]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/scsi/libata-core.c
[PATCH] libata: Add ata_scsi_dev_disabled
[net-next-2.6.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
d7bb4cc7
TH
64/* debounce timing parameters in msecs { interval, duration, timeout } */
65const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
66const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
67const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
68
3373efd8
TH
69static unsigned int ata_dev_init_params(struct ata_device *dev,
70 u16 heads, u16 sectors);
71static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
72static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
73
74static unsigned int ata_unique_id = 1;
75static struct workqueue_struct *ata_wq;
76
453b07ac
TH
77struct workqueue_struct *ata_aux_wq;
78
418dc1f5 79int atapi_enabled = 1;
1623c81e
JG
80module_param(atapi_enabled, int, 0444);
81MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82
95de719a
AL
83int atapi_dmadir = 0;
84module_param(atapi_dmadir, int, 0444);
85MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86
c3c013a2
JG
87int libata_fua = 0;
88module_param_named(fua, libata_fua, int, 0444);
89MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
90
1da177e4
LT
91MODULE_AUTHOR("Jeff Garzik");
92MODULE_DESCRIPTION("Library module for ATA devices");
93MODULE_LICENSE("GPL");
94MODULE_VERSION(DRV_VERSION);
95
0baab86b 96
1da177e4
LT
97/**
98 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
99 * @tf: Taskfile to convert
100 * @fis: Buffer into which data will output
101 * @pmp: Port multiplier port
102 *
103 * Converts a standard ATA taskfile to a Serial ATA
104 * FIS structure (Register - Host to Device).
105 *
106 * LOCKING:
107 * Inherited from caller.
108 */
109
057ace5e 110void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
111{
112 fis[0] = 0x27; /* Register - Host to Device FIS */
113 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
114 bit 7 indicates Command FIS */
115 fis[2] = tf->command;
116 fis[3] = tf->feature;
117
118 fis[4] = tf->lbal;
119 fis[5] = tf->lbam;
120 fis[6] = tf->lbah;
121 fis[7] = tf->device;
122
123 fis[8] = tf->hob_lbal;
124 fis[9] = tf->hob_lbam;
125 fis[10] = tf->hob_lbah;
126 fis[11] = tf->hob_feature;
127
128 fis[12] = tf->nsect;
129 fis[13] = tf->hob_nsect;
130 fis[14] = 0;
131 fis[15] = tf->ctl;
132
133 fis[16] = 0;
134 fis[17] = 0;
135 fis[18] = 0;
136 fis[19] = 0;
137}
138
139/**
140 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
141 * @fis: Buffer from which data will be input
142 * @tf: Taskfile to output
143 *
e12a1be6 144 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
057ace5e 150void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
151{
152 tf->command = fis[2]; /* status */
153 tf->feature = fis[3]; /* error */
154
155 tf->lbal = fis[4];
156 tf->lbam = fis[5];
157 tf->lbah = fis[6];
158 tf->device = fis[7];
159
160 tf->hob_lbal = fis[8];
161 tf->hob_lbam = fis[9];
162 tf->hob_lbah = fis[10];
163
164 tf->nsect = fis[12];
165 tf->hob_nsect = fis[13];
166}
167
8cbd6df1
AL
168static const u8 ata_rw_cmds[] = {
169 /* pio multi */
170 ATA_CMD_READ_MULTI,
171 ATA_CMD_WRITE_MULTI,
172 ATA_CMD_READ_MULTI_EXT,
173 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
174 0,
175 0,
176 0,
177 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
178 /* pio */
179 ATA_CMD_PIO_READ,
180 ATA_CMD_PIO_WRITE,
181 ATA_CMD_PIO_READ_EXT,
182 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
183 0,
184 0,
185 0,
186 0,
8cbd6df1
AL
187 /* dma */
188 ATA_CMD_READ,
189 ATA_CMD_WRITE,
190 ATA_CMD_READ_EXT,
9a3dccc4
TH
191 ATA_CMD_WRITE_EXT,
192 0,
193 0,
194 0,
195 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 196};
1da177e4
LT
197
198/**
8cbd6df1
AL
199 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
200 * @qc: command to examine and configure
1da177e4 201 *
2e9edbf8 202 * Examine the device configuration and tf->flags to calculate
8cbd6df1 203 * the proper read/write commands and protocol to use.
1da177e4
LT
204 *
205 * LOCKING:
206 * caller.
207 */
9a3dccc4 208int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 209{
8cbd6df1
AL
210 struct ata_taskfile *tf = &qc->tf;
211 struct ata_device *dev = qc->dev;
9a3dccc4 212 u8 cmd;
1da177e4 213
9a3dccc4 214 int index, fua, lba48, write;
2e9edbf8 215
9a3dccc4 216 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
217 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
218 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 219
8cbd6df1
AL
220 if (dev->flags & ATA_DFLAG_PIO) {
221 tf->protocol = ATA_PROT_PIO;
9a3dccc4 222 index = dev->multi_count ? 0 : 8;
8d238e01
AC
223 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
224 /* Unable to use DMA due to host limitation */
225 tf->protocol = ATA_PROT_PIO;
0565c26d 226 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
227 } else {
228 tf->protocol = ATA_PROT_DMA;
9a3dccc4 229 index = 16;
8cbd6df1 230 }
1da177e4 231
9a3dccc4
TH
232 cmd = ata_rw_cmds[index + fua + lba48 + write];
233 if (cmd) {
234 tf->command = cmd;
235 return 0;
236 }
237 return -1;
1da177e4
LT
238}
239
cb95d562
TH
240/**
241 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
242 * @pio_mask: pio_mask
243 * @mwdma_mask: mwdma_mask
244 * @udma_mask: udma_mask
245 *
246 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
247 * unsigned int xfer_mask.
248 *
249 * LOCKING:
250 * None.
251 *
252 * RETURNS:
253 * Packed xfer_mask.
254 */
255static unsigned int ata_pack_xfermask(unsigned int pio_mask,
256 unsigned int mwdma_mask,
257 unsigned int udma_mask)
258{
259 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
260 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
261 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
262}
263
c0489e4e
TH
264/**
265 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
266 * @xfer_mask: xfer_mask to unpack
267 * @pio_mask: resulting pio_mask
268 * @mwdma_mask: resulting mwdma_mask
269 * @udma_mask: resulting udma_mask
270 *
271 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
272 * Any NULL distination masks will be ignored.
273 */
274static void ata_unpack_xfermask(unsigned int xfer_mask,
275 unsigned int *pio_mask,
276 unsigned int *mwdma_mask,
277 unsigned int *udma_mask)
278{
279 if (pio_mask)
280 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
281 if (mwdma_mask)
282 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
283 if (udma_mask)
284 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
285}
286
cb95d562 287static const struct ata_xfer_ent {
be9a50c8 288 int shift, bits;
cb95d562
TH
289 u8 base;
290} ata_xfer_tbl[] = {
291 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
292 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
293 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
294 { -1, },
295};
296
297/**
298 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
299 * @xfer_mask: xfer_mask of interest
300 *
301 * Return matching XFER_* value for @xfer_mask. Only the highest
302 * bit of @xfer_mask is considered.
303 *
304 * LOCKING:
305 * None.
306 *
307 * RETURNS:
308 * Matching XFER_* value, 0 if no match found.
309 */
310static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
311{
312 int highbit = fls(xfer_mask) - 1;
313 const struct ata_xfer_ent *ent;
314
315 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
316 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
317 return ent->base + highbit - ent->shift;
318 return 0;
319}
320
321/**
322 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
323 * @xfer_mode: XFER_* of interest
324 *
325 * Return matching xfer_mask for @xfer_mode.
326 *
327 * LOCKING:
328 * None.
329 *
330 * RETURNS:
331 * Matching xfer_mask, 0 if no match found.
332 */
333static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
334{
335 const struct ata_xfer_ent *ent;
336
337 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
338 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
339 return 1 << (ent->shift + xfer_mode - ent->base);
340 return 0;
341}
342
343/**
344 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
345 * @xfer_mode: XFER_* of interest
346 *
347 * Return matching xfer_shift for @xfer_mode.
348 *
349 * LOCKING:
350 * None.
351 *
352 * RETURNS:
353 * Matching xfer_shift, -1 if no match found.
354 */
355static int ata_xfer_mode2shift(unsigned int xfer_mode)
356{
357 const struct ata_xfer_ent *ent;
358
359 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
360 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
361 return ent->shift;
362 return -1;
363}
364
1da177e4 365/**
1da7b0d0
TH
366 * ata_mode_string - convert xfer_mask to string
367 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
368 *
369 * Determine string which represents the highest speed
1da7b0d0 370 * (highest bit in @modemask).
1da177e4
LT
371 *
372 * LOCKING:
373 * None.
374 *
375 * RETURNS:
376 * Constant C string representing highest speed listed in
1da7b0d0 377 * @mode_mask, or the constant C string "<n/a>".
1da177e4 378 */
1da7b0d0 379static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 380{
75f554bc
TH
381 static const char * const xfer_mode_str[] = {
382 "PIO0",
383 "PIO1",
384 "PIO2",
385 "PIO3",
386 "PIO4",
387 "MWDMA0",
388 "MWDMA1",
389 "MWDMA2",
390 "UDMA/16",
391 "UDMA/25",
392 "UDMA/33",
393 "UDMA/44",
394 "UDMA/66",
395 "UDMA/100",
396 "UDMA/133",
397 "UDMA7",
398 };
1da7b0d0 399 int highbit;
1da177e4 400
1da7b0d0
TH
401 highbit = fls(xfer_mask) - 1;
402 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
403 return xfer_mode_str[highbit];
1da177e4 404 return "<n/a>";
1da177e4
LT
405}
406
4c360c81
TH
407static const char *sata_spd_string(unsigned int spd)
408{
409 static const char * const spd_str[] = {
410 "1.5 Gbps",
411 "3.0 Gbps",
412 };
413
414 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
415 return "<unknown>";
416 return spd_str[spd - 1];
417}
418
3373efd8 419void ata_dev_disable(struct ata_device *dev)
0b8efb0a 420{
e1211e3f 421 if (ata_dev_enabled(dev)) {
f15a1daf 422 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
423 dev->class++;
424 }
425}
426
1da177e4
LT
427/**
428 * ata_pio_devchk - PATA device presence detection
429 * @ap: ATA channel to examine
430 * @device: Device to examine (starting at zero)
431 *
432 * This technique was originally described in
433 * Hale Landis's ATADRVR (www.ata-atapi.com), and
434 * later found its way into the ATA/ATAPI spec.
435 *
436 * Write a pattern to the ATA shadow registers,
437 * and if a device is present, it will respond by
438 * correctly storing and echoing back the
439 * ATA shadow register contents.
440 *
441 * LOCKING:
442 * caller.
443 */
444
445static unsigned int ata_pio_devchk(struct ata_port *ap,
446 unsigned int device)
447{
448 struct ata_ioports *ioaddr = &ap->ioaddr;
449 u8 nsect, lbal;
450
451 ap->ops->dev_select(ap, device);
452
453 outb(0x55, ioaddr->nsect_addr);
454 outb(0xaa, ioaddr->lbal_addr);
455
456 outb(0xaa, ioaddr->nsect_addr);
457 outb(0x55, ioaddr->lbal_addr);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 nsect = inb(ioaddr->nsect_addr);
463 lbal = inb(ioaddr->lbal_addr);
464
465 if ((nsect == 0x55) && (lbal == 0xaa))
466 return 1; /* we found a device */
467
468 return 0; /* nothing found */
469}
470
471/**
472 * ata_mmio_devchk - PATA device presence detection
473 * @ap: ATA channel to examine
474 * @device: Device to examine (starting at zero)
475 *
476 * This technique was originally described in
477 * Hale Landis's ATADRVR (www.ata-atapi.com), and
478 * later found its way into the ATA/ATAPI spec.
479 *
480 * Write a pattern to the ATA shadow registers,
481 * and if a device is present, it will respond by
482 * correctly storing and echoing back the
483 * ATA shadow register contents.
484 *
485 * LOCKING:
486 * caller.
487 */
488
489static unsigned int ata_mmio_devchk(struct ata_port *ap,
490 unsigned int device)
491{
492 struct ata_ioports *ioaddr = &ap->ioaddr;
493 u8 nsect, lbal;
494
495 ap->ops->dev_select(ap, device);
496
497 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 nsect = readb((void __iomem *) ioaddr->nsect_addr);
507 lbal = readb((void __iomem *) ioaddr->lbal_addr);
508
509 if ((nsect == 0x55) && (lbal == 0xaa))
510 return 1; /* we found a device */
511
512 return 0; /* nothing found */
513}
514
515/**
516 * ata_devchk - PATA device presence detection
517 * @ap: ATA channel to examine
518 * @device: Device to examine (starting at zero)
519 *
520 * Dispatch ATA device presence detection, depending
521 * on whether we are using PIO or MMIO to talk to the
522 * ATA shadow registers.
523 *
524 * LOCKING:
525 * caller.
526 */
527
528static unsigned int ata_devchk(struct ata_port *ap,
529 unsigned int device)
530{
531 if (ap->flags & ATA_FLAG_MMIO)
532 return ata_mmio_devchk(ap, device);
533 return ata_pio_devchk(ap, device);
534}
535
536/**
537 * ata_dev_classify - determine device type based on ATA-spec signature
538 * @tf: ATA taskfile register set for device to be identified
539 *
540 * Determine from taskfile register contents whether a device is
541 * ATA or ATAPI, as per "Signature and persistence" section
542 * of ATA/PI spec (volume 1, sect 5.14).
543 *
544 * LOCKING:
545 * None.
546 *
547 * RETURNS:
548 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
549 * the event of failure.
550 */
551
057ace5e 552unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
553{
554 /* Apple's open source Darwin code hints that some devices only
555 * put a proper signature into the LBA mid/high registers,
556 * So, we only check those. It's sufficient for uniqueness.
557 */
558
559 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
560 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
561 DPRINTK("found ATA device by sig\n");
562 return ATA_DEV_ATA;
563 }
564
565 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
566 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
567 DPRINTK("found ATAPI device by sig\n");
568 return ATA_DEV_ATAPI;
569 }
570
571 DPRINTK("unknown device\n");
572 return ATA_DEV_UNKNOWN;
573}
574
575/**
576 * ata_dev_try_classify - Parse returned ATA device signature
577 * @ap: ATA channel to examine
578 * @device: Device to examine (starting at zero)
b4dc7623 579 * @r_err: Value of error register on completion
1da177e4
LT
580 *
581 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
582 * an ATA/ATAPI-defined set of values is placed in the ATA
583 * shadow registers, indicating the results of device detection
584 * and diagnostics.
585 *
586 * Select the ATA device, and read the values from the ATA shadow
587 * registers. Then parse according to the Error register value,
588 * and the spec-defined values examined by ata_dev_classify().
589 *
590 * LOCKING:
591 * caller.
b4dc7623
TH
592 *
593 * RETURNS:
594 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
595 */
596
b4dc7623
TH
597static unsigned int
598ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 599{
1da177e4
LT
600 struct ata_taskfile tf;
601 unsigned int class;
602 u8 err;
603
604 ap->ops->dev_select(ap, device);
605
606 memset(&tf, 0, sizeof(tf));
607
1da177e4 608 ap->ops->tf_read(ap, &tf);
0169e284 609 err = tf.feature;
b4dc7623
TH
610 if (r_err)
611 *r_err = err;
1da177e4
LT
612
613 /* see if device passed diags */
614 if (err == 1)
615 /* do nothing */ ;
616 else if ((device == 0) && (err == 0x81))
617 /* do nothing */ ;
618 else
b4dc7623 619 return ATA_DEV_NONE;
1da177e4 620
b4dc7623 621 /* determine if device is ATA or ATAPI */
1da177e4 622 class = ata_dev_classify(&tf);
b4dc7623 623
1da177e4 624 if (class == ATA_DEV_UNKNOWN)
b4dc7623 625 return ATA_DEV_NONE;
1da177e4 626 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
627 return ATA_DEV_NONE;
628 return class;
1da177e4
LT
629}
630
631/**
6a62a04d 632 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
633 * @id: IDENTIFY DEVICE results we will examine
634 * @s: string into which data is output
635 * @ofs: offset into identify device page
636 * @len: length of string to return. must be an even number.
637 *
638 * The strings in the IDENTIFY DEVICE page are broken up into
639 * 16-bit chunks. Run through the string, and output each
640 * 8-bit chunk linearly, regardless of platform.
641 *
642 * LOCKING:
643 * caller.
644 */
645
6a62a04d
TH
646void ata_id_string(const u16 *id, unsigned char *s,
647 unsigned int ofs, unsigned int len)
1da177e4
LT
648{
649 unsigned int c;
650
651 while (len > 0) {
652 c = id[ofs] >> 8;
653 *s = c;
654 s++;
655
656 c = id[ofs] & 0xff;
657 *s = c;
658 s++;
659
660 ofs++;
661 len -= 2;
662 }
663}
664
0e949ff3 665/**
6a62a04d 666 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
667 * @id: IDENTIFY DEVICE results we will examine
668 * @s: string into which data is output
669 * @ofs: offset into identify device page
670 * @len: length of string to return. must be an odd number.
671 *
6a62a04d 672 * This function is identical to ata_id_string except that it
0e949ff3
TH
673 * trims trailing spaces and terminates the resulting string with
674 * null. @len must be actual maximum length (even number) + 1.
675 *
676 * LOCKING:
677 * caller.
678 */
6a62a04d
TH
679void ata_id_c_string(const u16 *id, unsigned char *s,
680 unsigned int ofs, unsigned int len)
0e949ff3
TH
681{
682 unsigned char *p;
683
684 WARN_ON(!(len & 1));
685
6a62a04d 686 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
687
688 p = s + strnlen(s, len - 1);
689 while (p > s && p[-1] == ' ')
690 p--;
691 *p = '\0';
692}
0baab86b 693
2940740b
TH
694static u64 ata_id_n_sectors(const u16 *id)
695{
696 if (ata_id_has_lba(id)) {
697 if (ata_id_has_lba48(id))
698 return ata_id_u64(id, 100);
699 else
700 return ata_id_u32(id, 60);
701 } else {
702 if (ata_id_current_chs_valid(id))
703 return ata_id_u32(id, 57);
704 else
705 return id[1] * id[3] * id[6];
706 }
707}
708
0baab86b
EF
709/**
710 * ata_noop_dev_select - Select device 0/1 on ATA bus
711 * @ap: ATA channel to manipulate
712 * @device: ATA device (numbered from zero) to select
713 *
714 * This function performs no actual function.
715 *
716 * May be used as the dev_select() entry in ata_port_operations.
717 *
718 * LOCKING:
719 * caller.
720 */
1da177e4
LT
721void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
722{
723}
724
0baab86b 725
1da177e4
LT
726/**
727 * ata_std_dev_select - Select device 0/1 on ATA bus
728 * @ap: ATA channel to manipulate
729 * @device: ATA device (numbered from zero) to select
730 *
731 * Use the method defined in the ATA specification to
732 * make either device 0, or device 1, active on the
0baab86b
EF
733 * ATA channel. Works with both PIO and MMIO.
734 *
735 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
736 *
737 * LOCKING:
738 * caller.
739 */
740
741void ata_std_dev_select (struct ata_port *ap, unsigned int device)
742{
743 u8 tmp;
744
745 if (device == 0)
746 tmp = ATA_DEVICE_OBS;
747 else
748 tmp = ATA_DEVICE_OBS | ATA_DEV1;
749
750 if (ap->flags & ATA_FLAG_MMIO) {
751 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
752 } else {
753 outb(tmp, ap->ioaddr.device_addr);
754 }
755 ata_pause(ap); /* needed; also flushes, for mmio */
756}
757
758/**
759 * ata_dev_select - Select device 0/1 on ATA bus
760 * @ap: ATA channel to manipulate
761 * @device: ATA device (numbered from zero) to select
762 * @wait: non-zero to wait for Status register BSY bit to clear
763 * @can_sleep: non-zero if context allows sleeping
764 *
765 * Use the method defined in the ATA specification to
766 * make either device 0, or device 1, active on the
767 * ATA channel.
768 *
769 * This is a high-level version of ata_std_dev_select(),
770 * which additionally provides the services of inserting
771 * the proper pauses and status polling, where needed.
772 *
773 * LOCKING:
774 * caller.
775 */
776
777void ata_dev_select(struct ata_port *ap, unsigned int device,
778 unsigned int wait, unsigned int can_sleep)
779{
780 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
781 ap->id, device, wait);
782
783 if (wait)
784 ata_wait_idle(ap);
785
786 ap->ops->dev_select(ap, device);
787
788 if (wait) {
789 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
790 msleep(150);
791 ata_wait_idle(ap);
792 }
793}
794
795/**
796 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 797 * @id: IDENTIFY DEVICE page to dump
1da177e4 798 *
0bd3300a
TH
799 * Dump selected 16-bit words from the given IDENTIFY DEVICE
800 * page.
1da177e4
LT
801 *
802 * LOCKING:
803 * caller.
804 */
805
0bd3300a 806static inline void ata_dump_id(const u16 *id)
1da177e4
LT
807{
808 DPRINTK("49==0x%04x "
809 "53==0x%04x "
810 "63==0x%04x "
811 "64==0x%04x "
812 "75==0x%04x \n",
0bd3300a
TH
813 id[49],
814 id[53],
815 id[63],
816 id[64],
817 id[75]);
1da177e4
LT
818 DPRINTK("80==0x%04x "
819 "81==0x%04x "
820 "82==0x%04x "
821 "83==0x%04x "
822 "84==0x%04x \n",
0bd3300a
TH
823 id[80],
824 id[81],
825 id[82],
826 id[83],
827 id[84]);
1da177e4
LT
828 DPRINTK("88==0x%04x "
829 "93==0x%04x\n",
0bd3300a
TH
830 id[88],
831 id[93]);
1da177e4
LT
832}
833
cb95d562
TH
834/**
835 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
836 * @id: IDENTIFY data to compute xfer mask from
837 *
838 * Compute the xfermask for this device. This is not as trivial
839 * as it seems if we must consider early devices correctly.
840 *
841 * FIXME: pre IDE drive timing (do we care ?).
842 *
843 * LOCKING:
844 * None.
845 *
846 * RETURNS:
847 * Computed xfermask
848 */
849static unsigned int ata_id_xfermask(const u16 *id)
850{
851 unsigned int pio_mask, mwdma_mask, udma_mask;
852
853 /* Usual case. Word 53 indicates word 64 is valid */
854 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
855 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
856 pio_mask <<= 3;
857 pio_mask |= 0x7;
858 } else {
859 /* If word 64 isn't valid then Word 51 high byte holds
860 * the PIO timing number for the maximum. Turn it into
861 * a mask.
