]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/scsi/libata-core.c
[PATCH] libata: add @print_info argument to ata_dev_configure()
[net-next-2.6.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
6aff8f1f
TH
64static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev);
1da177e4
LT
66static void ata_set_mode(struct ata_port *ap);
67static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
057ace5e 68static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
1da177e4 69static int fgb(u32 bitmap);
057ace5e 70static int ata_choose_xfer_mode(const struct ata_port *ap,
1da177e4
LT
71 u8 *xfer_mode_out,
72 unsigned int *xfer_shift_out);
1da177e4
LT
73
74static unsigned int ata_unique_id = 1;
75static struct workqueue_struct *ata_wq;
76
1623c81e
JG
77int atapi_enabled = 0;
78module_param(atapi_enabled, int, 0444);
79MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
c3c013a2
JG
81int libata_fua = 0;
82module_param_named(fua, libata_fua, int, 0444);
83MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
84
1da177e4
LT
85MODULE_AUTHOR("Jeff Garzik");
86MODULE_DESCRIPTION("Library module for ATA devices");
87MODULE_LICENSE("GPL");
88MODULE_VERSION(DRV_VERSION);
89
0baab86b 90
1da177e4
LT
91/**
92 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
93 * @tf: Taskfile to convert
94 * @fis: Buffer into which data will output
95 * @pmp: Port multiplier port
96 *
97 * Converts a standard ATA taskfile to a Serial ATA
98 * FIS structure (Register - Host to Device).
99 *
100 * LOCKING:
101 * Inherited from caller.
102 */
103
057ace5e 104void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
105{
106 fis[0] = 0x27; /* Register - Host to Device FIS */
107 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
108 bit 7 indicates Command FIS */
109 fis[2] = tf->command;
110 fis[3] = tf->feature;
111
112 fis[4] = tf->lbal;
113 fis[5] = tf->lbam;
114 fis[6] = tf->lbah;
115 fis[7] = tf->device;
116
117 fis[8] = tf->hob_lbal;
118 fis[9] = tf->hob_lbam;
119 fis[10] = tf->hob_lbah;
120 fis[11] = tf->hob_feature;
121
122 fis[12] = tf->nsect;
123 fis[13] = tf->hob_nsect;
124 fis[14] = 0;
125 fis[15] = tf->ctl;
126
127 fis[16] = 0;
128 fis[17] = 0;
129 fis[18] = 0;
130 fis[19] = 0;
131}
132
133/**
134 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
135 * @fis: Buffer from which data will be input
136 * @tf: Taskfile to output
137 *
e12a1be6 138 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
139 *
140 * LOCKING:
141 * Inherited from caller.
142 */
143
057ace5e 144void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
145{
146 tf->command = fis[2]; /* status */
147 tf->feature = fis[3]; /* error */
148
149 tf->lbal = fis[4];
150 tf->lbam = fis[5];
151 tf->lbah = fis[6];
152 tf->device = fis[7];
153
154 tf->hob_lbal = fis[8];
155 tf->hob_lbam = fis[9];
156 tf->hob_lbah = fis[10];
157
158 tf->nsect = fis[12];
159 tf->hob_nsect = fis[13];
160}
161
8cbd6df1
AL
162static const u8 ata_rw_cmds[] = {
163 /* pio multi */
164 ATA_CMD_READ_MULTI,
165 ATA_CMD_WRITE_MULTI,
166 ATA_CMD_READ_MULTI_EXT,
167 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
168 0,
169 0,
170 0,
171 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
172 /* pio */
173 ATA_CMD_PIO_READ,
174 ATA_CMD_PIO_WRITE,
175 ATA_CMD_PIO_READ_EXT,
176 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
177 0,
178 0,
179 0,
180 0,
8cbd6df1
AL
181 /* dma */
182 ATA_CMD_READ,
183 ATA_CMD_WRITE,
184 ATA_CMD_READ_EXT,
9a3dccc4
TH
185 ATA_CMD_WRITE_EXT,
186 0,
187 0,
188 0,
189 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 190};
1da177e4
LT
191
192/**
8cbd6df1
AL
193 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
194 * @qc: command to examine and configure
1da177e4 195 *
8cbd6df1
AL
196 * Examine the device configuration and tf->flags to calculate
197 * the proper read/write commands and protocol to use.
1da177e4
LT
198 *
199 * LOCKING:
200 * caller.
201 */
9a3dccc4 202int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 203{
8cbd6df1
AL
204 struct ata_taskfile *tf = &qc->tf;
205 struct ata_device *dev = qc->dev;
9a3dccc4 206 u8 cmd;
1da177e4 207
9a3dccc4 208 int index, fua, lba48, write;
8cbd6df1 209
9a3dccc4 210 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
211 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
212 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 213
8cbd6df1
AL
214 if (dev->flags & ATA_DFLAG_PIO) {
215 tf->protocol = ATA_PROT_PIO;
9a3dccc4 216 index = dev->multi_count ? 0 : 8;
8d238e01
AC
217 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
218 /* Unable to use DMA due to host limitation */
219 tf->protocol = ATA_PROT_PIO;
0565c26d 220 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
221 } else {
222 tf->protocol = ATA_PROT_DMA;
9a3dccc4 223 index = 16;
8cbd6df1 224 }
1da177e4 225
9a3dccc4
TH
226 cmd = ata_rw_cmds[index + fua + lba48 + write];
227 if (cmd) {
228 tf->command = cmd;
229 return 0;
230 }
231 return -1;
1da177e4
LT
232}
233
98ac62de 234static const char * const xfer_mode_str[] = {
1da177e4
LT
235 "UDMA/16",
236 "UDMA/25",
237 "UDMA/33",
238 "UDMA/44",
239 "UDMA/66",
240 "UDMA/100",
241 "UDMA/133",
242 "UDMA7",
243 "MWDMA0",
244 "MWDMA1",
245 "MWDMA2",
246 "PIO0",
247 "PIO1",
248 "PIO2",
249 "PIO3",
250 "PIO4",
251};
252
253/**
254 * ata_udma_string - convert UDMA bit offset to string
255 * @mask: mask of bits supported; only highest bit counts.
256 *
257 * Determine string which represents the highest speed
258 * (highest bit in @udma_mask).
259 *
260 * LOCKING:
261 * None.
262 *
263 * RETURNS:
264 * Constant C string representing highest speed listed in
265 * @udma_mask, or the constant C string "<n/a>".
266 */
267
268static const char *ata_mode_string(unsigned int mask)
269{
270 int i;
271
272 for (i = 7; i >= 0; i--)
273 if (mask & (1 << i))
274 goto out;
275 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
276 if (mask & (1 << i))
277 goto out;
278 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
279 if (mask & (1 << i))
280 goto out;
281
282 return "<n/a>";
283
284out:
285 return xfer_mode_str[i];
286}
287
288/**
289 * ata_pio_devchk - PATA device presence detection
290 * @ap: ATA channel to examine
291 * @device: Device to examine (starting at zero)
292 *
293 * This technique was originally described in
294 * Hale Landis's ATADRVR (www.ata-atapi.com), and
295 * later found its way into the ATA/ATAPI spec.
