]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/scsi/libata-core.c
Merge master.kernel.org:/home/rmk/linux-2.6-serial
[net-next-2.6.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
6aff8f1f 64static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
1da177e4 68static void ata_set_mode(struct ata_port *ap);
83206a29
TH
69static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
70 struct ata_device *dev);
acf356b1 71static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
72
73static unsigned int ata_unique_id = 1;
74static struct workqueue_struct *ata_wq;
75
418dc1f5 76int atapi_enabled = 1;
1623c81e
JG
77module_param(atapi_enabled, int, 0444);
78MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
79
c3c013a2
JG
80int libata_fua = 0;
81module_param_named(fua, libata_fua, int, 0444);
82MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
83
1da177e4
LT
84MODULE_AUTHOR("Jeff Garzik");
85MODULE_DESCRIPTION("Library module for ATA devices");
86MODULE_LICENSE("GPL");
87MODULE_VERSION(DRV_VERSION);
88
0baab86b 89
1da177e4
LT
90/**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
95 *
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102
057ace5e 103void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
104{
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
110
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
115
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
120
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
125
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
130}
131
132/**
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
136 *
e12a1be6 137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
138 *
139 * LOCKING:
140 * Inherited from caller.
141 */
142
057ace5e 143void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
144{
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
147
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
152
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
156
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
159}
160
8cbd6df1
AL
161static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
167 0,
168 0,
169 0,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 0,
8cbd6df1
AL
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
9a3dccc4
TH
184 ATA_CMD_WRITE_EXT,
185 0,
186 0,
187 0,
188 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 189};
1da177e4
LT
190
191/**
8cbd6df1
AL
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
1da177e4 194 *
2e9edbf8 195 * Examine the device configuration and tf->flags to calculate
8cbd6df1 196 * the proper read/write commands and protocol to use.
1da177e4
LT
197 *
198 * LOCKING:
199 * caller.
200 */
9a3dccc4 201int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 202{
8cbd6df1
AL
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
9a3dccc4 205 u8 cmd;
1da177e4 206
9a3dccc4 207 int index, fua, lba48, write;
2e9edbf8 208
9a3dccc4 209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 212
8cbd6df1
AL
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
9a3dccc4 215 index = dev->multi_count ? 0 : 8;
8d238e01
AC
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
0565c26d 219 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
220 } else {
221 tf->protocol = ATA_PROT_DMA;
9a3dccc4 222 index = 16;
8cbd6df1 223 }
1da177e4 224
9a3dccc4
TH
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
229 }
230 return -1;
1da177e4
LT
231}
232
cb95d562
TH
233/**
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
238 *
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
241 *
242 * LOCKING:
243 * None.
244 *
245 * RETURNS:
246 * Packed xfer_mask.
247 */
248static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
251{
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
255}
256
c0489e4e
TH
257/**
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
263 *
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
266 */
267static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
271{
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278}
279
cb95d562 280static const struct ata_xfer_ent {
be9a50c8 281 int shift, bits;
cb95d562
TH
282 u8 base;
283} ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
288};
289
290/**
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
293 *
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
296 *
297 * LOCKING:
298 * None.
299 *
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
302 */
303static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
304{
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
307
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
312}
313
314/**
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
317 *
318 * Return matching xfer_mask for @xfer_mode.
319 *
320 * LOCKING:
321 * None.
322 *
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
325 */
326static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
327{
328 const struct ata_xfer_ent *ent;
329
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
334}
335
336/**
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
339 *
340 * Return matching xfer_shift for @xfer_mode.
341 *
342 * LOCKING:
343 * None.
344 *
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
347 */
348static int ata_xfer_mode2shift(unsigned int xfer_mode)
349{
350 const struct ata_xfer_ent *ent;
351
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
356}
357
1da177e4 358/**
1da7b0d0
TH
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
361 *
362 * Determine string which represents the highest speed
1da7b0d0 363 * (highest bit in @modemask).
1da177e4
LT
364 *
365 * LOCKING:
366 * None.
367 *
368 * RETURNS:
369 * Constant C string representing highest speed listed in
1da7b0d0 370 * @mode_mask, or the constant C string "<n/a>".
1da177e4 371 */
1da7b0d0 372static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 373{
75f554bc
TH
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
391 };
1da7b0d0 392 int highbit;
1da177e4 393
1da7b0d0
TH
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
1da177e4 397 return "<n/a>";
1da177e4
LT
398}
399
0b8efb0a
TH
400static void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
401{
402 if (ata_dev_present(dev)) {
403 printk(KERN_WARNING "ata%u: dev %u disabled\n",
404 ap->id, dev->devno);
405 dev->class++;
406 }
407}
408
1da177e4
LT
409/**
410 * ata_pio_devchk - PATA device presence detection
411 * @ap: ATA channel to examine
412 * @device: Device to examine (starting at zero)
413 *
414 * This technique was originally described in
415 * Hale Landis's ATADRVR (www.ata-atapi.com), and
416 * later found its way into the ATA/ATAPI spec.
417 *
418 * Write a pattern to the ATA shadow registers,
419 * and if a device is present, it will respond by
420 * correctly storing and echoing back the
421 * ATA shadow register contents.
422 *
423 * LOCKING:
424 * caller.
425 */
426
427static unsigned int ata_pio_devchk(struct ata_port *ap,
428 unsigned int device)
429{
430 struct ata_ioports *ioaddr = &ap->ioaddr;
431 u8 nsect, lbal;
432
433 ap->ops->dev_select(ap, device);
434
435 outb(0x55, ioaddr->nsect_addr);
436 outb(0xaa, ioaddr->lbal_addr);
437
438 outb(0xaa, ioaddr->nsect_addr);
439 outb(0x55, ioaddr->lbal_addr);
440
441 outb(0x55, ioaddr->nsect_addr);
442 outb(0xaa, ioaddr->lbal_addr);
443
444 nsect = inb(ioaddr->nsect_addr);
445 lbal = inb(ioaddr->lbal_addr);
446
447 if ((nsect == 0x55) && (lbal == 0xaa))
448 return 1; /* we found a device */
449
450 return 0; /* nothing found */
451}
452
453/**
454 * ata_mmio_devchk - PATA device presence detection
455 * @ap: ATA channel to examine
456 * @device: Device to examine (starting at zero)
457 *
458 * This technique was originally described in
459 * Hale Landis's ATADRVR (www.ata-atapi.com), and
460 * later found its way into the ATA/ATAPI spec.
461 *
462 * Write a pattern to the ATA shadow registers,
463 * and if a device is present, it will respond by
464 * correctly storing and echoing back the
465 * ATA shadow register contents.
466 *
467 * LOCKING:
468 * caller.
469 */
470
471static unsigned int ata_mmio_devchk(struct ata_port *ap,
472 unsigned int device)
473{
474 struct ata_ioports *ioaddr = &ap->ioaddr;
475 u8 nsect, lbal;
476
477 ap->ops->dev_select(ap, device);
478
479 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
480 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
481
482 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
483 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
484
485 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
486 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
487
488 nsect = readb((void __iomem *) ioaddr->nsect_addr);
489 lbal = readb((void __iomem *) ioaddr->lbal_addr);
490
491 if ((nsect == 0x55) && (lbal == 0xaa))
492 return 1; /* we found a device */
493
494 return 0; /* nothing found */
495}
496
497/**
498 * ata_devchk - PATA device presence detection
499 * @ap: ATA channel to examine
500 * @device: Device to examine (starting at zero)
501 *
502 * Dispatch ATA device presence detection, depending
503 * on whether we are using PIO or MMIO to talk to the
504 * ATA shadow registers.
505 *
506 * LOCKING:
507 * caller.
508 */
509
510static unsigned int ata_devchk(struct ata_port *ap,
511 unsigned int device)
512{
513 if (ap->flags & ATA_FLAG_MMIO)
514 return ata_mmio_devchk(ap, device);
515 return ata_pio_devchk(ap, device);
516}
517
518/**
519 * ata_dev_classify - determine device type based on ATA-spec signature
520 * @tf: ATA taskfile register set for device to be identified
521 *
522 * Determine from taskfile register contents whether a device is
523 * ATA or ATAPI, as per "Signature and persistence" section
524 * of ATA/PI spec (volume 1, sect 5.14).
525 *
526 * LOCKING:
527 * None.
528 *
529 * RETURNS:
530 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
531 * the event of failure.
532 */
533
057ace5e 534unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
535{
536 /* Apple's open source Darwin code hints that some devices only
537 * put a proper signature into the LBA mid/high registers,
538 * So, we only check those. It's sufficient for uniqueness.
539 */
540
541 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
542 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
543 DPRINTK("found ATA device by sig\n");
544 return ATA_DEV_ATA;
545 }
546
547 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
548 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
549 DPRINTK("found ATAPI device by sig\n");
550 return ATA_DEV_ATAPI;
551 }
552
553 DPRINTK("unknown device\n");
554 return ATA_DEV_UNKNOWN;
555}
556
557/**
558 * ata_dev_try_classify - Parse returned ATA device signature
559 * @ap: ATA channel to examine
560 * @device: Device to examine (starting at zero)
b4dc7623 561 * @r_err: Value of error register on completion
1da177e4
LT
562 *
563 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
564 * an ATA/ATAPI-defined set of values is placed in the ATA
565 * shadow registers, indicating the results of device detection
566 * and diagnostics.
567 *
568 * Select the ATA device, and read the values from the ATA shadow
569 * registers. Then parse according to the Error register value,
570 * and the spec-defined values examined by ata_dev_classify().
571 *
572 * LOCKING:
573 * caller.
b4dc7623
TH
574 *
575 * RETURNS:
576 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
577 */
578
b4dc7623
TH
579static unsigned int
580ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 581{
1da177e4
LT
582 struct ata_taskfile tf;
583 unsigned int class;
584 u8 err;
585
586 ap->ops->dev_select(ap, device);
587
588 memset(&tf, 0, sizeof(tf));
589
1da177e4 590 ap->ops->tf_read(ap, &tf);
0169e284 591 err = tf.feature;
b4dc7623
TH
592 if (r_err)
593 *r_err = err;
1da177e4
LT
594
595 /* see if device passed diags */
596 if (err == 1)
597 /* do nothing */ ;
598 else if ((device == 0) && (err == 0x81))
599 /* do nothing */ ;
600 else
b4dc7623 601 return ATA_DEV_NONE;
1da177e4 602
b4dc7623 603 /* determine if device is ATA or ATAPI */
1da177e4 604 class = ata_dev_classify(&tf);
b4dc7623 605
1da177e4 606 if (class == ATA_DEV_UNKNOWN)
b4dc7623 607 return ATA_DEV_NONE;
1da177e4 608 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
609 return ATA_DEV_NONE;
610 return class;
1da177e4
LT
611}
612
613/**
6a62a04d 614 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
615 * @id: IDENTIFY DEVICE results we will examine
616 * @s: string into which data is output
617 * @ofs: offset into identify device page
618 * @len: length of string to return. must be an even number.
619 *
620 * The strings in the IDENTIFY DEVICE page are broken up into
621 * 16-bit chunks. Run through the string, and output each
622 * 8-bit chunk linearly, regardless of platform.
623 *
624 * LOCKING:
625 * caller.
626 */
627
6a62a04d
TH
628void ata_id_string(const u16 *id, unsigned char *s,
629 unsigned int ofs, unsigned int len)
1da177e4
LT
630{
631 unsigned int c;
632
633 while (len > 0) {
634 c = id[ofs] >> 8;
635 *s = c;
636 s++;
637
638 c = id[ofs] & 0xff;
639 *s = c;
640 s++;
641
642 ofs++;
643 len -= 2;
644 }
645}
646
0e949ff3 647/**
6a62a04d 648 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
649 * @id: IDENTIFY DEVICE results we will examine
650 * @s: string into which data is output
651 * @ofs: offset into identify device page
652 * @len: length of string to return. must be an odd number.
653 *
6a62a04d 654 * This function is identical to ata_id_string except that it
0e949ff3
TH
655 * trims trailing spaces and terminates the resulting string with
656 * null. @len must be actual maximum length (even number) + 1.
657 *
658 * LOCKING:
659 * caller.
660 */
6a62a04d
TH
661void ata_id_c_string(const u16 *id, unsigned char *s,
662 unsigned int ofs, unsigned int len)
0e949ff3
TH
663{
664 unsigned char *p;
665
666 WARN_ON(!(len & 1));
667
6a62a04d 668 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
669
670 p = s + strnlen(s, len - 1);
671 while (p > s && p[-1] == ' ')
672 p--;
673 *p = '\0';
674}
0baab86b 675
2940740b
TH
676static u64 ata_id_n_sectors(const u16 *id)
677{
678 if (ata_id_has_lba(id)) {
679 if (ata_id_has_lba48(id))
680 return ata_id_u64(id, 100);
681 else
682 return ata_id_u32(id, 60);
683 } else {
684 if (ata_id_current_chs_valid(id))
685 return ata_id_u32(id, 57);
686 else
687 return id[1] * id[3] * id[6];
688 }
689}
690
0baab86b
EF
691/**
692 * ata_noop_dev_select - Select device 0/1 on ATA bus
693 * @ap: ATA channel to manipulate
694 * @device: ATA device (numbered from zero) to select
695 *
696 * This function performs no actual function.
697 *
698 * May be used as the dev_select() entry in ata_port_operations.
699 *
700 * LOCKING:
701 * caller.
702 */
1da177e4
LT
703void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
704{
705}
706
0baab86b 707
1da177e4
LT
708/**
709 * ata_std_dev_select - Select device 0/1 on ATA bus
710 * @ap: ATA channel to manipulate
711 * @device: ATA device (numbered from zero) to select
712 *
713 * Use the method defined in the ATA specification to
714 * make either device 0, or device 1, active on the
0baab86b
EF
715 * ATA channel. Works with both PIO and MMIO.
716 *
717 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
718 *
719 * LOCKING:
720 * caller.
721 */
722
723void ata_std_dev_select (struct ata_port *ap, unsigned int device)
724{
725 u8 tmp;
726
727 if (device == 0)
728 tmp = ATA_DEVICE_OBS;
729 else
730 tmp = ATA_DEVICE_OBS | ATA_DEV1;
731
732 if (ap->flags & ATA_FLAG_MMIO) {
733 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
734 } else {
735 outb(tmp, ap->ioaddr.device_addr);
736 }
737 ata_pause(ap); /* needed; also flushes, for mmio */
738}
739
740/**
741 * ata_dev_select - Select device 0/1 on ATA bus
742 * @ap: ATA channel to manipulate
743 * @device: ATA device (numbered from zero) to select
744 * @wait: non-zero to wait for Status register BSY bit to clear
745 * @can_sleep: non-zero if context allows sleeping
746 *
747 * Use the method defined in the ATA specification to
748 * make either device 0, or device 1, active on the
749 * ATA channel.
750 *
751 * This is a high-level version of ata_std_dev_select(),
752 * which additionally provides the services of inserting
753 * the proper pauses and status polling, where needed.
754 *
755 * LOCKING:
756 * caller.
757 */
758
759void ata_dev_select(struct ata_port *ap, unsigned int device,
760 unsigned int wait, unsigned int can_sleep)
761{
762 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
763 ap->id, device, wait);
764
765 if (wait)
766 ata_wait_idle(ap);
767
768 ap->ops->dev_select(ap, device);
769
770 if (wait) {
771 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
772 msleep(150);
773 ata_wait_idle(ap);
774 }
775}
776
777/**
778 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 779 * @id: IDENTIFY DEVICE page to dump
1da177e4 780 *
0bd3300a
TH
781 * Dump selected 16-bit words from the given IDENTIFY DEVICE
782 * page.
1da177e4
LT
783 *
784 * LOCKING:
785 * caller.
786 */
787
0bd3300a 788static inline void ata_dump_id(const u16 *id)
1da177e4
LT
789{
790 DPRINTK("49==0x%04x "
791 "53==0x%04x "
792 "63==0x%04x "
793 "64==0x%04x "
794 "75==0x%04x \n",
0bd3300a
TH
795 id[49],
796 id[53],
797 id[63],
798 id[64],
799 id[75]);
1da177e4
LT
800 DPRINTK("80==0x%04x "
801 "81==0x%04x "
802 "82==0x%04x "
803 "83==0x%04x "
804 "84==0x%04x \n",
0bd3300a
TH
805 id[80],
806 id[81],
807 id[82],
808 id[83],
809 id[84]);
1da177e4
LT
810 DPRINTK("88==0x%04x "
811 "93==0x%04x\n",
0bd3300a
TH
812 id[88],
813 id[93]);
1da177e4
LT
814}
815
cb95d562
TH
816/**
817 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
818 * @id: IDENTIFY data to compute xfer mask from
819 *
820 * Compute the xfermask for this device. This is not as trivial
821 * as it seems if we must consider early devices correctly.
822 *
823 * FIXME: pre IDE drive timing (do we care ?).
824 *
825 * LOCKING:
826 * None.
827 *
828 * RETURNS:
829 * Computed xfermask
830 */
831static unsigned int ata_id_xfermask(const u16 *id)
832{
833 unsigned int pio_mask, mwdma_mask, udma_mask;
834
835 /* Usual case. Word 53 indicates word 64 is valid */
836 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
837 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
838 pio_mask <<= 3;
839 pio_mask |= 0x7;
840 } else {
841 /* If word 64 isn't valid then Word 51 high byte holds
842 * the PIO timing number for the maximum. Turn it into
843 * a mask.
844 */
845 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
846
847 /* But wait.. there's more. Design your standards by
848 * committee and you too can get a free iordy field to
849 * process. However its the speeds not the modes that
850 * are supported... Note drivers using the timing API
851 * will get this right anyway
852 */
853 }
854
855 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
856
857 udma_mask = 0;
858 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
859 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
860
861 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
862}
863
86e45b6b
TH
864/**
865 * ata_port_queue_task - Queue port_task
866 * @ap: The ata_port to queue port_task for
867 *
868 * Schedule @fn(@data) for execution after @delay jiffies using
869 * port_task. There is one port_task per port and it's the
870 * user(low level driver)'s responsibility to make sure that only
871 * one task is active at any given time.
872 *
873 * libata core layer takes care of synchronization between
874 * port_task and EH. ata_port_queue_task() may be ignored for EH
875 * synchronization.
876 *
877 * LOCKING:
878 * Inherited from caller.