862 */
863 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
864
865 /* But wait.. there's more. Design your standards by
866 * committee and you too can get a free iordy field to
867 * process. However its the speeds not the modes that
868 * are supported... Note drivers using the timing API
869 * will get this right anyway
870 */
871 }
872
873 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
874
875 udma_mask = 0;
876 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
877 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
878
879 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
880}
881
86e45b6b
TH
882/**
883 * ata_port_queue_task - Queue port_task
884 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
885 * @fn: workqueue function to be scheduled
886 * @data: data value to pass to workqueue function
887 * @delay: delay time for workqueue function
86e45b6b
TH
888 *
889 * Schedule @fn(@data) for execution after @delay jiffies using
890 * port_task. There is one port_task per port and it's the
891 * user(low level driver)'s responsibility to make sure that only
892 * one task is active at any given time.
893 *
894 * libata core layer takes care of synchronization between
895 * port_task and EH. ata_port_queue_task() may be ignored for EH
896 * synchronization.
897 *
898 * LOCKING:
899 * Inherited from caller.
900 */
901void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
902 unsigned long delay)
903{
904 int rc;
905
2e755f68 906 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
907 return;
908
909 PREPARE_WORK(&ap->port_task, fn, data);
910
911 if (!delay)
912 rc = queue_work(ata_wq, &ap->port_task);
913 else
914 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
915
916 /* rc == 0 means that another user is using port task */
917 WARN_ON(rc == 0);
918}
919
920/**
921 * ata_port_flush_task - Flush port_task
922 * @ap: The ata_port to flush port_task for
923 *
924 * After this function completes, port_task is guranteed not to
925 * be running or scheduled.
926 *
927 * LOCKING:
928 * Kernel thread context (may sleep)
929 */
930void ata_port_flush_task(struct ata_port *ap)
931{
932 unsigned long flags;
933
934 DPRINTK("ENTER\n");
935
ba6a1308 936 spin_lock_irqsave(ap->lock, flags);
2e755f68 937 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
ba6a1308 938 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
939
940 DPRINTK("flush #1\n");
941 flush_workqueue(ata_wq);
942
943 /*
944 * At this point, if a task is running, it's guaranteed to see
945 * the FLUSH flag; thus, it will never queue pio tasks again.
946 * Cancel and flush.
947 */
948 if (!cancel_delayed_work(&ap->port_task)) {
949 DPRINTK("flush #2\n");
950 flush_workqueue(ata_wq);
951 }
952
ba6a1308 953 spin_lock_irqsave(ap->lock, flags);
2e755f68 954 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
ba6a1308 955 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
956
957 DPRINTK("EXIT\n");
958}
959
77853bf2 960void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 961{
77853bf2 962 struct completion *waiting = qc->private_data;
a2a7a662 963
a2a7a662 964 complete(waiting);
a2a7a662
TH
965}
966
967/**
968 * ata_exec_internal - execute libata internal command
a2a7a662
TH
969 * @dev: Device to which the command is sent
970 * @tf: Taskfile registers for the command and the result
d69cf37d 971 * @cdb: CDB for packet command
a2a7a662
TH
972 * @dma_dir: Data tranfer direction of the command
973 * @buf: Data buffer of the command
974 * @buflen: Length of data buffer
975 *
976 * Executes libata internal command with timeout. @tf contains
977 * command on entry and result on return. Timeout and error
978 * conditions are reported via return value. No recovery action
979 * is taken after a command times out. It's caller's duty to
980 * clean up after timeout.
981 *
982 * LOCKING:
983 * None. Should be called with kernel context, might sleep.
551e8889
TH
984 *
985 * RETURNS:
986 * Zero on success, AC_ERR_* mask on failure
a2a7a662 987 */
3373efd8 988unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
989 struct ata_taskfile *tf, const u8 *cdb,
990 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 991{
3373efd8 992 struct ata_port *ap = dev->ap;
a2a7a662
TH
993 u8 command = tf->command;
994 struct ata_queued_cmd *qc;
2ab7db1f 995 unsigned int tag, preempted_tag;
dedaf2b0 996 u32 preempted_sactive, preempted_qc_active;
a2a7a662
TH
997 DECLARE_COMPLETION(wait);
998 unsigned long flags;
77853bf2 999 unsigned int err_mask;
d95a717f 1000 int rc;
a2a7a662 1001
ba6a1308 1002 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1003
e3180499
TH
1004 /* no internal command while frozen */
1005 if (ap->flags & ATA_FLAG_FROZEN) {
ba6a1308 1006 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1007 return AC_ERR_SYSTEM;
1008 }
1009
2ab7db1f 1010 /* initialize internal qc */
a2a7a662 1011
2ab7db1f
TH
1012 /* XXX: Tag 0 is used for drivers with legacy EH as some
1013 * drivers choke if any other tag is given. This breaks
1014 * ata_tag_internal() test for those drivers. Don't use new
1015 * EH stuff without converting to it.
1016 */
1017 if (ap->ops->error_handler)
1018 tag = ATA_TAG_INTERNAL;
1019 else
1020 tag = 0;
1021
6cec4a39 1022 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1023 BUG();
f69499f4 1024 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1025
1026 qc->tag = tag;
1027 qc->scsicmd = NULL;
1028 qc->ap = ap;
1029 qc->dev = dev;
1030 ata_qc_reinit(qc);
1031
1032 preempted_tag = ap->active_tag;
dedaf2b0
TH
1033 preempted_sactive = ap->sactive;
1034 preempted_qc_active = ap->qc_active;
2ab7db1f 1035 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1036 ap->sactive = 0;
1037 ap->qc_active = 0;
2ab7db1f
TH
1038
1039 /* prepare & issue qc */
a2a7a662 1040 qc->tf = *tf;
d69cf37d
TH
1041 if (cdb)
1042 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1043 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1044 qc->dma_dir = dma_dir;
1045 if (dma_dir != DMA_NONE) {
1046 ata_sg_init_one(qc, buf, buflen);
1047 qc->nsect = buflen / ATA_SECT_SIZE;
1048 }
1049
77853bf2 1050 qc->private_data = &wait;
a2a7a662
TH
1051 qc->complete_fn = ata_qc_complete_internal;
1052
8e0e694a 1053 ata_qc_issue(qc);
a2a7a662 1054
ba6a1308 1055 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1056
d95a717f
TH
1057 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1058
1059 ata_port_flush_task(ap);
41ade50c 1060
d95a717f 1061 if (!rc) {
ba6a1308 1062 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1063
1064 /* We're racing with irq here. If we lose, the
1065 * following test prevents us from completing the qc
d95a717f
TH
1066 * twice. If we win, the port is frozen and will be
1067 * cleaned up by ->post_internal_cmd().
a2a7a662 1068 */
77853bf2 1069 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1070 qc->err_mask |= AC_ERR_TIMEOUT;
1071
1072 if (ap->ops->error_handler)
1073 ata_port_freeze(ap);
1074 else
1075 ata_qc_complete(qc);
f15a1daf
TH
1076
1077 ata_dev_printk(dev, KERN_WARNING,
1078 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1079 }
1080
ba6a1308 1081 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1082 }
1083
d95a717f
TH
1084 /* do post_internal_cmd */
1085 if (ap->ops->post_internal_cmd)
1086 ap->ops->post_internal_cmd(qc);
1087
1088 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1089 ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
1090 "internal command, assuming AC_ERR_OTHER\n");
1091 qc->err_mask |= AC_ERR_OTHER;
1092 }
1093
15869303 1094 /* finish up */
ba6a1308 1095 spin_lock_irqsave(ap->lock, flags);
15869303 1096
e61e0672 1097 *tf = qc->result_tf;
77853bf2
TH
1098 err_mask = qc->err_mask;
1099
1100 ata_qc_free(qc);
2ab7db1f 1101 ap->active_tag = preempted_tag;
dedaf2b0
TH
1102 ap->sactive = preempted_sactive;
1103 ap->qc_active = preempted_qc_active;
77853bf2 1104
1f7dd3e9
TH
1105 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1106 * Until those drivers are fixed, we detect the condition
1107 * here, fail the command with AC_ERR_SYSTEM and reenable the
1108 * port.
1109 *
1110 * Note that this doesn't change any behavior as internal
1111 * command failure results in disabling the device in the
1112 * higher layer for LLDDs without new reset/EH callbacks.
1113 *
1114 * Kill the following code as soon as those drivers are fixed.
1115 */
198e0fed 1116 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1117 err_mask |= AC_ERR_SYSTEM;
1118 ata_port_probe(ap);
1119 }
1120
ba6a1308 1121 spin_unlock_irqrestore(ap->lock, flags);
15869303 1122
77853bf2 1123 return err_mask;
a2a7a662
TH
1124}
1125
1bc4ccff
AC
1126/**
1127 * ata_pio_need_iordy - check if iordy needed
1128 * @adev: ATA device
1129 *
1130 * Check if the current speed of the device requires IORDY. Used
1131 * by various controllers for chip configuration.
1132 */
1133
1134unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1135{
1136 int pio;
1137 int speed = adev->pio_mode - XFER_PIO_0;
1138
1139 if (speed < 2)
1140 return 0;
1141 if (speed > 2)
1142 return 1;
2e9edbf8 1143
1bc4ccff
AC
1144 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1145
1146 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1147 pio = adev->id[ATA_ID_EIDE_PIO];
1148 /* Is the speed faster than the drive allows non IORDY ? */
1149 if (pio) {
1150 /* This is cycle times not frequency - watch the logic! */
1151 if (pio > 240) /* PIO2 is 240nS per cycle */
1152 return 1;
1153 return 0;
1154 }
1155 }
1156 return 0;
1157}
1158
1da177e4 1159/**
49016aca 1160 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1161 * @dev: target device
1162 * @p_class: pointer to class of the target device (may be changed)
1163 * @post_reset: is this read ID post-reset?
fe635c7e 1164 * @id: buffer to read IDENTIFY data into
1da177e4 1165 *
49016aca
TH
1166 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1167 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1168 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1169 * for pre-ATA4 drives.
1da177e4
LT
1170 *
1171 * LOCKING:
49016aca
TH
1172 * Kernel thread context (may sleep)
1173 *
1174 * RETURNS:
1175 * 0 on success, -errno otherwise.
1da177e4 1176 */
a9beec95
TH
1177int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1178 int post_reset, u16 *id)
1da177e4 1179{
3373efd8 1180 struct ata_port *ap = dev->ap;
49016aca 1181 unsigned int class = *p_class;
a0123703 1182 struct ata_taskfile tf;
49016aca
TH
1183 unsigned int err_mask = 0;
1184 const char *reason;
1185 int rc;
1da177e4 1186
49016aca 1187 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1188
49016aca 1189 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1190
49016aca 1191 retry:
3373efd8 1192 ata_tf_init(dev, &tf);
a0123703 1193
49016aca
TH
1194 switch (class) {
1195 case ATA_DEV_ATA:
a0123703 1196 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1197 break;
1198 case ATA_DEV_ATAPI:
a0123703 1199 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1200 break;
1201 default:
1202 rc = -ENODEV;
1203 reason = "unsupported class";
1204 goto err_out;
1da177e4
LT
1205 }
1206
a0123703 1207 tf.protocol = ATA_PROT_PIO;
1da177e4 1208
3373efd8 1209 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1210 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1211 if (err_mask) {
49016aca
TH
1212 rc = -EIO;
1213 reason = "I/O error";
1da177e4
LT
1214 goto err_out;
1215 }
1216
49016aca 1217 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1218
49016aca 1219 /* sanity check */
692785e7 1220 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1221 rc = -EINVAL;
1222 reason = "device reports illegal type";
1223 goto err_out;
1224 }
1225
1226 if (post_reset && class == ATA_DEV_ATA) {
1227 /*
1228 * The exact sequence expected by certain pre-ATA4 drives is:
1229 * SRST RESET
1230 * IDENTIFY
1231 * INITIALIZE DEVICE PARAMETERS
1232 * anything else..
1233 * Some drives were very specific about that exact sequence.
1234 */
1235 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1236 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1237 if (err_mask) {
1238 rc = -EIO;
1239 reason = "INIT_DEV_PARAMS failed";
1240 goto err_out;
1241 }
1242
1243 /* current CHS translation info (id[53-58]) might be
1244 * changed. reread the identify device info.
1245 */
1246 post_reset = 0;
1247 goto retry;
1248 }
1249 }
1250
1251 *p_class = class;
fe635c7e 1252
49016aca
TH
1253 return 0;
1254
1255 err_out:
f15a1daf
TH
1256 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1257 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1258 return rc;
1259}
1260
3373efd8 1261static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1262{
3373efd8 1263 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1264}
1265
a6e6ce8e
TH
1266static void ata_dev_config_ncq(struct ata_device *dev,
1267 char *desc, size_t desc_sz)
1268{
1269 struct ata_port *ap = dev->ap;
1270 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1271
1272 if (!ata_id_has_ncq(dev->id)) {
1273 desc[0] = '\0';
1274 return;
1275 }
1276
1277 if (ap->flags & ATA_FLAG_NCQ) {
1278 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1279 dev->flags |= ATA_DFLAG_NCQ;
1280 }
1281
1282 if (hdepth >= ddepth)
1283 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1284 else
1285 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1286}
1287
49016aca 1288/**
ffeae418 1289 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1290 * @dev: Target device to configure
4c2d721a 1291 * @print_info: Enable device info printout
ffeae418
TH
1292 *
1293 * Configure @dev according to @dev->id. Generic and low-level
1294 * driver specific fixups are also applied.
49016aca
TH
1295 *
1296 * LOCKING:
ffeae418
TH
1297 * Kernel thread context (may sleep)
1298 *
1299 * RETURNS:
1300 * 0 on success, -errno otherwise
49016aca 1301 */
a9beec95 1302int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1303{
3373efd8 1304 struct ata_port *ap = dev->ap;
1148c3a7 1305 const u16 *id = dev->id;
ff8854b2 1306 unsigned int xfer_mask;
49016aca
TH
1307 int i, rc;
1308
e1211e3f 1309 if (!ata_dev_enabled(dev)) {
49016aca 1310 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1311 ap->id, dev->devno);
1312 return 0;
49016aca
TH
1313 }
1314
ffeae418 1315 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1316
c39f5ebe
TH
1317 /* print device capabilities */
1318 if (print_info)
f15a1daf
TH
1319 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1320 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1321 id[49], id[82], id[83], id[84],
1322 id[85], id[86], id[87], id[88]);
c39f5ebe 1323
208a9933 1324 /* initialize to-be-configured parameters */
ea1dd4e1 1325 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1326 dev->max_sectors = 0;
1327 dev->cdb_len = 0;
1328 dev->n_sectors = 0;
1329 dev->cylinders = 0;
1330 dev->heads = 0;
1331 dev->sectors = 0;
1332
1da177e4
LT
1333 /*
1334 * common ATA, ATAPI feature tests
1335 */
1336
ff8854b2 1337 /* find max transfer mode; for printk only */
1148c3a7 1338 xfer_mask = ata_id_xfermask(id);
1da177e4 1339
1148c3a7 1340 ata_dump_id(id);
1da177e4
LT
1341
1342 /* ATA-specific feature tests */
1343 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1344 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1345
1148c3a7 1346 if (ata_id_has_lba(id)) {
4c2d721a 1347 const char *lba_desc;
a6e6ce8e 1348 char ncq_desc[20];
8bf62ece 1349
4c2d721a
TH
1350 lba_desc = "LBA";
1351 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1352 if (ata_id_has_lba48(id)) {
8bf62ece 1353 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1354 lba_desc = "LBA48";
1355 }
8bf62ece 1356
a6e6ce8e
TH
1357 /* config NCQ */
1358 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1359
8bf62ece 1360 /* print device info to dmesg */
4c2d721a 1361 if (print_info)
f15a1daf 1362 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
a6e6ce8e 1363 "max %s, %Lu sectors: %s %s\n",
f15a1daf
TH
1364 ata_id_major_version(id),
1365 ata_mode_string(xfer_mask),
1366 (unsigned long long)dev->n_sectors,
a6e6ce8e 1367 lba_desc, ncq_desc);
ffeae418 1368 } else {
8bf62ece
AL
1369 /* CHS */
1370
1371 /* Default translation */
1148c3a7
TH
1372 dev->cylinders = id[1];
1373 dev->heads = id[3];
1374 dev->sectors = id[6];
8bf62ece 1375
1148c3a7 1376 if (ata_id_current_chs_valid(id)) {
8bf62ece 1377 /* Current CHS translation is valid. */
1148c3a7
TH
1378 dev->cylinders = id[54];
1379 dev->heads = id[55];
1380 dev->sectors = id[56];
8bf62ece
AL
1381 }
1382
1383 /* print device info to dmesg */
4c2d721a 1384 if (print_info)
f15a1daf
TH
1385 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1386 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1387 ata_id_major_version(id),
1388 ata_mode_string(xfer_mask),
1389 (unsigned long long)dev->n_sectors,
1390 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1391 }
1392
07f6f7d0
AL
1393 if (dev->id[59] & 0x100) {
1394 dev->multi_count = dev->id[59] & 0xff;
1395 DPRINTK("ata%u: dev %u multi count %u\n",
999bb6f4 1396 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1397 }
1398
6e7846e9 1399 dev->cdb_len = 16;
1da177e4
LT
1400 }
1401
1402 /* ATAPI-specific feature tests */
2c13b7ce 1403 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1404 char *cdb_intr_string = "";
1405
1148c3a7 1406 rc = atapi_cdb_len(id);
1da177e4 1407 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
f15a1daf
TH
1408 ata_dev_printk(dev, KERN_WARNING,
1409 "unsupported CDB len\n");
ffeae418 1410 rc = -EINVAL;
1da177e4
LT
1411 goto err_out_nosup;
1412 }
6e7846e9 1413 dev->cdb_len = (unsigned int) rc;
1da177e4 1414
08a556db 1415 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1416 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1417 cdb_intr_string = ", CDB intr";
1418 }
312f7da2 1419
1da177e4 1420 /* print device info to dmesg */
4c2d721a 1421 if (print_info)
12436c30
TH
1422 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1423 ata_mode_string(xfer_mask),
1424 cdb_intr_string);
1da177e4
LT
1425 }
1426
6e7846e9
TH
1427 ap->host->max_cmd_len = 0;
1428 for (i = 0; i < ATA_MAX_DEVICES; i++)
1429 ap->host->max_cmd_len = max_t(unsigned int,
1430 ap->host->max_cmd_len,
1431 ap->device[i].cdb_len);
1432
4b2f3ede 1433 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1434 if (ata_dev_knobble(dev)) {
4c2d721a 1435 if (print_info)
f15a1daf
TH
1436 ata_dev_printk(dev, KERN_INFO,
1437 "applying bridge limits\n");
5a529139 1438 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1439 dev->max_sectors = ATA_MAX_SECTORS;
1440 }
1441
1442 if (ap->ops->dev_config)
1443 ap->ops->dev_config(ap, dev);
1444
1da177e4 1445 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1446 return 0;
1da177e4
LT
1447
1448err_out_nosup:
1da177e4 1449 DPRINTK("EXIT, err\n");
ffeae418 1450 return rc;
1da177e4
LT
1451}
1452
1453/**
1454 * ata_bus_probe - Reset and probe ATA bus
1455 * @ap: Bus to probe
1456 *
0cba632b
JG
1457 * Master ATA bus probing function. Initiates a hardware-dependent
1458 * bus reset, then attempts to identify any devices found on
1459 * the bus.
1460 *
1da177e4 1461 * LOCKING:
0cba632b 1462 * PCI/etc. bus probe sem.
1da177e4
LT
1463 *
1464 * RETURNS:
96072e69 1465 * Zero on success, negative errno otherwise.
1da177e4
LT
1466 */
1467
1468static int ata_bus_probe(struct ata_port *ap)
1469{
28ca5c57 1470 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1471 int tries[ATA_MAX_DEVICES];
1472 int i, rc, down_xfermask;
e82cbdb9 1473 struct ata_device *dev;
1da177e4 1474
28ca5c57 1475 ata_port_probe(ap);
c19ba8af 1476
14d2bac1
TH
1477 for (i = 0; i < ATA_MAX_DEVICES; i++)
1478 tries[i] = ATA_PROBE_MAX_TRIES;
1479
1480 retry:
1481 down_xfermask = 0;
1482
2044470c 1483 /* reset and determine device classes */
52783c5d 1484 ap->ops->phy_reset(ap);
2061a47a 1485
52783c5d
TH
1486 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1487 dev = &ap->device[i];
c19ba8af 1488
52783c5d
TH
1489 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1490 dev->class != ATA_DEV_UNKNOWN)
1491 classes[dev->devno] = dev->class;
1492 else
1493 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1494
52783c5d 1495 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1496 }
1da177e4 1497
52783c5d 1498 ata_port_probe(ap);
2044470c 1499
b6079ca4
AC
1500 /* after the reset the device state is PIO 0 and the controller
1501 state is undefined. Record the mode */
1502
1503 for (i = 0; i < ATA_MAX_DEVICES; i++)
1504 ap->device[i].pio_mode = XFER_PIO_0;
1505
28ca5c57 1506 /* read IDENTIFY page and configure devices */
1da177e4 1507 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1508 dev = &ap->device[i];
28ca5c57 1509
ec573755
TH
1510 if (tries[i])
1511 dev->class = classes[i];
ffeae418 1512
14d2bac1 1513 if (!ata_dev_enabled(dev))
ffeae418 1514 continue;
ffeae418 1515
3373efd8 1516 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1517 if (rc)
1518 goto fail;
1519
3373efd8 1520 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1521 if (rc)
1522 goto fail;
1da177e4
LT
1523 }
1524
e82cbdb9 1525 /* configure transfer mode */
3adcebb2 1526 rc = ata_set_mode(ap, &dev);
51713d35
TH
1527 if (rc) {
1528 down_xfermask = 1;
1529 goto fail;
e82cbdb9 1530 }
1da177e4 1531
e82cbdb9
TH
1532 for (i = 0; i < ATA_MAX_DEVICES; i++)
1533 if (ata_dev_enabled(&ap->device[i]))
1534 return 0;
1da177e4 1535
e82cbdb9
TH
1536 /* no device present, disable port */
1537 ata_port_disable(ap);
1da177e4 1538 ap->ops->port_disable(ap);
96072e69 1539 return -ENODEV;
14d2bac1
TH
1540
1541 fail:
1542 switch (rc) {
1543 case -EINVAL:
1544 case -ENODEV:
1545 tries[dev->devno] = 0;
1546 break;
1547 case -EIO:
3c567b7d 1548 sata_down_spd_limit(ap);
14d2bac1
TH
1549 /* fall through */
1550 default:
1551 tries[dev->devno]--;
1552 if (down_xfermask &&
3373efd8 1553 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1554 tries[dev->devno] = 0;
1555 }
1556
ec573755 1557 if (!tries[dev->devno]) {
3373efd8
TH
1558 ata_down_xfermask_limit(dev, 1);
1559 ata_dev_disable(dev);
ec573755
TH
1560 }
1561
14d2bac1 1562 goto retry;
1da177e4
LT
1563}
1564
1565/**
0cba632b
JG
1566 * ata_port_probe - Mark port as enabled
1567 * @ap: Port for which we indicate enablement
1da177e4 1568 *
0cba632b
JG
1569 * Modify @ap data structure such that the system
1570 * thinks that the entire port is enabled.
