited from caller.
111 */
112
057ace5e 113void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
114{
115 fis[0] = 0x27; /* Register - Host to Device FIS */
116 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
117 bit 7 indicates Command FIS */
118 fis[2] = tf->command;
119 fis[3] = tf->feature;
120
121 fis[4] = tf->lbal;
122 fis[5] = tf->lbam;
123 fis[6] = tf->lbah;
124 fis[7] = tf->device;
125
126 fis[8] = tf->hob_lbal;
127 fis[9] = tf->hob_lbam;
128 fis[10] = tf->hob_lbah;
129 fis[11] = tf->hob_feature;
130
131 fis[12] = tf->nsect;
132 fis[13] = tf->hob_nsect;
133 fis[14] = 0;
134 fis[15] = tf->ctl;
135
136 fis[16] = 0;
137 fis[17] = 0;
138 fis[18] = 0;
139 fis[19] = 0;
140}
141
142/**
143 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
144 * @fis: Buffer from which data will be input
145 * @tf: Taskfile to output
146 *
e12a1be6 147 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
148 *
149 * LOCKING:
150 * Inherited from caller.
151 */
152
057ace5e 153void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
154{
155 tf->command = fis[2]; /* status */
156 tf->feature = fis[3]; /* error */
157
158 tf->lbal = fis[4];
159 tf->lbam = fis[5];
160 tf->lbah = fis[6];
161 tf->device = fis[7];
162
163 tf->hob_lbal = fis[8];
164 tf->hob_lbam = fis[9];
165 tf->hob_lbah = fis[10];
166
167 tf->nsect = fis[12];
168 tf->hob_nsect = fis[13];
169}
170
8cbd6df1
AL
171static const u8 ata_rw_cmds[] = {
172 /* pio multi */
173 ATA_CMD_READ_MULTI,
174 ATA_CMD_WRITE_MULTI,
175 ATA_CMD_READ_MULTI_EXT,
176 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
177 0,
178 0,
179 0,
180 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
181 /* pio */
182 ATA_CMD_PIO_READ,
183 ATA_CMD_PIO_WRITE,
184 ATA_CMD_PIO_READ_EXT,
185 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
186 0,
187 0,
188 0,
189 0,
8cbd6df1
AL
190 /* dma */
191 ATA_CMD_READ,
192 ATA_CMD_WRITE,
193 ATA_CMD_READ_EXT,
9a3dccc4
TH
194 ATA_CMD_WRITE_EXT,
195 0,
196 0,
197 0,
198 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 199};
1da177e4
LT
200
201/**
8cbd6df1
AL
202 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
203 * @qc: command to examine and configure
1da177e4 204 *
2e9edbf8 205 * Examine the device configuration and tf->flags to calculate
8cbd6df1 206 * the proper read/write commands and protocol to use.
1da177e4
LT
207 *
208 * LOCKING:
209 * caller.
210 */
9a3dccc4 211int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 212{
8cbd6df1
AL
213 struct ata_taskfile *tf = &qc->tf;
214 struct ata_device *dev = qc->dev;
9a3dccc4 215 u8 cmd;
1da177e4 216
9a3dccc4 217 int index, fua, lba48, write;
2e9edbf8 218
9a3dccc4 219 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
220 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
221 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 222
8cbd6df1
AL
223 if (dev->flags & ATA_DFLAG_PIO) {
224 tf->protocol = ATA_PROT_PIO;
9a3dccc4 225 index = dev->multi_count ? 0 : 8;
8d238e01
AC
226 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
227 /* Unable to use DMA due to host limitation */
228 tf->protocol = ATA_PROT_PIO;
0565c26d 229 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
230 } else {
231 tf->protocol = ATA_PROT_DMA;
9a3dccc4 232 index = 16;
8cbd6df1 233 }
1da177e4 234
9a3dccc4
TH
235 cmd = ata_rw_cmds[index + fua + lba48 + write];
236 if (cmd) {
237 tf->command = cmd;
238 return 0;
239 }
240 return -1;
1da177e4
LT
241}
242
cb95d562
TH
243/**
244 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
245 * @pio_mask: pio_mask
246 * @mwdma_mask: mwdma_mask
247 * @udma_mask: udma_mask
248 *
249 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
250 * unsigned int xfer_mask.
251 *
252 * LOCKING:
253 * None.
254 *
255 * RETURNS:
256 * Packed xfer_mask.
257 */
258static unsigned int ata_pack_xfermask(unsigned int pio_mask,
259 unsigned int mwdma_mask,
260 unsigned int udma_mask)
261{
262 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
263 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
264 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
265}
266
c0489e4e
TH
267/**
268 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
269 * @xfer_mask: xfer_mask to unpack
270 * @pio_mask: resulting pio_mask
271 * @mwdma_mask: resulting mwdma_mask
272 * @udma_mask: resulting udma_mask
273 *
274 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
275 * Any NULL distination masks will be ignored.
276 */
277static void ata_unpack_xfermask(unsigned int xfer_mask,
278 unsigned int *pio_mask,
279 unsigned int *mwdma_mask,
280 unsigned int *udma_mask)
281{
282 if (pio_mask)
283 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
284 if (mwdma_mask)
285 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
286 if (udma_mask)
287 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
288}
289
cb95d562 290static const struct ata_xfer_ent {
be9a50c8 291 int shift, bits;
cb95d562
TH
292 u8 base;
293} ata_xfer_tbl[] = {
294 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
295 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
296 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
297 { -1, },
298};
299
300/**
301 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
302 * @xfer_mask: xfer_mask of interest
303 *
304 * Return matching XFER_* value for @xfer_mask. Only the highest
305 * bit of @xfer_mask is considered.
306 *
307 * LOCKING:
308 * None.
309 *
310 * RETURNS:
311 * Matching XFER_* value, 0 if no match found.
312 */
313static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
314{
315 int highbit = fls(xfer_mask) - 1;
316 const struct ata_xfer_ent *ent;
317
318 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
319 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
320 return ent->base + highbit - ent->shift;
321 return 0;
322}
323
324/**
325 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
326 * @xfer_mode: XFER_* of interest
327 *
328 * Return matching xfer_mask for @xfer_mode.
329 *
330 * LOCKING:
331 * None.
332 *
333 * RETURNS:
334 * Matching xfer_mask, 0 if no match found.
335 */
336static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
337{
338 const struct ata_xfer_ent *ent;
339
340 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
341 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
342 return 1 << (ent->shift + xfer_mode - ent->base);
343 return 0;
344}
345
346/**
347 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
348 * @xfer_mode: XFER_* of interest
349 *
350 * Return matching xfer_shift for @xfer_mode.
351 *
352 * LOCKING:
353 * None.
354 *
355 * RETURNS:
356 * Matching xfer_shift, -1 if no match found.
357 */
358static int ata_xfer_mode2shift(unsigned int xfer_mode)
359{
360 const struct ata_xfer_ent *ent;
361
362 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
363 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
364 return ent->shift;
365 return -1;
366}
367
1da177e4 368/**
1da7b0d0
TH
369 * ata_mode_string - convert xfer_mask to string
370 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
371 *
372 * Determine string which represents the highest speed
1da7b0d0 373 * (highest bit in @modemask).
1da177e4
LT
374 *
375 * LOCKING:
376 * None.
377 *
378 * RETURNS:
379 * Constant C string representing highest speed listed in
1da7b0d0 380 * @mode_mask, or the constant C string "<n/a>".
1da177e4 381 */
1da7b0d0 382static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 383{
75f554bc
TH
384 static const char * const xfer_mode_str[] = {
385 "PIO0",
386 "PIO1",
387 "PIO2",
388 "PIO3",
389 "PIO4",
390 "MWDMA0",
391 "MWDMA1",
392 "MWDMA2",
393 "UDMA/16",
394 "UDMA/25",
395 "UDMA/33",
396 "UDMA/44",
397 "UDMA/66",
398 "UDMA/100",
399 "UDMA/133",
400 "UDMA7",
401 };
1da7b0d0 402 int highbit;
1da177e4 403
1da7b0d0
TH
404 highbit = fls(xfer_mask) - 1;
405 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
406 return xfer_mode_str[highbit];
1da177e4 407 return "<n/a>";
1da177e4
LT
408}
409
4c360c81
TH
410static const char *sata_spd_string(unsigned int spd)
411{
412 static const char * const spd_str[] = {
413 "1.5 Gbps",
414 "3.0 Gbps",
415 };
416
417 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
418 return "<unknown>";
419 return spd_str[spd - 1];
420}
421
3373efd8 422void ata_dev_disable(struct ata_device *dev)
0b8efb0a 423{
0dd4b21f 424 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 425 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
426 dev->class++;
427 }
428}
429
1da177e4
LT
430/**
431 * ata_pio_devchk - PATA device presence detection
432 * @ap: ATA channel to examine
433 * @device: Device to examine (starting at zero)
434 *
435 * This technique was originally described in
436 * Hale Landis's ATADRVR (www.ata-atapi.com), and
437 * later found its way into the ATA/ATAPI spec.
438 *
439 * Write a pattern to the ATA shadow registers,
440 * and if a device is present, it will respond by
441 * correctly storing and echoing back the
442 * ATA shadow register contents.
443 *
444 * LOCKING:
445 * caller.
446 */
447
448static unsigned int ata_pio_devchk(struct ata_port *ap,
449 unsigned int device)
450{
451 struct ata_ioports *ioaddr = &ap->ioaddr;
452 u8 nsect, lbal;
453
454 ap->ops->dev_select(ap, device);
455
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
458
459 outb(0xaa, ioaddr->nsect_addr);
460 outb(0x55, ioaddr->lbal_addr);
461
462 outb(0x55, ioaddr->nsect_addr);
463 outb(0xaa, ioaddr->lbal_addr);
464
465 nsect = inb(ioaddr->nsect_addr);
466 lbal = inb(ioaddr->lbal_addr);
467
468 if ((nsect == 0x55) && (lbal == 0xaa))
469 return 1; /* we found a device */
470
471 return 0; /* nothing found */
472}
473
474/**
475 * ata_mmio_devchk - PATA device presence detection
476 * @ap: ATA channel to examine
477 * @device: Device to examine (starting at zero)
478 *
479 * This technique was originally described in
480 * Hale Landis's ATADRVR (www.ata-atapi.com), and
481 * later found its way into the ATA/ATAPI spec.
482 *
483 * Write a pattern to the ATA shadow registers,
484 * and if a device is present, it will respond by
485 * correctly storing and echoing back the
486 * ATA shadow register contents.
487 *
488 * LOCKING:
489 * caller.
490 */
491
492static unsigned int ata_mmio_devchk(struct ata_port *ap,
493 unsigned int device)
494{
495 struct ata_ioports *ioaddr = &ap->ioaddr;
496 u8 nsect, lbal;
497
498 ap->ops->dev_select(ap, device);
499
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
502
503 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
505
506 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
508
509 nsect = readb((void __iomem *) ioaddr->nsect_addr);
510 lbal = readb((void __iomem *) ioaddr->lbal_addr);
511
512 if ((nsect == 0x55) && (lbal == 0xaa))
513 return 1; /* we found a device */
514
515 return 0; /* nothing found */
516}
517
518/**
519 * ata_devchk - PATA device presence detection
520 * @ap: ATA channel to examine
521 * @device: Device to examine (starting at zero)
522 *
523 * Dispatch ATA device presence detection, depending
524 * on whether we are using PIO or MMIO to talk to the
525 * ATA shadow registers.
526 *
527 * LOCKING:
528 * caller.
529 */
530
531static unsigned int ata_devchk(struct ata_port *ap,
532 unsigned int device)
533{
534 if (ap->flags & ATA_FLAG_MMIO)
535 return ata_mmio_devchk(ap, device);
536 return ata_pio_devchk(ap, device);
537}
538
539/**
540 * ata_dev_classify - determine device type based on ATA-spec signature
541 * @tf: ATA taskfile register set for device to be identified
542 *
543 * Determine from taskfile register contents whether a device is
544 * ATA or ATAPI, as per "Signature and persistence" section
545 * of ATA/PI spec (volume 1, sect 5.14).
546 *
547 * LOCKING:
548 * None.
549 *
550 * RETURNS:
551 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
552 * the event of failure.
553 */
554
057ace5e 555unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
556{
557 /* Apple's open source Darwin code hints that some devices only
558 * put a proper signature into the LBA mid/high registers,
559 * So, we only check those. It's sufficient for uniqueness.
560 */
561
562 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
563 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
564 DPRINTK("found ATA device by sig\n");
565 return ATA_DEV_ATA;
566 }
567
568 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
569 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
570 DPRINTK("found ATAPI device by sig\n");
571 return ATA_DEV_ATAPI;
572 }
573
574 DPRINTK("unknown device\n");
575 return ATA_DEV_UNKNOWN;
576}
577
578/**
579 * ata_dev_try_classify - Parse returned ATA device signature
580 * @ap: ATA channel to examine
581 * @device: Device to examine (starting at zero)
b4dc7623 582 * @r_err: Value of error register on completion
1da177e4
LT
583 *
584 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
585 * an ATA/ATAPI-defined set of values is placed in the ATA
586 * shadow registers, indicating the results of device detection
587 * and diagnostics.
588 *
589 * Select the ATA device, and read the values from the ATA shadow
590 * registers. Then parse according to the Error register value,
591 * and the spec-defined values examined by ata_dev_classify().
592 *
593 * LOCKING:
594 * caller.
b4dc7623
TH
595 *
596 * RETURNS:
597 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
598 */
599
b4dc7623
TH
600static unsigned int
601ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 602{
1da177e4
LT
603 struct ata_taskfile tf;
604 unsigned int class;
605 u8 err;
606
607 ap->ops->dev_select(ap, device);
608
609 memset(&tf, 0, sizeof(tf));
610
1da177e4 611 ap->ops->tf_read(ap, &tf);
0169e284 612 err = tf.feature;
b4dc7623
TH
613 if (r_err)
614 *r_err = err;
1da177e4
LT
615
616 /* see if device passed diags */
617 if (err == 1)
618 /* do nothing */ ;
619 else if ((device == 0) && (err == 0x81))
620 /* do nothing */ ;
621 else
b4dc7623 622 return ATA_DEV_NONE;
1da177e4 623
b4dc7623 624 /* determine if device is ATA or ATAPI */
1da177e4 625 class = ata_dev_classify(&tf);
b4dc7623 626
1da177e4 627 if (class == ATA_DEV_UNKNOWN)
b4dc7623 628 return ATA_DEV_NONE;
1da177e4 629 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
630 return ATA_DEV_NONE;
631 return class;
1da177e4
LT
632}
633
634/**
6a62a04d 635 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
636 * @id: IDENTIFY DEVICE results we will examine
637 * @s: string into which data is output
638 * @ofs: offset into identify device page
639 * @len: length of string to return. must be an even number.
640 *
641 * The strings in the IDENTIFY DEVICE page are broken up into
642 * 16-bit chunks. Run through the string, and output each
643 * 8-bit chunk linearly, regardless of platform.
644 *
645 * LOCKING:
646 * caller.
647 */
648
6a62a04d
TH
649void ata_id_string(const u16 *id, unsigned char *s,
650 unsigned int ofs, unsigned int len)
1da177e4
LT
651{
652 unsigned int c;
653
654 while (len > 0) {
655 c = id[ofs] >> 8;
656 *s = c;
657 s++;
658
659 c = id[ofs] & 0xff;
660 *s = c;
661 s++;
662
663 ofs++;
664 len -= 2;
665 }
666}
667
0e949ff3 668/**
6a62a04d 669 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
670 * @id: IDENTIFY DEVICE results we will examine
671 * @s: string into which data is output
672 * @ofs: offset into identify device page
673 * @len: length of string to return. must be an odd number.
674 *
6a62a04d 675 * This function is identical to ata_id_string except that it
0e949ff3
TH
676 * trims trailing spaces and terminates the resulting string with
677 * null. @len must be actual maximum length (even number) + 1.
678 *
679 * LOCKING:
680 * caller.
681 */
6a62a04d
TH
682void ata_id_c_string(const u16 *id, unsigned char *s,
683 unsigned int ofs, unsigned int len)
0e949ff3
TH
684{
685 unsigned char *p;
686
687 WARN_ON(!(len & 1));
688
6a62a04d 689 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
690
691 p = s + strnlen(s, len - 1);
692 while (p > s && p[-1] == ' ')
693 p--;
694 *p = '\0';
695}
0baab86b 696
2940740b
TH
697static u64 ata_id_n_sectors(const u16 *id)
698{
699 if (ata_id_has_lba(id)) {
700 if (ata_id_has_lba48(id))
701 return ata_id_u64(id, 100);
702 else
703 return ata_id_u32(id, 60);
704 } else {
705 if (ata_id_current_chs_valid(id))
706 return ata_id_u32(id, 57);
707 else
708 return id[1] * id[3] * id[6];
709 }
710}
711
0baab86b
EF
712/**
713 * ata_noop_dev_select - Select device 0/1 on ATA bus
714 * @ap: ATA channel to manipulate
715 * @device: ATA device (numbered from zero) to select
716 *
717 * This function performs no actual function.
718 *
719 * May be used as the dev_select() entry in ata_port_operations.
720 *
721 * LOCKING:
722 * caller.
723 */
1da177e4
LT
724void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
725{
726}
727
0baab86b 728
1da177e4
LT
729/**
730 * ata_std_dev_select - Select device 0/1 on ATA bus
731 * @ap: ATA channel to manipulate
732 * @device: ATA device (numbered from zero) to select
733 *
734 * Use the method defined in the ATA specification to
735 * make either device 0, or device 1, active on the
0baab86b
EF
736 * ATA channel. Works with both PIO and MMIO.
737 *
738 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
739 *
740 * LOCKING:
741 * caller.
742 */
743
744void ata_std_dev_select (struct ata_port *ap, unsigned int device)
745{
746 u8 tmp;
747
748 if (device == 0)
749 tmp = ATA_DEVICE_OBS;
750 else
751 tmp = ATA_DEVICE_OBS | ATA_DEV1;
752
753 if (ap->flags & ATA_FLAG_MMIO) {
754 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
755 } else {
756 outb(tmp, ap->ioaddr.device_addr);
757 }
758 ata_pause(ap); /* needed; also flushes, for mmio */
759}
760
761/**
762 * ata_dev_select - Select device 0/1 on ATA bus
763 * @ap: ATA channel to manipulate
764 * @device: ATA device (numbered from zero) to select
765 * @wait: non-zero to wait for Status register BSY bit to clear
766 * @can_sleep: non-zero if context allows sleeping
767 *
768 * Use the method defined in the ATA specification to
769 * make either device 0, or device 1, active on the
770 * ATA channel.
771 *
772 * This is a high-level version of ata_std_dev_select(),
773 * which additionally provides the services of inserting
774 * the proper pauses and status polling, where needed.
775 *
776 * LOCKING:
777 * caller.
778 */
779
780void ata_dev_select(struct ata_port *ap, unsigned int device,
781 unsigned int wait, unsigned int can_sleep)
782{
88574551 783 if (ata_msg_probe(ap))
0dd4b21f 784 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
88574551 785 "device %u, wait %u\n", ap->id, device, wait);
1da177e4
LT
786
787 if (wait)
788 ata_wait_idle(ap);
789
790 ap->ops->dev_select(ap, device);
791
792 if (wait) {
793 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
794 msleep(150);
795 ata_wait_idle(ap);
796 }
797}
798
799/**
800 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 801 * @id: IDENTIFY DEVICE page to dump
1da177e4 802 *
0bd3300a
TH
803 * Dump selected 16-bit words from the given IDENTIFY DEVICE
804 * page.
1da177e4
LT
805 *
806 * LOCKING:
807 * caller.
808 */
809
0bd3300a 810static inline void ata_dump_id(const u16 *id)
1da177e4
LT
811{
812 DPRINTK("49==0x%04x "
813 "53==0x%04x "
814 "63==0x%04x "
815 "64==0x%04x "
816 "75==0x%04x \n",
0bd3300a
TH
817 id[49],
818 id[53],
819 id[63],
820 id[64],
821 id[75]);
1da177e4
LT
822 DPRINTK("80==0x%04x "
823 "81==0x%04x "
824 "82==0x%04x "
825 "83==0x%04x "
826 "84==0x%04x \n",
0bd3300a
TH
827 id[80],
828 id[81],
829 id[82],
830 id[83],
831 id[84]);
1da177e4
LT
832 DPRINTK("88==0x%04x "
833 "93==0x%04x\n",
0bd3300a
TH
834 id[88],
835 id[93]);
1da177e4
LT
836}
837
cb95d562
TH
838/**
839 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
840 * @id: IDENTIFY data to compute xfer mask from
841 *
842 * Compute the xfermask for this device. This is not as trivial
843 * as it seems if we must consider early devices correctly.
844 *
845 * FIXME: pre IDE drive timing (do we care ?).
846 *
847 * LOCKING:
848 * None.
849 *
850 * RETURNS:
851 * Computed xfermask
852 */
853static unsigned int ata_id_xfermask(const u16 *id)
854{
855 unsigned int pio_mask, mwdma_mask, udma_mask;
856
857 /* Usual case. Word 53 indicates word 64 is valid */
858 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
859 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
860 pio_mask <<= 3;
861 pio_mask |= 0x7;
862 } else {
863 /* If word 64 isn't valid then Word 51 high byte holds
864 * the PIO timing number for the maximum. Turn it into
865 * a mask.
866 */
867 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
868
869 /* But wait.. there's more. Design your standards by
870 * committee and you too can get a free iordy field to
871 * process. However its the speeds not the modes that
872 * are supported... Note drivers using the timing API
873 * will get this right anyway
874 */
875 }
876
877 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
878
879 udma_mask = 0;
880 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
881 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
882
883 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
884}
885
86e45b6b
TH
886/**
887 * ata_port_queue_task - Queue port_task
888 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
889 * @fn: workqueue function to be scheduled
890 * @data: data value to pass to workqueue function
891 * @delay: delay time for workqueue function
86e45b6b
TH
892 *
893 * Schedule @fn(@data) for execution after @delay jiffies using
894 * port_task. There is one port_task per port and it's the
895 * user(low level driver)'s responsibility to make sure that only
896 * one task is active at any given time.
897 *
898 * libata core layer takes care of synchronization between
899 * port_task and EH. ata_port_queue_task() may be ignored for EH
900 * synchronization.
901 *
902 * LOCKING:
903 * Inherited from caller.
904 */
905void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
906 unsigned long delay)
907{
908 int rc;
909
b51e9e5d 910 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
911 return;
912
913 PREPARE_WORK(&ap->port_task, fn, data);
914
915 if (!delay)
916 rc = queue_work(ata_wq, &ap->port_task);
917 else
918 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
919
920 /* rc == 0 means that another user is using port task */
921 WARN_ON(rc == 0);
922}
923
924/**
925 * ata_port_flush_task - Flush port_task
926 * @ap: The ata_port to flush port_task for
927 *
928 * After this function completes, port_task is guranteed not to
929 * be running or scheduled.