879 */
880void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
881 unsigned long delay)
882{
883 int rc;
884
2e755f68 885 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
886 return;
887
888 PREPARE_WORK(&ap->port_task, fn, data);
889
890 if (!delay)
891 rc = queue_work(ata_wq, &ap->port_task);
892 else
893 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
894
895 /* rc == 0 means that another user is using port task */
896 WARN_ON(rc == 0);
897}
898
899/**
900 * ata_port_flush_task - Flush port_task
901 * @ap: The ata_port to flush port_task for
902 *
903 * After this function completes, port_task is guranteed not to
904 * be running or scheduled.
905 *
906 * LOCKING:
907 * Kernel thread context (may sleep)
908 */
909void ata_port_flush_task(struct ata_port *ap)
910{
911 unsigned long flags;
912
913 DPRINTK("ENTER\n");
914
915 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 916 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
917 spin_unlock_irqrestore(&ap->host_set->lock, flags);
918
919 DPRINTK("flush #1\n");
920 flush_workqueue(ata_wq);
921
922 /*
923 * At this point, if a task is running, it's guaranteed to see
924 * the FLUSH flag; thus, it will never queue pio tasks again.
925 * Cancel and flush.
926 */
927 if (!cancel_delayed_work(&ap->port_task)) {
928 DPRINTK("flush #2\n");
929 flush_workqueue(ata_wq);
930 }
931
932 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 933 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
934 spin_unlock_irqrestore(&ap->host_set->lock, flags);
935
936 DPRINTK("EXIT\n");
937}
938
77853bf2 939void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 940{
77853bf2 941 struct completion *waiting = qc->private_data;
a2a7a662 942
77853bf2 943 qc->ap->ops->tf_read(qc->ap, &qc->tf);
a2a7a662 944 complete(waiting);
a2a7a662
TH
945}
946
947/**
948 * ata_exec_internal - execute libata internal command
949 * @ap: Port to which the command is sent
950 * @dev: Device to which the command is sent
951 * @tf: Taskfile registers for the command and the result
952 * @dma_dir: Data tranfer direction of the command
953 * @buf: Data buffer of the command
954 * @buflen: Length of data buffer
955 *
956 * Executes libata internal command with timeout. @tf contains
957 * command on entry and result on return. Timeout and error
958 * conditions are reported via return value. No recovery action
959 * is taken after a command times out. It's caller's duty to
960 * clean up after timeout.
961 *
962 * LOCKING:
963 * None. Should be called with kernel context, might sleep.
964 */
965
966static unsigned
967ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
968 struct ata_taskfile *tf,
969 int dma_dir, void *buf, unsigned int buflen)
970{
971 u8 command = tf->command;
972 struct ata_queued_cmd *qc;
973 DECLARE_COMPLETION(wait);
974 unsigned long flags;
77853bf2 975 unsigned int err_mask;
a2a7a662
TH
976
977 spin_lock_irqsave(&ap->host_set->lock, flags);
978
979 qc = ata_qc_new_init(ap, dev);
980 BUG_ON(qc == NULL);
981
982 qc->tf = *tf;
983 qc->dma_dir = dma_dir;
984 if (dma_dir != DMA_NONE) {
985 ata_sg_init_one(qc, buf, buflen);
986 qc->nsect = buflen / ATA_SECT_SIZE;
987 }
988
77853bf2 989 qc->private_data = &wait;
a2a7a662
TH
990 qc->complete_fn = ata_qc_complete_internal;
991
8e0e694a 992 ata_qc_issue(qc);
a2a7a662
TH
993
994 spin_unlock_irqrestore(&ap->host_set->lock, flags);
995
996 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
41ade50c
AL
997 ata_port_flush_task(ap);
998
a2a7a662
TH
999 spin_lock_irqsave(&ap->host_set->lock, flags);
1000
1001 /* We're racing with irq here. If we lose, the
1002 * following test prevents us from completing the qc
1003 * again. If completion irq occurs after here but
1004 * before the caller cleans up, it will result in a
1005 * spurious interrupt. We can live with that.
1006 */
77853bf2 1007 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 1008 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
1009 ata_qc_complete(qc);
1010 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1011 ap->id, command);
1012 }
1013
1014 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1015 }
1016
77853bf2
TH
1017 *tf = qc->tf;
1018 err_mask = qc->err_mask;
1019
1020 ata_qc_free(qc);
1021
1f7dd3e9
TH
1022 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1023 * Until those drivers are fixed, we detect the condition
1024 * here, fail the command with AC_ERR_SYSTEM and reenable the
1025 * port.
1026 *
1027 * Note that this doesn't change any behavior as internal
1028 * command failure results in disabling the device in the
1029 * higher layer for LLDDs without new reset/EH callbacks.
1030 *
1031 * Kill the following code as soon as those drivers are fixed.
1032 */
1033 if (ap->flags & ATA_FLAG_PORT_DISABLED) {
1034 err_mask |= AC_ERR_SYSTEM;
1035 ata_port_probe(ap);
1036 }
1037
77853bf2 1038 return err_mask;
a2a7a662
TH
1039}
1040
1bc4ccff
AC
1041/**
1042 * ata_pio_need_iordy - check if iordy needed
1043 * @adev: ATA device
1044 *
1045 * Check if the current speed of the device requires IORDY. Used
1046 * by various controllers for chip configuration.
1047 */
1048
1049unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1050{
1051 int pio;
1052 int speed = adev->pio_mode - XFER_PIO_0;
1053
1054 if (speed < 2)
1055 return 0;
1056 if (speed > 2)
1057 return 1;
2e9edbf8 1058
1bc4ccff
AC
1059 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1060
1061 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1062 pio = adev->id[ATA_ID_EIDE_PIO];
1063 /* Is the speed faster than the drive allows non IORDY ? */
1064 if (pio) {
1065 /* This is cycle times not frequency - watch the logic! */
1066 if (pio > 240) /* PIO2 is 240nS per cycle */
1067 return 1;
1068 return 0;
1069 }
1070 }
1071 return 0;
1072}
1073
1da177e4 1074/**
49016aca
TH
1075 * ata_dev_read_id - Read ID data from the specified device
1076 * @ap: port on which target device resides
1077 * @dev: target device
1078 * @p_class: pointer to class of the target device (may be changed)
1079 * @post_reset: is this read ID post-reset?
d9572b1d 1080 * @p_id: read IDENTIFY page (newly allocated)
1da177e4 1081 *
49016aca
TH
1082 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1083 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1084 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1085 * for pre-ATA4 drives.
1da177e4
LT
1086 *
1087 * LOCKING:
49016aca
TH
1088 * Kernel thread context (may sleep)
1089 *
1090 * RETURNS:
1091 * 0 on success, -errno otherwise.
1da177e4 1092 */
49016aca 1093static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
d9572b1d 1094 unsigned int *p_class, int post_reset, u16 **p_id)
1da177e4 1095{
49016aca 1096 unsigned int class = *p_class;
a0123703 1097 struct ata_taskfile tf;
49016aca 1098 unsigned int err_mask = 0;
d9572b1d 1099 u16 *id;
49016aca
TH
1100 const char *reason;
1101 int rc;
1da177e4 1102
49016aca 1103 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1104
49016aca 1105 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1106
d9572b1d
TH
1107 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1108 if (id == NULL) {
1109 rc = -ENOMEM;
1110 reason = "out of memory";
1111 goto err_out;
1112 }
1113
49016aca
TH
1114 retry:
1115 ata_tf_init(ap, &tf, dev->devno);
a0123703 1116
49016aca
TH
1117 switch (class) {
1118 case ATA_DEV_ATA:
a0123703 1119 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1120 break;
1121 case ATA_DEV_ATAPI:
a0123703 1122 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1123 break;
1124 default:
1125 rc = -ENODEV;
1126 reason = "unsupported class";
1127 goto err_out;
1da177e4
LT
1128 }
1129
a0123703 1130 tf.protocol = ATA_PROT_PIO;
1da177e4 1131
a0123703 1132 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
49016aca 1133 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1134 if (err_mask) {
49016aca
TH
1135 rc = -EIO;
1136 reason = "I/O error";
1da177e4
LT
1137 goto err_out;
1138 }
1139
49016aca 1140 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1141
49016aca 1142 /* sanity check */
692785e7 1143 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1144 rc = -EINVAL;
1145 reason = "device reports illegal type";
1146 goto err_out;
1147 }
1148
1149 if (post_reset && class == ATA_DEV_ATA) {
1150 /*
1151 * The exact sequence expected by certain pre-ATA4 drives is:
1152 * SRST RESET
1153 * IDENTIFY
1154 * INITIALIZE DEVICE PARAMETERS
1155 * anything else..
1156 * Some drives were very specific about that exact sequence.
1157 */
1158 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
00b6f5e9 1159 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
49016aca
TH
1160 if (err_mask) {
1161 rc = -EIO;
1162 reason = "INIT_DEV_PARAMS failed";
1163 goto err_out;
1164 }
1165
1166 /* current CHS translation info (id[53-58]) might be
1167 * changed. reread the identify device info.
1168 */
1169 post_reset = 0;
1170 goto retry;
1171 }
1172 }
1173
1174 *p_class = class;
d9572b1d 1175 *p_id = id;
49016aca
TH
1176 return 0;
1177
1178 err_out:
1179 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1180 ap->id, dev->devno, reason);
d9572b1d 1181 kfree(id);
49016aca
TH
1182 return rc;
1183}
1184
4b2f3ede
TH
1185static inline u8 ata_dev_knobble(const struct ata_port *ap,
1186 struct ata_device *dev)
1187{
1188 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1189}
1190
49016aca 1191/**
ffeae418
TH
1192 * ata_dev_configure - Configure the specified ATA/ATAPI device
1193 * @ap: Port on which target device resides
1194 * @dev: Target device to configure
4c2d721a 1195 * @print_info: Enable device info printout
ffeae418
TH
1196 *
1197 * Configure @dev according to @dev->id. Generic and low-level
1198 * driver specific fixups are also applied.
49016aca
TH
1199 *
1200 * LOCKING:
ffeae418
TH
1201 * Kernel thread context (may sleep)
1202 *
1203 * RETURNS:
1204 * 0 on success, -errno otherwise
49016aca 1205 */
4c2d721a
TH
1206static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1207 int print_info)
49016aca 1208{
1148c3a7 1209 const u16 *id = dev->id;
ff8854b2 1210 unsigned int xfer_mask;
49016aca
TH
1211 int i, rc;
1212
1213 if (!ata_dev_present(dev)) {
1214 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1215 ap->id, dev->devno);
1216 return 0;
49016aca
TH
1217 }
1218
ffeae418 1219 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1220
c39f5ebe
TH
1221 /* print device capabilities */
1222 if (print_info)
1223 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1224 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1225 ap->id, dev->devno, id[49], id[82], id[83],
1226 id[84], id[85], id[86], id[87], id[88]);
1227
208a9933
TH
1228 /* initialize to-be-configured parameters */
1229 dev->flags = 0;
1230 dev->max_sectors = 0;
1231 dev->cdb_len = 0;
1232 dev->n_sectors = 0;
1233 dev->cylinders = 0;
1234 dev->heads = 0;
1235 dev->sectors = 0;
1236
1da177e4
LT
1237 /*
1238 * common ATA, ATAPI feature tests
1239 */
1240
ff8854b2 1241 /* find max transfer mode; for printk only */
1148c3a7 1242 xfer_mask = ata_id_xfermask(id);
1da177e4 1243
1148c3a7 1244 ata_dump_id(id);
1da177e4
LT
1245
1246 /* ATA-specific feature tests */
1247 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1248 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1249
1148c3a7 1250 if (ata_id_has_lba(id)) {
4c2d721a 1251 const char *lba_desc;
8bf62ece 1252
4c2d721a
TH
1253 lba_desc = "LBA";
1254 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1255 if (ata_id_has_lba48(id)) {
8bf62ece 1256 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1257 lba_desc = "LBA48";
1258 }
8bf62ece
AL
1259
1260 /* print device info to dmesg */
4c2d721a
TH
1261 if (print_info)
1262 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1263 "max %s, %Lu sectors: %s\n",
1264 ap->id, dev->devno,
1148c3a7 1265 ata_id_major_version(id),
ff8854b2 1266 ata_mode_string(xfer_mask),
4c2d721a
TH
1267 (unsigned long long)dev->n_sectors,
1268 lba_desc);
ffeae418 1269 } else {
8bf62ece
AL
1270 /* CHS */
1271
1272 /* Default translation */
1148c3a7
TH
1273 dev->cylinders = id[1];
1274 dev->heads = id[3];
1275 dev->sectors = id[6];
8bf62ece 1276
1148c3a7 1277 if (ata_id_current_chs_valid(id)) {
8bf62ece 1278 /* Current CHS translation is valid. */
1148c3a7
TH
1279 dev->cylinders = id[54];
1280 dev->heads = id[55];
1281 dev->sectors = id[56];
8bf62ece
AL
1282 }
1283
1284 /* print device info to dmesg */
4c2d721a
TH
1285 if (print_info)
1286 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1287 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1288 ap->id, dev->devno,
1148c3a7 1289 ata_id_major_version(id),
ff8854b2 1290 ata_mode_string(xfer_mask),
4c2d721a
TH
1291 (unsigned long long)dev->n_sectors,
1292 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1293 }
1294
6e7846e9 1295 dev->cdb_len = 16;
1da177e4
LT
1296 }
1297
1298 /* ATAPI-specific feature tests */
2c13b7ce 1299 else if (dev->class == ATA_DEV_ATAPI) {
1148c3a7 1300 rc = atapi_cdb_len(id);
1da177e4
LT
1301 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1302 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
ffeae418 1303 rc = -EINVAL;
1da177e4
LT
1304 goto err_out_nosup;
1305 }
6e7846e9 1306 dev->cdb_len = (unsigned int) rc;
1da177e4
LT
1307
1308 /* print device info to dmesg */
4c2d721a
TH
1309 if (print_info)
1310 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
ff8854b2 1311 ap->id, dev->devno, ata_mode_string(xfer_mask));
1da177e4
LT
1312 }
1313
6e7846e9
TH
1314 ap->host->max_cmd_len = 0;
1315 for (i = 0; i < ATA_MAX_DEVICES; i++)
1316 ap->host->max_cmd_len = max_t(unsigned int,
1317 ap->host->max_cmd_len,
1318 ap->device[i].cdb_len);
1319
4b2f3ede
TH
1320 /* limit bridge transfers to udma5, 200 sectors */
1321 if (ata_dev_knobble(ap, dev)) {
4c2d721a
TH
1322 if (print_info)
1323 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1324 ap->id, dev->devno);
5a529139 1325 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1326 dev->max_sectors = ATA_MAX_SECTORS;
1327 }
1328
1329 if (ap->ops->dev_config)
1330 ap->ops->dev_config(ap, dev);
1331
1da177e4 1332 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1333 return 0;
1da177e4
LT
1334
1335err_out_nosup:
1da177e4 1336 DPRINTK("EXIT, err\n");
ffeae418 1337 return rc;
1da177e4
LT
1338}
1339
1340/**
1341 * ata_bus_probe - Reset and probe ATA bus
1342 * @ap: Bus to probe
1343 *
0cba632b
JG
1344 * Master ATA bus probing function. Initiates a hardware-dependent
1345 * bus reset, then attempts to identify any devices found on
1346 * the bus.
1347 *
1da177e4 1348 * LOCKING:
0cba632b 1349 * PCI/etc. bus probe sem.
1da177e4
LT
1350 *
1351 * RETURNS:
1352 * Zero on success, non-zero on error.
1353 */
1354
1355static int ata_bus_probe(struct ata_port *ap)
1356{
28ca5c57
TH
1357 unsigned int classes[ATA_MAX_DEVICES];
1358 unsigned int i, rc, found = 0;
1da177e4 1359
28ca5c57 1360 ata_port_probe(ap);
c19ba8af 1361
2044470c
TH
1362 /* reset and determine device classes */
1363 for (i = 0; i < ATA_MAX_DEVICES; i++)
1364 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1365
2044470c 1366 if (ap->ops->probe_reset) {
c19ba8af 1367 rc = ap->ops->probe_reset(ap, classes);
28ca5c57
TH
1368 if (rc) {
1369 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1370 return rc;
c19ba8af 1371 }
28ca5c57 1372 } else {
c19ba8af
TH
1373 ap->ops->phy_reset(ap);
1374
2044470c
TH
1375 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1376 for (i = 0; i < ATA_MAX_DEVICES; i++)
28ca5c57 1377 classes[i] = ap->device[i].class;
2044470c 1378
28ca5c57
TH
1379 ata_port_probe(ap);
1380 }
1da177e4 1381
2044470c
TH
1382 for (i = 0; i < ATA_MAX_DEVICES; i++)
1383 if (classes[i] == ATA_DEV_UNKNOWN)
1384 classes[i] = ATA_DEV_NONE;
1385
28ca5c57 1386 /* read IDENTIFY page and configure devices */
1da177e4 1387 for (i = 0; i < ATA_MAX_DEVICES; i++) {
ffeae418
TH
1388 struct ata_device *dev = &ap->device[i];
1389
28ca5c57
TH
1390 dev->class = classes[i];
1391
ffeae418
TH
1392 if (!ata_dev_present(dev))
1393 continue;
1394
1395 WARN_ON(dev->id != NULL);
1396 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1397 dev->class = ATA_DEV_NONE;
1398 continue;
1399 }
1400
4c2d721a 1401 if (ata_dev_configure(ap, dev, 1)) {
fcef978f 1402 ata_dev_disable(ap, dev);
ffeae418 1403 continue;
1da177e4 1404 }
ffeae418 1405
ffeae418 1406 found = 1;
1da177e4
LT
1407 }
1408
28ca5c57 1409 if (!found)
1da177e4
LT
1410 goto err_out_disable;
1411
e35a9e01
AC
1412 if (ap->ops->set_mode)
1413 ap->ops->set_mode(ap);
1414 else
1415 ata_set_mode(ap);
1416
1da177e4
LT
1417 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1418 goto err_out_disable;
1419
1420 return 0;
1421
1422err_out_disable:
1423 ap->ops->port_disable(ap);
1da177e4
LT
1424 return -1;
1425}
1426
1427/**
0cba632b
JG
1428 * ata_port_probe - Mark port as enabled
1429 * @ap: Port for which we indicate enablement
1da177e4 1430 *
0cba632b
JG
1431 * Modify @ap data structure such that the system
1432 * thinks that the entire port is enabled.
1433 *
1434 * LOCKING: host_set lock, or some other form of
1435 * serialization.