296 *
297 * Write a pattern to the ATA shadow registers,
298 * and if a device is present, it will respond by
299 * correctly storing and echoing back the
300 * ATA shadow register contents.
301 *
302 * LOCKING:
303 * caller.
304 */
305
306static unsigned int ata_pio_devchk(struct ata_port *ap,
307 unsigned int device)
308{
309 struct ata_ioports *ioaddr = &ap->ioaddr;
310 u8 nsect, lbal;
311
312 ap->ops->dev_select(ap, device);
313
314 outb(0x55, ioaddr->nsect_addr);
315 outb(0xaa, ioaddr->lbal_addr);
316
317 outb(0xaa, ioaddr->nsect_addr);
318 outb(0x55, ioaddr->lbal_addr);
319
320 outb(0x55, ioaddr->nsect_addr);
321 outb(0xaa, ioaddr->lbal_addr);
322
323 nsect = inb(ioaddr->nsect_addr);
324 lbal = inb(ioaddr->lbal_addr);
325
326 if ((nsect == 0x55) && (lbal == 0xaa))
327 return 1; /* we found a device */
328
329 return 0; /* nothing found */
330}
331
332/**
333 * ata_mmio_devchk - PATA device presence detection
334 * @ap: ATA channel to examine
335 * @device: Device to examine (starting at zero)
336 *
337 * This technique was originally described in
338 * Hale Landis's ATADRVR (www.ata-atapi.com), and
339 * later found its way into the ATA/ATAPI spec.
340 *
341 * Write a pattern to the ATA shadow registers,
342 * and if a device is present, it will respond by
343 * correctly storing and echoing back the
344 * ATA shadow register contents.
345 *
346 * LOCKING:
347 * caller.
348 */
349
350static unsigned int ata_mmio_devchk(struct ata_port *ap,
351 unsigned int device)
352{
353 struct ata_ioports *ioaddr = &ap->ioaddr;
354 u8 nsect, lbal;
355
356 ap->ops->dev_select(ap, device);
357
358 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
359 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
360
361 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
362 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
363
364 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
365 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
366
367 nsect = readb((void __iomem *) ioaddr->nsect_addr);
368 lbal = readb((void __iomem *) ioaddr->lbal_addr);
369
370 if ((nsect == 0x55) && (lbal == 0xaa))
371 return 1; /* we found a device */
372
373 return 0; /* nothing found */
374}
375
376/**
377 * ata_devchk - PATA device presence detection
378 * @ap: ATA channel to examine
379 * @device: Device to examine (starting at zero)
380 *
381 * Dispatch ATA device presence detection, depending
382 * on whether we are using PIO or MMIO to talk to the
383 * ATA shadow registers.
384 *
385 * LOCKING:
386 * caller.
387 */
388
389static unsigned int ata_devchk(struct ata_port *ap,
390 unsigned int device)
391{
392 if (ap->flags & ATA_FLAG_MMIO)
393 return ata_mmio_devchk(ap, device);
394 return ata_pio_devchk(ap, device);
395}
396
397/**
398 * ata_dev_classify - determine device type based on ATA-spec signature
399 * @tf: ATA taskfile register set for device to be identified
400 *
401 * Determine from taskfile register contents whether a device is
402 * ATA or ATAPI, as per "Signature and persistence" section
403 * of ATA/PI spec (volume 1, sect 5.14).
404 *
405 * LOCKING:
406 * None.
407 *
408 * RETURNS:
409 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
410 * the event of failure.
411 */
412
057ace5e 413unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
414{
415 /* Apple's open source Darwin code hints that some devices only
416 * put a proper signature into the LBA mid/high registers,
417 * So, we only check those. It's sufficient for uniqueness.
418 */
419
420 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
421 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
422 DPRINTK("found ATA device by sig\n");
423 return ATA_DEV_ATA;
424 }
425
426 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
427 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
428 DPRINTK("found ATAPI device by sig\n");
429 return ATA_DEV_ATAPI;
430 }
431
432 DPRINTK("unknown device\n");
433 return ATA_DEV_UNKNOWN;
434}
435
436/**
437 * ata_dev_try_classify - Parse returned ATA device signature
438 * @ap: ATA channel to examine
439 * @device: Device to examine (starting at zero)
b4dc7623 440 * @r_err: Value of error register on completion
1da177e4
LT
441 *
442 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
443 * an ATA/ATAPI-defined set of values is placed in the ATA
444 * shadow registers, indicating the results of device detection
445 * and diagnostics.
446 *
447 * Select the ATA device, and read the values from the ATA shadow
448 * registers. Then parse according to the Error register value,
449 * and the spec-defined values examined by ata_dev_classify().
450 *
451 * LOCKING:
452 * caller.
b4dc7623
TH
453 *
454 * RETURNS:
455 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
456 */
457
b4dc7623
TH
458static unsigned int
459ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 460{
1da177e4
LT
461 struct ata_taskfile tf;
462 unsigned int class;
463 u8 err;
464
465 ap->ops->dev_select(ap, device);
466
467 memset(&tf, 0, sizeof(tf));
468
1da177e4 469 ap->ops->tf_read(ap, &tf);
0169e284 470 err = tf.feature;
b4dc7623
TH
471 if (r_err)
472 *r_err = err;
1da177e4
LT
473
474 /* see if device passed diags */
475 if (err == 1)
476 /* do nothing */ ;
477 else if ((device == 0) && (err == 0x81))
478 /* do nothing */ ;
479 else
b4dc7623 480 return ATA_DEV_NONE;
1da177e4 481
b4dc7623 482 /* determine if device is ATA or ATAPI */
1da177e4 483 class = ata_dev_classify(&tf);
b4dc7623 484
1da177e4 485 if (class == ATA_DEV_UNKNOWN)
b4dc7623 486 return ATA_DEV_NONE;
1da177e4 487 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
488 return ATA_DEV_NONE;
489 return class;
1da177e4
LT
490}
491
492/**
6a62a04d 493 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
494 * @id: IDENTIFY DEVICE results we will examine
495 * @s: string into which data is output
496 * @ofs: offset into identify device page
497 * @len: length of string to return. must be an even number.
498 *
499 * The strings in the IDENTIFY DEVICE page are broken up into
500 * 16-bit chunks. Run through the string, and output each
501 * 8-bit chunk linearly, regardless of platform.
502 *
503 * LOCKING:
504 * caller.
505 */
506
6a62a04d
TH
507void ata_id_string(const u16 *id, unsigned char *s,
508 unsigned int ofs, unsigned int len)
1da177e4
LT
509{
510 unsigned int c;
511
512 while (len > 0) {
513 c = id[ofs] >> 8;
514 *s = c;
515 s++;
516
517 c = id[ofs] & 0xff;
518 *s = c;
519 s++;
520
521 ofs++;
522 len -= 2;
523 }
524}
525
0e949ff3 526/**
6a62a04d 527 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
528 * @id: IDENTIFY DEVICE results we will examine
529 * @s: string into which data is output
530 * @ofs: offset into identify device page
531 * @len: length of string to return. must be an odd number.