930 *
931 * LOCKING:
932 * Kernel thread context (may sleep)
933 */
934void ata_port_flush_task(struct ata_port *ap)
935{
936 unsigned long flags;
937
938 DPRINTK("ENTER\n");
939
ba6a1308 940 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 941 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 942 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
943
944 DPRINTK("flush #1\n");
945 flush_workqueue(ata_wq);
946
947 /*
948 * At this point, if a task is running, it's guaranteed to see
949 * the FLUSH flag; thus, it will never queue pio tasks again.
950 * Cancel and flush.
951 */
952 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 953 if (ata_msg_ctl(ap))
88574551
TH
954 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
955 __FUNCTION__);
86e45b6b
TH
956 flush_workqueue(ata_wq);
957 }
958
ba6a1308 959 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 960 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 961 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 962
0dd4b21f
BP
963 if (ata_msg_ctl(ap))
964 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
965}
966
77853bf2 967void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 968{
77853bf2 969 struct completion *waiting = qc->private_data;
a2a7a662 970
a2a7a662 971 complete(waiting);
a2a7a662
TH
972}
973
974/**
975 * ata_exec_internal - execute libata internal command
a2a7a662
TH
976 * @dev: Device to which the command is sent
977 * @tf: Taskfile registers for the command and the result
d69cf37d 978 * @cdb: CDB for packet command
a2a7a662
TH
979 * @dma_dir: Data tranfer direction of the command
980 * @buf: Data buffer of the command
981 * @buflen: Length of data buffer
982 *
983 * Executes libata internal command with timeout. @tf contains
984 * command on entry and result on return. Timeout and error
985 * conditions are reported via return value. No recovery action
986 * is taken after a command times out. It's caller's duty to
987 * clean up after timeout.
988 *
989 * LOCKING:
990 * None. Should be called with kernel context, might sleep.
551e8889
TH
991 *
992 * RETURNS:
993 * Zero on success, AC_ERR_* mask on failure
a2a7a662 994 */
3373efd8 995unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
996 struct ata_taskfile *tf, const u8 *cdb,
997 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 998{
3373efd8 999 struct ata_port *ap = dev->ap;
a2a7a662
TH
1000 u8 command = tf->command;
1001 struct ata_queued_cmd *qc;
2ab7db1f 1002 unsigned int tag, preempted_tag;
dedaf2b0 1003 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1004 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1005 unsigned long flags;
77853bf2 1006 unsigned int err_mask;
d95a717f 1007 int rc;
a2a7a662 1008
ba6a1308 1009 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1010
e3180499 1011 /* no internal command while frozen */
b51e9e5d 1012 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1013 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1014 return AC_ERR_SYSTEM;
1015 }
1016
2ab7db1f 1017 /* initialize internal qc */
a2a7a662 1018
2ab7db1f
TH
1019 /* XXX: Tag 0 is used for drivers with legacy EH as some
1020 * drivers choke if any other tag is given. This breaks
1021 * ata_tag_internal() test for those drivers. Don't use new
1022 * EH stuff without converting to it.
1023 */
1024 if (ap->ops->error_handler)
1025 tag = ATA_TAG_INTERNAL;
1026 else
1027 tag = 0;
1028
6cec4a39 1029 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1030 BUG();
f69499f4 1031 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1032
1033 qc->tag = tag;
1034 qc->scsicmd = NULL;
1035 qc->ap = ap;
1036 qc->dev = dev;
1037 ata_qc_reinit(qc);
1038
1039 preempted_tag = ap->active_tag;
dedaf2b0
TH
1040 preempted_sactive = ap->sactive;
1041 preempted_qc_active = ap->qc_active;
2ab7db1f 1042 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1043 ap->sactive = 0;
1044 ap->qc_active = 0;
2ab7db1f
TH
1045
1046 /* prepare & issue qc */
a2a7a662 1047 qc->tf = *tf;
d69cf37d
TH
1048 if (cdb)
1049 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1050 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1051 qc->dma_dir = dma_dir;
1052 if (dma_dir != DMA_NONE) {
1053 ata_sg_init_one(qc, buf, buflen);
1054 qc->nsect = buflen / ATA_SECT_SIZE;
1055 }
1056
77853bf2 1057 qc->private_data = &wait;
a2a7a662
TH
1058 qc->complete_fn = ata_qc_complete_internal;
1059
8e0e694a 1060 ata_qc_issue(qc);
a2a7a662 1061
ba6a1308 1062 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1063
a8601e5f 1064 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1065
1066 ata_port_flush_task(ap);
41ade50c 1067
d95a717f 1068 if (!rc) {
ba6a1308 1069 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1070
1071 /* We're racing with irq here. If we lose, the
1072 * following test prevents us from completing the qc
d95a717f
TH
1073 * twice. If we win, the port is frozen and will be
1074 * cleaned up by ->post_internal_cmd().
a2a7a662 1075 */
77853bf2 1076 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1077 qc->err_mask |= AC_ERR_TIMEOUT;
1078
1079 if (ap->ops->error_handler)
1080 ata_port_freeze(ap);
1081 else
1082 ata_qc_complete(qc);
f15a1daf 1083
0dd4b21f
BP
1084 if (ata_msg_warn(ap))
1085 ata_dev_printk(dev, KERN_WARNING,
88574551 1086 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1087 }
1088
ba6a1308 1089 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1090 }
1091
d95a717f
TH
1092 /* do post_internal_cmd */
1093 if (ap->ops->post_internal_cmd)
1094 ap->ops->post_internal_cmd(qc);
1095
1096 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
0dd4b21f 1097 if (ata_msg_warn(ap))
88574551 1098 ata_dev_printk(dev, KERN_WARNING,
0dd4b21f 1099 "zero err_mask for failed "
88574551 1100 "internal command, assuming AC_ERR_OTHER\n");
d95a717f
TH
1101 qc->err_mask |= AC_ERR_OTHER;
1102 }
1103
15869303 1104 /* finish up */
ba6a1308 1105 spin_lock_irqsave(ap->lock, flags);
15869303 1106
e61e0672 1107 *tf = qc->result_tf;
77853bf2
TH
1108 err_mask = qc->err_mask;
1109
1110 ata_qc_free(qc);
2ab7db1f 1111 ap->active_tag = preempted_tag;
dedaf2b0
TH
1112 ap->sactive = preempted_sactive;
1113 ap->qc_active = preempted_qc_active;
77853bf2 1114
1f7dd3e9
TH
1115 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1116 * Until those drivers are fixed, we detect the condition
1117 * here, fail the command with AC_ERR_SYSTEM and reenable the
1118 * port.
1119 *
1120 * Note that this doesn't change any behavior as internal
1121 * command failure results in disabling the device in the
1122 * higher layer for LLDDs without new reset/EH callbacks.
1123 *
1124 * Kill the following code as soon as those drivers are fixed.
1125 */
198e0fed 1126 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1127 err_mask |= AC_ERR_SYSTEM;
1128 ata_port_probe(ap);
1129 }
1130
ba6a1308 1131 spin_unlock_irqrestore(ap->lock, flags);
15869303 1132
77853bf2 1133 return err_mask;
a2a7a662
TH
1134}
1135
977e6b9f
TH
1136/**
1137 * ata_do_simple_cmd - execute simple internal command
1138 * @dev: Device to which the command is sent
1139 * @cmd: Opcode to execute
1140 *
1141 * Execute a 'simple' command, that only consists of the opcode
1142 * 'cmd' itself, without filling any other registers
1143 *
1144 * LOCKING:
1145 * Kernel thread context (may sleep).
1146 *
1147 * RETURNS:
1148 * Zero on success, AC_ERR_* mask on failure
e58eb583 1149 */
77b08fb5 1150unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1151{
1152 struct ata_taskfile tf;
e58eb583
TH
1153
1154 ata_tf_init(dev, &tf);
1155
1156 tf.command = cmd;
1157 tf.flags |= ATA_TFLAG_DEVICE;
1158 tf.protocol = ATA_PROT_NODATA;
1159
977e6b9f 1160 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1161}
1162
1bc4ccff
AC
1163/**
1164 * ata_pio_need_iordy - check if iordy needed
1165 * @adev: ATA device
1166 *
1167 * Check if the current speed of the device requires IORDY. Used
1168 * by various controllers for chip configuration.
1169 */
1170
1171unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1172{
1173 int pio;
1174 int speed = adev->pio_mode - XFER_PIO_0;
1175
1176 if (speed < 2)
1177 return 0;
1178 if (speed > 2)
1179 return 1;
2e9edbf8 1180
1bc4ccff
AC
1181 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1182
1183 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1184 pio = adev->id[ATA_ID_EIDE_PIO];
1185 /* Is the speed faster than the drive allows non IORDY ? */
1186 if (pio) {
1187 /* This is cycle times not frequency - watch the logic! */
1188 if (pio > 240) /* PIO2 is 240nS per cycle */
1189 return 1;
1190 return 0;
1191 }
1192 }
1193 return 0;
1194}
1195
1da177e4 1196/**
49016aca 1197 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1198 * @dev: target device
1199 * @p_class: pointer to class of the target device (may be changed)
1200 * @post_reset: is this read ID post-reset?
fe635c7e 1201 * @id: buffer to read IDENTIFY data into
1da177e4 1202 *
49016aca
TH
1203 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1204 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1205 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1206 * for pre-ATA4 drives.
1da177e4
LT
1207 *
1208 * LOCKING:
49016aca
TH
1209 * Kernel thread context (may sleep)
1210 *
1211 * RETURNS:
1212 * 0 on success, -errno otherwise.
1da177e4 1213 */
a9beec95
TH
1214int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1215 int post_reset, u16 *id)
1da177e4 1216{
3373efd8 1217 struct ata_port *ap = dev->ap;
49016aca 1218 unsigned int class = *p_class;
a0123703 1219 struct ata_taskfile tf;
49016aca
TH
1220 unsigned int err_mask = 0;
1221 const char *reason;
1222 int rc;
1da177e4 1223
0dd4b21f 1224 if (ata_msg_ctl(ap))
88574551
TH
1225 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1226 __FUNCTION__, ap->id, dev->devno);
1da177e4 1227
49016aca 1228 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1229
49016aca 1230 retry:
3373efd8 1231 ata_tf_init(dev, &tf);
a0123703 1232
49016aca
TH
1233 switch (class) {
1234 case ATA_DEV_ATA:
a0123703 1235 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1236 break;
1237 case ATA_DEV_ATAPI:
a0123703 1238 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1239 break;
1240 default:
1241 rc = -ENODEV;
1242 reason = "unsupported class";
1243 goto err_out;
1da177e4
LT
1244 }
1245
a0123703 1246 tf.protocol = ATA_PROT_PIO;
1da177e4 1247
3373efd8 1248 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1249 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1250 if (err_mask) {
49016aca
TH
1251 rc = -EIO;
1252 reason = "I/O error";
1da177e4
LT
1253 goto err_out;
1254 }
1255
49016aca 1256 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1257
49016aca 1258 /* sanity check */
692785e7 1259 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1260 rc = -EINVAL;
1261 reason = "device reports illegal type";
1262 goto err_out;
1263 }
1264
1265 if (post_reset && class == ATA_DEV_ATA) {
1266 /*
1267 * The exact sequence expected by certain pre-ATA4 drives is:
1268 * SRST RESET
1269 * IDENTIFY
1270 * INITIALIZE DEVICE PARAMETERS
1271 * anything else..
1272 * Some drives were very specific about that exact sequence.
1273 */
1274 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1275 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1276 if (err_mask) {
1277 rc = -EIO;
1278 reason = "INIT_DEV_PARAMS failed";
1279 goto err_out;
1280 }
1281
1282 /* current CHS translation info (id[53-58]) might be
1283 * changed. reread the identify device info.
1284 */
1285 post_reset = 0;
1286 goto retry;
1287 }
1288 }
1289
1290 *p_class = class;
fe635c7e 1291
49016aca
TH
1292 return 0;
1293
1294 err_out:
88574551 1295 if (ata_msg_warn(ap))
0dd4b21f 1296 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1297 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1298 return rc;
1299}
1300
3373efd8 1301static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1302{
3373efd8 1303 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1304}
1305
a6e6ce8e
TH
1306static void ata_dev_config_ncq(struct ata_device *dev,
1307 char *desc, size_t desc_sz)
1308{
1309 struct ata_port *ap = dev->ap;
1310 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1311
1312 if (!ata_id_has_ncq(dev->id)) {
1313 desc[0] = '\0';
1314 return;
1315 }
1316
1317 if (ap->flags & ATA_FLAG_NCQ) {
1318 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1319 dev->flags |= ATA_DFLAG_NCQ;
1320 }
1321
1322 if (hdepth >= ddepth)
1323 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1324 else
1325 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1326}
1327
e6d902a3
BK
1328static void ata_set_port_max_cmd_len(struct ata_port *ap)
1329{
1330 int i;
1331
1332 if (ap->host) {
1333 ap->host->max_cmd_len = 0;
1334 for (i = 0; i < ATA_MAX_DEVICES; i++)
1335 ap->host->max_cmd_len = max_t(unsigned int,
1336 ap->host->max_cmd_len,
1337 ap->device[i].cdb_len);
1338 }
1339}
1340
49016aca 1341/**
ffeae418 1342 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1343 * @dev: Target device to configure
4c2d721a 1344 * @print_info: Enable device info printout
ffeae418
TH
1345 *
1346 * Configure @dev according to @dev->id. Generic and low-level
1347 * driver specific fixups are also applied.
49016aca
TH
1348 *
1349 * LOCKING:
ffeae418
TH
1350 * Kernel thread context (may sleep)
1351 *
1352 * RETURNS:
1353 * 0 on success, -errno otherwise
49016aca 1354 */
a9beec95 1355int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1356{
3373efd8 1357 struct ata_port *ap = dev->ap;
1148c3a7 1358 const u16 *id = dev->id;
ff8854b2 1359 unsigned int xfer_mask;
e6d902a3 1360 int rc;
49016aca 1361
0dd4b21f 1362 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
88574551
TH
1363 ata_dev_printk(dev, KERN_INFO,
1364 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1365 __FUNCTION__, ap->id, dev->devno);
ffeae418 1366 return 0;
49016aca
TH
1367 }
1368
0dd4b21f 1369 if (ata_msg_probe(ap))
88574551
TH
1370 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1371 __FUNCTION__, ap->id, dev->devno);
1da177e4 1372
c39f5ebe 1373 /* print device capabilities */
0dd4b21f 1374 if (ata_msg_probe(ap))
88574551
TH
1375 ata_dev_printk(dev, KERN_DEBUG,
1376 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1377 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1378 __FUNCTION__,
f15a1daf
TH
1379 id[49], id[82], id[83], id[84],
1380 id[85], id[86], id[87], id[88]);
c39f5ebe 1381
208a9933 1382 /* initialize to-be-configured parameters */
ea1dd4e1 1383 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1384 dev->max_sectors = 0;
1385 dev->cdb_len = 0;
1386 dev->n_sectors = 0;
1387 dev->cylinders = 0;
1388 dev->heads = 0;
1389 dev->sectors = 0;
1390
1da177e4
LT
1391 /*
1392 * common ATA, ATAPI feature tests
1393 */
1394
ff8854b2 1395 /* find max transfer mode; for printk only */
1148c3a7 1396 xfer_mask = ata_id_xfermask(id);
1da177e4 1397
0dd4b21f
BP
1398 if (ata_msg_probe(ap))
1399 ata_dump_id(id);
1da177e4
LT
1400
1401 /* ATA-specific feature tests */
1402 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1403 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1404
1148c3a7 1405 if (ata_id_has_lba(id)) {
4c2d721a 1406 const char *lba_desc;
a6e6ce8e 1407 char ncq_desc[20];
8bf62ece 1408
4c2d721a
TH
1409 lba_desc = "LBA";
1410 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1411 if (ata_id_has_lba48(id)) {
8bf62ece 1412 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1413 lba_desc = "LBA48";
1414 }
8bf62ece 1415
a6e6ce8e
TH
1416 /* config NCQ */
1417 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1418
8bf62ece 1419 /* print device info to dmesg */
5afc8142 1420 if (ata_msg_drv(ap) && print_info)
f15a1daf 1421 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
a6e6ce8e 1422 "max %s, %Lu sectors: %s %s\n",
f15a1daf
TH
1423 ata_id_major_version(id),
1424 ata_mode_string(xfer_mask),
1425 (unsigned long long)dev->n_sectors,
a6e6ce8e 1426 lba_desc, ncq_desc);
ffeae418 1427 } else {
8bf62ece
AL
1428 /* CHS */
1429
1430 /* Default translation */
1148c3a7
TH
1431 dev->cylinders = id[1];
1432 dev->heads = id[3];
1433 dev->sectors = id[6];
8bf62ece 1434
1148c3a7 1435 if (ata_id_current_chs_valid(id)) {
8bf62ece 1436 /* Current CHS translation is valid. */
1148c3a7
TH
1437 dev->cylinders = id[54];
1438 dev->heads = id[55];
1439 dev->sectors = id[56];
8bf62ece
AL
1440 }
1441
1442 /* print device info to dmesg */
5afc8142 1443 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1444 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1445 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1446 ata_id_major_version(id),
1447 ata_mode_string(xfer_mask),
1448 (unsigned long long)dev->n_sectors,
88574551
TH
1449 dev->cylinders, dev->heads,
1450 dev->sectors);
1da177e4
LT
1451 }
1452
07f6f7d0
AL
1453 if (dev->id[59] & 0x100) {
1454 dev->multi_count = dev->id[59] & 0xff;
5afc8142 1455 if (ata_msg_drv(ap) && print_info)
88574551
TH
1456 ata_dev_printk(dev, KERN_INFO,
1457 "ata%u: dev %u multi count %u\n",
1458 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1459 }
1460
6e7846e9 1461 dev->cdb_len = 16;
1da177e4
LT
1462 }
1463
1464 /* ATAPI-specific feature tests */
2c13b7ce 1465 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1466 char *cdb_intr_string = "";
1467
1148c3a7 1468 rc = atapi_cdb_len(id);
1da177e4 1469 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1470 if (ata_msg_warn(ap))
88574551
TH
1471 ata_dev_printk(dev, KERN_WARNING,
1472 "unsupported CDB len\n");
ffeae418 1473 rc = -EINVAL;
1da177e4
LT
1474 goto err_out_nosup;
1475 }
6e7846e9 1476 dev->cdb_len = (unsigned int) rc;
1da177e4 1477
08a556db 1478 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1479 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1480 cdb_intr_string = ", CDB intr";
1481 }
312f7da2 1482
1da177e4 1483 /* print device info to dmesg */
5afc8142 1484 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1485 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1486 ata_mode_string(xfer_mask),
1487 cdb_intr_string);
1da177e4
LT
1488 }
1489
e6d902a3 1490 ata_set_port_max_cmd_len(ap);
6e7846e9 1491
4b2f3ede 1492 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1493 if (ata_dev_knobble(dev)) {
5afc8142 1494 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1495 ata_dev_printk(dev, KERN_INFO,
1496 "applying bridge limits\n");
5a529139 1497 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1498 dev->max_sectors = ATA_MAX_SECTORS;
1499 }
1500
1501 if (ap->ops->dev_config)
1502 ap->ops->dev_config(ap, dev);
1503
0dd4b21f
BP
1504 if (ata_msg_probe(ap))
1505 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1506 __FUNCTION__, ata_chk_status(ap));
ffeae418 1507 return 0;
1da177e4
LT
1508
1509err_out_nosup:
0dd4b21f 1510 if (ata_msg_probe(ap))
88574551
TH
1511 ata_dev_printk(dev, KERN_DEBUG,
1512 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1513 return rc;
1da177e4
LT
1514}
1515
1516/**
1517 * ata_bus_probe - Reset and probe ATA bus
1518 * @ap: Bus to probe
1519 *
0cba632b
JG
1520 * Master ATA bus probing function. Initiates a hardware-dependent
1521 * bus reset, then attempts to identify any devices found on
1522 * the bus.
1523 *
1da177e4 1524 * LOCKING:
0cba632b 1525 * PCI/etc. bus probe sem.
1da177e4
LT
1526 *
1527 * RETURNS:
96072e69 1528 * Zero on success, negative errno otherwise.
1da177e4
LT
1529 */
1530
1531static int ata_bus_probe(struct ata_port *ap)
1532{
28ca5c57 1533 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1534 int tries[ATA_MAX_DEVICES];
1535 int i, rc, down_xfermask;
e82cbdb9 1536 struct ata_device *dev;
1da177e4 1537
28ca5c57 1538 ata_port_probe(ap);
c19ba8af 1539
14d2bac1
TH
1540 for (i = 0; i < ATA_MAX_DEVICES; i++)
1541 tries[i] = ATA_PROBE_MAX_TRIES;
1542
1543 retry:
1544 down_xfermask = 0;
1545
2044470c 1546 /* reset and determine device classes */
52783c5d 1547 ap->ops->phy_reset(ap);
2061a47a 1548
52783c5d
TH
1549 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1550 dev = &ap->device[i];
c19ba8af 1551
52783c5d
TH
1552 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1553 dev->class != ATA_DEV_UNKNOWN)
1554 classes[dev->devno] = dev->class;
1555 else
1556 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1557
52783c5d 1558 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1559 }
1da177e4 1560
52783c5d 1561 ata_port_probe(ap);
2044470c 1562
b6079ca4
AC
1563 /* after the reset the device state is PIO 0 and the controller
1564 state is undefined. Record the mode */
1565
1566 for (i = 0; i < ATA_MAX_DEVICES; i++)
1567 ap->device[i].pio_mode = XFER_PIO_0;
1568
28ca5c57 1569 /* read IDENTIFY page and configure devices */
1da177e4 1570 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1571 dev = &ap->device[i];
28ca5c57 1572
ec573755
TH
1573 if (tries[i])
1574 dev->class = classes[i];
ffeae418 1575
14d2bac1 1576 if (!ata_dev_enabled(dev))
ffeae418 1577 continue;
ffeae418 1578
3373efd8 1579 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1580 if (rc)
1581 goto fail;
1582
3373efd8 1583 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1584 if (rc)
1585 goto fail;
1da177e4
LT
1586 }
1587
e82cbdb9 1588 /* configure transfer mode */
3adcebb2 1589 rc = ata_set_mode(ap, &dev);
51713d35
TH
1590 if (rc) {
1591 down_xfermask = 1;
1592 goto fail;
e82cbdb9 1593 }
1da177e4 1594
e82cbdb9
TH
1595 for (i = 0; i < ATA_MAX_DEVICES; i++)
1596 if (ata_dev_enabled(&ap->device[i]))
1597 return 0;
1da177e4 1598
e82cbdb9
TH
1599 /* no device present, disable port */
1600 ata_port_disable(ap);
1da177e4 1601 ap->ops->port_disable(ap);
96072e69 1602 return -ENODEV;
14d2bac1
TH
1603
1604 fail:
1605 switch (rc) {
1606 case -EINVAL:
1607 case -ENODEV:
1608 tries[dev->devno] = 0;
1609 break;
1610 case -EIO:
3c567b7d 1611 sata_down_spd_limit(ap);
14d2bac1
TH
1612 /* fall through */
1613 default:
1614 tries[dev->devno]--;
1615 if (down_xfermask &&
3373efd8 1616 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1617 tries[dev->devno] = 0;
1618 }
1619
ec573755 1620 if (!tries[dev->devno]) {
3373efd8
TH
1621 ata_down_xfermask_limit(dev, 1);
1622 ata_dev_disable(dev);
ec573755
TH
1623 }
1624
14d2bac1 1625 goto retry;
1da177e4
LT
1626}
1627
1628/**
0cba632b
JG
1629 * ata_port_probe - Mark port as enabled
1630 * @ap: Port for which we indicate enablement
1da177e4 1631 *
0cba632b
JG
1632 * Modify @ap data structure such that the system
1633 * thinks that the entire port is enabled.