1da177e4
LT
1436 */
1437
1438void ata_port_probe(struct ata_port *ap)
1439{
1440 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1441}
1442
3be680b7
TH
1443/**
1444 * sata_print_link_status - Print SATA link status
1445 * @ap: SATA port to printk link status about
1446 *
1447 * This function prints link speed and status of a SATA link.
1448 *
1449 * LOCKING:
1450 * None.
1451 */
1452static void sata_print_link_status(struct ata_port *ap)
1453{
1454 u32 sstatus, tmp;
1455 const char *speed;
1456
1457 if (!ap->ops->scr_read)
1458 return;
1459
1460 sstatus = scr_read(ap, SCR_STATUS);
1461
1462 if (sata_dev_present(ap)) {
1463 tmp = (sstatus >> 4) & 0xf;
1464 if (tmp & (1 << 0))
1465 speed = "1.5";
1466 else if (tmp & (1 << 1))
1467 speed = "3.0";
1468 else
1469 speed = "<unknown>";
1470 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1471 ap->id, speed, sstatus);
1472 } else {
1473 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1474 ap->id, sstatus);
1475 }
1476}
1477
1da177e4 1478/**
780a87f7
JG
1479 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1480 * @ap: SATA port associated with target SATA PHY.
1da177e4 1481 *
780a87f7
JG
1482 * This function issues commands to standard SATA Sxxx
1483 * PHY registers, to wake up the phy (and device), and
1484 * clear any reset condition.
1da177e4
LT
1485 *
1486 * LOCKING:
0cba632b 1487 * PCI/etc. bus probe sem.
1da177e4
LT
1488 *
1489 */
1490void __sata_phy_reset(struct ata_port *ap)
1491{
1492 u32 sstatus;
1493 unsigned long timeout = jiffies + (HZ * 5);
1494
1495 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1496 /* issue phy wake/reset */
1497 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1498 /* Couldn't find anything in SATA I/II specs, but
1499 * AHCI-1.1 10.4.2 says at least 1 ms. */
1500 mdelay(1);
1da177e4 1501 }
cdcca89e 1502 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1503
1504 /* wait for phy to become ready, if necessary */
1505 do {
1506 msleep(200);
1507 sstatus = scr_read(ap, SCR_STATUS);
1508 if ((sstatus & 0xf) != 1)
1509 break;
1510 } while (time_before(jiffies, timeout));
1511
3be680b7
TH
1512 /* print link status */
1513 sata_print_link_status(ap);
656563e3 1514
3be680b7
TH
1515 /* TODO: phy layer with polling, timeouts, etc. */
1516 if (sata_dev_present(ap))
1da177e4 1517 ata_port_probe(ap);
3be680b7 1518 else
1da177e4 1519 ata_port_disable(ap);
1da177e4
LT
1520
1521 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1522 return;
1523
1524 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1525 ata_port_disable(ap);
1526 return;
1527 }
1528
1529 ap->cbl = ATA_CBL_SATA;
1530}
1531
1532/**
780a87f7
JG
1533 * sata_phy_reset - Reset SATA bus.
1534 * @ap: SATA port associated with target SATA PHY.
1da177e4 1535 *
780a87f7
JG
1536 * This function resets the SATA bus, and then probes
1537 * the bus for devices.
1da177e4
LT
1538 *
1539 * LOCKING:
0cba632b 1540 * PCI/etc. bus probe sem.
1da177e4
LT
1541 *
1542 */
1543void sata_phy_reset(struct ata_port *ap)
1544{
1545 __sata_phy_reset(ap);
1546 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1547 return;
1548 ata_bus_reset(ap);
1549}
1550
ebdfca6e
AC
1551/**
1552 * ata_dev_pair - return other device on cable
1553 * @ap: port
1554 * @adev: device
1555 *
1556 * Obtain the other device on the same cable, or if none is
1557 * present NULL is returned
1558 */
2e9edbf8 1559
ebdfca6e
AC
1560struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1561{
1562 struct ata_device *pair = &ap->device[1 - adev->devno];
1563 if (!ata_dev_present(pair))
1564 return NULL;
1565 return pair;
1566}
1567
1da177e4 1568/**
780a87f7
JG
1569 * ata_port_disable - Disable port.
1570 * @ap: Port to be disabled.
1da177e4 1571 *
780a87f7
JG
1572 * Modify @ap data structure such that the system
1573 * thinks that the entire port is disabled, and should
1574 * never attempt to probe or communicate with devices
1575 * on this port.
1576 *
1577 * LOCKING: host_set lock, or some other form of
1578 * serialization.
1da177e4
LT
1579 */
1580
1581void ata_port_disable(struct ata_port *ap)
1582{
1583 ap->device[0].class = ATA_DEV_NONE;
1584 ap->device[1].class = ATA_DEV_NONE;
1585 ap->flags |= ATA_FLAG_PORT_DISABLED;
1586}
1587
452503f9
AC
1588/*
1589 * This mode timing computation functionality is ported over from
1590 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1591 */
1592/*
1593 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1594 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1595 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1596 * is currently supported only by Maxtor drives.
452503f9
AC
1597 */
1598
1599static const struct ata_timing ata_timing[] = {
1600
1601 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1602 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1603 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1604 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1605
1606 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1607 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1608 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1609
1610/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1611
452503f9
AC
1612 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1613 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1614 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1615
452503f9
AC
1616 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1617 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1618 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1619
1620/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1621 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1622 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1623
1624 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1625 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1626 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1627
1628/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1629
1630 { 0xFF }
1631};
1632
1633#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1634#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1635
1636static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1637{
1638 q->setup = EZ(t->setup * 1000, T);
1639 q->act8b = EZ(t->act8b * 1000, T);
1640 q->rec8b = EZ(t->rec8b * 1000, T);
1641 q->cyc8b = EZ(t->cyc8b * 1000, T);
1642 q->active = EZ(t->active * 1000, T);
1643 q->recover = EZ(t->recover * 1000, T);
1644 q->cycle = EZ(t->cycle * 1000, T);
1645 q->udma = EZ(t->udma * 1000, UT);
1646}
1647
1648void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1649 struct ata_timing *m, unsigned int what)
1650{
1651 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1652 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1653 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1654 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1655 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1656 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1657 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1658 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1659}
1660
1661static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1662{
1663 const struct ata_timing *t;
1664
1665 for (t = ata_timing; t->mode != speed; t++)
91190758 1666 if (t->mode == 0xFF)
452503f9 1667 return NULL;
2e9edbf8 1668 return t;
452503f9
AC
1669}
1670
1671int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1672 struct ata_timing *t, int T, int UT)
1673{
1674 const struct ata_timing *s;
1675 struct ata_timing p;
1676
1677 /*
2e9edbf8 1678 * Find the mode.
75b1f2f8 1679 */
452503f9
AC
1680
1681 if (!(s = ata_timing_find_mode(speed)))
1682 return -EINVAL;
1683
75b1f2f8
AL
1684 memcpy(t, s, sizeof(*s));
1685
452503f9
AC
1686 /*
1687 * If the drive is an EIDE drive, it can tell us it needs extended
1688 * PIO/MW_DMA cycle timing.
1689 */
1690
1691 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1692 memset(&p, 0, sizeof(p));
1693 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1694 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1695 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1696 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1697 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1698 }
1699 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1700 }
1701
1702 /*
1703 * Convert the timing to bus clock counts.
1704 */
1705
75b1f2f8 1706 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1707
1708 /*
c893a3ae
RD
1709 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1710 * S.M.A.R.T * and some other commands. We have to ensure that the
1711 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1712 */
1713
1714 if (speed > XFER_PIO_4) {
1715 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1716 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1717 }
1718
1719 /*
c893a3ae 1720 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1721 */
1722
1723 if (t->act8b + t->rec8b < t->cyc8b) {
1724 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1725 t->rec8b = t->cyc8b - t->act8b;
1726 }
1727
1728 if (t->active + t->recover < t->cycle) {
1729 t->active += (t->cycle - (t->active + t->recover)) / 2;
1730 t->recover = t->cycle - t->active;
1731 }
1732
1733 return 0;
1734}
1735
83206a29 1736static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1da177e4 1737{
83206a29
TH
1738 unsigned int err_mask;
1739 int rc;
1da177e4
LT
1740
1741 if (dev->xfer_shift == ATA_SHIFT_PIO)
1742 dev->flags |= ATA_DFLAG_PIO;
1743
83206a29
TH
1744 err_mask = ata_dev_set_xfermode(ap, dev);
1745 if (err_mask) {
1746 printk(KERN_ERR
1747 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1748 ap->id, err_mask);
1749 return -EIO;
1750 }
1da177e4 1751
83206a29
TH
1752 rc = ata_dev_revalidate(ap, dev, 0);
1753 if (rc) {
1754 printk(KERN_ERR
1755 "ata%u: failed to revalidate after set xfermode\n",
1756 ap->id);
1757 return rc;
48a8a14f
TH
1758 }
1759
23e71c3d
TH
1760 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1761 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4
LT
1762
1763 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
23e71c3d
TH
1764 ap->id, dev->devno,
1765 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 1766 return 0;
1da177e4
LT
1767}
1768
1769static int ata_host_set_pio(struct ata_port *ap)
1770{
a6d5a51c 1771 int i;
1da177e4
LT
1772
1773 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1774 struct ata_device *dev = &ap->device[i];
a6d5a51c
TH
1775
1776 if (!ata_dev_present(dev))
1777 continue;
1778
1779 if (!dev->pio_mode) {
88f93a31 1780 printk(KERN_WARNING "ata%u: no PIO support for device %d.\n", ap->id, i);
a6d5a51c 1781 return -1;
1da177e4 1782 }
a6d5a51c
TH
1783
1784 dev->xfer_mode = dev->pio_mode;
1785 dev->xfer_shift = ATA_SHIFT_PIO;
1786 if (ap->ops->set_piomode)
1787 ap->ops->set_piomode(ap, dev);
1da177e4
LT
1788 }
1789
1790 return 0;
1791}
1792
a6d5a51c 1793static void ata_host_set_dma(struct ata_port *ap)
1da177e4
LT
1794{
1795 int i;
1796
1797 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1798 struct ata_device *dev = &ap->device[i];
a6d5a51c
TH
1799
1800 if (!ata_dev_present(dev) || !dev->dma_mode)
1801 continue;
1802
1803 dev->xfer_mode = dev->dma_mode;
1804 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
1805 if (ap->ops->set_dmamode)
1806 ap->ops->set_dmamode(ap, dev);
1da177e4
LT
1807 }
1808}
1809
1810/**
1811 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1812 * @ap: port on which timings will be programmed
1813 *
780a87f7
JG
1814 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1815 *
1da177e4 1816 * LOCKING:
0cba632b 1817 * PCI/etc. bus probe sem.
1da177e4
LT
1818 */
1819static void ata_set_mode(struct ata_port *ap)
1820{
5444a6f4 1821 int i, rc, used_dma = 0;
1da177e4 1822
a6d5a51c
TH
1823 /* step 1: calculate xfer_mask */
1824 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1825 struct ata_device *dev = &ap->device[i];
acf356b1 1826 unsigned int pio_mask, dma_mask;
a6d5a51c
TH
1827
1828 if (!ata_dev_present(dev))
1829 continue;
1830
acf356b1 1831 ata_dev_xfermask(ap, dev);
1da177e4 1832
acf356b1
TH
1833 /* TODO: let LLDD filter dev->*_mask here */
1834
1835 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
1836 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
1837 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
1838 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4
AC
1839
1840 if (dev->dma_mode)
1841 used_dma = 1;
a6d5a51c
TH
1842 }
1843
1844 /* step 2: always set host PIO timings */
1845 rc = ata_host_set_pio(ap);
1da177e4
LT
1846 if (rc)
1847 goto err_out;
1848
a6d5a51c
TH
1849 /* step 3: set host DMA timings */
1850 ata_host_set_dma(ap);
1da177e4
LT
1851
1852 /* step 4: update devices' xfer mode */
83206a29
TH
1853 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1854 struct ata_device *dev = &ap->device[i];
1da177e4 1855
83206a29
TH
1856 if (!ata_dev_present(dev))
1857 continue;
1858
1859 if (ata_dev_set_mode(ap, dev))
1860 goto err_out;
1861 }
1da177e4 1862
5444a6f4
AC
1863 /*
1864 * Record simplex status. If we selected DMA then the other
1865 * host channels are not permitted to do so.
1866 */
1867
1868 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
1869 ap->host_set->simplex_claimed = 1;
1870
1871 /*
1872 * Chip specific finalisation
1873 */
1da177e4
LT
1874 if (ap->ops->post_set_mode)
1875 ap->ops->post_set_mode(ap);
1876
1da177e4
LT
1877 return;
1878
1879err_out:
1880 ata_port_disable(ap);
1881}
1882
1fdffbce
JG
1883/**
1884 * ata_tf_to_host - issue ATA taskfile to host controller
1885 * @ap: port to which command is being issued
1886 * @tf: ATA taskfile register set
1887 *
1888 * Issues ATA taskfile register set to ATA host controller,
1889 * with proper synchronization with interrupt handler and
1890 * other threads.
1891 *
1892 * LOCKING:
1893 * spin_lock_irqsave(host_set lock)
1894 */
1895
1896static inline void ata_tf_to_host(struct ata_port *ap,
1897 const struct ata_taskfile *tf)
1898{
1899 ap->ops->tf_load(ap, tf);
1900 ap->ops->exec_command(ap, tf);
1901}
1902
1da177e4
LT
1903/**
1904 * ata_busy_sleep - sleep until BSY clears, or timeout
1905 * @ap: port containing status register to be polled
1906 * @tmout_pat: impatience timeout
1907 * @tmout: overall timeout
1908 *
780a87f7
JG
1909 * Sleep until ATA Status register bit BSY clears,
1910 * or a timeout occurs.
1911 *
1912 * LOCKING: None.
1da177e4
LT
1913 */
1914
6f8b9958
TH
1915unsigned int ata_busy_sleep (struct ata_port *ap,
1916 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
1917{
1918 unsigned long timer_start, timeout;
1919 u8 status;
1920
1921 status = ata_busy_wait(ap, ATA_BUSY, 300);
1922 timer_start = jiffies;
1923 timeout = timer_start + tmout_pat;
1924 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1925 msleep(50);
1926 status = ata_busy_wait(ap, ATA_BUSY, 3);
1927 }
1928
1929 if (status & ATA_BUSY)
1930 printk(KERN_WARNING "ata%u is slow to respond, "
1931 "please be patient\n", ap->id);
1932
1933 timeout = timer_start + tmout;
1934 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1935 msleep(50);
1936 status = ata_chk_status(ap);
1937 }
1938
1939 if (status & ATA_BUSY) {
1940 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1941 ap->id, tmout / HZ);
1942 return 1;
1943 }
1944
1945 return 0;
1946}
1947
1948static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1949{
1950 struct ata_ioports *ioaddr = &ap->ioaddr;
1951 unsigned int dev0 = devmask & (1 << 0);
1952 unsigned int dev1 = devmask & (1 << 1);
1953 unsigned long timeout;
1954
1955 /* if device 0 was found in ata_devchk, wait for its
1956 * BSY bit to clear
1957 */
1958 if (dev0)
1959 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1960
1961 /* if device 1 was found in ata_devchk, wait for
1962 * register access, then wait for BSY to clear
1963 */
1964 timeout = jiffies + ATA_TMOUT_BOOT;
1965 while (dev1) {
1966 u8 nsect, lbal;
1967
1968 ap->ops->dev_select(ap, 1);
1969 if (ap->flags & ATA_FLAG_MMIO) {
1970 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1971 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1972 } else {
1973 nsect = inb(ioaddr->nsect_addr);
1974 lbal = inb(ioaddr->lbal_addr);
1975 }
1976 if ((nsect == 1) && (lbal == 1))
1977 break;
1978 if (time_after(jiffies, timeout)) {
1979 dev1 = 0;
1980 break;
1981 }
1982 msleep(50); /* give drive a breather */
1983 }
1984 if (dev1)
1985 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1986
1987 /* is all this really necessary? */
1988 ap->ops->dev_select(ap, 0);
1989 if (dev1)
1990 ap->ops->dev_select(ap, 1);
1991 if (dev0)
1992 ap->ops->dev_select(ap, 0);
1993}
1994
1da177e4
LT
1995static unsigned int ata_bus_softreset(struct ata_port *ap,
1996 unsigned int devmask)
1997{
1998 struct ata_ioports *ioaddr = &ap->ioaddr;
1999
2000 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2001
2002 /* software reset. causes dev0 to be selected */
2003 if (ap->flags & ATA_FLAG_MMIO) {
2004 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2005 udelay(20); /* FIXME: flush */
2006 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2007 udelay(20); /* FIXME: flush */
2008 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2009 } else {
2010 outb(ap->ctl, ioaddr->ctl_addr);
2011 udelay(10);
2012 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2013 udelay(10);
2014 outb(ap->ctl, ioaddr->ctl_addr);
2015 }
2016
2017 /* spec mandates ">= 2ms" before checking status.
2018 * We wait 150ms, because that was the magic delay used for
2019 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2020 * between when the ATA command register is written, and then
2021 * status is checked. Because waiting for "a while" before
2022 * checking status is fine, post SRST, we perform this magic
2023 * delay here as well.
09c7ad79
AC
2024 *
2025 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2026 */
2027 msleep(150);
2028
2e9edbf8 2029 /* Before we perform post reset processing we want to see if
298a41ca
TH
2030 * the bus shows 0xFF because the odd clown forgets the D7
2031 * pulldown resistor.
2032 */
09c7ad79 2033 if (ata_check_status(ap) == 0xFF)
298a41ca 2034 return AC_ERR_OTHER;
09c7ad79 2035
1da177e4
LT
2036 ata_bus_post_reset(ap, devmask);
2037
2038 return 0;
2039}
2040
2041/**
2042 * ata_bus_reset - reset host port and associated ATA channel
2043 * @ap: port to reset
2044 *
2045 * This is typically the first time we actually start issuing
2046 * commands to the ATA channel. We wait for BSY to clear, then
2047 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2048 * result. Determine what devices, if any, are on the channel
2049 * by looking at the device 0/1 error register. Look at the signature
2050 * stored in each device's taskfile registers, to determine if
2051 * the device is ATA or ATAPI.
2052 *
2053 * LOCKING:
0cba632b
JG
2054 * PCI/etc. bus probe sem.
2055 * Obtains host_set lock.