532 *
6a62a04d 533 * This function is identical to ata_id_string except that it
0e949ff3
TH
534 * trims trailing spaces and terminates the resulting string with
535 * null. @len must be actual maximum length (even number) + 1.
536 *
537 * LOCKING:
538 * caller.
539 */
6a62a04d
TH
540void ata_id_c_string(const u16 *id, unsigned char *s,
541 unsigned int ofs, unsigned int len)
0e949ff3
TH
542{
543 unsigned char *p;
544
545 WARN_ON(!(len & 1));
546
6a62a04d 547 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
548
549 p = s + strnlen(s, len - 1);
550 while (p > s && p[-1] == ' ')
551 p--;
552 *p = '\0';
553}
0baab86b 554
2940740b
TH
555static u64 ata_id_n_sectors(const u16 *id)
556{
557 if (ata_id_has_lba(id)) {
558 if (ata_id_has_lba48(id))
559 return ata_id_u64(id, 100);
560 else
561 return ata_id_u32(id, 60);
562 } else {
563 if (ata_id_current_chs_valid(id))
564 return ata_id_u32(id, 57);
565 else
566 return id[1] * id[3] * id[6];
567 }
568}
569
0baab86b
EF
570/**
571 * ata_noop_dev_select - Select device 0/1 on ATA bus
572 * @ap: ATA channel to manipulate
573 * @device: ATA device (numbered from zero) to select
574 *
575 * This function performs no actual function.
576 *
577 * May be used as the dev_select() entry in ata_port_operations.
578 *
579 * LOCKING:
580 * caller.
581 */
1da177e4
LT
582void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
583{
584}
585
0baab86b 586
1da177e4
LT
587/**
588 * ata_std_dev_select - Select device 0/1 on ATA bus
589 * @ap: ATA channel to manipulate
590 * @device: ATA device (numbered from zero) to select
591 *
592 * Use the method defined in the ATA specification to
593 * make either device 0, or device 1, active on the
0baab86b
EF
594 * ATA channel. Works with both PIO and MMIO.
595 *
596 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
597 *
598 * LOCKING:
599 * caller.
600 */
601
602void ata_std_dev_select (struct ata_port *ap, unsigned int device)
603{
604 u8 tmp;
605
606 if (device == 0)
607 tmp = ATA_DEVICE_OBS;
608 else
609 tmp = ATA_DEVICE_OBS | ATA_DEV1;
610
611 if (ap->flags & ATA_FLAG_MMIO) {
612 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
613 } else {
614 outb(tmp, ap->ioaddr.device_addr);
615 }
616 ata_pause(ap); /* needed; also flushes, for mmio */
617}
618
619/**
620 * ata_dev_select - Select device 0/1 on ATA bus
621 * @ap: ATA channel to manipulate
622 * @device: ATA device (numbered from zero) to select
623 * @wait: non-zero to wait for Status register BSY bit to clear
624 * @can_sleep: non-zero if context allows sleeping
625 *
626 * Use the method defined in the ATA specification to
627 * make either device 0, or device 1, active on the
628 * ATA channel.
629 *
630 * This is a high-level version of ata_std_dev_select(),
631 * which additionally provides the services of inserting
632 * the proper pauses and status polling, where needed.
633 *
634 * LOCKING:
635 * caller.
636 */
637
638void ata_dev_select(struct ata_port *ap, unsigned int device,
639 unsigned int wait, unsigned int can_sleep)
640{
641 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
642 ap->id, device, wait);
643
644 if (wait)
645 ata_wait_idle(ap);
646
647 ap->ops->dev_select(ap, device);
648
649 if (wait) {
650 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
651 msleep(150);
652 ata_wait_idle(ap);
653 }
654}
655
656/**
657 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 658 * @id: IDENTIFY DEVICE page to dump
1da177e4 659 *
0bd3300a
TH
660 * Dump selected 16-bit words from the given IDENTIFY DEVICE
661 * page.
1da177e4
LT
662 *
663 * LOCKING:
664 * caller.
665 */
666
0bd3300a 667static inline void ata_dump_id(const u16 *id)
1da177e4
LT
668{
669 DPRINTK("49==0x%04x "
670 "53==0x%04x "
671 "63==0x%04x "
672 "64==0x%04x "
673 "75==0x%04x \n",
0bd3300a
TH
674 id[49],
675 id[53],
676 id[63],
677 id[64],
678 id[75]);
1da177e4
LT
679 DPRINTK("80==0x%04x "
680 "81==0x%04x "
681 "82==0x%04x "
682 "83==0x%04x "
683 "84==0x%04x \n",
0bd3300a
TH
684 id[80],
685 id[81],
686 id[82],
687 id[83],
688 id[84]);
1da177e4
LT
689 DPRINTK("88==0x%04x "
690 "93==0x%04x\n",
0bd3300a
TH
691 id[88],
692 id[93]);
1da177e4
LT
693}
694
11e29e21
AC
695/*
696 * Compute the PIO modes available for this device. This is not as
697 * trivial as it seems if we must consider early devices correctly.
698 *
699 * FIXME: pre IDE drive timing (do we care ?).
700 */
701
057ace5e 702static unsigned int ata_pio_modes(const struct ata_device *adev)
11e29e21
AC
703{
704 u16 modes;
705
ffa29456
AC
706 /* Usual case. Word 53 indicates word 64 is valid */
707 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
11e29e21
AC
708 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
709 modes <<= 3;
710 modes |= 0x7;
711 return modes;
712 }
713
ffa29456
AC
714 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
715 number for the maximum. Turn it into a mask and return it */
716 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
11e29e21 717 return modes;
ffa29456
AC
718 /* But wait.. there's more. Design your standards by committee and
719 you too can get a free iordy field to process. However its the
720 speeds not the modes that are supported... Note drivers using the
721 timing API will get this right anyway */
11e29e21
AC
722}
723
95064379
TH
724static inline void
725ata_queue_packet_task(struct ata_port *ap)
726{
c18d06f8
TH
727 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
728 queue_work(ata_wq, &ap->packet_task);
95064379
TH
729}
730
731static inline void
732ata_queue_pio_task(struct ata_port *ap)
733{
c18d06f8
TH
734 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
735 queue_work(ata_wq, &ap->pio_task);
95064379
TH
736}
737
738static inline void
739ata_queue_delayed_pio_task(struct ata_port *ap, unsigned long delay)
740{
c18d06f8
TH
741 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
742 queue_delayed_work(ata_wq, &ap->pio_task, delay);
743}
744
745/**
746 * ata_flush_pio_tasks - Flush pio_task and packet_task
747 * @ap: the target ata_port
748 *
749 * After this function completes, pio_task and packet_task are
750 * guranteed not to be running or scheduled.