1571 *
1572 * LOCKING: host_set lock, or some other form of
1573 * serialization.
1da177e4
LT
1574 */
1575
1576void ata_port_probe(struct ata_port *ap)
1577{
198e0fed 1578 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1579}
1580
3be680b7
TH
1581/**
1582 * sata_print_link_status - Print SATA link status
1583 * @ap: SATA port to printk link status about
1584 *
1585 * This function prints link speed and status of a SATA link.
1586 *
1587 * LOCKING:
1588 * None.
1589 */
1590static void sata_print_link_status(struct ata_port *ap)
1591{
6d5f9732 1592 u32 sstatus, scontrol, tmp;
3be680b7 1593
81952c54 1594 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1595 return;
81952c54 1596 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1597
81952c54 1598 if (ata_port_online(ap)) {
3be680b7 1599 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1600 ata_port_printk(ap, KERN_INFO,
1601 "SATA link up %s (SStatus %X SControl %X)\n",
1602 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1603 } else {
f15a1daf
TH
1604 ata_port_printk(ap, KERN_INFO,
1605 "SATA link down (SStatus %X SControl %X)\n",
1606 sstatus, scontrol);
3be680b7
TH
1607 }
1608}
1609
1da177e4 1610/**
780a87f7
JG
1611 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1612 * @ap: SATA port associated with target SATA PHY.
1da177e4 1613 *
780a87f7
JG
1614 * This function issues commands to standard SATA Sxxx
1615 * PHY registers, to wake up the phy (and device), and
1616 * clear any reset condition.
1da177e4
LT
1617 *
1618 * LOCKING:
0cba632b 1619 * PCI/etc. bus probe sem.
1da177e4
LT
1620 *
1621 */
1622void __sata_phy_reset(struct ata_port *ap)
1623{
1624 u32 sstatus;
1625 unsigned long timeout = jiffies + (HZ * 5);
1626
1627 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1628 /* issue phy wake/reset */
81952c54 1629 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1630 /* Couldn't find anything in SATA I/II specs, but
1631 * AHCI-1.1 10.4.2 says at least 1 ms. */
1632 mdelay(1);
1da177e4 1633 }
81952c54
TH
1634 /* phy wake/clear reset */
1635 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1636
1637 /* wait for phy to become ready, if necessary */
1638 do {
1639 msleep(200);
81952c54 1640 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1641 if ((sstatus & 0xf) != 1)
1642 break;
1643 } while (time_before(jiffies, timeout));
1644
3be680b7
TH
1645 /* print link status */
1646 sata_print_link_status(ap);
656563e3 1647
3be680b7 1648 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1649 if (!ata_port_offline(ap))
1da177e4 1650 ata_port_probe(ap);
3be680b7 1651 else
1da177e4 1652 ata_port_disable(ap);
1da177e4 1653
198e0fed 1654 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1655 return;
1656
1657 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1658 ata_port_disable(ap);
1659 return;
1660 }
1661
1662 ap->cbl = ATA_CBL_SATA;
1663}
1664
1665/**
780a87f7
JG
1666 * sata_phy_reset - Reset SATA bus.
1667 * @ap: SATA port associated with target SATA PHY.
1da177e4 1668 *
780a87f7
JG
1669 * This function resets the SATA bus, and then probes
1670 * the bus for devices.
1da177e4
LT
1671 *
1672 * LOCKING:
0cba632b 1673 * PCI/etc. bus probe sem.
1da177e4
LT
1674 *
1675 */
1676void sata_phy_reset(struct ata_port *ap)
1677{
1678 __sata_phy_reset(ap);
198e0fed 1679 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1680 return;
1681 ata_bus_reset(ap);
1682}
1683
ebdfca6e
AC
1684/**
1685 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1686 * @adev: device
1687 *
1688 * Obtain the other device on the same cable, or if none is
1689 * present NULL is returned
1690 */
2e9edbf8 1691
3373efd8 1692struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1693{
3373efd8 1694 struct ata_port *ap = adev->ap;
ebdfca6e 1695 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1696 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1697 return NULL;
1698 return pair;
1699}
1700
1da177e4 1701/**
780a87f7
JG
1702 * ata_port_disable - Disable port.
1703 * @ap: Port to be disabled.
1da177e4 1704 *
780a87f7
JG
1705 * Modify @ap data structure such that the system
1706 * thinks that the entire port is disabled, and should
1707 * never attempt to probe or communicate with devices
1708 * on this port.
1709 *
1710 * LOCKING: host_set lock, or some other form of
1711 * serialization.
1da177e4
LT
1712 */
1713
1714void ata_port_disable(struct ata_port *ap)
1715{
1716 ap->device[0].class = ATA_DEV_NONE;
1717 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1718 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1719}
1720
1c3fae4d 1721/**
3c567b7d 1722 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1723 * @ap: Port to adjust SATA spd limit for
1724 *
1725 * Adjust SATA spd limit of @ap downward. Note that this
1726 * function only adjusts the limit. The change must be applied
3c567b7d 1727 * using sata_set_spd().
1c3fae4d
TH
1728 *
1729 * LOCKING:
1730 * Inherited from caller.
1731 *
1732 * RETURNS:
1733 * 0 on success, negative errno on failure
1734 */
3c567b7d 1735int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1736{
81952c54
TH
1737 u32 sstatus, spd, mask;
1738 int rc, highbit;
1c3fae4d 1739
81952c54
TH
1740 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1741 if (rc)
1742 return rc;
1c3fae4d
TH
1743
1744 mask = ap->sata_spd_limit;
1745 if (mask <= 1)
1746 return -EINVAL;
1747 highbit = fls(mask) - 1;
1748 mask &= ~(1 << highbit);
1749
81952c54 1750 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1751 if (spd <= 1)
1752 return -EINVAL;
1753 spd--;
1754 mask &= (1 << spd) - 1;
1755 if (!mask)
1756 return -EINVAL;
1757
1758 ap->sata_spd_limit = mask;
1759
f15a1daf
TH
1760 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1761 sata_spd_string(fls(mask)));
1c3fae4d
TH
1762
1763 return 0;
1764}
1765
3c567b7d 1766static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1767{
1768 u32 spd, limit;
1769
1770 if (ap->sata_spd_limit == UINT_MAX)
1771 limit = 0;
1772 else
1773 limit = fls(ap->sata_spd_limit);
1774
1775 spd = (*scontrol >> 4) & 0xf;
1776 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1777
1778 return spd != limit;
1779}
1780
1781/**
3c567b7d 1782 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1783 * @ap: Port in question
1784 *
1785 * Test whether the spd limit in SControl matches
1786 * @ap->sata_spd_limit. This function is used to determine
1787 * whether hardreset is necessary to apply SATA spd
1788 * configuration.
1789 *
1790 * LOCKING:
1791 * Inherited from caller.
1792 *
1793 * RETURNS:
1794 * 1 if SATA spd configuration is needed, 0 otherwise.
1795 */
3c567b7d 1796int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1797{
1798 u32 scontrol;
1799
81952c54 1800 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1801 return 0;
1802
3c567b7d 1803 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1804}
1805
1806/**
3c567b7d 1807 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1808 * @ap: Port to set SATA spd for
1809 *
1810 * Set SATA spd of @ap according to sata_spd_limit.
1811 *
1812 * LOCKING:
1813 * Inherited from caller.
1814 *
1815 * RETURNS:
1816 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1817 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1818 */
3c567b7d 1819int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1820{
1821 u32 scontrol;
81952c54 1822 int rc;
1c3fae4d 1823
81952c54
TH
1824 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1825 return rc;
1c3fae4d 1826
3c567b7d 1827 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1828 return 0;
1829
81952c54
TH
1830 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1831 return rc;
1832
1c3fae4d
TH
1833 return 1;
1834}
1835
452503f9
AC
1836/*
1837 * This mode timing computation functionality is ported over from
1838 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1839 */
1840/*
1841 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1842 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1843 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1844 * is currently supported only by Maxtor drives.
452503f9
AC
1845 */
1846
1847static const struct ata_timing ata_timing[] = {
1848
1849 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1850 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1851 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1852 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1853
1854 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1855 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1856 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1857
1858/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1859
452503f9
AC
1860 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1861 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1862 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1863
452503f9
AC
1864 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1865 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1866 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1867
1868/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1869 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1870 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1871
1872 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1873 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1874 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1875
1876/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1877
1878 { 0xFF }
1879};
1880
1881#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1882#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1883
1884static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1885{
1886 q->setup = EZ(t->setup * 1000, T);
1887 q->act8b = EZ(t->act8b * 1000, T);
1888 q->rec8b = EZ(t->rec8b * 1000, T);
1889 q->cyc8b = EZ(t->cyc8b * 1000, T);
1890 q->active = EZ(t->active * 1000, T);
1891 q->recover = EZ(t->recover * 1000, T);
1892 q->cycle = EZ(t->cycle * 1000, T);
1893 q->udma = EZ(t->udma * 1000, UT);
1894}
1895
1896void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1897 struct ata_timing *m, unsigned int what)
1898{
1899 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1900 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1901 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1902 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1903 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1904 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1905 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1906 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1907}
1908
1909static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1910{
1911 const struct ata_timing *t;
1912
1913 for (t = ata_timing; t->mode != speed; t++)
91190758 1914 if (t->mode == 0xFF)
452503f9 1915 return NULL;
2e9edbf8 1916 return t;
452503f9
AC
1917}
1918
1919int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1920 struct ata_timing *t, int T, int UT)
1921{
1922 const struct ata_timing *s;
1923 struct ata_timing p;
1924
1925 /*
2e9edbf8 1926 * Find the mode.
75b1f2f8 1927 */
452503f9
AC
1928
1929 if (!(s = ata_timing_find_mode(speed)))
1930 return -EINVAL;
1931
75b1f2f8
AL
1932 memcpy(t, s, sizeof(*s));
1933
452503f9
AC
1934 /*
1935 * If the drive is an EIDE drive, it can tell us it needs extended
1936 * PIO/MW_DMA cycle timing.
1937 */
1938
1939 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1940 memset(&p, 0, sizeof(p));
1941 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1942 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1943 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1944 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1945 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1946 }
1947 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1948 }
1949
1950 /*
1951 * Convert the timing to bus clock counts.
1952 */
1953
75b1f2f8 1954 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1955
1956 /*
c893a3ae
RD
1957 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1958 * S.M.A.R.T * and some other commands. We have to ensure that the
1959 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1960 */
1961
1962 if (speed > XFER_PIO_4) {
1963 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1964 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1965 }
1966
1967 /*
c893a3ae 1968 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1969 */
1970
1971 if (t->act8b + t->rec8b < t->cyc8b) {
1972 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1973 t->rec8b = t->cyc8b - t->act8b;
1974 }
1975
1976 if (t->active + t->recover < t->cycle) {
1977 t->active += (t->cycle - (t->active + t->recover)) / 2;
1978 t->recover = t->cycle - t->active;
1979 }
1980
1981 return 0;
1982}
1983
cf176e1a
TH
1984/**
1985 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
1986 * @dev: Device to adjust xfer masks
1987 * @force_pio0: Force PIO0
1988 *
1989 * Adjust xfer masks of @dev downward. Note that this function
1990 * does not apply the change. Invoking ata_set_mode() afterwards
1991 * will apply the limit.
1992 *
1993 * LOCKING:
1994 * Inherited from caller.
1995 *
1996 * RETURNS:
1997 * 0 on success, negative errno on failure
1998 */
3373efd8 1999int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2000{
2001 unsigned long xfer_mask;
2002 int highbit;
2003
2004 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2005 dev->udma_mask);
2006
2007 if (!xfer_mask)
2008 goto fail;
2009 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2010 if (xfer_mask & ATA_MASK_UDMA)
2011 xfer_mask &= ~ATA_MASK_MWDMA;
2012
2013 highbit = fls(xfer_mask) - 1;
2014 xfer_mask &= ~(1 << highbit);
2015 if (force_pio0)
2016 xfer_mask &= 1 << ATA_SHIFT_PIO;
2017 if (!xfer_mask)
2018 goto fail;
2019
2020 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2021 &dev->udma_mask);
2022
f15a1daf
TH
2023 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2024 ata_mode_string(xfer_mask));
cf176e1a
TH
2025
2026 return 0;
2027
2028 fail:
2029 return -EINVAL;
2030}
2031
3373efd8 2032static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2033{
83206a29
TH
2034 unsigned int err_mask;
2035 int rc;
1da177e4 2036
e8384607 2037 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2038 if (dev->xfer_shift == ATA_SHIFT_PIO)
2039 dev->flags |= ATA_DFLAG_PIO;
2040
3373efd8 2041 err_mask = ata_dev_set_xfermode(dev);
83206a29 2042 if (err_mask) {
f15a1daf
TH
2043 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2044 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2045 return -EIO;
2046 }
1da177e4 2047
3373efd8 2048 rc = ata_dev_revalidate(dev, 0);
5eb45c02 2049 if (rc)
83206a29 2050 return rc;
48a8a14f 2051
23e71c3d
TH
2052 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2053 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2054
f15a1daf
TH
2055 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2056 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2057 return 0;
1da177e4
LT
2058}
2059
1da177e4
LT
2060/**
2061 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2062 * @ap: port on which timings will be programmed
e82cbdb9 2063 * @r_failed_dev: out paramter for failed device
1da177e4 2064 *
e82cbdb9
TH
2065 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2066 * ata_set_mode() fails, pointer to the failing device is
2067 * returned in @r_failed_dev.
780a87f7 2068 *
1da177e4 2069 * LOCKING:
0cba632b 2070 * PCI/etc. bus probe sem.
e82cbdb9
TH
2071 *
2072 * RETURNS:
2073 * 0 on success, negative errno otherwise
1da177e4 2074 */
1ad8e7f9 2075int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2076{
e8e0619f 2077 struct ata_device *dev;
e82cbdb9 2078 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2079
3adcebb2
TH
2080 /* has private set_mode? */
2081 if (ap->ops->set_mode) {
2082 /* FIXME: make ->set_mode handle no device case and
2083 * return error code and failing device on failure.
2084 */
2085 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2086 if (ata_dev_enabled(&ap->device[i])) {
2087 ap->ops->set_mode(ap);
2088 break;
2089 }
2090 }
2091 return 0;
2092 }
2093
a6d5a51c
TH
2094 /* step 1: calculate xfer_mask */
2095 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2096 unsigned int pio_mask, dma_mask;
a6d5a51c 2097
e8e0619f
TH
2098 dev = &ap->device[i];
2099
e1211e3f 2100 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2101 continue;
2102
3373efd8 2103 ata_dev_xfermask(dev);
1da177e4 2104
acf356b1
TH
2105 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2106 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2107 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2108 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2109
4f65977d 2110 found = 1;
5444a6f4
AC
2111 if (dev->dma_mode)
2112 used_dma = 1;
a6d5a51c 2113 }
4f65977d 2114 if (!found)
e82cbdb9 2115 goto out;
a6d5a51c
TH
2116
2117 /* step 2: always set host PIO timings */
e8e0619f
TH
2118 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2119 dev = &ap->device[i];
2120 if (!ata_dev_enabled(dev))
2121 continue;
2122
2123 if (!dev->pio_mode) {
f15a1daf 2124 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2125 rc = -EINVAL;
e82cbdb9 2126 goto out;
e8e0619f
TH
2127 }
2128
2129 dev->xfer_mode = dev->pio_mode;
2130 dev->xfer_shift = ATA_SHIFT_PIO;
2131 if (ap->ops->set_piomode)
2132 ap->ops->set_piomode(ap, dev);
2133 }
1da177e4 2134
a6d5a51c 2135 /* step 3: set host DMA timings */
e8e0619f
TH
2136 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2137 dev = &ap->device[i];
2138
2139 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2140 continue;
2141
2142 dev->xfer_mode = dev->dma_mode;
2143 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2144 if (ap->ops->set_dmamode)
2145 ap->ops->set_dmamode(ap, dev);
2146 }
1da177e4
LT
2147
2148 /* step 4: update devices' xfer mode */
83206a29 2149 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2150 dev = &ap->device[i];
1da177e4 2151
e1211e3f 2152 if (!ata_dev_enabled(dev))
83206a29
TH
2153 continue;
2154
3373efd8 2155 rc = ata_dev_set_mode(dev);
5bbc53f4 2156 if (rc)
e82cbdb9 2157 goto out;
83206a29 2158 }
1da177e4 2159
e8e0619f
TH
2160 /* Record simplex status. If we selected DMA then the other
2161 * host channels are not permitted to do so.
5444a6f4 2162 */
5444a6f4
AC
2163 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2164 ap->host_set->simplex_claimed = 1;
2165
e8e0619f 2166 /* step5: chip specific finalisation */
1da177e4
LT
2167 if (ap->ops->post_set_mode)
2168 ap->ops->post_set_mode(ap);
2169
e82cbdb9
TH
2170 out:
2171 if (rc)
2172 *r_failed_dev = dev;
2173 return rc;
1da177e4
LT
2174}
2175
1fdffbce
JG
2176/**
2177 * ata_tf_to_host - issue ATA taskfile to host controller
2178 * @ap: port to which command is being issued
2179 * @tf: ATA taskfile register set
2180 *
2181 * Issues ATA taskfile register set to ATA host controller,
2182 * with proper synchronization with interrupt handler and
2183 * other threads.
2184 *
2185 * LOCKING:
2186 * spin_lock_irqsave(host_set lock)
2187 */
2188
2189static inline void ata_tf_to_host(struct ata_port *ap,
2190 const struct ata_taskfile *tf)
2191{
2192 ap->ops->tf_load(ap, tf);
2193 ap->ops->exec_command(ap, tf);
2194}
2195
1da177e4
LT
2196/**
2197 * ata_busy_sleep - sleep until BSY clears, or timeout
2198 * @ap: port containing status register to be polled
2199 * @tmout_pat: impatience timeout
2200 * @tmout: overall timeout
2201 *
780a87f7
JG
2202 * Sleep until ATA Status register bit BSY clears,
2203 * or a timeout occurs.
2204 *
2205 * LOCKING: None.
1da177e4
LT
2206 */
2207
6f8b9958
TH
2208unsigned int ata_busy_sleep (struct ata_port *ap,
2209 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2210{
2211 unsigned long timer_start, timeout;
2212 u8 status;
2213
2214 status = ata_busy_wait(ap, ATA_BUSY, 300);
2215 timer_start = jiffies;
2216 timeout = timer_start + tmout_pat;
2217 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2218 msleep(50);
2219 status = ata_busy_wait(ap, ATA_BUSY, 3);
2220 }
2221
2222 if (status & ATA_BUSY)
f15a1daf
TH
2223 ata_port_printk(ap, KERN_WARNING,
2224 "port is slow to respond, please be patient\n");
1da177e4
LT
2225
2226 timeout = timer_start + tmout;
2227 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2228 msleep(50);
2229 status = ata_chk_status(ap);
2230 }
2231
2232 if (status & ATA_BUSY) {
f15a1daf
TH
2233 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2234 "(%lu secs)\n", tmout / HZ);
1da177e4
LT
2235 return 1;
2236 }
2237
2238 return 0;
2239}
2240
2241static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2242{
2243 struct ata_ioports *ioaddr = &ap->ioaddr;
2244 unsigned int dev0 = devmask & (1 << 0);
2245 unsigned int dev1 = devmask & (1 << 1);
2246 unsigned long timeout;
2247
2248 /* if device 0 was found in ata_devchk, wait for its
2249 * BSY bit to clear
2250 */
2251 if (dev0)
2252 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2253
2254 /* if device 1 was found in ata_devchk, wait for
2255 * register access, then wait for BSY to clear
2256 */
2257 timeout = jiffies + ATA_TMOUT_BOOT;
2258 while (dev1) {
2259 u8 nsect, lbal;
2260
2261 ap->ops->dev_select(ap, 1);
2262 if (ap->flags & ATA_FLAG_MMIO) {
2263 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2264 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2265 } else {
2266 nsect = inb(ioaddr->nsect_addr);
2267 lbal = inb(ioaddr->lbal_addr);
2268 }
2269 if ((nsect == 1) && (lbal == 1))
2270 break;
2271 if (time_after(jiffies, timeout)) {
2272 dev1 = 0;
2273 break;
2274 }
2275 msleep(50); /* give drive a breather */
2276 }
2277 if (dev1)
2278 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2279
2280 /* is all this really necessary? */
2281 ap->ops->dev_select(ap, 0);
2282 if (dev1)
2283 ap->ops->dev_select(ap, 1);
2284 if (dev0)
2285 ap->ops->dev_select(ap, 0);
2286}
2287
1da177e4
LT
2288static unsigned int ata_bus_softreset(struct ata_port *ap,
2289 unsigned int devmask)
2290{
2291 struct ata_ioports *ioaddr = &ap->ioaddr;
2292
2293 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2294
2295 /* software reset. causes dev0 to be selected */
2296 if (ap->flags & ATA_FLAG_MMIO) {
2297 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2298 udelay(20); /* FIXME: flush */
2299 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2300 udelay(20); /* FIXME: flush */
2301 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2302 } else {
2303 outb(ap->ctl, ioaddr->ctl_addr);
2304 udelay(10);
2305 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2306 udelay(10);
2307 outb(ap->ctl, ioaddr->ctl_addr);
2308 }
2309
2310 /* spec mandates ">= 2ms" before checking status.
2311 * We wait 150ms, because that was the magic delay used for
2312 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2313 * between when the ATA command register is written, and then
2314 * status is checked. Because waiting for "a while" before
2315 * checking status is fine, post SRST, we perform this magic
2316 * delay here as well.
09c7ad79
AC
2317 *
2318 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2319 */
2320 msleep(150);
2321
2e9edbf8 2322 /* Before we perform post reset processing we want to see if
298a41ca
TH
2323 * the bus shows 0xFF because the odd clown forgets the D7
2324 * pulldown resistor.