1da177e4
LT
2056 *
2057 * SIDE EFFECTS:
2058 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2059 */
2060
2061void ata_bus_reset(struct ata_port *ap)
2062{
2063 struct ata_ioports *ioaddr = &ap->ioaddr;
2064 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2065 u8 err;
aec5c3c1 2066 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2067
2068 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2069
2070 /* determine if device 0/1 are present */
2071 if (ap->flags & ATA_FLAG_SATA_RESET)
2072 dev0 = 1;
2073 else {
2074 dev0 = ata_devchk(ap, 0);
2075 if (slave_possible)
2076 dev1 = ata_devchk(ap, 1);
2077 }
2078
2079 if (dev0)
2080 devmask |= (1 << 0);
2081 if (dev1)
2082 devmask |= (1 << 1);
2083
2084 /* select device 0 again */
2085 ap->ops->dev_select(ap, 0);
2086
2087 /* issue bus reset */
2088 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2089 if (ata_bus_softreset(ap, devmask))
2090 goto err_out;
1da177e4
LT
2091
2092 /*
2093 * determine by signature whether we have ATA or ATAPI devices
2094 */
b4dc7623 2095 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2096 if ((slave_possible) && (err != 0x81))
b4dc7623 2097 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2098
2099 /* re-enable interrupts */
2100 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2101 ata_irq_on(ap);
2102
2103 /* is double-select really necessary? */
2104 if (ap->device[1].class != ATA_DEV_NONE)
2105 ap->ops->dev_select(ap, 1);
2106 if (ap->device[0].class != ATA_DEV_NONE)
2107 ap->ops->dev_select(ap, 0);
2108
2109 /* if no devices were detected, disable this port */
2110 if ((ap->device[0].class == ATA_DEV_NONE) &&
2111 (ap->device[1].class == ATA_DEV_NONE))
2112 goto err_out;
2113
2114 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2115 /* set up device control for ATA_FLAG_SATA_RESET */
2116 if (ap->flags & ATA_FLAG_MMIO)
2117 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2118 else
2119 outb(ap->ctl, ioaddr->ctl_addr);
2120 }
2121
2122 DPRINTK("EXIT\n");
2123 return;
2124
2125err_out:
2126 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2127 ap->ops->port_disable(ap);
2128
2129 DPRINTK("EXIT\n");
2130}
2131
7a7921e8
TH
2132static int sata_phy_resume(struct ata_port *ap)
2133{
2134 unsigned long timeout = jiffies + (HZ * 5);
2135 u32 sstatus;
2136
2137 scr_write_flush(ap, SCR_CONTROL, 0x300);
2138
2139 /* Wait for phy to become ready, if necessary. */
2140 do {
2141 msleep(200);
2142 sstatus = scr_read(ap, SCR_STATUS);
2143 if ((sstatus & 0xf) != 1)
2144 return 0;
2145 } while (time_before(jiffies, timeout));
2146
2147 return -1;
2148}
2149
8a19ac89
TH
2150/**
2151 * ata_std_probeinit - initialize probing
2152 * @ap: port to be probed
2153 *
2154 * @ap is about to be probed. Initialize it. This function is
2155 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2156 *
2157 * NOTE!!! Do not use this function as probeinit if a low level
2158 * driver implements only hardreset. Just pass NULL as probeinit
2159 * in that case. Using this function is probably okay but doing
2160 * so makes reset sequence different from the original
2161 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2162 */
17efc5f7 2163void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2164{
17efc5f7 2165 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
8a19ac89 2166 sata_phy_resume(ap);
3a39746a
TH
2167 if (sata_dev_present(ap))
2168 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2169 }
8a19ac89
TH
2170}
2171
c2bd5804
TH
2172/**
2173 * ata_std_softreset - reset host port via ATA SRST
2174 * @ap: port to reset
2175 * @verbose: fail verbosely
2176 * @classes: resulting classes of attached devices
2177 *
2178 * Reset host port using ATA SRST. This function is to be used
2179 * as standard callback for ata_drive_*_reset() functions.
2180 *
2181 * LOCKING:
2182 * Kernel thread context (may sleep)
2183 *
2184 * RETURNS:
2185 * 0 on success, -errno otherwise.
2186 */
2187int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2188{
2189 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2190 unsigned int devmask = 0, err_mask;
2191 u8 err;
2192
2193 DPRINTK("ENTER\n");
2194
3a39746a
TH
2195 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2196 classes[0] = ATA_DEV_NONE;
2197 goto out;
2198 }
2199
c2bd5804
TH
2200 /* determine if device 0/1 are present */
2201 if (ata_devchk(ap, 0))
2202 devmask |= (1 << 0);
2203 if (slave_possible && ata_devchk(ap, 1))
2204 devmask |= (1 << 1);
2205
c2bd5804
TH
2206 /* select device 0 again */
2207 ap->ops->dev_select(ap, 0);
2208
2209 /* issue bus reset */
2210 DPRINTK("about to softreset, devmask=%x\n", devmask);
2211 err_mask = ata_bus_softreset(ap, devmask);
2212 if (err_mask) {
2213 if (verbose)
2214 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2215 ap->id, err_mask);
2216 else
2217 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2218 err_mask);
2219 return -EIO;
2220 }
2221
2222 /* determine by signature whether we have ATA or ATAPI devices */
2223 classes[0] = ata_dev_try_classify(ap, 0, &err);
2224 if (slave_possible && err != 0x81)
2225 classes[1] = ata_dev_try_classify(ap, 1, &err);
2226
3a39746a 2227 out:
c2bd5804
TH
2228 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2229 return 0;
2230}
2231
2232/**
2233 * sata_std_hardreset - reset host port via SATA phy reset
2234 * @ap: port to reset
2235 * @verbose: fail verbosely
2236 * @class: resulting class of attached device
2237 *
2238 * SATA phy-reset host port using DET bits of SControl register.
2239 * This function is to be used as standard callback for
2240 * ata_drive_*_reset().
2241 *
2242 * LOCKING:
2243 * Kernel thread context (may sleep)
2244 *
2245 * RETURNS:
2246 * 0 on success, -errno otherwise.
2247 */
2248int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2249{
c2bd5804
TH
2250 DPRINTK("ENTER\n");
2251
2252 /* Issue phy wake/reset */
2253 scr_write_flush(ap, SCR_CONTROL, 0x301);
2254
2255 /*
2256 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2257 * 10.4.2 says at least 1 ms.
2258 */
2259 msleep(1);
2260
7a7921e8
TH
2261 /* Bring phy back */
2262 sata_phy_resume(ap);
c2bd5804 2263
c2bd5804
TH
2264 /* TODO: phy layer with polling, timeouts, etc. */
2265 if (!sata_dev_present(ap)) {
2266 *class = ATA_DEV_NONE;
2267 DPRINTK("EXIT, link offline\n");
2268 return 0;
2269 }
2270
2271 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2272 if (verbose)
2273 printk(KERN_ERR "ata%u: COMRESET failed "
2274 "(device not ready)\n", ap->id);
2275 else
2276 DPRINTK("EXIT, device not ready\n");
2277 return -EIO;
2278 }
2279
3a39746a
TH
2280 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2281
c2bd5804
TH
2282 *class = ata_dev_try_classify(ap, 0, NULL);
2283
2284 DPRINTK("EXIT, class=%u\n", *class);
2285 return 0;
2286}
2287
2288/**
2289 * ata_std_postreset - standard postreset callback
2290 * @ap: the target ata_port
2291 * @classes: classes of attached devices
2292 *
2293 * This function is invoked after a successful reset. Note that
2294 * the device might have been reset more than once using
2295 * different reset methods before postreset is invoked.
c2bd5804
TH
2296 *
2297 * This function is to be used as standard callback for
2298 * ata_drive_*_reset().
2299 *
2300 * LOCKING:
2301 * Kernel thread context (may sleep)
2302 */
2303void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2304{
2305 DPRINTK("ENTER\n");
2306
56497bd5 2307 /* set cable type if it isn't already set */
c2bd5804
TH
2308 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2309 ap->cbl = ATA_CBL_SATA;
2310
2311 /* print link status */
2312 if (ap->cbl == ATA_CBL_SATA)
2313 sata_print_link_status(ap);
2314
3a39746a
TH
2315 /* re-enable interrupts */
2316 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2317 ata_irq_on(ap);
c2bd5804
TH
2318
2319 /* is double-select really necessary? */
2320 if (classes[0] != ATA_DEV_NONE)
2321 ap->ops->dev_select(ap, 1);
2322 if (classes[1] != ATA_DEV_NONE)
2323 ap->ops->dev_select(ap, 0);
2324
3a39746a
TH
2325 /* bail out if no device is present */
2326 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2327 DPRINTK("EXIT, no device\n");
2328 return;
2329 }
2330
2331 /* set up device control */
2332 if (ap->ioaddr.ctl_addr) {
2333 if (ap->flags & ATA_FLAG_MMIO)
2334 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2335 else
2336 outb(ap->ctl, ap->ioaddr.ctl_addr);
2337 }
c2bd5804
TH
2338
2339 DPRINTK("EXIT\n");
2340}
2341
2342/**
2343 * ata_std_probe_reset - standard probe reset method
2344 * @ap: prot to perform probe-reset
2345 * @classes: resulting classes of attached devices
2346 *
2347 * The stock off-the-shelf ->probe_reset method.
2348 *
2349 * LOCKING:
2350 * Kernel thread context (may sleep)
2351 *
2352 * RETURNS:
2353 * 0 on success, -errno otherwise.
2354 */
2355int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2356{
2357 ata_reset_fn_t hardreset;
2358
2359 hardreset = NULL;
b911fc3a 2360 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
c2bd5804
TH
2361 hardreset = sata_std_hardreset;
2362
8a19ac89 2363 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2364 ata_std_softreset, hardreset,
c2bd5804
TH
2365 ata_std_postreset, classes);
2366}
2367
a62c0fc5
TH
2368static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2369 ata_postreset_fn_t postreset,
2370 unsigned int *classes)
2371{
2372 int i, rc;
2373
2374 for (i = 0; i < ATA_MAX_DEVICES; i++)
2375 classes[i] = ATA_DEV_UNKNOWN;
2376
2377 rc = reset(ap, 0, classes);
2378 if (rc)
2379 return rc;
2380
2381 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2382 * is complete and convert all ATA_DEV_UNKNOWN to
2383 * ATA_DEV_NONE.
2384 */
2385 for (i = 0; i < ATA_MAX_DEVICES; i++)
2386 if (classes[i] != ATA_DEV_UNKNOWN)
2387 break;
2388
2389 if (i < ATA_MAX_DEVICES)
2390 for (i = 0; i < ATA_MAX_DEVICES; i++)
2391 if (classes[i] == ATA_DEV_UNKNOWN)
2392 classes[i] = ATA_DEV_NONE;
2393
2394 if (postreset)
2395 postreset(ap, classes);
2396
2397 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2398}
2399
2400/**
2401 * ata_drive_probe_reset - Perform probe reset with given methods
2402 * @ap: port to reset
7944ea95 2403 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2404 * @softreset: softreset method (can be NULL)
2405 * @hardreset: hardreset method (can be NULL)
2406 * @postreset: postreset method (can be NULL)
2407 * @classes: resulting classes of attached devices
2408 *
2409 * Reset the specified port and classify attached devices using
2410 * given methods. This function prefers softreset but tries all
2411 * possible reset sequences to reset and classify devices. This
2412 * function is intended to be used for constructing ->probe_reset
2413 * callback by low level drivers.
2414 *
2415 * Reset methods should follow the following rules.
2416 *
2417 * - Return 0 on sucess, -errno on failure.
2418 * - If classification is supported, fill classes[] with
2419 * recognized class codes.
2420 * - If classification is not supported, leave classes[] alone.
2421 * - If verbose is non-zero, print error message on failure;
2422 * otherwise, shut up.
2423 *
2424 * LOCKING:
2425 * Kernel thread context (may sleep)
2426 *
2427 * RETURNS:
2428 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2429 * if classification fails, and any error code from reset
2430 * methods.
2431 */
7944ea95 2432int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2433 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2434 ata_postreset_fn_t postreset, unsigned int *classes)
2435{
2436 int rc = -EINVAL;
2437
7944ea95
TH
2438 if (probeinit)
2439 probeinit(ap);
2440
a62c0fc5
TH
2441 if (softreset) {
2442 rc = do_probe_reset(ap, softreset, postreset, classes);
2443 if (rc == 0)
2444 return 0;
2445 }
2446
2447 if (!hardreset)
2448 return rc;
2449
2450 rc = do_probe_reset(ap, hardreset, postreset, classes);
2451 if (rc == 0 || rc != -ENODEV)
2452 return rc;
2453
2454 if (softreset)
2455 rc = do_probe_reset(ap, softreset, postreset, classes);
2456
2457 return rc;
2458}
2459
623a3128
TH
2460/**
2461 * ata_dev_same_device - Determine whether new ID matches configured device
2462 * @ap: port on which the device to compare against resides
2463 * @dev: device to compare against
2464 * @new_class: class of the new device
2465 * @new_id: IDENTIFY page of the new device
2466 *
2467 * Compare @new_class and @new_id against @dev and determine
2468 * whether @dev is the device indicated by @new_class and
2469 * @new_id.
2470 *
2471 * LOCKING:
2472 * None.
2473 *
2474 * RETURNS:
2475 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2476 */
2477static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2478 unsigned int new_class, const u16 *new_id)
2479{
2480 const u16 *old_id = dev->id;
2481 unsigned char model[2][41], serial[2][21];
2482 u64 new_n_sectors;
2483
2484 if (dev->class != new_class) {
2485 printk(KERN_INFO
2486 "ata%u: dev %u class mismatch %d != %d\n",
2487 ap->id, dev->devno, dev->class, new_class);
2488 return 0;
2489 }
2490
2491 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2492 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2493 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2494 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2495 new_n_sectors = ata_id_n_sectors(new_id);
2496
2497 if (strcmp(model[0], model[1])) {
2498 printk(KERN_INFO
2499 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2500 ap->id, dev->devno, model[0], model[1]);
2501 return 0;
2502 }
2503
2504 if (strcmp(serial[0], serial[1])) {
2505 printk(KERN_INFO
2506 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2507 ap->id, dev->devno, serial[0], serial[1]);
2508 return 0;
2509 }
2510
2511 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2512 printk(KERN_INFO
2513 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2514 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2515 (unsigned long long)new_n_sectors);
2516 return 0;
2517 }
2518
2519 return 1;
2520}
2521
2522/**
2523 * ata_dev_revalidate - Revalidate ATA device
2524 * @ap: port on which the device to revalidate resides
2525 * @dev: device to revalidate
2526 * @post_reset: is this revalidation after reset?
2527 *
2528 * Re-read IDENTIFY page and make sure @dev is still attached to
2529 * the port.
2530 *
2531 * LOCKING:
2532 * Kernel thread context (may sleep)
2533 *
2534 * RETURNS:
2535 * 0 on success, negative errno otherwise
2536 */
2537int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2538 int post_reset)
2539{
2540 unsigned int class;
2541 u16 *id;
2542 int rc;
2543
2544 if (!ata_dev_present(dev))
2545 return -ENODEV;
2546
2547 class = dev->class;
2548 id = NULL;
2549
2550 /* allocate & read ID data */
2551 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2552 if (rc)
2553 goto fail;
2554
2555 /* is the device still there? */
2556 if (!ata_dev_same_device(ap, dev, class, id)) {
2557 rc = -ENODEV;
2558 goto fail;
2559 }
2560
2561 kfree(dev->id);
2562 dev->id = id;
2563
2564 /* configure device according to the new ID */
2565 return ata_dev_configure(ap, dev, 0);
2566
2567 fail:
2568 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2569 ap->id, dev->devno, rc);
2570 kfree(id);
2571 return rc;
2572}
2573
98ac62de 2574static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2575 "WDC AC11000H", NULL,
2576 "WDC AC22100H", NULL,
2577 "WDC AC32500H", NULL,
2578 "WDC AC33100H", NULL,
2579 "WDC AC31600H", NULL,
2580 "WDC AC32100H", "24.09P07",
2581 "WDC AC23200L", "21.10N21",
2582 "Compaq CRD-8241B", NULL,
2583 "CRD-8400B", NULL,
2584 "CRD-8480B", NULL,
2585 "CRD-8482B", NULL,
2586 "CRD-84", NULL,
2587 "SanDisk SDP3B", NULL,
2588 "SanDisk SDP3B-64", NULL,
2589 "SANYO CD-ROM CRD", NULL,
2590 "HITACHI CDR-8", NULL,
2e9edbf8 2591 "HITACHI CDR-8335", NULL,
f4b15fef 2592 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2593 "Toshiba CD-ROM XM-6202B", NULL,
2594 "TOSHIBA CD-ROM XM-1702BC", NULL,
2595 "CD-532E-A", NULL,
2596 "E-IDE CD-ROM CR-840", NULL,
2597 "CD-ROM Drive/F5A", NULL,
2598 "WPI CDD-820", NULL,
f4b15fef 2599 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2600 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2601 "SanDisk SDP3B-64", NULL,
2602 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2603 "_NEC DV5800A", NULL,
2604 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2605};
2e9edbf8 2606
f4b15fef
AC
2607static int ata_strim(char *s, size_t len)
2608{
2609 len = strnlen(s, len);
2610
2611 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2612 while ((len > 0) && (s[len - 1] == ' ')) {
2613 len--;
2614 s[len] = 0;
2615 }
2616 return len;
2617}
1da177e4 2618
057ace5e 2619static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2620{
f4b15fef
AC
2621 unsigned char model_num[40];
2622 unsigned char model_rev[16];
2623 unsigned int nlen, rlen;
1da177e4
LT
2624 int i;
2625
f4b15fef
AC
2626 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2627 sizeof(model_num));
2628 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2629 sizeof(model_rev));
2630 nlen = ata_strim(model_num, sizeof(model_num));
2631 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2632
f4b15fef
AC
2633 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2634 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2635 if (ata_dma_blacklist[i+1] == NULL)
2636 return 1;
2637 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2638 return 1;
2639 }
2640 }
1da177e4
LT
2641 return 0;
2642}
2643
a6d5a51c
TH
2644/**
2645 * ata_dev_xfermask - Compute supported xfermask of the given device
2646 * @ap: Port on which the device to compute xfermask for resides
2647 * @dev: Device to compute xfermask for
2648 *
acf356b1
TH
2649 * Compute supported xfermask of @dev and store it in
2650 * dev->*_mask. This function is responsible for applying all
2651 * known limits including host controller limits, device
2652 * blacklist, etc...
a6d5a51c 2653 *
600511e8
TH
2654 * FIXME: The current implementation limits all transfer modes to
2655 * the fastest of the lowested device on the port. This is not
05c8e0ac 2656 * required on most controllers.