751 *
752 * LOCKING:
753 * Kernel thread context (may sleep)
754 */
755
756static void ata_flush_pio_tasks(struct ata_port *ap)
757{
758 int tmp = 0;
759 unsigned long flags;
760
761 DPRINTK("ENTER\n");
762
763 spin_lock_irqsave(&ap->host_set->lock, flags);
764 ap->flags |= ATA_FLAG_FLUSH_PIO_TASK;
765 spin_unlock_irqrestore(&ap->host_set->lock, flags);
766
767 DPRINTK("flush #1\n");
768 flush_workqueue(ata_wq);
769
770 /*
771 * At this point, if a task is running, it's guaranteed to see
772 * the FLUSH flag; thus, it will never queue pio tasks again.
773 * Cancel and flush.
774 */
775 tmp |= cancel_delayed_work(&ap->pio_task);
776 tmp |= cancel_delayed_work(&ap->packet_task);
777 if (!tmp) {
778 DPRINTK("flush #2\n");
779 flush_workqueue(ata_wq);
780 }
781
782 spin_lock_irqsave(&ap->host_set->lock, flags);
783 ap->flags &= ~ATA_FLAG_FLUSH_PIO_TASK;
784 spin_unlock_irqrestore(&ap->host_set->lock, flags);
785
786 DPRINTK("EXIT\n");
95064379
TH
787}
788
77853bf2 789void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 790{
77853bf2 791 struct completion *waiting = qc->private_data;
a2a7a662 792
77853bf2 793 qc->ap->ops->tf_read(qc->ap, &qc->tf);
a2a7a662 794 complete(waiting);
a2a7a662
TH
795}
796
797/**
798 * ata_exec_internal - execute libata internal command
799 * @ap: Port to which the command is sent
800 * @dev: Device to which the command is sent
801 * @tf: Taskfile registers for the command and the result
802 * @dma_dir: Data tranfer direction of the command
803 * @buf: Data buffer of the command
804 * @buflen: Length of data buffer
805 *
806 * Executes libata internal command with timeout. @tf contains
807 * command on entry and result on return. Timeout and error
808 * conditions are reported via return value. No recovery action
809 * is taken after a command times out. It's caller's duty to
810 * clean up after timeout.
811 *
812 * LOCKING:
813 * None. Should be called with kernel context, might sleep.
814 */
815
816static unsigned
817ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
818 struct ata_taskfile *tf,
819 int dma_dir, void *buf, unsigned int buflen)
820{
821 u8 command = tf->command;
822 struct ata_queued_cmd *qc;
823 DECLARE_COMPLETION(wait);
824 unsigned long flags;
77853bf2 825 unsigned int err_mask;
a2a7a662
TH
826
827 spin_lock_irqsave(&ap->host_set->lock, flags);
828
829 qc = ata_qc_new_init(ap, dev);
830 BUG_ON(qc == NULL);
831
832 qc->tf = *tf;
833 qc->dma_dir = dma_dir;
834 if (dma_dir != DMA_NONE) {
835 ata_sg_init_one(qc, buf, buflen);
836 qc->nsect = buflen / ATA_SECT_SIZE;
837 }
838
77853bf2 839 qc->private_data = &wait;
a2a7a662
TH
840 qc->complete_fn = ata_qc_complete_internal;
841
9a3d9eb0
TH
842 qc->err_mask = ata_qc_issue(qc);
843 if (qc->err_mask)
8e436af9 844 ata_qc_complete(qc);
a2a7a662
TH
845
846 spin_unlock_irqrestore(&ap->host_set->lock, flags);
847
848 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
849 spin_lock_irqsave(&ap->host_set->lock, flags);
850
851 /* We're racing with irq here. If we lose, the
852 * following test prevents us from completing the qc
853 * again. If completion irq occurs after here but
854 * before the caller cleans up, it will result in a
855 * spurious interrupt. We can live with that.
856 */
77853bf2 857 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 858 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
859 ata_qc_complete(qc);
860 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
861 ap->id, command);
862 }
863
864 spin_unlock_irqrestore(&ap->host_set->lock, flags);
865 }
866
77853bf2
TH
867 *tf = qc->tf;
868 err_mask = qc->err_mask;
869
870 ata_qc_free(qc);
871
872 return err_mask;
a2a7a662
TH
873}
874
1bc4ccff
AC
875/**
876 * ata_pio_need_iordy - check if iordy needed
877 * @adev: ATA device
878 *
879 * Check if the current speed of the device requires IORDY. Used
880 * by various controllers for chip configuration.
881 */
882
883unsigned int ata_pio_need_iordy(const struct ata_device *adev)
884{
885 int pio;
886 int speed = adev->pio_mode - XFER_PIO_0;
887
888 if (speed < 2)
889 return 0;
890 if (speed > 2)
891 return 1;
892
893 /* If we have no drive specific rule, then PIO 2 is non IORDY */
894
895 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
896 pio = adev->id[ATA_ID_EIDE_PIO];
897 /* Is the speed faster than the drive allows non IORDY ? */
898 if (pio) {
899 /* This is cycle times not frequency - watch the logic! */
900 if (pio > 240) /* PIO2 is 240nS per cycle */
901 return 1;
902 return 0;
903 }
904 }
905 return 0;
906}
907
1da177e4 908/**
49016aca
TH
909 * ata_dev_read_id - Read ID data from the specified device
910 * @ap: port on which target device resides
911 * @dev: target device
912 * @p_class: pointer to class of the target device (may be changed)
913 * @post_reset: is this read ID post-reset?
d9572b1d 914 * @p_id: read IDENTIFY page (newly allocated)
1da177e4 915 *
49016aca
TH
916 * Read ID data from the specified device. ATA_CMD_ID_ATA is
917 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
918 * devices. This function also takes care of EDD signature
919 * misreporting (to be removed once EDD support is gone) and
920 * issues ATA_CMD_INIT_DEV_PARAMS for pre-ATA4 drives.
1da177e4
LT
921 *
922 * LOCKING:
49016aca
TH
923 * Kernel thread context (may sleep)
924 *
925 * RETURNS:
926 * 0 on success, -errno otherwise.
1da177e4 927 */
49016aca 928static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
d9572b1d 929 unsigned int *p_class, int post_reset, u16 **p_id)
1da177e4 930{
49016aca 931 unsigned int class = *p_class;
1da177e4 932 unsigned int using_edd;
a0123703 933 struct ata_taskfile tf;
49016aca 934 unsigned int err_mask = 0;
d9572b1d 935 u16 *id;
49016aca
TH
936 const char *reason;
937 int rc;
1da177e4 938
49016aca 939 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 940
61eb066a
TH
941 if (ap->ops->probe_reset ||
942 ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1da177e4
LT
943 using_edd = 0;
944 else
945 using_edd = 1;
946
49016aca 947 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 948
d9572b1d
TH
949 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
950 if (id == NULL) {
951 rc = -ENOMEM;
952 reason = "out of memory";
953 goto err_out;
954 }
955
49016aca
TH
956 retry:
957 ata_tf_init(ap, &tf, dev->devno);
a0123703 958
49016aca
TH
959 switch (class) {
960 case ATA_DEV_ATA:
a0123703 961 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
962 break;
963 case ATA_DEV_ATAPI:
a0123703 964 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
965 break;
966 default:
967 rc = -ENODEV;
968 reason = "unsupported class";
969 goto err_out;
1da177e4
LT
970 }
971
a0123703 972 tf.protocol = ATA_PROT_PIO;
1da177e4 973
a0123703 974 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
49016aca 975 id, sizeof(id[0]) * ATA_ID_WORDS);
1da177e4 976
a0123703 977 if (err_mask) {
49016aca
TH
978 rc = -EIO;
979 reason = "I/O error";
980
a0123703
TH
981 if (err_mask & ~AC_ERR_DEV)
982 goto err_out;
0169e284 983
1da177e4
LT
984 /*
985 * arg! EDD works for all test cases, but seems to return
986 * the ATA signature for some ATAPI devices. Until the
987 * reason for this is found and fixed, we fix up the mess
988 * here. If IDENTIFY DEVICE returns command aborted
989 * (as ATAPI devices do), then we issue an
990 * IDENTIFY PACKET DEVICE.