1634 *
1635 * LOCKING: host_set lock, or some other form of
1636 * serialization.
1da177e4
LT
1637 */
1638
1639void ata_port_probe(struct ata_port *ap)
1640{
198e0fed 1641 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1642}
1643
3be680b7
TH
1644/**
1645 * sata_print_link_status - Print SATA link status
1646 * @ap: SATA port to printk link status about
1647 *
1648 * This function prints link speed and status of a SATA link.
1649 *
1650 * LOCKING:
1651 * None.
1652 */
1653static void sata_print_link_status(struct ata_port *ap)
1654{
6d5f9732 1655 u32 sstatus, scontrol, tmp;
3be680b7 1656
81952c54 1657 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1658 return;
81952c54 1659 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1660
81952c54 1661 if (ata_port_online(ap)) {
3be680b7 1662 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1663 ata_port_printk(ap, KERN_INFO,
1664 "SATA link up %s (SStatus %X SControl %X)\n",
1665 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1666 } else {
f15a1daf
TH
1667 ata_port_printk(ap, KERN_INFO,
1668 "SATA link down (SStatus %X SControl %X)\n",
1669 sstatus, scontrol);
3be680b7
TH
1670 }
1671}
1672
1da177e4 1673/**
780a87f7
JG
1674 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1675 * @ap: SATA port associated with target SATA PHY.
1da177e4 1676 *
780a87f7
JG
1677 * This function issues commands to standard SATA Sxxx
1678 * PHY registers, to wake up the phy (and device), and
1679 * clear any reset condition.
1da177e4
LT
1680 *
1681 * LOCKING:
0cba632b 1682 * PCI/etc. bus probe sem.
1da177e4
LT
1683 *
1684 */
1685void __sata_phy_reset(struct ata_port *ap)
1686{
1687 u32 sstatus;
1688 unsigned long timeout = jiffies + (HZ * 5);
1689
1690 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1691 /* issue phy wake/reset */
81952c54 1692 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1693 /* Couldn't find anything in SATA I/II specs, but
1694 * AHCI-1.1 10.4.2 says at least 1 ms. */
1695 mdelay(1);
1da177e4 1696 }
81952c54
TH
1697 /* phy wake/clear reset */
1698 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1699
1700 /* wait for phy to become ready, if necessary */
1701 do {
1702 msleep(200);
81952c54 1703 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1704 if ((sstatus & 0xf) != 1)
1705 break;
1706 } while (time_before(jiffies, timeout));
1707
3be680b7
TH
1708 /* print link status */
1709 sata_print_link_status(ap);
656563e3 1710
3be680b7 1711 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1712 if (!ata_port_offline(ap))
1da177e4 1713 ata_port_probe(ap);
3be680b7 1714 else
1da177e4 1715 ata_port_disable(ap);
1da177e4 1716
198e0fed 1717 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1718 return;
1719
1720 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1721 ata_port_disable(ap);
1722 return;
1723 }
1724
1725 ap->cbl = ATA_CBL_SATA;
1726}
1727
1728/**
780a87f7
JG
1729 * sata_phy_reset - Reset SATA bus.
1730 * @ap: SATA port associated with target SATA PHY.
1da177e4 1731 *
780a87f7
JG
1732 * This function resets the SATA bus, and then probes
1733 * the bus for devices.
1da177e4
LT
1734 *
1735 * LOCKING:
0cba632b 1736 * PCI/etc. bus probe sem.
1da177e4
LT
1737 *
1738 */
1739void sata_phy_reset(struct ata_port *ap)
1740{
1741 __sata_phy_reset(ap);
198e0fed 1742 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1743 return;
1744 ata_bus_reset(ap);
1745}
1746
ebdfca6e
AC
1747/**
1748 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1749 * @adev: device
1750 *
1751 * Obtain the other device on the same cable, or if none is
1752 * present NULL is returned
1753 */
2e9edbf8 1754
3373efd8 1755struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1756{
3373efd8 1757 struct ata_port *ap = adev->ap;
ebdfca6e 1758 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1759 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1760 return NULL;
1761 return pair;
1762}
1763
1da177e4 1764/**
780a87f7
JG
1765 * ata_port_disable - Disable port.
1766 * @ap: Port to be disabled.
1da177e4 1767 *
780a87f7
JG
1768 * Modify @ap data structure such that the system
1769 * thinks that the entire port is disabled, and should
1770 * never attempt to probe or communicate with devices
1771 * on this port.
1772 *
1773 * LOCKING: host_set lock, or some other form of
1774 * serialization.
1da177e4
LT
1775 */
1776
1777void ata_port_disable(struct ata_port *ap)
1778{
1779 ap->device[0].class = ATA_DEV_NONE;
1780 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1781 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1782}
1783
1c3fae4d 1784/**
3c567b7d 1785 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1786 * @ap: Port to adjust SATA spd limit for
1787 *
1788 * Adjust SATA spd limit of @ap downward. Note that this
1789 * function only adjusts the limit. The change must be applied
3c567b7d 1790 * using sata_set_spd().
1c3fae4d
TH
1791 *
1792 * LOCKING:
1793 * Inherited from caller.
1794 *
1795 * RETURNS:
1796 * 0 on success, negative errno on failure
1797 */
3c567b7d 1798int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1799{
81952c54
TH
1800 u32 sstatus, spd, mask;
1801 int rc, highbit;
1c3fae4d 1802
81952c54
TH
1803 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1804 if (rc)
1805 return rc;
1c3fae4d
TH
1806
1807 mask = ap->sata_spd_limit;
1808 if (mask <= 1)
1809 return -EINVAL;
1810 highbit = fls(mask) - 1;
1811 mask &= ~(1 << highbit);
1812
81952c54 1813 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1814 if (spd <= 1)
1815 return -EINVAL;
1816 spd--;
1817 mask &= (1 << spd) - 1;
1818 if (!mask)
1819 return -EINVAL;
1820
1821 ap->sata_spd_limit = mask;
1822
f15a1daf
TH
1823 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1824 sata_spd_string(fls(mask)));
1c3fae4d
TH
1825
1826 return 0;
1827}
1828
3c567b7d 1829static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1830{
1831 u32 spd, limit;
1832
1833 if (ap->sata_spd_limit == UINT_MAX)
1834 limit = 0;
1835 else
1836 limit = fls(ap->sata_spd_limit);
1837
1838 spd = (*scontrol >> 4) & 0xf;
1839 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1840
1841 return spd != limit;
1842}
1843
1844/**
3c567b7d 1845 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1846 * @ap: Port in question
1847 *
1848 * Test whether the spd limit in SControl matches
1849 * @ap->sata_spd_limit. This function is used to determine
1850 * whether hardreset is necessary to apply SATA spd
1851 * configuration.
1852 *
1853 * LOCKING:
1854 * Inherited from caller.
1855 *
1856 * RETURNS:
1857 * 1 if SATA spd configuration is needed, 0 otherwise.
1858 */
3c567b7d 1859int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1860{
1861 u32 scontrol;
1862
81952c54 1863 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1864 return 0;
1865
3c567b7d 1866 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1867}
1868
1869/**
3c567b7d 1870 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1871 * @ap: Port to set SATA spd for
1872 *
1873 * Set SATA spd of @ap according to sata_spd_limit.
1874 *
1875 * LOCKING:
1876 * Inherited from caller.
1877 *
1878 * RETURNS:
1879 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1880 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1881 */
3c567b7d 1882int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1883{
1884 u32 scontrol;
81952c54 1885 int rc;
1c3fae4d 1886
81952c54
TH
1887 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1888 return rc;
1c3fae4d 1889
3c567b7d 1890 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1891 return 0;
1892
81952c54
TH
1893 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1894 return rc;
1895
1c3fae4d
TH
1896 return 1;
1897}
1898
452503f9
AC
1899/*
1900 * This mode timing computation functionality is ported over from
1901 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1902 */
1903/*
1904 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1905 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1906 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1907 * is currently supported only by Maxtor drives.
452503f9
AC
1908 */
1909
1910static const struct ata_timing ata_timing[] = {
1911
1912 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1913 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1914 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1915 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1916
1917 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1918 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1919 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1920
1921/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1922
452503f9
AC
1923 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1924 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1925 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1926
452503f9
AC
1927 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1928 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1929 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1930
1931/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1932 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1933 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1934
1935 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1936 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1937 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1938
1939/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1940
1941 { 0xFF }
1942};
1943
1944#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1945#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1946
1947static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1948{
1949 q->setup = EZ(t->setup * 1000, T);
1950 q->act8b = EZ(t->act8b * 1000, T);
1951 q->rec8b = EZ(t->rec8b * 1000, T);
1952 q->cyc8b = EZ(t->cyc8b * 1000, T);
1953 q->active = EZ(t->active * 1000, T);
1954 q->recover = EZ(t->recover * 1000, T);
1955 q->cycle = EZ(t->cycle * 1000, T);
1956 q->udma = EZ(t->udma * 1000, UT);
1957}
1958
1959void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1960 struct ata_timing *m, unsigned int what)
1961{
1962 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1963 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1964 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1965 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1966 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1967 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1968 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1969 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1970}
1971
1972static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1973{
1974 const struct ata_timing *t;
1975
1976 for (t = ata_timing; t->mode != speed; t++)
91190758 1977 if (t->mode == 0xFF)
452503f9 1978 return NULL;
2e9edbf8 1979 return t;
452503f9
AC
1980}
1981
1982int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1983 struct ata_timing *t, int T, int UT)
1984{
1985 const struct ata_timing *s;
1986 struct ata_timing p;
1987
1988 /*
2e9edbf8 1989 * Find the mode.
75b1f2f8 1990 */
452503f9
AC
1991
1992 if (!(s = ata_timing_find_mode(speed)))
1993 return -EINVAL;
1994
75b1f2f8
AL
1995 memcpy(t, s, sizeof(*s));
1996
452503f9
AC
1997 /*
1998 * If the drive is an EIDE drive, it can tell us it needs extended
1999 * PIO/MW_DMA cycle timing.
2000 */
2001
2002 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2003 memset(&p, 0, sizeof(p));
2004 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2005 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2006 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2007 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2008 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2009 }
2010 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2011 }
2012
2013 /*
2014 * Convert the timing to bus clock counts.
2015 */
2016
75b1f2f8 2017 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2018
2019 /*
c893a3ae
RD
2020 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2021 * S.M.A.R.T * and some other commands. We have to ensure that the
2022 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2023 */
2024
2025 if (speed > XFER_PIO_4) {
2026 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2027 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2028 }
2029
2030 /*
c893a3ae 2031 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2032 */
2033
2034 if (t->act8b + t->rec8b < t->cyc8b) {
2035 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2036 t->rec8b = t->cyc8b - t->act8b;
2037 }
2038
2039 if (t->active + t->recover < t->cycle) {
2040 t->active += (t->cycle - (t->active + t->recover)) / 2;
2041 t->recover = t->cycle - t->active;
2042 }
2043
2044 return 0;
2045}
2046
cf176e1a
TH
2047/**
2048 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
2049 * @dev: Device to adjust xfer masks
2050 * @force_pio0: Force PIO0
2051 *
2052 * Adjust xfer masks of @dev downward. Note that this function
2053 * does not apply the change. Invoking ata_set_mode() afterwards
2054 * will apply the limit.
2055 *
2056 * LOCKING:
2057 * Inherited from caller.
2058 *
2059 * RETURNS:
2060 * 0 on success, negative errno on failure
2061 */
3373efd8 2062int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2063{
2064 unsigned long xfer_mask;
2065 int highbit;
2066
2067 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2068 dev->udma_mask);
2069
2070 if (!xfer_mask)
2071 goto fail;
2072 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2073 if (xfer_mask & ATA_MASK_UDMA)
2074 xfer_mask &= ~ATA_MASK_MWDMA;
2075
2076 highbit = fls(xfer_mask) - 1;
2077 xfer_mask &= ~(1 << highbit);
2078 if (force_pio0)
2079 xfer_mask &= 1 << ATA_SHIFT_PIO;
2080 if (!xfer_mask)
2081 goto fail;
2082
2083 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2084 &dev->udma_mask);
2085
f15a1daf
TH
2086 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2087 ata_mode_string(xfer_mask));
cf176e1a
TH
2088
2089 return 0;
2090
2091 fail:
2092 return -EINVAL;
2093}
2094
3373efd8 2095static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2096{
83206a29
TH
2097 unsigned int err_mask;
2098 int rc;
1da177e4 2099
e8384607 2100 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2101 if (dev->xfer_shift == ATA_SHIFT_PIO)
2102 dev->flags |= ATA_DFLAG_PIO;
2103
3373efd8 2104 err_mask = ata_dev_set_xfermode(dev);
83206a29 2105 if (err_mask) {
f15a1daf
TH
2106 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2107 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2108 return -EIO;
2109 }
1da177e4 2110
3373efd8 2111 rc = ata_dev_revalidate(dev, 0);
5eb45c02 2112 if (rc)
83206a29 2113 return rc;
48a8a14f 2114
23e71c3d
TH
2115 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2116 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2117
f15a1daf
TH
2118 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2119 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2120 return 0;
1da177e4
LT
2121}
2122
1da177e4
LT
2123/**
2124 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2125 * @ap: port on which timings will be programmed
e82cbdb9 2126 * @r_failed_dev: out paramter for failed device
1da177e4 2127 *
e82cbdb9
TH
2128 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2129 * ata_set_mode() fails, pointer to the failing device is
2130 * returned in @r_failed_dev.
780a87f7 2131 *
1da177e4 2132 * LOCKING:
0cba632b 2133 * PCI/etc. bus probe sem.
e82cbdb9
TH
2134 *
2135 * RETURNS:
2136 * 0 on success, negative errno otherwise
1da177e4 2137 */
1ad8e7f9 2138int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2139{
e8e0619f 2140 struct ata_device *dev;
e82cbdb9 2141 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2142
3adcebb2
TH
2143 /* has private set_mode? */
2144 if (ap->ops->set_mode) {
2145 /* FIXME: make ->set_mode handle no device case and
2146 * return error code and failing device on failure.
2147 */
2148 for (i = 0; i < ATA_MAX_DEVICES; i++) {
02670bf3 2149 if (ata_dev_ready(&ap->device[i])) {
3adcebb2
TH
2150 ap->ops->set_mode(ap);
2151 break;
2152 }
2153 }
2154 return 0;
2155 }
2156
a6d5a51c
TH
2157 /* step 1: calculate xfer_mask */
2158 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2159 unsigned int pio_mask, dma_mask;
a6d5a51c 2160
e8e0619f
TH
2161 dev = &ap->device[i];
2162
e1211e3f 2163 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2164 continue;
2165
3373efd8 2166 ata_dev_xfermask(dev);
1da177e4 2167
acf356b1
TH
2168 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2169 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2170 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2171 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2172
4f65977d 2173 found = 1;
5444a6f4
AC
2174 if (dev->dma_mode)
2175 used_dma = 1;
a6d5a51c 2176 }
4f65977d 2177 if (!found)
e82cbdb9 2178 goto out;
a6d5a51c
TH
2179
2180 /* step 2: always set host PIO timings */
e8e0619f
TH
2181 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2182 dev = &ap->device[i];
2183 if (!ata_dev_enabled(dev))
2184 continue;
2185
2186 if (!dev->pio_mode) {
f15a1daf 2187 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2188 rc = -EINVAL;
e82cbdb9 2189 goto out;
e8e0619f
TH
2190 }
2191
2192 dev->xfer_mode = dev->pio_mode;
2193 dev->xfer_shift = ATA_SHIFT_PIO;
2194 if (ap->ops->set_piomode)
2195 ap->ops->set_piomode(ap, dev);
2196 }
1da177e4 2197
a6d5a51c 2198 /* step 3: set host DMA timings */
e8e0619f
TH
2199 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2200 dev = &ap->device[i];
2201
2202 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2203 continue;
2204
2205 dev->xfer_mode = dev->dma_mode;
2206 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2207 if (ap->ops->set_dmamode)
2208 ap->ops->set_dmamode(ap, dev);
2209 }
1da177e4
LT
2210
2211 /* step 4: update devices' xfer mode */
83206a29 2212 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2213 dev = &ap->device[i];
1da177e4 2214
02670bf3
TH
2215 /* don't udpate suspended devices' xfer mode */
2216 if (!ata_dev_ready(dev))
83206a29
TH
2217 continue;
2218
3373efd8 2219 rc = ata_dev_set_mode(dev);
5bbc53f4 2220 if (rc)
e82cbdb9 2221 goto out;
83206a29 2222 }
1da177e4 2223
e8e0619f
TH
2224 /* Record simplex status. If we selected DMA then the other
2225 * host channels are not permitted to do so.
5444a6f4 2226 */
5444a6f4
AC
2227 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2228 ap->host_set->simplex_claimed = 1;
2229
e8e0619f 2230 /* step5: chip specific finalisation */
1da177e4
LT
2231 if (ap->ops->post_set_mode)
2232 ap->ops->post_set_mode(ap);
2233
e82cbdb9
TH
2234 out:
2235 if (rc)
2236 *r_failed_dev = dev;
2237 return rc;
1da177e4
LT
2238}
2239
1fdffbce
JG
2240/**
2241 * ata_tf_to_host - issue ATA taskfile to host controller
2242 * @ap: port to which command is being issued
2243 * @tf: ATA taskfile register set
2244 *
2245 * Issues ATA taskfile register set to ATA host controller,
2246 * with proper synchronization with interrupt handler and
2247 * other threads.
2248 *
2249 * LOCKING:
2250 * spin_lock_irqsave(host_set lock)
2251 */
2252
2253static inline void ata_tf_to_host(struct ata_port *ap,
2254 const struct ata_taskfile *tf)
2255{
2256 ap->ops->tf_load(ap, tf);
2257 ap->ops->exec_command(ap, tf);
2258}
2259
1da177e4
LT
2260/**
2261 * ata_busy_sleep - sleep until BSY clears, or timeout
2262 * @ap: port containing status register to be polled
2263 * @tmout_pat: impatience timeout
2264 * @tmout: overall timeout
2265 *
780a87f7
JG
2266 * Sleep until ATA Status register bit BSY clears,
2267 * or a timeout occurs.
2268 *
2269 * LOCKING: None.
1da177e4
LT
2270 */
2271
6f8b9958
TH
2272unsigned int ata_busy_sleep (struct ata_port *ap,
2273 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2274{
2275 unsigned long timer_start, timeout;
2276 u8 status;
2277
2278 status = ata_busy_wait(ap, ATA_BUSY, 300);
2279 timer_start = jiffies;
2280 timeout = timer_start + tmout_pat;
2281 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2282 msleep(50);
2283 status = ata_busy_wait(ap, ATA_BUSY, 3);
2284 }
2285
2286 if (status & ATA_BUSY)
f15a1daf
TH
2287 ata_port_printk(ap, KERN_WARNING,
2288 "port is slow to respond, please be patient\n");
1da177e4
LT
2289
2290 timeout = timer_start + tmout;
2291 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2292 msleep(50);
2293 status = ata_chk_status(ap);
2294 }
2295
2296 if (status & ATA_BUSY) {
f15a1daf
TH
2297 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2298 "(%lu secs)\n", tmout / HZ);
1da177e4
LT
2299 return 1;
2300 }
2301
2302 return 0;
2303}
2304
2305static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2306{
2307 struct ata_ioports *ioaddr = &ap->ioaddr;
2308 unsigned int dev0 = devmask & (1 << 0);
2309 unsigned int dev1 = devmask & (1 << 1);
2310 unsigned long timeout;
2311
2312 /* if device 0 was found in ata_devchk, wait for its
2313 * BSY bit to clear
2314 */
2315 if (dev0)
2316 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2317
2318 /* if device 1 was found in ata_devchk, wait for
2319 * register access, then wait for BSY to clear
2320 */
2321 timeout = jiffies + ATA_TMOUT_BOOT;
2322 while (dev1) {
2323 u8 nsect, lbal;
2324
2325 ap->ops->dev_select(ap, 1);
2326 if (ap->flags & ATA_FLAG_MMIO) {
2327 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2328 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2329 } else {
2330 nsect = inb(ioaddr->nsect_addr);
2331 lbal = inb(ioaddr->lbal_addr);
2332 }
2333 if ((nsect == 1) && (lbal == 1))
2334 break;
2335 if (time_after(jiffies, timeout)) {
2336 dev1 = 0;
2337 break;
2338 }
2339 msleep(50); /* give drive a breather */
2340 }
2341 if (dev1)
2342 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2343
2344 /* is all this really necessary? */
2345 ap->ops->dev_select(ap, 0);
2346 if (dev1)
2347 ap->ops->dev_select(ap, 1);
2348 if (dev0)
2349 ap->ops->dev_select(ap, 0);
2350}
2351
1da177e4
LT
2352static unsigned int ata_bus_softreset(struct ata_port *ap,
2353 unsigned int devmask)
2354{
2355 struct ata_ioports *ioaddr = &ap->ioaddr;
2356
2357 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2358
2359 /* software reset. causes dev0 to be selected */
2360 if (ap->flags & ATA_FLAG_MMIO) {
2361 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2362 udelay(20); /* FIXME: flush */
2363 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2364 udelay(20); /* FIXME: flush */
2365 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2366 } else {
2367 outb(ap->ctl, ioaddr->ctl_addr);
2368 udelay(10);
2369 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2370 udelay(10);
2371 outb(ap->ctl, ioaddr->ctl_addr);
2372 }
2373
2374 /* spec mandates ">= 2ms" before checking status.
2375 * We wait 150ms, because that was the magic delay used for
2376 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2377 * between when the ATA command register is written, and then
2378 * status is checked. Because waiting for "a while" before
2379 * checking status is fine, post SRST, we perform this magic
2380 * delay here as well.
09c7ad79
AC
2381 *
2382 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2383 */
2384 msleep(150);
2385
2e9edbf8 2386 /* Before we perform post reset processing we want to see if
298a41ca
TH
2387 * the bus shows 0xFF because the odd clown forgets the D7
2388 * pulldown resistor.
