]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/scsi/libata-core.c
[PATCH] libata-dev: irq-pio minor fixes (respin)
[net-next-2.6.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
6aff8f1f
TH
64static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev);
1da177e4 66static void ata_set_mode(struct ata_port *ap);
83206a29
TH
67static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
68 struct ata_device *dev);
acf356b1 69static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
70
71static unsigned int ata_unique_id = 1;
72static struct workqueue_struct *ata_wq;
73
418dc1f5 74int atapi_enabled = 1;
1623c81e
JG
75module_param(atapi_enabled, int, 0444);
76MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
77
c3c013a2
JG
78int libata_fua = 0;
79module_param_named(fua, libata_fua, int, 0444);
80MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
81
1da177e4
LT
82MODULE_AUTHOR("Jeff Garzik");
83MODULE_DESCRIPTION("Library module for ATA devices");
84MODULE_LICENSE("GPL");
85MODULE_VERSION(DRV_VERSION);
86
0baab86b 87
1da177e4
LT
88/**
89 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
90 * @tf: Taskfile to convert
91 * @fis: Buffer into which data will output
92 * @pmp: Port multiplier port
93 *
94 * Converts a standard ATA taskfile to a Serial ATA
95 * FIS structure (Register - Host to Device).
96 *
97 * LOCKING:
98 * Inherited from caller.
99 */
100
057ace5e 101void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
102{
103 fis[0] = 0x27; /* Register - Host to Device FIS */
104 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
105 bit 7 indicates Command FIS */
106 fis[2] = tf->command;
107 fis[3] = tf->feature;
108
109 fis[4] = tf->lbal;
110 fis[5] = tf->lbam;
111 fis[6] = tf->lbah;
112 fis[7] = tf->device;
113
114 fis[8] = tf->hob_lbal;
115 fis[9] = tf->hob_lbam;
116 fis[10] = tf->hob_lbah;
117 fis[11] = tf->hob_feature;
118
119 fis[12] = tf->nsect;
120 fis[13] = tf->hob_nsect;
121 fis[14] = 0;
122 fis[15] = tf->ctl;
123
124 fis[16] = 0;
125 fis[17] = 0;
126 fis[18] = 0;
127 fis[19] = 0;
128}
129
130/**
131 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
132 * @fis: Buffer from which data will be input
133 * @tf: Taskfile to output
134 *
e12a1be6 135 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
136 *
137 * LOCKING:
138 * Inherited from caller.
139 */
140
057ace5e 141void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
142{
143 tf->command = fis[2]; /* status */
144 tf->feature = fis[3]; /* error */
145
146 tf->lbal = fis[4];
147 tf->lbam = fis[5];
148 tf->lbah = fis[6];
149 tf->device = fis[7];
150
151 tf->hob_lbal = fis[8];
152 tf->hob_lbam = fis[9];
153 tf->hob_lbah = fis[10];
154
155 tf->nsect = fis[12];
156 tf->hob_nsect = fis[13];
157}
158
8cbd6df1
AL
159static const u8 ata_rw_cmds[] = {
160 /* pio multi */
161 ATA_CMD_READ_MULTI,
162 ATA_CMD_WRITE_MULTI,
163 ATA_CMD_READ_MULTI_EXT,
164 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
165 0,
166 0,
167 0,
168 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
169 /* pio */
170 ATA_CMD_PIO_READ,
171 ATA_CMD_PIO_WRITE,
172 ATA_CMD_PIO_READ_EXT,
173 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
174 0,
175 0,
176 0,
177 0,
8cbd6df1
AL
178 /* dma */
179 ATA_CMD_READ,
180 ATA_CMD_WRITE,
181 ATA_CMD_READ_EXT,
9a3dccc4
TH
182 ATA_CMD_WRITE_EXT,
183 0,
184 0,
185 0,
186 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 187};
1da177e4
LT
188
189/**
8cbd6df1
AL
190 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
191 * @qc: command to examine and configure
1da177e4 192 *
2e9edbf8 193 * Examine the device configuration and tf->flags to calculate
8cbd6df1 194 * the proper read/write commands and protocol to use.
1da177e4
LT
195 *
196 * LOCKING:
197 * caller.
198 */
9a3dccc4 199int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 200{
8cbd6df1
AL
201 struct ata_taskfile *tf = &qc->tf;
202 struct ata_device *dev = qc->dev;
9a3dccc4 203 u8 cmd;
1da177e4 204
9a3dccc4 205 int index, fua, lba48, write;
2e9edbf8 206
9a3dccc4 207 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
208 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
209 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 210
8cbd6df1
AL
211 if (dev->flags & ATA_DFLAG_PIO) {
212 tf->protocol = ATA_PROT_PIO;
9a3dccc4 213 index = dev->multi_count ? 0 : 8;
8d238e01
AC
214 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
215 /* Unable to use DMA due to host limitation */
216 tf->protocol = ATA_PROT_PIO;
aef9d533 217 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
218 } else {
219 tf->protocol = ATA_PROT_DMA;
9a3dccc4 220 index = 16;
8cbd6df1 221 }
1da177e4 222
9a3dccc4
TH
223 cmd = ata_rw_cmds[index + fua + lba48 + write];
224 if (cmd) {
225 tf->command = cmd;
226 return 0;
227 }
228 return -1;
1da177e4
LT
229}
230
cb95d562
TH
231/**
232 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
233 * @pio_mask: pio_mask
234 * @mwdma_mask: mwdma_mask
235 * @udma_mask: udma_mask
236 *
237 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
238 * unsigned int xfer_mask.
239 *
240 * LOCKING:
241 * None.
242 *
243 * RETURNS:
244 * Packed xfer_mask.
245 */
246static unsigned int ata_pack_xfermask(unsigned int pio_mask,
247 unsigned int mwdma_mask,
248 unsigned int udma_mask)
249{
250 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
251 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
252 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
253}
254
c0489e4e
TH
255/**
256 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
257 * @xfer_mask: xfer_mask to unpack
258 * @pio_mask: resulting pio_mask
259 * @mwdma_mask: resulting mwdma_mask
260 * @udma_mask: resulting udma_mask
261 *
262 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
263 * Any NULL distination masks will be ignored.
264 */
265static void ata_unpack_xfermask(unsigned int xfer_mask,
266 unsigned int *pio_mask,
267 unsigned int *mwdma_mask,
268 unsigned int *udma_mask)
269{
270 if (pio_mask)
271 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
272 if (mwdma_mask)
273 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
274 if (udma_mask)
275 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
276}
277
cb95d562
TH
278static const struct ata_xfer_ent {
279 unsigned int shift, bits;
280 u8 base;
281} ata_xfer_tbl[] = {
282 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
283 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
284 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
285 { -1, },
1da177e4
LT
286};
287
288/**
cb95d562
TH
289 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
290 * @xfer_mask: xfer_mask of interest
1da177e4 291 *
cb95d562
TH
292 * Return matching XFER_* value for @xfer_mask. Only the highest
293 * bit of @xfer_mask is considered.
1da177e4
LT
294 *
295 * LOCKING:
296 * None.
297 *
298 * RETURNS:
cb95d562 299 * Matching XFER_* value, 0 if no match found.
1da177e4 300 */
cb95d562
TH
301static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
302{
303 int highbit = fls(xfer_mask) - 1;
304 const struct ata_xfer_ent *ent;
1da177e4 305
cb95d562
TH
306 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
307 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
308 return ent->base + highbit - ent->shift;
309 return 0;
310}
311
312/**
313 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
314 * @xfer_mode: XFER_* of interest
315 *
316 * Return matching xfer_mask for @xfer_mode.
317 *
318 * LOCKING:
319 * None.
320 *
321 * RETURNS:
322 * Matching xfer_mask, 0 if no match found.
323 */
324static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
1da177e4 325{
cb95d562 326 const struct ata_xfer_ent *ent;
1da177e4 327
cb95d562
TH
328 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
329 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
330 return 1 << (ent->shift + xfer_mode - ent->base);
331 return 0;
332}
1da177e4 333
cb95d562
TH
334/**
335 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
336 * @xfer_mode: XFER_* of interest
337 *
338 * Return matching xfer_shift for @xfer_mode.
339 *
340 * LOCKING:
341 * None.
342 *
343 * RETURNS:
344 * Matching xfer_shift, -1 if no match found.
345 */
346static int ata_xfer_mode2shift(unsigned int xfer_mode)
347{
348 const struct ata_xfer_ent *ent;
1da177e4 349
cb95d562
TH
350 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
351 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
352 return ent->shift;
353 return -1;
354}
355
1da177e4 356/**
1da7b0d0
TH
357 * ata_mode_string - convert xfer_mask to string
358 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
359 *
360 * Determine string which represents the highest speed
1da7b0d0 361 * (highest bit in @modemask).
1da177e4
LT
362 *
363 * LOCKING:
364 * None.
365 *
366 * RETURNS:
367 * Constant C string representing highest speed listed in
1da7b0d0 368 * @mode_mask, or the constant C string "<n/a>".
1da177e4 369 */
1da7b0d0 370static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 371{
75f554bc
TH
372 static const char * const xfer_mode_str[] = {
373 "PIO0",
374 "PIO1",
375 "PIO2",
376 "PIO3",
377 "PIO4",
378 "MWDMA0",
379 "MWDMA1",
380 "MWDMA2",
381 "UDMA/16",
382 "UDMA/25",
383 "UDMA/33",
384 "UDMA/44",
385 "UDMA/66",
386 "UDMA/100",
387 "UDMA/133",
388 "UDMA7",
389 };
1da7b0d0 390 int highbit;
1da177e4 391
1da7b0d0
TH
392 highbit = fls(xfer_mask) - 1;
393 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
394 return xfer_mode_str[highbit];
1da177e4 395 return "<n/a>";
1da177e4
LT
396}
397
0b8efb0a
TH
398static void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
399{
400 if (ata_dev_present(dev)) {
401 printk(KERN_WARNING "ata%u: dev %u disabled\n",
402 ap->id, dev->devno);
403 dev->class++;
404 }
405}
406
1da177e4
LT
407/**
408 * ata_pio_devchk - PATA device presence detection
409 * @ap: ATA channel to examine
410 * @device: Device to examine (starting at zero)
411 *
412 * This technique was originally described in
413 * Hale Landis's ATADRVR (www.ata-atapi.com), and
414 * later found its way into the ATA/ATAPI spec.
415 *
416 * Write a pattern to the ATA shadow registers,
417 * and if a device is present, it will respond by
418 * correctly storing and echoing back the
419 * ATA shadow register contents.
420 *
421 * LOCKING:
422 * caller.
423 */
424
425static unsigned int ata_pio_devchk(struct ata_port *ap,
426 unsigned int device)
427{
428 struct ata_ioports *ioaddr = &ap->ioaddr;
429 u8 nsect, lbal;
430
431 ap->ops->dev_select(ap, device);
432
433 outb(0x55, ioaddr->nsect_addr);
434 outb(0xaa, ioaddr->lbal_addr);
435
436 outb(0xaa, ioaddr->nsect_addr);
437 outb(0x55, ioaddr->lbal_addr);
438
439 outb(0x55, ioaddr->nsect_addr);
440 outb(0xaa, ioaddr->lbal_addr);
441
442 nsect = inb(ioaddr->nsect_addr);
443 lbal = inb(ioaddr->lbal_addr);
444
445 if ((nsect == 0x55) && (lbal == 0xaa))
446 return 1; /* we found a device */
447
448 return 0; /* nothing found */
449}
450
451/**
452 * ata_mmio_devchk - PATA device presence detection
453 * @ap: ATA channel to examine
454 * @device: Device to examine (starting at zero)
455 *
456 * This technique was originally described in
457 * Hale Landis's ATADRVR (www.ata-atapi.com), and
458 * later found its way into the ATA/ATAPI spec.
459 *
460 * Write a pattern to the ATA shadow registers,
461 * and if a device is present, it will respond by
462 * correctly storing and echoing back the
463 * ATA shadow register contents.
464 *
465 * LOCKING:
466 * caller.
467 */
468
469static unsigned int ata_mmio_devchk(struct ata_port *ap,
470 unsigned int device)
471{
472 struct ata_ioports *ioaddr = &ap->ioaddr;
473 u8 nsect, lbal;
474
475 ap->ops->dev_select(ap, device);
476
477 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
478 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
479
480 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
481 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
482
483 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
484 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
485
486 nsect = readb((void __iomem *) ioaddr->nsect_addr);
487 lbal = readb((void __iomem *) ioaddr->lbal_addr);
488
489 if ((nsect == 0x55) && (lbal == 0xaa))
490 return 1; /* we found a device */
491
492 return 0; /* nothing found */
493}
494
495/**
496 * ata_devchk - PATA device presence detection
497 * @ap: ATA channel to examine
498 * @device: Device to examine (starting at zero)
499 *
500 * Dispatch ATA device presence detection, depending
501 * on whether we are using PIO or MMIO to talk to the
502 * ATA shadow registers.
503 *
504 * LOCKING:
505 * caller.
506 */
507
508static unsigned int ata_devchk(struct ata_port *ap,
509 unsigned int device)
510{
511 if (ap->flags & ATA_FLAG_MMIO)
512 return ata_mmio_devchk(ap, device);
513 return ata_pio_devchk(ap, device);
514}
515
516/**
517 * ata_dev_classify - determine device type based on ATA-spec signature
518 * @tf: ATA taskfile register set for device to be identified
519 *
520 * Determine from taskfile register contents whether a device is
521 * ATA or ATAPI, as per "Signature and persistence" section
522 * of ATA/PI spec (volume 1, sect 5.14).
523 *
524 * LOCKING:
525 * None.
526 *
527 * RETURNS:
528 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
529 * the event of failure.
530 */
531
057ace5e 532unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
533{
534 /* Apple's open source Darwin code hints that some devices only
535 * put a proper signature into the LBA mid/high registers,
536 * So, we only check those. It's sufficient for uniqueness.
537 */
538
539 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
540 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
541 DPRINTK("found ATA device by sig\n");
542 return ATA_DEV_ATA;
543 }
544
545 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
546 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
547 DPRINTK("found ATAPI device by sig\n");
548 return ATA_DEV_ATAPI;
549 }
550
551 DPRINTK("unknown device\n");
552 return ATA_DEV_UNKNOWN;
553}
554
555/**
556 * ata_dev_try_classify - Parse returned ATA device signature
557 * @ap: ATA channel to examine
558 * @device: Device to examine (starting at zero)
b4dc7623 559 * @r_err: Value of error register on completion
1da177e4
LT
560 *
561 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
562 * an ATA/ATAPI-defined set of values is placed in the ATA
563 * shadow registers, indicating the results of device detection
564 * and diagnostics.
565 *
566 * Select the ATA device, and read the values from the ATA shadow
567 * registers. Then parse according to the Error register value,
568 * and the spec-defined values examined by ata_dev_classify().
569 *
570 * LOCKING:
571 * caller.
b4dc7623
TH
572 *
573 * RETURNS:
574 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
575 */
576
b4dc7623
TH
577static unsigned int
578ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 579{
1da177e4
LT
580 struct ata_taskfile tf;
581 unsigned int class;
582 u8 err;
583
584 ap->ops->dev_select(ap, device);
585
586 memset(&tf, 0, sizeof(tf));
587
1da177e4 588 ap->ops->tf_read(ap, &tf);
0169e284 589 err = tf.feature;
b4dc7623
TH
590 if (r_err)
591 *r_err = err;
1da177e4
LT
592
593 /* see if device passed diags */
594 if (err == 1)
595 /* do nothing */ ;
596 else if ((device == 0) && (err == 0x81))
597 /* do nothing */ ;
598 else
b4dc7623 599 return ATA_DEV_NONE;
1da177e4 600
b4dc7623 601 /* determine if device is ATA or ATAPI */
1da177e4 602 class = ata_dev_classify(&tf);
b4dc7623 603
1da177e4 604 if (class == ATA_DEV_UNKNOWN)
b4dc7623 605 return ATA_DEV_NONE;
1da177e4 606 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
607 return ATA_DEV_NONE;
608 return class;
1da177e4
LT
609}
610
611/**
6a62a04d 612 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
613 * @id: IDENTIFY DEVICE results we will examine
614 * @s: string into which data is output
615 * @ofs: offset into identify device page
616 * @len: length of string to return. must be an even number.
617 *
618 * The strings in the IDENTIFY DEVICE page are broken up into
619 * 16-bit chunks. Run through the string, and output each
620 * 8-bit chunk linearly, regardless of platform.
621 *
622 * LOCKING:
623 * caller.
624 */
625
6a62a04d
TH
626void ata_id_string(const u16 *id, unsigned char *s,
627 unsigned int ofs, unsigned int len)
1da177e4
LT
628{
629 unsigned int c;
630
631 while (len > 0) {
632 c = id[ofs] >> 8;
633 *s = c;
634 s++;
635
636 c = id[ofs] & 0xff;
637 *s = c;
638 s++;
639
640 ofs++;
641 len -= 2;
642 }
643}
644
0e949ff3 645/**
6a62a04d 646 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
647 * @id: IDENTIFY DEVICE results we will examine
648 * @s: string into which data is output
649 * @ofs: offset into identify device page
650 * @len: length of string to return. must be an odd number.
651 *
6a62a04d 652 * This function is identical to ata_id_string except that it
0e949ff3
TH
653 * trims trailing spaces and terminates the resulting string with
654 * null. @len must be actual maximum length (even number) + 1.
655 *
656 * LOCKING:
657 * caller.
658 */
6a62a04d
TH
659void ata_id_c_string(const u16 *id, unsigned char *s,
660 unsigned int ofs, unsigned int len)
0e949ff3
TH
661{
662 unsigned char *p;
663
664 WARN_ON(!(len & 1));
665
6a62a04d 666 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
667
668 p = s + strnlen(s, len - 1);
669 while (p > s && p[-1] == ' ')
670 p--;
671 *p = '\0';
672}
0baab86b 673
2940740b
TH
674static u64 ata_id_n_sectors(const u16 *id)
675{
676 if (ata_id_has_lba(id)) {
677 if (ata_id_has_lba48(id))
678 return ata_id_u64(id, 100);
679 else
680 return ata_id_u32(id, 60);
681 } else {
682 if (ata_id_current_chs_valid(id))
683 return ata_id_u32(id, 57);
684 else
685 return id[1] * id[3] * id[6];
686 }
687}
0baab86b
EF
688
689/**
690 * ata_noop_dev_select - Select device 0/1 on ATA bus
691 * @ap: ATA channel to manipulate
692 * @device: ATA device (numbered from zero) to select
693 *
694 * This function performs no actual function.
695 *
696 * May be used as the dev_select() entry in ata_port_operations.
697 *
698 * LOCKING:
699 * caller.
700 */
1da177e4
LT
701void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
702{
703}
704
0baab86b 705
1da177e4
LT
706/**
707 * ata_std_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
710 *
711 * Use the method defined in the ATA specification to
712 * make either device 0, or device 1, active on the
0baab86b
EF
713 * ATA channel. Works with both PIO and MMIO.
714 *
715 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
716 *
717 * LOCKING:
718 * caller.
719 */
720
721void ata_std_dev_select (struct ata_port *ap, unsigned int device)
722{
723 u8 tmp;
724
725 if (device == 0)
726 tmp = ATA_DEVICE_OBS;
727 else
728 tmp = ATA_DEVICE_OBS | ATA_DEV1;
729
730 if (ap->flags & ATA_FLAG_MMIO) {
731 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
732 } else {
733 outb(tmp, ap->ioaddr.device_addr);
734 }
735 ata_pause(ap); /* needed; also flushes, for mmio */
736}
737
738/**
739 * ata_dev_select - Select device 0/1 on ATA bus
740 * @ap: ATA channel to manipulate
741 * @device: ATA device (numbered from zero) to select
742 * @wait: non-zero to wait for Status register BSY bit to clear
743 * @can_sleep: non-zero if context allows sleeping
744 *
745 * Use the method defined in the ATA specification to
746 * make either device 0, or device 1, active on the
747 * ATA channel.