991 *
992 * ATA software reset (SRST, the default) does not appear
993 * to have this problem.
994 */
49016aca 995 if ((using_edd) && (class == ATA_DEV_ATA)) {
a0123703 996 u8 err = tf.feature;
1da177e4 997 if (err & ATA_ABORTED) {
49016aca 998 class = ATA_DEV_ATAPI;
1da177e4
LT
999 goto retry;
1000 }
1001 }
1002 goto err_out;
1003 }
1004
49016aca 1005 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4
LT
1006
1007 /* print device capabilities */
1008 printk(KERN_DEBUG "ata%u: dev %u cfg "
1009 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
49016aca
TH
1010 ap->id, dev->devno,
1011 id[49], id[82], id[83], id[84], id[85], id[86], id[87], id[88]);
1012
1013 /* sanity check */
1014 if ((class == ATA_DEV_ATA) != ata_id_is_ata(id)) {
1015 rc = -EINVAL;
1016 reason = "device reports illegal type";
1017 goto err_out;
1018 }
1019
1020 if (post_reset && class == ATA_DEV_ATA) {
1021 /*
1022 * The exact sequence expected by certain pre-ATA4 drives is:
1023 * SRST RESET
1024 * IDENTIFY
1025 * INITIALIZE DEVICE PARAMETERS
1026 * anything else..
1027 * Some drives were very specific about that exact sequence.
1028 */
1029 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1030 err_mask = ata_dev_init_params(ap, dev);
1031 if (err_mask) {
1032 rc = -EIO;
1033 reason = "INIT_DEV_PARAMS failed";
1034 goto err_out;
1035 }
1036
1037 /* current CHS translation info (id[53-58]) might be
1038 * changed. reread the identify device info.
1039 */
1040 post_reset = 0;
1041 goto retry;
1042 }
1043 }
1044
1045 *p_class = class;
d9572b1d 1046 *p_id = id;
49016aca
TH
1047 return 0;
1048
1049 err_out:
1050 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1051 ap->id, dev->devno, reason);
d9572b1d 1052 kfree(id);
49016aca
TH
1053 return rc;
1054}
1055
4b2f3ede
TH
1056static inline u8 ata_dev_knobble(const struct ata_port *ap,
1057 struct ata_device *dev)
1058{
1059 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1060}
1061
49016aca 1062/**
ffeae418
TH
1063 * ata_dev_configure - Configure the specified ATA/ATAPI device
1064 * @ap: Port on which target device resides
1065 * @dev: Target device to configure
4c2d721a 1066 * @print_info: Enable device info printout
ffeae418
TH
1067 *
1068 * Configure @dev according to @dev->id. Generic and low-level
1069 * driver specific fixups are also applied.
49016aca
TH
1070 *
1071 * LOCKING:
ffeae418
TH
1072 * Kernel thread context (may sleep)
1073 *
1074 * RETURNS:
1075 * 0 on success, -errno otherwise
49016aca 1076 */
4c2d721a
TH
1077static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1078 int print_info)
49016aca 1079{
49016aca
TH
1080 unsigned long xfer_modes;
1081 int i, rc;
1082
1083 if (!ata_dev_present(dev)) {
1084 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1085 ap->id, dev->devno);
1086 return 0;
49016aca
TH
1087 }
1088
ffeae418 1089 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1090
208a9933
TH
1091 /* initialize to-be-configured parameters */
1092 dev->flags = 0;
1093 dev->max_sectors = 0;
1094 dev->cdb_len = 0;
1095 dev->n_sectors = 0;
1096 dev->cylinders = 0;
1097 dev->heads = 0;
1098 dev->sectors = 0;
1099
1da177e4
LT
1100 /*
1101 * common ATA, ATAPI feature tests
1102 */
1103
8bf62ece
AL
1104 /* we require DMA support (bits 8 of word 49) */
1105 if (!ata_id_has_dma(dev->id)) {
1106 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
ffeae418 1107 rc = -EINVAL;
1da177e4
LT
1108 goto err_out_nosup;
1109 }
1110
1111 /* quick-n-dirty find max transfer mode; for printk only */
1112 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1113 if (!xfer_modes)
1114 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
11e29e21
AC
1115 if (!xfer_modes)
1116 xfer_modes = ata_pio_modes(dev);
1da177e4 1117
0bd3300a 1118 ata_dump_id(dev->id);
1da177e4
LT
1119
1120 /* ATA-specific feature tests */
1121 if (dev->class == ATA_DEV_ATA) {
2940740b
TH
1122 dev->n_sectors = ata_id_n_sectors(dev->id);
1123
8bf62ece 1124 if (ata_id_has_lba(dev->id)) {
4c2d721a 1125 const char *lba_desc;
8bf62ece 1126
4c2d721a
TH
1127 lba_desc = "LBA";
1128 dev->flags |= ATA_DFLAG_LBA;
1129 if (ata_id_has_lba48(dev->id)) {
8bf62ece 1130 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1131 lba_desc = "LBA48";
1132 }
8bf62ece
AL
1133
1134 /* print device info to dmesg */
4c2d721a
TH
1135 if (print_info)
1136 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1137 "max %s, %Lu sectors: %s\n",
1138 ap->id, dev->devno,
1139 ata_id_major_version(dev->id),
1140 ata_mode_string(xfer_modes),
1141 (unsigned long long)dev->n_sectors,
1142 lba_desc);
ffeae418 1143 } else {
8bf62ece
AL
1144 /* CHS */
1145
1146 /* Default translation */
1147 dev->cylinders = dev->id[1];
1148 dev->heads = dev->id[3];
1149 dev->sectors = dev->id[6];
8bf62ece
AL
1150
1151 if (ata_id_current_chs_valid(dev->id)) {
1152 /* Current CHS translation is valid. */
1153 dev->cylinders = dev->id[54];
1154 dev->heads = dev->id[55];
1155 dev->sectors = dev->id[56];
8bf62ece
AL
1156 }
1157
1158 /* print device info to dmesg */
4c2d721a
TH
1159 if (print_info)
1160 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1161 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1162 ap->id, dev->devno,
1163 ata_id_major_version(dev->id),
1164 ata_mode_string(xfer_modes),
1165 (unsigned long long)dev->n_sectors,
1166 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1167 }
1168
6e7846e9 1169 dev->cdb_len = 16;
1da177e4
LT
1170 }
1171
1172 /* ATAPI-specific feature tests */