2325 */
987d2f05 2326 if (ata_check_status(ap) == 0xFF) {
f15a1daf 2327 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
298a41ca 2328 return AC_ERR_OTHER;
987d2f05 2329 }
09c7ad79 2330
1da177e4
LT
2331 ata_bus_post_reset(ap, devmask);
2332
2333 return 0;
2334}
2335
2336/**
2337 * ata_bus_reset - reset host port and associated ATA channel
2338 * @ap: port to reset
2339 *
2340 * This is typically the first time we actually start issuing
2341 * commands to the ATA channel. We wait for BSY to clear, then
2342 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2343 * result. Determine what devices, if any, are on the channel
2344 * by looking at the device 0/1 error register. Look at the signature
2345 * stored in each device's taskfile registers, to determine if
2346 * the device is ATA or ATAPI.
2347 *
2348 * LOCKING:
0cba632b
JG
2349 * PCI/etc. bus probe sem.
2350 * Obtains host_set lock.
1da177e4
LT
2351 *
2352 * SIDE EFFECTS:
198e0fed 2353 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2354 */
2355
2356void ata_bus_reset(struct ata_port *ap)
2357{
2358 struct ata_ioports *ioaddr = &ap->ioaddr;
2359 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2360 u8 err;
aec5c3c1 2361 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2362
2363 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2364
2365 /* determine if device 0/1 are present */
2366 if (ap->flags & ATA_FLAG_SATA_RESET)
2367 dev0 = 1;
2368 else {
2369 dev0 = ata_devchk(ap, 0);
2370 if (slave_possible)
2371 dev1 = ata_devchk(ap, 1);
2372 }
2373
2374 if (dev0)
2375 devmask |= (1 << 0);
2376 if (dev1)
2377 devmask |= (1 << 1);
2378
2379 /* select device 0 again */
2380 ap->ops->dev_select(ap, 0);
2381
2382 /* issue bus reset */
2383 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2384 if (ata_bus_softreset(ap, devmask))
2385 goto err_out;
1da177e4
LT
2386
2387 /*
2388 * determine by signature whether we have ATA or ATAPI devices
2389 */
b4dc7623 2390 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2391 if ((slave_possible) && (err != 0x81))
b4dc7623 2392 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2393
2394 /* re-enable interrupts */
2395 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2396 ata_irq_on(ap);
2397
2398 /* is double-select really necessary? */
2399 if (ap->device[1].class != ATA_DEV_NONE)
2400 ap->ops->dev_select(ap, 1);
2401 if (ap->device[0].class != ATA_DEV_NONE)
2402 ap->ops->dev_select(ap, 0);
2403
2404 /* if no devices were detected, disable this port */
2405 if ((ap->device[0].class == ATA_DEV_NONE) &&
2406 (ap->device[1].class == ATA_DEV_NONE))
2407 goto err_out;
2408
2409 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2410 /* set up device control for ATA_FLAG_SATA_RESET */
2411 if (ap->flags & ATA_FLAG_MMIO)
2412 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2413 else
2414 outb(ap->ctl, ioaddr->ctl_addr);
2415 }
2416
2417 DPRINTK("EXIT\n");
2418 return;
2419
2420err_out:
f15a1daf 2421 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2422 ap->ops->port_disable(ap);
2423
2424 DPRINTK("EXIT\n");
2425}
2426
d7bb4cc7
TH
2427/**
2428 * sata_phy_debounce - debounce SATA phy status
2429 * @ap: ATA port to debounce SATA phy status for
2430 * @params: timing parameters { interval, duratinon, timeout } in msec
2431 *
2432 * Make sure SStatus of @ap reaches stable state, determined by
2433 * holding the same value where DET is not 1 for @duration polled
2434 * every @interval, before @timeout. Timeout constraints the
2435 * beginning of the stable state. Because, after hot unplugging,
2436 * DET gets stuck at 1 on some controllers, this functions waits
2437 * until timeout then returns 0 if DET is stable at 1.
2438 *
2439 * LOCKING:
2440 * Kernel thread context (may sleep)
2441 *
2442 * RETURNS:
2443 * 0 on success, -errno on failure.
2444 */
2445int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2446{
d7bb4cc7
TH
2447 unsigned long interval_msec = params[0];
2448 unsigned long duration = params[1] * HZ / 1000;
2449 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2450 unsigned long last_jiffies;
2451 u32 last, cur;
2452 int rc;
2453
2454 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2455 return rc;
2456 cur &= 0xf;
2457
2458 last = cur;
2459 last_jiffies = jiffies;
2460
2461 while (1) {
2462 msleep(interval_msec);
2463 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2464 return rc;
2465 cur &= 0xf;
2466
2467 /* DET stable? */
2468 if (cur == last) {
2469 if (cur == 1 && time_before(jiffies, timeout))
2470 continue;
2471 if (time_after(jiffies, last_jiffies + duration))
2472 return 0;
2473 continue;
2474 }
2475
2476 /* unstable, start over */
2477 last = cur;
2478 last_jiffies = jiffies;
2479
2480 /* check timeout */
2481 if (time_after(jiffies, timeout))
2482 return -EBUSY;
2483 }
2484}
2485
2486/**
2487 * sata_phy_resume - resume SATA phy
2488 * @ap: ATA port to resume SATA phy for
2489 * @params: timing parameters { interval, duratinon, timeout } in msec
2490 *
2491 * Resume SATA phy of @ap and debounce it.
2492 *
2493 * LOCKING:
2494 * Kernel thread context (may sleep)
2495 *
2496 * RETURNS:
2497 * 0 on success, -errno on failure.
2498 */
2499int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2500{
2501 u32 scontrol;
81952c54
TH
2502 int rc;
2503
2504 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2505 return rc;
7a7921e8 2506
852ee16a 2507 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2508
2509 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2510 return rc;
7a7921e8 2511
d7bb4cc7
TH
2512 /* Some PHYs react badly if SStatus is pounded immediately
2513 * after resuming. Delay 200ms before debouncing.
2514 */
2515 msleep(200);
7a7921e8 2516
d7bb4cc7 2517 return sata_phy_debounce(ap, params);
7a7921e8
TH
2518}
2519
f5914a46
TH
2520static void ata_wait_spinup(struct ata_port *ap)
2521{
2522 struct ata_eh_context *ehc = &ap->eh_context;
2523 unsigned long end, secs;
2524 int rc;
2525
2526 /* first, debounce phy if SATA */
2527 if (ap->cbl == ATA_CBL_SATA) {
2528 rc = sata_phy_debounce(ap, sata_deb_timing_eh);
2529
2530 /* if debounced successfully and offline, no need to wait */
2531 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2532 return;
2533 }
2534
2535 /* okay, let's give the drive time to spin up */
2536 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2537 secs = ((end - jiffies) + HZ - 1) / HZ;
2538
2539 if (time_after(jiffies, end))
2540 return;
2541
2542 if (secs > 5)
2543 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2544 "(%lu secs)\n", secs);
2545
2546 schedule_timeout_uninterruptible(end - jiffies);
2547}
2548
2549/**
2550 * ata_std_prereset - prepare for reset
2551 * @ap: ATA port to be reset
2552 *
2553 * @ap is about to be reset. Initialize it.
2554 *
2555 * LOCKING:
2556 * Kernel thread context (may sleep)
2557 *
2558 * RETURNS:
2559 * 0 on success, -errno otherwise.
2560 */
2561int ata_std_prereset(struct ata_port *ap)
2562{
2563 struct ata_eh_context *ehc = &ap->eh_context;
2564 const unsigned long *timing;
2565 int rc;
2566
2567 /* hotplug? */
2568 if (ehc->i.flags & ATA_EHI_HOTPLUGGED) {
2569 if (ap->flags & ATA_FLAG_HRST_TO_RESUME)
2570 ehc->i.action |= ATA_EH_HARDRESET;
2571 if (ap->flags & ATA_FLAG_SKIP_D2H_BSY)
2572 ata_wait_spinup(ap);
2573 }
2574
2575 /* if we're about to do hardreset, nothing more to do */
2576 if (ehc->i.action & ATA_EH_HARDRESET)
2577 return 0;
2578
2579 /* if SATA, resume phy */
2580 if (ap->cbl == ATA_CBL_SATA) {
2581 if (ap->flags & ATA_FLAG_LOADING)
2582 timing = sata_deb_timing_boot;
2583 else
2584 timing = sata_deb_timing_eh;
2585
2586 rc = sata_phy_resume(ap, timing);
2587 if (rc && rc != -EOPNOTSUPP) {
2588 /* phy resume failed */
2589 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2590 "link for reset (errno=%d)\n", rc);
2591 return rc;
2592 }
2593 }
2594
2595 /* Wait for !BSY if the controller can wait for the first D2H
2596 * Reg FIS and we don't know that no device is attached.
2597 */
2598 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2599 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2600
2601 return 0;
2602}
2603
c2bd5804
TH
2604/**
2605 * ata_std_softreset - reset host port via ATA SRST
2606 * @ap: port to reset
c2bd5804
TH
2607 * @classes: resulting classes of attached devices
2608 *
52783c5d 2609 * Reset host port using ATA SRST.
c2bd5804
TH
2610 *
2611 * LOCKING:
2612 * Kernel thread context (may sleep)
2613 *
2614 * RETURNS:
2615 * 0 on success, -errno otherwise.
2616 */
2bf2cb26 2617int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2618{
2619 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2620 unsigned int devmask = 0, err_mask;
2621 u8 err;
2622
2623 DPRINTK("ENTER\n");
2624
81952c54 2625 if (ata_port_offline(ap)) {
3a39746a
TH
2626 classes[0] = ATA_DEV_NONE;
2627 goto out;
2628 }
2629
c2bd5804
TH
2630 /* determine if device 0/1 are present */
2631 if (ata_devchk(ap, 0))
2632 devmask |= (1 << 0);
2633 if (slave_possible && ata_devchk(ap, 1))
2634 devmask |= (1 << 1);
2635
c2bd5804
TH
2636 /* select device 0 again */
2637 ap->ops->dev_select(ap, 0);
2638
2639 /* issue bus reset */
2640 DPRINTK("about to softreset, devmask=%x\n", devmask);
2641 err_mask = ata_bus_softreset(ap, devmask);
2642 if (err_mask) {
f15a1daf
TH
2643 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2644 err_mask);
c2bd5804
TH
2645 return -EIO;
2646 }
2647
2648 /* determine by signature whether we have ATA or ATAPI devices */
2649 classes[0] = ata_dev_try_classify(ap, 0, &err);
2650 if (slave_possible && err != 0x81)
2651 classes[1] = ata_dev_try_classify(ap, 1, &err);
2652
3a39746a 2653 out:
c2bd5804
TH
2654 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2655 return 0;
2656}
2657
2658/**
2659 * sata_std_hardreset - reset host port via SATA phy reset
2660 * @ap: port to reset
c2bd5804
TH
2661 * @class: resulting class of attached device
2662 *
2663 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
2664 *
2665 * LOCKING:
2666 * Kernel thread context (may sleep)
2667 *
2668 * RETURNS:
2669 * 0 on success, -errno otherwise.
2670 */
2bf2cb26 2671int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2672{
852ee16a 2673 u32 scontrol;
81952c54 2674 int rc;
852ee16a 2675
c2bd5804
TH
2676 DPRINTK("ENTER\n");
2677
3c567b7d 2678 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2679 /* SATA spec says nothing about how to reconfigure
2680 * spd. To be on the safe side, turn off phy during
2681 * reconfiguration. This works for at least ICH7 AHCI
2682 * and Sil3124.
2683 */
81952c54
TH
2684 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2685 return rc;
2686
1c3fae4d 2687 scontrol = (scontrol & 0x0f0) | 0x302;
81952c54
TH
2688
2689 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2690 return rc;
1c3fae4d 2691
3c567b7d 2692 sata_set_spd(ap);
1c3fae4d
TH
2693 }
2694
2695 /* issue phy wake/reset */
81952c54
TH
2696 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2697 return rc;
2698
852ee16a 2699 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2700
2701 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2702 return rc;
c2bd5804 2703
1c3fae4d 2704 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2705 * 10.4.2 says at least 1 ms.
2706 */
2707 msleep(1);
2708
1c3fae4d 2709 /* bring phy back */
d7bb4cc7 2710 sata_phy_resume(ap, sata_deb_timing_eh);
c2bd5804 2711
c2bd5804 2712 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2713 if (ata_port_offline(ap)) {
c2bd5804
TH
2714 *class = ATA_DEV_NONE;
2715 DPRINTK("EXIT, link offline\n");
2716 return 0;
2717 }
2718
2719 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2720 ata_port_printk(ap, KERN_ERR,
2721 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2722 return -EIO;
2723 }
2724
3a39746a
TH
2725 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2726
c2bd5804
TH
2727 *class = ata_dev_try_classify(ap, 0, NULL);
2728
2729 DPRINTK("EXIT, class=%u\n", *class);
2730 return 0;
2731}
2732
2733/**
2734 * ata_std_postreset - standard postreset callback
2735 * @ap: the target ata_port
2736 * @classes: classes of attached devices
2737 *
2738 * This function is invoked after a successful reset. Note that
2739 * the device might have been reset more than once using
2740 * different reset methods before postreset is invoked.
c2bd5804 2741 *
c2bd5804
TH
2742 * LOCKING:
2743 * Kernel thread context (may sleep)
2744 */
2745void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2746{
dc2b3515
TH
2747 u32 serror;
2748
c2bd5804
TH
2749 DPRINTK("ENTER\n");
2750
c2bd5804 2751 /* print link status */
81952c54 2752 sata_print_link_status(ap);
c2bd5804 2753
dc2b3515
TH
2754 /* clear SError */
2755 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2756 sata_scr_write(ap, SCR_ERROR, serror);
2757
3a39746a 2758 /* re-enable interrupts */
e3180499
TH
2759 if (!ap->ops->error_handler) {
2760 /* FIXME: hack. create a hook instead */
2761 if (ap->ioaddr.ctl_addr)
2762 ata_irq_on(ap);
2763 }
c2bd5804
TH
2764
2765 /* is double-select really necessary? */
2766 if (classes[0] != ATA_DEV_NONE)
2767 ap->ops->dev_select(ap, 1);
2768 if (classes[1] != ATA_DEV_NONE)
2769 ap->ops->dev_select(ap, 0);
2770
3a39746a
TH
2771 /* bail out if no device is present */
2772 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2773 DPRINTK("EXIT, no device\n");
2774 return;
2775 }
2776
2777 /* set up device control */
2778 if (ap->ioaddr.ctl_addr) {
2779 if (ap->flags & ATA_FLAG_MMIO)
2780 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2781 else
2782 outb(ap->ctl, ap->ioaddr.ctl_addr);
2783 }
c2bd5804
TH
2784
2785 DPRINTK("EXIT\n");
2786}
2787
623a3128
TH
2788/**
2789 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2790 * @dev: device to compare against
2791 * @new_class: class of the new device
2792 * @new_id: IDENTIFY page of the new device
2793 *
2794 * Compare @new_class and @new_id against @dev and determine
2795 * whether @dev is the device indicated by @new_class and
2796 * @new_id.
2797 *
2798 * LOCKING:
2799 * None.
2800 *
2801 * RETURNS:
2802 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2803 */
3373efd8
TH
2804static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2805 const u16 *new_id)
623a3128
TH
2806{
2807 const u16 *old_id = dev->id;
2808 unsigned char model[2][41], serial[2][21];
2809 u64 new_n_sectors;
2810
2811 if (dev->class != new_class) {
f15a1daf
TH
2812 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2813 dev->class, new_class);
623a3128
TH
2814 return 0;
2815 }
2816
2817 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2818 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2819 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2820 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2821 new_n_sectors = ata_id_n_sectors(new_id);
2822
2823 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2824 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2825 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2826 return 0;
2827 }
2828
2829 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2830 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2831 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
2832 return 0;
2833 }
2834
2835 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
2836 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2837 "%llu != %llu\n",
2838 (unsigned long long)dev->n_sectors,
2839 (unsigned long long)new_n_sectors);
623a3128
TH
2840 return 0;
2841 }
2842
2843 return 1;
2844}
2845
2846/**
2847 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
2848 * @dev: device to revalidate
2849 * @post_reset: is this revalidation after reset?
2850 *
2851 * Re-read IDENTIFY page and make sure @dev is still attached to
2852 * the port.
2853 *
2854 * LOCKING:
2855 * Kernel thread context (may sleep)
2856 *
2857 * RETURNS:
2858 * 0 on success, negative errno otherwise
2859 */
3373efd8 2860int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 2861{
5eb45c02 2862 unsigned int class = dev->class;
f15a1daf 2863 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
2864 int rc;
2865
5eb45c02
TH
2866 if (!ata_dev_enabled(dev)) {
2867 rc = -ENODEV;
2868 goto fail;
2869 }
623a3128 2870
fe635c7e 2871 /* read ID data */
3373efd8 2872 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
2873 if (rc)
2874 goto fail;
2875
2876 /* is the device still there? */
3373efd8 2877 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
2878 rc = -ENODEV;
2879 goto fail;
2880 }
2881
fe635c7e 2882 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
2883
2884 /* configure device according to the new ID */
3373efd8 2885 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
2886 if (rc == 0)
2887 return 0;
623a3128
TH
2888
2889 fail:
f15a1daf 2890 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
2891 return rc;
2892}
2893
98ac62de 2894static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2895 "WDC AC11000H", NULL,
2896 "WDC AC22100H", NULL,
2897 "WDC AC32500H", NULL,
2898 "WDC AC33100H", NULL,
2899 "WDC AC31600H", NULL,
2900 "WDC AC32100H", "24.09P07",
2901 "WDC AC23200L", "21.10N21",
2902 "Compaq CRD-8241B", NULL,
2903 "CRD-8400B", NULL,
2904 "CRD-8480B", NULL,
2905 "CRD-8482B", NULL,
2906 "CRD-84", NULL,
2907 "SanDisk SDP3B", NULL,
2908 "SanDisk SDP3B-64", NULL,
2909 "SANYO CD-ROM CRD", NULL,
2910 "HITACHI CDR-8", NULL,
2e9edbf8 2911 "HITACHI CDR-8335", NULL,
f4b15fef 2912 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2913 "Toshiba CD-ROM XM-6202B", NULL,
2914 "TOSHIBA CD-ROM XM-1702BC", NULL,
2915 "CD-532E-A", NULL,
2916 "E-IDE CD-ROM CR-840", NULL,
2917 "CD-ROM Drive/F5A", NULL,
2918 "WPI CDD-820", NULL,
f4b15fef 2919 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2920 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2921 "SanDisk SDP3B-64", NULL,
2922 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2923 "_NEC DV5800A", NULL,
2924 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2925};
2e9edbf8 2926
f4b15fef
AC
2927static int ata_strim(char *s, size_t len)
2928{
2929 len = strnlen(s, len);
2930
2931 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2932 while ((len > 0) && (s[len - 1] == ' ')) {
2933 len--;
2934 s[len] = 0;
2935 }
2936 return len;
2937}
1da177e4 2938
057ace5e 2939static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2940{
f4b15fef
AC
2941 unsigned char model_num[40];
2942 unsigned char model_rev[16];
2943 unsigned int nlen, rlen;
1da177e4
LT
2944 int i;
2945
3a778275
AL
2946 /* We don't support polling DMA.
2947 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
2948 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
2949 */
2950 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
2951 (dev->flags & ATA_DFLAG_CDB_INTR))
2952 return 1;
2953
f4b15fef
AC
2954 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2955 sizeof(model_num));
2956 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2957 sizeof(model_rev));
2958 nlen = ata_strim(model_num, sizeof(model_num));
2959 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2960
f4b15fef
AC
2961 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2962 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2963 if (ata_dma_blacklist[i+1] == NULL)
2964 return 1;
2965 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2966 return 1;
2967 }
2968 }
1da177e4
LT
2969 return 0;
2970}
2971
a6d5a51c
TH
2972/**
2973 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
2974 * @dev: Device to compute xfermask for
2975 *
acf356b1
TH
2976 * Compute supported xfermask of @dev and store it in
2977 * dev->*_mask. This function is responsible for applying all
2978 * known limits including host controller limits, device
2979 * blacklist, etc...
a6d5a51c 2980 *
600511e8
TH
2981 * FIXME: The current implementation limits all transfer modes to
2982 * the fastest of the lowested device on the port. This is not
05c8e0ac 2983 * required on most controllers.
600511e8 2984 *
a6d5a51c
TH
2985 * LOCKING:
2986 * None.
a6d5a51c 2987 */
3373efd8 2988static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 2989{
3373efd8 2990 struct ata_port *ap = dev->ap;
5444a6f4 2991 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2992 unsigned long xfer_mask;
2993 int i;
1da177e4 2994
565083e1
TH
2995 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2996 ap->mwdma_mask, ap->udma_mask);
2997
2998 /* Apply cable rule here. Don't apply it early because when
2999 * we handle hot plug the cable type can itself change.
3000 */
3001 if (ap->cbl == ATA_CBL_PATA40)
3002 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 3003
5444a6f4 3004 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
3005 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3006 struct ata_device *d = &ap->device[i];
565083e1
TH
3007
3008 if (ata_dev_absent(d))
3009 continue;
3010
3011 if (ata_dev_disabled(d)) {
3012 /* to avoid violating device selection timing */
3013 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3014 UINT_MAX, UINT_MAX);
a6d5a51c 3015 continue;
565083e1
TH
3016 }
3017
3018 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3019 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
3020 xfer_mask &= ata_id_xfermask(d->id);
3021 if (ata_dma_blacklisted(d))
3022 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
3023 }
3024
a6d5a51c 3025 if (ata_dma_blacklisted(dev))
f15a1daf
TH
3026 ata_dev_printk(dev, KERN_WARNING,
3027 "device is on DMA blacklist, disabling DMA\n");
a6d5a51c 3028
5444a6f4
AC
3029 if (hs->flags & ATA_HOST_SIMPLEX) {
3030 if (hs->simplex_claimed)
3031 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3032 }
565083e1 3033
5444a6f4
AC
3034 if (ap->ops->mode_filter)
3035 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3036
565083e1
TH
3037 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3038 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3039}
3040
1da177e4
LT
3041/**
3042 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3043 * @dev: Device to which command will be sent
3044 *
780a87f7
JG
3045 * Issue SET FEATURES - XFER MODE command to device @dev
3046 * on port @ap.
3047 *
1da177e4 3048 * LOCKING:
0cba632b 3049 * PCI/etc. bus probe sem.