2389 */
987d2f05 2390 if (ata_check_status(ap) == 0xFF) {
f15a1daf 2391 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
298a41ca 2392 return AC_ERR_OTHER;
987d2f05 2393 }
09c7ad79 2394
1da177e4
LT
2395 ata_bus_post_reset(ap, devmask);
2396
2397 return 0;
2398}
2399
2400/**
2401 * ata_bus_reset - reset host port and associated ATA channel
2402 * @ap: port to reset
2403 *
2404 * This is typically the first time we actually start issuing
2405 * commands to the ATA channel. We wait for BSY to clear, then
2406 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2407 * result. Determine what devices, if any, are on the channel
2408 * by looking at the device 0/1 error register. Look at the signature
2409 * stored in each device's taskfile registers, to determine if
2410 * the device is ATA or ATAPI.
2411 *
2412 * LOCKING:
0cba632b
JG
2413 * PCI/etc. bus probe sem.
2414 * Obtains host_set lock.
1da177e4
LT
2415 *
2416 * SIDE EFFECTS:
198e0fed 2417 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2418 */
2419
2420void ata_bus_reset(struct ata_port *ap)
2421{
2422 struct ata_ioports *ioaddr = &ap->ioaddr;
2423 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2424 u8 err;
aec5c3c1 2425 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2426
2427 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2428
2429 /* determine if device 0/1 are present */
2430 if (ap->flags & ATA_FLAG_SATA_RESET)
2431 dev0 = 1;
2432 else {
2433 dev0 = ata_devchk(ap, 0);
2434 if (slave_possible)
2435 dev1 = ata_devchk(ap, 1);
2436 }
2437
2438 if (dev0)
2439 devmask |= (1 << 0);
2440 if (dev1)
2441 devmask |= (1 << 1);
2442
2443 /* select device 0 again */
2444 ap->ops->dev_select(ap, 0);
2445
2446 /* issue bus reset */
2447 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2448 if (ata_bus_softreset(ap, devmask))
2449 goto err_out;
1da177e4
LT
2450
2451 /*
2452 * determine by signature whether we have ATA or ATAPI devices
2453 */
b4dc7623 2454 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2455 if ((slave_possible) && (err != 0x81))
b4dc7623 2456 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2457
2458 /* re-enable interrupts */
2459 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2460 ata_irq_on(ap);
2461
2462 /* is double-select really necessary? */
2463 if (ap->device[1].class != ATA_DEV_NONE)
2464 ap->ops->dev_select(ap, 1);
2465 if (ap->device[0].class != ATA_DEV_NONE)
2466 ap->ops->dev_select(ap, 0);
2467
2468 /* if no devices were detected, disable this port */
2469 if ((ap->device[0].class == ATA_DEV_NONE) &&
2470 (ap->device[1].class == ATA_DEV_NONE))
2471 goto err_out;
2472
2473 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2474 /* set up device control for ATA_FLAG_SATA_RESET */
2475 if (ap->flags & ATA_FLAG_MMIO)
2476 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2477 else
2478 outb(ap->ctl, ioaddr->ctl_addr);
2479 }
2480
2481 DPRINTK("EXIT\n");
2482 return;
2483
2484err_out:
f15a1daf 2485 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2486 ap->ops->port_disable(ap);
2487
2488 DPRINTK("EXIT\n");
2489}
2490
d7bb4cc7
TH
2491/**
2492 * sata_phy_debounce - debounce SATA phy status
2493 * @ap: ATA port to debounce SATA phy status for
2494 * @params: timing parameters { interval, duratinon, timeout } in msec
2495 *
2496 * Make sure SStatus of @ap reaches stable state, determined by
2497 * holding the same value where DET is not 1 for @duration polled
2498 * every @interval, before @timeout. Timeout constraints the
2499 * beginning of the stable state. Because, after hot unplugging,
2500 * DET gets stuck at 1 on some controllers, this functions waits
2501 * until timeout then returns 0 if DET is stable at 1.
2502 *
2503 * LOCKING:
2504 * Kernel thread context (may sleep)
2505 *
2506 * RETURNS:
2507 * 0 on success, -errno on failure.
2508 */
2509int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2510{
d7bb4cc7
TH
2511 unsigned long interval_msec = params[0];
2512 unsigned long duration = params[1] * HZ / 1000;
2513 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2514 unsigned long last_jiffies;
2515 u32 last, cur;
2516 int rc;
2517
2518 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2519 return rc;
2520 cur &= 0xf;
2521
2522 last = cur;
2523 last_jiffies = jiffies;
2524
2525 while (1) {
2526 msleep(interval_msec);
2527 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2528 return rc;
2529 cur &= 0xf;
2530
2531 /* DET stable? */
2532 if (cur == last) {
2533 if (cur == 1 && time_before(jiffies, timeout))
2534 continue;
2535 if (time_after(jiffies, last_jiffies + duration))
2536 return 0;
2537 continue;
2538 }
2539
2540 /* unstable, start over */
2541 last = cur;
2542 last_jiffies = jiffies;
2543
2544 /* check timeout */
2545 if (time_after(jiffies, timeout))
2546 return -EBUSY;
2547 }
2548}
2549
2550/**
2551 * sata_phy_resume - resume SATA phy
2552 * @ap: ATA port to resume SATA phy for
2553 * @params: timing parameters { interval, duratinon, timeout } in msec
2554 *
2555 * Resume SATA phy of @ap and debounce it.
2556 *
2557 * LOCKING:
2558 * Kernel thread context (may sleep)
2559 *
2560 * RETURNS:
2561 * 0 on success, -errno on failure.
2562 */
2563int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2564{
2565 u32 scontrol;
81952c54
TH
2566 int rc;
2567
2568 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2569 return rc;
7a7921e8 2570
852ee16a 2571 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2572
2573 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2574 return rc;
7a7921e8 2575
d7bb4cc7
TH
2576 /* Some PHYs react badly if SStatus is pounded immediately
2577 * after resuming. Delay 200ms before debouncing.
2578 */
2579 msleep(200);
7a7921e8 2580
d7bb4cc7 2581 return sata_phy_debounce(ap, params);
7a7921e8
TH
2582}
2583
f5914a46
TH
2584static void ata_wait_spinup(struct ata_port *ap)
2585{
2586 struct ata_eh_context *ehc = &ap->eh_context;
2587 unsigned long end, secs;
2588 int rc;
2589
2590 /* first, debounce phy if SATA */
2591 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 2592 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
2593
2594 /* if debounced successfully and offline, no need to wait */
2595 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2596 return;
2597 }
2598
2599 /* okay, let's give the drive time to spin up */
2600 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2601 secs = ((end - jiffies) + HZ - 1) / HZ;
2602
2603 if (time_after(jiffies, end))
2604 return;
2605
2606 if (secs > 5)
2607 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2608 "(%lu secs)\n", secs);
2609
2610 schedule_timeout_uninterruptible(end - jiffies);
2611}
2612
2613/**
2614 * ata_std_prereset - prepare for reset
2615 * @ap: ATA port to be reset
2616 *
2617 * @ap is about to be reset. Initialize it.
2618 *
2619 * LOCKING:
2620 * Kernel thread context (may sleep)
2621 *
2622 * RETURNS:
2623 * 0 on success, -errno otherwise.
2624 */
2625int ata_std_prereset(struct ata_port *ap)
2626{
2627 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 2628 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
2629 int rc;
2630
28324304
TH
2631 /* handle link resume & hotplug spinup */
2632 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2633 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2634 ehc->i.action |= ATA_EH_HARDRESET;
2635
2636 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2637 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2638 ata_wait_spinup(ap);
f5914a46
TH
2639
2640 /* if we're about to do hardreset, nothing more to do */
2641 if (ehc->i.action & ATA_EH_HARDRESET)
2642 return 0;
2643
2644 /* if SATA, resume phy */
2645 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
2646 rc = sata_phy_resume(ap, timing);
2647 if (rc && rc != -EOPNOTSUPP) {
2648 /* phy resume failed */
2649 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2650 "link for reset (errno=%d)\n", rc);
2651 return rc;
2652 }
2653 }
2654
2655 /* Wait for !BSY if the controller can wait for the first D2H
2656 * Reg FIS and we don't know that no device is attached.
2657 */
2658 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2659 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2660
2661 return 0;
2662}
2663
c2bd5804
TH
2664/**
2665 * ata_std_softreset - reset host port via ATA SRST
2666 * @ap: port to reset
c2bd5804
TH
2667 * @classes: resulting classes of attached devices
2668 *
52783c5d 2669 * Reset host port using ATA SRST.
c2bd5804
TH
2670 *
2671 * LOCKING:
2672 * Kernel thread context (may sleep)
2673 *
2674 * RETURNS:
2675 * 0 on success, -errno otherwise.
2676 */
2bf2cb26 2677int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2678{
2679 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2680 unsigned int devmask = 0, err_mask;
2681 u8 err;
2682
2683 DPRINTK("ENTER\n");
2684
81952c54 2685 if (ata_port_offline(ap)) {
3a39746a
TH
2686 classes[0] = ATA_DEV_NONE;
2687 goto out;
2688 }
2689
c2bd5804
TH
2690 /* determine if device 0/1 are present */
2691 if (ata_devchk(ap, 0))
2692 devmask |= (1 << 0);
2693 if (slave_possible && ata_devchk(ap, 1))
2694 devmask |= (1 << 1);
2695
c2bd5804
TH
2696 /* select device 0 again */
2697 ap->ops->dev_select(ap, 0);
2698
2699 /* issue bus reset */
2700 DPRINTK("about to softreset, devmask=%x\n", devmask);
2701 err_mask = ata_bus_softreset(ap, devmask);
2702 if (err_mask) {
f15a1daf
TH
2703 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2704 err_mask);
c2bd5804
TH
2705 return -EIO;
2706 }
2707
2708 /* determine by signature whether we have ATA or ATAPI devices */
2709 classes[0] = ata_dev_try_classify(ap, 0, &err);
2710 if (slave_possible && err != 0x81)
2711 classes[1] = ata_dev_try_classify(ap, 1, &err);
2712
3a39746a 2713 out:
c2bd5804
TH
2714 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2715 return 0;
2716}
2717
2718/**
2719 * sata_std_hardreset - reset host port via SATA phy reset
2720 * @ap: port to reset
c2bd5804
TH
2721 * @class: resulting class of attached device
2722 *
2723 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
2724 *
2725 * LOCKING:
2726 * Kernel thread context (may sleep)
2727 *
2728 * RETURNS:
2729 * 0 on success, -errno otherwise.
2730 */
2bf2cb26 2731int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2732{
e9c83914
TH
2733 struct ata_eh_context *ehc = &ap->eh_context;
2734 const unsigned long *timing = sata_ehc_deb_timing(ehc);
852ee16a 2735 u32 scontrol;
81952c54 2736 int rc;
852ee16a 2737
c2bd5804
TH
2738 DPRINTK("ENTER\n");
2739
3c567b7d 2740 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2741 /* SATA spec says nothing about how to reconfigure
2742 * spd. To be on the safe side, turn off phy during
2743 * reconfiguration. This works for at least ICH7 AHCI
2744 * and Sil3124.
2745 */
81952c54
TH
2746 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2747 return rc;
2748
a34b6fc0 2749 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
2750
2751 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2752 return rc;
1c3fae4d 2753
3c567b7d 2754 sata_set_spd(ap);
1c3fae4d
TH
2755 }
2756
2757 /* issue phy wake/reset */
81952c54
TH
2758 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2759 return rc;
2760
852ee16a 2761 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2762
2763 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2764 return rc;
c2bd5804 2765
1c3fae4d 2766 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2767 * 10.4.2 says at least 1 ms.
2768 */
2769 msleep(1);
2770
1c3fae4d 2771 /* bring phy back */
e9c83914 2772 sata_phy_resume(ap, timing);
c2bd5804 2773
c2bd5804 2774 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2775 if (ata_port_offline(ap)) {
c2bd5804
TH
2776 *class = ATA_DEV_NONE;
2777 DPRINTK("EXIT, link offline\n");
2778 return 0;
2779 }
2780
2781 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2782 ata_port_printk(ap, KERN_ERR,
2783 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2784 return -EIO;
2785 }
2786
3a39746a
TH
2787 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2788
c2bd5804
TH
2789 *class = ata_dev_try_classify(ap, 0, NULL);
2790
2791 DPRINTK("EXIT, class=%u\n", *class);
2792 return 0;
2793}
2794
2795/**
2796 * ata_std_postreset - standard postreset callback
2797 * @ap: the target ata_port
2798 * @classes: classes of attached devices
2799 *
2800 * This function is invoked after a successful reset. Note that
2801 * the device might have been reset more than once using
2802 * different reset methods before postreset is invoked.
c2bd5804 2803 *
c2bd5804
TH
2804 * LOCKING:
2805 * Kernel thread context (may sleep)
2806 */
2807void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2808{
dc2b3515
TH
2809 u32 serror;
2810
c2bd5804
TH
2811 DPRINTK("ENTER\n");
2812
c2bd5804 2813 /* print link status */
81952c54 2814 sata_print_link_status(ap);
c2bd5804 2815
dc2b3515
TH
2816 /* clear SError */
2817 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2818 sata_scr_write(ap, SCR_ERROR, serror);
2819
3a39746a 2820 /* re-enable interrupts */
e3180499
TH
2821 if (!ap->ops->error_handler) {
2822 /* FIXME: hack. create a hook instead */
2823 if (ap->ioaddr.ctl_addr)
2824 ata_irq_on(ap);
2825 }
c2bd5804
TH
2826
2827 /* is double-select really necessary? */
2828 if (classes[0] != ATA_DEV_NONE)
2829 ap->ops->dev_select(ap, 1);
2830 if (classes[1] != ATA_DEV_NONE)
2831 ap->ops->dev_select(ap, 0);
2832
3a39746a
TH
2833 /* bail out if no device is present */
2834 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2835 DPRINTK("EXIT, no device\n");
2836 return;
2837 }
2838
2839 /* set up device control */
2840 if (ap->ioaddr.ctl_addr) {
2841 if (ap->flags & ATA_FLAG_MMIO)
2842 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2843 else
2844 outb(ap->ctl, ap->ioaddr.ctl_addr);
2845 }
c2bd5804
TH
2846
2847 DPRINTK("EXIT\n");
2848}
2849
623a3128
TH
2850/**
2851 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2852 * @dev: device to compare against
2853 * @new_class: class of the new device
2854 * @new_id: IDENTIFY page of the new device
2855 *
2856 * Compare @new_class and @new_id against @dev and determine
2857 * whether @dev is the device indicated by @new_class and
2858 * @new_id.
2859 *
2860 * LOCKING:
2861 * None.
2862 *
2863 * RETURNS:
2864 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2865 */
3373efd8
TH
2866static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2867 const u16 *new_id)
623a3128
TH
2868{
2869 const u16 *old_id = dev->id;
2870 unsigned char model[2][41], serial[2][21];
2871 u64 new_n_sectors;
2872
2873 if (dev->class != new_class) {
f15a1daf
TH
2874 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2875 dev->class, new_class);
623a3128
TH
2876 return 0;
2877 }
2878
2879 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2880 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2881 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2882 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2883 new_n_sectors = ata_id_n_sectors(new_id);
2884
2885 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2886 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2887 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2888 return 0;
2889 }
2890
2891 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2892 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2893 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
2894 return 0;
2895 }
2896
2897 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
2898 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2899 "%llu != %llu\n",
2900 (unsigned long long)dev->n_sectors,
2901 (unsigned long long)new_n_sectors);
623a3128
TH
2902 return 0;
2903 }
2904
2905 return 1;
2906}
2907
2908/**
2909 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
2910 * @dev: device to revalidate
2911 * @post_reset: is this revalidation after reset?
2912 *
2913 * Re-read IDENTIFY page and make sure @dev is still attached to
2914 * the port.
2915 *
2916 * LOCKING:
2917 * Kernel thread context (may sleep)
2918 *
2919 * RETURNS:
2920 * 0 on success, negative errno otherwise
2921 */
3373efd8 2922int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 2923{
5eb45c02 2924 unsigned int class = dev->class;
f15a1daf 2925 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
2926 int rc;
2927
5eb45c02
TH
2928 if (!ata_dev_enabled(dev)) {
2929 rc = -ENODEV;
2930 goto fail;
2931 }
623a3128 2932
fe635c7e 2933 /* read ID data */
3373efd8 2934 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
2935 if (rc)
2936 goto fail;
2937
2938 /* is the device still there? */
3373efd8 2939 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
2940 rc = -ENODEV;
2941 goto fail;
2942 }
2943
fe635c7e 2944 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
2945
2946 /* configure device according to the new ID */
3373efd8 2947 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
2948 if (rc == 0)
2949 return 0;
623a3128
TH
2950
2951 fail:
f15a1daf 2952 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
2953 return rc;
2954}
2955
98ac62de 2956static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2957 "WDC AC11000H", NULL,
2958 "WDC AC22100H", NULL,
2959 "WDC AC32500H", NULL,
2960 "WDC AC33100H", NULL,
2961 "WDC AC31600H", NULL,
2962 "WDC AC32100H", "24.09P07",
2963 "WDC AC23200L", "21.10N21",
2964 "Compaq CRD-8241B", NULL,
2965 "CRD-8400B", NULL,
2966 "CRD-8480B", NULL,
2967 "CRD-8482B", NULL,
2968 "CRD-84", NULL,
2969 "SanDisk SDP3B", NULL,
2970 "SanDisk SDP3B-64", NULL,
2971 "SANYO CD-ROM CRD", NULL,
2972 "HITACHI CDR-8", NULL,
2e9edbf8 2973 "HITACHI CDR-8335", NULL,
f4b15fef 2974 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2975 "Toshiba CD-ROM XM-6202B", NULL,
2976 "TOSHIBA CD-ROM XM-1702BC", NULL,
2977 "CD-532E-A", NULL,
2978 "E-IDE CD-ROM CR-840", NULL,
2979 "CD-ROM Drive/F5A", NULL,
2980 "WPI CDD-820", NULL,
f4b15fef 2981 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2982 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2983 "SanDisk SDP3B-64", NULL,
2984 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2985 "_NEC DV5800A", NULL,
2986 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2987};
2e9edbf8 2988
f4b15fef
AC
2989static int ata_strim(char *s, size_t len)
2990{
2991 len = strnlen(s, len);
2992
2993 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2994 while ((len > 0) && (s[len - 1] == ' ')) {
2995 len--;
2996 s[len] = 0;
2997 }
2998 return len;
2999}
1da177e4 3000
057ace5e 3001static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 3002{
f4b15fef
AC
3003 unsigned char model_num[40];
3004 unsigned char model_rev[16];
3005 unsigned int nlen, rlen;
1da177e4
LT
3006 int i;
3007
3a778275
AL
3008 /* We don't support polling DMA.
3009 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3010 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3011 */
3012 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3013 (dev->flags & ATA_DFLAG_CDB_INTR))
3014 return 1;
3015
f4b15fef
AC
3016 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3017 sizeof(model_num));
3018 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3019 sizeof(model_rev));
3020 nlen = ata_strim(model_num, sizeof(model_num));
3021 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 3022
f4b15fef
AC
3023 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3024 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3025 if (ata_dma_blacklist[i+1] == NULL)
3026 return 1;
3027 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3028 return 1;
3029 }
3030 }
1da177e4
LT
3031 return 0;
3032}
3033
a6d5a51c
TH
3034/**
3035 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3036 * @dev: Device to compute xfermask for
3037 *
acf356b1
TH
3038 * Compute supported xfermask of @dev and store it in
3039 * dev->*_mask. This function is responsible for applying all
3040 * known limits including host controller limits, device
3041 * blacklist, etc...
a6d5a51c 3042 *
600511e8
TH
3043 * FIXME: The current implementation limits all transfer modes to
3044 * the fastest of the lowested device on the port. This is not
05c8e0ac 3045 * required on most controllers.
600511e8 3046 *
a6d5a51c
TH
3047 * LOCKING:
3048 * None.
a6d5a51c 3049 */
3373efd8 3050static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3051{
3373efd8 3052 struct ata_port *ap = dev->ap;
5444a6f4 3053 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
3054 unsigned long xfer_mask;
3055 int i;
1da177e4 3056
565083e1
TH
3057 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3058 ap->mwdma_mask, ap->udma_mask);
3059
3060 /* Apply cable rule here. Don't apply it early because when
3061 * we handle hot plug the cable type can itself change.
3062 */
3063 if (ap->cbl == ATA_CBL_PATA40)
3064 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 3065
5444a6f4 3066 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
3067 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3068 struct ata_device *d = &ap->device[i];
565083e1
TH
3069
3070 if (ata_dev_absent(d))
3071 continue;
3072
3073 if (ata_dev_disabled(d)) {
3074 /* to avoid violating device selection timing */
3075 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3076 UINT_MAX, UINT_MAX);
a6d5a51c 3077 continue;
565083e1
TH
3078 }
3079
3080 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3081 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
3082 xfer_mask &= ata_id_xfermask(d->id);
3083 if (ata_dma_blacklisted(d))
3084 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
3085 }
3086
a6d5a51c 3087 if (ata_dma_blacklisted(dev))
f15a1daf
TH
3088 ata_dev_printk(dev, KERN_WARNING,
3089 "device is on DMA blacklist, disabling DMA\n");
a6d5a51c 3090
5444a6f4
AC
3091 if (hs->flags & ATA_HOST_SIMPLEX) {
3092 if (hs->simplex_claimed)
3093 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3094 }
565083e1 3095
5444a6f4
AC
3096 if (ap->ops->mode_filter)
3097 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3098
565083e1
TH
3099 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3100 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3101}
3102
1da177e4
LT
3103/**
3104 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3105 * @dev: Device to which command will be sent
3106 *
780a87f7
JG
3107 * Issue SET FEATURES - XFER MODE command to device @dev
3108 * on port @ap.
3109 *
1da177e4 3110 * LOCKING:
0cba632b 3111 * PCI/etc. bus probe sem.