2c13b7ce 1173 else if (dev->class == ATA_DEV_ATAPI) {
1da177e4
LT
1174 rc = atapi_cdb_len(dev->id);
1175 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1176 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
ffeae418 1177 rc = -EINVAL;
1da177e4
LT
1178 goto err_out_nosup;
1179 }
6e7846e9 1180 dev->cdb_len = (unsigned int) rc;
1da177e4
LT
1181
1182 /* print device info to dmesg */
4c2d721a
TH
1183 if (print_info)
1184 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1185 ap->id, dev->devno, ata_mode_string(xfer_modes));
1da177e4
LT
1186 }
1187
6e7846e9
TH
1188 ap->host->max_cmd_len = 0;
1189 for (i = 0; i < ATA_MAX_DEVICES; i++)
1190 ap->host->max_cmd_len = max_t(unsigned int,
1191 ap->host->max_cmd_len,
1192 ap->device[i].cdb_len);
1193
4b2f3ede
TH
1194 /* limit bridge transfers to udma5, 200 sectors */
1195 if (ata_dev_knobble(ap, dev)) {
4c2d721a
TH
1196 if (print_info)
1197 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1198 ap->id, dev->devno);
4b2f3ede
TH
1199 ap->udma_mask &= ATA_UDMA5;
1200 dev->max_sectors = ATA_MAX_SECTORS;
1201 }
1202
1203 if (ap->ops->dev_config)
1204 ap->ops->dev_config(ap, dev);
1205
1da177e4 1206 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1207 return 0;
1da177e4
LT
1208
1209err_out_nosup:
1210 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
ffeae418 1211 ap->id, dev->devno);
1da177e4 1212 DPRINTK("EXIT, err\n");
ffeae418 1213 return rc;
1da177e4
LT
1214}
1215
1216/**
1217 * ata_bus_probe - Reset and probe ATA bus
1218 * @ap: Bus to probe
1219 *
0cba632b
JG
1220 * Master ATA bus probing function. Initiates a hardware-dependent
1221 * bus reset, then attempts to identify any devices found on
1222 * the bus.
1223 *
1da177e4 1224 * LOCKING:
0cba632b 1225 * PCI/etc. bus probe sem.
1da177e4
LT
1226 *
1227 * RETURNS:
1228 * Zero on success, non-zero on error.
1229 */
1230
1231static int ata_bus_probe(struct ata_port *ap)
1232{
28ca5c57
TH
1233 unsigned int classes[ATA_MAX_DEVICES];
1234 unsigned int i, rc, found = 0;
1da177e4 1235
28ca5c57 1236 ata_port_probe(ap);
c19ba8af 1237
28ca5c57
TH
1238 /* reset */
1239 if (ap->ops->probe_reset) {
c19ba8af 1240 rc = ap->ops->probe_reset(ap, classes);
28ca5c57
TH
1241 if (rc) {
1242 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1243 return rc;
c19ba8af 1244 }
28ca5c57
TH
1245
1246 for (i = 0; i < ATA_MAX_DEVICES; i++)
1247 if (classes[i] == ATA_DEV_UNKNOWN)
1248 classes[i] = ATA_DEV_NONE;
1249 } else {
c19ba8af
TH
1250 ap->ops->phy_reset(ap);
1251
28ca5c57
TH
1252 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1253 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1254 classes[i] = ap->device[i].class;
1255 else
1256 ap->device[i].class = ATA_DEV_UNKNOWN;
1257 }
1258 ata_port_probe(ap);
1259 }
1da177e4 1260
28ca5c57 1261 /* read IDENTIFY page and configure devices */
1da177e4 1262 for (i = 0; i < ATA_MAX_DEVICES; i++) {
ffeae418
TH
1263 struct ata_device *dev = &ap->device[i];
1264
28ca5c57
TH
1265 dev->class = classes[i];
1266
ffeae418
TH
1267 if (!ata_dev_present(dev))
1268 continue;
1269
1270 WARN_ON(dev->id != NULL);
1271 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1272 dev->class = ATA_DEV_NONE;
1273 continue;
1274 }
1275
4c2d721a 1276 if (ata_dev_configure(ap, dev, 1)) {
ffeae418
TH
1277 dev->class++; /* disable device */
1278 continue;
1da177e4 1279 }
ffeae418 1280
ffeae418 1281 found = 1;
1da177e4
LT
1282 }
1283
28ca5c57 1284 if (!found)
1da177e4
LT
1285 goto err_out_disable;
1286
1287 ata_set_mode(ap);
1288 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1289 goto err_out_disable;
1290
1291 return 0;
1292
1293err_out_disable:
1294 ap->ops->port_disable(ap);
1da177e4
LT
1295 return -1;
1296}
1297
1298/**
0cba632b
JG
1299 * ata_port_probe - Mark port as enabled
1300 * @ap: Port for which we indicate enablement
1da177e4 1301 *
0cba632b
JG
1302 * Modify @ap data structure such that the system
1303 * thinks that the entire port is enabled.
1304 *
1305 * LOCKING: host_set lock, or some other form of
1306 * serialization.
1da177e4
LT
1307 */
1308
1309void ata_port_probe(struct ata_port *ap)
1310{
1311 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1312}
1313
3be680b7
TH
1314/**
1315 * sata_print_link_status - Print SATA link status
1316 * @ap: SATA port to printk link status about
1317 *
1318 * This function prints link speed and status of a SATA link.
1319 *
1320 * LOCKING:
1321 * None.
1322 */
1323static void sata_print_link_status(struct ata_port *ap)
1324{
1325 u32 sstatus, tmp;
1326 const char *speed;
1327
1328 if (!ap->ops->scr_read)
1329 return;
1330
1331 sstatus = scr_read(ap, SCR_STATUS);
1332
1333 if (sata_dev_present(ap)) {
1334 tmp = (sstatus >> 4) & 0xf;
1335 if (tmp & (1 << 0))
1336 speed = "1.5";
1337 else if (tmp & (1 << 1))
1338 speed = "3.0";
1339 else
1340 speed = "<unknown>";
1341 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1342 ap->id, speed, sstatus);
1343 } else {
1344 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1345 ap->id, sstatus);
1346 }
1347}
1348
1da177e4 1349/**
780a87f7
JG
1350 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1351 * @ap: SATA port associated with target SATA PHY.
1da177e4 1352 *
780a87f7
JG
1353 * This function issues commands to standard SATA Sxxx
1354 * PHY registers, to wake up the phy (and device), and
1355 * clear any reset condition.
1da177e4
LT
1356 *
1357 * LOCKING:
0cba632b 1358 * PCI/etc. bus probe sem.