600511e8 2657 *
a6d5a51c
TH
2658 * LOCKING:
2659 * None.
a6d5a51c 2660 */
acf356b1 2661static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
1da177e4 2662{
5444a6f4 2663 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2664 unsigned long xfer_mask;
2665 int i;
1da177e4 2666
a6d5a51c
TH
2667 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
2668 ap->udma_mask);
1da177e4 2669
5444a6f4 2670 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
2671 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2672 struct ata_device *d = &ap->device[i];
2673 if (!ata_dev_present(d))
2674 continue;
acf356b1
TH
2675 xfer_mask &= ata_pack_xfermask(d->pio_mask, d->mwdma_mask,
2676 d->udma_mask);
a6d5a51c
TH
2677 xfer_mask &= ata_id_xfermask(d->id);
2678 if (ata_dma_blacklisted(d))
2679 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
5444a6f4
AC
2680 /* Apply cable rule here. Don't apply it early because when
2681 we handle hot plug the cable type can itself change */
2682 if (ap->cbl == ATA_CBL_PATA40)
2683 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4
LT
2684 }
2685
a6d5a51c
TH
2686 if (ata_dma_blacklisted(dev))
2687 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2688 "disabling DMA\n", ap->id, dev->devno);
2689
5444a6f4
AC
2690 if (hs->flags & ATA_HOST_SIMPLEX) {
2691 if (hs->simplex_claimed)
2692 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2693 }
2694 if (ap->ops->mode_filter)
2695 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2696
acf356b1
TH
2697 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2698 &dev->udma_mask);
1da177e4
LT
2699}
2700
1da177e4
LT
2701/**
2702 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2703 * @ap: Port associated with device @dev
2704 * @dev: Device to which command will be sent
2705 *
780a87f7
JG
2706 * Issue SET FEATURES - XFER MODE command to device @dev
2707 * on port @ap.
2708 *
1da177e4 2709 * LOCKING:
0cba632b 2710 * PCI/etc. bus probe sem.
83206a29
TH
2711 *
2712 * RETURNS:
2713 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
2714 */
2715
83206a29
TH
2716static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2717 struct ata_device *dev)
1da177e4 2718{
a0123703 2719 struct ata_taskfile tf;
83206a29 2720 unsigned int err_mask;
1da177e4
LT
2721
2722 /* set up set-features taskfile */
2723 DPRINTK("set features - xfer mode\n");
2724
a0123703
TH
2725 ata_tf_init(ap, &tf, dev->devno);
2726 tf.command = ATA_CMD_SET_FEATURES;
2727 tf.feature = SETFEATURES_XFER;
2728 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2729 tf.protocol = ATA_PROT_NODATA;
2730 tf.nsect = dev->xfer_mode;
1da177e4 2731
83206a29 2732 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
1da177e4 2733
83206a29
TH
2734 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2735 return err_mask;
1da177e4
LT
2736}
2737
8bf62ece
AL
2738/**
2739 * ata_dev_init_params - Issue INIT DEV PARAMS command
2740 * @ap: Port associated with device @dev
2741 * @dev: Device to which command will be sent
2742 *
2743 * LOCKING:
6aff8f1f
TH
2744 * Kernel thread context (may sleep)
2745 *
2746 * RETURNS:
2747 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece
AL
2748 */
2749
6aff8f1f 2750static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
2751 struct ata_device *dev,
2752 u16 heads,
2753 u16 sectors)
8bf62ece 2754{
a0123703 2755 struct ata_taskfile tf;
6aff8f1f 2756 unsigned int err_mask;
8bf62ece
AL
2757
2758 /* Number of sectors per track 1-255. Number of heads 1-16 */
2759 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 2760 return AC_ERR_INVALID;
8bf62ece
AL
2761
2762 /* set up init dev params taskfile */
2763 DPRINTK("init dev params \n");
2764
a0123703
TH
2765 ata_tf_init(ap, &tf, dev->devno);
2766 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2767 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2768 tf.protocol = ATA_PROT_NODATA;
2769 tf.nsect = sectors;
2770 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 2771
6aff8f1f 2772 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
8bf62ece 2773
6aff8f1f
TH
2774 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2775 return err_mask;
8bf62ece
AL
2776}
2777
1da177e4 2778/**
0cba632b
JG
2779 * ata_sg_clean - Unmap DMA memory associated with command
2780 * @qc: Command containing DMA memory to be released
2781 *
2782 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
2783 *
2784 * LOCKING:
0cba632b 2785 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2786 */
2787
2788static void ata_sg_clean(struct ata_queued_cmd *qc)
2789{
2790 struct ata_port *ap = qc->ap;
cedc9a47 2791 struct scatterlist *sg = qc->__sg;
1da177e4 2792 int dir = qc->dma_dir;
cedc9a47 2793 void *pad_buf = NULL;
1da177e4 2794
a4631474
TH
2795 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2796 WARN_ON(sg == NULL);
1da177e4
LT
2797
2798 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 2799 WARN_ON(qc->n_elem > 1);
1da177e4 2800
2c13b7ce 2801 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 2802
cedc9a47
JG
2803 /* if we padded the buffer out to 32-bit bound, and data
2804 * xfer direction is from-device, we must copy from the
2805 * pad buffer back into the supplied buffer
2806 */
2807 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2808 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2809
2810 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 2811 if (qc->n_elem)
2f1f610b 2812 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
2813 /* restore last sg */
2814 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2815 if (pad_buf) {
2816 struct scatterlist *psg = &qc->pad_sgent;
2817 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2818 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 2819 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
2820 }
2821 } else {
2e242fa9 2822 if (qc->n_elem)
2f1f610b 2823 dma_unmap_single(ap->dev,
e1410f2d
JG
2824 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2825 dir);
cedc9a47
JG
2826 /* restore sg */
2827 sg->length += qc->pad_len;
2828 if (pad_buf)
2829 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2830 pad_buf, qc->pad_len);
2831 }
1da177e4
LT
2832
2833 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 2834 qc->__sg = NULL;
1da177e4
LT
2835}
2836
2837/**
2838 * ata_fill_sg - Fill PCI IDE PRD table
2839 * @qc: Metadata associated with taskfile to be transferred
2840 *
780a87f7
JG
2841 * Fill PCI IDE PRD (scatter-gather) table with segments
2842 * associated with the current disk command.
2843 *
1da177e4 2844 * LOCKING:
780a87f7 2845 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2846 *
2847 */
2848static void ata_fill_sg(struct ata_queued_cmd *qc)
2849{
1da177e4 2850 struct ata_port *ap = qc->ap;
cedc9a47
JG
2851 struct scatterlist *sg;
2852 unsigned int idx;
1da177e4 2853
a4631474 2854 WARN_ON(qc->__sg == NULL);
f131883e 2855 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
2856
2857 idx = 0;
cedc9a47 2858 ata_for_each_sg(sg, qc) {
1da177e4
LT
2859 u32 addr, offset;
2860 u32 sg_len, len;
2861
2862 /* determine if physical DMA addr spans 64K boundary.
2863 * Note h/w doesn't support 64-bit, so we unconditionally
2864 * truncate dma_addr_t to u32.
2865 */
2866 addr = (u32) sg_dma_address(sg);
2867 sg_len = sg_dma_len(sg);
2868
2869 while (sg_len) {
2870 offset = addr & 0xffff;
2871 len = sg_len;
2872 if ((offset + sg_len) > 0x10000)
2873 len = 0x10000 - offset;
2874
2875 ap->prd[idx].addr = cpu_to_le32(addr);
2876 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2877 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2878
2879 idx++;
2880 sg_len -= len;
2881 addr += len;
2882 }
2883 }
2884
2885 if (idx)
2886 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2887}
2888/**
2889 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2890 * @qc: Metadata associated with taskfile to check
2891 *
780a87f7
JG
2892 * Allow low-level driver to filter ATA PACKET commands, returning
2893 * a status indicating whether or not it is OK to use DMA for the
2894 * supplied PACKET command.
2895 *
1da177e4 2896 * LOCKING:
0cba632b
JG
2897 * spin_lock_irqsave(host_set lock)
2898 *
1da177e4
LT
2899 * RETURNS: 0 when ATAPI DMA can be used
2900 * nonzero otherwise
2901 */
2902int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2903{
2904 struct ata_port *ap = qc->ap;
2905 int rc = 0; /* Assume ATAPI DMA is OK by default */
2906
2907 if (ap->ops->check_atapi_dma)
2908 rc = ap->ops->check_atapi_dma(qc);
2909
2910 return rc;
2911}
2912/**
2913 * ata_qc_prep - Prepare taskfile for submission
2914 * @qc: Metadata associated with taskfile to be prepared
2915 *
780a87f7
JG
2916 * Prepare ATA taskfile for submission.
2917 *
1da177e4
LT
2918 * LOCKING:
2919 * spin_lock_irqsave(host_set lock)
2920 */
2921void ata_qc_prep(struct ata_queued_cmd *qc)
2922{
2923 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2924 return;
2925
2926 ata_fill_sg(qc);
2927}
2928
e46834cd
BK
2929void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
2930
0cba632b
JG
2931/**
2932 * ata_sg_init_one - Associate command with memory buffer
2933 * @qc: Command to be associated
2934 * @buf: Memory buffer
2935 * @buflen: Length of memory buffer, in bytes.
2936 *
2937 * Initialize the data-related elements of queued_cmd @qc
2938 * to point to a single memory buffer, @buf of byte length @buflen.
2939 *
2940 * LOCKING:
2941 * spin_lock_irqsave(host_set lock)
2942 */
2943
1da177e4
LT
2944void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2945{
2946 struct scatterlist *sg;
2947
2948 qc->flags |= ATA_QCFLAG_SINGLE;
2949
2950 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 2951 qc->__sg = &qc->sgent;
1da177e4 2952 qc->n_elem = 1;
cedc9a47 2953 qc->orig_n_elem = 1;
1da177e4
LT
2954 qc->buf_virt = buf;
2955
cedc9a47 2956 sg = qc->__sg;
f0612bbc 2957 sg_init_one(sg, buf, buflen);
1da177e4
LT
2958}
2959
0cba632b
JG
2960/**
2961 * ata_sg_init - Associate command with scatter-gather table.
2962 * @qc: Command to be associated
2963 * @sg: Scatter-gather table.
2964 * @n_elem: Number of elements in s/g table.
2965 *
2966 * Initialize the data-related elements of queued_cmd @qc
2967 * to point to a scatter-gather table @sg, containing @n_elem
2968 * elements.
2969 *
2970 * LOCKING:
2971 * spin_lock_irqsave(host_set lock)
2972 */
2973
1da177e4
LT
2974void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2975 unsigned int n_elem)
2976{
2977 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 2978 qc->__sg = sg;
1da177e4 2979 qc->n_elem = n_elem;
cedc9a47 2980 qc->orig_n_elem = n_elem;
1da177e4
LT
2981}
2982
2983/**
0cba632b
JG
2984 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2985 * @qc: Command with memory buffer to be mapped.
2986 *
2987 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
2988 *
2989 * LOCKING:
2990 * spin_lock_irqsave(host_set lock)
2991 *
2992 * RETURNS:
0cba632b 2993 * Zero on success, negative on error.
1da177e4
LT
2994 */
2995
2996static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2997{
2998 struct ata_port *ap = qc->ap;
2999 int dir = qc->dma_dir;
cedc9a47 3000 struct scatterlist *sg = qc->__sg;
1da177e4 3001 dma_addr_t dma_address;
2e242fa9 3002 int trim_sg = 0;
1da177e4 3003
cedc9a47
JG
3004 /* we must lengthen transfers to end on a 32-bit boundary */
3005 qc->pad_len = sg->length & 3;
3006 if (qc->pad_len) {
3007 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3008 struct scatterlist *psg = &qc->pad_sgent;
3009
a4631474 3010 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3011
3012 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3013
3014 if (qc->tf.flags & ATA_TFLAG_WRITE)
3015 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3016 qc->pad_len);
3017
3018 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3019 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3020 /* trim sg */
3021 sg->length -= qc->pad_len;
2e242fa9
TH
3022 if (sg->length == 0)
3023 trim_sg = 1;
cedc9a47
JG
3024
3025 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3026 sg->length, qc->pad_len);
3027 }
3028
2e242fa9
TH
3029 if (trim_sg) {
3030 qc->n_elem--;
e1410f2d
JG
3031 goto skip_map;
3032 }
3033
2f1f610b 3034 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3035 sg->length, dir);
537a95d9
TH
3036 if (dma_mapping_error(dma_address)) {
3037 /* restore sg */
3038 sg->length += qc->pad_len;
1da177e4 3039 return -1;
537a95d9 3040 }
1da177e4
LT
3041
3042 sg_dma_address(sg) = dma_address;
32529e01 3043 sg_dma_len(sg) = sg->length;
1da177e4 3044
2e242fa9 3045skip_map:
1da177e4
LT
3046 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3047 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3048
3049 return 0;
3050}
3051
3052/**
0cba632b
JG
3053 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3054 * @qc: Command with scatter-gather table to be mapped.
3055 *
3056 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3057 *
3058 * LOCKING:
3059 * spin_lock_irqsave(host_set lock)
3060 *
3061 * RETURNS:
0cba632b 3062 * Zero on success, negative on error.
1da177e4
LT
3063 *
3064 */
3065
3066static int ata_sg_setup(struct ata_queued_cmd *qc)
3067{
3068 struct ata_port *ap = qc->ap;
cedc9a47
JG
3069 struct scatterlist *sg = qc->__sg;
3070 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3071 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3072
3073 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3074 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3075
cedc9a47
JG
3076 /* we must lengthen transfers to end on a 32-bit boundary */
3077 qc->pad_len = lsg->length & 3;
3078 if (qc->pad_len) {
3079 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3080 struct scatterlist *psg = &qc->pad_sgent;
3081 unsigned int offset;
3082
a4631474 3083 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3084
3085 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3086
3087 /*
3088 * psg->page/offset are used to copy to-be-written
3089 * data in this function or read data in ata_sg_clean.
3090 */
3091 offset = lsg->offset + lsg->length - qc->pad_len;
3092 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3093 psg->offset = offset_in_page(offset);
3094
3095 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3096 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3097 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3098 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3099 }
3100
3101 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3102 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3103 /* trim last sg */
3104 lsg->length -= qc->pad_len;
e1410f2d
JG
3105 if (lsg->length == 0)
3106 trim_sg = 1;
cedc9a47
JG
3107
3108 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3109 qc->n_elem - 1, lsg->length, qc->pad_len);
3110 }
3111
e1410f2d
JG
3112 pre_n_elem = qc->n_elem;
3113 if (trim_sg && pre_n_elem)
3114 pre_n_elem--;
3115
3116 if (!pre_n_elem) {
3117 n_elem = 0;
3118 goto skip_map;
3119 }
3120
1da177e4 3121 dir = qc->dma_dir;
2f1f610b 3122 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3123 if (n_elem < 1) {
3124 /* restore last sg */
3125 lsg->length += qc->pad_len;
1da177e4 3126 return -1;
537a95d9 3127 }
1da177e4
LT
3128
3129 DPRINTK("%d sg elements mapped\n", n_elem);
3130
e1410f2d 3131skip_map:
1da177e4
LT
3132 qc->n_elem = n_elem;
3133
3134 return 0;
3135}
3136
40e8c82c
TH
3137/**
3138 * ata_poll_qc_complete - turn irq back on and finish qc
3139 * @qc: Command to complete
8e8b77dd 3140 * @err_mask: ATA status register content
40e8c82c
TH
3141 *
3142 * LOCKING:
3143 * None. (grabs host lock)
3144 */
3145
a22e2eb0 3146void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3147{
3148 struct ata_port *ap = qc->ap;
b8f6153e 3149 unsigned long flags;
40e8c82c 3150
b8f6153e 3151 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
3152 ap->flags &= ~ATA_FLAG_NOINTR;
3153 ata_irq_on(ap);
a22e2eb0 3154 ata_qc_complete(qc);
b8f6153e 3155 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3156}
3157
1da177e4 3158/**
c893a3ae 3159 * ata_pio_poll - poll using PIO, depending on current state
6f0ef4fa 3160 * @ap: the target ata_port
1da177e4
LT
3161 *
3162 * LOCKING:
0cba632b 3163 * None. (executing in kernel thread context)
1da177e4
LT
3164 *
3165 * RETURNS:
6f0ef4fa 3166 * timeout value to use
1da177e4
LT
3167 */
3168
3169static unsigned long ata_pio_poll(struct ata_port *ap)
3170{
c14b8331 3171 struct ata_queued_cmd *qc;
1da177e4 3172 u8 status;
14be71f4
AL
3173 unsigned int poll_state = HSM_ST_UNKNOWN;
3174 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4 3175
c14b8331 3176 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3177 WARN_ON(qc == NULL);
c14b8331 3178
14be71f4
AL
3179 switch (ap->hsm_task_state) {
3180 case HSM_ST:
3181 case HSM_ST_POLL:
3182 poll_state = HSM_ST_POLL;
3183 reg_state = HSM_ST;
1da177e4 3184 break;
14be71f4
AL
3185 case HSM_ST_LAST:
3186 case HSM_ST_LAST_POLL:
3187 poll_state = HSM_ST_LAST_POLL;
3188 reg_state = HSM_ST_LAST;
1da177e4
LT
3189 break;
3190 default:
3191 BUG();
3192 break;
3193 }
3194
3195 status = ata_chk_status(ap);
3196 if (status & ATA_BUSY) {
3197 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 3198 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 3199 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
3200 return 0;
3201 }
14be71f4 3202 ap->hsm_task_state = poll_state;
1da177e4
LT
3203 return ATA_SHORT_PAUSE;
3204 }
3205
14be71f4 3206 ap->hsm_task_state = reg_state;
1da177e4
LT
3207 return 0;
3208}
3209
3210/**
6f0ef4fa
RD
3211 * ata_pio_complete - check if drive is busy or idle
3212 * @ap: the target ata_port
1da177e4
LT
3213 *
3214 * LOCKING:
0cba632b 3215 * None. (executing in kernel thread context)
7fb6ec28
JG
3216 *
3217 * RETURNS:
3218 * Non-zero if qc completed, zero otherwise.