83206a29
TH
3112 *
3113 * RETURNS:
3114 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3115 */
3116
3373efd8 3117static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3118{
a0123703 3119 struct ata_taskfile tf;
83206a29 3120 unsigned int err_mask;
1da177e4
LT
3121
3122 /* set up set-features taskfile */
3123 DPRINTK("set features - xfer mode\n");
3124
3373efd8 3125 ata_tf_init(dev, &tf);
a0123703
TH
3126 tf.command = ATA_CMD_SET_FEATURES;
3127 tf.feature = SETFEATURES_XFER;
3128 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3129 tf.protocol = ATA_PROT_NODATA;
3130 tf.nsect = dev->xfer_mode;
1da177e4 3131
3373efd8 3132 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3133
83206a29
TH
3134 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3135 return err_mask;
1da177e4
LT
3136}
3137
8bf62ece
AL
3138/**
3139 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3140 * @dev: Device to which command will be sent
e2a7f77a
RD
3141 * @heads: Number of heads (taskfile parameter)
3142 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3143 *
3144 * LOCKING:
6aff8f1f
TH
3145 * Kernel thread context (may sleep)
3146 *
3147 * RETURNS:
3148 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3149 */
3373efd8
TH
3150static unsigned int ata_dev_init_params(struct ata_device *dev,
3151 u16 heads, u16 sectors)
8bf62ece 3152{
a0123703 3153 struct ata_taskfile tf;
6aff8f1f 3154 unsigned int err_mask;
8bf62ece
AL
3155
3156 /* Number of sectors per track 1-255. Number of heads 1-16 */
3157 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3158 return AC_ERR_INVALID;
8bf62ece
AL
3159
3160 /* set up init dev params taskfile */
3161 DPRINTK("init dev params \n");
3162
3373efd8 3163 ata_tf_init(dev, &tf);
a0123703
TH
3164 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3165 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3166 tf.protocol = ATA_PROT_NODATA;
3167 tf.nsect = sectors;
3168 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3169
3373efd8 3170 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3171
6aff8f1f
TH
3172 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3173 return err_mask;
8bf62ece
AL
3174}
3175
1da177e4 3176/**
0cba632b
JG
3177 * ata_sg_clean - Unmap DMA memory associated with command
3178 * @qc: Command containing DMA memory to be released
3179 *
3180 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3181 *
3182 * LOCKING:
0cba632b 3183 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3184 */
3185
3186static void ata_sg_clean(struct ata_queued_cmd *qc)
3187{
3188 struct ata_port *ap = qc->ap;
cedc9a47 3189 struct scatterlist *sg = qc->__sg;
1da177e4 3190 int dir = qc->dma_dir;
cedc9a47 3191 void *pad_buf = NULL;
1da177e4 3192
a4631474
TH
3193 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3194 WARN_ON(sg == NULL);
1da177e4
LT
3195
3196 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3197 WARN_ON(qc->n_elem > 1);
1da177e4 3198
2c13b7ce 3199 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3200
cedc9a47
JG
3201 /* if we padded the buffer out to 32-bit bound, and data
3202 * xfer direction is from-device, we must copy from the
3203 * pad buffer back into the supplied buffer
3204 */
3205 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3206 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3207
3208 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3209 if (qc->n_elem)
2f1f610b 3210 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3211 /* restore last sg */
3212 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3213 if (pad_buf) {
3214 struct scatterlist *psg = &qc->pad_sgent;
3215 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3216 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3217 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3218 }
3219 } else {
2e242fa9 3220 if (qc->n_elem)
2f1f610b 3221 dma_unmap_single(ap->dev,
e1410f2d
JG
3222 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3223 dir);
cedc9a47
JG
3224 /* restore sg */
3225 sg->length += qc->pad_len;
3226 if (pad_buf)
3227 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3228 pad_buf, qc->pad_len);
3229 }
1da177e4
LT
3230
3231 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3232 qc->__sg = NULL;
1da177e4
LT
3233}
3234
3235/**
3236 * ata_fill_sg - Fill PCI IDE PRD table
3237 * @qc: Metadata associated with taskfile to be transferred
3238 *
780a87f7
JG
3239 * Fill PCI IDE PRD (scatter-gather) table with segments
3240 * associated with the current disk command.
3241 *
1da177e4 3242 * LOCKING:
780a87f7 3243 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3244 *
3245 */
3246static void ata_fill_sg(struct ata_queued_cmd *qc)
3247{
1da177e4 3248 struct ata_port *ap = qc->ap;
cedc9a47
JG
3249 struct scatterlist *sg;
3250 unsigned int idx;
1da177e4 3251
a4631474 3252 WARN_ON(qc->__sg == NULL);
f131883e 3253 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3254
3255 idx = 0;
cedc9a47 3256 ata_for_each_sg(sg, qc) {
1da177e4
LT
3257 u32 addr, offset;
3258 u32 sg_len, len;
3259
3260 /* determine if physical DMA addr spans 64K boundary.
3261 * Note h/w doesn't support 64-bit, so we unconditionally
3262 * truncate dma_addr_t to u32.
3263 */
3264 addr = (u32) sg_dma_address(sg);
3265 sg_len = sg_dma_len(sg);
3266
3267 while (sg_len) {
3268 offset = addr & 0xffff;
3269 len = sg_len;
3270 if ((offset + sg_len) > 0x10000)
3271 len = 0x10000 - offset;
3272
3273 ap->prd[idx].addr = cpu_to_le32(addr);
3274 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3275 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3276
3277 idx++;
3278 sg_len -= len;
3279 addr += len;
3280 }
3281 }
3282
3283 if (idx)
3284 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3285}
3286/**
3287 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3288 * @qc: Metadata associated with taskfile to check
3289 *
780a87f7
JG
3290 * Allow low-level driver to filter ATA PACKET commands, returning
3291 * a status indicating whether or not it is OK to use DMA for the
3292 * supplied PACKET command.
3293 *
1da177e4 3294 * LOCKING:
0cba632b
JG
3295 * spin_lock_irqsave(host_set lock)
3296 *
1da177e4
LT
3297 * RETURNS: 0 when ATAPI DMA can be used
3298 * nonzero otherwise
3299 */
3300int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3301{
3302 struct ata_port *ap = qc->ap;
3303 int rc = 0; /* Assume ATAPI DMA is OK by default */
3304
3305 if (ap->ops->check_atapi_dma)
3306 rc = ap->ops->check_atapi_dma(qc);
3307
3308 return rc;
3309}
3310/**
3311 * ata_qc_prep - Prepare taskfile for submission
3312 * @qc: Metadata associated with taskfile to be prepared
3313 *
780a87f7
JG
3314 * Prepare ATA taskfile for submission.
3315 *
1da177e4
LT
3316 * LOCKING:
3317 * spin_lock_irqsave(host_set lock)
3318 */
3319void ata_qc_prep(struct ata_queued_cmd *qc)
3320{
3321 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3322 return;
3323
3324 ata_fill_sg(qc);
3325}
3326
e46834cd
BK
3327void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3328
0cba632b
JG
3329/**
3330 * ata_sg_init_one - Associate command with memory buffer
3331 * @qc: Command to be associated
3332 * @buf: Memory buffer
3333 * @buflen: Length of memory buffer, in bytes.
3334 *
3335 * Initialize the data-related elements of queued_cmd @qc
3336 * to point to a single memory buffer, @buf of byte length @buflen.
3337 *
3338 * LOCKING:
3339 * spin_lock_irqsave(host_set lock)
3340 */
3341
1da177e4
LT
3342void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3343{
3344 struct scatterlist *sg;
3345
3346 qc->flags |= ATA_QCFLAG_SINGLE;
3347
3348 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3349 qc->__sg = &qc->sgent;
1da177e4 3350 qc->n_elem = 1;
cedc9a47 3351 qc->orig_n_elem = 1;
1da177e4 3352 qc->buf_virt = buf;
233277ca 3353 qc->nbytes = buflen;
1da177e4 3354
cedc9a47 3355 sg = qc->__sg;
f0612bbc 3356 sg_init_one(sg, buf, buflen);
1da177e4
LT
3357}
3358
0cba632b
JG
3359/**
3360 * ata_sg_init - Associate command with scatter-gather table.
3361 * @qc: Command to be associated
3362 * @sg: Scatter-gather table.
3363 * @n_elem: Number of elements in s/g table.
3364 *
3365 * Initialize the data-related elements of queued_cmd @qc
3366 * to point to a scatter-gather table @sg, containing @n_elem
3367 * elements.
3368 *
3369 * LOCKING:
3370 * spin_lock_irqsave(host_set lock)
3371 */
3372
1da177e4
LT
3373void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3374 unsigned int n_elem)
3375{
3376 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3377 qc->__sg = sg;
1da177e4 3378 qc->n_elem = n_elem;
cedc9a47 3379 qc->orig_n_elem = n_elem;
1da177e4
LT
3380}
3381
3382/**
0cba632b
JG
3383 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3384 * @qc: Command with memory buffer to be mapped.
3385 *
3386 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3387 *
3388 * LOCKING:
3389 * spin_lock_irqsave(host_set lock)
3390 *
3391 * RETURNS:
0cba632b 3392 * Zero on success, negative on error.
1da177e4
LT
3393 */
3394
3395static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3396{
3397 struct ata_port *ap = qc->ap;
3398 int dir = qc->dma_dir;
cedc9a47 3399 struct scatterlist *sg = qc->__sg;
1da177e4 3400 dma_addr_t dma_address;
2e242fa9 3401 int trim_sg = 0;
1da177e4 3402
cedc9a47
JG
3403 /* we must lengthen transfers to end on a 32-bit boundary */
3404 qc->pad_len = sg->length & 3;
3405 if (qc->pad_len) {
3406 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3407 struct scatterlist *psg = &qc->pad_sgent;
3408
a4631474 3409 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3410
3411 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3412
3413 if (qc->tf.flags & ATA_TFLAG_WRITE)
3414 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3415 qc->pad_len);
3416
3417 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3418 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3419 /* trim sg */
3420 sg->length -= qc->pad_len;
2e242fa9
TH
3421 if (sg->length == 0)
3422 trim_sg = 1;
cedc9a47
JG
3423
3424 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3425 sg->length, qc->pad_len);
3426 }
3427
2e242fa9
TH
3428 if (trim_sg) {
3429 qc->n_elem--;
e1410f2d
JG
3430 goto skip_map;
3431 }
3432
2f1f610b 3433 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3434 sg->length, dir);
537a95d9
TH
3435 if (dma_mapping_error(dma_address)) {
3436 /* restore sg */
3437 sg->length += qc->pad_len;
1da177e4 3438 return -1;
537a95d9 3439 }
1da177e4
LT
3440
3441 sg_dma_address(sg) = dma_address;
32529e01 3442 sg_dma_len(sg) = sg->length;
1da177e4 3443
2e242fa9 3444skip_map:
1da177e4
LT
3445 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3446 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3447
3448 return 0;
3449}
3450
3451/**
0cba632b
JG
3452 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3453 * @qc: Command with scatter-gather table to be mapped.
3454 *
3455 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3456 *
3457 * LOCKING:
3458 * spin_lock_irqsave(host_set lock)
3459 *
3460 * RETURNS:
0cba632b 3461 * Zero on success, negative on error.
1da177e4
LT
3462 *
3463 */
3464
3465static int ata_sg_setup(struct ata_queued_cmd *qc)
3466{
3467 struct ata_port *ap = qc->ap;
cedc9a47
JG
3468 struct scatterlist *sg = qc->__sg;
3469 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3470 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3471
3472 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3473 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3474
cedc9a47
JG
3475 /* we must lengthen transfers to end on a 32-bit boundary */
3476 qc->pad_len = lsg->length & 3;
3477 if (qc->pad_len) {
3478 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3479 struct scatterlist *psg = &qc->pad_sgent;
3480 unsigned int offset;
3481
a4631474 3482 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3483
3484 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3485
3486 /*
3487 * psg->page/offset are used to copy to-be-written
3488 * data in this function or read data in ata_sg_clean.
3489 */
3490 offset = lsg->offset + lsg->length - qc->pad_len;
3491 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3492 psg->offset = offset_in_page(offset);
3493
3494 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3495 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3496 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3497 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3498 }
3499
3500 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3501 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3502 /* trim last sg */
3503 lsg->length -= qc->pad_len;
e1410f2d
JG
3504 if (lsg->length == 0)
3505 trim_sg = 1;
cedc9a47
JG
3506
3507 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3508 qc->n_elem - 1, lsg->length, qc->pad_len);
3509 }
3510
e1410f2d
JG
3511 pre_n_elem = qc->n_elem;
3512 if (trim_sg && pre_n_elem)
3513 pre_n_elem--;
3514
3515 if (!pre_n_elem) {
3516 n_elem = 0;
3517 goto skip_map;
3518 }
3519
1da177e4 3520 dir = qc->dma_dir;
2f1f610b 3521 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3522 if (n_elem < 1) {
3523 /* restore last sg */
3524 lsg->length += qc->pad_len;
1da177e4 3525 return -1;
537a95d9 3526 }
1da177e4
LT
3527
3528 DPRINTK("%d sg elements mapped\n", n_elem);
3529
e1410f2d 3530skip_map:
1da177e4
LT
3531 qc->n_elem = n_elem;
3532
3533 return 0;
3534}
3535
0baab86b 3536/**
c893a3ae 3537 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3538 * @buf: Buffer to swap
3539 * @buf_words: Number of 16-bit words in buffer.
3540 *
3541 * Swap halves of 16-bit words if needed to convert from
3542 * little-endian byte order to native cpu byte order, or
3543 * vice-versa.
3544 *
3545 * LOCKING:
6f0ef4fa 3546 * Inherited from caller.
0baab86b 3547 */
1da177e4
LT
3548void swap_buf_le16(u16 *buf, unsigned int buf_words)
3549{
3550#ifdef __BIG_ENDIAN
3551 unsigned int i;
3552
3553 for (i = 0; i < buf_words; i++)
3554 buf[i] = le16_to_cpu(buf[i]);
3555#endif /* __BIG_ENDIAN */
3556}
3557
6ae4cfb5
AL
3558/**
3559 * ata_mmio_data_xfer - Transfer data by MMIO
bf717b11 3560 * @adev: device for this I/O
6ae4cfb5
AL
3561 * @buf: data buffer
3562 * @buflen: buffer length
344babaa 3563 * @write_data: read/write
6ae4cfb5
AL
3564 *
3565 * Transfer data from/to the device data register by MMIO.
3566 *
3567 * LOCKING:
3568 * Inherited from caller.
6ae4cfb5
AL
3569 */
3570
88574551 3571void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3572 unsigned int buflen, int write_data)
1da177e4 3573{
a6b2c5d4 3574 struct ata_port *ap = adev->ap;
1da177e4
LT
3575 unsigned int i;
3576 unsigned int words = buflen >> 1;
3577 u16 *buf16 = (u16 *) buf;
3578 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3579
6ae4cfb5 3580 /* Transfer multiple of 2 bytes */
1da177e4
LT
3581 if (write_data) {
3582 for (i = 0; i < words; i++)
3583 writew(le16_to_cpu(buf16[i]), mmio);
3584 } else {
3585 for (i = 0; i < words; i++)
3586 buf16[i] = cpu_to_le16(readw(mmio));
3587 }
6ae4cfb5
AL
3588
3589 /* Transfer trailing 1 byte, if any. */
3590 if (unlikely(buflen & 0x01)) {
3591 u16 align_buf[1] = { 0 };
3592 unsigned char *trailing_buf = buf + buflen - 1;
3593
3594 if (write_data) {
3595 memcpy(align_buf, trailing_buf, 1);
3596 writew(le16_to_cpu(align_buf[0]), mmio);
3597 } else {
3598 align_buf[0] = cpu_to_le16(readw(mmio));
3599 memcpy(trailing_buf, align_buf, 1);
3600 }
3601 }
1da177e4
LT
3602}
3603
6ae4cfb5
AL
3604/**
3605 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3606 * @adev: device to target
6ae4cfb5
AL
3607 * @buf: data buffer
3608 * @buflen: buffer length
344babaa 3609 * @write_data: read/write
6ae4cfb5
AL
3610 *
3611 * Transfer data from/to the device data register by PIO.
3612 *
3613 * LOCKING:
3614 * Inherited from caller.
6ae4cfb5
AL
3615 */
3616
88574551 3617void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3618 unsigned int buflen, int write_data)
1da177e4 3619{
a6b2c5d4 3620 struct ata_port *ap = adev->ap;
6ae4cfb5 3621 unsigned int words = buflen >> 1;
1da177e4 3622
6ae4cfb5 3623 /* Transfer multiple of 2 bytes */
1da177e4 3624 if (write_data)
6ae4cfb5 3625 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3626 else
6ae4cfb5
AL
3627 insw(ap->ioaddr.data_addr, buf, words);
3628
3629 /* Transfer trailing 1 byte, if any. */
3630 if (unlikely(buflen & 0x01)) {
3631 u16 align_buf[1] = { 0 };
3632 unsigned char *trailing_buf = buf + buflen - 1;
3633
3634 if (write_data) {
3635 memcpy(align_buf, trailing_buf, 1);
3636 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3637 } else {
3638 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3639 memcpy(trailing_buf, align_buf, 1);
3640 }
3641 }
1da177e4
LT
3642}
3643
75e99585
AC
3644/**
3645 * ata_pio_data_xfer_noirq - Transfer data by PIO
3646 * @adev: device to target
3647 * @buf: data buffer
3648 * @buflen: buffer length
3649 * @write_data: read/write
3650 *
88574551 3651 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
3652 * transfer with interrupts disabled.
3653 *
3654 * LOCKING:
3655 * Inherited from caller.
3656 */
3657
3658void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3659 unsigned int buflen, int write_data)
3660{
3661 unsigned long flags;
3662 local_irq_save(flags);
3663 ata_pio_data_xfer(adev, buf, buflen, write_data);
3664 local_irq_restore(flags);
3665}
3666
3667
6ae4cfb5
AL
3668/**
3669 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3670 * @qc: Command on going
3671 *
3672 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3673 *
3674 * LOCKING:
3675 * Inherited from caller.
3676 */
3677
1da177e4
LT
3678static void ata_pio_sector(struct ata_queued_cmd *qc)
3679{
3680 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3681 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3682 struct ata_port *ap = qc->ap;
3683 struct page *page;
3684 unsigned int offset;
3685 unsigned char *buf;
3686
3687 if (qc->cursect == (qc->nsect - 1))
14be71f4 3688 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3689
3690 page = sg[qc->cursg].page;
3691 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3692
3693 /* get the current page and offset */
3694 page = nth_page(page, (offset >> PAGE_SHIFT));
3695 offset %= PAGE_SIZE;
3696
1da177e4
LT
3697 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3698
91b8b313
AL
3699 if (PageHighMem(page)) {
3700 unsigned long flags;
3701
a6b2c5d4 3702 /* FIXME: use a bounce buffer */
91b8b313
AL
3703 local_irq_save(flags);
3704 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3705
91b8b313 3706 /* do the actual data transfer */
a6b2c5d4 3707 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3708
91b8b313
AL
3709 kunmap_atomic(buf, KM_IRQ0);
3710 local_irq_restore(flags);
3711 } else {
3712 buf = page_address(page);
a6b2c5d4 3713 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 3714 }
1da177e4
LT
3715
3716 qc->cursect++;
3717 qc->cursg_ofs++;
3718
32529e01 3719 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3720 qc->cursg++;
3721 qc->cursg_ofs = 0;
3722 }
1da177e4 3723}
1da177e4 3724
07f6f7d0
AL
3725/**
3726 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3727 * @qc: Command on going
3728 *
c81e29b4 3729 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
3730 * ATA device for the DRQ request.
3731 *
3732 * LOCKING:
3733 * Inherited from caller.
3734 */
1da177e4 3735
07f6f7d0
AL
3736static void ata_pio_sectors(struct ata_queued_cmd *qc)
3737{
3738 if (is_multi_taskfile(&qc->tf)) {
3739 /* READ/WRITE MULTIPLE */
3740 unsigned int nsect;
3741
587005de 3742 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3743
07f6f7d0
AL
3744 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3745 while (nsect--)
3746 ata_pio_sector(qc);
3747 } else
3748 ata_pio_sector(qc);
3749}
3750
c71c1857
AL
3751/**
3752 * atapi_send_cdb - Write CDB bytes to hardware
3753 * @ap: Port to which ATAPI device is attached.
3754 * @qc: Taskfile currently active
3755 *
3756 * When device has indicated its readiness to accept
3757 * a CDB, this function is called. Send the CDB.
3758 *
3759 * LOCKING:
3760 * caller.
3761 */
3762
3763static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3764{
3765 /* send SCSI cdb */
3766 DPRINTK("send cdb\n");
db024d53 3767 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3768
a6b2c5d4 3769 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3770 ata_altstatus(ap); /* flush */
3771
3772 switch (qc->tf.protocol) {
3773 case ATA_PROT_ATAPI:
3774 ap->hsm_task_state = HSM_ST;
3775 break;
3776 case ATA_PROT_ATAPI_NODATA:
3777 ap->hsm_task_state = HSM_ST_LAST;
3778 break;
3779 case ATA_PROT_ATAPI_DMA:
3780 ap->hsm_task_state = HSM_ST_LAST;
3781 /* initiate bmdma */
3782 ap->ops->bmdma_start(qc);
3783 break;
3784 }
1da177e4
LT
3785}
3786
6ae4cfb5
AL
3787/**
3788 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3789 * @qc: Command on going
3790 * @bytes: number of bytes
3791 *
3792 * Transfer Transfer data from/to the ATAPI device.
3793 *
3794 * LOCKING:
3795 * Inherited from caller.
3796 *
3797 */
3798
1da177e4
LT
3799static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3800{
3801 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3802 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3803 struct ata_port *ap = qc->ap;
3804 struct page *page;
3805 unsigned char *buf;
3806 unsigned int offset, count;
3807
563a6e1f 3808 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3809 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3810
3811next_sg:
563a6e1f 3812 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3813 /*
563a6e1f
AL
3814 * The end of qc->sg is reached and the device expects
3815 * more data to transfer. In order not to overrun qc->sg
3816 * and fulfill length specified in the byte count register,
3817 * - for read case, discard trailing data from the device
3818 * - for write case, padding zero data to the device
3819 */
3820 u16 pad_buf[1] = { 0 };
3821 unsigned int words = bytes >> 1;
3822 unsigned int i;
3823
3824 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3825 ata_dev_printk(qc->dev, KERN_WARNING,
3826 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3827
3828 for (i = 0; i < words; i++)
a6b2c5d4 3829 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 3830
14be71f4 3831 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3832 return;
3833 }
3834
cedc9a47 3835 sg = &qc->__sg[qc->cursg];
1da177e4 3836
1da177e4
LT
3837 page = sg->page;
3838 offset = sg->offset + qc->cursg_ofs;
3839
3840 /* get the current page and offset */
3841 page = nth_page(page, (offset >> PAGE_SHIFT));
3842 offset %= PAGE_SIZE;
3843
6952df03 3844 /* don't overrun current sg */
32529e01 3845 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3846
3847 /* don't cross page boundaries */
3848 count = min(count, (unsigned int)PAGE_SIZE - offset);
3849
7282aa4b
AL
3850 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3851
91b8b313
AL
3852 if (PageHighMem(page)) {
3853 unsigned long flags;
3854
a6b2c5d4 3855 /* FIXME: use bounce buffer */
91b8b313
AL
3856 local_irq_save(flags);
3857 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3858
91b8b313 3859 /* do the actual data transfer */
a6b2c5d4 3860 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 3861
91b8b313
AL
3862 kunmap_atomic(buf, KM_IRQ0);
3863 local_irq_restore(flags);
3864 } else {
3865 buf = page_address(page);
a6b2c5d4 3866 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 3867 }
1da177e4
LT
3868
3869 bytes -= count;
3870 qc->curbytes += count;
3871 qc->cursg_ofs += count;
3872
32529e01 3873 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3874 qc->cursg++;
3875 qc->cursg_ofs = 0;
3876 }
3877
563a6e1f 3878 if (bytes)
1da177e4 3879 goto next_sg;
1da177e4
LT
3880}
3881
6ae4cfb5
AL
3882/**
3883 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3884 * @qc: Command on going
3885 *
3886 * Transfer Transfer data from/to the ATAPI device.