748 *
749 * This is a high-level version of ata_std_dev_select(),
750 * which additionally provides the services of inserting
751 * the proper pauses and status polling, where needed.
752 *
753 * LOCKING:
754 * caller.
755 */
756
757void ata_dev_select(struct ata_port *ap, unsigned int device,
758 unsigned int wait, unsigned int can_sleep)
759{
760 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
761 ap->id, device, wait);
762
763 if (wait)
764 ata_wait_idle(ap);
765
766 ap->ops->dev_select(ap, device);
767
768 if (wait) {
769 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
770 msleep(150);
771 ata_wait_idle(ap);
772 }
773}
774
775/**
776 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 777 * @id: IDENTIFY DEVICE page to dump
1da177e4 778 *
0bd3300a
TH
779 * Dump selected 16-bit words from the given IDENTIFY DEVICE
780 * page.
1da177e4
LT
781 *
782 * LOCKING:
783 * caller.
784 */
785
0bd3300a 786static inline void ata_dump_id(const u16 *id)
1da177e4
LT
787{
788 DPRINTK("49==0x%04x "
789 "53==0x%04x "
790 "63==0x%04x "
791 "64==0x%04x "
792 "75==0x%04x \n",
0bd3300a
TH
793 id[49],
794 id[53],
795 id[63],
796 id[64],
797 id[75]);
1da177e4
LT
798 DPRINTK("80==0x%04x "
799 "81==0x%04x "
800 "82==0x%04x "
801 "83==0x%04x "
802 "84==0x%04x \n",
0bd3300a
TH
803 id[80],
804 id[81],
805 id[82],
806 id[83],
807 id[84]);
1da177e4
LT
808 DPRINTK("88==0x%04x "
809 "93==0x%04x\n",
0bd3300a
TH
810 id[88],
811 id[93]);
1da177e4
LT
812}
813
cb95d562
TH
814/**
815 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
816 * @id: IDENTIFY data to compute xfer mask from
11e29e21 817 *
cb95d562
TH
818 * Compute the xfermask for this device. This is not as trivial
819 * as it seems if we must consider early devices correctly.
820 *
821 * FIXME: pre IDE drive timing (do we care ?).
822 *
823 * LOCKING:
824 * None.
825 *
826 * RETURNS:
827 * Computed xfermask
11e29e21 828 */
cb95d562 829static unsigned int ata_id_xfermask(const u16 *id)
11e29e21 830{
cb95d562 831 unsigned int pio_mask, mwdma_mask, udma_mask;
11e29e21 832
ffa29456 833 /* Usual case. Word 53 indicates word 64 is valid */
cb95d562
TH
834 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
835 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
836 pio_mask <<= 3;
837 pio_mask |= 0x7;
838 } else {
839 /* If word 64 isn't valid then Word 51 high byte holds
840 * the PIO timing number for the maximum. Turn it into
841 * a mask.
842 */
843 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
844
845 /* But wait.. there's more. Design your standards by
846 * committee and you too can get a free iordy field to
847 * process. However its the speeds not the modes that
848 * are supported... Note drivers using the timing API
849 * will get this right anyway
850 */
11e29e21
AC
851 }
852
cb95d562 853 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
854
855 udma_mask = 0;
856 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
857 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
11e29e21 858
cb95d562 859 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
95064379
TH
860}
861
86e45b6b
TH
862/**
863 * ata_port_queue_task - Queue port_task
864 * @ap: The ata_port to queue port_task for
865 *
866 * Schedule @fn(@data) for execution after @delay jiffies using
867 * port_task. There is one port_task per port and it's the
868 * user(low level driver)'s responsibility to make sure that only
869 * one task is active at any given time.
870 *
871 * libata core layer takes care of synchronization between
872 * port_task and EH. ata_port_queue_task() may be ignored for EH
873 * synchronization.
874 *
875 * LOCKING:
876 * Inherited from caller.
877 */
878void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
879 unsigned long delay)
95064379 880{
86e45b6b
TH
881 int rc;
882
2e755f68 883 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
884 return;
885
886 PREPARE_WORK(&ap->port_task, fn, data);
887
888 if (!delay)
889 rc = queue_work(ata_wq, &ap->port_task);
890 else
891 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
892
893 /* rc == 0 means that another user is using port task */
894 WARN_ON(rc == 0);
c18d06f8
TH
895}
896
897/**
86e45b6b
TH
898 * ata_port_flush_task - Flush port_task
899 * @ap: The ata_port to flush port_task for
c18d06f8 900 *
86e45b6b
TH
901 * After this function completes, port_task is guranteed not to
902 * be running or scheduled.
c18d06f8
TH
903 *
904 * LOCKING:
905 * Kernel thread context (may sleep)
906 */
86e45b6b 907void ata_port_flush_task(struct ata_port *ap)
c18d06f8 908{
c18d06f8
TH
909 unsigned long flags;
910
911 DPRINTK("ENTER\n");
912
913 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 914 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
c18d06f8
TH
915 spin_unlock_irqrestore(&ap->host_set->lock, flags);
916
917 DPRINTK("flush #1\n");
918 flush_workqueue(ata_wq);
919
920 /*
921 * At this point, if a task is running, it's guaranteed to see
922 * the FLUSH flag; thus, it will never queue pio tasks again.
923 * Cancel and flush.
924 */
86e45b6b 925 if (!cancel_delayed_work(&ap->port_task)) {
c18d06f8
TH
926 DPRINTK("flush #2\n");
927 flush_workqueue(ata_wq);
928 }
929
930 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 931 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
c18d06f8
TH
932 spin_unlock_irqrestore(&ap->host_set->lock, flags);
933
934 DPRINTK("EXIT\n");
95064379
TH
935}
936
77853bf2 937void ata_qc_complete_internal(struct ata_queued_cmd *qc)
64f043d8 938{
77853bf2 939 struct completion *waiting = qc->private_data;
64f043d8 940
77853bf2 941 qc->ap->ops->tf_read(qc->ap, &qc->tf);
a2a7a662 942 complete(waiting);
a2a7a662
TH
943}
944
945/**
946 * ata_exec_internal - execute libata internal command
947 * @ap: Port to which the command is sent
948 * @dev: Device to which the command is sent
949 * @tf: Taskfile registers for the command and the result
950 * @dma_dir: Data tranfer direction of the command
951 * @buf: Data buffer of the command
952 * @buflen: Length of data buffer
953 *
954 * Executes libata internal command with timeout. @tf contains
955 * command on entry and result on return. Timeout and error
956 * conditions are reported via return value. No recovery action
957 * is taken after a command times out. It's caller's duty to
958 * clean up after timeout.
959 *
960 * LOCKING:
961 * None. Should be called with kernel context, might sleep.
962 */
963
964static unsigned
965ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
966 struct ata_taskfile *tf,
967 int dma_dir, void *buf, unsigned int buflen)
968{
969 u8 command = tf->command;
970 struct ata_queued_cmd *qc;
971 DECLARE_COMPLETION(wait);
972 unsigned long flags;
77853bf2 973 unsigned int err_mask;
a2a7a662
TH
974
975 spin_lock_irqsave(&ap->host_set->lock, flags);
976
977 qc = ata_qc_new_init(ap, dev);
978 BUG_ON(qc == NULL);
979
980 qc->tf = *tf;
981 qc->dma_dir = dma_dir;
982 if (dma_dir != DMA_NONE) {
983 ata_sg_init_one(qc, buf, buflen);
984 qc->nsect = buflen / ATA_SECT_SIZE;
985 }
986
77853bf2 987 qc->private_data = &wait;
a2a7a662
TH
988 qc->complete_fn = ata_qc_complete_internal;
989
9a3d9eb0
TH
990 qc->err_mask = ata_qc_issue(qc);
991 if (qc->err_mask)
8e436af9 992 ata_qc_complete(qc);
a2a7a662
TH
993
994 spin_unlock_irqrestore(&ap->host_set->lock, flags);
995
996 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
41ade50c
AL
997 ata_port_flush_task(ap);
998
a2a7a662
TH
999 spin_lock_irqsave(&ap->host_set->lock, flags);
1000
1001 /* We're racing with irq here. If we lose, the
1002 * following test prevents us from completing the qc
1003 * again. If completion irq occurs after here but
1004 * before the caller cleans up, it will result in a
1005 * spurious interrupt. We can live with that.
1006 */
77853bf2 1007 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 1008 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
1009 ata_qc_complete(qc);
1010 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1011 ap->id, command);
64f043d8
JG
1012 }
1013
a2a7a662 1014 spin_unlock_irqrestore(&ap->host_set->lock, flags);
64f043d8
JG
1015 }
1016
77853bf2
TH
1017 *tf = qc->tf;
1018 err_mask = qc->err_mask;
1019
1020 ata_qc_free(qc);
1021
1f7dd3e9
TH
1022 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1023 * Until those drivers are fixed, we detect the condition
1024 * here, fail the command with AC_ERR_SYSTEM and reenable the
1025 * port.
1026 *
1027 * Note that this doesn't change any behavior as internal
1028 * command failure results in disabling the device in the
1029 * higher layer for LLDDs without new reset/EH callbacks.
1030 *
1031 * Kill the following code as soon as those drivers are fixed.
1032 */
1033 if (ap->flags & ATA_FLAG_PORT_DISABLED) {
1034 err_mask |= AC_ERR_SYSTEM;
1035 ata_port_probe(ap);
1036 }
1037
77853bf2 1038 return err_mask;
64f043d8
JG
1039}
1040
1bc4ccff
AC
1041/**
1042 * ata_pio_need_iordy - check if iordy needed
1043 * @adev: ATA device
1044 *
1045 * Check if the current speed of the device requires IORDY. Used
1046 * by various controllers for chip configuration.
1047 */
1048
1049unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1050{
1051 int pio;
1052 int speed = adev->pio_mode - XFER_PIO_0;
1053
1054 if (speed < 2)
1055 return 0;
1056 if (speed > 2)
1057 return 1;
2e9edbf8 1058
1bc4ccff
AC
1059 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1060
1061 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1062 pio = adev->id[ATA_ID_EIDE_PIO];
1063 /* Is the speed faster than the drive allows non IORDY ? */
1064 if (pio) {
1065 /* This is cycle times not frequency - watch the logic! */
1066 if (pio > 240) /* PIO2 is 240nS per cycle */
1067 return 1;
1068 return 0;
1069 }
1070 }
1071 return 0;
1072}
1073
1da177e4 1074/**
49016aca
TH
1075 * ata_dev_read_id - Read ID data from the specified device
1076 * @ap: port on which target device resides
1077 * @dev: target device
1078 * @p_class: pointer to class of the target device (may be changed)
1079 * @post_reset: is this read ID post-reset?
d9572b1d 1080 * @p_id: read IDENTIFY page (newly allocated)
1da177e4 1081 *
49016aca
TH
1082 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1083 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1084 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1085 * for pre-ATA4 drives.
1da177e4
LT
1086 *
1087 * LOCKING:
49016aca
TH
1088 * Kernel thread context (may sleep)
1089 *
1090 * RETURNS:
1091 * 0 on success, -errno otherwise.
1da177e4 1092 */
49016aca 1093static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
d9572b1d 1094 unsigned int *p_class, int post_reset, u16 **p_id)
1da177e4 1095{
49016aca 1096 unsigned int class = *p_class;
a0123703 1097 struct ata_taskfile tf;
49016aca 1098 unsigned int err_mask = 0;
d9572b1d 1099 u16 *id;
49016aca
TH
1100 const char *reason;
1101 int rc;
1da177e4 1102
49016aca 1103 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1104
49016aca 1105 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1106
d9572b1d
TH
1107 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1108 if (id == NULL) {
1109 rc = -ENOMEM;
1110 reason = "out of memory";
1111 goto err_out;
1112 }
1113
49016aca
TH
1114 retry:
1115 ata_tf_init(ap, &tf, dev->devno);
a0123703 1116
49016aca
TH
1117 switch (class) {
1118 case ATA_DEV_ATA:
a0123703 1119 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1120 break;
1121 case ATA_DEV_ATAPI:
a0123703 1122 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1123 break;
1124 default:
1125 rc = -ENODEV;
1126 reason = "unsupported class";
1127 goto err_out;
1da177e4
LT
1128 }
1129
a0123703 1130 tf.protocol = ATA_PROT_PIO;
1da177e4 1131
a0123703 1132 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
49016aca 1133 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1134 if (err_mask) {
49016aca
TH
1135 rc = -EIO;
1136 reason = "I/O error";
1da177e4
LT
1137 goto err_out;
1138 }
1139
49016aca 1140 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1141
49016aca
TH
1142 /* sanity check */
1143 if ((class == ATA_DEV_ATA) != ata_id_is_ata(id)) {
1144 rc = -EINVAL;
1145 reason = "device reports illegal type";
1146 goto err_out;
1147 }
1148
1149 if (post_reset && class == ATA_DEV_ATA) {
1150 /*
1151 * The exact sequence expected by certain pre-ATA4 drives is:
1152 * SRST RESET
1153 * IDENTIFY
1154 * INITIALIZE DEVICE PARAMETERS
1155 * anything else..
1156 * Some drives were very specific about that exact sequence.
1157 */
1158 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1159 err_mask = ata_dev_init_params(ap, dev);
1160 if (err_mask) {
1161 rc = -EIO;
1162 reason = "INIT_DEV_PARAMS failed";
1163 goto err_out;
1164 }
1165
1166 /* current CHS translation info (id[53-58]) might be
1167 * changed. reread the identify device info.
1168 */
1169 post_reset = 0;
1170 goto retry;
1171 }
1172 }
1173
1174 *p_class = class;
d9572b1d 1175 *p_id = id;
49016aca
TH
1176 return 0;
1177
1178 err_out:
1179 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1180 ap->id, dev->devno, reason);
d9572b1d 1181 kfree(id);
49016aca
TH
1182 return rc;
1183}
1184
4b2f3ede
TH
1185static inline u8 ata_dev_knobble(const struct ata_port *ap,
1186 struct ata_device *dev)
1187{
1188 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1189}
1190
49016aca 1191/**
ffeae418
TH
1192 * ata_dev_configure - Configure the specified ATA/ATAPI device
1193 * @ap: Port on which target device resides
1194 * @dev: Target device to configure
4c2d721a 1195 * @print_info: Enable device info printout
ffeae418
TH
1196 *
1197 * Configure @dev according to @dev->id. Generic and low-level
1198 * driver specific fixups are also applied.
49016aca
TH
1199 *
1200 * LOCKING:
ffeae418
TH
1201 * Kernel thread context (may sleep)
1202 *
1203 * RETURNS:
1204 * 0 on success, -errno otherwise
49016aca 1205 */
4c2d721a
TH
1206static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1207 int print_info)
49016aca 1208{
1148c3a7 1209 const u16 *id = dev->id;
ff8854b2 1210 unsigned int xfer_mask;
49016aca
TH
1211 int i, rc;
1212
1213 if (!ata_dev_present(dev)) {
1214 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1215 ap->id, dev->devno);
1216 return 0;
49016aca
TH
1217 }
1218
ffeae418 1219 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
49016aca 1220
c39f5ebe
TH
1221 /* print device capabilities */
1222 if (print_info)
1223 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1224 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1225 ap->id, dev->devno, id[49], id[82], id[83],
1226 id[84], id[85], id[86], id[87], id[88]);
1227
208a9933
TH
1228 /* initialize to-be-configured parameters */
1229 dev->flags = 0;
1230 dev->max_sectors = 0;
1231 dev->cdb_len = 0;
1232 dev->n_sectors = 0;
1233 dev->cylinders = 0;
1234 dev->heads = 0;
1235 dev->sectors = 0;
1da177e4
LT
1236
1237 /*
1238 * common ATA, ATAPI feature tests
1239 */
1240
ff8854b2 1241 /* find max transfer mode; for printk only */
1148c3a7 1242 xfer_mask = ata_id_xfermask(id);
1da177e4 1243
1148c3a7 1244 ata_dump_id(id);
1da177e4
LT
1245
1246 /* ATA-specific feature tests */
1247 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1248 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1249
1148c3a7 1250 if (ata_id_has_lba(id)) {
4c2d721a 1251 const char *lba_desc;
8bf62ece 1252
4c2d721a
TH
1253 lba_desc = "LBA";
1254 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1255 if (ata_id_has_lba48(id)) {
8bf62ece 1256 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1257 lba_desc = "LBA48";
1258 }
8bf62ece
AL
1259
1260 /* print device info to dmesg */
4c2d721a
TH
1261 if (print_info)
1262 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1263 "max %s, %Lu sectors: %s\n",
1264 ap->id, dev->devno,
1148c3a7 1265 ata_id_major_version(id),
ff8854b2 1266 ata_mode_string(xfer_mask),
4c2d721a
TH
1267 (unsigned long long)dev->n_sectors,
1268 lba_desc);
ffeae418 1269 } else {
8bf62ece
AL
1270 /* CHS */
1271
1272 /* Default translation */
1148c3a7
TH
1273 dev->cylinders = id[1];
1274 dev->heads = id[3];
1275 dev->sectors = id[6];
8bf62ece 1276
1148c3a7 1277 if (ata_id_current_chs_valid(id)) {
8bf62ece 1278 /* Current CHS translation is valid. */
1148c3a7
TH
1279 dev->cylinders = id[54];
1280 dev->heads = id[55];
1281 dev->sectors = id[56];
8bf62ece
AL
1282 }
1283
1284 /* print device info to dmesg */
4c2d721a
TH
1285 if (print_info)
1286 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1287 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1288 ap->id, dev->devno,
1148c3a7 1289 ata_id_major_version(id),
ff8854b2 1290 ata_mode_string(xfer_mask),
4c2d721a
TH
1291 (unsigned long long)dev->n_sectors,
1292 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1293 }
1294
07f6f7d0
AL
1295 if (dev->id[59] & 0x100) {
1296 dev->multi_count = dev->id[59] & 0xff;
1297 DPRINTK("ata%u: dev %u multi count %u\n",
999bb6f4 1298 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1299 }
1300
13ee4628 1301 dev->cdb_len = 16;
1da177e4
LT
1302 }
1303
1304 /* ATAPI-specific feature tests */
2c13b7ce 1305 else if (dev->class == ATA_DEV_ATAPI) {
1148c3a7 1306 rc = atapi_cdb_len(id);
1da177e4
LT
1307 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1308 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
ffeae418 1309 rc = -EINVAL;
1da177e4
LT
1310 goto err_out_nosup;
1311 }
6e7846e9 1312 dev->cdb_len = (unsigned int) rc;
1da177e4 1313
312f7da2
AL
1314 if (ata_id_cdb_intr(dev->id))
1315 dev->flags |= ATA_DFLAG_CDB_INTR;
1316
1da177e4 1317 /* print device info to dmesg */
4c2d721a
TH
1318 if (print_info)
1319 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
ff8854b2 1320 ap->id, dev->devno, ata_mode_string(xfer_mask));
1da177e4
LT
1321 }
1322
6e7846e9
TH
1323 ap->host->max_cmd_len = 0;
1324 for (i = 0; i < ATA_MAX_DEVICES; i++)
1325 ap->host->max_cmd_len = max_t(unsigned int,
1326 ap->host->max_cmd_len,
1327 ap->device[i].cdb_len);
1328
6f2f3812 1329 /* limit bridge transfers to udma5, 200 sectors */
4b2f3ede 1330 if (ata_dev_knobble(ap, dev)) {
4c2d721a
TH
1331 if (print_info)
1332 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1333 ap->id, dev->devno);
5a529139 1334 dev->udma_mask &= ATA_UDMA5;
4b2f3ede 1335 dev->max_sectors = ATA_MAX_SECTORS;
6f2f3812
BC
1336 }
1337
1338 if (ap->ops->dev_config)
4b2f3ede
TH
1339 ap->ops->dev_config(ap, dev);
1340
1da177e4 1341 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1342 return 0;
1da177e4
LT
1343
1344err_out_nosup:
1da177e4 1345 DPRINTK("EXIT, err\n");
ffeae418 1346 return rc;
6f2f3812
BC
1347}
1348
1da177e4
LT
1349/**
1350 * ata_bus_probe - Reset and probe ATA bus
1351 * @ap: Bus to probe
1352 *
0cba632b
JG
1353 * Master ATA bus probing function. Initiates a hardware-dependent
1354 * bus reset, then attempts to identify any devices found on
1355 * the bus.