83206a29
TH
3050 *
3051 * RETURNS:
3052 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3053 */
3054
3373efd8 3055static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3056{
a0123703 3057 struct ata_taskfile tf;
83206a29 3058 unsigned int err_mask;
1da177e4
LT
3059
3060 /* set up set-features taskfile */
3061 DPRINTK("set features - xfer mode\n");
3062
3373efd8 3063 ata_tf_init(dev, &tf);
a0123703
TH
3064 tf.command = ATA_CMD_SET_FEATURES;
3065 tf.feature = SETFEATURES_XFER;
3066 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3067 tf.protocol = ATA_PROT_NODATA;
3068 tf.nsect = dev->xfer_mode;
1da177e4 3069
3373efd8 3070 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3071
83206a29
TH
3072 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3073 return err_mask;
1da177e4
LT
3074}
3075
8bf62ece
AL
3076/**
3077 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3078 * @dev: Device to which command will be sent
e2a7f77a
RD
3079 * @heads: Number of heads (taskfile parameter)
3080 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3081 *
3082 * LOCKING:
6aff8f1f
TH
3083 * Kernel thread context (may sleep)
3084 *
3085 * RETURNS:
3086 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3087 */
3373efd8
TH
3088static unsigned int ata_dev_init_params(struct ata_device *dev,
3089 u16 heads, u16 sectors)
8bf62ece 3090{
a0123703 3091 struct ata_taskfile tf;
6aff8f1f 3092 unsigned int err_mask;
8bf62ece
AL
3093
3094 /* Number of sectors per track 1-255. Number of heads 1-16 */
3095 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3096 return AC_ERR_INVALID;
8bf62ece
AL
3097
3098 /* set up init dev params taskfile */
3099 DPRINTK("init dev params \n");
3100
3373efd8 3101 ata_tf_init(dev, &tf);
a0123703
TH
3102 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3103 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3104 tf.protocol = ATA_PROT_NODATA;
3105 tf.nsect = sectors;
3106 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3107
3373efd8 3108 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3109
6aff8f1f
TH
3110 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3111 return err_mask;
8bf62ece
AL
3112}
3113
1da177e4 3114/**
0cba632b
JG
3115 * ata_sg_clean - Unmap DMA memory associated with command
3116 * @qc: Command containing DMA memory to be released
3117 *
3118 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3119 *
3120 * LOCKING:
0cba632b 3121 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3122 */
3123
3124static void ata_sg_clean(struct ata_queued_cmd *qc)
3125{
3126 struct ata_port *ap = qc->ap;
cedc9a47 3127 struct scatterlist *sg = qc->__sg;
1da177e4 3128 int dir = qc->dma_dir;
cedc9a47 3129 void *pad_buf = NULL;
1da177e4 3130
a4631474
TH
3131 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3132 WARN_ON(sg == NULL);
1da177e4
LT
3133
3134 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3135 WARN_ON(qc->n_elem > 1);
1da177e4 3136
2c13b7ce 3137 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3138
cedc9a47
JG
3139 /* if we padded the buffer out to 32-bit bound, and data
3140 * xfer direction is from-device, we must copy from the
3141 * pad buffer back into the supplied buffer
3142 */
3143 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3144 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3145
3146 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3147 if (qc->n_elem)
2f1f610b 3148 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3149 /* restore last sg */
3150 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3151 if (pad_buf) {
3152 struct scatterlist *psg = &qc->pad_sgent;
3153 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3154 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3155 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3156 }
3157 } else {
2e242fa9 3158 if (qc->n_elem)
2f1f610b 3159 dma_unmap_single(ap->dev,
e1410f2d
JG
3160 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3161 dir);
cedc9a47
JG
3162 /* restore sg */
3163 sg->length += qc->pad_len;
3164 if (pad_buf)
3165 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3166 pad_buf, qc->pad_len);
3167 }
1da177e4
LT
3168
3169 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3170 qc->__sg = NULL;
1da177e4
LT
3171}
3172
3173/**
3174 * ata_fill_sg - Fill PCI IDE PRD table
3175 * @qc: Metadata associated with taskfile to be transferred
3176 *
780a87f7
JG
3177 * Fill PCI IDE PRD (scatter-gather) table with segments
3178 * associated with the current disk command.
3179 *
1da177e4 3180 * LOCKING:
780a87f7 3181 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3182 *
3183 */
3184static void ata_fill_sg(struct ata_queued_cmd *qc)
3185{
1da177e4 3186 struct ata_port *ap = qc->ap;
cedc9a47
JG
3187 struct scatterlist *sg;
3188 unsigned int idx;
1da177e4 3189
a4631474 3190 WARN_ON(qc->__sg == NULL);
f131883e 3191 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3192
3193 idx = 0;
cedc9a47 3194 ata_for_each_sg(sg, qc) {
1da177e4
LT
3195 u32 addr, offset;
3196 u32 sg_len, len;
3197
3198 /* determine if physical DMA addr spans 64K boundary.
3199 * Note h/w doesn't support 64-bit, so we unconditionally
3200 * truncate dma_addr_t to u32.
3201 */
3202 addr = (u32) sg_dma_address(sg);
3203 sg_len = sg_dma_len(sg);
3204
3205 while (sg_len) {
3206 offset = addr & 0xffff;
3207 len = sg_len;
3208 if ((offset + sg_len) > 0x10000)
3209 len = 0x10000 - offset;
3210
3211 ap->prd[idx].addr = cpu_to_le32(addr);
3212 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3213 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3214
3215 idx++;
3216 sg_len -= len;
3217 addr += len;
3218 }
3219 }
3220
3221 if (idx)
3222 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3223}
3224/**
3225 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3226 * @qc: Metadata associated with taskfile to check
3227 *
780a87f7
JG
3228 * Allow low-level driver to filter ATA PACKET commands, returning
3229 * a status indicating whether or not it is OK to use DMA for the
3230 * supplied PACKET command.
3231 *
1da177e4 3232 * LOCKING:
0cba632b
JG
3233 * spin_lock_irqsave(host_set lock)
3234 *
1da177e4
LT
3235 * RETURNS: 0 when ATAPI DMA can be used
3236 * nonzero otherwise
3237 */
3238int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3239{
3240 struct ata_port *ap = qc->ap;
3241 int rc = 0; /* Assume ATAPI DMA is OK by default */
3242
3243 if (ap->ops->check_atapi_dma)
3244 rc = ap->ops->check_atapi_dma(qc);
3245
3246 return rc;
3247}
3248/**
3249 * ata_qc_prep - Prepare taskfile for submission
3250 * @qc: Metadata associated with taskfile to be prepared
3251 *
780a87f7
JG
3252 * Prepare ATA taskfile for submission.
3253 *
1da177e4
LT
3254 * LOCKING:
3255 * spin_lock_irqsave(host_set lock)
3256 */
3257void ata_qc_prep(struct ata_queued_cmd *qc)
3258{
3259 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3260 return;
3261
3262 ata_fill_sg(qc);
3263}
3264
e46834cd
BK
3265void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3266
0cba632b
JG
3267/**
3268 * ata_sg_init_one - Associate command with memory buffer
3269 * @qc: Command to be associated
3270 * @buf: Memory buffer
3271 * @buflen: Length of memory buffer, in bytes.
3272 *
3273 * Initialize the data-related elements of queued_cmd @qc
3274 * to point to a single memory buffer, @buf of byte length @buflen.
3275 *
3276 * LOCKING:
3277 * spin_lock_irqsave(host_set lock)
3278 */
3279
1da177e4
LT
3280void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3281{
3282 struct scatterlist *sg;
3283
3284 qc->flags |= ATA_QCFLAG_SINGLE;
3285
3286 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3287 qc->__sg = &qc->sgent;
1da177e4 3288 qc->n_elem = 1;
cedc9a47 3289 qc->orig_n_elem = 1;
1da177e4 3290 qc->buf_virt = buf;
233277ca 3291 qc->nbytes = buflen;
1da177e4 3292
cedc9a47 3293 sg = qc->__sg;
f0612bbc 3294 sg_init_one(sg, buf, buflen);
1da177e4
LT
3295}
3296
0cba632b
JG
3297/**
3298 * ata_sg_init - Associate command with scatter-gather table.
3299 * @qc: Command to be associated
3300 * @sg: Scatter-gather table.
3301 * @n_elem: Number of elements in s/g table.
3302 *
3303 * Initialize the data-related elements of queued_cmd @qc
3304 * to point to a scatter-gather table @sg, containing @n_elem
3305 * elements.
3306 *
3307 * LOCKING:
3308 * spin_lock_irqsave(host_set lock)
3309 */
3310
1da177e4
LT
3311void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3312 unsigned int n_elem)
3313{
3314 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3315 qc->__sg = sg;
1da177e4 3316 qc->n_elem = n_elem;
cedc9a47 3317 qc->orig_n_elem = n_elem;
1da177e4
LT
3318}
3319
3320/**
0cba632b
JG
3321 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3322 * @qc: Command with memory buffer to be mapped.
3323 *
3324 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3325 *
3326 * LOCKING:
3327 * spin_lock_irqsave(host_set lock)
3328 *
3329 * RETURNS:
0cba632b 3330 * Zero on success, negative on error.
1da177e4
LT
3331 */
3332
3333static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3334{
3335 struct ata_port *ap = qc->ap;
3336 int dir = qc->dma_dir;
cedc9a47 3337 struct scatterlist *sg = qc->__sg;
1da177e4 3338 dma_addr_t dma_address;
2e242fa9 3339 int trim_sg = 0;
1da177e4 3340
cedc9a47
JG
3341 /* we must lengthen transfers to end on a 32-bit boundary */
3342 qc->pad_len = sg->length & 3;
3343 if (qc->pad_len) {
3344 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3345 struct scatterlist *psg = &qc->pad_sgent;
3346
a4631474 3347 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3348
3349 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3350
3351 if (qc->tf.flags & ATA_TFLAG_WRITE)
3352 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3353 qc->pad_len);
3354
3355 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3356 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3357 /* trim sg */
3358 sg->length -= qc->pad_len;
2e242fa9
TH
3359 if (sg->length == 0)
3360 trim_sg = 1;
cedc9a47
JG
3361
3362 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3363 sg->length, qc->pad_len);
3364 }
3365
2e242fa9
TH
3366 if (trim_sg) {
3367 qc->n_elem--;
e1410f2d
JG
3368 goto skip_map;
3369 }
3370
2f1f610b 3371 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3372 sg->length, dir);
537a95d9
TH
3373 if (dma_mapping_error(dma_address)) {
3374 /* restore sg */
3375 sg->length += qc->pad_len;
1da177e4 3376 return -1;
537a95d9 3377 }
1da177e4
LT
3378
3379 sg_dma_address(sg) = dma_address;
32529e01 3380 sg_dma_len(sg) = sg->length;
1da177e4 3381
2e242fa9 3382skip_map:
1da177e4
LT
3383 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3384 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3385
3386 return 0;
3387}
3388
3389/**
0cba632b
JG
3390 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3391 * @qc: Command with scatter-gather table to be mapped.
3392 *
3393 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3394 *
3395 * LOCKING:
3396 * spin_lock_irqsave(host_set lock)
3397 *
3398 * RETURNS:
0cba632b 3399 * Zero on success, negative on error.
1da177e4
LT
3400 *
3401 */
3402
3403static int ata_sg_setup(struct ata_queued_cmd *qc)
3404{
3405 struct ata_port *ap = qc->ap;
cedc9a47
JG
3406 struct scatterlist *sg = qc->__sg;
3407 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3408 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3409
3410 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3411 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3412
cedc9a47
JG
3413 /* we must lengthen transfers to end on a 32-bit boundary */
3414 qc->pad_len = lsg->length & 3;
3415 if (qc->pad_len) {
3416 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3417 struct scatterlist *psg = &qc->pad_sgent;
3418 unsigned int offset;
3419
a4631474 3420 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3421
3422 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3423
3424 /*
3425 * psg->page/offset are used to copy to-be-written
3426 * data in this function or read data in ata_sg_clean.
3427 */
3428 offset = lsg->offset + lsg->length - qc->pad_len;
3429 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3430 psg->offset = offset_in_page(offset);
3431
3432 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3433 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3434 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3435 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3436 }
3437
3438 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3439 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3440 /* trim last sg */
3441 lsg->length -= qc->pad_len;
e1410f2d
JG
3442 if (lsg->length == 0)
3443 trim_sg = 1;
cedc9a47
JG
3444
3445 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3446 qc->n_elem - 1, lsg->length, qc->pad_len);
3447 }
3448
e1410f2d
JG
3449 pre_n_elem = qc->n_elem;
3450 if (trim_sg && pre_n_elem)
3451 pre_n_elem--;
3452
3453 if (!pre_n_elem) {
3454 n_elem = 0;
3455 goto skip_map;
3456 }
3457
1da177e4 3458 dir = qc->dma_dir;
2f1f610b 3459 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3460 if (n_elem < 1) {
3461 /* restore last sg */
3462 lsg->length += qc->pad_len;
1da177e4 3463 return -1;
537a95d9 3464 }
1da177e4
LT
3465
3466 DPRINTK("%d sg elements mapped\n", n_elem);
3467
e1410f2d 3468skip_map:
1da177e4
LT
3469 qc->n_elem = n_elem;
3470
3471 return 0;
3472}
3473
0baab86b 3474/**
c893a3ae 3475 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3476 * @buf: Buffer to swap
3477 * @buf_words: Number of 16-bit words in buffer.
3478 *
3479 * Swap halves of 16-bit words if needed to convert from
3480 * little-endian byte order to native cpu byte order, or
3481 * vice-versa.
3482 *
3483 * LOCKING:
6f0ef4fa 3484 * Inherited from caller.
0baab86b 3485 */
1da177e4
LT
3486void swap_buf_le16(u16 *buf, unsigned int buf_words)
3487{
3488#ifdef __BIG_ENDIAN
3489 unsigned int i;
3490
3491 for (i = 0; i < buf_words; i++)
3492 buf[i] = le16_to_cpu(buf[i]);
3493#endif /* __BIG_ENDIAN */
3494}
3495
6ae4cfb5
AL
3496/**
3497 * ata_mmio_data_xfer - Transfer data by MMIO
bf717b11 3498 * @adev: device for this I/O
6ae4cfb5
AL
3499 * @buf: data buffer
3500 * @buflen: buffer length
344babaa 3501 * @write_data: read/write
6ae4cfb5
AL
3502 *
3503 * Transfer data from/to the device data register by MMIO.
3504 *
3505 * LOCKING:
3506 * Inherited from caller.
6ae4cfb5
AL
3507 */
3508
a6b2c5d4
AC
3509void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3510 unsigned int buflen, int write_data)
1da177e4 3511{
a6b2c5d4 3512 struct ata_port *ap = adev->ap;
1da177e4
LT
3513 unsigned int i;
3514 unsigned int words = buflen >> 1;
3515 u16 *buf16 = (u16 *) buf;
3516 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3517
6ae4cfb5 3518 /* Transfer multiple of 2 bytes */
1da177e4
LT
3519 if (write_data) {
3520 for (i = 0; i < words; i++)
3521 writew(le16_to_cpu(buf16[i]), mmio);
3522 } else {
3523 for (i = 0; i < words; i++)
3524 buf16[i] = cpu_to_le16(readw(mmio));
3525 }
6ae4cfb5
AL
3526
3527 /* Transfer trailing 1 byte, if any. */
3528 if (unlikely(buflen & 0x01)) {
3529 u16 align_buf[1] = { 0 };
3530 unsigned char *trailing_buf = buf + buflen - 1;
3531
3532 if (write_data) {
3533 memcpy(align_buf, trailing_buf, 1);
3534 writew(le16_to_cpu(align_buf[0]), mmio);
3535 } else {
3536 align_buf[0] = cpu_to_le16(readw(mmio));
3537 memcpy(trailing_buf, align_buf, 1);
3538 }
3539 }
1da177e4
LT
3540}
3541
6ae4cfb5
AL
3542/**
3543 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3544 * @adev: device to target
6ae4cfb5
AL
3545 * @buf: data buffer
3546 * @buflen: buffer length
344babaa 3547 * @write_data: read/write
6ae4cfb5
AL
3548 *
3549 * Transfer data from/to the device data register by PIO.
3550 *
3551 * LOCKING:
3552 * Inherited from caller.
6ae4cfb5
AL
3553 */
3554
a6b2c5d4
AC
3555void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3556 unsigned int buflen, int write_data)
1da177e4 3557{
a6b2c5d4 3558 struct ata_port *ap = adev->ap;
6ae4cfb5 3559 unsigned int words = buflen >> 1;
1da177e4 3560
6ae4cfb5 3561 /* Transfer multiple of 2 bytes */
1da177e4 3562 if (write_data)
6ae4cfb5 3563 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3564 else
6ae4cfb5
AL
3565 insw(ap->ioaddr.data_addr, buf, words);
3566
3567 /* Transfer trailing 1 byte, if any. */
3568 if (unlikely(buflen & 0x01)) {
3569 u16 align_buf[1] = { 0 };
3570 unsigned char *trailing_buf = buf + buflen - 1;
3571
3572 if (write_data) {
3573 memcpy(align_buf, trailing_buf, 1);
3574 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3575 } else {
3576 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3577 memcpy(trailing_buf, align_buf, 1);
3578 }
3579 }
1da177e4
LT
3580}
3581
75e99585
AC
3582/**
3583 * ata_pio_data_xfer_noirq - Transfer data by PIO
3584 * @adev: device to target
3585 * @buf: data buffer
3586 * @buflen: buffer length
3587 * @write_data: read/write
3588 *
3589 * Transfer data from/to the device data register by PIO. Do the
3590 * transfer with interrupts disabled.
3591 *
3592 * LOCKING:
3593 * Inherited from caller.
3594 */
3595
3596void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3597 unsigned int buflen, int write_data)
3598{
3599 unsigned long flags;
3600 local_irq_save(flags);
3601 ata_pio_data_xfer(adev, buf, buflen, write_data);
3602 local_irq_restore(flags);
3603}
3604
3605
6ae4cfb5
AL
3606/**
3607 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3608 * @qc: Command on going
3609 *
3610 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3611 *
3612 * LOCKING:
3613 * Inherited from caller.
3614 */
3615
1da177e4
LT
3616static void ata_pio_sector(struct ata_queued_cmd *qc)
3617{
3618 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3619 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3620 struct ata_port *ap = qc->ap;
3621 struct page *page;
3622 unsigned int offset;
3623 unsigned char *buf;
3624
3625 if (qc->cursect == (qc->nsect - 1))
14be71f4 3626 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3627
3628 page = sg[qc->cursg].page;
3629 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3630
3631 /* get the current page and offset */
3632 page = nth_page(page, (offset >> PAGE_SHIFT));
3633 offset %= PAGE_SIZE;
3634
1da177e4
LT
3635 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3636
91b8b313
AL
3637 if (PageHighMem(page)) {
3638 unsigned long flags;
3639
a6b2c5d4 3640 /* FIXME: use a bounce buffer */
91b8b313
AL
3641 local_irq_save(flags);
3642 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3643
91b8b313 3644 /* do the actual data transfer */
a6b2c5d4 3645 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3646
91b8b313
AL
3647 kunmap_atomic(buf, KM_IRQ0);
3648 local_irq_restore(flags);
3649 } else {
3650 buf = page_address(page);
a6b2c5d4 3651 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 3652 }
1da177e4
LT
3653
3654 qc->cursect++;
3655 qc->cursg_ofs++;
3656
32529e01 3657 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3658 qc->cursg++;
3659 qc->cursg_ofs = 0;
3660 }
1da177e4 3661}
1da177e4 3662
07f6f7d0
AL
3663/**
3664 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3665 * @qc: Command on going
3666 *
c81e29b4 3667 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
3668 * ATA device for the DRQ request.
3669 *
3670 * LOCKING:
3671 * Inherited from caller.
3672 */
1da177e4 3673
07f6f7d0
AL
3674static void ata_pio_sectors(struct ata_queued_cmd *qc)
3675{
3676 if (is_multi_taskfile(&qc->tf)) {
3677 /* READ/WRITE MULTIPLE */
3678 unsigned int nsect;
3679
587005de 3680 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3681
07f6f7d0
AL
3682 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3683 while (nsect--)
3684 ata_pio_sector(qc);
3685 } else
3686 ata_pio_sector(qc);
3687}
3688
c71c1857
AL
3689/**
3690 * atapi_send_cdb - Write CDB bytes to hardware
3691 * @ap: Port to which ATAPI device is attached.
3692 * @qc: Taskfile currently active
3693 *
3694 * When device has indicated its readiness to accept
3695 * a CDB, this function is called. Send the CDB.
3696 *
3697 * LOCKING:
3698 * caller.
3699 */
3700
3701static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3702{
3703 /* send SCSI cdb */
3704 DPRINTK("send cdb\n");
db024d53 3705 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3706
a6b2c5d4 3707 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3708 ata_altstatus(ap); /* flush */
3709
3710 switch (qc->tf.protocol) {
3711 case ATA_PROT_ATAPI:
3712 ap->hsm_task_state = HSM_ST;
3713 break;
3714 case ATA_PROT_ATAPI_NODATA:
3715 ap->hsm_task_state = HSM_ST_LAST;
3716 break;
3717 case ATA_PROT_ATAPI_DMA:
3718 ap->hsm_task_state = HSM_ST_LAST;
3719 /* initiate bmdma */
3720 ap->ops->bmdma_start(qc);
3721 break;
3722 }
1da177e4
LT
3723}
3724
6ae4cfb5
AL
3725/**
3726 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3727 * @qc: Command on going
3728 * @bytes: number of bytes
3729 *
3730 * Transfer Transfer data from/to the ATAPI device.
3731 *
3732 * LOCKING:
3733 * Inherited from caller.