3887 *
3888 * LOCKING:
3889 * Inherited from caller.
6ae4cfb5
AL
3890 */
3891
1da177e4
LT
3892static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3893{
3894 struct ata_port *ap = qc->ap;
3895 struct ata_device *dev = qc->dev;
3896 unsigned int ireason, bc_lo, bc_hi, bytes;
3897 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3898
eec4c3f3
AL
3899 /* Abuse qc->result_tf for temp storage of intermediate TF
3900 * here to save some kernel stack usage.
3901 * For normal completion, qc->result_tf is not relevant. For
3902 * error, qc->result_tf is later overwritten by ata_qc_complete().
3903 * So, the correctness of qc->result_tf is not affected.
3904 */
3905 ap->ops->tf_read(ap, &qc->result_tf);
3906 ireason = qc->result_tf.nsect;
3907 bc_lo = qc->result_tf.lbam;
3908 bc_hi = qc->result_tf.lbah;
1da177e4
LT
3909 bytes = (bc_hi << 8) | bc_lo;
3910
3911 /* shall be cleared to zero, indicating xfer of data */
3912 if (ireason & (1 << 0))
3913 goto err_out;
3914
3915 /* make sure transfer direction matches expected */
3916 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3917 if (do_write != i_write)
3918 goto err_out;
3919
312f7da2
AL
3920 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3921
1da177e4
LT
3922 __atapi_pio_bytes(qc, bytes);
3923
3924 return;
3925
3926err_out:
f15a1daf 3927 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 3928 qc->err_mask |= AC_ERR_HSM;
14be71f4 3929 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3930}
3931
3932/**
c234fb00
AL
3933 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3934 * @ap: the target ata_port
3935 * @qc: qc on going
1da177e4 3936 *
c234fb00
AL
3937 * RETURNS:
3938 * 1 if ok in workqueue, 0 otherwise.
1da177e4 3939 */
c234fb00
AL
3940
3941static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 3942{
c234fb00
AL
3943 if (qc->tf.flags & ATA_TFLAG_POLLING)
3944 return 1;
1da177e4 3945
c234fb00
AL
3946 if (ap->hsm_task_state == HSM_ST_FIRST) {
3947 if (qc->tf.protocol == ATA_PROT_PIO &&
3948 (qc->tf.flags & ATA_TFLAG_WRITE))
3949 return 1;
1da177e4 3950
c234fb00
AL
3951 if (is_atapi_taskfile(&qc->tf) &&
3952 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3953 return 1;
fe79e683
AL
3954 }
3955
c234fb00
AL
3956 return 0;
3957}
1da177e4 3958
c17ea20d
TH
3959/**
3960 * ata_hsm_qc_complete - finish a qc running on standard HSM
3961 * @qc: Command to complete
3962 * @in_wq: 1 if called from workqueue, 0 otherwise
3963 *
3964 * Finish @qc which is running on standard HSM.
3965 *
3966 * LOCKING:
3967 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3968 * Otherwise, none on entry and grabs host lock.
3969 */
3970static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3971{
3972 struct ata_port *ap = qc->ap;
3973 unsigned long flags;
3974
3975 if (ap->ops->error_handler) {
3976 if (in_wq) {
ba6a1308 3977 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
3978
3979 /* EH might have kicked in while host_set lock
3980 * is released.
3981 */
3982 qc = ata_qc_from_tag(ap, qc->tag);
3983 if (qc) {
3984 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3985 ata_irq_on(ap);
3986 ata_qc_complete(qc);
3987 } else
3988 ata_port_freeze(ap);
3989 }
3990
ba6a1308 3991 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
3992 } else {
3993 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3994 ata_qc_complete(qc);
3995 else
3996 ata_port_freeze(ap);
3997 }
3998 } else {
3999 if (in_wq) {
ba6a1308 4000 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
4001 ata_irq_on(ap);
4002 ata_qc_complete(qc);
ba6a1308 4003 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4004 } else
4005 ata_qc_complete(qc);
4006 }
1da177e4 4007
c81e29b4 4008 ata_altstatus(ap); /* flush */
c17ea20d
TH
4009}
4010
bb5cb290
AL
4011/**
4012 * ata_hsm_move - move the HSM to the next state.
4013 * @ap: the target ata_port
4014 * @qc: qc on going
4015 * @status: current device status
4016 * @in_wq: 1 if called from workqueue, 0 otherwise
4017 *
4018 * RETURNS:
4019 * 1 when poll next status needed, 0 otherwise.
4020 */
9a1004d0
TH
4021int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4022 u8 status, int in_wq)
e2cec771 4023{
bb5cb290
AL
4024 unsigned long flags = 0;
4025 int poll_next;
4026
6912ccd5
AL
4027 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4028
bb5cb290
AL
4029 /* Make sure ata_qc_issue_prot() does not throw things
4030 * like DMA polling into the workqueue. Notice that
4031 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4032 */
c234fb00 4033 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4034
e2cec771 4035fsm_start:
999bb6f4
AL
4036 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4037 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4038
e2cec771
AL
4039 switch (ap->hsm_task_state) {
4040 case HSM_ST_FIRST:
bb5cb290
AL
4041 /* Send first data block or PACKET CDB */
4042
4043 /* If polling, we will stay in the work queue after
4044 * sending the data. Otherwise, interrupt handler
4045 * takes over after sending the data.
4046 */
4047 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4048
e2cec771 4049 /* check device status */
3655d1d3
AL
4050 if (unlikely((status & ATA_DRQ) == 0)) {
4051 /* handle BSY=0, DRQ=0 as error */
4052 if (likely(status & (ATA_ERR | ATA_DF)))
4053 /* device stops HSM for abort/error */
4054 qc->err_mask |= AC_ERR_DEV;
4055 else
4056 /* HSM violation. Let EH handle this */
4057 qc->err_mask |= AC_ERR_HSM;
4058
14be71f4 4059 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4060 goto fsm_start;
1da177e4
LT
4061 }
4062
71601958
AL
4063 /* Device should not ask for data transfer (DRQ=1)
4064 * when it finds something wrong.
eee6c32f
AL
4065 * We ignore DRQ here and stop the HSM by
4066 * changing hsm_task_state to HSM_ST_ERR and
4067 * let the EH abort the command or reset the device.
71601958
AL
4068 */
4069 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4070 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4071 ap->id, status);
3655d1d3 4072 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4073 ap->hsm_task_state = HSM_ST_ERR;
4074 goto fsm_start;
71601958 4075 }
1da177e4 4076
bb5cb290
AL
4077 /* Send the CDB (atapi) or the first data block (ata pio out).
4078 * During the state transition, interrupt handler shouldn't
4079 * be invoked before the data transfer is complete and
4080 * hsm_task_state is changed. Hence, the following locking.
4081 */
4082 if (in_wq)
ba6a1308 4083 spin_lock_irqsave(ap->lock, flags);
1da177e4 4084
bb5cb290
AL
4085 if (qc->tf.protocol == ATA_PROT_PIO) {
4086 /* PIO data out protocol.
4087 * send first data block.
4088 */
0565c26d 4089
bb5cb290
AL
4090 /* ata_pio_sectors() might change the state
4091 * to HSM_ST_LAST. so, the state is changed here
4092 * before ata_pio_sectors().
4093 */
4094 ap->hsm_task_state = HSM_ST;
4095 ata_pio_sectors(qc);
4096 ata_altstatus(ap); /* flush */
4097 } else
4098 /* send CDB */
4099 atapi_send_cdb(ap, qc);
4100
4101 if (in_wq)
ba6a1308 4102 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4103
4104 /* if polling, ata_pio_task() handles the rest.
4105 * otherwise, interrupt handler takes over from here.
4106 */
e2cec771 4107 break;
1c848984 4108
e2cec771
AL
4109 case HSM_ST:
4110 /* complete command or read/write the data register */
4111 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4112 /* ATAPI PIO protocol */
4113 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4114 /* No more data to transfer or device error.
4115 * Device error will be tagged in HSM_ST_LAST.
4116 */
e2cec771
AL
4117 ap->hsm_task_state = HSM_ST_LAST;
4118 goto fsm_start;
4119 }
1da177e4 4120
71601958
AL
4121 /* Device should not ask for data transfer (DRQ=1)
4122 * when it finds something wrong.
eee6c32f
AL
4123 * We ignore DRQ here and stop the HSM by
4124 * changing hsm_task_state to HSM_ST_ERR and
4125 * let the EH abort the command or reset the device.
71601958
AL
4126 */
4127 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4128 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4129 ap->id, status);
3655d1d3 4130 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4131 ap->hsm_task_state = HSM_ST_ERR;
4132 goto fsm_start;
71601958 4133 }
1da177e4 4134
e2cec771 4135 atapi_pio_bytes(qc);
7fb6ec28 4136
e2cec771
AL
4137 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4138 /* bad ireason reported by device */
4139 goto fsm_start;
1da177e4 4140
e2cec771
AL
4141 } else {
4142 /* ATA PIO protocol */
4143 if (unlikely((status & ATA_DRQ) == 0)) {
4144 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4145 if (likely(status & (ATA_ERR | ATA_DF)))
4146 /* device stops HSM for abort/error */
4147 qc->err_mask |= AC_ERR_DEV;
4148 else
4149 /* HSM violation. Let EH handle this */
4150 qc->err_mask |= AC_ERR_HSM;
4151
e2cec771
AL
4152 ap->hsm_task_state = HSM_ST_ERR;
4153 goto fsm_start;
4154 }
1da177e4 4155
eee6c32f
AL
4156 /* For PIO reads, some devices may ask for
4157 * data transfer (DRQ=1) alone with ERR=1.
4158 * We respect DRQ here and transfer one
4159 * block of junk data before changing the
4160 * hsm_task_state to HSM_ST_ERR.
4161 *
4162 * For PIO writes, ERR=1 DRQ=1 doesn't make
4163 * sense since the data block has been
4164 * transferred to the device.
71601958
AL
4165 */
4166 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4167 /* data might be corrputed */
4168 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4169
4170 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4171 ata_pio_sectors(qc);
4172 ata_altstatus(ap);
4173 status = ata_wait_idle(ap);
4174 }
4175
3655d1d3
AL
4176 if (status & (ATA_BUSY | ATA_DRQ))
4177 qc->err_mask |= AC_ERR_HSM;
4178
eee6c32f
AL
4179 /* ata_pio_sectors() might change the
4180 * state to HSM_ST_LAST. so, the state
4181 * is changed after ata_pio_sectors().
4182 */
4183 ap->hsm_task_state = HSM_ST_ERR;
4184 goto fsm_start;
71601958
AL
4185 }
4186
e2cec771
AL
4187 ata_pio_sectors(qc);
4188
4189 if (ap->hsm_task_state == HSM_ST_LAST &&
4190 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4191 /* all data read */
4192 ata_altstatus(ap);
52a32205 4193 status = ata_wait_idle(ap);
e2cec771
AL
4194 goto fsm_start;
4195 }
4196 }
4197
4198 ata_altstatus(ap); /* flush */
bb5cb290 4199 poll_next = 1;
1da177e4
LT
4200 break;
4201
14be71f4 4202 case HSM_ST_LAST:
6912ccd5
AL
4203 if (unlikely(!ata_ok(status))) {
4204 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4205 ap->hsm_task_state = HSM_ST_ERR;
4206 goto fsm_start;
4207 }
4208
4209 /* no more data to transfer */
4332a771
AL
4210 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4211 ap->id, qc->dev->devno, status);
e2cec771 4212
6912ccd5
AL
4213 WARN_ON(qc->err_mask);
4214
e2cec771 4215 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4216
e2cec771 4217 /* complete taskfile transaction */
c17ea20d 4218 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4219
4220 poll_next = 0;
1da177e4
LT
4221 break;
4222
14be71f4 4223 case HSM_ST_ERR:
e2cec771
AL
4224 /* make sure qc->err_mask is available to
4225 * know what's wrong and recover
4226 */
4227 WARN_ON(qc->err_mask == 0);
4228
4229 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4230
999bb6f4 4231 /* complete taskfile transaction */
c17ea20d 4232 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4233
4234 poll_next = 0;
e2cec771
AL
4235 break;
4236 default:
bb5cb290 4237 poll_next = 0;
6912ccd5 4238 BUG();
1da177e4
LT
4239 }
4240
bb5cb290 4241 return poll_next;
1da177e4
LT
4242}
4243
1da177e4 4244static void ata_pio_task(void *_data)
8061f5f0 4245{
c91af2c8
TH
4246 struct ata_queued_cmd *qc = _data;
4247 struct ata_port *ap = qc->ap;
8061f5f0 4248 u8 status;
a1af3734 4249 int poll_next;
8061f5f0 4250
7fb6ec28 4251fsm_start:
a1af3734 4252 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4253
a1af3734
AL
4254 /*
4255 * This is purely heuristic. This is a fast path.
4256 * Sometimes when we enter, BSY will be cleared in
4257 * a chk-status or two. If not, the drive is probably seeking
4258 * or something. Snooze for a couple msecs, then
4259 * chk-status again. If still busy, queue delayed work.
4260 */
4261 status = ata_busy_wait(ap, ATA_BUSY, 5);
4262 if (status & ATA_BUSY) {
4263 msleep(2);
4264 status = ata_busy_wait(ap, ATA_BUSY, 10);
4265 if (status & ATA_BUSY) {
31ce6dae 4266 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4267 return;
4268 }
8061f5f0
TH
4269 }
4270
a1af3734
AL
4271 /* move the HSM */
4272 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4273
a1af3734
AL
4274 /* another command or interrupt handler
4275 * may be running at this point.
4276 */
4277 if (poll_next)
7fb6ec28 4278 goto fsm_start;
8061f5f0
TH
4279}
4280
1da177e4
LT
4281/**
4282 * ata_qc_new - Request an available ATA command, for queueing
4283 * @ap: Port associated with device @dev
4284 * @dev: Device from whom we request an available command structure
4285 *
4286 * LOCKING:
0cba632b 4287 * None.
1da177e4
LT
4288 */
4289
4290static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4291{
4292 struct ata_queued_cmd *qc = NULL;
4293 unsigned int i;
4294
e3180499 4295 /* no command while frozen */
b51e9e5d 4296 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4297 return NULL;
4298
2ab7db1f
TH
4299 /* the last tag is reserved for internal command. */
4300 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4301 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4302 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4303 break;
4304 }
4305
4306 if (qc)
4307 qc->tag = i;
4308
4309 return qc;
4310}
4311
4312/**
4313 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4314 * @dev: Device from whom we request an available command structure
4315 *
4316 * LOCKING:
0cba632b 4317 * None.
1da177e4
LT
4318 */
4319
3373efd8 4320struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4321{
3373efd8 4322 struct ata_port *ap = dev->ap;
1da177e4
LT
4323 struct ata_queued_cmd *qc;
4324
4325 qc = ata_qc_new(ap);
4326 if (qc) {
1da177e4
LT
4327 qc->scsicmd = NULL;
4328 qc->ap = ap;
4329 qc->dev = dev;
1da177e4 4330
2c13b7ce 4331 ata_qc_reinit(qc);
1da177e4
LT
4332 }
4333
4334 return qc;
4335}
4336
1da177e4
LT
4337/**
4338 * ata_qc_free - free unused ata_queued_cmd
4339 * @qc: Command to complete
4340 *
4341 * Designed to free unused ata_queued_cmd object
4342 * in case something prevents using it.
4343 *
4344 * LOCKING:
0cba632b 4345 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4346 */
4347void ata_qc_free(struct ata_queued_cmd *qc)
4348{
4ba946e9
TH
4349 struct ata_port *ap = qc->ap;
4350 unsigned int tag;
4351
a4631474 4352 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4353
4ba946e9
TH
4354 qc->flags = 0;
4355 tag = qc->tag;
4356 if (likely(ata_tag_valid(tag))) {
4ba946e9 4357 qc->tag = ATA_TAG_POISON;
6cec4a39 4358 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4359 }
1da177e4
LT
4360}
4361
76014427 4362void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4363{
dedaf2b0
TH
4364 struct ata_port *ap = qc->ap;
4365
a4631474
TH
4366 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4367 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4368
4369 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4370 ata_sg_clean(qc);
4371
7401abf2 4372 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4373 if (qc->tf.protocol == ATA_PROT_NCQ)
4374 ap->sactive &= ~(1 << qc->tag);
4375 else
4376 ap->active_tag = ATA_TAG_POISON;
7401abf2 4377
3f3791d3
AL
4378 /* atapi: mark qc as inactive to prevent the interrupt handler
4379 * from completing the command twice later, before the error handler
4380 * is called. (when rc != 0 and atapi request sense is needed)
4381 */
4382 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4383 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4384
1da177e4 4385 /* call completion callback */
77853bf2 4386 qc->complete_fn(qc);
1da177e4
LT
4387}
4388
f686bcb8
TH
4389/**
4390 * ata_qc_complete - Complete an active ATA command
4391 * @qc: Command to complete
4392 * @err_mask: ATA Status register contents
4393 *
4394 * Indicate to the mid and upper layers that an ATA
4395 * command has completed, with either an ok or not-ok status.
4396 *
4397 * LOCKING:
4398 * spin_lock_irqsave(host_set lock)
4399 */
4400void ata_qc_complete(struct ata_queued_cmd *qc)
4401{
4402 struct ata_port *ap = qc->ap;
4403
4404 /* XXX: New EH and old EH use different mechanisms to
4405 * synchronize EH with regular execution path.
4406 *
4407 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4408 * Normal execution path is responsible for not accessing a
4409 * failed qc. libata core enforces the rule by returning NULL
4410 * from ata_qc_from_tag() for failed qcs.
4411 *
4412 * Old EH depends on ata_qc_complete() nullifying completion
4413 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4414 * not synchronize with interrupt handler. Only PIO task is
4415 * taken care of.
4416 */
4417 if (ap->ops->error_handler) {
b51e9e5d 4418 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4419
4420 if (unlikely(qc->err_mask))
4421 qc->flags |= ATA_QCFLAG_FAILED;
4422
4423 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4424 if (!ata_tag_internal(qc->tag)) {
4425 /* always fill result TF for failed qc */
4426 ap->ops->tf_read(ap, &qc->result_tf);
4427 ata_qc_schedule_eh(qc);
4428 return;
4429 }
4430 }
4431
4432 /* read result TF if requested */
4433 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4434 ap->ops->tf_read(ap, &qc->result_tf);
4435
4436 __ata_qc_complete(qc);
4437 } else {
4438 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4439 return;
4440
4441 /* read result TF if failed or requested */
4442 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4443 ap->ops->tf_read(ap, &qc->result_tf);
4444
4445 __ata_qc_complete(qc);
4446 }
4447}
4448
dedaf2b0
TH
4449/**
4450 * ata_qc_complete_multiple - Complete multiple qcs successfully
4451 * @ap: port in question
4452 * @qc_active: new qc_active mask
4453 * @finish_qc: LLDD callback invoked before completing a qc
4454 *
4455 * Complete in-flight commands. This functions is meant to be
4456 * called from low-level driver's interrupt routine to complete
4457 * requests normally. ap->qc_active and @qc_active is compared
4458 * and commands are completed accordingly.
4459 *
4460 * LOCKING:
4461 * spin_lock_irqsave(host_set lock)
4462 *
4463 * RETURNS:
4464 * Number of completed commands on success, -errno otherwise.
4465 */
4466int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4467 void (*finish_qc)(struct ata_queued_cmd *))
4468{
4469 int nr_done = 0;
4470 u32 done_mask;
4471 int i;
4472
4473 done_mask = ap->qc_active ^ qc_active;
4474
4475 if (unlikely(done_mask & qc_active)) {
4476 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4477 "(%08x->%08x)\n", ap->qc_active, qc_active);
4478 return -EINVAL;
4479 }
4480
4481 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4482 struct ata_queued_cmd *qc;
4483
4484 if (!(done_mask & (1 << i)))
4485 continue;
4486
4487 if ((qc = ata_qc_from_tag(ap, i))) {
4488 if (finish_qc)
4489 finish_qc(qc);
4490 ata_qc_complete(qc);
4491 nr_done++;
4492 }
4493 }
4494
4495 return nr_done;
4496}
4497
1da177e4
LT
4498static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4499{
4500 struct ata_port *ap = qc->ap;
4501
4502 switch (qc->tf.protocol) {
3dc1d881 4503 case ATA_PROT_NCQ:
1da177e4
LT
4504 case ATA_PROT_DMA:
4505 case ATA_PROT_ATAPI_DMA:
4506 return 1;
4507
4508 case ATA_PROT_ATAPI:
4509 case ATA_PROT_PIO:
1da177e4
LT
4510 if (ap->flags & ATA_FLAG_PIO_DMA)
4511 return 1;
4512
4513 /* fall through */
4514
4515 default:
4516 return 0;
4517 }
4518
4519 /* never reached */
4520}
4521
4522/**
4523 * ata_qc_issue - issue taskfile to device
4524 * @qc: command to issue to device
4525 *
4526 * Prepare an ATA command to submission to device.
4527 * This includes mapping the data into a DMA-able
4528 * area, filling in the S/G table, and finally
4529 * writing the taskfile to hardware, starting the command.
4530 *
4531 * LOCKING:
4532 * spin_lock_irqsave(host_set lock)
1da177e4 4533 */
8e0e694a 4534void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4535{
4536 struct ata_port *ap = qc->ap;
4537
dedaf2b0
TH
4538 /* Make sure only one non-NCQ command is outstanding. The
4539 * check is skipped for old EH because it reuses active qc to
4540 * request ATAPI sense.