1da177e4
LT
3219 */
3220
7fb6ec28 3221static int ata_pio_complete (struct ata_port *ap)
1da177e4
LT
3222{
3223 struct ata_queued_cmd *qc;
3224 u8 drv_stat;
3225
3226 /*
31433ea3
AC
3227 * This is purely heuristic. This is a fast path. Sometimes when
3228 * we enter, BSY will be cleared in a chk-status or two. If not,
3229 * the drive is probably seeking or something. Snooze for a couple
3230 * msecs, then chk-status again. If still busy, fall back to
14be71f4 3231 * HSM_ST_POLL state.
1da177e4 3232 */
fe79e683
AL
3233 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3234 if (drv_stat & ATA_BUSY) {
1da177e4 3235 msleep(2);
fe79e683
AL
3236 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3237 if (drv_stat & ATA_BUSY) {
14be71f4 3238 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 3239 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 3240 return 0;
1da177e4
LT
3241 }
3242 }
3243
c14b8331 3244 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3245 WARN_ON(qc == NULL);
c14b8331 3246
1da177e4
LT
3247 drv_stat = ata_wait_idle(ap);
3248 if (!ata_ok(drv_stat)) {
1c848984 3249 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3250 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3251 return 0;
1da177e4
LT
3252 }
3253
14be71f4 3254 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3255
a4631474 3256 WARN_ON(qc->err_mask);
a22e2eb0 3257 ata_poll_qc_complete(qc);
7fb6ec28
JG
3258
3259 /* another command may start at this point */
3260
3261 return 1;
1da177e4
LT
3262}
3263
0baab86b
EF
3264
3265/**
c893a3ae 3266 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3267 * @buf: Buffer to swap
3268 * @buf_words: Number of 16-bit words in buffer.
3269 *
3270 * Swap halves of 16-bit words if needed to convert from
3271 * little-endian byte order to native cpu byte order, or
3272 * vice-versa.
3273 *
3274 * LOCKING:
6f0ef4fa 3275 * Inherited from caller.
0baab86b 3276 */
1da177e4
LT
3277void swap_buf_le16(u16 *buf, unsigned int buf_words)
3278{
3279#ifdef __BIG_ENDIAN
3280 unsigned int i;
3281
3282 for (i = 0; i < buf_words; i++)
3283 buf[i] = le16_to_cpu(buf[i]);
3284#endif /* __BIG_ENDIAN */
3285}
3286
6ae4cfb5
AL
3287/**
3288 * ata_mmio_data_xfer - Transfer data by MMIO
3289 * @ap: port to read/write
3290 * @buf: data buffer
3291 * @buflen: buffer length
344babaa 3292 * @write_data: read/write
6ae4cfb5
AL
3293 *
3294 * Transfer data from/to the device data register by MMIO.
3295 *
3296 * LOCKING:
3297 * Inherited from caller.
6ae4cfb5
AL
3298 */
3299
1da177e4
LT
3300static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3301 unsigned int buflen, int write_data)
3302{
3303 unsigned int i;
3304 unsigned int words = buflen >> 1;
3305 u16 *buf16 = (u16 *) buf;
3306 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3307
6ae4cfb5 3308 /* Transfer multiple of 2 bytes */
1da177e4
LT
3309 if (write_data) {
3310 for (i = 0; i < words; i++)
3311 writew(le16_to_cpu(buf16[i]), mmio);
3312 } else {
3313 for (i = 0; i < words; i++)
3314 buf16[i] = cpu_to_le16(readw(mmio));
3315 }
6ae4cfb5
AL
3316
3317 /* Transfer trailing 1 byte, if any. */
3318 if (unlikely(buflen & 0x01)) {
3319 u16 align_buf[1] = { 0 };
3320 unsigned char *trailing_buf = buf + buflen - 1;
3321
3322 if (write_data) {
3323 memcpy(align_buf, trailing_buf, 1);
3324 writew(le16_to_cpu(align_buf[0]), mmio);
3325 } else {
3326 align_buf[0] = cpu_to_le16(readw(mmio));
3327 memcpy(trailing_buf, align_buf, 1);
3328 }
3329 }
1da177e4
LT
3330}
3331
6ae4cfb5
AL
3332/**
3333 * ata_pio_data_xfer - Transfer data by PIO
3334 * @ap: port to read/write
3335 * @buf: data buffer
3336 * @buflen: buffer length
344babaa 3337 * @write_data: read/write
6ae4cfb5
AL
3338 *
3339 * Transfer data from/to the device data register by PIO.
3340 *
3341 * LOCKING:
3342 * Inherited from caller.
6ae4cfb5
AL
3343 */
3344
1da177e4
LT
3345static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3346 unsigned int buflen, int write_data)
3347{
6ae4cfb5 3348 unsigned int words = buflen >> 1;
1da177e4 3349
6ae4cfb5 3350 /* Transfer multiple of 2 bytes */
1da177e4 3351 if (write_data)
6ae4cfb5 3352 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3353 else
6ae4cfb5
AL
3354 insw(ap->ioaddr.data_addr, buf, words);
3355
3356 /* Transfer trailing 1 byte, if any. */
3357 if (unlikely(buflen & 0x01)) {
3358 u16 align_buf[1] = { 0 };
3359 unsigned char *trailing_buf = buf + buflen - 1;
3360
3361 if (write_data) {
3362 memcpy(align_buf, trailing_buf, 1);
3363 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3364 } else {
3365 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3366 memcpy(trailing_buf, align_buf, 1);
3367 }
3368 }
1da177e4
LT
3369}
3370
6ae4cfb5
AL
3371/**
3372 * ata_data_xfer - Transfer data from/to the data register.
3373 * @ap: port to read/write
3374 * @buf: data buffer
3375 * @buflen: buffer length
3376 * @do_write: read/write
3377 *
3378 * Transfer data from/to the device data register.
3379 *
3380 * LOCKING:
3381 * Inherited from caller.
6ae4cfb5
AL
3382 */
3383
1da177e4
LT
3384static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3385 unsigned int buflen, int do_write)
3386{
a1bd9e68
AC
3387 /* Make the crap hardware pay the costs not the good stuff */
3388 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3389 unsigned long flags;
3390 local_irq_save(flags);
3391 if (ap->flags & ATA_FLAG_MMIO)
3392 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3393 else
3394 ata_pio_data_xfer(ap, buf, buflen, do_write);
3395 local_irq_restore(flags);
3396 } else {
3397 if (ap->flags & ATA_FLAG_MMIO)
3398 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3399 else
3400 ata_pio_data_xfer(ap, buf, buflen, do_write);
3401 }
1da177e4
LT
3402}
3403
6ae4cfb5
AL
3404/**
3405 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3406 * @qc: Command on going
3407 *
3408 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3409 *
3410 * LOCKING:
3411 * Inherited from caller.
3412 */
3413
1da177e4
LT
3414static void ata_pio_sector(struct ata_queued_cmd *qc)
3415{
3416 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3417 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3418 struct ata_port *ap = qc->ap;
3419 struct page *page;
3420 unsigned int offset;
3421 unsigned char *buf;
3422
3423 if (qc->cursect == (qc->nsect - 1))
14be71f4 3424 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3425
3426 page = sg[qc->cursg].page;
3427 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3428
3429 /* get the current page and offset */
3430 page = nth_page(page, (offset >> PAGE_SHIFT));
3431 offset %= PAGE_SIZE;
3432
3433 buf = kmap(page) + offset;
3434
3435 qc->cursect++;
3436 qc->cursg_ofs++;
3437
32529e01 3438 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3439 qc->cursg++;
3440 qc->cursg_ofs = 0;
3441 }
3442
3443 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3444
3445 /* do the actual data transfer */
3446 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3447 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3448
3449 kunmap(page);
3450}
3451
6ae4cfb5
AL
3452/**
3453 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3454 * @qc: Command on going
3455 * @bytes: number of bytes
3456 *
3457 * Transfer Transfer data from/to the ATAPI device.
3458 *
3459 * LOCKING:
3460 * Inherited from caller.
3461 *
3462 */
3463
1da177e4
LT
3464static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3465{
3466 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3467 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3468 struct ata_port *ap = qc->ap;
3469 struct page *page;
3470 unsigned char *buf;
3471 unsigned int offset, count;
3472
563a6e1f 3473 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3474 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3475
3476next_sg:
563a6e1f 3477 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3478 /*
563a6e1f
AL
3479 * The end of qc->sg is reached and the device expects
3480 * more data to transfer. In order not to overrun qc->sg
3481 * and fulfill length specified in the byte count register,
3482 * - for read case, discard trailing data from the device
3483 * - for write case, padding zero data to the device
3484 */
3485 u16 pad_buf[1] = { 0 };
3486 unsigned int words = bytes >> 1;
3487 unsigned int i;
3488
3489 if (words) /* warning if bytes > 1 */
7fb6ec28 3490 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3491 ap->id, bytes);
3492
3493 for (i = 0; i < words; i++)
3494 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3495
14be71f4 3496 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3497 return;
3498 }
3499
cedc9a47 3500 sg = &qc->__sg[qc->cursg];
1da177e4 3501
1da177e4
LT
3502 page = sg->page;
3503 offset = sg->offset + qc->cursg_ofs;
3504
3505 /* get the current page and offset */
3506 page = nth_page(page, (offset >> PAGE_SHIFT));
3507 offset %= PAGE_SIZE;
3508
6952df03 3509 /* don't overrun current sg */
32529e01 3510 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3511
3512 /* don't cross page boundaries */
3513 count = min(count, (unsigned int)PAGE_SIZE - offset);
3514
3515 buf = kmap(page) + offset;
3516
3517 bytes -= count;
3518 qc->curbytes += count;
3519 qc->cursg_ofs += count;
3520
32529e01 3521 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3522 qc->cursg++;
3523 qc->cursg_ofs = 0;
3524 }
3525
3526 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3527
3528 /* do the actual data transfer */
3529 ata_data_xfer(ap, buf, count, do_write);
3530
3531 kunmap(page);
3532
563a6e1f 3533 if (bytes)
1da177e4 3534 goto next_sg;
1da177e4
LT
3535}
3536
6ae4cfb5
AL
3537/**
3538 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3539 * @qc: Command on going
3540 *
3541 * Transfer Transfer data from/to the ATAPI device.
3542 *
3543 * LOCKING:
3544 * Inherited from caller.
6ae4cfb5
AL
3545 */
3546
1da177e4
LT
3547static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3548{
3549 struct ata_port *ap = qc->ap;
3550 struct ata_device *dev = qc->dev;
3551 unsigned int ireason, bc_lo, bc_hi, bytes;
3552 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3553
3554 ap->ops->tf_read(ap, &qc->tf);
3555 ireason = qc->tf.nsect;
3556 bc_lo = qc->tf.lbam;
3557 bc_hi = qc->tf.lbah;
3558 bytes = (bc_hi << 8) | bc_lo;
3559
3560 /* shall be cleared to zero, indicating xfer of data */
3561 if (ireason & (1 << 0))
3562 goto err_out;
3563
3564 /* make sure transfer direction matches expected */
3565 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3566 if (do_write != i_write)
3567 goto err_out;
3568
3569 __atapi_pio_bytes(qc, bytes);
3570
3571 return;
3572
3573err_out:
3574 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3575 ap->id, dev->devno);
11a56d24 3576 qc->err_mask |= AC_ERR_HSM;
14be71f4 3577 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3578}
3579
3580/**
6f0ef4fa
RD
3581 * ata_pio_block - start PIO on a block
3582 * @ap: the target ata_port
1da177e4
LT
3583 *
3584 * LOCKING:
0cba632b 3585 * None. (executing in kernel thread context)
1da177e4
LT
3586 */
3587
3588static void ata_pio_block(struct ata_port *ap)
3589{
3590 struct ata_queued_cmd *qc;
3591 u8 status;
3592
3593 /*
6f0ef4fa 3594 * This is purely heuristic. This is a fast path.
1da177e4
LT
3595 * Sometimes when we enter, BSY will be cleared in
3596 * a chk-status or two. If not, the drive is probably seeking
3597 * or something. Snooze for a couple msecs, then
3598 * chk-status again. If still busy, fall back to
14be71f4 3599 * HSM_ST_POLL state.
1da177e4
LT
3600 */
3601 status = ata_busy_wait(ap, ATA_BUSY, 5);
3602 if (status & ATA_BUSY) {
3603 msleep(2);
3604 status = ata_busy_wait(ap, ATA_BUSY, 10);
3605 if (status & ATA_BUSY) {
14be71f4 3606 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3607 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3608 return;
3609 }
3610 }
3611
3612 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3613 WARN_ON(qc == NULL);
1da177e4 3614
fe79e683
AL
3615 /* check error */
3616 if (status & (ATA_ERR | ATA_DF)) {
3617 qc->err_mask |= AC_ERR_DEV;
3618 ap->hsm_task_state = HSM_ST_ERR;
3619 return;
3620 }
3621
3622 /* transfer data if any */
1da177e4 3623 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3624 /* DRQ=0 means no more data to transfer */
1da177e4 3625 if ((status & ATA_DRQ) == 0) {
14be71f4 3626 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3627 return;
3628 }
3629
3630 atapi_pio_bytes(qc);
3631 } else {
3632 /* handle BSY=0, DRQ=0 as error */
3633 if ((status & ATA_DRQ) == 0) {
11a56d24 3634 qc->err_mask |= AC_ERR_HSM;
14be71f4 3635 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3636 return;
3637 }
3638
3639 ata_pio_sector(qc);
3640 }
3641}
3642
3643static void ata_pio_error(struct ata_port *ap)
3644{
3645 struct ata_queued_cmd *qc;
a7dac447 3646
1da177e4 3647 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3648 WARN_ON(qc == NULL);
1da177e4 3649
0565c26d
AL
3650 if (qc->tf.command != ATA_CMD_PACKET)
3651 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3652
2e9edbf8 3653 /* make sure qc->err_mask is available to
1c848984
AL
3654 * know what's wrong and recover
3655 */
a4631474 3656 WARN_ON(qc->err_mask == 0);
1c848984 3657
14be71f4 3658 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3659
a22e2eb0 3660 ata_poll_qc_complete(qc);
1da177e4
LT
3661}
3662
3663static void ata_pio_task(void *_data)
3664{
3665 struct ata_port *ap = _data;
7fb6ec28
JG
3666 unsigned long timeout;
3667 int qc_completed;
3668
3669fsm_start:
3670 timeout = 0;
3671 qc_completed = 0;
1da177e4 3672
14be71f4
AL
3673 switch (ap->hsm_task_state) {
3674 case HSM_ST_IDLE:
1da177e4
LT
3675 return;
3676
14be71f4 3677 case HSM_ST:
1da177e4
LT
3678 ata_pio_block(ap);
3679 break;
3680
14be71f4 3681 case HSM_ST_LAST:
7fb6ec28 3682 qc_completed = ata_pio_complete(ap);
1da177e4
LT
3683 break;
3684
14be71f4
AL
3685 case HSM_ST_POLL:
3686 case HSM_ST_LAST_POLL:
1da177e4
LT
3687 timeout = ata_pio_poll(ap);
3688 break;
3689
14be71f4
AL
3690 case HSM_ST_TMOUT:
3691 case HSM_ST_ERR:
1da177e4
LT
3692 ata_pio_error(ap);
3693 return;
3694 }
3695
3696 if (timeout)
8061f5f0 3697 ata_port_queue_task(ap, ata_pio_task, ap, timeout);
7fb6ec28
JG
3698 else if (!qc_completed)
3699 goto fsm_start;
1da177e4
LT
3700}
3701
8061f5f0
TH
3702/**
3703 * atapi_packet_task - Write CDB bytes to hardware
3704 * @_data: Port to which ATAPI device is attached.
3705 *
3706 * When device has indicated its readiness to accept
3707 * a CDB, this function is called. Send the CDB.
3708 * If DMA is to be performed, exit immediately.
3709 * Otherwise, we are in polling mode, so poll
3710 * status under operation succeeds or fails.
3711 *
3712 * LOCKING:
3713 * Kernel thread context (may sleep)
3714 */
3715
3716static void atapi_packet_task(void *_data)
3717{
3718 struct ata_port *ap = _data;
3719 struct ata_queued_cmd *qc;
3720 u8 status;
3721
3722 qc = ata_qc_from_tag(ap, ap->active_tag);
3723 WARN_ON(qc == NULL);
3724 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3725
3726 /* sleep-wait for BSY to clear */
3727 DPRINTK("busy wait\n");
3728 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3729 qc->err_mask |= AC_ERR_TIMEOUT;
3730 goto err_out;
3731 }
3732
3733 /* make sure DRQ is set */
3734 status = ata_chk_status(ap);
3735 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3736 qc->err_mask |= AC_ERR_HSM;
3737 goto err_out;
3738 }
3739
3740 /* send SCSI cdb */
3741 DPRINTK("send cdb\n");
3742 WARN_ON(qc->dev->cdb_len < 12);
3743
3744 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3745 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3746 unsigned long flags;
3747
3748 /* Once we're done issuing command and kicking bmdma,
3749 * irq handler takes over. To not lose irq, we need
3750 * to clear NOINTR flag before sending cdb, but
3751 * interrupt handler shouldn't be invoked before we're
3752 * finished. Hence, the following locking.
3753 */
3754 spin_lock_irqsave(&ap->host_set->lock, flags);
3755 ap->flags &= ~ATA_FLAG_NOINTR;
3756 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3757 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3758 ap->ops->bmdma_start(qc); /* initiate bmdma */
3759 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3760 } else {
3761 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3762
3763 /* PIO commands are handled by polling */
3764 ap->hsm_task_state = HSM_ST;
3765 ata_port_queue_task(ap, ata_pio_task, ap, 0);
3766 }
3767
3768 return;
3769
3770err_out:
3771 ata_poll_qc_complete(qc);
3772}
3773
1da177e4
LT
3774/**
3775 * ata_qc_timeout - Handle timeout of queued command
3776 * @qc: Command that timed out
3777 *
3778 * Some part of the kernel (currently, only the SCSI layer)
3779 * has noticed that the active command on port @ap has not
3780 * completed after a specified length of time. Handle this
3781 * condition by disabling DMA (if necessary) and completing
3782 * transactions, with error if necessary.
3783 *
3784 * This also handles the case of the "lost interrupt", where
3785 * for some reason (possibly hardware bug, possibly driver bug)
3786 * an interrupt was not delivered to the driver, even though the
3787 * transaction completed successfully.