3734 *
3735 */
3736
1da177e4
LT
3737static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3738{
3739 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3740 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3741 struct ata_port *ap = qc->ap;
3742 struct page *page;
3743 unsigned char *buf;
3744 unsigned int offset, count;
3745
563a6e1f 3746 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3747 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3748
3749next_sg:
563a6e1f 3750 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3751 /*
563a6e1f
AL
3752 * The end of qc->sg is reached and the device expects
3753 * more data to transfer. In order not to overrun qc->sg
3754 * and fulfill length specified in the byte count register,
3755 * - for read case, discard trailing data from the device
3756 * - for write case, padding zero data to the device
3757 */
3758 u16 pad_buf[1] = { 0 };
3759 unsigned int words = bytes >> 1;
3760 unsigned int i;
3761
3762 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3763 ata_dev_printk(qc->dev, KERN_WARNING,
3764 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3765
3766 for (i = 0; i < words; i++)
a6b2c5d4 3767 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 3768
14be71f4 3769 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3770 return;
3771 }
3772
cedc9a47 3773 sg = &qc->__sg[qc->cursg];
1da177e4 3774
1da177e4
LT
3775 page = sg->page;
3776 offset = sg->offset + qc->cursg_ofs;
3777
3778 /* get the current page and offset */
3779 page = nth_page(page, (offset >> PAGE_SHIFT));
3780 offset %= PAGE_SIZE;
3781
6952df03 3782 /* don't overrun current sg */
32529e01 3783 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3784
3785 /* don't cross page boundaries */
3786 count = min(count, (unsigned int)PAGE_SIZE - offset);
3787
7282aa4b
AL
3788 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3789
91b8b313
AL
3790 if (PageHighMem(page)) {
3791 unsigned long flags;
3792
a6b2c5d4 3793 /* FIXME: use bounce buffer */
91b8b313
AL
3794 local_irq_save(flags);
3795 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3796
91b8b313 3797 /* do the actual data transfer */
a6b2c5d4 3798 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 3799
91b8b313
AL
3800 kunmap_atomic(buf, KM_IRQ0);
3801 local_irq_restore(flags);
3802 } else {
3803 buf = page_address(page);
a6b2c5d4 3804 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 3805 }
1da177e4
LT
3806
3807 bytes -= count;
3808 qc->curbytes += count;
3809 qc->cursg_ofs += count;
3810
32529e01 3811 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3812 qc->cursg++;
3813 qc->cursg_ofs = 0;
3814 }
3815
563a6e1f 3816 if (bytes)
1da177e4 3817 goto next_sg;
1da177e4
LT
3818}
3819
6ae4cfb5
AL
3820/**
3821 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3822 * @qc: Command on going
3823 *
3824 * Transfer Transfer data from/to the ATAPI device.
3825 *
3826 * LOCKING:
3827 * Inherited from caller.
6ae4cfb5
AL
3828 */
3829
1da177e4
LT
3830static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3831{
3832 struct ata_port *ap = qc->ap;
3833 struct ata_device *dev = qc->dev;
3834 unsigned int ireason, bc_lo, bc_hi, bytes;
3835 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3836
eec4c3f3
AL
3837 /* Abuse qc->result_tf for temp storage of intermediate TF
3838 * here to save some kernel stack usage.
3839 * For normal completion, qc->result_tf is not relevant. For
3840 * error, qc->result_tf is later overwritten by ata_qc_complete().
3841 * So, the correctness of qc->result_tf is not affected.
3842 */
3843 ap->ops->tf_read(ap, &qc->result_tf);
3844 ireason = qc->result_tf.nsect;
3845 bc_lo = qc->result_tf.lbam;
3846 bc_hi = qc->result_tf.lbah;
1da177e4
LT
3847 bytes = (bc_hi << 8) | bc_lo;
3848
3849 /* shall be cleared to zero, indicating xfer of data */
3850 if (ireason & (1 << 0))
3851 goto err_out;
3852
3853 /* make sure transfer direction matches expected */
3854 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3855 if (do_write != i_write)
3856 goto err_out;
3857
312f7da2
AL
3858 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3859
1da177e4
LT
3860 __atapi_pio_bytes(qc, bytes);
3861
3862 return;
3863
3864err_out:
f15a1daf 3865 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 3866 qc->err_mask |= AC_ERR_HSM;
14be71f4 3867 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3868}
3869
3870/**
c234fb00
AL
3871 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3872 * @ap: the target ata_port
3873 * @qc: qc on going
1da177e4 3874 *
c234fb00
AL
3875 * RETURNS:
3876 * 1 if ok in workqueue, 0 otherwise.
1da177e4 3877 */
c234fb00
AL
3878
3879static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 3880{
c234fb00
AL
3881 if (qc->tf.flags & ATA_TFLAG_POLLING)
3882 return 1;
1da177e4 3883
c234fb00
AL
3884 if (ap->hsm_task_state == HSM_ST_FIRST) {
3885 if (qc->tf.protocol == ATA_PROT_PIO &&
3886 (qc->tf.flags & ATA_TFLAG_WRITE))
3887 return 1;
1da177e4 3888
c234fb00
AL
3889 if (is_atapi_taskfile(&qc->tf) &&
3890 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3891 return 1;
fe79e683
AL
3892 }
3893
c234fb00
AL
3894 return 0;
3895}
1da177e4 3896
c17ea20d
TH
3897/**
3898 * ata_hsm_qc_complete - finish a qc running on standard HSM
3899 * @qc: Command to complete
3900 * @in_wq: 1 if called from workqueue, 0 otherwise
3901 *
3902 * Finish @qc which is running on standard HSM.
3903 *
3904 * LOCKING:
3905 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3906 * Otherwise, none on entry and grabs host lock.
3907 */
3908static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3909{
3910 struct ata_port *ap = qc->ap;
3911 unsigned long flags;
3912
3913 if (ap->ops->error_handler) {
3914 if (in_wq) {
ba6a1308 3915 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
3916
3917 /* EH might have kicked in while host_set lock
3918 * is released.
3919 */
3920 qc = ata_qc_from_tag(ap, qc->tag);
3921 if (qc) {
3922 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3923 ata_irq_on(ap);
3924 ata_qc_complete(qc);
3925 } else
3926 ata_port_freeze(ap);
3927 }
3928
ba6a1308 3929 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
3930 } else {
3931 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3932 ata_qc_complete(qc);
3933 else
3934 ata_port_freeze(ap);
3935 }
3936 } else {
3937 if (in_wq) {
ba6a1308 3938 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
3939 ata_irq_on(ap);
3940 ata_qc_complete(qc);
ba6a1308 3941 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
3942 } else
3943 ata_qc_complete(qc);
3944 }
1da177e4 3945
c81e29b4 3946 ata_altstatus(ap); /* flush */
c17ea20d
TH
3947}
3948
bb5cb290
AL
3949/**
3950 * ata_hsm_move - move the HSM to the next state.
3951 * @ap: the target ata_port
3952 * @qc: qc on going
3953 * @status: current device status
3954 * @in_wq: 1 if called from workqueue, 0 otherwise
3955 *
3956 * RETURNS:
3957 * 1 when poll next status needed, 0 otherwise.
3958 */
9a1004d0
TH
3959int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3960 u8 status, int in_wq)
e2cec771 3961{
bb5cb290
AL
3962 unsigned long flags = 0;
3963 int poll_next;
3964
6912ccd5
AL
3965 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3966
bb5cb290
AL
3967 /* Make sure ata_qc_issue_prot() does not throw things
3968 * like DMA polling into the workqueue. Notice that
3969 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
3970 */
c234fb00 3971 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 3972
e2cec771 3973fsm_start:
999bb6f4
AL
3974 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
3975 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
3976
e2cec771
AL
3977 switch (ap->hsm_task_state) {
3978 case HSM_ST_FIRST:
bb5cb290
AL
3979 /* Send first data block or PACKET CDB */
3980
3981 /* If polling, we will stay in the work queue after
3982 * sending the data. Otherwise, interrupt handler
3983 * takes over after sending the data.
3984 */
3985 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
3986
e2cec771 3987 /* check device status */
3655d1d3
AL
3988 if (unlikely((status & ATA_DRQ) == 0)) {
3989 /* handle BSY=0, DRQ=0 as error */
3990 if (likely(status & (ATA_ERR | ATA_DF)))
3991 /* device stops HSM for abort/error */
3992 qc->err_mask |= AC_ERR_DEV;
3993 else
3994 /* HSM violation. Let EH handle this */
3995 qc->err_mask |= AC_ERR_HSM;
3996
14be71f4 3997 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 3998 goto fsm_start;
1da177e4
LT
3999 }
4000
71601958
AL
4001 /* Device should not ask for data transfer (DRQ=1)
4002 * when it finds something wrong.
eee6c32f
AL
4003 * We ignore DRQ here and stop the HSM by
4004 * changing hsm_task_state to HSM_ST_ERR and
4005 * let the EH abort the command or reset the device.
71601958
AL
4006 */
4007 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4008 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4009 ap->id, status);
3655d1d3 4010 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4011 ap->hsm_task_state = HSM_ST_ERR;
4012 goto fsm_start;
71601958 4013 }
1da177e4 4014
bb5cb290
AL
4015 /* Send the CDB (atapi) or the first data block (ata pio out).
4016 * During the state transition, interrupt handler shouldn't
4017 * be invoked before the data transfer is complete and
4018 * hsm_task_state is changed. Hence, the following locking.
4019 */
4020 if (in_wq)
ba6a1308 4021 spin_lock_irqsave(ap->lock, flags);
1da177e4 4022
bb5cb290
AL
4023 if (qc->tf.protocol == ATA_PROT_PIO) {
4024 /* PIO data out protocol.
4025 * send first data block.
4026 */
0565c26d 4027
bb5cb290
AL
4028 /* ata_pio_sectors() might change the state
4029 * to HSM_ST_LAST. so, the state is changed here
4030 * before ata_pio_sectors().
4031 */
4032 ap->hsm_task_state = HSM_ST;
4033 ata_pio_sectors(qc);
4034 ata_altstatus(ap); /* flush */
4035 } else
4036 /* send CDB */
4037 atapi_send_cdb(ap, qc);
4038
4039 if (in_wq)
ba6a1308 4040 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4041
4042 /* if polling, ata_pio_task() handles the rest.
4043 * otherwise, interrupt handler takes over from here.
4044 */
e2cec771 4045 break;
1c848984 4046
e2cec771
AL
4047 case HSM_ST:
4048 /* complete command or read/write the data register */
4049 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4050 /* ATAPI PIO protocol */
4051 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4052 /* No more data to transfer or device error.
4053 * Device error will be tagged in HSM_ST_LAST.
4054 */
e2cec771
AL
4055 ap->hsm_task_state = HSM_ST_LAST;
4056 goto fsm_start;
4057 }
1da177e4 4058
71601958
AL
4059 /* Device should not ask for data transfer (DRQ=1)
4060 * when it finds something wrong.
eee6c32f
AL
4061 * We ignore DRQ here and stop the HSM by
4062 * changing hsm_task_state to HSM_ST_ERR and
4063 * let the EH abort the command or reset the device.
71601958
AL
4064 */
4065 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4066 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4067 ap->id, status);
3655d1d3 4068 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4069 ap->hsm_task_state = HSM_ST_ERR;
4070 goto fsm_start;
71601958 4071 }
1da177e4 4072
e2cec771 4073 atapi_pio_bytes(qc);
7fb6ec28 4074
e2cec771
AL
4075 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4076 /* bad ireason reported by device */
4077 goto fsm_start;
1da177e4 4078
e2cec771
AL
4079 } else {
4080 /* ATA PIO protocol */
4081 if (unlikely((status & ATA_DRQ) == 0)) {
4082 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4083 if (likely(status & (ATA_ERR | ATA_DF)))
4084 /* device stops HSM for abort/error */
4085 qc->err_mask |= AC_ERR_DEV;
4086 else
4087 /* HSM violation. Let EH handle this */
4088 qc->err_mask |= AC_ERR_HSM;
4089
e2cec771
AL
4090 ap->hsm_task_state = HSM_ST_ERR;
4091 goto fsm_start;
4092 }
1da177e4 4093
eee6c32f
AL
4094 /* For PIO reads, some devices may ask for
4095 * data transfer (DRQ=1) alone with ERR=1.
4096 * We respect DRQ here and transfer one
4097 * block of junk data before changing the
4098 * hsm_task_state to HSM_ST_ERR.
4099 *
4100 * For PIO writes, ERR=1 DRQ=1 doesn't make
4101 * sense since the data block has been
4102 * transferred to the device.
71601958
AL
4103 */
4104 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4105 /* data might be corrputed */
4106 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4107
4108 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4109 ata_pio_sectors(qc);
4110 ata_altstatus(ap);
4111 status = ata_wait_idle(ap);
4112 }
4113
3655d1d3
AL
4114 if (status & (ATA_BUSY | ATA_DRQ))
4115 qc->err_mask |= AC_ERR_HSM;
4116
eee6c32f
AL
4117 /* ata_pio_sectors() might change the
4118 * state to HSM_ST_LAST. so, the state
4119 * is changed after ata_pio_sectors().
4120 */
4121 ap->hsm_task_state = HSM_ST_ERR;
4122 goto fsm_start;
71601958
AL
4123 }
4124
e2cec771
AL
4125 ata_pio_sectors(qc);
4126
4127 if (ap->hsm_task_state == HSM_ST_LAST &&
4128 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4129 /* all data read */
4130 ata_altstatus(ap);
52a32205 4131 status = ata_wait_idle(ap);
e2cec771
AL
4132 goto fsm_start;
4133 }
4134 }
4135
4136 ata_altstatus(ap); /* flush */
bb5cb290 4137 poll_next = 1;
1da177e4
LT
4138 break;
4139
14be71f4 4140 case HSM_ST_LAST:
6912ccd5
AL
4141 if (unlikely(!ata_ok(status))) {
4142 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4143 ap->hsm_task_state = HSM_ST_ERR;
4144 goto fsm_start;
4145 }
4146
4147 /* no more data to transfer */
4332a771
AL
4148 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4149 ap->id, qc->dev->devno, status);
e2cec771 4150
6912ccd5
AL
4151 WARN_ON(qc->err_mask);
4152
e2cec771 4153 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4154
e2cec771 4155 /* complete taskfile transaction */
c17ea20d 4156 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4157
4158 poll_next = 0;
1da177e4
LT
4159 break;
4160
14be71f4 4161 case HSM_ST_ERR:
e2cec771
AL
4162 /* make sure qc->err_mask is available to
4163 * know what's wrong and recover
4164 */
4165 WARN_ON(qc->err_mask == 0);
4166
4167 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4168
999bb6f4 4169 /* complete taskfile transaction */
c17ea20d 4170 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4171
4172 poll_next = 0;
e2cec771
AL
4173 break;
4174 default:
bb5cb290 4175 poll_next = 0;
6912ccd5 4176 BUG();
1da177e4
LT
4177 }
4178
bb5cb290 4179 return poll_next;
1da177e4
LT
4180}
4181
1da177e4 4182static void ata_pio_task(void *_data)
8061f5f0 4183{
c91af2c8
TH
4184 struct ata_queued_cmd *qc = _data;
4185 struct ata_port *ap = qc->ap;
8061f5f0 4186 u8 status;
a1af3734 4187 int poll_next;
8061f5f0 4188
7fb6ec28 4189fsm_start:
a1af3734 4190 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4191
a1af3734
AL
4192 /*
4193 * This is purely heuristic. This is a fast path.
4194 * Sometimes when we enter, BSY will be cleared in
4195 * a chk-status or two. If not, the drive is probably seeking
4196 * or something. Snooze for a couple msecs, then
4197 * chk-status again. If still busy, queue delayed work.
4198 */
4199 status = ata_busy_wait(ap, ATA_BUSY, 5);
4200 if (status & ATA_BUSY) {
4201 msleep(2);
4202 status = ata_busy_wait(ap, ATA_BUSY, 10);
4203 if (status & ATA_BUSY) {
31ce6dae 4204 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4205 return;
4206 }
8061f5f0
TH
4207 }
4208
a1af3734
AL
4209 /* move the HSM */
4210 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4211
a1af3734
AL
4212 /* another command or interrupt handler
4213 * may be running at this point.
4214 */
4215 if (poll_next)
7fb6ec28 4216 goto fsm_start;
8061f5f0
TH
4217}
4218
1da177e4
LT
4219/**
4220 * ata_qc_new - Request an available ATA command, for queueing
4221 * @ap: Port associated with device @dev
4222 * @dev: Device from whom we request an available command structure
4223 *
4224 * LOCKING:
0cba632b 4225 * None.
1da177e4
LT
4226 */
4227
4228static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4229{
4230 struct ata_queued_cmd *qc = NULL;
4231 unsigned int i;
4232
e3180499
TH
4233 /* no command while frozen */
4234 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4235 return NULL;
4236
2ab7db1f
TH
4237 /* the last tag is reserved for internal command. */
4238 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4239 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4240 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4241 break;
4242 }
4243
4244 if (qc)
4245 qc->tag = i;
4246
4247 return qc;
4248}
4249
4250/**
4251 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4252 * @dev: Device from whom we request an available command structure
4253 *
4254 * LOCKING:
0cba632b 4255 * None.
1da177e4
LT
4256 */
4257
3373efd8 4258struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4259{
3373efd8 4260 struct ata_port *ap = dev->ap;
1da177e4
LT
4261 struct ata_queued_cmd *qc;
4262
4263 qc = ata_qc_new(ap);
4264 if (qc) {
1da177e4
LT
4265 qc->scsicmd = NULL;
4266 qc->ap = ap;
4267 qc->dev = dev;
1da177e4 4268
2c13b7ce 4269 ata_qc_reinit(qc);
1da177e4
LT
4270 }
4271
4272 return qc;
4273}
4274
1da177e4
LT
4275/**
4276 * ata_qc_free - free unused ata_queued_cmd
4277 * @qc: Command to complete
4278 *
4279 * Designed to free unused ata_queued_cmd object
4280 * in case something prevents using it.
4281 *
4282 * LOCKING:
0cba632b 4283 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4284 */
4285void ata_qc_free(struct ata_queued_cmd *qc)
4286{
4ba946e9
TH
4287 struct ata_port *ap = qc->ap;
4288 unsigned int tag;
4289
a4631474 4290 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4291
4ba946e9
TH
4292 qc->flags = 0;
4293 tag = qc->tag;
4294 if (likely(ata_tag_valid(tag))) {
4ba946e9 4295 qc->tag = ATA_TAG_POISON;
6cec4a39 4296 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4297 }
1da177e4
LT
4298}
4299
76014427 4300void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4301{
dedaf2b0
TH
4302 struct ata_port *ap = qc->ap;
4303
a4631474
TH
4304 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4305 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4306
4307 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4308 ata_sg_clean(qc);
4309
7401abf2 4310 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4311 if (qc->tf.protocol == ATA_PROT_NCQ)
4312 ap->sactive &= ~(1 << qc->tag);
4313 else
4314 ap->active_tag = ATA_TAG_POISON;
7401abf2 4315
3f3791d3
AL
4316 /* atapi: mark qc as inactive to prevent the interrupt handler
4317 * from completing the command twice later, before the error handler
4318 * is called. (when rc != 0 and atapi request sense is needed)
4319 */
4320 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4321 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4322
1da177e4 4323 /* call completion callback */
77853bf2 4324 qc->complete_fn(qc);
1da177e4
LT
4325}
4326
f686bcb8
TH
4327/**
4328 * ata_qc_complete - Complete an active ATA command
4329 * @qc: Command to complete
4330 * @err_mask: ATA Status register contents
4331 *
4332 * Indicate to the mid and upper layers that an ATA
4333 * command has completed, with either an ok or not-ok status.
4334 *
4335 * LOCKING:
4336 * spin_lock_irqsave(host_set lock)
4337 */
4338void ata_qc_complete(struct ata_queued_cmd *qc)
4339{
4340 struct ata_port *ap = qc->ap;
4341
4342 /* XXX: New EH and old EH use different mechanisms to
4343 * synchronize EH with regular execution path.
4344 *
4345 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4346 * Normal execution path is responsible for not accessing a
4347 * failed qc. libata core enforces the rule by returning NULL
4348 * from ata_qc_from_tag() for failed qcs.
4349 *
4350 * Old EH depends on ata_qc_complete() nullifying completion
4351 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4352 * not synchronize with interrupt handler. Only PIO task is
4353 * taken care of.
4354 */
4355 if (ap->ops->error_handler) {
4356 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4357
4358 if (unlikely(qc->err_mask))
4359 qc->flags |= ATA_QCFLAG_FAILED;
4360
4361 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4362 if (!ata_tag_internal(qc->tag)) {
4363 /* always fill result TF for failed qc */
4364 ap->ops->tf_read(ap, &qc->result_tf);
4365 ata_qc_schedule_eh(qc);
4366 return;
4367 }
4368 }
4369
4370 /* read result TF if requested */
4371 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4372 ap->ops->tf_read(ap, &qc->result_tf);
4373
4374 __ata_qc_complete(qc);
4375 } else {
4376 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4377 return;
4378
4379 /* read result TF if failed or requested */
4380 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4381 ap->ops->tf_read(ap, &qc->result_tf);
4382
4383 __ata_qc_complete(qc);
4384 }
4385}
4386
dedaf2b0
TH
4387/**
4388 * ata_qc_complete_multiple - Complete multiple qcs successfully
4389 * @ap: port in question
4390 * @qc_active: new qc_active mask
4391 * @finish_qc: LLDD callback invoked before completing a qc
4392 *
4393 * Complete in-flight commands. This functions is meant to be
4394 * called from low-level driver's interrupt routine to complete
4395 * requests normally. ap->qc_active and @qc_active is compared
4396 * and commands are completed accordingly.
4397 *
4398 * LOCKING:
4399 * spin_lock_irqsave(host_set lock)
4400 *
4401 * RETURNS:
4402 * Number of completed commands on success, -errno otherwise.
4403 */
4404int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4405 void (*finish_qc)(struct ata_queued_cmd *))
4406{
4407 int nr_done = 0;
4408 u32 done_mask;
4409 int i;
4410
4411 done_mask = ap->qc_active ^ qc_active;
4412
4413 if (unlikely(done_mask & qc_active)) {
4414 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4415 "(%08x->%08x)\n", ap->qc_active, qc_active);
4416 return -EINVAL;
4417 }
4418
4419 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4420 struct ata_queued_cmd *qc;
4421
4422 if (!(done_mask & (1 << i)))
4423 continue;
4424
4425 if ((qc = ata_qc_from_tag(ap, i))) {
4426 if (finish_qc)
4427 finish_qc(qc);
4428 ata_qc_complete(qc);
4429 nr_done++;
4430 }
4431 }
4432
4433 return nr_done;
4434}
4435
1da177e4
LT
4436static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4437{
4438 struct ata_port *ap = qc->ap;
4439
4440 switch (qc->tf.protocol) {
3dc1d881 4441 case ATA_PROT_NCQ:
1da177e4
LT
4442 case ATA_PROT_DMA:
4443 case ATA_PROT_ATAPI_DMA:
4444 return 1;
4445
4446 case ATA_PROT_ATAPI:
4447 case ATA_PROT_PIO:
1da177e4
LT
4448 if (ap->flags & ATA_FLAG_PIO_DMA)
4449 return 1;
4450
4451 /* fall through */
4452
4453 default:
4454 return 0;
4455 }
4456
4457 /* never reached */
4458}
4459
4460/**
4461 * ata_qc_issue - issue taskfile to device
4462 * @qc: command to issue to device
4463 *
4464 * Prepare an ATA command to submission to device.