1356 *
1da177e4 1357 * LOCKING:
0cba632b 1358 * PCI/etc. bus probe sem.
1da177e4
LT
1359 *
1360 * RETURNS:
1361 * Zero on success, non-zero on error.
1362 */
1363
1364static int ata_bus_probe(struct ata_port *ap)
1365{
28ca5c57
TH
1366 unsigned int classes[ATA_MAX_DEVICES];
1367 unsigned int i, rc, found = 0;
1da177e4 1368
28ca5c57 1369 ata_port_probe(ap);
c19ba8af 1370
2044470c
TH
1371 /* reset and determine device classes */
1372 for (i = 0; i < ATA_MAX_DEVICES; i++)
1373 classes[i] = ATA_DEV_UNKNOWN;
c19ba8af 1374
2044470c 1375 if (ap->ops->probe_reset) {
c19ba8af 1376 rc = ap->ops->probe_reset(ap, classes);
28ca5c57
TH
1377 if (rc) {
1378 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1379 return rc;
c19ba8af 1380 }
28ca5c57 1381 } else {
c19ba8af
TH
1382 ap->ops->phy_reset(ap);
1383
2044470c
TH
1384 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1385 for (i = 0; i < ATA_MAX_DEVICES; i++)
28ca5c57 1386 classes[i] = ap->device[i].class;
2044470c 1387
28ca5c57
TH
1388 ata_port_probe(ap);
1389 }
1da177e4 1390
2044470c
TH
1391 for (i = 0; i < ATA_MAX_DEVICES; i++)
1392 if (classes[i] == ATA_DEV_UNKNOWN)
1393 classes[i] = ATA_DEV_NONE;
1394
28ca5c57 1395 /* read IDENTIFY page and configure devices */
1da177e4 1396 for (i = 0; i < ATA_MAX_DEVICES; i++) {
ffeae418
TH
1397 struct ata_device *dev = &ap->device[i];
1398
28ca5c57
TH
1399 dev->class = classes[i];
1400
ffeae418
TH
1401 if (!ata_dev_present(dev))
1402 continue;
1403
1404 WARN_ON(dev->id != NULL);
1405 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1406 dev->class = ATA_DEV_NONE;
1407 continue;
1408 }
1409
4c2d721a 1410 if (ata_dev_configure(ap, dev, 1)) {
fcef978f 1411 ata_dev_disable(ap, dev);
ffeae418 1412 continue;
1da177e4 1413 }
ffeae418 1414
ffeae418 1415 found = 1;
1da177e4
LT
1416 }
1417
28ca5c57 1418 if (!found)
1da177e4
LT
1419 goto err_out_disable;
1420
1421 ata_set_mode(ap);
1422 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1423 goto err_out_disable;
1424
1425 return 0;
1426
1427err_out_disable:
1428 ap->ops->port_disable(ap);
1da177e4
LT
1429 return -1;
1430}
1431
1432/**
0cba632b
JG
1433 * ata_port_probe - Mark port as enabled
1434 * @ap: Port for which we indicate enablement
1da177e4 1435 *
0cba632b
JG
1436 * Modify @ap data structure such that the system
1437 * thinks that the entire port is enabled.
1438 *
1439 * LOCKING: host_set lock, or some other form of
1440 * serialization.
1da177e4
LT
1441 */
1442
1443void ata_port_probe(struct ata_port *ap)
1444{
1445 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1446}
1447
3be680b7
TH
1448/**
1449 * sata_print_link_status - Print SATA link status
1450 * @ap: SATA port to printk link status about
1451 *
1452 * This function prints link speed and status of a SATA link.
1453 *
1454 * LOCKING:
1455 * None.
1456 */
1457static void sata_print_link_status(struct ata_port *ap)
1458{
1459 u32 sstatus, tmp;
1460 const char *speed;
1461
1462 if (!ap->ops->scr_read)
1463 return;
1464
1465 sstatus = scr_read(ap, SCR_STATUS);
1466
1467 if (sata_dev_present(ap)) {
1468 tmp = (sstatus >> 4) & 0xf;
1469 if (tmp & (1 << 0))
1470 speed = "1.5";
1471 else if (tmp & (1 << 1))
1472 speed = "3.0";
1473 else
1474 speed = "<unknown>";
1475 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1476 ap->id, speed, sstatus);
1477 } else {
1478 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1479 ap->id, sstatus);
1480 }
1481}
1482
1da177e4 1483/**
780a87f7
JG
1484 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1485 * @ap: SATA port associated with target SATA PHY.
1da177e4 1486 *
780a87f7
JG
1487 * This function issues commands to standard SATA Sxxx
1488 * PHY registers, to wake up the phy (and device), and
1489 * clear any reset condition.
1da177e4
LT
1490 *
1491 * LOCKING:
0cba632b 1492 * PCI/etc. bus probe sem.
1da177e4
LT
1493 *
1494 */
1495void __sata_phy_reset(struct ata_port *ap)
1496{
1497 u32 sstatus;
1498 unsigned long timeout = jiffies + (HZ * 5);
1499
1500 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1501 /* issue phy wake/reset */
1502 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1503 /* Couldn't find anything in SATA I/II specs, but
1504 * AHCI-1.1 10.4.2 says at least 1 ms. */
1505 mdelay(1);
1da177e4 1506 }
cdcca89e 1507 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1508
1509 /* wait for phy to become ready, if necessary */
1510 do {
1511 msleep(200);
1512 sstatus = scr_read(ap, SCR_STATUS);
1513 if ((sstatus & 0xf) != 1)
1514 break;
1515 } while (time_before(jiffies, timeout));
1516
3be680b7
TH
1517 /* print link status */
1518 sata_print_link_status(ap);
656563e3 1519
3be680b7
TH
1520 /* TODO: phy layer with polling, timeouts, etc. */
1521 if (sata_dev_present(ap))
1da177e4 1522 ata_port_probe(ap);
3be680b7 1523 else
1da177e4 1524 ata_port_disable(ap);
1da177e4
LT
1525
1526 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1527 return;
1528
1529 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1530 ata_port_disable(ap);
1531 return;
1532 }
1533
1534 ap->cbl = ATA_CBL_SATA;
1535}
1536
1537/**
780a87f7
JG
1538 * sata_phy_reset - Reset SATA bus.
1539 * @ap: SATA port associated with target SATA PHY.
1da177e4 1540 *
780a87f7
JG
1541 * This function resets the SATA bus, and then probes
1542 * the bus for devices.
1da177e4
LT
1543 *
1544 * LOCKING:
0cba632b 1545 * PCI/etc. bus probe sem.
1da177e4
LT
1546 *
1547 */
1548void sata_phy_reset(struct ata_port *ap)
1549{
1550 __sata_phy_reset(ap);
1551 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1552 return;
1553 ata_bus_reset(ap);
1554}
1555
ebdfca6e
AC
1556/**
1557 * ata_dev_pair - return other device on cable
1558 * @ap: port
1559 * @adev: device
1560 *
1561 * Obtain the other device on the same cable, or if none is
1562 * present NULL is returned
1563 */
2e9edbf8 1564
ebdfca6e
AC
1565struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1566{
1567 struct ata_device *pair = &ap->device[1 - adev->devno];
1568 if (!ata_dev_present(pair))
1569 return NULL;
1570 return pair;
1571}
1572
1da177e4 1573/**
780a87f7
JG
1574 * ata_port_disable - Disable port.
1575 * @ap: Port to be disabled.
1da177e4 1576 *
780a87f7
JG
1577 * Modify @ap data structure such that the system
1578 * thinks that the entire port is disabled, and should
1579 * never attempt to probe or communicate with devices
1580 * on this port.
1581 *
1582 * LOCKING: host_set lock, or some other form of
1583 * serialization.
1da177e4
LT
1584 */
1585
1586void ata_port_disable(struct ata_port *ap)
1587{
1588 ap->device[0].class = ATA_DEV_NONE;
1589 ap->device[1].class = ATA_DEV_NONE;
1590 ap->flags |= ATA_FLAG_PORT_DISABLED;
1591}
1592
452503f9
AC
1593/*
1594 * This mode timing computation functionality is ported over from
1595 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1596 */
1597/*
1598 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1599 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1600 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1601 * is currently supported only by Maxtor drives.
452503f9
AC
1602 */
1603
1604static const struct ata_timing ata_timing[] = {
1605
1606 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1607 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1608 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1609 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1610
1611 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1612 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1613 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1614
1615/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1616
452503f9
AC
1617 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1618 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1619 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1620
452503f9
AC
1621 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1622 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1623 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1624
1625/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1626 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1627 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1628
1629 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1630 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1631 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1632
1633/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1634
1635 { 0xFF }
1636};
1637
1638#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1639#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1640
1641static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1642{
1643 q->setup = EZ(t->setup * 1000, T);
1644 q->act8b = EZ(t->act8b * 1000, T);
1645 q->rec8b = EZ(t->rec8b * 1000, T);
1646 q->cyc8b = EZ(t->cyc8b * 1000, T);
1647 q->active = EZ(t->active * 1000, T);
1648 q->recover = EZ(t->recover * 1000, T);
1649 q->cycle = EZ(t->cycle * 1000, T);
1650 q->udma = EZ(t->udma * 1000, UT);
1651}
1652
1653void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1654 struct ata_timing *m, unsigned int what)
1655{
1656 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1657 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1658 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1659 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1660 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1661 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1662 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1663 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1664}
1665
1666static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1667{
1668 const struct ata_timing *t;
1669
1670 for (t = ata_timing; t->mode != speed; t++)
91190758 1671 if (t->mode == 0xFF)
452503f9 1672 return NULL;
2e9edbf8 1673 return t;
452503f9
AC
1674}
1675
1676int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1677 struct ata_timing *t, int T, int UT)
1678{
1679 const struct ata_timing *s;
1680 struct ata_timing p;
1681
1682 /*
2e9edbf8 1683 * Find the mode.
75b1f2f8 1684 */
452503f9
AC
1685
1686 if (!(s = ata_timing_find_mode(speed)))
1687 return -EINVAL;
1688
75b1f2f8
AL
1689 memcpy(t, s, sizeof(*s));
1690
452503f9
AC
1691 /*
1692 * If the drive is an EIDE drive, it can tell us it needs extended
1693 * PIO/MW_DMA cycle timing.
1694 */
1695
1696 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1697 memset(&p, 0, sizeof(p));
1698 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1699 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1700 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1701 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1702 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1703 }
1704 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1705 }
1706
1707 /*
1708 * Convert the timing to bus clock counts.
1709 */
1710
75b1f2f8 1711 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1712
1713 /*
c893a3ae
RD
1714 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1715 * S.M.A.R.T * and some other commands. We have to ensure that the
1716 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1717 */
1718
1719 if (speed > XFER_PIO_4) {
1720 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1721 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1722 }
1723
1724 /*
c893a3ae 1725 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1726 */
1727
1728 if (t->act8b + t->rec8b < t->cyc8b) {
1729 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1730 t->rec8b = t->cyc8b - t->act8b;
1731 }
1732
1733 if (t->active + t->recover < t->cycle) {
1734 t->active += (t->cycle - (t->active + t->recover)) / 2;
1735 t->recover = t->cycle - t->active;
1736 }
1737
1738 return 0;
1739}
1740
83206a29 1741static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1da177e4 1742{
83206a29
TH
1743 unsigned int err_mask;
1744 int rc;
1da177e4
LT
1745
1746 if (dev->xfer_shift == ATA_SHIFT_PIO)
1747 dev->flags |= ATA_DFLAG_PIO;
1748
83206a29
TH
1749 err_mask = ata_dev_set_xfermode(ap, dev);
1750 if (err_mask) {
1751 printk(KERN_ERR
1752 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1753 ap->id, err_mask);
1754 return -EIO;
1755 }
1da177e4 1756
83206a29
TH
1757 rc = ata_dev_revalidate(ap, dev, 0);
1758 if (rc) {
1759 printk(KERN_ERR
1760 "ata%u: failed to revalidate after set xfermode\n",
1761 ap->id);
1762 return rc;
48a8a14f 1763 }
1da177e4 1764
23e71c3d
TH
1765 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1766 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4
LT
1767
1768 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
23e71c3d
TH
1769 ap->id, dev->devno,
1770 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 1771 return 0;
1da177e4
LT
1772}
1773
1774static int ata_host_set_pio(struct ata_port *ap)
1775{
a6d5a51c 1776 int i;
1da177e4
LT
1777
1778 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1779 struct ata_device *dev = &ap->device[i];
a6d5a51c
TH
1780
1781 if (!ata_dev_present(dev))
1782 continue;
1783
1784 if (!dev->pio_mode) {
88f93a31 1785 printk(KERN_WARNING "ata%u: no PIO support for device %d.\n", ap->id, i);
a6d5a51c 1786 return -1;
1da177e4 1787 }
a6d5a51c
TH
1788
1789 dev->xfer_mode = dev->pio_mode;
1790 dev->xfer_shift = ATA_SHIFT_PIO;
1791 if (ap->ops->set_piomode)
1792 ap->ops->set_piomode(ap, dev);
1da177e4
LT
1793 }
1794
1795 return 0;
1796}
1797
a6d5a51c 1798static void ata_host_set_dma(struct ata_port *ap)
1da177e4
LT
1799{
1800 int i;
1801
1802 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1803 struct ata_device *dev = &ap->device[i];
a6d5a51c
TH
1804
1805 if (!ata_dev_present(dev) || !dev->dma_mode)
1806 continue;
1807
1808 dev->xfer_mode = dev->dma_mode;
1809 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
1810 if (ap->ops->set_dmamode)
1811 ap->ops->set_dmamode(ap, dev);
1da177e4
LT
1812 }
1813}
1814
1815/**
1816 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1817 * @ap: port on which timings will be programmed
1818 *
780a87f7
JG
1819 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1820 *
1da177e4 1821 * LOCKING:
0cba632b 1822 * PCI/etc. bus probe sem.
1da177e4
LT
1823 */
1824static void ata_set_mode(struct ata_port *ap)
1825{
a6d5a51c 1826 int i, rc;
1da177e4 1827
a6d5a51c
TH
1828 /* step 1: calculate xfer_mask */
1829 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1830 struct ata_device *dev = &ap->device[i];
acf356b1 1831 unsigned int pio_mask, dma_mask;
a6d5a51c
TH
1832
1833 if (!ata_dev_present(dev))
1834 continue;
1835
acf356b1 1836 ata_dev_xfermask(ap, dev);
1da177e4 1837
acf356b1 1838 /* TODO: let LLDD filter dev->*_mask here */
1da177e4 1839
acf356b1
TH
1840 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
1841 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
1842 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
1843 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
a6d5a51c
TH
1844 }
1845
1846 /* step 2: always set host PIO timings */
1847 rc = ata_host_set_pio(ap);
1da177e4
LT
1848 if (rc)
1849 goto err_out;
1850
a6d5a51c
TH
1851 /* step 3: set host DMA timings */
1852 ata_host_set_dma(ap);
1da177e4
LT
1853
1854 /* step 4: update devices' xfer mode */
83206a29
TH
1855 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1856 struct ata_device *dev = &ap->device[i];
1da177e4 1857
83206a29
TH
1858 if (!ata_dev_present(dev))
1859 continue;
1860
1861 if (ata_dev_set_mode(ap, dev))
1862 goto err_out;
1863 }
1da177e4
LT
1864
1865 if (ap->ops->post_set_mode)
1866 ap->ops->post_set_mode(ap);
1867
1da177e4
LT
1868 return;
1869
1870err_out:
1871 ata_port_disable(ap);
1872}
1873
1fdffbce
JG
1874/**
1875 * ata_tf_to_host - issue ATA taskfile to host controller
1876 * @ap: port to which command is being issued
1877 * @tf: ATA taskfile register set
1878 *
1879 * Issues ATA taskfile register set to ATA host controller,
1880 * with proper synchronization with interrupt handler and
1881 * other threads.
1882 *
1883 * LOCKING:
1884 * spin_lock_irqsave(host_set lock)
1885 */
1886
1887static inline void ata_tf_to_host(struct ata_port *ap,
1888 const struct ata_taskfile *tf)
1889{
1890 ap->ops->tf_load(ap, tf);
1891 ap->ops->exec_command(ap, tf);
1892}
1893
1da177e4
LT
1894/**
1895 * ata_busy_sleep - sleep until BSY clears, or timeout
1896 * @ap: port containing status register to be polled
1897 * @tmout_pat: impatience timeout
1898 * @tmout: overall timeout
1899 *
780a87f7
JG
1900 * Sleep until ATA Status register bit BSY clears,
1901 * or a timeout occurs.
1902 *
1903 * LOCKING: None.
1da177e4
LT
1904 */
1905
6f8b9958
TH
1906unsigned int ata_busy_sleep (struct ata_port *ap,
1907 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
1908{
1909 unsigned long timer_start, timeout;
1910 u8 status;
1911
1912 status = ata_busy_wait(ap, ATA_BUSY, 300);
1913 timer_start = jiffies;
1914 timeout = timer_start + tmout_pat;
1915 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1916 msleep(50);
1917 status = ata_busy_wait(ap, ATA_BUSY, 3);
1918 }
1919
1920 if (status & ATA_BUSY)
1921 printk(KERN_WARNING "ata%u is slow to respond, "
1922 "please be patient\n", ap->id);
1923
1924 timeout = timer_start + tmout;
1925 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1926 msleep(50);
1927 status = ata_chk_status(ap);
1928 }
1929
1930 if (status & ATA_BUSY) {
1931 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1932 ap->id, tmout / HZ);
1933 return 1;
1934 }
1935
1936 return 0;
1937}
1938
1939static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1940{
1941 struct ata_ioports *ioaddr = &ap->ioaddr;
1942 unsigned int dev0 = devmask & (1 << 0);
1943 unsigned int dev1 = devmask & (1 << 1);
1944 unsigned long timeout;
1945
1946 /* if device 0 was found in ata_devchk, wait for its
1947 * BSY bit to clear
1948 */
1949 if (dev0)
1950 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1951
1952 /* if device 1 was found in ata_devchk, wait for
1953 * register access, then wait for BSY to clear
1954 */
1955 timeout = jiffies + ATA_TMOUT_BOOT;
1956 while (dev1) {
1957 u8 nsect, lbal;
1958
1959 ap->ops->dev_select(ap, 1);
1960 if (ap->flags & ATA_FLAG_MMIO) {
1961 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1962 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1963 } else {
1964 nsect = inb(ioaddr->nsect_addr);
1965 lbal = inb(ioaddr->lbal_addr);
1966 }
1967 if ((nsect == 1) && (lbal == 1))
1968 break;
1969 if (time_after(jiffies, timeout)) {
1970 dev1 = 0;
1971 break;
1972 }
1973 msleep(50); /* give drive a breather */
1974 }
1975 if (dev1)
1976 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1977
1978 /* is all this really necessary? */
1979 ap->ops->dev_select(ap, 0);
1980 if (dev1)
1981 ap->ops->dev_select(ap, 1);
1982 if (dev0)
1983 ap->ops->dev_select(ap, 0);
1984}
1985
1da177e4
LT
1986static unsigned int ata_bus_softreset(struct ata_port *ap,
1987 unsigned int devmask)
1988{
1989 struct ata_ioports *ioaddr = &ap->ioaddr;
1990
1991 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1992
1993 /* software reset. causes dev0 to be selected */
1994 if (ap->flags & ATA_FLAG_MMIO) {
1995 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1996 udelay(20); /* FIXME: flush */
1997 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1998 udelay(20); /* FIXME: flush */
1999 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2000 } else {
2001 outb(ap->ctl, ioaddr->ctl_addr);
2002 udelay(10);
2003 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2004 udelay(10);
2005 outb(ap->ctl, ioaddr->ctl_addr);
2006 }
2007
2008 /* spec mandates ">= 2ms" before checking status.