1da177e4
LT
1359 *
1360 */
1361void __sata_phy_reset(struct ata_port *ap)
1362{
1363 u32 sstatus;
1364 unsigned long timeout = jiffies + (HZ * 5);
1365
1366 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1367 /* issue phy wake/reset */
1368 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1369 /* Couldn't find anything in SATA I/II specs, but
1370 * AHCI-1.1 10.4.2 says at least 1 ms. */
1371 mdelay(1);
1da177e4 1372 }
cdcca89e 1373 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1374
1375 /* wait for phy to become ready, if necessary */
1376 do {
1377 msleep(200);
1378 sstatus = scr_read(ap, SCR_STATUS);
1379 if ((sstatus & 0xf) != 1)
1380 break;
1381 } while (time_before(jiffies, timeout));
1382
3be680b7
TH
1383 /* print link status */
1384 sata_print_link_status(ap);
656563e3 1385
3be680b7
TH
1386 /* TODO: phy layer with polling, timeouts, etc. */
1387 if (sata_dev_present(ap))
1da177e4 1388 ata_port_probe(ap);
3be680b7 1389 else
1da177e4 1390 ata_port_disable(ap);
1da177e4
LT
1391
1392 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1393 return;
1394
1395 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1396 ata_port_disable(ap);
1397 return;
1398 }
1399
1400 ap->cbl = ATA_CBL_SATA;
1401}
1402
1403/**
780a87f7
JG
1404 * sata_phy_reset - Reset SATA bus.
1405 * @ap: SATA port associated with target SATA PHY.
1da177e4 1406 *
780a87f7
JG
1407 * This function resets the SATA bus, and then probes
1408 * the bus for devices.
1da177e4
LT
1409 *
1410 * LOCKING:
0cba632b 1411 * PCI/etc. bus probe sem.
1da177e4
LT
1412 *
1413 */
1414void sata_phy_reset(struct ata_port *ap)
1415{
1416 __sata_phy_reset(ap);
1417 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1418 return;
1419 ata_bus_reset(ap);
1420}
1421
1422/**
780a87f7
JG
1423 * ata_port_disable - Disable port.
1424 * @ap: Port to be disabled.
1da177e4 1425 *
780a87f7
JG
1426 * Modify @ap data structure such that the system
1427 * thinks that the entire port is disabled, and should
1428 * never attempt to probe or communicate with devices
1429 * on this port.
1430 *
1431 * LOCKING: host_set lock, or some other form of
1432 * serialization.
1da177e4
LT
1433 */
1434
1435void ata_port_disable(struct ata_port *ap)
1436{
1437 ap->device[0].class = ATA_DEV_NONE;
1438 ap->device[1].class = ATA_DEV_NONE;
1439 ap->flags |= ATA_FLAG_PORT_DISABLED;
1440}
1441
452503f9
AC
1442/*
1443 * This mode timing computation functionality is ported over from
1444 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1445 */
1446/*
1447 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1448 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1449 * for PIO 5, which is a nonstandard extension and UDMA6, which
1450 * is currently supported only by Maxtor drives.
1451 */
1452
1453static const struct ata_timing ata_timing[] = {
1454
1455 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1456 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1457 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1458 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1459
1460 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1461 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1462 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1463
1464/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1465
1466 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1467 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1468 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1469
1470 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1471 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1472 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1473
1474/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1475 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1476 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1477
1478 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1479 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1480 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1481
1482/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1483
1484 { 0xFF }
1485};
1486
1487#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1488#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1489
1490static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1491{
1492 q->setup = EZ(t->setup * 1000, T);
1493 q->act8b = EZ(t->act8b * 1000, T);
1494 q->rec8b = EZ(t->rec8b * 1000, T);
1495 q->cyc8b = EZ(t->cyc8b * 1000, T);
1496 q->active = EZ(t->active * 1000, T);
1497 q->recover = EZ(t->recover * 1000, T);
1498 q->cycle = EZ(t->cycle * 1000, T);
1499 q->udma = EZ(t->udma * 1000, UT);
1500}
1501
1502void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1503 struct ata_timing *m, unsigned int what)
1504{
1505 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1506 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1507 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1508 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1509 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1510 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1511 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1512 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1513}
1514
1515static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1516{
1517 const struct ata_timing *t;
1518
1519 for (t = ata_timing; t->mode != speed; t++)
91190758 1520 if (t->mode == 0xFF)
452503f9
AC
1521 return NULL;
1522 return t;
1523}
1524
1525int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1526 struct ata_timing *t, int T, int UT)
1527{
1528 const struct ata_timing *s;
1529 struct ata_timing p;
1530
1531 /*
1532 * Find the mode.
75b1f2f8 1533 */
452503f9
AC
1534
1535 if (!(s = ata_timing_find_mode(speed)))
1536 return -EINVAL;
1537
75b1f2f8
AL
1538 memcpy(t, s, sizeof(*s));
1539
452503f9
AC
1540 /*
1541 * If the drive is an EIDE drive, it can tell us it needs extended
1542 * PIO/MW_DMA cycle timing.
1543 */
1544
1545 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1546 memset(&p, 0, sizeof(p));
1547 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1548 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1549 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1550 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1551 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1552 }
1553 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1554 }
1555
1556 /*
1557 * Convert the timing to bus clock counts.
1558 */
1559
75b1f2f8 1560 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1561
1562 /*
c893a3ae
RD
1563 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1564 * S.M.A.R.T * and some other commands. We have to ensure that the
1565 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1566 */
1567
1568 if (speed > XFER_PIO_4) {
1569 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1570 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1571 }
1572
1573 /*
c893a3ae 1574 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1575 */
1576
1577 if (t->act8b + t->rec8b < t->cyc8b) {
1578 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1579 t->rec8b = t->cyc8b - t->act8b;
1580 }
1581
1582 if (t->active + t->recover < t->cycle) {
1583 t->active += (t->cycle - (t->active + t->recover)) / 2;
1584 t->recover = t->cycle - t->active;
1585 }
1586
1587 return 0;
1588}
1589
057ace5e 1590static const struct {
1da177e4
LT
1591 unsigned int shift;
1592 u8 base;
1593} xfer_mode_classes[] = {
1594 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1595 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1596 { ATA_SHIFT_PIO, XFER_PIO_0 },
1597};
1598
858119e1 1599static u8 base_from_shift(unsigned int shift)
1da177e4
LT
1600{
1601 int i;
1602
1603 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1604 if (xfer_mode_classes[i].shift == shift)
1605 return xfer_mode_classes[i].base;
1606
1607 return 0xff;
1608}
1609
1610static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1611{
1612 int ofs, idx;
1613 u8 base;
1614
1615 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1616 return;
1617
1618 if (dev->xfer_shift == ATA_SHIFT_PIO)
1619 dev->flags |= ATA_DFLAG_PIO;
1620
1621 ata_dev_set_xfermode(ap, dev);
1622
1623 base = base_from_shift(dev->xfer_shift);
1624 ofs = dev->xfer_mode - base;
1625 idx = ofs + dev->xfer_shift;
1626 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1627
1628 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1629 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1630
1631 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1632 ap->id, dev->devno, xfer_mode_str[idx]);
1633}
1634
1635static int ata_host_set_pio(struct ata_port *ap)
1636{
1637 unsigned int mask;
1638 int x, i;
1639 u8 base, xfer_mode;
1640
1641 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1642 x = fgb(mask);
1643 if (x < 0) {
1644 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1645 return -1;
1646 }
1647
1648 base = base_from_shift(ATA_SHIFT_PIO);
1649 xfer_mode = base + x;
1650
1651 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1652 (int)base, (int)xfer_mode, mask, x);
1653
1654 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1655 struct ata_device *dev = &ap->device[i];
1656 if (ata_dev_present(dev)) {
1657 dev->pio_mode = xfer_mode;
1658 dev->xfer_mode = xfer_mode;
1659 dev->xfer_shift = ATA_SHIFT_PIO;
1660 if (ap->ops->set_piomode)
1661 ap->ops->set_piomode(ap, dev);
1662 }
1663 }
1664
1665 return 0;
1666}
1667
1668static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1669 unsigned int xfer_shift)
1670{
1671 int i;
1672
1673 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1674 struct ata_device *dev = &ap->device[i];
1675 if (ata_dev_present(dev)) {
1676 dev->dma_mode = xfer_mode;
1677 dev->xfer_mode = xfer_mode;
1678 dev->xfer_shift = xfer_shift;
1679 if (ap->ops->set_dmamode)
1680 ap->ops->set_dmamode(ap, dev);
1681 }
1682 }
1683}
1684
1685/**
1686 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1687 * @ap: port on which timings will be programmed
1688 *
780a87f7
JG
1689 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1690 *
1da177e4 1691 * LOCKING:
0cba632b 1692 * PCI/etc. bus probe sem.