4465 * This includes mapping the data into a DMA-able
4466 * area, filling in the S/G table, and finally
4467 * writing the taskfile to hardware, starting the command.
4468 *
4469 * LOCKING:
4470 * spin_lock_irqsave(host_set lock)
1da177e4 4471 */
8e0e694a 4472void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4473{
4474 struct ata_port *ap = qc->ap;
4475
dedaf2b0
TH
4476 /* Make sure only one non-NCQ command is outstanding. The
4477 * check is skipped for old EH because it reuses active qc to
4478 * request ATAPI sense.
4479 */
4480 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4481
4482 if (qc->tf.protocol == ATA_PROT_NCQ) {
4483 WARN_ON(ap->sactive & (1 << qc->tag));
4484 ap->sactive |= 1 << qc->tag;
4485 } else {
4486 WARN_ON(ap->sactive);
4487 ap->active_tag = qc->tag;
4488 }
4489
e4a70e76 4490 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4491 ap->qc_active |= 1 << qc->tag;
e4a70e76 4492
1da177e4
LT
4493 if (ata_should_dma_map(qc)) {
4494 if (qc->flags & ATA_QCFLAG_SG) {
4495 if (ata_sg_setup(qc))
8e436af9 4496 goto sg_err;
1da177e4
LT
4497 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4498 if (ata_sg_setup_one(qc))
8e436af9 4499 goto sg_err;
1da177e4
LT
4500 }
4501 } else {
4502 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4503 }
4504
4505 ap->ops->qc_prep(qc);
4506
8e0e694a
TH
4507 qc->err_mask |= ap->ops->qc_issue(qc);
4508 if (unlikely(qc->err_mask))
4509 goto err;
4510 return;
1da177e4 4511
8e436af9
TH
4512sg_err:
4513 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4514 qc->err_mask |= AC_ERR_SYSTEM;
4515err:
4516 ata_qc_complete(qc);
1da177e4
LT
4517}
4518
4519/**
4520 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4521 * @qc: command to issue to device
4522 *
4523 * Using various libata functions and hooks, this function
4524 * starts an ATA command. ATA commands are grouped into
4525 * classes called "protocols", and issuing each type of protocol
4526 * is slightly different.
4527 *
0baab86b
EF
4528 * May be used as the qc_issue() entry in ata_port_operations.
4529 *
1da177e4
LT
4530 * LOCKING:
4531 * spin_lock_irqsave(host_set lock)
4532 *
4533 * RETURNS:
9a3d9eb0 4534 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4535 */
4536
9a3d9eb0 4537unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4538{
4539 struct ata_port *ap = qc->ap;
4540
e50362ec
AL
4541 /* Use polling pio if the LLD doesn't handle
4542 * interrupt driven pio and atapi CDB interrupt.
4543 */
4544 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4545 switch (qc->tf.protocol) {
4546 case ATA_PROT_PIO:
4547 case ATA_PROT_ATAPI:
4548 case ATA_PROT_ATAPI_NODATA:
4549 qc->tf.flags |= ATA_TFLAG_POLLING;
4550 break;
4551 case ATA_PROT_ATAPI_DMA:
4552 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4553 /* see ata_dma_blacklisted() */
e50362ec
AL
4554 BUG();
4555 break;
4556 default:
4557 break;
4558 }
4559 }
4560
312f7da2 4561 /* select the device */
1da177e4
LT
4562 ata_dev_select(ap, qc->dev->devno, 1, 0);
4563
312f7da2 4564 /* start the command */
1da177e4
LT
4565 switch (qc->tf.protocol) {
4566 case ATA_PROT_NODATA:
312f7da2
AL
4567 if (qc->tf.flags & ATA_TFLAG_POLLING)
4568 ata_qc_set_polling(qc);
4569
e5338254 4570 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4571 ap->hsm_task_state = HSM_ST_LAST;
4572
4573 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4574 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4575
1da177e4
LT
4576 break;
4577
4578 case ATA_PROT_DMA:
587005de 4579 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4580
1da177e4
LT
4581 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4582 ap->ops->bmdma_setup(qc); /* set up bmdma */
4583 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4584 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4585 break;
4586
312f7da2
AL
4587 case ATA_PROT_PIO:
4588 if (qc->tf.flags & ATA_TFLAG_POLLING)
4589 ata_qc_set_polling(qc);
1da177e4 4590
e5338254 4591 ata_tf_to_host(ap, &qc->tf);
312f7da2 4592
54f00389
AL
4593 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4594 /* PIO data out protocol */
4595 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4596 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4597
4598 /* always send first data block using
e27486db 4599 * the ata_pio_task() codepath.
54f00389 4600 */
312f7da2 4601 } else {
54f00389
AL
4602 /* PIO data in protocol */
4603 ap->hsm_task_state = HSM_ST;
4604
4605 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4606 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4607
4608 /* if polling, ata_pio_task() handles the rest.
4609 * otherwise, interrupt handler takes over from here.
4610 */
312f7da2
AL
4611 }
4612
1da177e4
LT
4613 break;
4614
1da177e4 4615 case ATA_PROT_ATAPI:
1da177e4 4616 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4617 if (qc->tf.flags & ATA_TFLAG_POLLING)
4618 ata_qc_set_polling(qc);
4619
e5338254 4620 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4621
312f7da2
AL
4622 ap->hsm_task_state = HSM_ST_FIRST;
4623
4624 /* send cdb by polling if no cdb interrupt */
4625 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4626 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4627 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4628 break;
4629
4630 case ATA_PROT_ATAPI_DMA:
587005de 4631 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4632
1da177e4
LT
4633 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4634 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4635 ap->hsm_task_state = HSM_ST_FIRST;
4636
4637 /* send cdb by polling if no cdb interrupt */
4638 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4639 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4640 break;
4641
4642 default:
4643 WARN_ON(1);
9a3d9eb0 4644 return AC_ERR_SYSTEM;
1da177e4
LT
4645 }
4646
4647 return 0;
4648}
4649
1da177e4
LT
4650/**
4651 * ata_host_intr - Handle host interrupt for given (port, task)
4652 * @ap: Port on which interrupt arrived (possibly...)
4653 * @qc: Taskfile currently active in engine
4654 *
4655 * Handle host interrupt for given queued command. Currently,
4656 * only DMA interrupts are handled. All other commands are
4657 * handled via polling with interrupts disabled (nIEN bit).
4658 *
4659 * LOCKING:
4660 * spin_lock_irqsave(host_set lock)
4661 *
4662 * RETURNS:
4663 * One if interrupt was handled, zero if not (shared irq).
4664 */
4665
4666inline unsigned int ata_host_intr (struct ata_port *ap,
4667 struct ata_queued_cmd *qc)
4668{
312f7da2 4669 u8 status, host_stat = 0;
1da177e4 4670
312f7da2
AL
4671 VPRINTK("ata%u: protocol %d task_state %d\n",
4672 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4673
312f7da2
AL
4674 /* Check whether we are expecting interrupt in this state */
4675 switch (ap->hsm_task_state) {
4676 case HSM_ST_FIRST:
6912ccd5
AL
4677 /* Some pre-ATAPI-4 devices assert INTRQ
4678 * at this state when ready to receive CDB.
4679 */
1da177e4 4680
312f7da2
AL
4681 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4682 * The flag was turned on only for atapi devices.
4683 * No need to check is_atapi_taskfile(&qc->tf) again.
4684 */
4685 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4686 goto idle_irq;
1da177e4 4687 break;
312f7da2
AL
4688 case HSM_ST_LAST:
4689 if (qc->tf.protocol == ATA_PROT_DMA ||
4690 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4691 /* check status of DMA engine */
4692 host_stat = ap->ops->bmdma_status(ap);
4693 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4694
4695 /* if it's not our irq... */
4696 if (!(host_stat & ATA_DMA_INTR))
4697 goto idle_irq;
4698
4699 /* before we do anything else, clear DMA-Start bit */
4700 ap->ops->bmdma_stop(qc);
a4f16610
AL
4701
4702 if (unlikely(host_stat & ATA_DMA_ERR)) {
4703 /* error when transfering data to/from memory */
4704 qc->err_mask |= AC_ERR_HOST_BUS;
4705 ap->hsm_task_state = HSM_ST_ERR;
4706 }
312f7da2
AL
4707 }
4708 break;
4709 case HSM_ST:
4710 break;
1da177e4
LT
4711 default:
4712 goto idle_irq;
4713 }
4714
312f7da2
AL
4715 /* check altstatus */
4716 status = ata_altstatus(ap);
4717 if (status & ATA_BUSY)
4718 goto idle_irq;
1da177e4 4719
312f7da2
AL
4720 /* check main status, clearing INTRQ */
4721 status = ata_chk_status(ap);
4722 if (unlikely(status & ATA_BUSY))
4723 goto idle_irq;
1da177e4 4724
312f7da2
AL
4725 /* ack bmdma irq events */
4726 ap->ops->irq_clear(ap);
1da177e4 4727
bb5cb290 4728 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4729 return 1; /* irq handled */
4730
4731idle_irq:
4732 ap->stats.idle_irq++;
4733
4734#ifdef ATA_IRQ_TRAP
4735 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4736 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4737 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4738 return 1;
1da177e4
LT
4739 }
4740#endif
4741 return 0; /* irq not handled */
4742}
4743
4744/**
4745 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4746 * @irq: irq line (unused)
4747 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4748 * @regs: unused
4749 *
0cba632b
JG
4750 * Default interrupt handler for PCI IDE devices. Calls
4751 * ata_host_intr() for each port that is not disabled.
4752 *
1da177e4 4753 * LOCKING:
0cba632b 4754 * Obtains host_set lock during operation.
1da177e4
LT
4755 *
4756 * RETURNS:
0cba632b 4757 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4758 */
4759
4760irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4761{
4762 struct ata_host_set *host_set = dev_instance;
4763 unsigned int i;
4764 unsigned int handled = 0;
4765 unsigned long flags;
4766
4767 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4768 spin_lock_irqsave(&host_set->lock, flags);
4769
4770 for (i = 0; i < host_set->n_ports; i++) {
4771 struct ata_port *ap;
4772
4773 ap = host_set->ports[i];
c1389503 4774 if (ap &&
029f5468 4775 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
4776 struct ata_queued_cmd *qc;
4777
4778 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4779 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4780 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4781 handled |= ata_host_intr(ap, qc);
4782 }
4783 }
4784
4785 spin_unlock_irqrestore(&host_set->lock, flags);
4786
4787 return IRQ_RETVAL(handled);
4788}
4789
34bf2170
TH
4790/**
4791 * sata_scr_valid - test whether SCRs are accessible
4792 * @ap: ATA port to test SCR accessibility for
4793 *
4794 * Test whether SCRs are accessible for @ap.
4795 *
4796 * LOCKING:
4797 * None.
4798 *
4799 * RETURNS:
4800 * 1 if SCRs are accessible, 0 otherwise.
4801 */
4802int sata_scr_valid(struct ata_port *ap)
4803{
4804 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4805}
4806
4807/**
4808 * sata_scr_read - read SCR register of the specified port
4809 * @ap: ATA port to read SCR for
4810 * @reg: SCR to read
4811 * @val: Place to store read value
4812 *
4813 * Read SCR register @reg of @ap into *@val. This function is
4814 * guaranteed to succeed if the cable type of the port is SATA
4815 * and the port implements ->scr_read.
4816 *
4817 * LOCKING:
4818 * None.
4819 *
4820 * RETURNS:
4821 * 0 on success, negative errno on failure.
4822 */
4823int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4824{
4825 if (sata_scr_valid(ap)) {
4826 *val = ap->ops->scr_read(ap, reg);
4827 return 0;
4828 }
4829 return -EOPNOTSUPP;
4830}
4831
4832/**
4833 * sata_scr_write - write SCR register of the specified port
4834 * @ap: ATA port to write SCR for
4835 * @reg: SCR to write
4836 * @val: value to write
4837 *
4838 * Write @val to SCR register @reg of @ap. This function is
4839 * guaranteed to succeed if the cable type of the port is SATA
4840 * and the port implements ->scr_read.
4841 *
4842 * LOCKING:
4843 * None.
4844 *
4845 * RETURNS:
4846 * 0 on success, negative errno on failure.
4847 */
4848int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4849{
4850 if (sata_scr_valid(ap)) {
4851 ap->ops->scr_write(ap, reg, val);
4852 return 0;
4853 }
4854 return -EOPNOTSUPP;
4855}
4856
4857/**
4858 * sata_scr_write_flush - write SCR register of the specified port and flush
4859 * @ap: ATA port to write SCR for
4860 * @reg: SCR to write
4861 * @val: value to write
4862 *
4863 * This function is identical to sata_scr_write() except that this
4864 * function performs flush after writing to the register.
4865 *
4866 * LOCKING:
4867 * None.
4868 *
4869 * RETURNS:
4870 * 0 on success, negative errno on failure.
4871 */
4872int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4873{
4874 if (sata_scr_valid(ap)) {
4875 ap->ops->scr_write(ap, reg, val);
4876 ap->ops->scr_read(ap, reg);
4877 return 0;
4878 }
4879 return -EOPNOTSUPP;
4880}
4881
4882/**
4883 * ata_port_online - test whether the given port is online
4884 * @ap: ATA port to test
4885 *
4886 * Test whether @ap is online. Note that this function returns 0
4887 * if online status of @ap cannot be obtained, so
4888 * ata_port_online(ap) != !ata_port_offline(ap).
4889 *
4890 * LOCKING:
4891 * None.
4892 *
4893 * RETURNS:
4894 * 1 if the port online status is available and online.
4895 */
4896int ata_port_online(struct ata_port *ap)
4897{
4898 u32 sstatus;
4899
4900 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4901 return 1;
4902 return 0;
4903}
4904
4905/**
4906 * ata_port_offline - test whether the given port is offline
4907 * @ap: ATA port to test
4908 *
4909 * Test whether @ap is offline. Note that this function returns
4910 * 0 if offline status of @ap cannot be obtained, so
4911 * ata_port_online(ap) != !ata_port_offline(ap).
4912 *
4913 * LOCKING:
4914 * None.
4915 *
4916 * RETURNS:
4917 * 1 if the port offline status is available and offline.
4918 */
4919int ata_port_offline(struct ata_port *ap)
4920{
4921 u32 sstatus;
4922
4923 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4924 return 1;
4925 return 0;
4926}
0baab86b 4927
9b847548
JA
4928/*
4929 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4930 * without filling any other registers
4931 */
3373efd8 4932static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
9b847548
JA
4933{
4934 struct ata_taskfile tf;
4935 int err;
4936
3373efd8 4937 ata_tf_init(dev, &tf);
9b847548
JA
4938
4939 tf.command = cmd;
4940 tf.flags |= ATA_TFLAG_DEVICE;
4941 tf.protocol = ATA_PROT_NODATA;
4942
3373efd8 4943 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
9b847548 4944 if (err)
f15a1daf
TH
4945 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4946 __FUNCTION__, err);
9b847548
JA
4947
4948 return err;
4949}
4950
3373efd8 4951static int ata_flush_cache(struct ata_device *dev)
9b847548
JA
4952{
4953 u8 cmd;
4954
4955 if (!ata_try_flush_cache(dev))
4956 return 0;
4957
4958 if (ata_id_has_flush_ext(dev->id))
4959 cmd = ATA_CMD_FLUSH_EXT;
4960 else
4961 cmd = ATA_CMD_FLUSH;
4962
3373efd8 4963 return ata_do_simple_cmd(dev, cmd);
9b847548
JA
4964}
4965
3373efd8 4966static int ata_standby_drive(struct ata_device *dev)
9b847548 4967{
3373efd8 4968 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
9b847548
JA
4969}
4970
3373efd8 4971static int ata_start_drive(struct ata_device *dev)
9b847548 4972{
3373efd8 4973 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
9b847548
JA
4974}
4975
4976/**
4977 * ata_device_resume - wakeup a previously suspended devices
c893a3ae 4978 * @dev: the device to resume
9b847548
JA
4979 *
4980 * Kick the drive back into action, by sending it an idle immediate
4981 * command and making sure its transfer mode matches between drive
4982 * and host.
4983 *
4984 */
3373efd8 4985int ata_device_resume(struct ata_device *dev)
9b847548 4986{
3373efd8
TH
4987 struct ata_port *ap = dev->ap;
4988
9b847548 4989 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 4990 struct ata_device *failed_dev;
e42d7be2 4991
1cca0ebb 4992 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
0737ac89 4993 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
e42d7be2 4994
9b847548 4995 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9 4996 while (ata_set_mode(ap, &failed_dev))
3373efd8 4997 ata_dev_disable(failed_dev);
9b847548 4998 }
e1211e3f 4999 if (!ata_dev_enabled(dev))
9b847548
JA
5000 return 0;
5001 if (dev->class == ATA_DEV_ATA)
3373efd8 5002 ata_start_drive(dev);
9b847548
JA
5003
5004 return 0;
5005}
5006
5007/**
5008 * ata_device_suspend - prepare a device for suspend
c893a3ae 5009 * @dev: the device to suspend
e2a7f77a 5010 * @state: target power management state
9b847548
JA
5011 *
5012 * Flush the cache on the drive, if appropriate, then issue a
5013 * standbynow command.
9b847548 5014 */
3373efd8 5015int ata_device_suspend(struct ata_device *dev, pm_message_t state)
9b847548 5016{
3373efd8
TH
5017 struct ata_port *ap = dev->ap;
5018
e1211e3f 5019 if (!ata_dev_enabled(dev))
9b847548
JA
5020 return 0;
5021 if (dev->class == ATA_DEV_ATA)
3373efd8 5022 ata_flush_cache(dev);
9b847548 5023
082776e4 5024 if (state.event != PM_EVENT_FREEZE)
3373efd8 5025 ata_standby_drive(dev);
9b847548
JA
5026 ap->flags |= ATA_FLAG_SUSPENDED;
5027 return 0;
5028}
5029
c893a3ae
RD
5030/**
5031 * ata_port_start - Set port up for dma.
5032 * @ap: Port to initialize
5033 *
5034 * Called just after data structures for each port are
5035 * initialized. Allocates space for PRD table.
5036 *
5037 * May be used as the port_start() entry in ata_port_operations.
5038 *
5039 * LOCKING:
5040 * Inherited from caller.
5041 */
5042
1da177e4
LT
5043int ata_port_start (struct ata_port *ap)
5044{
2f1f610b 5045 struct device *dev = ap->dev;
6037d6bb 5046 int rc;
1da177e4
LT
5047
5048 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5049 if (!ap->prd)
5050 return -ENOMEM;
5051
6037d6bb
JG
5052 rc = ata_pad_alloc(ap, dev);
5053 if (rc) {
cedc9a47 5054 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5055 return rc;
cedc9a47
JG
5056 }
5057
1da177e4
LT
5058 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5059
5060 return 0;
5061}
5062
0baab86b
EF
5063
5064/**
5065 * ata_port_stop - Undo ata_port_start()
5066 * @ap: Port to shut down
5067 *
5068 * Frees the PRD table.
5069 *
5070 * May be used as the port_stop() entry in ata_port_operations.
5071 *
5072 * LOCKING:
6f0ef4fa 5073 * Inherited from caller.
0baab86b
EF
5074 */
5075
1da177e4
LT
5076void ata_port_stop (struct ata_port *ap)
5077{
2f1f610b 5078 struct device *dev = ap->dev;
1da177e4
LT
5079
5080 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5081 ata_pad_free(ap, dev);
1da177e4
LT
5082}
5083
aa8f0dc6
JG
5084void ata_host_stop (struct ata_host_set *host_set)
5085{
5086 if (host_set->mmio_base)
5087 iounmap(host_set->mmio_base);
5088}
5089
5090
1da177e4
LT
5091/**
5092 * ata_host_remove - Unregister SCSI host structure with upper layers
5093 * @ap: Port to unregister
5094 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5095 *
5096 * LOCKING:
6f0ef4fa 5097 * Inherited from caller.
1da177e4
LT
5098 */
5099
5100static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5101{
5102 struct Scsi_Host *sh = ap->host;
5103
5104 DPRINTK("ENTER\n");
5105
5106 if (do_unregister)
5107 scsi_remove_host(sh);
5108
5109 ap->ops->port_stop(ap);
5110}
5111
3ef3b43d
TH
5112/**
5113 * ata_dev_init - Initialize an ata_device structure
5114 * @dev: Device structure to initialize
5115 *
5116 * Initialize @dev in preparation for probing.
5117 *
5118 * LOCKING:
5119 * Inherited from caller.
5120 */
5121void ata_dev_init(struct ata_device *dev)
5122{
5123 struct ata_port *ap = dev->ap;
72fa4b74
TH
5124 unsigned long flags;
5125
5a04bf4b
TH
5126 /* SATA spd limit is bound to the first device */
5127 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5128
72fa4b74
TH
5129 /* High bits of dev->flags are used to record warm plug
5130 * requests which occur asynchronously. Synchronize using
5131 * host_set lock.
5132 */
ba6a1308 5133 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5134 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5135 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5136
72fa4b74
TH
5137 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5138 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5139 dev->pio_mask = UINT_MAX;
5140 dev->mwdma_mask = UINT_MAX;
5141 dev->udma_mask = UINT_MAX;
5142}
5143
1da177e4
LT
5144/**
5145 * ata_host_init - Initialize an ata_port structure
5146 * @ap: Structure to initialize
5147 * @host: associated SCSI mid-layer structure
5148 * @host_set: Collection of hosts to which @ap belongs
5149 * @ent: Probe information provided by low-level driver
5150 * @port_no: Port number associated with this ata_port
5151 *
0cba632b
JG
5152 * Initialize a new ata_port structure, and its associated
5153 * scsi_host.
5154 *
1da177e4 5155 * LOCKING:
0cba632b 5156 * Inherited from caller.