2009 * We wait 150ms, because that was the magic delay used for
2010 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2011 * between when the ATA command register is written, and then
2012 * status is checked. Because waiting for "a while" before
2013 * checking status is fine, post SRST, we perform this magic
2014 * delay here as well.
09c7ad79
AC
2015 *
2016 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2017 */
2018 msleep(150);
2019
2e9edbf8
JG
2020
2021 /* Before we perform post reset processing we want to see if
09c7ad79
AC
2022 the bus shows 0xFF because the odd clown forgets the D7 pulldown
2023 resistor */
2e9edbf8 2024
09c7ad79
AC
2025 if (ata_check_status(ap) == 0xFF)
2026 return 1; /* Positive is failure for some reason */
2027
1da177e4
LT
2028 ata_bus_post_reset(ap, devmask);
2029
2030 return 0;
2031}
2032
2033/**
2034 * ata_bus_reset - reset host port and associated ATA channel
2035 * @ap: port to reset
2036 *
2037 * This is typically the first time we actually start issuing
2038 * commands to the ATA channel. We wait for BSY to clear, then
2039 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2040 * result. Determine what devices, if any, are on the channel
2041 * by looking at the device 0/1 error register. Look at the signature
2042 * stored in each device's taskfile registers, to determine if
2043 * the device is ATA or ATAPI.
2044 *
2045 * LOCKING:
0cba632b
JG
2046 * PCI/etc. bus probe sem.
2047 * Obtains host_set lock.
1da177e4
LT
2048 *
2049 * SIDE EFFECTS:
2050 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2051 */
2052
2053void ata_bus_reset(struct ata_port *ap)
2054{
2055 struct ata_ioports *ioaddr = &ap->ioaddr;
2056 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2057 u8 err;
aec5c3c1 2058 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2059
2060 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2061
2062 /* determine if device 0/1 are present */
2063 if (ap->flags & ATA_FLAG_SATA_RESET)
2064 dev0 = 1;
2065 else {
2066 dev0 = ata_devchk(ap, 0);
2067 if (slave_possible)
2068 dev1 = ata_devchk(ap, 1);
2069 }
2070
2071 if (dev0)
2072 devmask |= (1 << 0);
2073 if (dev1)
2074 devmask |= (1 << 1);
2075
2076 /* select device 0 again */
2077 ap->ops->dev_select(ap, 0);
2078
2079 /* issue bus reset */
2080 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2081 if (ata_bus_softreset(ap, devmask))
2082 goto err_out;
1da177e4
LT
2083
2084 /*
2085 * determine by signature whether we have ATA or ATAPI devices
2086 */
b4dc7623 2087 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2088 if ((slave_possible) && (err != 0x81))
b4dc7623 2089 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2090
2091 /* re-enable interrupts */
2092 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2093 ata_irq_on(ap);
2094
2095 /* is double-select really necessary? */
2096 if (ap->device[1].class != ATA_DEV_NONE)
2097 ap->ops->dev_select(ap, 1);
2098 if (ap->device[0].class != ATA_DEV_NONE)
2099 ap->ops->dev_select(ap, 0);
2100
2101 /* if no devices were detected, disable this port */
2102 if ((ap->device[0].class == ATA_DEV_NONE) &&
2103 (ap->device[1].class == ATA_DEV_NONE))
2104 goto err_out;
2105
2106 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2107 /* set up device control for ATA_FLAG_SATA_RESET */
2108 if (ap->flags & ATA_FLAG_MMIO)
2109 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2110 else
2111 outb(ap->ctl, ioaddr->ctl_addr);
2112 }
2113
2114 DPRINTK("EXIT\n");
2115 return;
2116
2117err_out:
2118 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2119 ap->ops->port_disable(ap);
2120
2121 DPRINTK("EXIT\n");
2122}
2123
7a7921e8
TH
2124static int sata_phy_resume(struct ata_port *ap)
2125{
2126 unsigned long timeout = jiffies + (HZ * 5);
2127 u32 sstatus;
2128
2129 scr_write_flush(ap, SCR_CONTROL, 0x300);
2130
2131 /* Wait for phy to become ready, if necessary. */
2132 do {
2133 msleep(200);
2134 sstatus = scr_read(ap, SCR_STATUS);
2135 if ((sstatus & 0xf) != 1)
2136 return 0;
2137 } while (time_before(jiffies, timeout));
2138
2139 return -1;
2140}
2141
8a19ac89
TH
2142/**
2143 * ata_std_probeinit - initialize probing
2144 * @ap: port to be probed
2145 *
2146 * @ap is about to be probed. Initialize it. This function is
2147 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2148 *
2149 * NOTE!!! Do not use this function as probeinit if a low level
2150 * driver implements only hardreset. Just pass NULL as probeinit
2151 * in that case. Using this function is probably okay but doing
2152 * so makes reset sequence different from the original
2153 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89
TH
2154 */
2155extern void ata_std_probeinit(struct ata_port *ap)
2156{
3a39746a 2157 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) {
8a19ac89 2158 sata_phy_resume(ap);
3a39746a
TH
2159 if (sata_dev_present(ap))
2160 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2161 }
8a19ac89
TH
2162}
2163
c2bd5804
TH
2164/**
2165 * ata_std_softreset - reset host port via ATA SRST
2166 * @ap: port to reset
2167 * @verbose: fail verbosely
2168 * @classes: resulting classes of attached devices
2169 *
2170 * Reset host port using ATA SRST. This function is to be used
2171 * as standard callback for ata_drive_*_reset() functions.
2172 *
2173 * LOCKING:
2174 * Kernel thread context (may sleep)
2175 *
2176 * RETURNS:
2177 * 0 on success, -errno otherwise.
2178 */
2179int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2180{
2181 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2182 unsigned int devmask = 0, err_mask;
2183 u8 err;
2184
2185 DPRINTK("ENTER\n");
2186
3a39746a
TH
2187 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2188 classes[0] = ATA_DEV_NONE;
2189 goto out;
2190 }
2191
c2bd5804
TH
2192 /* determine if device 0/1 are present */
2193 if (ata_devchk(ap, 0))
2194 devmask |= (1 << 0);
2195 if (slave_possible && ata_devchk(ap, 1))
2196 devmask |= (1 << 1);
2197
c2bd5804
TH
2198 /* select device 0 again */
2199 ap->ops->dev_select(ap, 0);
2200
2201 /* issue bus reset */
2202 DPRINTK("about to softreset, devmask=%x\n", devmask);
2203 err_mask = ata_bus_softreset(ap, devmask);
2204 if (err_mask) {
2205 if (verbose)
2206 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2207 ap->id, err_mask);
2208 else
2209 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2210 err_mask);
2211 return -EIO;
2212 }
2213
2214 /* determine by signature whether we have ATA or ATAPI devices */
2215 classes[0] = ata_dev_try_classify(ap, 0, &err);
2216 if (slave_possible && err != 0x81)
2217 classes[1] = ata_dev_try_classify(ap, 1, &err);
2218
3a39746a 2219 out:
c2bd5804
TH
2220 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2221 return 0;
2222}
2223
2224/**
2225 * sata_std_hardreset - reset host port via SATA phy reset
2226 * @ap: port to reset
2227 * @verbose: fail verbosely
2228 * @class: resulting class of attached device
2229 *
2230 * SATA phy-reset host port using DET bits of SControl register.
2231 * This function is to be used as standard callback for
2232 * ata_drive_*_reset().
2233 *
2234 * LOCKING:
2235 * Kernel thread context (may sleep)
2236 *
2237 * RETURNS:
2238 * 0 on success, -errno otherwise.
2239 */
2240int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2241{
c2bd5804
TH
2242 DPRINTK("ENTER\n");
2243
2244 /* Issue phy wake/reset */
2245 scr_write_flush(ap, SCR_CONTROL, 0x301);
2246
2247 /*
2248 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2249 * 10.4.2 says at least 1 ms.
2250 */
2251 msleep(1);
2252
7a7921e8
TH
2253 /* Bring phy back */
2254 sata_phy_resume(ap);
c2bd5804 2255
c2bd5804
TH
2256 /* TODO: phy layer with polling, timeouts, etc. */
2257 if (!sata_dev_present(ap)) {
2258 *class = ATA_DEV_NONE;
2259 DPRINTK("EXIT, link offline\n");
2260 return 0;
2261 }
2262
2263 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2264 if (verbose)
2265 printk(KERN_ERR "ata%u: COMRESET failed "
2266 "(device not ready)\n", ap->id);
2267 else
2268 DPRINTK("EXIT, device not ready\n");
2269 return -EIO;
2270 }
2271
3a39746a
TH
2272 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2273
c2bd5804
TH
2274 *class = ata_dev_try_classify(ap, 0, NULL);
2275
2276 DPRINTK("EXIT, class=%u\n", *class);
2277 return 0;
2278}
2279
2280/**
2281 * ata_std_postreset - standard postreset callback
2282 * @ap: the target ata_port
2283 * @classes: classes of attached devices
2284 *
2285 * This function is invoked after a successful reset. Note that
2286 * the device might have been reset more than once using
2287 * different reset methods before postreset is invoked.
c2bd5804
TH
2288 *
2289 * This function is to be used as standard callback for
2290 * ata_drive_*_reset().
2291 *
2292 * LOCKING:
2293 * Kernel thread context (may sleep)
2294 */
2295void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2296{
2297 DPRINTK("ENTER\n");
2298
56497bd5 2299 /* set cable type if it isn't already set */
c2bd5804
TH
2300 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2301 ap->cbl = ATA_CBL_SATA;
2302
2303 /* print link status */
2304 if (ap->cbl == ATA_CBL_SATA)
2305 sata_print_link_status(ap);
2306
3a39746a
TH
2307 /* re-enable interrupts */
2308 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2309 ata_irq_on(ap);
c2bd5804
TH
2310
2311 /* is double-select really necessary? */
2312 if (classes[0] != ATA_DEV_NONE)
2313 ap->ops->dev_select(ap, 1);
2314 if (classes[1] != ATA_DEV_NONE)
2315 ap->ops->dev_select(ap, 0);
2316
3a39746a
TH
2317 /* bail out if no device is present */
2318 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2319 DPRINTK("EXIT, no device\n");
2320 return;
2321 }
2322
2323 /* set up device control */
2324 if (ap->ioaddr.ctl_addr) {
2325 if (ap->flags & ATA_FLAG_MMIO)
2326 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2327 else
2328 outb(ap->ctl, ap->ioaddr.ctl_addr);
2329 }
c2bd5804
TH
2330
2331 DPRINTK("EXIT\n");
2332}
2333
2334/**
2335 * ata_std_probe_reset - standard probe reset method
2336 * @ap: prot to perform probe-reset
2337 * @classes: resulting classes of attached devices
2338 *
2339 * The stock off-the-shelf ->probe_reset method.
2340 *
2341 * LOCKING:
2342 * Kernel thread context (may sleep)
2343 *
2344 * RETURNS:
2345 * 0 on success, -errno otherwise.
2346 */
2347int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2348{
2349 ata_reset_fn_t hardreset;
2350
2351 hardreset = NULL;
b911fc3a 2352 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
c2bd5804
TH
2353 hardreset = sata_std_hardreset;
2354
8a19ac89 2355 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2356 ata_std_softreset, hardreset,
c2bd5804
TH
2357 ata_std_postreset, classes);
2358}
2359
a62c0fc5
TH
2360static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2361 ata_postreset_fn_t postreset,
2362 unsigned int *classes)
2363{
2364 int i, rc;
2365
2366 for (i = 0; i < ATA_MAX_DEVICES; i++)
2367 classes[i] = ATA_DEV_UNKNOWN;
2368
2369 rc = reset(ap, 0, classes);
2370 if (rc)
2371 return rc;
2372
2373 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2374 * is complete and convert all ATA_DEV_UNKNOWN to
2375 * ATA_DEV_NONE.
2376 */
2377 for (i = 0; i < ATA_MAX_DEVICES; i++)
2378 if (classes[i] != ATA_DEV_UNKNOWN)
2379 break;
2380
2381 if (i < ATA_MAX_DEVICES)
2382 for (i = 0; i < ATA_MAX_DEVICES; i++)
2383 if (classes[i] == ATA_DEV_UNKNOWN)
2384 classes[i] = ATA_DEV_NONE;
2385
2386 if (postreset)
2387 postreset(ap, classes);
2388
2389 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2390}
2391
2392/**
2393 * ata_drive_probe_reset - Perform probe reset with given methods
2394 * @ap: port to reset
7944ea95 2395 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2396 * @softreset: softreset method (can be NULL)
2397 * @hardreset: hardreset method (can be NULL)
2398 * @postreset: postreset method (can be NULL)
2399 * @classes: resulting classes of attached devices
2400 *
2401 * Reset the specified port and classify attached devices using
2402 * given methods. This function prefers softreset but tries all
2403 * possible reset sequences to reset and classify devices. This
2404 * function is intended to be used for constructing ->probe_reset
2405 * callback by low level drivers.
2406 *
2407 * Reset methods should follow the following rules.
2408 *
2409 * - Return 0 on sucess, -errno on failure.
2410 * - If classification is supported, fill classes[] with
2411 * recognized class codes.
2412 * - If classification is not supported, leave classes[] alone.
2413 * - If verbose is non-zero, print error message on failure;
2414 * otherwise, shut up.
2415 *
2416 * LOCKING:
2417 * Kernel thread context (may sleep)
2418 *
2419 * RETURNS:
2420 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2421 * if classification fails, and any error code from reset
2422 * methods.
2423 */
7944ea95 2424int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2425 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2426 ata_postreset_fn_t postreset, unsigned int *classes)
2427{
2428 int rc = -EINVAL;
2429
7944ea95
TH
2430 if (probeinit)
2431 probeinit(ap);
2432
a62c0fc5
TH
2433 if (softreset) {
2434 rc = do_probe_reset(ap, softreset, postreset, classes);
2435 if (rc == 0)
2436 return 0;
2437 }
2438
2439 if (!hardreset)
2440 return rc;
2441
2442 rc = do_probe_reset(ap, hardreset, postreset, classes);
2443 if (rc == 0 || rc != -ENODEV)
2444 return rc;
2445
2446 if (softreset)
2447 rc = do_probe_reset(ap, softreset, postreset, classes);
2448
2449 return rc;
2450}
2451
623a3128
TH
2452/**
2453 * ata_dev_same_device - Determine whether new ID matches configured device
2454 * @ap: port on which the device to compare against resides
2455 * @dev: device to compare against
2456 * @new_class: class of the new device
2457 * @new_id: IDENTIFY page of the new device
2458 *
2459 * Compare @new_class and @new_id against @dev and determine
2460 * whether @dev is the device indicated by @new_class and
2461 * @new_id.
2462 *
2463 * LOCKING:
2464 * None.
2465 *
2466 * RETURNS:
2467 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2468 */
2469static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2470 unsigned int new_class, const u16 *new_id)
2471{
2472 const u16 *old_id = dev->id;
2473 unsigned char model[2][41], serial[2][21];
2474 u64 new_n_sectors;
2475
2476 if (dev->class != new_class) {
2477 printk(KERN_INFO
2478 "ata%u: dev %u class mismatch %d != %d\n",
2479 ap->id, dev->devno, dev->class, new_class);
2480 return 0;
2481 }
2482
2483 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2484 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2485 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2486 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2487 new_n_sectors = ata_id_n_sectors(new_id);
2488
2489 if (strcmp(model[0], model[1])) {
2490 printk(KERN_INFO
2491 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2492 ap->id, dev->devno, model[0], model[1]);
2493 return 0;
2494 }
2495
2496 if (strcmp(serial[0], serial[1])) {
2497 printk(KERN_INFO
2498 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2499 ap->id, dev->devno, serial[0], serial[1]);
2500 return 0;
2501 }
2502
2503 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2504 printk(KERN_INFO
2505 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2506 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2507 (unsigned long long)new_n_sectors);
2508 return 0;
2509 }
2510
2511 return 1;
2512}
2513
2514/**
2515 * ata_dev_revalidate - Revalidate ATA device
2516 * @ap: port on which the device to revalidate resides
2517 * @dev: device to revalidate
2518 * @post_reset: is this revalidation after reset?
2519 *
2520 * Re-read IDENTIFY page and make sure @dev is still attached to
2521 * the port.
2522 *
2523 * LOCKING:
2524 * Kernel thread context (may sleep)
2525 *
2526 * RETURNS:
2527 * 0 on success, negative errno otherwise
2528 */
2529int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2530 int post_reset)
1da177e4 2531{
623a3128
TH
2532 unsigned int class;
2533 u16 *id;
2534 int rc;
2535
2536 if (!ata_dev_present(dev))
2537 return -ENODEV;
2538
2539 class = dev->class;
2540 id = NULL;
2541
2542 /* allocate & read ID data */
2543 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2544 if (rc)
2545 goto fail;
2546
2547 /* is the device still there? */
2548 if (!ata_dev_same_device(ap, dev, class, id)) {
2549 rc = -ENODEV;
2550 goto fail;
2551 }
2552
2553 kfree(dev->id);
2554 dev->id = id;
2555
2556 /* configure device according to the new ID */
2557 return ata_dev_configure(ap, dev, 0);
2558
2559 fail:
2560 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2561 ap->id, dev->devno, rc);
2562 kfree(id);
2563 return rc;
1da177e4
LT
2564}
2565
98ac62de 2566static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2567 "WDC AC11000H", NULL,
2568 "WDC AC22100H", NULL,
2569 "WDC AC32500H", NULL,
2570 "WDC AC33100H", NULL,
2571 "WDC AC31600H", NULL,
2572 "WDC AC32100H", "24.09P07",
2573 "WDC AC23200L", "21.10N21",
2574 "Compaq CRD-8241B", NULL,
2575 "CRD-8400B", NULL,
2576 "CRD-8480B", NULL,
2577 "CRD-8482B", NULL,
2578 "CRD-84", NULL,
2579 "SanDisk SDP3B", NULL,
2580 "SanDisk SDP3B-64", NULL,
2581 "SANYO CD-ROM CRD", NULL,
2582 "HITACHI CDR-8", NULL,
2e9edbf8 2583 "HITACHI CDR-8335", NULL,
f4b15fef 2584 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2585 "Toshiba CD-ROM XM-6202B", NULL,
2586 "TOSHIBA CD-ROM XM-1702BC", NULL,
2587 "CD-532E-A", NULL,
2588 "E-IDE CD-ROM CR-840", NULL,
2589 "CD-ROM Drive/F5A", NULL,
2590 "WPI CDD-820", NULL,
f4b15fef 2591 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2592 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2593 "SanDisk SDP3B-64", NULL,
2594 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2595 "_NEC DV5800A", NULL,
2596 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2597};
2e9edbf8 2598
f4b15fef
AC
2599static int ata_strim(char *s, size_t len)
2600{
2601 len = strnlen(s, len);
2602
2603 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2604 while ((len > 0) && (s[len - 1] == ' ')) {
2605 len--;
2606 s[len] = 0;
2607 }
2608 return len;
2609}
1da177e4 2610
057ace5e 2611static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2612{
f4b15fef
AC
2613 unsigned char model_num[40];
2614 unsigned char model_rev[16];
2615 unsigned int nlen, rlen;
1da177e4
LT
2616 int i;
2617
f4b15fef
AC
2618 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2619 sizeof(model_num));
2620 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2621 sizeof(model_rev));
2622 nlen = ata_strim(model_num, sizeof(model_num));
2623 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2624
f4b15fef
AC
2625 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2626 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2627 if (ata_dma_blacklist[i+1] == NULL)
2628 return 1;
2629 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2630 return 1;
2631 }
2632 }
1da177e4
LT
2633 return 0;
2634}
2635
1da177e4 2636/**
a6d5a51c
TH
2637 * ata_dev_xfermask - Compute supported xfermask of the given device
2638 * @ap: Port on which the device to compute xfermask for resides
2639 * @dev: Device to compute xfermask for
1da177e4 2640 *
acf356b1
TH
2641 * Compute supported xfermask of @dev and store it in
2642 * dev->*_mask. This function is responsible for applying all
2643 * known limits including host controller limits, device
2644 * blacklist, etc...