4541 */
4542 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4543
4544 if (qc->tf.protocol == ATA_PROT_NCQ) {
4545 WARN_ON(ap->sactive & (1 << qc->tag));
4546 ap->sactive |= 1 << qc->tag;
4547 } else {
4548 WARN_ON(ap->sactive);
4549 ap->active_tag = qc->tag;
4550 }
4551
e4a70e76 4552 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4553 ap->qc_active |= 1 << qc->tag;
e4a70e76 4554
1da177e4
LT
4555 if (ata_should_dma_map(qc)) {
4556 if (qc->flags & ATA_QCFLAG_SG) {
4557 if (ata_sg_setup(qc))
8e436af9 4558 goto sg_err;
1da177e4
LT
4559 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4560 if (ata_sg_setup_one(qc))
8e436af9 4561 goto sg_err;
1da177e4
LT
4562 }
4563 } else {
4564 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4565 }
4566
4567 ap->ops->qc_prep(qc);
4568
8e0e694a
TH
4569 qc->err_mask |= ap->ops->qc_issue(qc);
4570 if (unlikely(qc->err_mask))
4571 goto err;
4572 return;
1da177e4 4573
8e436af9
TH
4574sg_err:
4575 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4576 qc->err_mask |= AC_ERR_SYSTEM;
4577err:
4578 ata_qc_complete(qc);
1da177e4
LT
4579}
4580
4581/**
4582 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4583 * @qc: command to issue to device
4584 *
4585 * Using various libata functions and hooks, this function
4586 * starts an ATA command. ATA commands are grouped into
4587 * classes called "protocols", and issuing each type of protocol
4588 * is slightly different.
4589 *
0baab86b
EF
4590 * May be used as the qc_issue() entry in ata_port_operations.
4591 *
1da177e4
LT
4592 * LOCKING:
4593 * spin_lock_irqsave(host_set lock)
4594 *
4595 * RETURNS:
9a3d9eb0 4596 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4597 */
4598
9a3d9eb0 4599unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4600{
4601 struct ata_port *ap = qc->ap;
4602
e50362ec
AL
4603 /* Use polling pio if the LLD doesn't handle
4604 * interrupt driven pio and atapi CDB interrupt.
4605 */
4606 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4607 switch (qc->tf.protocol) {
4608 case ATA_PROT_PIO:
4609 case ATA_PROT_ATAPI:
4610 case ATA_PROT_ATAPI_NODATA:
4611 qc->tf.flags |= ATA_TFLAG_POLLING;
4612 break;
4613 case ATA_PROT_ATAPI_DMA:
4614 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4615 /* see ata_dma_blacklisted() */
e50362ec
AL
4616 BUG();
4617 break;
4618 default:
4619 break;
4620 }
4621 }
4622
312f7da2 4623 /* select the device */
1da177e4
LT
4624 ata_dev_select(ap, qc->dev->devno, 1, 0);
4625
312f7da2 4626 /* start the command */
1da177e4
LT
4627 switch (qc->tf.protocol) {
4628 case ATA_PROT_NODATA:
312f7da2
AL
4629 if (qc->tf.flags & ATA_TFLAG_POLLING)
4630 ata_qc_set_polling(qc);
4631
e5338254 4632 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4633 ap->hsm_task_state = HSM_ST_LAST;
4634
4635 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4636 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4637
1da177e4
LT
4638 break;
4639
4640 case ATA_PROT_DMA:
587005de 4641 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4642
1da177e4
LT
4643 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4644 ap->ops->bmdma_setup(qc); /* set up bmdma */
4645 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4646 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4647 break;
4648
312f7da2
AL
4649 case ATA_PROT_PIO:
4650 if (qc->tf.flags & ATA_TFLAG_POLLING)
4651 ata_qc_set_polling(qc);
1da177e4 4652
e5338254 4653 ata_tf_to_host(ap, &qc->tf);
312f7da2 4654
54f00389
AL
4655 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4656 /* PIO data out protocol */
4657 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4658 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4659
4660 /* always send first data block using
e27486db 4661 * the ata_pio_task() codepath.
54f00389 4662 */
312f7da2 4663 } else {
54f00389
AL
4664 /* PIO data in protocol */
4665 ap->hsm_task_state = HSM_ST;
4666
4667 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4668 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4669
4670 /* if polling, ata_pio_task() handles the rest.
4671 * otherwise, interrupt handler takes over from here.
4672 */
312f7da2
AL
4673 }
4674
1da177e4
LT
4675 break;
4676
1da177e4 4677 case ATA_PROT_ATAPI:
1da177e4 4678 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4679 if (qc->tf.flags & ATA_TFLAG_POLLING)
4680 ata_qc_set_polling(qc);
4681
e5338254 4682 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4683
312f7da2
AL
4684 ap->hsm_task_state = HSM_ST_FIRST;
4685
4686 /* send cdb by polling if no cdb interrupt */
4687 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4688 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4689 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4690 break;
4691
4692 case ATA_PROT_ATAPI_DMA:
587005de 4693 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4694
1da177e4
LT
4695 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4696 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4697 ap->hsm_task_state = HSM_ST_FIRST;
4698
4699 /* send cdb by polling if no cdb interrupt */
4700 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4701 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4702 break;
4703
4704 default:
4705 WARN_ON(1);
9a3d9eb0 4706 return AC_ERR_SYSTEM;
1da177e4
LT
4707 }
4708
4709 return 0;
4710}
4711
1da177e4
LT
4712/**
4713 * ata_host_intr - Handle host interrupt for given (port, task)
4714 * @ap: Port on which interrupt arrived (possibly...)
4715 * @qc: Taskfile currently active in engine
4716 *
4717 * Handle host interrupt for given queued command. Currently,
4718 * only DMA interrupts are handled. All other commands are
4719 * handled via polling with interrupts disabled (nIEN bit).
4720 *
4721 * LOCKING:
4722 * spin_lock_irqsave(host_set lock)
4723 *
4724 * RETURNS:
4725 * One if interrupt was handled, zero if not (shared irq).
4726 */
4727
4728inline unsigned int ata_host_intr (struct ata_port *ap,
4729 struct ata_queued_cmd *qc)
4730{
312f7da2 4731 u8 status, host_stat = 0;
1da177e4 4732
312f7da2
AL
4733 VPRINTK("ata%u: protocol %d task_state %d\n",
4734 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4735
312f7da2
AL
4736 /* Check whether we are expecting interrupt in this state */
4737 switch (ap->hsm_task_state) {
4738 case HSM_ST_FIRST:
6912ccd5
AL
4739 /* Some pre-ATAPI-4 devices assert INTRQ
4740 * at this state when ready to receive CDB.
4741 */
1da177e4 4742
312f7da2
AL
4743 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4744 * The flag was turned on only for atapi devices.
4745 * No need to check is_atapi_taskfile(&qc->tf) again.
4746 */
4747 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4748 goto idle_irq;
1da177e4 4749 break;
312f7da2
AL
4750 case HSM_ST_LAST:
4751 if (qc->tf.protocol == ATA_PROT_DMA ||
4752 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4753 /* check status of DMA engine */
4754 host_stat = ap->ops->bmdma_status(ap);
4755 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4756
4757 /* if it's not our irq... */
4758 if (!(host_stat & ATA_DMA_INTR))
4759 goto idle_irq;
4760
4761 /* before we do anything else, clear DMA-Start bit */
4762 ap->ops->bmdma_stop(qc);
a4f16610
AL
4763
4764 if (unlikely(host_stat & ATA_DMA_ERR)) {
4765 /* error when transfering data to/from memory */
4766 qc->err_mask |= AC_ERR_HOST_BUS;
4767 ap->hsm_task_state = HSM_ST_ERR;
4768 }
312f7da2
AL
4769 }
4770 break;
4771 case HSM_ST:
4772 break;
1da177e4
LT
4773 default:
4774 goto idle_irq;
4775 }
4776
312f7da2
AL
4777 /* check altstatus */
4778 status = ata_altstatus(ap);
4779 if (status & ATA_BUSY)
4780 goto idle_irq;
1da177e4 4781
312f7da2
AL
4782 /* check main status, clearing INTRQ */
4783 status = ata_chk_status(ap);
4784 if (unlikely(status & ATA_BUSY))
4785 goto idle_irq;
1da177e4 4786
312f7da2
AL
4787 /* ack bmdma irq events */
4788 ap->ops->irq_clear(ap);
1da177e4 4789
bb5cb290 4790 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4791 return 1; /* irq handled */
4792
4793idle_irq:
4794 ap->stats.idle_irq++;
4795
4796#ifdef ATA_IRQ_TRAP
4797 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4798 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4799 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4800 return 1;
1da177e4
LT
4801 }
4802#endif
4803 return 0; /* irq not handled */
4804}
4805
4806/**
4807 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4808 * @irq: irq line (unused)
4809 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4810 * @regs: unused
4811 *
0cba632b
JG
4812 * Default interrupt handler for PCI IDE devices. Calls
4813 * ata_host_intr() for each port that is not disabled.
4814 *
1da177e4 4815 * LOCKING:
0cba632b 4816 * Obtains host_set lock during operation.
1da177e4
LT
4817 *
4818 * RETURNS:
0cba632b 4819 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4820 */
4821
4822irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4823{
4824 struct ata_host_set *host_set = dev_instance;
4825 unsigned int i;
4826 unsigned int handled = 0;
4827 unsigned long flags;
4828
4829 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4830 spin_lock_irqsave(&host_set->lock, flags);
4831
4832 for (i = 0; i < host_set->n_ports; i++) {
4833 struct ata_port *ap;
4834
4835 ap = host_set->ports[i];
c1389503 4836 if (ap &&
029f5468 4837 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
4838 struct ata_queued_cmd *qc;
4839
4840 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4841 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4842 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4843 handled |= ata_host_intr(ap, qc);
4844 }
4845 }
4846
4847 spin_unlock_irqrestore(&host_set->lock, flags);
4848
4849 return IRQ_RETVAL(handled);
4850}
4851
34bf2170
TH
4852/**
4853 * sata_scr_valid - test whether SCRs are accessible
4854 * @ap: ATA port to test SCR accessibility for
4855 *
4856 * Test whether SCRs are accessible for @ap.
4857 *
4858 * LOCKING:
4859 * None.
4860 *
4861 * RETURNS:
4862 * 1 if SCRs are accessible, 0 otherwise.
4863 */
4864int sata_scr_valid(struct ata_port *ap)
4865{
4866 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4867}
4868
4869/**
4870 * sata_scr_read - read SCR register of the specified port
4871 * @ap: ATA port to read SCR for
4872 * @reg: SCR to read
4873 * @val: Place to store read value
4874 *
4875 * Read SCR register @reg of @ap into *@val. This function is
4876 * guaranteed to succeed if the cable type of the port is SATA
4877 * and the port implements ->scr_read.
4878 *
4879 * LOCKING:
4880 * None.
4881 *
4882 * RETURNS:
4883 * 0 on success, negative errno on failure.
4884 */
4885int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4886{
4887 if (sata_scr_valid(ap)) {
4888 *val = ap->ops->scr_read(ap, reg);
4889 return 0;
4890 }
4891 return -EOPNOTSUPP;
4892}
4893
4894/**
4895 * sata_scr_write - write SCR register of the specified port
4896 * @ap: ATA port to write SCR for
4897 * @reg: SCR to write
4898 * @val: value to write
4899 *
4900 * Write @val to SCR register @reg of @ap. This function is
4901 * guaranteed to succeed if the cable type of the port is SATA
4902 * and the port implements ->scr_read.
4903 *
4904 * LOCKING:
4905 * None.
4906 *
4907 * RETURNS:
4908 * 0 on success, negative errno on failure.
4909 */
4910int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4911{
4912 if (sata_scr_valid(ap)) {
4913 ap->ops->scr_write(ap, reg, val);
4914 return 0;
4915 }
4916 return -EOPNOTSUPP;
4917}
4918
4919/**
4920 * sata_scr_write_flush - write SCR register of the specified port and flush
4921 * @ap: ATA port to write SCR for
4922 * @reg: SCR to write
4923 * @val: value to write
4924 *
4925 * This function is identical to sata_scr_write() except that this
4926 * function performs flush after writing to the register.
4927 *
4928 * LOCKING:
4929 * None.
4930 *
4931 * RETURNS:
4932 * 0 on success, negative errno on failure.
4933 */
4934int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4935{
4936 if (sata_scr_valid(ap)) {
4937 ap->ops->scr_write(ap, reg, val);
4938 ap->ops->scr_read(ap, reg);
4939 return 0;
4940 }
4941 return -EOPNOTSUPP;
4942}
4943
4944/**
4945 * ata_port_online - test whether the given port is online
4946 * @ap: ATA port to test
4947 *
4948 * Test whether @ap is online. Note that this function returns 0
4949 * if online status of @ap cannot be obtained, so
4950 * ata_port_online(ap) != !ata_port_offline(ap).
4951 *
4952 * LOCKING:
4953 * None.
4954 *
4955 * RETURNS:
4956 * 1 if the port online status is available and online.
4957 */
4958int ata_port_online(struct ata_port *ap)
4959{
4960 u32 sstatus;
4961
4962 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4963 return 1;
4964 return 0;
4965}
4966
4967/**
4968 * ata_port_offline - test whether the given port is offline
4969 * @ap: ATA port to test
4970 *
4971 * Test whether @ap is offline. Note that this function returns
4972 * 0 if offline status of @ap cannot be obtained, so
4973 * ata_port_online(ap) != !ata_port_offline(ap).
4974 *
4975 * LOCKING:
4976 * None.
4977 *
4978 * RETURNS:
4979 * 1 if the port offline status is available and offline.
4980 */
4981int ata_port_offline(struct ata_port *ap)
4982{
4983 u32 sstatus;
4984
4985 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4986 return 1;
4987 return 0;
4988}
0baab86b 4989
77b08fb5 4990int ata_flush_cache(struct ata_device *dev)
9b847548 4991{
977e6b9f 4992 unsigned int err_mask;
9b847548
JA
4993 u8 cmd;
4994
4995 if (!ata_try_flush_cache(dev))
4996 return 0;
4997
4998 if (ata_id_has_flush_ext(dev->id))
4999 cmd = ATA_CMD_FLUSH_EXT;
5000 else
5001 cmd = ATA_CMD_FLUSH;
5002
977e6b9f
TH
5003 err_mask = ata_do_simple_cmd(dev, cmd);
5004 if (err_mask) {
5005 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5006 return -EIO;
5007 }
5008
5009 return 0;
9b847548
JA
5010}
5011
500530f6
TH
5012static int ata_host_set_request_pm(struct ata_host_set *host_set,
5013 pm_message_t mesg, unsigned int action,
5014 unsigned int ehi_flags, int wait)
5015{
5016 unsigned long flags;
5017 int i, rc;
5018
5019 for (i = 0; i < host_set->n_ports; i++) {
5020 struct ata_port *ap = host_set->ports[i];
5021
5022 /* Previous resume operation might still be in
5023 * progress. Wait for PM_PENDING to clear.
5024 */
5025 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5026 ata_port_wait_eh(ap);
5027 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5028 }
5029
5030 /* request PM ops to EH */
5031 spin_lock_irqsave(ap->lock, flags);
5032
5033 ap->pm_mesg = mesg;
5034 if (wait) {
5035 rc = 0;
5036 ap->pm_result = &rc;
5037 }
5038
5039 ap->pflags |= ATA_PFLAG_PM_PENDING;
5040 ap->eh_info.action |= action;
5041 ap->eh_info.flags |= ehi_flags;
5042
5043 ata_port_schedule_eh(ap);
5044
5045 spin_unlock_irqrestore(ap->lock, flags);
5046
5047 /* wait and check result */
5048 if (wait) {
5049 ata_port_wait_eh(ap);
5050 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5051 if (rc)
5052 return rc;
5053 }
5054 }
5055
5056 return 0;
5057}
5058
5059/**
5060 * ata_host_set_suspend - suspend host_set
5061 * @host_set: host_set to suspend
5062 * @mesg: PM message
5063 *
5064 * Suspend @host_set. Actual operation is performed by EH. This
5065 * function requests EH to perform PM operations and waits for EH
5066 * to finish.
5067 *
5068 * LOCKING:
5069 * Kernel thread context (may sleep).
5070 *
5071 * RETURNS:
5072 * 0 on success, -errno on failure.
5073 */
5074int ata_host_set_suspend(struct ata_host_set *host_set, pm_message_t mesg)
5075{
5076 int i, j, rc;
5077
5078 rc = ata_host_set_request_pm(host_set, mesg, 0, ATA_EHI_QUIET, 1);
5079 if (rc)
5080 goto fail;
5081
5082 /* EH is quiescent now. Fail if we have any ready device.
5083 * This happens if hotplug occurs between completion of device
5084 * suspension and here.
5085 */
5086 for (i = 0; i < host_set->n_ports; i++) {
5087 struct ata_port *ap = host_set->ports[i];
5088
5089 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5090 struct ata_device *dev = &ap->device[j];
5091
5092 if (ata_dev_ready(dev)) {
5093 ata_port_printk(ap, KERN_WARNING,
5094 "suspend failed, device %d "
5095 "still active\n", dev->devno);
5096 rc = -EBUSY;
5097 goto fail;
5098 }
5099 }
5100 }
5101
5102 host_set->dev->power.power_state = mesg;
5103 return 0;
5104
5105 fail:
5106 ata_host_set_resume(host_set);
5107 return rc;
5108}
5109
5110/**
5111 * ata_host_set_resume - resume host_set
5112 * @host_set: host_set to resume
5113 *
5114 * Resume @host_set. Actual operation is performed by EH. This
5115 * function requests EH to perform PM operations and returns.
5116 * Note that all resume operations are performed parallely.
5117 *
5118 * LOCKING:
5119 * Kernel thread context (may sleep).
5120 */
5121void ata_host_set_resume(struct ata_host_set *host_set)
5122{
5123 ata_host_set_request_pm(host_set, PMSG_ON, ATA_EH_SOFTRESET,
5124 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5125 host_set->dev->power.power_state = PMSG_ON;
5126}
5127
c893a3ae
RD
5128/**
5129 * ata_port_start - Set port up for dma.
5130 * @ap: Port to initialize
5131 *
5132 * Called just after data structures for each port are
5133 * initialized. Allocates space for PRD table.
5134 *
5135 * May be used as the port_start() entry in ata_port_operations.
5136 *
5137 * LOCKING:
5138 * Inherited from caller.
5139 */
5140
1da177e4
LT
5141int ata_port_start (struct ata_port *ap)
5142{
2f1f610b 5143 struct device *dev = ap->dev;
6037d6bb 5144 int rc;
1da177e4
LT
5145
5146 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5147 if (!ap->prd)
5148 return -ENOMEM;
5149
6037d6bb
JG
5150 rc = ata_pad_alloc(ap, dev);
5151 if (rc) {
cedc9a47 5152 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5153 return rc;
cedc9a47
JG
5154 }
5155
1da177e4
LT
5156 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5157
5158 return 0;
5159}
5160
0baab86b
EF
5161
5162/**
5163 * ata_port_stop - Undo ata_port_start()
5164 * @ap: Port to shut down
5165 *
5166 * Frees the PRD table.
5167 *
5168 * May be used as the port_stop() entry in ata_port_operations.
5169 *
5170 * LOCKING:
6f0ef4fa 5171 * Inherited from caller.
0baab86b
EF
5172 */
5173
1da177e4
LT
5174void ata_port_stop (struct ata_port *ap)
5175{
2f1f610b 5176 struct device *dev = ap->dev;
1da177e4
LT
5177
5178 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5179 ata_pad_free(ap, dev);
1da177e4
LT
5180}
5181
aa8f0dc6
JG
5182void ata_host_stop (struct ata_host_set *host_set)
5183{
5184 if (host_set->mmio_base)
5185 iounmap(host_set->mmio_base);
5186}
5187
3ef3b43d
TH
5188/**
5189 * ata_dev_init - Initialize an ata_device structure
5190 * @dev: Device structure to initialize
5191 *
5192 * Initialize @dev in preparation for probing.
5193 *
5194 * LOCKING:
5195 * Inherited from caller.
5196 */
5197void ata_dev_init(struct ata_device *dev)
5198{
5199 struct ata_port *ap = dev->ap;
72fa4b74
TH
5200 unsigned long flags;
5201
5a04bf4b
TH
5202 /* SATA spd limit is bound to the first device */
5203 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5204
72fa4b74
TH
5205 /* High bits of dev->flags are used to record warm plug
5206 * requests which occur asynchronously. Synchronize using
5207 * host_set lock.
5208 */
ba6a1308 5209 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5210 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5211 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5212
72fa4b74
TH
5213 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5214 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5215 dev->pio_mask = UINT_MAX;
5216 dev->mwdma_mask = UINT_MAX;
5217 dev->udma_mask = UINT_MAX;
5218}
5219
1da177e4
LT
5220/**
5221 * ata_host_init - Initialize an ata_port structure
5222 * @ap: Structure to initialize
5223 * @host: associated SCSI mid-layer structure
5224 * @host_set: Collection of hosts to which @ap belongs
5225 * @ent: Probe information provided by low-level driver
5226 * @port_no: Port number associated with this ata_port
5227 *
0cba632b
JG
5228 * Initialize a new ata_port structure, and its associated
5229 * scsi_host.
5230 *
1da177e4 5231 * LOCKING:
0cba632b 5232 * Inherited from caller.
1da177e4 5233 */
1da177e4
LT
5234static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5235 struct ata_host_set *host_set,
057ace5e 5236 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5237{
5238 unsigned int i;
5239
5240 host->max_id = 16;
5241 host->max_lun = 1;
5242 host->max_channel = 1;
5243 host->unique_id = ata_unique_id++;
5244 host->max_cmd_len = 12;
12413197 5245
ba6a1308 5246 ap->lock = &host_set->lock;
198e0fed 5247 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
5248 ap->id = host->unique_id;
5249 ap->host = host;
5250 ap->ctl = ATA_DEVCTL_OBS;
5251 ap->host_set = host_set;
2f1f610b 5252 ap->dev = ent->dev;
1da177e4
LT
5253 ap->port_no = port_no;
5254 ap->hard_port_no =
5255 ent->legacy_mode ? ent->hard_port_no : port_no;
5256 ap->pio_mask = ent->pio_mask;
5257 ap->mwdma_mask = ent->mwdma_mask;
5258 ap->udma_mask = ent->udma_mask;
5259 ap->flags |= ent->host_flags;
5260 ap->ops = ent->port_ops;
5a04bf4b 5261 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5262 ap->active_tag = ATA_TAG_POISON;
5263 ap->last_ctl = 0xFF;
bd5d825c
BP
5264
5265#if defined(ATA_VERBOSE_DEBUG)
5266 /* turn on all debugging levels */
5267 ap->msg_enable = 0x00FF;
5268#elif defined(ATA_DEBUG)
5269 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5270#else
0dd4b21f 5271 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5272#endif
1da177e4 5273
86e45b6b 5274 INIT_WORK(&ap->port_task, NULL, NULL);
580b2102 5275 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
3057ac3c 5276 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
a72ec4ce 5277 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5278 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5279
838df628
TH
5280 /* set cable type */
5281 ap->cbl = ATA_CBL_NONE;
5282 if (ap->flags & ATA_FLAG_SATA)
5283 ap->cbl = ATA_CBL_SATA;
5284
acf356b1
TH
5285 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5286 struct ata_device *dev = &ap->device[i];
38d87234 5287 dev->ap = ap;
72fa4b74 5288 dev->devno = i;
3ef3b43d 5289 ata_dev_init(dev);
acf356b1 5290 }
1da177e4
LT
5291
5292#ifdef ATA_IRQ_TRAP
5293 ap->stats.unhandled_irq = 1;
5294 ap->stats.idle_irq = 1;
5295#endif
5296
5297 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5298}
5299
5300/**
5301 * ata_host_add - Attach low-level ATA driver to system
5302 * @ent: Information provided by low-level driver
5303 * @host_set: Collections of ports to which we add
5304 * @port_no: Port number associated with this host
5305 *
0cba632b
JG
5306 * Attach low-level ATA driver to system.