1da177e4 5157 */
1da177e4
LT
5158static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5159 struct ata_host_set *host_set,
057ace5e 5160 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5161{
5162 unsigned int i;
5163
5164 host->max_id = 16;
5165 host->max_lun = 1;
5166 host->max_channel = 1;
5167 host->unique_id = ata_unique_id++;
5168 host->max_cmd_len = 12;
12413197 5169
ba6a1308 5170 ap->lock = &host_set->lock;
198e0fed 5171 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
5172 ap->id = host->unique_id;
5173 ap->host = host;
5174 ap->ctl = ATA_DEVCTL_OBS;
5175 ap->host_set = host_set;
2f1f610b 5176 ap->dev = ent->dev;
1da177e4
LT
5177 ap->port_no = port_no;
5178 ap->hard_port_no =
5179 ent->legacy_mode ? ent->hard_port_no : port_no;
5180 ap->pio_mask = ent->pio_mask;
5181 ap->mwdma_mask = ent->mwdma_mask;
5182 ap->udma_mask = ent->udma_mask;
5183 ap->flags |= ent->host_flags;
5184 ap->ops = ent->port_ops;
5a04bf4b 5185 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5186 ap->active_tag = ATA_TAG_POISON;
5187 ap->last_ctl = 0xFF;
bd5d825c
BP
5188
5189#if defined(ATA_VERBOSE_DEBUG)
5190 /* turn on all debugging levels */
5191 ap->msg_enable = 0x00FF;
5192#elif defined(ATA_DEBUG)
5193 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5194#else
5195 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR;
5196#endif
1da177e4 5197
86e45b6b 5198 INIT_WORK(&ap->port_task, NULL, NULL);
580b2102 5199 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
3057ac3c 5200 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
a72ec4ce 5201 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5202 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5203
838df628
TH
5204 /* set cable type */
5205 ap->cbl = ATA_CBL_NONE;
5206 if (ap->flags & ATA_FLAG_SATA)
5207 ap->cbl = ATA_CBL_SATA;
5208
acf356b1
TH
5209 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5210 struct ata_device *dev = &ap->device[i];
38d87234 5211 dev->ap = ap;
72fa4b74 5212 dev->devno = i;
3ef3b43d 5213 ata_dev_init(dev);
acf356b1 5214 }
1da177e4
LT
5215
5216#ifdef ATA_IRQ_TRAP
5217 ap->stats.unhandled_irq = 1;
5218 ap->stats.idle_irq = 1;
5219#endif
5220
5221 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5222}
5223
5224/**
5225 * ata_host_add - Attach low-level ATA driver to system
5226 * @ent: Information provided by low-level driver
5227 * @host_set: Collections of ports to which we add
5228 * @port_no: Port number associated with this host
5229 *
0cba632b
JG
5230 * Attach low-level ATA driver to system.
5231 *
1da177e4 5232 * LOCKING:
0cba632b 5233 * PCI/etc. bus probe sem.
1da177e4
LT
5234 *
5235 * RETURNS:
0cba632b 5236 * New ata_port on success, for NULL on error.
1da177e4
LT
5237 */
5238
057ace5e 5239static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
5240 struct ata_host_set *host_set,
5241 unsigned int port_no)
5242{
5243 struct Scsi_Host *host;
5244 struct ata_port *ap;
5245 int rc;
5246
5247 DPRINTK("ENTER\n");
aec5c3c1 5248
52783c5d 5249 if (!ent->port_ops->error_handler &&
aec5c3c1
TH
5250 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5251 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5252 port_no);
5253 return NULL;
5254 }
5255
1da177e4
LT
5256 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5257 if (!host)
5258 return NULL;
5259
30afc84c
TH
5260 host->transportt = &ata_scsi_transport_template;
5261
35bb94b1 5262 ap = ata_shost_to_port(host);
1da177e4
LT
5263
5264 ata_host_init(ap, host, host_set, ent, port_no);
5265
5266 rc = ap->ops->port_start(ap);
5267 if (rc)
5268 goto err_out;
5269
5270 return ap;
5271
5272err_out:
5273 scsi_host_put(host);
5274 return NULL;
5275}
5276
5277/**
0cba632b
JG
5278 * ata_device_add - Register hardware device with ATA and SCSI layers
5279 * @ent: Probe information describing hardware device to be registered
5280 *
5281 * This function processes the information provided in the probe
5282 * information struct @ent, allocates the necessary ATA and SCSI
5283 * host information structures, initializes them, and registers
5284 * everything with requisite kernel subsystems.
5285 *
5286 * This function requests irqs, probes the ATA bus, and probes
5287 * the SCSI bus.
1da177e4
LT
5288 *
5289 * LOCKING:
0cba632b 5290 * PCI/etc. bus probe sem.
1da177e4
LT
5291 *
5292 * RETURNS:
0cba632b 5293 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5294 */
057ace5e 5295int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
5296{
5297 unsigned int count = 0, i;
5298 struct device *dev = ent->dev;
5299 struct ata_host_set *host_set;
39b07ce6 5300 int rc;
1da177e4
LT
5301
5302 DPRINTK("ENTER\n");
5303 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 5304 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
5305 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5306 if (!host_set)
5307 return 0;
1da177e4
LT
5308 spin_lock_init(&host_set->lock);
5309
5310 host_set->dev = dev;
5311 host_set->n_ports = ent->n_ports;
5312 host_set->irq = ent->irq;
5313 host_set->mmio_base = ent->mmio_base;
5314 host_set->private_data = ent->private_data;
5315 host_set->ops = ent->port_ops;
5444a6f4 5316 host_set->flags = ent->host_set_flags;
1da177e4
LT
5317
5318 /* register each port bound to this device */
5319 for (i = 0; i < ent->n_ports; i++) {
5320 struct ata_port *ap;
5321 unsigned long xfer_mode_mask;
5322
5323 ap = ata_host_add(ent, host_set, i);
5324 if (!ap)
5325 goto err_out;
5326
5327 host_set->ports[i] = ap;
5328 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5329 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5330 (ap->pio_mask << ATA_SHIFT_PIO);
5331
5332 /* print per-port info to dmesg */
f15a1daf
TH
5333 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5334 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5335 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5336 ata_mode_string(xfer_mode_mask),
5337 ap->ioaddr.cmd_addr,
5338 ap->ioaddr.ctl_addr,
5339 ap->ioaddr.bmdma_addr,
5340 ent->irq);
1da177e4
LT
5341
5342 ata_chk_status(ap);
5343 host_set->ops->irq_clear(ap);
e3180499 5344 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
1da177e4
LT
5345 count++;
5346 }
5347
57f3bda8
RD
5348 if (!count)
5349 goto err_free_ret;
1da177e4
LT
5350
5351 /* obtain irq, that is shared between channels */
39b07ce6
JG
5352 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5353 DRV_NAME, host_set);
5354 if (rc) {
5355 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5356 ent->irq, rc);
1da177e4 5357 goto err_out;
39b07ce6 5358 }
1da177e4
LT
5359
5360 /* perform each probe synchronously */
5361 DPRINTK("probe begin\n");
5362 for (i = 0; i < count; i++) {
5363 struct ata_port *ap;
5a04bf4b 5364 u32 scontrol;
1da177e4
LT
5365 int rc;
5366
5367 ap = host_set->ports[i];
5368
5a04bf4b
TH
5369 /* init sata_spd_limit to the current value */
5370 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5371 int spd = (scontrol >> 4) & 0xf;
5372 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5373 }
5374 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5375
1da177e4
LT
5376 rc = scsi_add_host(ap->host, dev);
5377 if (rc) {
f15a1daf 5378 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5379 /* FIXME: do something useful here */
5380 /* FIXME: handle unconditional calls to
5381 * scsi_scan_host and ata_host_remove, below,
5382 * at the very least
5383 */
5384 }
3e706399 5385
52783c5d 5386 if (ap->ops->error_handler) {
3e706399
TH
5387 unsigned long flags;
5388
5389 ata_port_probe(ap);
5390
5391 /* kick EH for boot probing */
ba6a1308 5392 spin_lock_irqsave(ap->lock, flags);
3e706399
TH
5393
5394 ap->eh_info.probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5395 ap->eh_info.action |= ATA_EH_SOFTRESET;
5396
5397 ap->flags |= ATA_FLAG_LOADING;
5398 ata_port_schedule_eh(ap);
5399
ba6a1308 5400 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5401
5402 /* wait for EH to finish */
5403 ata_port_wait_eh(ap);
5404 } else {
5405 DPRINTK("ata%u: bus probe begin\n", ap->id);
5406 rc = ata_bus_probe(ap);
5407 DPRINTK("ata%u: bus probe end\n", ap->id);
5408
5409 if (rc) {
5410 /* FIXME: do something useful here?
5411 * Current libata behavior will
5412 * tear down everything when
5413 * the module is removed
5414 * or the h/w is unplugged.
5415 */
5416 }
5417 }
1da177e4
LT
5418 }
5419
5420 /* probes are done, now scan each port's disk(s) */
c893a3ae 5421 DPRINTK("host probe begin\n");
1da177e4
LT
5422 for (i = 0; i < count; i++) {
5423 struct ata_port *ap = host_set->ports[i];
5424
644dd0cc 5425 ata_scsi_scan_host(ap);
1da177e4
LT
5426 }
5427
5428 dev_set_drvdata(dev, host_set);
5429
5430 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5431 return ent->n_ports; /* success */
5432
5433err_out:
5434 for (i = 0; i < count; i++) {
5435 ata_host_remove(host_set->ports[i], 1);
5436 scsi_host_put(host_set->ports[i]->host);
5437 }
57f3bda8 5438err_free_ret:
1da177e4
LT
5439 kfree(host_set);
5440 VPRINTK("EXIT, returning 0\n");
5441 return 0;
5442}
5443
720ba126
TH
5444/**
5445 * ata_port_detach - Detach ATA port in prepration of device removal
5446 * @ap: ATA port to be detached
5447 *
5448 * Detach all ATA devices and the associated SCSI devices of @ap;
5449 * then, remove the associated SCSI host. @ap is guaranteed to
5450 * be quiescent on return from this function.
5451 *
5452 * LOCKING:
5453 * Kernel thread context (may sleep).
5454 */
5455void ata_port_detach(struct ata_port *ap)
5456{
5457 unsigned long flags;
5458 int i;
5459
5460 if (!ap->ops->error_handler)
5461 return;
5462
5463 /* tell EH we're leaving & flush EH */
ba6a1308 5464 spin_lock_irqsave(ap->lock, flags);
720ba126 5465 ap->flags |= ATA_FLAG_UNLOADING;
ba6a1308 5466 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5467
5468 ata_port_wait_eh(ap);
5469
5470 /* EH is now guaranteed to see UNLOADING, so no new device
5471 * will be attached. Disable all existing devices.
5472 */
ba6a1308 5473 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5474
5475 for (i = 0; i < ATA_MAX_DEVICES; i++)
5476 ata_dev_disable(&ap->device[i]);
5477
ba6a1308 5478 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5479
5480 /* Final freeze & EH. All in-flight commands are aborted. EH
5481 * will be skipped and retrials will be terminated with bad
5482 * target.
5483 */
ba6a1308 5484 spin_lock_irqsave(ap->lock, flags);
720ba126 5485 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5486 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5487
5488 ata_port_wait_eh(ap);
5489
5490 /* Flush hotplug task. The sequence is similar to
5491 * ata_port_flush_task().
5492 */
5493 flush_workqueue(ata_aux_wq);
5494 cancel_delayed_work(&ap->hotplug_task);
5495 flush_workqueue(ata_aux_wq);
5496
5497 /* remove the associated SCSI host */
5498 scsi_remove_host(ap->host);
5499}
5500
17b14451
AC
5501/**
5502 * ata_host_set_remove - PCI layer callback for device removal
5503 * @host_set: ATA host set that was removed
5504 *
2e9edbf8 5505 * Unregister all objects associated with this host set. Free those
17b14451
AC
5506 * objects.
5507 *
5508 * LOCKING:
5509 * Inherited from calling layer (may sleep).
5510 */
5511
17b14451
AC
5512void ata_host_set_remove(struct ata_host_set *host_set)
5513{
17b14451
AC
5514 unsigned int i;
5515
720ba126
TH
5516 for (i = 0; i < host_set->n_ports; i++)
5517 ata_port_detach(host_set->ports[i]);
17b14451
AC
5518
5519 free_irq(host_set->irq, host_set);
5520
5521 for (i = 0; i < host_set->n_ports; i++) {
720ba126 5522 struct ata_port *ap = host_set->ports[i];
17b14451
AC
5523
5524 ata_scsi_release(ap->host);
5525
5526 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5527 struct ata_ioports *ioaddr = &ap->ioaddr;
5528
5529 if (ioaddr->cmd_addr == 0x1f0)
5530 release_region(0x1f0, 8);
5531 else if (ioaddr->cmd_addr == 0x170)
5532 release_region(0x170, 8);
5533 }
5534
5535 scsi_host_put(ap->host);
5536 }
5537
5538 if (host_set->ops->host_stop)
5539 host_set->ops->host_stop(host_set);
5540
5541 kfree(host_set);
5542}
5543
1da177e4
LT
5544/**
5545 * ata_scsi_release - SCSI layer callback hook for host unload
5546 * @host: libata host to be unloaded
5547 *
5548 * Performs all duties necessary to shut down a libata port...
5549 * Kill port kthread, disable port, and release resources.
5550 *
5551 * LOCKING:
5552 * Inherited from SCSI layer.
5553 *
5554 * RETURNS:
5555 * One.
5556 */
5557
5558int ata_scsi_release(struct Scsi_Host *host)
5559{
35bb94b1 5560 struct ata_port *ap = ata_shost_to_port(host);
1da177e4
LT
5561
5562 DPRINTK("ENTER\n");
5563
5564 ap->ops->port_disable(ap);
5565 ata_host_remove(ap, 0);
5566
5567 DPRINTK("EXIT\n");
5568 return 1;
5569}
5570
5571/**
5572 * ata_std_ports - initialize ioaddr with standard port offsets.
5573 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5574 *
5575 * Utility function which initializes data_addr, error_addr,
5576 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5577 * device_addr, status_addr, and command_addr to standard offsets
5578 * relative to cmd_addr.
5579 *
5580 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5581 */
0baab86b 5582
1da177e4
LT
5583void ata_std_ports(struct ata_ioports *ioaddr)
5584{
5585 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5586 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5587 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5588 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5589 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5590 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5591 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5592 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5593 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5594 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5595}
5596
0baab86b 5597
374b1873
JG
5598#ifdef CONFIG_PCI
5599
5600void ata_pci_host_stop (struct ata_host_set *host_set)
5601{
5602 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5603
5604 pci_iounmap(pdev, host_set->mmio_base);
5605}
5606
1da177e4
LT
5607/**
5608 * ata_pci_remove_one - PCI layer callback for device removal
5609 * @pdev: PCI device that was removed
5610 *
5611 * PCI layer indicates to libata via this hook that
6f0ef4fa 5612 * hot-unplug or module unload event has occurred.
1da177e4
LT
5613 * Handle this by unregistering all objects associated
5614 * with this PCI device. Free those objects. Then finally
5615 * release PCI resources and disable device.
5616 *
5617 * LOCKING:
5618 * Inherited from PCI layer (may sleep).
5619 */
5620
5621void ata_pci_remove_one (struct pci_dev *pdev)
5622{
5623 struct device *dev = pci_dev_to_dev(pdev);
5624 struct ata_host_set *host_set = dev_get_drvdata(dev);
f0eb62b8 5625 struct ata_host_set *host_set2 = host_set->next;
1da177e4 5626
17b14451 5627 ata_host_set_remove(host_set);
f0eb62b8
TH
5628 if (host_set2)
5629 ata_host_set_remove(host_set2);
5630
1da177e4
LT
5631 pci_release_regions(pdev);
5632 pci_disable_device(pdev);
5633 dev_set_drvdata(dev, NULL);
5634}
5635
5636/* move to PCI subsystem */
057ace5e 5637int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5638{
5639 unsigned long tmp = 0;
5640
5641 switch (bits->width) {
5642 case 1: {
5643 u8 tmp8 = 0;
5644 pci_read_config_byte(pdev, bits->reg, &tmp8);
5645 tmp = tmp8;
5646 break;
5647 }
5648 case 2: {
5649 u16 tmp16 = 0;
5650 pci_read_config_word(pdev, bits->reg, &tmp16);
5651 tmp = tmp16;
5652 break;
5653 }
5654 case 4: {
5655 u32 tmp32 = 0;
5656 pci_read_config_dword(pdev, bits->reg, &tmp32);
5657 tmp = tmp32;
5658 break;
5659 }
5660
5661 default:
5662 return -EINVAL;
5663 }
5664
5665 tmp &= bits->mask;
5666
5667 return (tmp == bits->val) ? 1 : 0;
5668}
9b847548
JA
5669
5670int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5671{
5672 pci_save_state(pdev);
5673 pci_disable_device(pdev);
5674 pci_set_power_state(pdev, PCI_D3hot);
5675 return 0;
5676}
5677
5678int ata_pci_device_resume(struct pci_dev *pdev)
5679{
5680 pci_set_power_state(pdev, PCI_D0);
5681 pci_restore_state(pdev);
5682 pci_enable_device(pdev);
5683 pci_set_master(pdev);
5684 return 0;
5685}
1da177e4
LT
5686#endif /* CONFIG_PCI */
5687
5688
1da177e4
LT
5689static int __init ata_init(void)
5690{
5691 ata_wq = create_workqueue("ata");
5692 if (!ata_wq)
5693 return -ENOMEM;
5694
453b07ac
TH
5695 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5696 if (!ata_aux_wq) {
5697 destroy_workqueue(ata_wq);
5698 return -ENOMEM;
5699 }
5700
1da177e4
LT
5701 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5702 return 0;
5703}
5704
5705static void __exit ata_exit(void)
5706{
5707 destroy_workqueue(ata_wq);
453b07ac 5708 destroy_workqueue(ata_aux_wq);
1da177e4
LT
5709}
5710
5711module_init(ata_init);
5712module_exit(ata_exit);
5713
67846b30
JG
5714static unsigned long ratelimit_time;
5715static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5716
5717int ata_ratelimit(void)
5718{
5719 int rc;
5720 unsigned long flags;
5721
5722 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5723
5724 if (time_after(jiffies, ratelimit_time)) {
5725 rc = 1;
5726 ratelimit_time = jiffies + (HZ/5);
5727 } else
5728 rc = 0;
5729
5730 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5731
5732 return rc;
5733}
5734
c22daff4
TH
5735/**
5736 * ata_wait_register - wait until register value changes
5737 * @reg: IO-mapped register
5738 * @mask: Mask to apply to read register value
5739 * @val: Wait condition
5740 * @interval_msec: polling interval in milliseconds
5741 * @timeout_msec: timeout in milliseconds
5742 *
5743 * Waiting for some bits of register to change is a common
5744 * operation for ATA controllers. This function reads 32bit LE
5745 * IO-mapped register @reg and tests for the following condition.
5746 *
5747 * (*@reg & mask) != val
5748 *
5749 * If the condition is met, it returns; otherwise, the process is
5750 * repeated after @interval_msec until timeout.
5751 *
5752 * LOCKING:
5753 * Kernel thread context (may sleep)
5754 *
5755 * RETURNS:
5756 * The final register value.
5757 */
5758u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5759 unsigned long interval_msec,
5760 unsigned long timeout_msec)
5761{
5762 unsigned long timeout;
5763 u32 tmp;
5764
5765 tmp = ioread32(reg);
5766
5767 /* Calculate timeout _after_ the first read to make sure
5768 * preceding writes reach the controller before starting to
5769 * eat away the timeout.
5770 */
5771 timeout = jiffies + (timeout_msec * HZ) / 1000;
5772
5773 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5774 msleep(interval_msec);
5775 tmp = ioread32(reg);
5776 }
5777
5778 return tmp;
5779}
5780
1da177e4
LT
5781/*
5782 * libata is essentially a library of internal helper functions for
5783 * low-level ATA host controller drivers. As such, the API/ABI is
5784 * likely to change as new drivers are added and updated.
5785 * Do not depend on ABI/API stability.
5786 */
5787
d7bb4cc7
TH
5788EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
5789EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
5790EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
1da177e4
LT
5791EXPORT_SYMBOL_GPL(ata_std_bios_param);
5792EXPORT_SYMBOL_GPL(ata_std_ports);
5793EXPORT_SYMBOL_GPL(ata_device_add);
720ba126 5794EXPORT_SYMBOL_GPL(ata_port_detach);
17b14451 5795EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5796EXPORT_SYMBOL_GPL(ata_sg_init);
5797EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 5798EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 5799EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 5800EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 5801EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5802EXPORT_SYMBOL_GPL(ata_tf_load);
5803EXPORT_SYMBOL_GPL(ata_tf_read);
5804EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5805EXPORT_SYMBOL_GPL(ata_std_dev_select);
5806EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5807EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5808EXPORT_SYMBOL_GPL(ata_check_status);
5809EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5810EXPORT_SYMBOL_GPL(ata_exec_command);
5811EXPORT_SYMBOL_GPL(ata_port_start);
5812EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5813EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 5814EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
5815EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5816EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 5817EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 5818EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5819EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5820EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5821EXPORT_SYMBOL_GPL(ata_bmdma_start);
5822EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5823EXPORT_SYMBOL_GPL(ata_bmdma_status);
5824EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
5825EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5826EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5827EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5828EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5829EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 5830EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 5831EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
5832EXPORT_SYMBOL_GPL(sata_phy_debounce);
5833EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
5834EXPORT_SYMBOL_GPL(sata_phy_reset);
5835EXPORT_SYMBOL_GPL(__sata_phy_reset);
5836EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 5837EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804
TH
5838EXPORT_SYMBOL_GPL(ata_std_softreset);
5839EXPORT_SYMBOL_GPL(sata_std_hardreset);
5840EXPORT_SYMBOL_GPL(ata_std_postreset);
623a3128 5841EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5842EXPORT_SYMBOL_GPL(ata_dev_classify);
5843EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5844EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5845EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 5846EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 5847EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5848EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5849EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5850EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 5851EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 5852EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 5853EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
5854EXPORT_SYMBOL_GPL(ata_scsi_release);
5855EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
5856EXPORT_SYMBOL_GPL(sata_scr_valid);
5857EXPORT_SYMBOL_GPL(sata_scr_read);
5858EXPORT_SYMBOL_GPL(sata_scr_write);
5859EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5860EXPORT_SYMBOL_GPL(ata_port_online);
5861EXPORT_SYMBOL_GPL(ata_port_offline);
6a62a04d
TH
5862EXPORT_SYMBOL_GPL(ata_id_string);
5863EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5864EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5865
1bc4ccff 5866EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5867EXPORT_SYMBOL_GPL(ata_timing_compute);
5868EXPORT_SYMBOL_GPL(ata_timing_merge);
5869
1da177e4
LT
5870#ifdef CONFIG_PCI
5871EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5872EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5873EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5874EXPORT_SYMBOL_GPL(ata_pci_init_one);
5875EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5876EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5877EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5878EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5879EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5880#endif /* CONFIG_PCI */
9b847548
JA
5881
5882EXPORT_SYMBOL_GPL(ata_device_suspend);
5883EXPORT_SYMBOL_GPL(ata_device_resume);
5884EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5885EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 5886
ece1d636 5887EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
5888EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5889EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
5890EXPORT_SYMBOL_GPL(ata_port_freeze);
5891EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5892EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
5893EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5894EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 5895EXPORT_SYMBOL_GPL(ata_do_eh);