0cba632b 2645 *
1da177e4 2646 * LOCKING:
a6d5a51c 2647 * None.
1da177e4 2648 */
acf356b1 2649static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
1da177e4 2650{
a6d5a51c
TH
2651 unsigned long xfer_mask;
2652 int i;
1da177e4 2653
a6d5a51c
TH
2654 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
2655 ap->udma_mask);
1da177e4 2656
a6d5a51c
TH
2657 /* use port-wide xfermask for now */
2658 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2659 struct ata_device *d = &ap->device[i];
2660 if (!ata_dev_present(d))
2661 continue;
acf356b1
TH
2662 xfer_mask &= ata_pack_xfermask(d->pio_mask, d->mwdma_mask,
2663 d->udma_mask);
a6d5a51c
TH
2664 xfer_mask &= ata_id_xfermask(d->id);
2665 if (ata_dma_blacklisted(d))
2666 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
2667 }
2668
a6d5a51c
TH
2669 if (ata_dma_blacklisted(dev))
2670 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2671 "disabling DMA\n", ap->id, dev->devno);
2672
acf356b1
TH
2673 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2674 &dev->udma_mask);
1da177e4
LT
2675}
2676
2677/**
2678 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2679 * @ap: Port associated with device @dev
2680 * @dev: Device to which command will be sent
2681 *
780a87f7
JG
2682 * Issue SET FEATURES - XFER MODE command to device @dev
2683 * on port @ap.
2684 *
1da177e4 2685 * LOCKING:
0cba632b 2686 * PCI/etc. bus probe sem.
83206a29
TH
2687 *
2688 * RETURNS:
2689 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
2690 */
2691
83206a29
TH
2692static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2693 struct ata_device *dev)
1da177e4 2694{
a0123703 2695 struct ata_taskfile tf;
83206a29 2696 unsigned int err_mask;
1da177e4
LT
2697
2698 /* set up set-features taskfile */
2699 DPRINTK("set features - xfer mode\n");
2700
a0123703
TH
2701 ata_tf_init(ap, &tf, dev->devno);
2702 tf.command = ATA_CMD_SET_FEATURES;
2703 tf.feature = SETFEATURES_XFER;
2704 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2705 tf.protocol = ATA_PROT_NODATA;
2706 tf.nsect = dev->xfer_mode;
1da177e4 2707
83206a29 2708 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
1da177e4 2709
83206a29
TH
2710 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2711 return err_mask;
1da177e4
LT
2712}
2713
8bf62ece
AL
2714/**
2715 * ata_dev_init_params - Issue INIT DEV PARAMS command
2716 * @ap: Port associated with device @dev
2717 * @dev: Device to which command will be sent
2718 *
2719 * LOCKING:
6aff8f1f
TH
2720 * Kernel thread context (may sleep)
2721 *
2722 * RETURNS:
2723 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece
AL
2724 */
2725
6aff8f1f
TH
2726static unsigned int ata_dev_init_params(struct ata_port *ap,
2727 struct ata_device *dev)
8bf62ece 2728{
a0123703 2729 struct ata_taskfile tf;
6aff8f1f 2730 unsigned int err_mask;
8bf62ece
AL
2731 u16 sectors = dev->id[6];
2732 u16 heads = dev->id[3];
2733
2734 /* Number of sectors per track 1-255. Number of heads 1-16 */
2735 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
6aff8f1f 2736 return 0;
8bf62ece
AL
2737
2738 /* set up init dev params taskfile */
2739 DPRINTK("init dev params \n");
2740
a0123703
TH
2741 ata_tf_init(ap, &tf, dev->devno);
2742 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2743 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2744 tf.protocol = ATA_PROT_NODATA;
2745 tf.nsect = sectors;
2746 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 2747
6aff8f1f 2748 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
8bf62ece 2749
6aff8f1f
TH
2750 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2751 return err_mask;
8bf62ece
AL
2752}
2753
1da177e4 2754/**
0cba632b
JG
2755 * ata_sg_clean - Unmap DMA memory associated with command
2756 * @qc: Command containing DMA memory to be released
2757 *
2758 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
2759 *
2760 * LOCKING:
0cba632b 2761 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2762 */
2763
2764static void ata_sg_clean(struct ata_queued_cmd *qc)
2765{
2766 struct ata_port *ap = qc->ap;
cedc9a47 2767 struct scatterlist *sg = qc->__sg;
1da177e4 2768 int dir = qc->dma_dir;
cedc9a47 2769 void *pad_buf = NULL;
1da177e4 2770
a4631474
TH
2771 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2772 WARN_ON(sg == NULL);
1da177e4
LT
2773
2774 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 2775 WARN_ON(qc->n_elem > 1);
1da177e4 2776
2c13b7ce 2777 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 2778
cedc9a47
JG
2779 /* if we padded the buffer out to 32-bit bound, and data
2780 * xfer direction is from-device, we must copy from the
2781 * pad buffer back into the supplied buffer
2782 */
2783 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2784 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2785
2786 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 2787 if (qc->n_elem)
2f1f610b 2788 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
2789 /* restore last sg */
2790 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2791 if (pad_buf) {
2792 struct scatterlist *psg = &qc->pad_sgent;
2793 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2794 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 2795 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
2796 }
2797 } else {
2e242fa9 2798 if (qc->n_elem)
2f1f610b 2799 dma_unmap_single(ap->dev,
e1410f2d
JG
2800 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2801 dir);
cedc9a47
JG
2802 /* restore sg */
2803 sg->length += qc->pad_len;
2804 if (pad_buf)
2805 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2806 pad_buf, qc->pad_len);
2807 }
1da177e4
LT
2808
2809 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 2810 qc->__sg = NULL;
1da177e4
LT
2811}
2812
2813/**
2814 * ata_fill_sg - Fill PCI IDE PRD table
2815 * @qc: Metadata associated with taskfile to be transferred
2816 *
780a87f7
JG
2817 * Fill PCI IDE PRD (scatter-gather) table with segments
2818 * associated with the current disk command.
2819 *
1da177e4 2820 * LOCKING:
780a87f7 2821 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2822 *
2823 */
2824static void ata_fill_sg(struct ata_queued_cmd *qc)
2825{
1da177e4 2826 struct ata_port *ap = qc->ap;
cedc9a47
JG
2827 struct scatterlist *sg;
2828 unsigned int idx;
1da177e4 2829
a4631474 2830 WARN_ON(qc->__sg == NULL);
f131883e 2831 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
2832
2833 idx = 0;
cedc9a47 2834 ata_for_each_sg(sg, qc) {
1da177e4
LT
2835 u32 addr, offset;
2836 u32 sg_len, len;
2837
2838 /* determine if physical DMA addr spans 64K boundary.
2839 * Note h/w doesn't support 64-bit, so we unconditionally
2840 * truncate dma_addr_t to u32.
2841 */
2842 addr = (u32) sg_dma_address(sg);
2843 sg_len = sg_dma_len(sg);
2844
2845 while (sg_len) {
2846 offset = addr & 0xffff;
2847 len = sg_len;
2848 if ((offset + sg_len) > 0x10000)
2849 len = 0x10000 - offset;
2850
2851 ap->prd[idx].addr = cpu_to_le32(addr);
2852 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2853 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2854
2855 idx++;
2856 sg_len -= len;
2857 addr += len;
2858 }
2859 }
2860
2861 if (idx)
2862 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2863}
2864/**
2865 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2866 * @qc: Metadata associated with taskfile to check
2867 *
780a87f7
JG
2868 * Allow low-level driver to filter ATA PACKET commands, returning
2869 * a status indicating whether or not it is OK to use DMA for the
2870 * supplied PACKET command.
2871 *
1da177e4 2872 * LOCKING:
0cba632b
JG
2873 * spin_lock_irqsave(host_set lock)
2874 *
1da177e4
LT
2875 * RETURNS: 0 when ATAPI DMA can be used
2876 * nonzero otherwise
2877 */
2878int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2879{
2880 struct ata_port *ap = qc->ap;
2881 int rc = 0; /* Assume ATAPI DMA is OK by default */
2882
2883 if (ap->ops->check_atapi_dma)
2884 rc = ap->ops->check_atapi_dma(qc);
2885
c2bbc551
AL
2886 /* We don't support polling DMA.
2887 * Use PIO if the LLDD handles only interrupts in
2888 * the HSM_ST_LAST state and the ATAPI device
2889 * generates CDB interrupts.
2890 */
2891 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
2892 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
2893 rc = 1;
2894
1da177e4
LT
2895 return rc;
2896}
2897/**
2898 * ata_qc_prep - Prepare taskfile for submission
2899 * @qc: Metadata associated with taskfile to be prepared
2900 *
780a87f7
JG
2901 * Prepare ATA taskfile for submission.
2902 *
1da177e4
LT
2903 * LOCKING:
2904 * spin_lock_irqsave(host_set lock)
2905 */
2906void ata_qc_prep(struct ata_queued_cmd *qc)
2907{
2908 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2909 return;
2910
2911 ata_fill_sg(qc);
2912}
2913
e46834cd
BK
2914void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
2915
0cba632b
JG
2916/**
2917 * ata_sg_init_one - Associate command with memory buffer
2918 * @qc: Command to be associated
2919 * @buf: Memory buffer
2920 * @buflen: Length of memory buffer, in bytes.
2921 *
2922 * Initialize the data-related elements of queued_cmd @qc
2923 * to point to a single memory buffer, @buf of byte length @buflen.
2924 *
2925 * LOCKING:
2926 * spin_lock_irqsave(host_set lock)
2927 */
2928
1da177e4
LT
2929void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2930{
2931 struct scatterlist *sg;
2932
2933 qc->flags |= ATA_QCFLAG_SINGLE;
2934
2935 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 2936 qc->__sg = &qc->sgent;
1da177e4 2937 qc->n_elem = 1;
cedc9a47 2938 qc->orig_n_elem = 1;
1da177e4
LT
2939 qc->buf_virt = buf;
2940
cedc9a47 2941 sg = qc->__sg;
f0612bbc 2942 sg_init_one(sg, buf, buflen);
1da177e4
LT
2943}
2944
0cba632b
JG
2945/**
2946 * ata_sg_init - Associate command with scatter-gather table.
2947 * @qc: Command to be associated
2948 * @sg: Scatter-gather table.
2949 * @n_elem: Number of elements in s/g table.
2950 *
2951 * Initialize the data-related elements of queued_cmd @qc
2952 * to point to a scatter-gather table @sg, containing @n_elem
2953 * elements.
2954 *
2955 * LOCKING:
2956 * spin_lock_irqsave(host_set lock)
2957 */
2958
1da177e4
LT
2959void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2960 unsigned int n_elem)
2961{
2962 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 2963 qc->__sg = sg;
1da177e4 2964 qc->n_elem = n_elem;
cedc9a47 2965 qc->orig_n_elem = n_elem;
1da177e4
LT
2966}
2967
2968/**
0cba632b
JG
2969 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2970 * @qc: Command with memory buffer to be mapped.
2971 *
2972 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
2973 *
2974 * LOCKING:
2975 * spin_lock_irqsave(host_set lock)
2976 *
2977 * RETURNS:
0cba632b 2978 * Zero on success, negative on error.
1da177e4
LT
2979 */
2980
2981static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2982{
2983 struct ata_port *ap = qc->ap;
2984 int dir = qc->dma_dir;
cedc9a47 2985 struct scatterlist *sg = qc->__sg;
1da177e4 2986 dma_addr_t dma_address;
2e242fa9 2987 int trim_sg = 0;
1da177e4 2988
cedc9a47
JG
2989 /* we must lengthen transfers to end on a 32-bit boundary */
2990 qc->pad_len = sg->length & 3;
2991 if (qc->pad_len) {
2992 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2993 struct scatterlist *psg = &qc->pad_sgent;
2994
a4631474 2995 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
2996
2997 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2998
2999 if (qc->tf.flags & ATA_TFLAG_WRITE)
3000 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3001 qc->pad_len);
3002
3003 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3004 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3005 /* trim sg */
3006 sg->length -= qc->pad_len;
2e242fa9
TH
3007 if (sg->length == 0)
3008 trim_sg = 1;
cedc9a47
JG
3009
3010 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3011 sg->length, qc->pad_len);
3012 }
3013
2e242fa9
TH
3014 if (trim_sg) {
3015 qc->n_elem--;
e1410f2d
JG
3016 goto skip_map;
3017 }
3018
2f1f610b 3019 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3020 sg->length, dir);
537a95d9
TH
3021 if (dma_mapping_error(dma_address)) {
3022 /* restore sg */
3023 sg->length += qc->pad_len;
1da177e4 3024 return -1;
537a95d9 3025 }
1da177e4
LT
3026
3027 sg_dma_address(sg) = dma_address;
32529e01 3028 sg_dma_len(sg) = sg->length;
1da177e4 3029
2e242fa9 3030skip_map:
1da177e4
LT
3031 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3032 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3033
3034 return 0;
3035}
3036
3037/**
0cba632b
JG
3038 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3039 * @qc: Command with scatter-gather table to be mapped.
3040 *
3041 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3042 *
3043 * LOCKING:
3044 * spin_lock_irqsave(host_set lock)
3045 *
3046 * RETURNS:
0cba632b 3047 * Zero on success, negative on error.
1da177e4
LT
3048 *
3049 */
3050
3051static int ata_sg_setup(struct ata_queued_cmd *qc)
3052{
3053 struct ata_port *ap = qc->ap;
cedc9a47
JG
3054 struct scatterlist *sg = qc->__sg;
3055 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3056 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3057
3058 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3059 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3060
cedc9a47
JG
3061 /* we must lengthen transfers to end on a 32-bit boundary */
3062 qc->pad_len = lsg->length & 3;
3063 if (qc->pad_len) {
3064 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3065 struct scatterlist *psg = &qc->pad_sgent;
3066 unsigned int offset;
3067
a4631474 3068 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3069
3070 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3071
3072 /*
3073 * psg->page/offset are used to copy to-be-written
3074 * data in this function or read data in ata_sg_clean.
3075 */
3076 offset = lsg->offset + lsg->length - qc->pad_len;
3077 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3078 psg->offset = offset_in_page(offset);
3079
3080 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3081 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3082 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3083 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3084 }
3085
3086 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3087 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3088 /* trim last sg */
3089 lsg->length -= qc->pad_len;
e1410f2d
JG
3090 if (lsg->length == 0)
3091 trim_sg = 1;
cedc9a47
JG
3092
3093 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3094 qc->n_elem - 1, lsg->length, qc->pad_len);
3095 }
3096
e1410f2d
JG
3097 pre_n_elem = qc->n_elem;
3098 if (trim_sg && pre_n_elem)
3099 pre_n_elem--;
3100
3101 if (!pre_n_elem) {
3102 n_elem = 0;
3103 goto skip_map;
3104 }
3105
1da177e4 3106 dir = qc->dma_dir;
2f1f610b 3107 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3108 if (n_elem < 1) {
3109 /* restore last sg */
3110 lsg->length += qc->pad_len;
1da177e4 3111 return -1;
537a95d9 3112 }
1da177e4
LT
3113
3114 DPRINTK("%d sg elements mapped\n", n_elem);
3115
e1410f2d 3116skip_map:
1da177e4
LT
3117 qc->n_elem = n_elem;
3118
3119 return 0;
3120}
3121
40e8c82c
TH
3122/**
3123 * ata_poll_qc_complete - turn irq back on and finish qc
3124 * @qc: Command to complete
8e8b77dd 3125 * @err_mask: ATA status register content
40e8c82c
TH
3126 *
3127 * LOCKING:
3128 * None. (grabs host lock)
3129 */
3130
a22e2eb0 3131void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3132{
3133 struct ata_port *ap = qc->ap;
b8f6153e 3134 unsigned long flags;
40e8c82c 3135
b8f6153e 3136 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c 3137 ata_irq_on(ap);
a22e2eb0 3138 ata_qc_complete(qc);
b8f6153e 3139 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3140}
3141
0baab86b 3142/**
c893a3ae 3143 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3144 * @buf: Buffer to swap
3145 * @buf_words: Number of 16-bit words in buffer.
3146 *
3147 * Swap halves of 16-bit words if needed to convert from
3148 * little-endian byte order to native cpu byte order, or
3149 * vice-versa.
3150 *
3151 * LOCKING:
6f0ef4fa 3152 * Inherited from caller.
0baab86b 3153 */
1da177e4
LT
3154void swap_buf_le16(u16 *buf, unsigned int buf_words)
3155{
3156#ifdef __BIG_ENDIAN
3157 unsigned int i;
3158
3159 for (i = 0; i < buf_words; i++)
3160 buf[i] = le16_to_cpu(buf[i]);
3161#endif /* __BIG_ENDIAN */
3162}
3163
6ae4cfb5
AL
3164/**
3165 * ata_mmio_data_xfer - Transfer data by MMIO
3166 * @ap: port to read/write
3167 * @buf: data buffer
3168 * @buflen: buffer length
344babaa 3169 * @write_data: read/write
6ae4cfb5
AL
3170 *
3171 * Transfer data from/to the device data register by MMIO.
3172 *
3173 * LOCKING:
3174 * Inherited from caller.
6ae4cfb5
AL
3175 */
3176
1da177e4
LT
3177static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3178 unsigned int buflen, int write_data)
3179{
3180 unsigned int i;
3181 unsigned int words = buflen >> 1;
3182 u16 *buf16 = (u16 *) buf;
3183 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3184
6ae4cfb5 3185 /* Transfer multiple of 2 bytes */
1da177e4
LT
3186 if (write_data) {
3187 for (i = 0; i < words; i++)
3188 writew(le16_to_cpu(buf16[i]), mmio);
3189 } else {
3190 for (i = 0; i < words; i++)
3191 buf16[i] = cpu_to_le16(readw(mmio));
3192 }
6ae4cfb5
AL
3193
3194 /* Transfer trailing 1 byte, if any. */
3195 if (unlikely(buflen & 0x01)) {
3196 u16 align_buf[1] = { 0 };
3197 unsigned char *trailing_buf = buf + buflen - 1;
3198
3199 if (write_data) {
3200 memcpy(align_buf, trailing_buf, 1);
3201 writew(le16_to_cpu(align_buf[0]), mmio);
3202 } else {
3203 align_buf[0] = cpu_to_le16(readw(mmio));
3204 memcpy(trailing_buf, align_buf, 1);
3205 }
3206 }
1da177e4
LT
3207}
3208
6ae4cfb5
AL
3209/**
3210 * ata_pio_data_xfer - Transfer data by PIO
3211 * @ap: port to read/write
3212 * @buf: data buffer
3213 * @buflen: buffer length
344babaa 3214 * @write_data: read/write
6ae4cfb5
AL
3215 *
3216 * Transfer data from/to the device data register by PIO.