5307 *
1da177e4 5308 * LOCKING:
0cba632b 5309 * PCI/etc. bus probe sem.
1da177e4
LT
5310 *
5311 * RETURNS:
0cba632b 5312 * New ata_port on success, for NULL on error.
1da177e4
LT
5313 */
5314
057ace5e 5315static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
5316 struct ata_host_set *host_set,
5317 unsigned int port_no)
5318{
5319 struct Scsi_Host *host;
5320 struct ata_port *ap;
5321 int rc;
5322
5323 DPRINTK("ENTER\n");
aec5c3c1 5324
52783c5d 5325 if (!ent->port_ops->error_handler &&
aec5c3c1
TH
5326 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5327 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5328 port_no);
5329 return NULL;
5330 }
5331
1da177e4
LT
5332 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5333 if (!host)
5334 return NULL;
5335
30afc84c
TH
5336 host->transportt = &ata_scsi_transport_template;
5337
35bb94b1 5338 ap = ata_shost_to_port(host);
1da177e4
LT
5339
5340 ata_host_init(ap, host, host_set, ent, port_no);
5341
5342 rc = ap->ops->port_start(ap);
5343 if (rc)
5344 goto err_out;
5345
5346 return ap;
5347
5348err_out:
5349 scsi_host_put(host);
5350 return NULL;
5351}
5352
5353/**
0cba632b
JG
5354 * ata_device_add - Register hardware device with ATA and SCSI layers
5355 * @ent: Probe information describing hardware device to be registered
5356 *
5357 * This function processes the information provided in the probe
5358 * information struct @ent, allocates the necessary ATA and SCSI
5359 * host information structures, initializes them, and registers
5360 * everything with requisite kernel subsystems.
5361 *
5362 * This function requests irqs, probes the ATA bus, and probes
5363 * the SCSI bus.
1da177e4
LT
5364 *
5365 * LOCKING:
0cba632b 5366 * PCI/etc. bus probe sem.
1da177e4
LT
5367 *
5368 * RETURNS:
0cba632b 5369 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5370 */
057ace5e 5371int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
5372{
5373 unsigned int count = 0, i;
5374 struct device *dev = ent->dev;
5375 struct ata_host_set *host_set;
39b07ce6 5376 int rc;
1da177e4
LT
5377
5378 DPRINTK("ENTER\n");
5379 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 5380 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
5381 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5382 if (!host_set)
5383 return 0;
1da177e4
LT
5384 spin_lock_init(&host_set->lock);
5385
5386 host_set->dev = dev;
5387 host_set->n_ports = ent->n_ports;
5388 host_set->irq = ent->irq;
5389 host_set->mmio_base = ent->mmio_base;
5390 host_set->private_data = ent->private_data;
5391 host_set->ops = ent->port_ops;
5444a6f4 5392 host_set->flags = ent->host_set_flags;
1da177e4
LT
5393
5394 /* register each port bound to this device */
5395 for (i = 0; i < ent->n_ports; i++) {
5396 struct ata_port *ap;
5397 unsigned long xfer_mode_mask;
5398
5399 ap = ata_host_add(ent, host_set, i);
5400 if (!ap)
5401 goto err_out;
5402
5403 host_set->ports[i] = ap;
5404 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5405 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5406 (ap->pio_mask << ATA_SHIFT_PIO);
5407
5408 /* print per-port info to dmesg */
f15a1daf
TH
5409 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5410 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5411 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5412 ata_mode_string(xfer_mode_mask),
5413 ap->ioaddr.cmd_addr,
5414 ap->ioaddr.ctl_addr,
5415 ap->ioaddr.bmdma_addr,
5416 ent->irq);
1da177e4
LT
5417
5418 ata_chk_status(ap);
5419 host_set->ops->irq_clear(ap);
e3180499 5420 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
1da177e4
LT
5421 count++;
5422 }
5423
57f3bda8
RD
5424 if (!count)
5425 goto err_free_ret;
1da177e4
LT
5426
5427 /* obtain irq, that is shared between channels */
39b07ce6
JG
5428 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5429 DRV_NAME, host_set);
5430 if (rc) {
5431 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5432 ent->irq, rc);
1da177e4 5433 goto err_out;
39b07ce6 5434 }
1da177e4
LT
5435
5436 /* perform each probe synchronously */
5437 DPRINTK("probe begin\n");
5438 for (i = 0; i < count; i++) {
5439 struct ata_port *ap;
5a04bf4b 5440 u32 scontrol;
1da177e4
LT
5441 int rc;
5442
5443 ap = host_set->ports[i];
5444
5a04bf4b
TH
5445 /* init sata_spd_limit to the current value */
5446 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5447 int spd = (scontrol >> 4) & 0xf;
5448 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5449 }
5450 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5451
1da177e4
LT
5452 rc = scsi_add_host(ap->host, dev);
5453 if (rc) {
f15a1daf 5454 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5455 /* FIXME: do something useful here */
5456 /* FIXME: handle unconditional calls to
5457 * scsi_scan_host and ata_host_remove, below,
5458 * at the very least
5459 */
5460 }
3e706399 5461
52783c5d 5462 if (ap->ops->error_handler) {
1cdaf534 5463 struct ata_eh_info *ehi = &ap->eh_info;
3e706399
TH
5464 unsigned long flags;
5465
5466 ata_port_probe(ap);
5467
5468 /* kick EH for boot probing */
ba6a1308 5469 spin_lock_irqsave(ap->lock, flags);
3e706399 5470
1cdaf534
TH
5471 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5472 ehi->action |= ATA_EH_SOFTRESET;
5473 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
3e706399 5474
b51e9e5d 5475 ap->pflags |= ATA_PFLAG_LOADING;
3e706399
TH
5476 ata_port_schedule_eh(ap);
5477
ba6a1308 5478 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5479
5480 /* wait for EH to finish */
5481 ata_port_wait_eh(ap);
5482 } else {
5483 DPRINTK("ata%u: bus probe begin\n", ap->id);
5484 rc = ata_bus_probe(ap);
5485 DPRINTK("ata%u: bus probe end\n", ap->id);
5486
5487 if (rc) {
5488 /* FIXME: do something useful here?
5489 * Current libata behavior will
5490 * tear down everything when
5491 * the module is removed
5492 * or the h/w is unplugged.
5493 */
5494 }
5495 }
1da177e4
LT
5496 }
5497
5498 /* probes are done, now scan each port's disk(s) */
c893a3ae 5499 DPRINTK("host probe begin\n");
1da177e4
LT
5500 for (i = 0; i < count; i++) {
5501 struct ata_port *ap = host_set->ports[i];
5502
644dd0cc 5503 ata_scsi_scan_host(ap);
1da177e4
LT
5504 }
5505
5506 dev_set_drvdata(dev, host_set);
5507
5508 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5509 return ent->n_ports; /* success */
5510
5511err_out:
5512 for (i = 0; i < count; i++) {
6543bc07 5513 struct ata_port *ap = host_set->ports[i];
77f3f879
TH
5514 if (ap) {
5515 ap->ops->port_stop(ap);
5516 scsi_host_put(ap->host);
5517 }
1da177e4 5518 }
57f3bda8 5519err_free_ret:
1da177e4
LT
5520 kfree(host_set);
5521 VPRINTK("EXIT, returning 0\n");
5522 return 0;
5523}
5524
720ba126
TH
5525/**
5526 * ata_port_detach - Detach ATA port in prepration of device removal
5527 * @ap: ATA port to be detached
5528 *
5529 * Detach all ATA devices and the associated SCSI devices of @ap;
5530 * then, remove the associated SCSI host. @ap is guaranteed to
5531 * be quiescent on return from this function.
5532 *
5533 * LOCKING:
5534 * Kernel thread context (may sleep).
5535 */
5536void ata_port_detach(struct ata_port *ap)
5537{
5538 unsigned long flags;
5539 int i;
5540
5541 if (!ap->ops->error_handler)
c3cf30a9 5542 goto skip_eh;
720ba126
TH
5543
5544 /* tell EH we're leaving & flush EH */
ba6a1308 5545 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 5546 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 5547 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5548
5549 ata_port_wait_eh(ap);
5550
5551 /* EH is now guaranteed to see UNLOADING, so no new device
5552 * will be attached. Disable all existing devices.
5553 */
ba6a1308 5554 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5555
5556 for (i = 0; i < ATA_MAX_DEVICES; i++)
5557 ata_dev_disable(&ap->device[i]);
5558
ba6a1308 5559 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5560
5561 /* Final freeze & EH. All in-flight commands are aborted. EH
5562 * will be skipped and retrials will be terminated with bad
5563 * target.
5564 */
ba6a1308 5565 spin_lock_irqsave(ap->lock, flags);
720ba126 5566 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5567 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5568
5569 ata_port_wait_eh(ap);
5570
5571 /* Flush hotplug task. The sequence is similar to
5572 * ata_port_flush_task().
5573 */
5574 flush_workqueue(ata_aux_wq);
5575 cancel_delayed_work(&ap->hotplug_task);
5576 flush_workqueue(ata_aux_wq);
5577
c3cf30a9 5578 skip_eh:
720ba126
TH
5579 /* remove the associated SCSI host */
5580 scsi_remove_host(ap->host);
5581}
5582
17b14451
AC
5583/**
5584 * ata_host_set_remove - PCI layer callback for device removal
5585 * @host_set: ATA host set that was removed
5586 *
2e9edbf8 5587 * Unregister all objects associated with this host set. Free those
17b14451
AC
5588 * objects.
5589 *
5590 * LOCKING:
5591 * Inherited from calling layer (may sleep).
5592 */
5593
17b14451
AC
5594void ata_host_set_remove(struct ata_host_set *host_set)
5595{
17b14451
AC
5596 unsigned int i;
5597
720ba126
TH
5598 for (i = 0; i < host_set->n_ports; i++)
5599 ata_port_detach(host_set->ports[i]);
17b14451
AC
5600
5601 free_irq(host_set->irq, host_set);
5602
5603 for (i = 0; i < host_set->n_ports; i++) {
720ba126 5604 struct ata_port *ap = host_set->ports[i];
17b14451
AC
5605
5606 ata_scsi_release(ap->host);
5607
5608 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5609 struct ata_ioports *ioaddr = &ap->ioaddr;
5610
5611 if (ioaddr->cmd_addr == 0x1f0)
5612 release_region(0x1f0, 8);
5613 else if (ioaddr->cmd_addr == 0x170)
5614 release_region(0x170, 8);
5615 }
5616
5617 scsi_host_put(ap->host);
5618 }
5619
5620 if (host_set->ops->host_stop)
5621 host_set->ops->host_stop(host_set);
5622
5623 kfree(host_set);
5624}
5625
1da177e4
LT
5626/**
5627 * ata_scsi_release - SCSI layer callback hook for host unload
5628 * @host: libata host to be unloaded
5629 *
5630 * Performs all duties necessary to shut down a libata port...
5631 * Kill port kthread, disable port, and release resources.
5632 *
5633 * LOCKING:
5634 * Inherited from SCSI layer.
5635 *
5636 * RETURNS:
5637 * One.
5638 */
5639
5640int ata_scsi_release(struct Scsi_Host *host)
5641{
35bb94b1 5642 struct ata_port *ap = ata_shost_to_port(host);
1da177e4
LT
5643
5644 DPRINTK("ENTER\n");
5645
5646 ap->ops->port_disable(ap);
6543bc07 5647 ap->ops->port_stop(ap);
1da177e4
LT
5648
5649 DPRINTK("EXIT\n");
5650 return 1;
5651}
5652
5653/**
5654 * ata_std_ports - initialize ioaddr with standard port offsets.
5655 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5656 *
5657 * Utility function which initializes data_addr, error_addr,
5658 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5659 * device_addr, status_addr, and command_addr to standard offsets
5660 * relative to cmd_addr.
5661 *
5662 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5663 */
0baab86b 5664
1da177e4
LT
5665void ata_std_ports(struct ata_ioports *ioaddr)
5666{
5667 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5668 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5669 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5670 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5671 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5672 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5673 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5674 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5675 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5676 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5677}
5678
0baab86b 5679
374b1873
JG
5680#ifdef CONFIG_PCI
5681
5682void ata_pci_host_stop (struct ata_host_set *host_set)
5683{
5684 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5685
5686 pci_iounmap(pdev, host_set->mmio_base);
5687}
5688
1da177e4
LT
5689/**
5690 * ata_pci_remove_one - PCI layer callback for device removal
5691 * @pdev: PCI device that was removed
5692 *
5693 * PCI layer indicates to libata via this hook that
6f0ef4fa 5694 * hot-unplug or module unload event has occurred.
1da177e4
LT
5695 * Handle this by unregistering all objects associated
5696 * with this PCI device. Free those objects. Then finally
5697 * release PCI resources and disable device.
5698 *
5699 * LOCKING:
5700 * Inherited from PCI layer (may sleep).
5701 */
5702
5703void ata_pci_remove_one (struct pci_dev *pdev)
5704{
5705 struct device *dev = pci_dev_to_dev(pdev);
5706 struct ata_host_set *host_set = dev_get_drvdata(dev);
f0eb62b8 5707 struct ata_host_set *host_set2 = host_set->next;
1da177e4 5708
17b14451 5709 ata_host_set_remove(host_set);
f0eb62b8
TH
5710 if (host_set2)
5711 ata_host_set_remove(host_set2);
5712
1da177e4
LT
5713 pci_release_regions(pdev);
5714 pci_disable_device(pdev);
5715 dev_set_drvdata(dev, NULL);
5716}
5717
5718/* move to PCI subsystem */
057ace5e 5719int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5720{
5721 unsigned long tmp = 0;
5722
5723 switch (bits->width) {
5724 case 1: {
5725 u8 tmp8 = 0;
5726 pci_read_config_byte(pdev, bits->reg, &tmp8);
5727 tmp = tmp8;
5728 break;
5729 }
5730 case 2: {
5731 u16 tmp16 = 0;
5732 pci_read_config_word(pdev, bits->reg, &tmp16);
5733 tmp = tmp16;
5734 break;
5735 }
5736 case 4: {
5737 u32 tmp32 = 0;
5738 pci_read_config_dword(pdev, bits->reg, &tmp32);
5739 tmp = tmp32;
5740 break;
5741 }
5742
5743 default:
5744 return -EINVAL;
5745 }
5746
5747 tmp &= bits->mask;
5748
5749 return (tmp == bits->val) ? 1 : 0;
5750}
9b847548 5751
500530f6 5752void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t state)
9b847548
JA
5753{
5754 pci_save_state(pdev);
500530f6
TH
5755
5756 if (state.event == PM_EVENT_SUSPEND) {
5757 pci_disable_device(pdev);
5758 pci_set_power_state(pdev, PCI_D3hot);
5759 }
9b847548
JA
5760}
5761
500530f6 5762void ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548
JA
5763{
5764 pci_set_power_state(pdev, PCI_D0);
5765 pci_restore_state(pdev);
5766 pci_enable_device(pdev);
5767 pci_set_master(pdev);
500530f6
TH
5768}
5769
5770int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5771{
5772 struct ata_host_set *host_set = dev_get_drvdata(&pdev->dev);
5773 int rc = 0;
5774
5775 rc = ata_host_set_suspend(host_set, state);
5776 if (rc)
5777 return rc;
5778
5779 if (host_set->next) {
5780 rc = ata_host_set_suspend(host_set->next, state);
5781 if (rc) {
5782 ata_host_set_resume(host_set);
5783 return rc;
5784 }
5785 }
5786
5787 ata_pci_device_do_suspend(pdev, state);
5788
5789 return 0;
5790}
5791
5792int ata_pci_device_resume(struct pci_dev *pdev)
5793{
5794 struct ata_host_set *host_set = dev_get_drvdata(&pdev->dev);
5795
5796 ata_pci_device_do_resume(pdev);
5797 ata_host_set_resume(host_set);
5798 if (host_set->next)
5799 ata_host_set_resume(host_set->next);
5800
9b847548
JA
5801 return 0;
5802}
1da177e4
LT
5803#endif /* CONFIG_PCI */
5804
5805
1da177e4
LT
5806static int __init ata_init(void)
5807{
a8601e5f 5808 ata_probe_timeout *= HZ;
1da177e4
LT
5809 ata_wq = create_workqueue("ata");
5810 if (!ata_wq)
5811 return -ENOMEM;
5812
453b07ac
TH
5813 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5814 if (!ata_aux_wq) {
5815 destroy_workqueue(ata_wq);
5816 return -ENOMEM;
5817 }
5818
1da177e4
LT
5819 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5820 return 0;
5821}
5822
5823static void __exit ata_exit(void)
5824{
5825 destroy_workqueue(ata_wq);
453b07ac 5826 destroy_workqueue(ata_aux_wq);
1da177e4
LT
5827}
5828
5829module_init(ata_init);
5830module_exit(ata_exit);
5831
67846b30 5832static unsigned long ratelimit_time;
34af946a 5833static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
5834
5835int ata_ratelimit(void)
5836{
5837 int rc;
5838 unsigned long flags;
5839
5840 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5841
5842 if (time_after(jiffies, ratelimit_time)) {
5843 rc = 1;
5844 ratelimit_time = jiffies + (HZ/5);
5845 } else
5846 rc = 0;
5847
5848 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5849
5850 return rc;
5851}
5852
c22daff4
TH
5853/**
5854 * ata_wait_register - wait until register value changes
5855 * @reg: IO-mapped register
5856 * @mask: Mask to apply to read register value
5857 * @val: Wait condition
5858 * @interval_msec: polling interval in milliseconds
5859 * @timeout_msec: timeout in milliseconds
5860 *
5861 * Waiting for some bits of register to change is a common
5862 * operation for ATA controllers. This function reads 32bit LE
5863 * IO-mapped register @reg and tests for the following condition.
5864 *
5865 * (*@reg & mask) != val
5866 *
5867 * If the condition is met, it returns; otherwise, the process is
5868 * repeated after @interval_msec until timeout.
5869 *
5870 * LOCKING:
5871 * Kernel thread context (may sleep)
5872 *
5873 * RETURNS:
5874 * The final register value.
5875 */
5876u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5877 unsigned long interval_msec,
5878 unsigned long timeout_msec)
5879{
5880 unsigned long timeout;
5881 u32 tmp;
5882
5883 tmp = ioread32(reg);
5884
5885 /* Calculate timeout _after_ the first read to make sure
5886 * preceding writes reach the controller before starting to
5887 * eat away the timeout.
5888 */
5889 timeout = jiffies + (timeout_msec * HZ) / 1000;
5890
5891 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5892 msleep(interval_msec);
5893 tmp = ioread32(reg);
5894 }
5895
5896 return tmp;
5897}
5898
1da177e4
LT
5899/*
5900 * libata is essentially a library of internal helper functions for
5901 * low-level ATA host controller drivers. As such, the API/ABI is
5902 * likely to change as new drivers are added and updated.
5903 * Do not depend on ABI/API stability.
5904 */
5905
e9c83914
TH
5906EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
5907EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
5908EXPORT_SYMBOL_GPL(sata_deb_timing_long);
1da177e4
LT
5909EXPORT_SYMBOL_GPL(ata_std_bios_param);
5910EXPORT_SYMBOL_GPL(ata_std_ports);
5911EXPORT_SYMBOL_GPL(ata_device_add);
720ba126 5912EXPORT_SYMBOL_GPL(ata_port_detach);
17b14451 5913EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5914EXPORT_SYMBOL_GPL(ata_sg_init);
5915EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 5916EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 5917EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 5918EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 5919EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5920EXPORT_SYMBOL_GPL(ata_tf_load);
5921EXPORT_SYMBOL_GPL(ata_tf_read);
5922EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5923EXPORT_SYMBOL_GPL(ata_std_dev_select);
5924EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5925EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5926EXPORT_SYMBOL_GPL(ata_check_status);
5927EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5928EXPORT_SYMBOL_GPL(ata_exec_command);
5929EXPORT_SYMBOL_GPL(ata_port_start);
5930EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5931EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 5932EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
5933EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5934EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 5935EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 5936EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5937EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5938EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5939EXPORT_SYMBOL_GPL(ata_bmdma_start);
5940EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5941EXPORT_SYMBOL_GPL(ata_bmdma_status);
5942EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
5943EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5944EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5945EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5946EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5947EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 5948EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 5949EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
5950EXPORT_SYMBOL_GPL(sata_phy_debounce);
5951EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
5952EXPORT_SYMBOL_GPL(sata_phy_reset);
5953EXPORT_SYMBOL_GPL(__sata_phy_reset);
5954EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 5955EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804
TH
5956EXPORT_SYMBOL_GPL(ata_std_softreset);
5957EXPORT_SYMBOL_GPL(sata_std_hardreset);
5958EXPORT_SYMBOL_GPL(ata_std_postreset);
623a3128 5959EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5960EXPORT_SYMBOL_GPL(ata_dev_classify);
5961EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5962EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5963EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 5964EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 5965EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5966EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5967EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5968EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 5969EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 5970EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 5971EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
5972EXPORT_SYMBOL_GPL(ata_scsi_release);
5973EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
5974EXPORT_SYMBOL_GPL(sata_scr_valid);
5975EXPORT_SYMBOL_GPL(sata_scr_read);
5976EXPORT_SYMBOL_GPL(sata_scr_write);
5977EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5978EXPORT_SYMBOL_GPL(ata_port_online);
5979EXPORT_SYMBOL_GPL(ata_port_offline);
500530f6
TH
5980EXPORT_SYMBOL_GPL(ata_host_set_suspend);
5981EXPORT_SYMBOL_GPL(ata_host_set_resume);
6a62a04d
TH
5982EXPORT_SYMBOL_GPL(ata_id_string);
5983EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5984EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5985
1bc4ccff 5986EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5987EXPORT_SYMBOL_GPL(ata_timing_compute);
5988EXPORT_SYMBOL_GPL(ata_timing_merge);
5989
1da177e4
LT
5990#ifdef CONFIG_PCI
5991EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5992EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5993EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5994EXPORT_SYMBOL_GPL(ata_pci_init_one);
5995EXPORT_SYMBOL_GPL(ata_pci_remove_one);
500530f6
TH
5996EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
5997EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
5998EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5999EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
6000EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6001EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6002#endif /* CONFIG_PCI */
9b847548 6003
9b847548
JA
6004EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6005EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 6006
ece1d636 6007EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6008EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6009EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6010EXPORT_SYMBOL_GPL(ata_port_freeze);
6011EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6012EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6013EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6014EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6015EXPORT_SYMBOL_GPL(ata_do_eh);