3788 *
3789 * LOCKING:
0cba632b 3790 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
3791 */
3792
3793static void ata_qc_timeout(struct ata_queued_cmd *qc)
3794{
3795 struct ata_port *ap = qc->ap;
b8f6153e 3796 struct ata_host_set *host_set = ap->host_set;
1da177e4 3797 u8 host_stat = 0, drv_stat;
b8f6153e 3798 unsigned long flags;
1da177e4
LT
3799
3800 DPRINTK("ENTER\n");
3801
c18d06f8
TH
3802 ap->hsm_task_state = HSM_ST_IDLE;
3803
b8f6153e
JG
3804 spin_lock_irqsave(&host_set->lock, flags);
3805
1da177e4
LT
3806 switch (qc->tf.protocol) {
3807
3808 case ATA_PROT_DMA:
3809 case ATA_PROT_ATAPI_DMA:
3810 host_stat = ap->ops->bmdma_status(ap);
3811
3812 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3813 ap->ops->bmdma_stop(qc);
1da177e4
LT
3814
3815 /* fall through */
3816
3817 default:
3818 ata_altstatus(ap);
3819 drv_stat = ata_chk_status(ap);
3820
3821 /* ack bmdma irq events */
3822 ap->ops->irq_clear(ap);
3823
3824 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3825 ap->id, qc->tf.command, drv_stat, host_stat);
3826
3827 /* complete taskfile transaction */
a22e2eb0 3828 qc->err_mask |= ac_err_mask(drv_stat);
1da177e4
LT
3829 break;
3830 }
b8f6153e
JG
3831
3832 spin_unlock_irqrestore(&host_set->lock, flags);
3833
a72ec4ce
TH
3834 ata_eh_qc_complete(qc);
3835
1da177e4
LT
3836 DPRINTK("EXIT\n");
3837}
3838
3839/**
3840 * ata_eng_timeout - Handle timeout of queued command
3841 * @ap: Port on which timed-out command is active
3842 *
3843 * Some part of the kernel (currently, only the SCSI layer)
3844 * has noticed that the active command on port @ap has not
3845 * completed after a specified length of time. Handle this
3846 * condition by disabling DMA (if necessary) and completing
3847 * transactions, with error if necessary.
3848 *
3849 * This also handles the case of the "lost interrupt", where
3850 * for some reason (possibly hardware bug, possibly driver bug)
3851 * an interrupt was not delivered to the driver, even though the
3852 * transaction completed successfully.
3853 *
3854 * LOCKING:
3855 * Inherited from SCSI layer (none, can sleep)
3856 */
3857
3858void ata_eng_timeout(struct ata_port *ap)
3859{
1da177e4
LT
3860 DPRINTK("ENTER\n");
3861
f6379020 3862 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
1da177e4 3863
1da177e4
LT
3864 DPRINTK("EXIT\n");
3865}
3866
3867/**
3868 * ata_qc_new - Request an available ATA command, for queueing
3869 * @ap: Port associated with device @dev
3870 * @dev: Device from whom we request an available command structure
3871 *
3872 * LOCKING:
0cba632b 3873 * None.
1da177e4
LT
3874 */
3875
3876static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3877{
3878 struct ata_queued_cmd *qc = NULL;
3879 unsigned int i;
3880
3881 for (i = 0; i < ATA_MAX_QUEUE; i++)
3882 if (!test_and_set_bit(i, &ap->qactive)) {
3883 qc = ata_qc_from_tag(ap, i);
3884 break;
3885 }
3886
3887 if (qc)
3888 qc->tag = i;
3889
3890 return qc;
3891}
3892
3893/**
3894 * ata_qc_new_init - Request an available ATA command, and initialize it
3895 * @ap: Port associated with device @dev
3896 * @dev: Device from whom we request an available command structure
3897 *
3898 * LOCKING:
0cba632b 3899 * None.
1da177e4
LT
3900 */
3901
3902struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3903 struct ata_device *dev)
3904{
3905 struct ata_queued_cmd *qc;
3906
3907 qc = ata_qc_new(ap);
3908 if (qc) {
1da177e4
LT
3909 qc->scsicmd = NULL;
3910 qc->ap = ap;
3911 qc->dev = dev;
1da177e4 3912
2c13b7ce 3913 ata_qc_reinit(qc);
1da177e4
LT
3914 }
3915
3916 return qc;
3917}
3918
1da177e4
LT
3919/**
3920 * ata_qc_free - free unused ata_queued_cmd
3921 * @qc: Command to complete
3922 *
3923 * Designed to free unused ata_queued_cmd object
3924 * in case something prevents using it.
3925 *
3926 * LOCKING:
0cba632b 3927 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3928 */
3929void ata_qc_free(struct ata_queued_cmd *qc)
3930{
4ba946e9
TH
3931 struct ata_port *ap = qc->ap;
3932 unsigned int tag;
3933
a4631474 3934 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 3935
4ba946e9
TH
3936 qc->flags = 0;
3937 tag = qc->tag;
3938 if (likely(ata_tag_valid(tag))) {
3939 if (tag == ap->active_tag)
3940 ap->active_tag = ATA_TAG_POISON;
3941 qc->tag = ATA_TAG_POISON;
3942 clear_bit(tag, &ap->qactive);
3943 }
1da177e4
LT
3944}
3945
76014427 3946void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 3947{
a4631474
TH
3948 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3949 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
3950
3951 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3952 ata_sg_clean(qc);
3953
3f3791d3
AL
3954 /* atapi: mark qc as inactive to prevent the interrupt handler
3955 * from completing the command twice later, before the error handler
3956 * is called. (when rc != 0 and atapi request sense is needed)
3957 */
3958 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3959
1da177e4 3960 /* call completion callback */
77853bf2 3961 qc->complete_fn(qc);
1da177e4
LT
3962}
3963
3964static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3965{
3966 struct ata_port *ap = qc->ap;
3967
3968 switch (qc->tf.protocol) {
3969 case ATA_PROT_DMA:
3970 case ATA_PROT_ATAPI_DMA:
3971 return 1;
3972
3973 case ATA_PROT_ATAPI:
3974 case ATA_PROT_PIO:
1da177e4
LT
3975 if (ap->flags & ATA_FLAG_PIO_DMA)
3976 return 1;
3977
3978 /* fall through */
3979
3980 default:
3981 return 0;
3982 }
3983
3984 /* never reached */
3985}
3986
3987/**
3988 * ata_qc_issue - issue taskfile to device
3989 * @qc: command to issue to device
3990 *
3991 * Prepare an ATA command to submission to device.
3992 * This includes mapping the data into a DMA-able
3993 * area, filling in the S/G table, and finally
3994 * writing the taskfile to hardware, starting the command.
3995 *
3996 * LOCKING:
3997 * spin_lock_irqsave(host_set lock)
1da177e4 3998 */
8e0e694a 3999void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4000{
4001 struct ata_port *ap = qc->ap;
4002
e4a70e76
TH
4003 qc->ap->active_tag = qc->tag;
4004 qc->flags |= ATA_QCFLAG_ACTIVE;
4005
1da177e4
LT
4006 if (ata_should_dma_map(qc)) {
4007 if (qc->flags & ATA_QCFLAG_SG) {
4008 if (ata_sg_setup(qc))
8e436af9 4009 goto sg_err;
1da177e4
LT
4010 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4011 if (ata_sg_setup_one(qc))
8e436af9 4012 goto sg_err;
1da177e4
LT
4013 }
4014 } else {
4015 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4016 }
4017
4018 ap->ops->qc_prep(qc);
4019
8e0e694a
TH
4020 qc->err_mask |= ap->ops->qc_issue(qc);
4021 if (unlikely(qc->err_mask))
4022 goto err;
4023 return;
1da177e4 4024
8e436af9
TH
4025sg_err:
4026 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4027 qc->err_mask |= AC_ERR_SYSTEM;
4028err:
4029 ata_qc_complete(qc);
1da177e4
LT
4030}
4031
4032/**
4033 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4034 * @qc: command to issue to device
4035 *
4036 * Using various libata functions and hooks, this function
4037 * starts an ATA command. ATA commands are grouped into
4038 * classes called "protocols", and issuing each type of protocol
4039 * is slightly different.
4040 *
0baab86b
EF
4041 * May be used as the qc_issue() entry in ata_port_operations.
4042 *
1da177e4
LT
4043 * LOCKING:
4044 * spin_lock_irqsave(host_set lock)
4045 *
4046 * RETURNS:
9a3d9eb0 4047 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4048 */
4049
9a3d9eb0 4050unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4051{
4052 struct ata_port *ap = qc->ap;
4053
4054 ata_dev_select(ap, qc->dev->devno, 1, 0);
4055
4056 switch (qc->tf.protocol) {
4057 case ATA_PROT_NODATA:
e5338254 4058 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
4059 break;
4060
4061 case ATA_PROT_DMA:
4062 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4063 ap->ops->bmdma_setup(qc); /* set up bmdma */
4064 ap->ops->bmdma_start(qc); /* initiate bmdma */
4065 break;
4066
4067 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4068 ata_qc_set_polling(qc);
e5338254 4069 ata_tf_to_host(ap, &qc->tf);
14be71f4 4070 ap->hsm_task_state = HSM_ST;
8061f5f0 4071 ata_port_queue_task(ap, ata_pio_task, ap, 0);
1da177e4
LT
4072 break;
4073
4074 case ATA_PROT_ATAPI:
4075 ata_qc_set_polling(qc);
e5338254 4076 ata_tf_to_host(ap, &qc->tf);
8061f5f0 4077 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4078 break;
4079
4080 case ATA_PROT_ATAPI_NODATA:
c1389503 4081 ap->flags |= ATA_FLAG_NOINTR;
e5338254 4082 ata_tf_to_host(ap, &qc->tf);
8061f5f0 4083 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4084 break;
4085
4086 case ATA_PROT_ATAPI_DMA:
c1389503 4087 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
4088 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4089 ap->ops->bmdma_setup(qc); /* set up bmdma */
8061f5f0 4090 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4091 break;
4092
4093 default:
4094 WARN_ON(1);
9a3d9eb0 4095 return AC_ERR_SYSTEM;
1da177e4
LT
4096 }
4097
4098 return 0;
4099}
4100
1da177e4
LT
4101/**
4102 * ata_host_intr - Handle host interrupt for given (port, task)
4103 * @ap: Port on which interrupt arrived (possibly...)
4104 * @qc: Taskfile currently active in engine
4105 *
4106 * Handle host interrupt for given queued command. Currently,
4107 * only DMA interrupts are handled. All other commands are
4108 * handled via polling with interrupts disabled (nIEN bit).
4109 *
4110 * LOCKING:
4111 * spin_lock_irqsave(host_set lock)
4112 *
4113 * RETURNS:
4114 * One if interrupt was handled, zero if not (shared irq).
4115 */
4116
4117inline unsigned int ata_host_intr (struct ata_port *ap,
4118 struct ata_queued_cmd *qc)
4119{
4120 u8 status, host_stat;
4121
4122 switch (qc->tf.protocol) {
4123
4124 case ATA_PROT_DMA:
4125 case ATA_PROT_ATAPI_DMA:
4126 case ATA_PROT_ATAPI:
4127 /* check status of DMA engine */
4128 host_stat = ap->ops->bmdma_status(ap);
4129 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4130
4131 /* if it's not our irq... */
4132 if (!(host_stat & ATA_DMA_INTR))
4133 goto idle_irq;
4134
4135 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4136 ap->ops->bmdma_stop(qc);
1da177e4
LT
4137
4138 /* fall through */
4139
4140 case ATA_PROT_ATAPI_NODATA:
4141 case ATA_PROT_NODATA:
4142 /* check altstatus */
4143 status = ata_altstatus(ap);
4144 if (status & ATA_BUSY)
4145 goto idle_irq;
4146
4147 /* check main status, clearing INTRQ */
4148 status = ata_chk_status(ap);
4149 if (unlikely(status & ATA_BUSY))
4150 goto idle_irq;
4151 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4152 ap->id, qc->tf.protocol, status);
4153
4154 /* ack bmdma irq events */
4155 ap->ops->irq_clear(ap);
4156
4157 /* complete taskfile transaction */
a22e2eb0
AL
4158 qc->err_mask |= ac_err_mask(status);
4159 ata_qc_complete(qc);
1da177e4
LT
4160 break;
4161
4162 default:
4163 goto idle_irq;
4164 }
4165
4166 return 1; /* irq handled */
4167
4168idle_irq:
4169 ap->stats.idle_irq++;
4170
4171#ifdef ATA_IRQ_TRAP
4172 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4
LT
4173 ata_irq_ack(ap, 0); /* debug trap */
4174 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
23cfce89 4175 return 1;
1da177e4
LT
4176 }
4177#endif
4178 return 0; /* irq not handled */
4179}
4180
4181/**
4182 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4183 * @irq: irq line (unused)
4184 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4185 * @regs: unused
4186 *
0cba632b
JG
4187 * Default interrupt handler for PCI IDE devices. Calls
4188 * ata_host_intr() for each port that is not disabled.
4189 *
1da177e4 4190 * LOCKING:
0cba632b 4191 * Obtains host_set lock during operation.
1da177e4
LT
4192 *
4193 * RETURNS:
0cba632b 4194 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4195 */
4196
4197irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4198{
4199 struct ata_host_set *host_set = dev_instance;
4200 unsigned int i;
4201 unsigned int handled = 0;
4202 unsigned long flags;
4203
4204 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4205 spin_lock_irqsave(&host_set->lock, flags);
4206
4207 for (i = 0; i < host_set->n_ports; i++) {
4208 struct ata_port *ap;
4209
4210 ap = host_set->ports[i];
c1389503
TH
4211 if (ap &&
4212 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4213 struct ata_queued_cmd *qc;
4214
4215 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4216 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4217 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4218 handled |= ata_host_intr(ap, qc);
4219 }
4220 }
4221
4222 spin_unlock_irqrestore(&host_set->lock, flags);
4223
4224 return IRQ_RETVAL(handled);
4225}
4226
0baab86b 4227
9b847548
JA
4228/*
4229 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4230 * without filling any other registers
4231 */
4232static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4233 u8 cmd)
4234{
4235 struct ata_taskfile tf;
4236 int err;
4237
4238 ata_tf_init(ap, &tf, dev->devno);
4239
4240 tf.command = cmd;
4241 tf.flags |= ATA_TFLAG_DEVICE;
4242 tf.protocol = ATA_PROT_NODATA;
4243
4244 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4245 if (err)
4246 printk(KERN_ERR "%s: ata command failed: %d\n",
4247 __FUNCTION__, err);
4248
4249 return err;
4250}
4251
4252static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4253{
4254 u8 cmd;
4255
4256 if (!ata_try_flush_cache(dev))
4257 return 0;
4258
4259 if (ata_id_has_flush_ext(dev->id))
4260 cmd = ATA_CMD_FLUSH_EXT;
4261 else
4262 cmd = ATA_CMD_FLUSH;
4263
4264 return ata_do_simple_cmd(ap, dev, cmd);
4265}
4266
4267static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4268{
4269 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4270}
4271
4272static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4273{
4274 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4275}
4276
4277/**
4278 * ata_device_resume - wakeup a previously suspended devices
c893a3ae
RD
4279 * @ap: port the device is connected to
4280 * @dev: the device to resume
9b847548
JA
4281 *
4282 * Kick the drive back into action, by sending it an idle immediate
4283 * command and making sure its transfer mode matches between drive
4284 * and host.
4285 *
4286 */
4287int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4288{
4289 if (ap->flags & ATA_FLAG_SUSPENDED) {
4290 ap->flags &= ~ATA_FLAG_SUSPENDED;
4291 ata_set_mode(ap);
4292 }
4293 if (!ata_dev_present(dev))
4294 return 0;
4295 if (dev->class == ATA_DEV_ATA)
4296 ata_start_drive(ap, dev);
4297
4298 return 0;
4299}
4300
4301/**
4302 * ata_device_suspend - prepare a device for suspend
c893a3ae
RD
4303 * @ap: port the device is connected to
4304 * @dev: the device to suspend
9b847548
JA
4305 *
4306 * Flush the cache on the drive, if appropriate, then issue a
4307 * standbynow command.
9b847548 4308 */
082776e4 4309int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
9b847548
JA
4310{
4311 if (!ata_dev_present(dev))
4312 return 0;
4313 if (dev->class == ATA_DEV_ATA)
4314 ata_flush_cache(ap, dev);
4315
082776e4
NC
4316 if (state.event != PM_EVENT_FREEZE)
4317 ata_standby_drive(ap, dev);
9b847548
JA
4318 ap->flags |= ATA_FLAG_SUSPENDED;
4319 return 0;
4320}
4321
c893a3ae
RD
4322/**
4323 * ata_port_start - Set port up for dma.
4324 * @ap: Port to initialize
4325 *
4326 * Called just after data structures for each port are
4327 * initialized. Allocates space for PRD table.
4328 *
4329 * May be used as the port_start() entry in ata_port_operations.
4330 *
4331 * LOCKING:
4332 * Inherited from caller.
4333 */
4334
1da177e4
LT
4335int ata_port_start (struct ata_port *ap)
4336{
2f1f610b 4337 struct device *dev = ap->dev;
6037d6bb 4338 int rc;
1da177e4
LT
4339
4340 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4341 if (!ap->prd)
4342 return -ENOMEM;
4343
6037d6bb
JG
4344 rc = ata_pad_alloc(ap, dev);
4345 if (rc) {
cedc9a47 4346 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4347 return rc;
cedc9a47
JG
4348 }
4349
1da177e4
LT
4350 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4351
4352 return 0;
4353}
4354
0baab86b
EF
4355
4356/**
4357 * ata_port_stop - Undo ata_port_start()
4358 * @ap: Port to shut down
4359 *
4360 * Frees the PRD table.
4361 *
4362 * May be used as the port_stop() entry in ata_port_operations.
4363 *
4364 * LOCKING:
6f0ef4fa 4365 * Inherited from caller.
0baab86b
EF
4366 */
4367
1da177e4
LT
4368void ata_port_stop (struct ata_port *ap)
4369{
2f1f610b 4370 struct device *dev = ap->dev;
1da177e4
LT
4371
4372 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4373 ata_pad_free(ap, dev);
1da177e4
LT
4374}
4375
aa8f0dc6
JG
4376void ata_host_stop (struct ata_host_set *host_set)
4377{
4378 if (host_set->mmio_base)
4379 iounmap(host_set->mmio_base);
4380}
4381
4382
1da177e4
LT
4383/**
4384 * ata_host_remove - Unregister SCSI host structure with upper layers
4385 * @ap: Port to unregister
4386 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4387 *
4388 * LOCKING:
6f0ef4fa 4389 * Inherited from caller.