3217 *
3218 * LOCKING:
3219 * Inherited from caller.
6ae4cfb5
AL
3220 */
3221
1da177e4
LT
3222static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3223 unsigned int buflen, int write_data)
3224{
6ae4cfb5 3225 unsigned int words = buflen >> 1;
1da177e4 3226
6ae4cfb5 3227 /* Transfer multiple of 2 bytes */
1da177e4 3228 if (write_data)
6ae4cfb5 3229 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3230 else
6ae4cfb5
AL
3231 insw(ap->ioaddr.data_addr, buf, words);
3232
3233 /* Transfer trailing 1 byte, if any. */
3234 if (unlikely(buflen & 0x01)) {
3235 u16 align_buf[1] = { 0 };
3236 unsigned char *trailing_buf = buf + buflen - 1;
3237
3238 if (write_data) {
3239 memcpy(align_buf, trailing_buf, 1);
3240 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3241 } else {
3242 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3243 memcpy(trailing_buf, align_buf, 1);
3244 }
3245 }
1da177e4
LT
3246}
3247
6ae4cfb5
AL
3248/**
3249 * ata_data_xfer - Transfer data from/to the data register.
3250 * @ap: port to read/write
3251 * @buf: data buffer
3252 * @buflen: buffer length
3253 * @do_write: read/write
3254 *
3255 * Transfer data from/to the device data register.
3256 *
3257 * LOCKING:
3258 * Inherited from caller.
6ae4cfb5
AL
3259 */
3260
1da177e4
LT
3261static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3262 unsigned int buflen, int do_write)
3263{
a1bd9e68
AC
3264 /* Make the crap hardware pay the costs not the good stuff */
3265 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3266 unsigned long flags;
3267 local_irq_save(flags);
3268 if (ap->flags & ATA_FLAG_MMIO)
3269 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3270 else
3271 ata_pio_data_xfer(ap, buf, buflen, do_write);
3272 local_irq_restore(flags);
3273 } else {
3274 if (ap->flags & ATA_FLAG_MMIO)
3275 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3276 else
3277 ata_pio_data_xfer(ap, buf, buflen, do_write);
3278 }
1da177e4
LT
3279}
3280
6ae4cfb5
AL
3281/**
3282 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3283 * @qc: Command on going
3284 *
3285 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3286 *
3287 * LOCKING:
3288 * Inherited from caller.
3289 */
3290
1da177e4
LT
3291static void ata_pio_sector(struct ata_queued_cmd *qc)
3292{
3293 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3294 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3295 struct ata_port *ap = qc->ap;
3296 struct page *page;
3297 unsigned int offset;
3298 unsigned char *buf;
3299
3300 if (qc->cursect == (qc->nsect - 1))
14be71f4 3301 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3302
3303 page = sg[qc->cursg].page;
3304 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3305
3306 /* get the current page and offset */
3307 page = nth_page(page, (offset >> PAGE_SHIFT));
3308 offset %= PAGE_SIZE;
3309
1da177e4
LT
3310 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3311
91b8b313
AL
3312 if (PageHighMem(page)) {
3313 unsigned long flags;
3314
3315 local_irq_save(flags);
3316 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3317
91b8b313
AL
3318 /* do the actual data transfer */
3319 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3320
91b8b313
AL
3321 kunmap_atomic(buf, KM_IRQ0);
3322 local_irq_restore(flags);
3323 } else {
3324 buf = page_address(page);
3325 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
3326 }
7282aa4b
AL
3327
3328 qc->cursect++;
3329 qc->cursg_ofs++;
3330
3331 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3332 qc->cursg++;
3333 qc->cursg_ofs = 0;
3334 }
1da177e4
LT
3335}
3336
07f6f7d0
AL
3337/**
3338 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3339 * @qc: Command on going
3340 *
3341 * Transfer one or many ATA_SECT_SIZE of data from/to the
3342 * ATA device for the DRQ request.
3343 *
3344 * LOCKING:
3345 * Inherited from caller.
3346 */
3347
3348static void ata_pio_sectors(struct ata_queued_cmd *qc)
3349{
3350 if (is_multi_taskfile(&qc->tf)) {
3351 /* READ/WRITE MULTIPLE */
3352 unsigned int nsect;
3353
587005de 3354 WARN_ON(qc->dev->multi_count == 0);
07f6f7d0
AL
3355
3356 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3357 while (nsect--)
3358 ata_pio_sector(qc);
3359 } else
3360 ata_pio_sector(qc);
3361}
3362
c71c1857
AL
3363/**
3364 * atapi_send_cdb - Write CDB bytes to hardware
3365 * @ap: Port to which ATAPI device is attached.
3366 * @qc: Taskfile currently active
3367 *
3368 * When device has indicated its readiness to accept
3369 * a CDB, this function is called. Send the CDB.
3370 *
3371 * LOCKING:
3372 * caller.
3373 */
3374
3375static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3376{
3377 /* send SCSI cdb */
3378 DPRINTK("send cdb\n");
db024d53 3379 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3380
db024d53 3381 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3382 ata_altstatus(ap); /* flush */
3383
3384 switch (qc->tf.protocol) {
3385 case ATA_PROT_ATAPI:
3386 ap->hsm_task_state = HSM_ST;
3387 break;
3388 case ATA_PROT_ATAPI_NODATA:
3389 ap->hsm_task_state = HSM_ST_LAST;
3390 break;
3391 case ATA_PROT_ATAPI_DMA:
3392 ap->hsm_task_state = HSM_ST_LAST;
3393 /* initiate bmdma */
3394 ap->ops->bmdma_start(qc);
3395 break;
3396 }
3397}
3398
6ae4cfb5
AL
3399/**
3400 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3401 * @qc: Command on going
3402 * @bytes: number of bytes
3403 *
3404 * Transfer Transfer data from/to the ATAPI device.
3405 *
3406 * LOCKING:
3407 * Inherited from caller.
3408 *
3409 */
3410
1da177e4
LT
3411static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3412{
3413 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3414 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3415 struct ata_port *ap = qc->ap;
3416 struct page *page;
3417 unsigned char *buf;
3418 unsigned int offset, count;
3419
563a6e1f 3420 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3421 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3422
3423next_sg:
563a6e1f 3424 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3425 /*
563a6e1f
AL
3426 * The end of qc->sg is reached and the device expects
3427 * more data to transfer. In order not to overrun qc->sg
3428 * and fulfill length specified in the byte count register,
3429 * - for read case, discard trailing data from the device
3430 * - for write case, padding zero data to the device
3431 */
3432 u16 pad_buf[1] = { 0 };
3433 unsigned int words = bytes >> 1;
3434 unsigned int i;
3435
3436 if (words) /* warning if bytes > 1 */
7fb6ec28 3437 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3438 ap->id, bytes);
3439
3440 for (i = 0; i < words; i++)
3441 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3442
14be71f4 3443 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3444 return;
3445 }
3446
cedc9a47 3447 sg = &qc->__sg[qc->cursg];
1da177e4 3448
1da177e4
LT
3449 page = sg->page;
3450 offset = sg->offset + qc->cursg_ofs;
3451
3452 /* get the current page and offset */
3453 page = nth_page(page, (offset >> PAGE_SHIFT));
3454 offset %= PAGE_SIZE;
3455
6952df03 3456 /* don't overrun current sg */
32529e01 3457 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3458
3459 /* don't cross page boundaries */
3460 count = min(count, (unsigned int)PAGE_SIZE - offset);
3461
7282aa4b
AL
3462 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3463
91b8b313
AL
3464 if (PageHighMem(page)) {
3465 unsigned long flags;
3466
3467 local_irq_save(flags);
3468 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3469
91b8b313
AL
3470 /* do the actual data transfer */
3471 ata_data_xfer(ap, buf + offset, count, do_write);
7282aa4b 3472
91b8b313
AL
3473 kunmap_atomic(buf, KM_IRQ0);
3474 local_irq_restore(flags);
3475 } else {
3476 buf = page_address(page);
3477 ata_data_xfer(ap, buf + offset, count, do_write);
3478 }
7282aa4b 3479
1da177e4
LT
3480 bytes -= count;
3481 qc->curbytes += count;
3482 qc->cursg_ofs += count;
3483
32529e01 3484 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3485 qc->cursg++;
3486 qc->cursg_ofs = 0;
3487 }
3488
563a6e1f 3489 if (bytes)
1da177e4 3490 goto next_sg;
1da177e4
LT
3491}
3492
6ae4cfb5
AL
3493/**
3494 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3495 * @qc: Command on going
3496 *
3497 * Transfer Transfer data from/to the ATAPI device.
3498 *
3499 * LOCKING:
3500 * Inherited from caller.
6ae4cfb5
AL
3501 */
3502
1da177e4
LT
3503static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3504{
3505 struct ata_port *ap = qc->ap;
3506 struct ata_device *dev = qc->dev;
3507 unsigned int ireason, bc_lo, bc_hi, bytes;
3508 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3509
3510 ap->ops->tf_read(ap, &qc->tf);
3511 ireason = qc->tf.nsect;
3512 bc_lo = qc->tf.lbam;
3513 bc_hi = qc->tf.lbah;
3514 bytes = (bc_hi << 8) | bc_lo;
3515
3516 /* shall be cleared to zero, indicating xfer of data */
3517 if (ireason & (1 << 0))
3518 goto err_out;
3519
3520 /* make sure transfer direction matches expected */
3521 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3522 if (do_write != i_write)
3523 goto err_out;
3524
312f7da2
AL
3525 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3526
1da177e4
LT
3527 __atapi_pio_bytes(qc, bytes);
3528
3529 return;
3530
3531err_out:
3532 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3533 ap->id, dev->devno);
11a56d24 3534 qc->err_mask |= AC_ERR_HSM;
14be71f4 3535 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3536}
3537
c234fb00
AL
3538/**
3539 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3540 * @ap: the target ata_port
3541 * @qc: qc on going
3542 *
3543 * RETURNS:
3544 * 1 if ok in workqueue, 0 otherwise.
3545 */
3546
3547static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3548{
3549 if (qc->tf.flags & ATA_TFLAG_POLLING)
3550 return 1;
3551
3552 if (ap->hsm_task_state == HSM_ST_FIRST) {
3553 if (qc->tf.protocol == ATA_PROT_PIO &&
3554 (qc->tf.flags & ATA_TFLAG_WRITE))
3555 return 1;
3556
3557 if (is_atapi_taskfile(&qc->tf) &&
3558 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3559 return 1;
3560 }
3561
3562 return 0;
3563}
3564
bb5cb290
AL
3565/**
3566 * ata_hsm_move - move the HSM to the next state.
3567 * @ap: the target ata_port
3568 * @qc: qc on going
3569 * @status: current device status
3570 * @in_wq: 1 if called from workqueue, 0 otherwise
3571 *
3572 * RETURNS:
3573 * 1 when poll next status needed, 0 otherwise.
3574 */
3575
3576static int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3577 u8 status, int in_wq)
e2cec771 3578{
bb5cb290
AL
3579 unsigned long flags = 0;
3580 int poll_next;
3581
6912ccd5
AL
3582 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3583
bb5cb290
AL
3584 /* Make sure ata_qc_issue_prot() does not throw things
3585 * like DMA polling into the workqueue. Notice that
3586 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
3587 */
c234fb00 3588 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 3589
e2cec771
AL
3590 /* check error */
3591 if (unlikely(status & (ATA_ERR | ATA_DF))) {
3592 qc->err_mask |= AC_ERR_DEV;
3593 ap->hsm_task_state = HSM_ST_ERR;
3594 }
3595
3596fsm_start:
999bb6f4
AL
3597 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
3598 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
3599
e2cec771
AL
3600 switch (ap->hsm_task_state) {
3601 case HSM_ST_FIRST:
bb5cb290
AL
3602 /* Send first data block or PACKET CDB */
3603
3604 /* If polling, we will stay in the work queue after
3605 * sending the data. Otherwise, interrupt handler
3606 * takes over after sending the data.
3607 */
3608 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
3609
e2cec771
AL
3610 /* check device status */
3611 if (unlikely((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)) {
3612 /* Wrong status. Let EH handle this */
3613 qc->err_mask |= AC_ERR_HSM;
3614 ap->hsm_task_state = HSM_ST_ERR;
3615 goto fsm_start;
3616 }
3617
bb5cb290
AL
3618 /* Send the CDB (atapi) or the first data block (ata pio out).
3619 * During the state transition, interrupt handler shouldn't
3620 * be invoked before the data transfer is complete and
3621 * hsm_task_state is changed. Hence, the following locking.
3622 */
3623 if (in_wq)
3624 spin_lock_irqsave(&ap->host_set->lock, flags);
3625
3626 if (qc->tf.protocol == ATA_PROT_PIO) {
3627 /* PIO data out protocol.
3628 * send first data block.
3629 */
e2cec771 3630
bb5cb290
AL
3631 /* ata_pio_sectors() might change the state
3632 * to HSM_ST_LAST. so, the state is changed here
3633 * before ata_pio_sectors().
3634 */
3635 ap->hsm_task_state = HSM_ST;
3636 ata_pio_sectors(qc);
3637 ata_altstatus(ap); /* flush */
3638 } else
3639 /* send CDB */
3640 atapi_send_cdb(ap, qc);
3641
3642 if (in_wq)
3643 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3644
3645 /* if polling, ata_pio_task() handles the rest.
3646 * otherwise, interrupt handler takes over from here.
3647 */
e2cec771
AL
3648 break;
3649
3650 case HSM_ST:
3651 /* complete command or read/write the data register */
3652 if (qc->tf.protocol == ATA_PROT_ATAPI) {
3653 /* ATAPI PIO protocol */
3654 if ((status & ATA_DRQ) == 0) {
3655 /* no more data to transfer */
3656 ap->hsm_task_state = HSM_ST_LAST;
3657 goto fsm_start;
3658 }
3659
3660 atapi_pio_bytes(qc);
3661
3662 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
3663 /* bad ireason reported by device */
3664 goto fsm_start;
3665
3666 } else {
3667 /* ATA PIO protocol */
3668 if (unlikely((status & ATA_DRQ) == 0)) {
3669 /* handle BSY=0, DRQ=0 as error */
3670 qc->err_mask |= AC_ERR_HSM;
3671 ap->hsm_task_state = HSM_ST_ERR;
3672 goto fsm_start;
3673 }
3674
3675 ata_pio_sectors(qc);
3676
3677 if (ap->hsm_task_state == HSM_ST_LAST &&
3678 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
3679 /* all data read */
3680 ata_altstatus(ap);
3681 status = ata_chk_status(ap);
3682 goto fsm_start;
3683 }
3684 }
3685
3686 ata_altstatus(ap); /* flush */
bb5cb290 3687 poll_next = 1;
e2cec771
AL
3688 break;
3689
3690 case HSM_ST_LAST:
6912ccd5
AL
3691 if (unlikely(!ata_ok(status))) {
3692 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
3693 ap->hsm_task_state = HSM_ST_ERR;
3694 goto fsm_start;
3695 }
3696
3697 /* no more data to transfer */
3698 DPRINTK("ata%u: command complete, drv_stat 0x%x\n",
3699 ap->id, status);
3700
6912ccd5
AL
3701 WARN_ON(qc->err_mask);
3702
e2cec771
AL
3703 ap->hsm_task_state = HSM_ST_IDLE;
3704
3705 /* complete taskfile transaction */
bb5cb290
AL
3706 if (in_wq)
3707 ata_poll_qc_complete(qc);
3708 else
3709 ata_qc_complete(qc);
3710
3711 poll_next = 0;
e2cec771
AL
3712 break;
3713
3714 case HSM_ST_ERR:
3715 if (qc->tf.command != ATA_CMD_PACKET)
6912ccd5
AL
3716 printk(KERN_ERR "ata%u: command error, drv_stat 0x%x\n",
3717 ap->id, status);
e2cec771
AL
3718
3719 /* make sure qc->err_mask is available to
3720 * know what's wrong and recover
3721 */
3722 WARN_ON(qc->err_mask == 0);
3723
3724 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 3725
999bb6f4 3726 /* complete taskfile transaction */
bb5cb290
AL
3727 if (in_wq)
3728 ata_poll_qc_complete(qc);
3729 else
3730 ata_qc_complete(qc);
3731
3732 poll_next = 0;
e2cec771
AL
3733 break;
3734 default:
bb5cb290 3735 poll_next = 0;
6912ccd5 3736 BUG();
e2cec771
AL
3737 }
3738
bb5cb290 3739 return poll_next;
e2cec771
AL
3740}
3741
1da177e4
LT
3742static void ata_pio_task(void *_data)
3743{
3744 struct ata_port *ap = _data;
a1af3734
AL
3745 struct ata_queued_cmd *qc;
3746 u8 status;
3747 int poll_next;
7fb6ec28
JG
3748
3749fsm_start:
a1af3734 3750 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
1da177e4 3751
a1af3734
AL
3752 qc = ata_qc_from_tag(ap, ap->active_tag);
3753 WARN_ON(qc == NULL);
467b16d4 3754
a1af3734
AL
3755 /*
3756 * This is purely heuristic. This is a fast path.
3757 * Sometimes when we enter, BSY will be cleared in
3758 * a chk-status or two. If not, the drive is probably seeking
3759 * or something. Snooze for a couple msecs, then
3760 * chk-status again. If still busy, queue delayed work.
3761 */
3762 status = ata_busy_wait(ap, ATA_BUSY, 5);
3763 if (status & ATA_BUSY) {
3764 msleep(2);
3765 status = ata_busy_wait(ap, ATA_BUSY, 10);
3766 if (status & ATA_BUSY) {
3767 ata_port_queue_task(ap, ata_pio_task, ap, ATA_SHORT_PAUSE);
3768 return;
3769 }
1da177e4
LT
3770 }
3771
a1af3734
AL
3772 /* move the HSM */
3773 poll_next = ata_hsm_move(ap, qc, status, 1);
3774
3775 /* another command or interrupt handler
3776 * may be running at this point.
3777 */
3778 if (poll_next)
7fb6ec28 3779 goto fsm_start;
1da177e4
LT
3780}
3781
1da177e4
LT
3782/**
3783 * ata_qc_timeout - Handle timeout of queued command
3784 * @qc: Command that timed out
3785 *
3786 * Some part of the kernel (currently, only the SCSI layer)
3787 * has noticed that the active command on port @ap has not
3788 * completed after a specified length of time. Handle this
3789 * condition by disabling DMA (if necessary) and completing
3790 * transactions, with error if necessary.
3791 *
3792 * This also handles the case of the "lost interrupt", where
3793 * for some reason (possibly hardware bug, possibly driver bug)
3794 * an interrupt was not delivered to the driver, even though the
3795 * transaction completed successfully.
3796 *
3797 * LOCKING:
0cba632b 3798 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
3799 */
3800
3801static void ata_qc_timeout(struct ata_queued_cmd *qc)
3802{
3803 struct ata_port *ap = qc->ap;
b8f6153e 3804 struct ata_host_set *host_set = ap->host_set;
1da177e4 3805 u8 host_stat = 0, drv_stat;
b8f6153e 3806 unsigned long flags;
1da177e4
LT
3807
3808 DPRINTK("ENTER\n");
3809
c18d06f8
TH
3810 ap->hsm_task_state = HSM_ST_IDLE;
3811
b8f6153e
JG
3812 spin_lock_irqsave(&host_set->lock, flags);
3813
1da177e4
LT
3814 switch (qc->tf.protocol) {
3815
3816 case ATA_PROT_DMA:
3817 case ATA_PROT_ATAPI_DMA:
3818 host_stat = ap->ops->bmdma_status(ap);
3819
3820 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3821 ap->ops->bmdma_stop(qc);
1da177e4
LT
3822
3823 /* fall through */
3824
3825 default:
3826 ata_altstatus(ap);
3827 drv_stat = ata_chk_status(ap);
3828
3829 /* ack bmdma irq events */
3830 ap->ops->irq_clear(ap);
3831
3832 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3833 ap->id, qc->tf.command, drv_stat, host_stat);
3834
312f7da2
AL
3835 ap->hsm_task_state = HSM_ST_IDLE;
3836
1da177e4 3837 /* complete taskfile transaction */
555a8965 3838 qc->err_mask |= AC_ERR_TIMEOUT;
1da177e4
LT
3839 break;
3840 }
b8f6153e
JG
3841
3842 spin_unlock_irqrestore(&host_set->lock, flags);
3843
a72ec4ce
TH
3844 ata_eh_qc_complete(qc);
3845
1da177e4
LT
3846 DPRINTK("EXIT\n");
3847}
3848
3849/**
3850 * ata_eng_timeout - Handle timeout of queued command
3851 * @ap: Port on which timed-out command is active
3852 *
3853 * Some part of the kernel (currently, only the SCSI layer)
3854 * has noticed that the active command on port @ap has not
3855 * completed after a specified length of time. Handle this
3856 * condition by disabling DMA (if necessary) and completing
3857 * transactions, with error if necessary.
3858 *
3859 * This also handles the case of the "lost interrupt", where
3860 * for some reason (possibly hardware bug, possibly driver bug)
3861 * an interrupt was not delivered to the driver, even though the
3862 * transaction completed successfully.
3863 *
3864 * LOCKING:
3865 * Inherited from SCSI layer (none, can sleep)
3866 */
3867
3868void ata_eng_timeout(struct ata_port *ap)
3869{
1da177e4
LT
3870 DPRINTK("ENTER\n");
3871
f6379020 3872 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
1da177e4 3873
1da177e4
LT
3874 DPRINTK("EXIT\n");
3875}
3876
3877/**
3878 * ata_qc_new - Request an available ATA command, for queueing
3879 * @ap: Port associated with device @dev
3880 * @dev: Device from whom we request an available command structure
3881 *
3882 * LOCKING:
0cba632b 3883 * None.
1da177e4
LT
3884 */
3885
3886static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3887{
3888 struct ata_queued_cmd *qc = NULL;
3889 unsigned int i;
3890
3891 for (i = 0; i < ATA_MAX_QUEUE; i++)
3892 if (!test_and_set_bit(i, &ap->qactive)) {
3893 qc = ata_qc_from_tag(ap, i);
3894 break;
3895 }
3896
3897 if (qc)
3898 qc->tag = i;
3899
3900 return qc;
3901}
3902
3903/**
3904 * ata_qc_new_init - Request an available ATA command, and initialize it
3905 * @ap: Port associated with device @dev
3906 * @dev: Device from whom we request an available command structure
3907 *
3908 * LOCKING:
0cba632b 3909 * None.
1da177e4
LT
3910 */
3911
3912struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3913 struct ata_device *dev)
3914{
3915 struct ata_queued_cmd *qc;
3916
3917 qc = ata_qc_new(ap);
3918 if (qc) {
1da177e4
LT
3919 qc->scsicmd = NULL;
3920 qc->ap = ap;
3921 qc->dev = dev;
1da177e4 3922
2c13b7ce 3923 ata_qc_reinit(qc);
1da177e4
LT
3924 }
3925
3926 return qc;
3927}
3928
1da177e4
LT
3929/**
3930 * ata_qc_free - free unused ata_queued_cmd
3931 * @qc: Command to complete
3932 *
3933 * Designed to free unused ata_queued_cmd object
3934 * in case something prevents using it.
3935 *
3936 * LOCKING:
0cba632b 3937 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3938 */
3939void ata_qc_free(struct ata_queued_cmd *qc)
3940{
4ba946e9
TH
3941 struct ata_port *ap = qc->ap;
3942 unsigned int tag;
3943
a4631474 3944 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 3945
4ba946e9
TH
3946 qc->flags = 0;
3947 tag = qc->tag;
3948 if (likely(ata_tag_valid(tag))) {
3949 if (tag == ap->active_tag)
3950 ap->active_tag = ATA_TAG_POISON;
3951 qc->tag = ATA_TAG_POISON;
3952 clear_bit(tag, &ap->qactive);
3953 }
1da177e4
LT
3954}
3955
76014427 3956void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 3957{
a4631474
TH
3958 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3959 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
3960
3961 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3962 ata_sg_clean(qc);
3963
3f3791d3
AL
3964 /* atapi: mark qc as inactive to prevent the interrupt handler
3965 * from completing the command twice later, before the error handler
3966 * is called. (when rc != 0 and atapi request sense is needed)
3967 */
3968 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3969
1da177e4 3970 /* call completion callback */
77853bf2 3971 qc->complete_fn(qc);
1da177e4
LT
3972}
3973
3974static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3975{
3976 struct ata_port *ap = qc->ap;
3977
3978 switch (qc->tf.protocol) {
3979 case ATA_PROT_DMA:
3980 case ATA_PROT_ATAPI_DMA:
3981 return 1;
3982
3983 case ATA_PROT_ATAPI:
3984 case ATA_PROT_PIO:
1da177e4
LT
3985 if (ap->flags & ATA_FLAG_PIO_DMA)
3986 return 1;
3987
3988 /* fall through */
3989
3990 default:
3991 return 0;
3992 }
3993
3994 /* never reached */
3995}
3996
3997/**
3998 * ata_qc_issue - issue taskfile to device
3999 * @qc: command to issue to device
4000 *
4001 * Prepare an ATA command to submission to device.
4002 * This includes mapping the data into a DMA-able
4003 * area, filling in the S/G table, and finally
4004 * writing the taskfile to hardware, starting the command.
4005 *
4006 * LOCKING:
4007 * spin_lock_irqsave(host_set lock)
4008 *
4009 * RETURNS:
9a3d9eb0 4010 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4011 */
4012
9a3d9eb0 4013unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4014{
4015 struct ata_port *ap = qc->ap;
4016
4017 if (ata_should_dma_map(qc)) {
4018 if (qc->flags & ATA_QCFLAG_SG) {
4019 if (ata_sg_setup(qc))
8e436af9 4020 goto sg_err;
1da177e4
LT
4021 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4022 if (ata_sg_setup_one(qc))
8e436af9 4023 goto sg_err;
1da177e4
LT
4024 }
4025 } else {
4026 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4027 }
4028
4029 ap->ops->qc_prep(qc);
4030
4031 qc->ap->active_tag = qc->tag;
4032 qc->flags |= ATA_QCFLAG_ACTIVE;
4033
4034 return ap->ops->qc_issue(qc);
4035
8e436af9
TH
4036sg_err:
4037 qc->flags &= ~ATA_QCFLAG_DMAMAP;
9a3d9eb0 4038 return AC_ERR_SYSTEM;
1da177e4
LT
4039}
4040
0baab86b 4041
1da177e4
LT
4042/**
4043 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4044 * @qc: command to issue to device
4045 *
4046 * Using various libata functions and hooks, this function
4047 * starts an ATA command. ATA commands are grouped into
4048 * classes called "protocols", and issuing each type of protocol
4049 * is slightly different.
4050 *
0baab86b
EF
4051 * May be used as the qc_issue() entry in ata_port_operations.
4052 *
1da177e4
LT
4053 * LOCKING:
4054 * spin_lock_irqsave(host_set lock)
4055 *
4056 * RETURNS:
9a3d9eb0 4057 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4058 */
4059
9a3d9eb0 4060unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4061{
4062 struct ata_port *ap = qc->ap;
4063
e50362ec
AL
4064 /* Use polling pio if the LLD doesn't handle
4065 * interrupt driven pio and atapi CDB interrupt.
4066 */
4067 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4068 switch (qc->tf.protocol) {
4069 case ATA_PROT_PIO:
4070 case ATA_PROT_ATAPI:
4071 case ATA_PROT_ATAPI_NODATA:
4072 qc->tf.flags |= ATA_TFLAG_POLLING;
4073 break;
4074 case ATA_PROT_ATAPI_DMA:
4075 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
c2bbc551 4076 /* see ata_check_atapi_dma() */
e50362ec
AL
4077 BUG();
4078 break;
4079 default:
4080 break;
4081 }
4082 }
4083
312f7da2 4084 /* select the device */
1da177e4
LT
4085 ata_dev_select(ap, qc->dev->devno, 1, 0);
4086
312f7da2 4087 /* start the command */
1da177e4
LT
4088 switch (qc->tf.protocol) {
4089 case ATA_PROT_NODATA:
312f7da2
AL
4090 if (qc->tf.flags & ATA_TFLAG_POLLING)
4091 ata_qc_set_polling(qc);
4092
e5338254 4093 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4094 ap->hsm_task_state = HSM_ST_LAST;
4095
4096 if (qc->tf.flags & ATA_TFLAG_POLLING)
46e202ec 4097 ata_port_queue_task(ap, ata_pio_task, ap, 0);
312f7da2 4098
1da177e4
LT
4099 break;
4100
4101 case ATA_PROT_DMA:
587005de 4102 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4103
1da177e4
LT
4104 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4105 ap->ops->bmdma_setup(qc); /* set up bmdma */
4106 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4107 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4108 break;
4109
312f7da2
AL
4110 case ATA_PROT_PIO:
4111 if (qc->tf.flags & ATA_TFLAG_POLLING)
4112 ata_qc_set_polling(qc);
4113
e5338254 4114 ata_tf_to_host(ap, &qc->tf);
312f7da2 4115
54f00389
AL
4116 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4117 /* PIO data out protocol */
4118 ap->hsm_task_state = HSM_ST_FIRST;
ce1e7a2a 4119 ata_port_queue_task(ap, ata_pio_task, ap, 0);
54f00389
AL
4120
4121 /* always send first data block using
e27486db 4122 * the ata_pio_task() codepath.
54f00389 4123 */
312f7da2 4124 } else {
54f00389
AL
4125 /* PIO data in protocol */
4126 ap->hsm_task_state = HSM_ST;
4127
4128 if (qc->tf.flags & ATA_TFLAG_POLLING)
ce1e7a2a 4129 ata_port_queue_task(ap, ata_pio_task, ap, 0);
54f00389
AL
4130
4131 /* if polling, ata_pio_task() handles the rest.
4132 * otherwise, interrupt handler takes over from here.
4133 */
312f7da2
AL
4134 }
4135
1da177e4
LT
4136 break;
4137
4138 case ATA_PROT_ATAPI:
1da177e4 4139 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4140 if (qc->tf.flags & ATA_TFLAG_POLLING)
4141 ata_qc_set_polling(qc);
4142
e5338254 4143 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4144
312f7da2
AL
4145 ap->hsm_task_state = HSM_ST_FIRST;
4146
4147 /* send cdb by polling if no cdb interrupt */
4148 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4149 (qc->tf.flags & ATA_TFLAG_POLLING))
13ee4628 4150 ata_port_queue_task(ap, ata_pio_task, ap, 0);
1da177e4
LT
4151 break;
4152
4153 case ATA_PROT_ATAPI_DMA:
587005de 4154 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4155
1da177e4
LT
4156 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4157 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4158 ap->hsm_task_state = HSM_ST_FIRST;
4159
4160 /* send cdb by polling if no cdb interrupt */
4161 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
13ee4628 4162 ata_port_queue_task(ap, ata_pio_task, ap, 0);
1da177e4
LT
4163 break;
4164
4165 default:
4166 WARN_ON(1);
9a3d9eb0 4167 return AC_ERR_SYSTEM;
1da177e4
LT
4168 }
4169
4170 return 0;
4171}
4172
1da177e4
LT
4173/**
4174 * ata_host_intr - Handle host interrupt for given (port, task)
4175 * @ap: Port on which interrupt arrived (possibly...)
4176 * @qc: Taskfile currently active in engine
4177 *
4178 * Handle host interrupt for given queued command. Currently,
4179 * only DMA interrupts are handled. All other commands are
4180 * handled via polling with interrupts disabled (nIEN bit).
4181 *
4182 * LOCKING:
4183 * spin_lock_irqsave(host_set lock)
4184 *
4185 * RETURNS:
4186 * One if interrupt was handled, zero if not (shared irq).
4187 */
4188
4189inline unsigned int ata_host_intr (struct ata_port *ap,
4190 struct ata_queued_cmd *qc)
4191{
312f7da2 4192 u8 status, host_stat = 0;
1da177e4 4193
312f7da2
AL
4194 VPRINTK("ata%u: protocol %d task_state %d\n",
4195 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4196
312f7da2
AL
4197 /* Check whether we are expecting interrupt in this state */
4198 switch (ap->hsm_task_state) {
4199 case HSM_ST_FIRST:
6912ccd5
AL
4200 /* Some pre-ATAPI-4 devices assert INTRQ
4201 * at this state when ready to receive CDB.
4202 */
4203
312f7da2
AL
4204 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4205 * The flag was turned on only for atapi devices.
4206 * No need to check is_atapi_taskfile(&qc->tf) again.
4207 */
4208 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4209 goto idle_irq;
312f7da2
AL
4210 break;
4211 case HSM_ST_LAST:
4212 if (qc->tf.protocol == ATA_PROT_DMA ||
4213 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4214 /* check status of DMA engine */
4215 host_stat = ap->ops->bmdma_status(ap);
4216 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4217
4218 /* if it's not our irq... */
4219 if (!(host_stat & ATA_DMA_INTR))
4220 goto idle_irq;
4221
4222 /* before we do anything else, clear DMA-Start bit */
4223 ap->ops->bmdma_stop(qc);
a4f16610
AL
4224
4225 if (unlikely(host_stat & ATA_DMA_ERR)) {
4226 /* error when transfering data to/from memory */
4227 qc->err_mask |= AC_ERR_HOST_BUS;
4228 ap->hsm_task_state = HSM_ST_ERR;
4229 }
312f7da2
AL
4230 }
4231 break;
4232 case HSM_ST:
4233 break;
4234 default:
4235 goto idle_irq;
4236 }
1da177e4 4237
312f7da2
AL
4238 /* check altstatus */
4239 status = ata_altstatus(ap);
4240 if (status & ATA_BUSY)
4241 goto idle_irq;
1da177e4 4242
312f7da2
AL
4243 /* check main status, clearing INTRQ */
4244 status = ata_chk_status(ap);
4245 if (unlikely(status & ATA_BUSY))
4246 goto idle_irq;
1da177e4 4247
312f7da2
AL
4248 /* ack bmdma irq events */
4249 ap->ops->irq_clear(ap);
1da177e4 4250
bb5cb290 4251 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4252 return 1; /* irq handled */
4253
4254idle_irq:
4255 ap->stats.idle_irq++;
4256
4257#ifdef ATA_IRQ_TRAP
4258 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4
LT
4259 ata_irq_ack(ap, 0); /* debug trap */
4260 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
23cfce89 4261 return 1;
1da177e4
LT
4262 }
4263#endif
4264 return 0; /* irq not handled */
4265}
4266
4267/**
4268 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4269 * @irq: irq line (unused)
4270 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4271 * @regs: unused
4272 *
0cba632b
JG
4273 * Default interrupt handler for PCI IDE devices. Calls
4274 * ata_host_intr() for each port that is not disabled.
4275 *
1da177e4 4276 * LOCKING:
0cba632b 4277 * Obtains host_set lock during operation.
1da177e4
LT
4278 *
4279 * RETURNS:
0cba632b 4280 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4281 */
4282
4283irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4284{
4285 struct ata_host_set *host_set = dev_instance;
4286 unsigned int i;
4287 unsigned int handled = 0;
4288 unsigned long flags;
4289
4290 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4291 spin_lock_irqsave(&host_set->lock, flags);
4292
4293 for (i = 0; i < host_set->n_ports; i++) {
4294 struct ata_port *ap;
4295
4296 ap = host_set->ports[i];
c1389503 4297 if (ap &&
312f7da2 4298 !(ap->flags & ATA_FLAG_PORT_DISABLED)) {
1da177e4
LT
4299 struct ata_queued_cmd *qc;
4300
4301 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4302 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4303 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4304 handled |= ata_host_intr(ap, qc);
4305 }
4306 }
4307
4308 spin_unlock_irqrestore(&host_set->lock, flags);
4309
4310 return IRQ_RETVAL(handled);
4311}
4312
0baab86b 4313
9b847548
JA
4314/*
4315 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4316 * without filling any other registers
4317 */
4318static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4319 u8 cmd)
4320{
4321 struct ata_taskfile tf;
4322 int err;
4323
4324 ata_tf_init(ap, &tf, dev->devno);
4325
4326 tf.command = cmd;
4327 tf.flags |= ATA_TFLAG_DEVICE;
4328 tf.protocol = ATA_PROT_NODATA;
4329
4330 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4331 if (err)
4332 printk(KERN_ERR "%s: ata command failed: %d\n",
4333 __FUNCTION__, err);
4334
4335 return err;
4336}
4337
4338static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4339{
4340 u8 cmd;
4341
4342 if (!ata_try_flush_cache(dev))
4343 return 0;
4344
4345 if (ata_id_has_flush_ext(dev->id))
4346 cmd = ATA_CMD_FLUSH_EXT;
4347 else
4348 cmd = ATA_CMD_FLUSH;
4349
4350 return ata_do_simple_cmd(ap, dev, cmd);
4351}
4352
4353static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4354{
4355 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4356}
4357
4358static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4359{
4360 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4361}
4362
4363/**
4364 * ata_device_resume - wakeup a previously suspended devices
c893a3ae
RD
4365 * @ap: port the device is connected to
4366 * @dev: the device to resume
9b847548
JA
4367 *
4368 * Kick the drive back into action, by sending it an idle immediate
4369 * command and making sure its transfer mode matches between drive
4370 * and host.
4371 *
4372 */
4373int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4374{
4375 if (ap->flags & ATA_FLAG_SUSPENDED) {
4376 ap->flags &= ~ATA_FLAG_SUSPENDED;
4377 ata_set_mode(ap);
4378 }
4379 if (!ata_dev_present(dev))
4380 return 0;
4381 if (dev->class == ATA_DEV_ATA)
4382 ata_start_drive(ap, dev);
4383
4384 return 0;
4385}
4386
4387/**
4388 * ata_device_suspend - prepare a device for suspend
c893a3ae
RD
4389 * @ap: port the device is connected to
4390 * @dev: the device to suspend
9b847548
JA
4391 *
4392 * Flush the cache on the drive, if appropriate, then issue a
4393 * standbynow command.
9b847548 4394 */
082776e4 4395int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
9b847548
JA
4396{
4397 if (!ata_dev_present(dev))
4398 return 0;
4399 if (dev->class == ATA_DEV_ATA)
4400 ata_flush_cache(ap, dev);
4401
082776e4
NC
4402 if (state.event != PM_EVENT_FREEZE)
4403 ata_standby_drive(ap, dev);
9b847548
JA
4404 ap->flags |= ATA_FLAG_SUSPENDED;
4405 return 0;
4406}
4407
332b5a52
AL
4408/**
4409 * ata_port_start - Set port up for dma.
4410 * @ap: Port to initialize
4411 *
4412 * Called just after data structures for each port are
4413 * initialized. Allocates space for PRD table.
4414 *
4415 * May be used as the port_start() entry in ata_port_operations.
4416 *
4417 * LOCKING:
4418 * Inherited from caller.