1da177e4
LT
4390 */
4391
4392static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4393{
4394 struct Scsi_Host *sh = ap->host;
4395
4396 DPRINTK("ENTER\n");
4397
4398 if (do_unregister)
4399 scsi_remove_host(sh);
4400
4401 ap->ops->port_stop(ap);
4402}
4403
4404/**
4405 * ata_host_init - Initialize an ata_port structure
4406 * @ap: Structure to initialize
4407 * @host: associated SCSI mid-layer structure
4408 * @host_set: Collection of hosts to which @ap belongs
4409 * @ent: Probe information provided by low-level driver
4410 * @port_no: Port number associated with this ata_port
4411 *
0cba632b
JG
4412 * Initialize a new ata_port structure, and its associated
4413 * scsi_host.
4414 *
1da177e4 4415 * LOCKING:
0cba632b 4416 * Inherited from caller.
1da177e4
LT
4417 */
4418
4419static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4420 struct ata_host_set *host_set,
057ace5e 4421 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4422{
4423 unsigned int i;
4424
4425 host->max_id = 16;
4426 host->max_lun = 1;
4427 host->max_channel = 1;
4428 host->unique_id = ata_unique_id++;
4429 host->max_cmd_len = 12;
12413197 4430
1da177e4
LT
4431 ap->flags = ATA_FLAG_PORT_DISABLED;
4432 ap->id = host->unique_id;
4433 ap->host = host;
4434 ap->ctl = ATA_DEVCTL_OBS;
4435 ap->host_set = host_set;
2f1f610b 4436 ap->dev = ent->dev;
1da177e4
LT
4437 ap->port_no = port_no;
4438 ap->hard_port_no =
4439 ent->legacy_mode ? ent->hard_port_no : port_no;
4440 ap->pio_mask = ent->pio_mask;
4441 ap->mwdma_mask = ent->mwdma_mask;
4442 ap->udma_mask = ent->udma_mask;
4443 ap->flags |= ent->host_flags;
4444 ap->ops = ent->port_ops;
4445 ap->cbl = ATA_CBL_NONE;
4446 ap->active_tag = ATA_TAG_POISON;
4447 ap->last_ctl = 0xFF;
4448
86e45b6b 4449 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4450 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 4451
acf356b1
TH
4452 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4453 struct ata_device *dev = &ap->device[i];
4454 dev->devno = i;
4455 dev->pio_mask = UINT_MAX;
4456 dev->mwdma_mask = UINT_MAX;
4457 dev->udma_mask = UINT_MAX;
4458 }
1da177e4
LT
4459
4460#ifdef ATA_IRQ_TRAP
4461 ap->stats.unhandled_irq = 1;
4462 ap->stats.idle_irq = 1;
4463#endif
4464
4465 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4466}
4467
4468/**
4469 * ata_host_add - Attach low-level ATA driver to system
4470 * @ent: Information provided by low-level driver
4471 * @host_set: Collections of ports to which we add
4472 * @port_no: Port number associated with this host
4473 *
0cba632b
JG
4474 * Attach low-level ATA driver to system.
4475 *
1da177e4 4476 * LOCKING:
0cba632b 4477 * PCI/etc. bus probe sem.
1da177e4
LT
4478 *
4479 * RETURNS:
0cba632b 4480 * New ata_port on success, for NULL on error.
1da177e4
LT
4481 */
4482
057ace5e 4483static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4484 struct ata_host_set *host_set,
4485 unsigned int port_no)
4486{
4487 struct Scsi_Host *host;
4488 struct ata_port *ap;
4489 int rc;
4490
4491 DPRINTK("ENTER\n");
aec5c3c1
TH
4492
4493 if (!ent->port_ops->probe_reset &&
4494 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4495 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4496 port_no);
4497 return NULL;
4498 }
4499
1da177e4
LT
4500 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4501 if (!host)
4502 return NULL;
4503
30afc84c
TH
4504 host->transportt = &ata_scsi_transport_template;
4505
1da177e4
LT
4506 ap = (struct ata_port *) &host->hostdata[0];
4507
4508 ata_host_init(ap, host, host_set, ent, port_no);
4509
4510 rc = ap->ops->port_start(ap);
4511 if (rc)
4512 goto err_out;
4513
4514 return ap;
4515
4516err_out:
4517 scsi_host_put(host);
4518 return NULL;
4519}
4520
4521/**
0cba632b
JG
4522 * ata_device_add - Register hardware device with ATA and SCSI layers
4523 * @ent: Probe information describing hardware device to be registered
4524 *
4525 * This function processes the information provided in the probe
4526 * information struct @ent, allocates the necessary ATA and SCSI
4527 * host information structures, initializes them, and registers
4528 * everything with requisite kernel subsystems.
4529 *
4530 * This function requests irqs, probes the ATA bus, and probes
4531 * the SCSI bus.
1da177e4
LT
4532 *
4533 * LOCKING:
0cba632b 4534 * PCI/etc. bus probe sem.
1da177e4
LT
4535 *
4536 * RETURNS:
0cba632b 4537 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4538 */
4539
057ace5e 4540int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4541{
4542 unsigned int count = 0, i;
4543 struct device *dev = ent->dev;
4544 struct ata_host_set *host_set;
4545
4546 DPRINTK("ENTER\n");
4547 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4548 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4549 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4550 if (!host_set)
4551 return 0;
1da177e4
LT
4552 spin_lock_init(&host_set->lock);
4553
4554 host_set->dev = dev;
4555 host_set->n_ports = ent->n_ports;
4556 host_set->irq = ent->irq;
4557 host_set->mmio_base = ent->mmio_base;
4558 host_set->private_data = ent->private_data;
4559 host_set->ops = ent->port_ops;
5444a6f4 4560 host_set->flags = ent->host_set_flags;
1da177e4
LT
4561
4562 /* register each port bound to this device */
4563 for (i = 0; i < ent->n_ports; i++) {
4564 struct ata_port *ap;
4565 unsigned long xfer_mode_mask;
4566
4567 ap = ata_host_add(ent, host_set, i);
4568 if (!ap)
4569 goto err_out;
4570
4571 host_set->ports[i] = ap;
4572 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4573 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4574 (ap->pio_mask << ATA_SHIFT_PIO);
4575
4576 /* print per-port info to dmesg */
4577 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4578 "bmdma 0x%lX irq %lu\n",
4579 ap->id,
4580 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4581 ata_mode_string(xfer_mode_mask),
4582 ap->ioaddr.cmd_addr,
4583 ap->ioaddr.ctl_addr,
4584 ap->ioaddr.bmdma_addr,
4585 ent->irq);
4586
4587 ata_chk_status(ap);
4588 host_set->ops->irq_clear(ap);
4589 count++;
4590 }
4591
57f3bda8
RD
4592 if (!count)
4593 goto err_free_ret;
1da177e4
LT
4594
4595 /* obtain irq, that is shared between channels */
4596 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4597 DRV_NAME, host_set))
4598 goto err_out;
4599
4600 /* perform each probe synchronously */
4601 DPRINTK("probe begin\n");
4602 for (i = 0; i < count; i++) {
4603 struct ata_port *ap;
4604 int rc;
4605
4606 ap = host_set->ports[i];
4607
c893a3ae 4608 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4609 rc = ata_bus_probe(ap);
c893a3ae 4610 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4611
4612 if (rc) {
4613 /* FIXME: do something useful here?
4614 * Current libata behavior will
4615 * tear down everything when
4616 * the module is removed
4617 * or the h/w is unplugged.
4618 */
4619 }
4620
4621 rc = scsi_add_host(ap->host, dev);
4622 if (rc) {
4623 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4624 ap->id);
4625 /* FIXME: do something useful here */
4626 /* FIXME: handle unconditional calls to
4627 * scsi_scan_host and ata_host_remove, below,
4628 * at the very least
4629 */
4630 }
4631 }
4632
4633 /* probes are done, now scan each port's disk(s) */
c893a3ae 4634 DPRINTK("host probe begin\n");
1da177e4
LT
4635 for (i = 0; i < count; i++) {
4636 struct ata_port *ap = host_set->ports[i];
4637
644dd0cc 4638 ata_scsi_scan_host(ap);
1da177e4
LT
4639 }
4640
4641 dev_set_drvdata(dev, host_set);
4642
4643 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4644 return ent->n_ports; /* success */
4645
4646err_out:
4647 for (i = 0; i < count; i++) {
4648 ata_host_remove(host_set->ports[i], 1);
4649 scsi_host_put(host_set->ports[i]->host);
4650 }
57f3bda8 4651err_free_ret:
1da177e4
LT
4652 kfree(host_set);
4653 VPRINTK("EXIT, returning 0\n");
4654 return 0;
4655}
4656
17b14451
AC
4657/**
4658 * ata_host_set_remove - PCI layer callback for device removal
4659 * @host_set: ATA host set that was removed
4660 *
2e9edbf8 4661 * Unregister all objects associated with this host set. Free those
17b14451
AC
4662 * objects.
4663 *
4664 * LOCKING:
4665 * Inherited from calling layer (may sleep).
4666 */
4667
17b14451
AC
4668void ata_host_set_remove(struct ata_host_set *host_set)
4669{
4670 struct ata_port *ap;
4671 unsigned int i;
4672
4673 for (i = 0; i < host_set->n_ports; i++) {
4674 ap = host_set->ports[i];
4675 scsi_remove_host(ap->host);
4676 }
4677
4678 free_irq(host_set->irq, host_set);
4679
4680 for (i = 0; i < host_set->n_ports; i++) {
4681 ap = host_set->ports[i];
4682
4683 ata_scsi_release(ap->host);
4684
4685 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4686 struct ata_ioports *ioaddr = &ap->ioaddr;
4687
4688 if (ioaddr->cmd_addr == 0x1f0)
4689 release_region(0x1f0, 8);
4690 else if (ioaddr->cmd_addr == 0x170)
4691 release_region(0x170, 8);
4692 }
4693
4694 scsi_host_put(ap->host);
4695 }
4696
4697 if (host_set->ops->host_stop)
4698 host_set->ops->host_stop(host_set);
4699
4700 kfree(host_set);
4701}
4702
1da177e4
LT
4703/**
4704 * ata_scsi_release - SCSI layer callback hook for host unload
4705 * @host: libata host to be unloaded
4706 *
4707 * Performs all duties necessary to shut down a libata port...
4708 * Kill port kthread, disable port, and release resources.
4709 *
4710 * LOCKING:
4711 * Inherited from SCSI layer.
4712 *
4713 * RETURNS:
4714 * One.
4715 */
4716
4717int ata_scsi_release(struct Scsi_Host *host)
4718{
4719 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
d9572b1d 4720 int i;
1da177e4
LT
4721
4722 DPRINTK("ENTER\n");
4723
4724 ap->ops->port_disable(ap);
4725 ata_host_remove(ap, 0);
d9572b1d
TH
4726 for (i = 0; i < ATA_MAX_DEVICES; i++)
4727 kfree(ap->device[i].id);
1da177e4
LT
4728
4729 DPRINTK("EXIT\n");
4730 return 1;
4731}
4732
4733/**
4734 * ata_std_ports - initialize ioaddr with standard port offsets.
4735 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4736 *
4737 * Utility function which initializes data_addr, error_addr,
4738 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4739 * device_addr, status_addr, and command_addr to standard offsets
4740 * relative to cmd_addr.
4741 *
4742 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4743 */
0baab86b 4744
1da177e4
LT
4745void ata_std_ports(struct ata_ioports *ioaddr)
4746{
4747 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4748 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4749 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4750 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4751 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4752 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4753 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4754 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4755 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4756 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4757}
4758
0baab86b 4759
374b1873
JG
4760#ifdef CONFIG_PCI
4761
4762void ata_pci_host_stop (struct ata_host_set *host_set)
4763{
4764 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4765
4766 pci_iounmap(pdev, host_set->mmio_base);
4767}
4768
1da177e4
LT
4769/**
4770 * ata_pci_remove_one - PCI layer callback for device removal
4771 * @pdev: PCI device that was removed
4772 *
4773 * PCI layer indicates to libata via this hook that
6f0ef4fa 4774 * hot-unplug or module unload event has occurred.
1da177e4
LT
4775 * Handle this by unregistering all objects associated
4776 * with this PCI device. Free those objects. Then finally
4777 * release PCI resources and disable device.
4778 *
4779 * LOCKING:
4780 * Inherited from PCI layer (may sleep).
4781 */
4782
4783void ata_pci_remove_one (struct pci_dev *pdev)
4784{
4785 struct device *dev = pci_dev_to_dev(pdev);
4786 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4787
17b14451 4788 ata_host_set_remove(host_set);
1da177e4
LT
4789 pci_release_regions(pdev);
4790 pci_disable_device(pdev);
4791 dev_set_drvdata(dev, NULL);
4792}
4793
4794/* move to PCI subsystem */
057ace5e 4795int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
4796{
4797 unsigned long tmp = 0;
4798
4799 switch (bits->width) {
4800 case 1: {
4801 u8 tmp8 = 0;
4802 pci_read_config_byte(pdev, bits->reg, &tmp8);
4803 tmp = tmp8;
4804 break;
4805 }
4806 case 2: {
4807 u16 tmp16 = 0;
4808 pci_read_config_word(pdev, bits->reg, &tmp16);
4809 tmp = tmp16;
4810 break;
4811 }
4812 case 4: {
4813 u32 tmp32 = 0;
4814 pci_read_config_dword(pdev, bits->reg, &tmp32);
4815 tmp = tmp32;
4816 break;
4817 }
4818
4819 default:
4820 return -EINVAL;
4821 }
4822
4823 tmp &= bits->mask;
4824
4825 return (tmp == bits->val) ? 1 : 0;
4826}
9b847548
JA
4827
4828int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4829{
4830 pci_save_state(pdev);
4831 pci_disable_device(pdev);
4832 pci_set_power_state(pdev, PCI_D3hot);
4833 return 0;
4834}
4835
4836int ata_pci_device_resume(struct pci_dev *pdev)
4837{
4838 pci_set_power_state(pdev, PCI_D0);
4839 pci_restore_state(pdev);
4840 pci_enable_device(pdev);
4841 pci_set_master(pdev);
4842 return 0;
4843}
1da177e4
LT
4844#endif /* CONFIG_PCI */
4845
4846
1da177e4
LT
4847static int __init ata_init(void)
4848{
4849 ata_wq = create_workqueue("ata");
4850 if (!ata_wq)
4851 return -ENOMEM;
4852
4853 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4854 return 0;
4855}
4856
4857static void __exit ata_exit(void)
4858{
4859 destroy_workqueue(ata_wq);
4860}
4861
4862module_init(ata_init);
4863module_exit(ata_exit);
4864
67846b30
JG
4865static unsigned long ratelimit_time;
4866static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4867
4868int ata_ratelimit(void)
4869{
4870 int rc;
4871 unsigned long flags;
4872
4873 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4874
4875 if (time_after(jiffies, ratelimit_time)) {
4876 rc = 1;
4877 ratelimit_time = jiffies + (HZ/5);
4878 } else
4879 rc = 0;
4880
4881 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4882
4883 return rc;
4884}
4885
1da177e4
LT
4886/*
4887 * libata is essentially a library of internal helper functions for
4888 * low-level ATA host controller drivers. As such, the API/ABI is
4889 * likely to change as new drivers are added and updated.
4890 * Do not depend on ABI/API stability.
4891 */
4892
4893EXPORT_SYMBOL_GPL(ata_std_bios_param);
4894EXPORT_SYMBOL_GPL(ata_std_ports);
4895EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 4896EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
4897EXPORT_SYMBOL_GPL(ata_sg_init);
4898EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 4899EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4
LT
4900EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4901EXPORT_SYMBOL_GPL(ata_eng_timeout);
4902EXPORT_SYMBOL_GPL(ata_tf_load);
4903EXPORT_SYMBOL_GPL(ata_tf_read);
4904EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4905EXPORT_SYMBOL_GPL(ata_std_dev_select);
4906EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4907EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4908EXPORT_SYMBOL_GPL(ata_check_status);
4909EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
4910EXPORT_SYMBOL_GPL(ata_exec_command);
4911EXPORT_SYMBOL_GPL(ata_port_start);
4912EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 4913EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
4914EXPORT_SYMBOL_GPL(ata_interrupt);
4915EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 4916EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
4917EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4918EXPORT_SYMBOL_GPL(ata_bmdma_start);
4919EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4920EXPORT_SYMBOL_GPL(ata_bmdma_status);
4921EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4922EXPORT_SYMBOL_GPL(ata_port_probe);
4923EXPORT_SYMBOL_GPL(sata_phy_reset);
4924EXPORT_SYMBOL_GPL(__sata_phy_reset);
4925EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 4926EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
4927EXPORT_SYMBOL_GPL(ata_std_softreset);
4928EXPORT_SYMBOL_GPL(sata_std_hardreset);
4929EXPORT_SYMBOL_GPL(ata_std_postreset);
4930EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 4931EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 4932EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
4933EXPORT_SYMBOL_GPL(ata_dev_classify);
4934EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 4935EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 4936EXPORT_SYMBOL_GPL(ata_ratelimit);
6f8b9958 4937EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 4938EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
4939EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4940EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4941EXPORT_SYMBOL_GPL(ata_scsi_error);
4942EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4943EXPORT_SYMBOL_GPL(ata_scsi_release);
4944EXPORT_SYMBOL_GPL(ata_host_intr);
6a62a04d
TH
4945EXPORT_SYMBOL_GPL(ata_id_string);
4946EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4 4947EXPORT_SYMBOL_GPL(ata_scsi_simulate);
a72ec4ce
TH
4948EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
4949EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
1da177e4 4950
1bc4ccff 4951EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
4952EXPORT_SYMBOL_GPL(ata_timing_compute);
4953EXPORT_SYMBOL_GPL(ata_timing_merge);
4954
1da177e4
LT
4955#ifdef CONFIG_PCI
4956EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 4957EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
4958EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4959EXPORT_SYMBOL_GPL(ata_pci_init_one);
4960EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
4961EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
4962EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
4963EXPORT_SYMBOL_GPL(ata_pci_default_filter);
4964EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 4965#endif /* CONFIG_PCI */
9b847548
JA
4966
4967EXPORT_SYMBOL_GPL(ata_device_suspend);
4968EXPORT_SYMBOL_GPL(ata_device_resume);
4969EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
4970EXPORT_SYMBOL_GPL(ata_scsi_device_resume);