4419 */
4420
1da177e4
LT
4421int ata_port_start (struct ata_port *ap)
4422{
2f1f610b 4423 struct device *dev = ap->dev;
6037d6bb 4424 int rc;
1da177e4
LT
4425
4426 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4427 if (!ap->prd)
4428 return -ENOMEM;
4429
6037d6bb
JG
4430 rc = ata_pad_alloc(ap, dev);
4431 if (rc) {
cedc9a47 4432 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4433 return rc;
cedc9a47
JG
4434 }
4435
1da177e4
LT
4436 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4437
4438 return 0;
4439}
4440
0baab86b
EF
4441
4442/**
4443 * ata_port_stop - Undo ata_port_start()
4444 * @ap: Port to shut down
4445 *
4446 * Frees the PRD table.
4447 *
4448 * May be used as the port_stop() entry in ata_port_operations.
4449 *
4450 * LOCKING:
6f0ef4fa 4451 * Inherited from caller.
0baab86b
EF
4452 */
4453
1da177e4
LT
4454void ata_port_stop (struct ata_port *ap)
4455{
2f1f610b 4456 struct device *dev = ap->dev;
1da177e4
LT
4457
4458 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4459 ata_pad_free(ap, dev);
1da177e4
LT
4460}
4461
aa8f0dc6
JG
4462void ata_host_stop (struct ata_host_set *host_set)
4463{
4464 if (host_set->mmio_base)
4465 iounmap(host_set->mmio_base);
4466}
4467
4468
1da177e4
LT
4469/**
4470 * ata_host_remove - Unregister SCSI host structure with upper layers
4471 * @ap: Port to unregister
4472 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4473 *
4474 * LOCKING:
6f0ef4fa 4475 * Inherited from caller.
1da177e4
LT
4476 */
4477
4478static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4479{
4480 struct Scsi_Host *sh = ap->host;
4481
4482 DPRINTK("ENTER\n");
4483
4484 if (do_unregister)
4485 scsi_remove_host(sh);
4486
4487 ap->ops->port_stop(ap);
4488}
4489
4490/**
4491 * ata_host_init - Initialize an ata_port structure
4492 * @ap: Structure to initialize
4493 * @host: associated SCSI mid-layer structure
4494 * @host_set: Collection of hosts to which @ap belongs
4495 * @ent: Probe information provided by low-level driver
4496 * @port_no: Port number associated with this ata_port
4497 *
0cba632b
JG
4498 * Initialize a new ata_port structure, and its associated
4499 * scsi_host.
4500 *
1da177e4 4501 * LOCKING:
0cba632b 4502 * Inherited from caller.
1da177e4
LT
4503 */
4504
4505static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4506 struct ata_host_set *host_set,
057ace5e 4507 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4508{
4509 unsigned int i;
4510
4511 host->max_id = 16;
4512 host->max_lun = 1;
4513 host->max_channel = 1;
4514 host->unique_id = ata_unique_id++;
4515 host->max_cmd_len = 12;
12413197 4516
1da177e4
LT
4517 ap->flags = ATA_FLAG_PORT_DISABLED;
4518 ap->id = host->unique_id;
4519 ap->host = host;
4520 ap->ctl = ATA_DEVCTL_OBS;
4521 ap->host_set = host_set;
2f1f610b 4522 ap->dev = ent->dev;
1da177e4
LT
4523 ap->port_no = port_no;
4524 ap->hard_port_no =
4525 ent->legacy_mode ? ent->hard_port_no : port_no;
4526 ap->pio_mask = ent->pio_mask;
4527 ap->mwdma_mask = ent->mwdma_mask;
4528 ap->udma_mask = ent->udma_mask;
4529 ap->flags |= ent->host_flags;
4530 ap->ops = ent->port_ops;
4531 ap->cbl = ATA_CBL_NONE;
4532 ap->active_tag = ATA_TAG_POISON;
4533 ap->last_ctl = 0xFF;
4534
86e45b6b 4535 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4536 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 4537
acf356b1
TH
4538 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4539 struct ata_device *dev = &ap->device[i];
4540 dev->devno = i;
4541 dev->pio_mask = UINT_MAX;
4542 dev->mwdma_mask = UINT_MAX;
4543 dev->udma_mask = UINT_MAX;
4544 }
1da177e4
LT
4545
4546#ifdef ATA_IRQ_TRAP
4547 ap->stats.unhandled_irq = 1;
4548 ap->stats.idle_irq = 1;
4549#endif
4550
4551 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4552}
4553
4554/**
4555 * ata_host_add - Attach low-level ATA driver to system
4556 * @ent: Information provided by low-level driver
4557 * @host_set: Collections of ports to which we add
4558 * @port_no: Port number associated with this host
4559 *
0cba632b
JG
4560 * Attach low-level ATA driver to system.
4561 *
1da177e4 4562 * LOCKING:
0cba632b 4563 * PCI/etc. bus probe sem.
1da177e4
LT
4564 *
4565 * RETURNS:
0cba632b 4566 * New ata_port on success, for NULL on error.
1da177e4
LT
4567 */
4568
057ace5e 4569static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4570 struct ata_host_set *host_set,
4571 unsigned int port_no)
4572{
4573 struct Scsi_Host *host;
4574 struct ata_port *ap;
4575 int rc;
4576
4577 DPRINTK("ENTER\n");
aec5c3c1
TH
4578
4579 if (!ent->port_ops->probe_reset &&
4580 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4581 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4582 port_no);
4583 return NULL;
4584 }
4585
1da177e4
LT
4586 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4587 if (!host)
4588 return NULL;
4589
30afc84c
TH
4590 host->transportt = &ata_scsi_transport_template;
4591
1da177e4
LT
4592 ap = (struct ata_port *) &host->hostdata[0];
4593
4594 ata_host_init(ap, host, host_set, ent, port_no);
4595
4596 rc = ap->ops->port_start(ap);
4597 if (rc)
4598 goto err_out;
4599
4600 return ap;
4601
4602err_out:
4603 scsi_host_put(host);
4604 return NULL;
4605}
4606
4607/**
0cba632b
JG
4608 * ata_device_add - Register hardware device with ATA and SCSI layers
4609 * @ent: Probe information describing hardware device to be registered
4610 *
4611 * This function processes the information provided in the probe
4612 * information struct @ent, allocates the necessary ATA and SCSI
4613 * host information structures, initializes them, and registers
4614 * everything with requisite kernel subsystems.
4615 *
4616 * This function requests irqs, probes the ATA bus, and probes
4617 * the SCSI bus.
1da177e4
LT
4618 *
4619 * LOCKING:
0cba632b 4620 * PCI/etc. bus probe sem.
1da177e4
LT
4621 *
4622 * RETURNS:
0cba632b 4623 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4624 */
4625
057ace5e 4626int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4627{
4628 unsigned int count = 0, i;
4629 struct device *dev = ent->dev;
4630 struct ata_host_set *host_set;
4631
4632 DPRINTK("ENTER\n");
4633 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4634 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4635 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4636 if (!host_set)
4637 return 0;
1da177e4
LT
4638 spin_lock_init(&host_set->lock);
4639
4640 host_set->dev = dev;
4641 host_set->n_ports = ent->n_ports;
4642 host_set->irq = ent->irq;
4643 host_set->mmio_base = ent->mmio_base;
4644 host_set->private_data = ent->private_data;
4645 host_set->ops = ent->port_ops;
4646
4647 /* register each port bound to this device */
4648 for (i = 0; i < ent->n_ports; i++) {
4649 struct ata_port *ap;
4650 unsigned long xfer_mode_mask;
4651
4652 ap = ata_host_add(ent, host_set, i);
4653 if (!ap)
4654 goto err_out;
4655
4656 host_set->ports[i] = ap;
4657 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4658 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4659 (ap->pio_mask << ATA_SHIFT_PIO);
4660
4661 /* print per-port info to dmesg */
4662 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4663 "bmdma 0x%lX irq %lu\n",
4664 ap->id,
4665 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4666 ata_mode_string(xfer_mode_mask),
4667 ap->ioaddr.cmd_addr,
4668 ap->ioaddr.ctl_addr,
4669 ap->ioaddr.bmdma_addr,
4670 ent->irq);
4671
4672 ata_chk_status(ap);
4673 host_set->ops->irq_clear(ap);
4674 count++;
4675 }
4676
57f3bda8
RD
4677 if (!count)
4678 goto err_free_ret;
1da177e4
LT
4679
4680 /* obtain irq, that is shared between channels */
4681 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4682 DRV_NAME, host_set))
4683 goto err_out;
4684
4685 /* perform each probe synchronously */
4686 DPRINTK("probe begin\n");
4687 for (i = 0; i < count; i++) {
4688 struct ata_port *ap;
4689 int rc;
4690
4691 ap = host_set->ports[i];
4692
c893a3ae 4693 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4694 rc = ata_bus_probe(ap);
c893a3ae 4695 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4696
4697 if (rc) {
4698 /* FIXME: do something useful here?
4699 * Current libata behavior will
4700 * tear down everything when
4701 * the module is removed
4702 * or the h/w is unplugged.
4703 */
4704 }
4705
4706 rc = scsi_add_host(ap->host, dev);
4707 if (rc) {
4708 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4709 ap->id);
4710 /* FIXME: do something useful here */
4711 /* FIXME: handle unconditional calls to
4712 * scsi_scan_host and ata_host_remove, below,
4713 * at the very least
4714 */
4715 }
4716 }
4717
4718 /* probes are done, now scan each port's disk(s) */
c893a3ae 4719 DPRINTK("host probe begin\n");
1da177e4
LT
4720 for (i = 0; i < count; i++) {
4721 struct ata_port *ap = host_set->ports[i];
4722
644dd0cc 4723 ata_scsi_scan_host(ap);
1da177e4
LT
4724 }
4725
4726 dev_set_drvdata(dev, host_set);
4727
4728 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4729 return ent->n_ports; /* success */
4730
4731err_out:
4732 for (i = 0; i < count; i++) {
4733 ata_host_remove(host_set->ports[i], 1);
4734 scsi_host_put(host_set->ports[i]->host);
4735 }
57f3bda8 4736err_free_ret:
1da177e4
LT
4737 kfree(host_set);
4738 VPRINTK("EXIT, returning 0\n");
4739 return 0;
4740}
4741
17b14451
AC
4742/**
4743 * ata_host_set_remove - PCI layer callback for device removal
4744 * @host_set: ATA host set that was removed
4745 *
2e9edbf8 4746 * Unregister all objects associated with this host set. Free those
17b14451
AC
4747 * objects.
4748 *
4749 * LOCKING:
4750 * Inherited from calling layer (may sleep).
4751 */
4752
17b14451
AC
4753void ata_host_set_remove(struct ata_host_set *host_set)
4754{
4755 struct ata_port *ap;
4756 unsigned int i;
4757
4758 for (i = 0; i < host_set->n_ports; i++) {
4759 ap = host_set->ports[i];
4760 scsi_remove_host(ap->host);
4761 }
4762
4763 free_irq(host_set->irq, host_set);
4764
4765 for (i = 0; i < host_set->n_ports; i++) {
4766 ap = host_set->ports[i];
4767
4768 ata_scsi_release(ap->host);
4769
4770 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4771 struct ata_ioports *ioaddr = &ap->ioaddr;
4772
4773 if (ioaddr->cmd_addr == 0x1f0)
4774 release_region(0x1f0, 8);
4775 else if (ioaddr->cmd_addr == 0x170)
4776 release_region(0x170, 8);
4777 }
4778
4779 scsi_host_put(ap->host);
4780 }
4781
4782 if (host_set->ops->host_stop)
4783 host_set->ops->host_stop(host_set);
4784
4785 kfree(host_set);
4786}
4787
1da177e4
LT
4788/**
4789 * ata_scsi_release - SCSI layer callback hook for host unload
4790 * @host: libata host to be unloaded
4791 *
4792 * Performs all duties necessary to shut down a libata port...
4793 * Kill port kthread, disable port, and release resources.
4794 *
4795 * LOCKING:
4796 * Inherited from SCSI layer.
4797 *
4798 * RETURNS:
4799 * One.
4800 */
4801
4802int ata_scsi_release(struct Scsi_Host *host)
4803{
4804 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
d9572b1d 4805 int i;
1da177e4
LT
4806
4807 DPRINTK("ENTER\n");
4808
4809 ap->ops->port_disable(ap);
4810 ata_host_remove(ap, 0);
d9572b1d
TH
4811 for (i = 0; i < ATA_MAX_DEVICES; i++)
4812 kfree(ap->device[i].id);
1da177e4
LT
4813
4814 DPRINTK("EXIT\n");
4815 return 1;
4816}
4817
4818/**
4819 * ata_std_ports - initialize ioaddr with standard port offsets.
4820 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4821 *
4822 * Utility function which initializes data_addr, error_addr,
4823 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4824 * device_addr, status_addr, and command_addr to standard offsets
4825 * relative to cmd_addr.
4826 *
4827 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4828 */
0baab86b 4829
1da177e4
LT
4830void ata_std_ports(struct ata_ioports *ioaddr)
4831{
4832 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4833 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4834 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4835 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4836 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4837 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4838 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4839 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4840 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4841 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4842}
4843
0baab86b 4844
374b1873
JG
4845#ifdef CONFIG_PCI
4846
4847void ata_pci_host_stop (struct ata_host_set *host_set)
4848{
4849 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4850
4851 pci_iounmap(pdev, host_set->mmio_base);
4852}
4853
1da177e4
LT
4854/**
4855 * ata_pci_remove_one - PCI layer callback for device removal
4856 * @pdev: PCI device that was removed
4857 *
4858 * PCI layer indicates to libata via this hook that
6f0ef4fa 4859 * hot-unplug or module unload event has occurred.
1da177e4
LT
4860 * Handle this by unregistering all objects associated
4861 * with this PCI device. Free those objects. Then finally
4862 * release PCI resources and disable device.
4863 *
4864 * LOCKING:
4865 * Inherited from PCI layer (may sleep).
4866 */
4867
4868void ata_pci_remove_one (struct pci_dev *pdev)
4869{
4870 struct device *dev = pci_dev_to_dev(pdev);
4871 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4872
17b14451 4873 ata_host_set_remove(host_set);
1da177e4
LT
4874 pci_release_regions(pdev);
4875 pci_disable_device(pdev);
4876 dev_set_drvdata(dev, NULL);
4877}
4878
4879/* move to PCI subsystem */
057ace5e 4880int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
4881{
4882 unsigned long tmp = 0;
4883
4884 switch (bits->width) {
4885 case 1: {
4886 u8 tmp8 = 0;
4887 pci_read_config_byte(pdev, bits->reg, &tmp8);
4888 tmp = tmp8;
4889 break;
4890 }
4891 case 2: {
4892 u16 tmp16 = 0;
4893 pci_read_config_word(pdev, bits->reg, &tmp16);
4894 tmp = tmp16;
4895 break;
4896 }
4897 case 4: {
4898 u32 tmp32 = 0;
4899 pci_read_config_dword(pdev, bits->reg, &tmp32);
4900 tmp = tmp32;
4901 break;
4902 }
4903
4904 default:
4905 return -EINVAL;
4906 }
4907
4908 tmp &= bits->mask;
4909
4910 return (tmp == bits->val) ? 1 : 0;
4911}
9b847548
JA
4912
4913int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4914{
4915 pci_save_state(pdev);
4916 pci_disable_device(pdev);
4917 pci_set_power_state(pdev, PCI_D3hot);
4918 return 0;
4919}
4920
4921int ata_pci_device_resume(struct pci_dev *pdev)
4922{
4923 pci_set_power_state(pdev, PCI_D0);
4924 pci_restore_state(pdev);
4925 pci_enable_device(pdev);
4926 pci_set_master(pdev);
4927 return 0;
4928}
1da177e4
LT
4929#endif /* CONFIG_PCI */
4930
4931
1da177e4
LT
4932static int __init ata_init(void)
4933{
4934 ata_wq = create_workqueue("ata");
4935 if (!ata_wq)
4936 return -ENOMEM;
4937
4938 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4939 return 0;
4940}
4941
4942static void __exit ata_exit(void)
4943{
4944 destroy_workqueue(ata_wq);
4945}
4946
4947module_init(ata_init);
4948module_exit(ata_exit);
4949
67846b30
JG
4950static unsigned long ratelimit_time;
4951static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4952
4953int ata_ratelimit(void)
4954{
4955 int rc;
4956 unsigned long flags;
4957
4958 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4959
4960 if (time_after(jiffies, ratelimit_time)) {
4961 rc = 1;
4962 ratelimit_time = jiffies + (HZ/5);
4963 } else
4964 rc = 0;
4965
4966 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4967
4968 return rc;
4969}
4970
1da177e4
LT
4971/*
4972 * libata is essentially a library of internal helper functions for
4973 * low-level ATA host controller drivers. As such, the API/ABI is
4974 * likely to change as new drivers are added and updated.
4975 * Do not depend on ABI/API stability.
4976 */
4977
4978EXPORT_SYMBOL_GPL(ata_std_bios_param);
4979EXPORT_SYMBOL_GPL(ata_std_ports);
4980EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 4981EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
4982EXPORT_SYMBOL_GPL(ata_sg_init);
4983EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 4984EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4
LT
4985EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4986EXPORT_SYMBOL_GPL(ata_eng_timeout);
4987EXPORT_SYMBOL_GPL(ata_tf_load);
4988EXPORT_SYMBOL_GPL(ata_tf_read);
4989EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4990EXPORT_SYMBOL_GPL(ata_std_dev_select);
4991EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4992EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4993EXPORT_SYMBOL_GPL(ata_check_status);
4994EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
4995EXPORT_SYMBOL_GPL(ata_exec_command);
4996EXPORT_SYMBOL_GPL(ata_port_start);
4997EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 4998EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
4999EXPORT_SYMBOL_GPL(ata_interrupt);
5000EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5001EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5002EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5003EXPORT_SYMBOL_GPL(ata_bmdma_start);
5004EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5005EXPORT_SYMBOL_GPL(ata_bmdma_status);
5006EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5007EXPORT_SYMBOL_GPL(ata_port_probe);
5008EXPORT_SYMBOL_GPL(sata_phy_reset);
5009EXPORT_SYMBOL_GPL(__sata_phy_reset);
5010EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 5011EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
5012EXPORT_SYMBOL_GPL(ata_std_softreset);
5013EXPORT_SYMBOL_GPL(sata_std_hardreset);
5014EXPORT_SYMBOL_GPL(ata_std_postreset);
5015EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 5016EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 5017EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5018EXPORT_SYMBOL_GPL(ata_dev_classify);
5019EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5020EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5021EXPORT_SYMBOL_GPL(ata_ratelimit);
6f8b9958 5022EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5023EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5024EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5025EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5026EXPORT_SYMBOL_GPL(ata_scsi_error);
5027EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5028EXPORT_SYMBOL_GPL(ata_scsi_release);
5029EXPORT_SYMBOL_GPL(ata_host_intr);
6a62a04d
TH
5030EXPORT_SYMBOL_GPL(ata_id_string);
5031EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4 5032EXPORT_SYMBOL_GPL(ata_scsi_simulate);
a72ec4ce
TH
5033EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5034EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
1da177e4 5035
1bc4ccff 5036EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5037EXPORT_SYMBOL_GPL(ata_timing_compute);
5038EXPORT_SYMBOL_GPL(ata_timing_merge);
5039
1da177e4
LT
5040#ifdef CONFIG_PCI
5041EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5042EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5043EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5044EXPORT_SYMBOL_GPL(ata_pci_init_one);
5045EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5046EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5047EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5048EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5049EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5050#endif /* CONFIG_PCI */
9b847548
JA
5051
5052EXPORT_SYMBOL_GPL(ata_device_suspend);
5053EXPORT_SYMBOL_GPL(ata_device_resume);
5054EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5055EXPORT_SYMBOL_GPL(ata_scsi_device_resume);