1da177e4
LT
1693 */
1694static void ata_set_mode(struct ata_port *ap)
1695{
8cbd6df1 1696 unsigned int xfer_shift;
1da177e4
LT
1697 u8 xfer_mode;
1698 int rc;
1699
1700 /* step 1: always set host PIO timings */
1701 rc = ata_host_set_pio(ap);
1702 if (rc)
1703 goto err_out;
1704
1705 /* step 2: choose the best data xfer mode */
1706 xfer_mode = xfer_shift = 0;
1707 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1708 if (rc)
1709 goto err_out;
1710
1711 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1712 if (xfer_shift != ATA_SHIFT_PIO)
1713 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1714
1715 /* step 4: update devices' xfer mode */
1716 ata_dev_set_mode(ap, &ap->device[0]);
1717 ata_dev_set_mode(ap, &ap->device[1]);
1718
1719 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1720 return;
1721
1722 if (ap->ops->post_set_mode)
1723 ap->ops->post_set_mode(ap);
1724
1da177e4
LT
1725 return;
1726
1727err_out:
1728 ata_port_disable(ap);
1729}
1730
1fdffbce
JG
1731/**
1732 * ata_tf_to_host - issue ATA taskfile to host controller
1733 * @ap: port to which command is being issued
1734 * @tf: ATA taskfile register set
1735 *
1736 * Issues ATA taskfile register set to ATA host controller,
1737 * with proper synchronization with interrupt handler and
1738 * other threads.
1739 *
1740 * LOCKING:
1741 * spin_lock_irqsave(host_set lock)
1742 */
1743
1744static inline void ata_tf_to_host(struct ata_port *ap,
1745 const struct ata_taskfile *tf)
1746{
1747 ap->ops->tf_load(ap, tf);
1748 ap->ops->exec_command(ap, tf);
1749}
1750
1da177e4
LT
1751/**
1752 * ata_busy_sleep - sleep until BSY clears, or timeout
1753 * @ap: port containing status register to be polled
1754 * @tmout_pat: impatience timeout
1755 * @tmout: overall timeout
1756 *
780a87f7
JG
1757 * Sleep until ATA Status register bit BSY clears,
1758 * or a timeout occurs.
1759 *
1760 * LOCKING: None.
1da177e4
LT
1761 */
1762
6f8b9958
TH
1763unsigned int ata_busy_sleep (struct ata_port *ap,
1764 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
1765{
1766 unsigned long timer_start, timeout;
1767 u8 status;
1768
1769 status = ata_busy_wait(ap, ATA_BUSY, 300);
1770 timer_start = jiffies;
1771 timeout = timer_start + tmout_pat;
1772 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1773 msleep(50);
1774 status = ata_busy_wait(ap, ATA_BUSY, 3);
1775 }
1776
1777 if (status & ATA_BUSY)
1778 printk(KERN_WARNING "ata%u is slow to respond, "
1779 "please be patient\n", ap->id);
1780
1781 timeout = timer_start + tmout;
1782 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1783 msleep(50);
1784 status = ata_chk_status(ap);
1785 }
1786
1787 if (status & ATA_BUSY) {
1788 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1789 ap->id, tmout / HZ);
1790 return 1;
1791 }
1792
1793 return 0;
1794}
1795
1796static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1797{
1798 struct ata_ioports *ioaddr = &ap->ioaddr;
1799 unsigned int dev0 = devmask & (1 << 0);
1800 unsigned int dev1 = devmask & (1 << 1);
1801 unsigned long timeout;
1802
1803 /* if device 0 was found in ata_devchk, wait for its
1804 * BSY bit to clear
1805 */
1806 if (dev0)
1807 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1808
1809 /* if device 1 was found in ata_devchk, wait for
1810 * register access, then wait for BSY to clear
1811 */
1812 timeout = jiffies + ATA_TMOUT_BOOT;
1813 while (dev1) {
1814 u8 nsect, lbal;
1815
1816 ap->ops->dev_select(ap, 1);
1817 if (ap->flags & ATA_FLAG_MMIO) {
1818 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1819 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1820 } else {
1821 nsect = inb(ioaddr->nsect_addr);
1822 lbal = inb(ioaddr->lbal_addr);
1823 }
1824 if ((nsect == 1) && (lbal == 1))
1825 break;
1826 if (time_after(jiffies, timeout)) {
1827 dev1 = 0;
1828 break;
1829 }
1830 msleep(50); /* give drive a breather */
1831 }
1832 if (dev1)
1833 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1834
1835 /* is all this really necessary? */
1836 ap->ops->dev_select(ap, 0);
1837 if (dev1)
1838 ap->ops->dev_select(ap, 1);
1839 if (dev0)
1840 ap->ops->dev_select(ap, 0);
1841}
1842
1843/**
0cba632b
JG
1844 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1845 * @ap: Port to reset and probe
1846 *
1847 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1848 * probe the bus. Not often used these days.
1da177e4
LT
1849 *
1850 * LOCKING:
0cba632b 1851 * PCI/etc. bus probe sem.
e5338254 1852 * Obtains host_set lock.
1da177e4
LT
1853 *
1854 */
1855
1856static unsigned int ata_bus_edd(struct ata_port *ap)
1857{
1858 struct ata_taskfile tf;
e5338254 1859 unsigned long flags;
1da177e4
LT
1860
1861 /* set up execute-device-diag (bus reset) taskfile */
1862 /* also, take interrupts to a known state (disabled) */
1863 DPRINTK("execute-device-diag\n");
1864 ata_tf_init(ap, &tf, 0);
1865 tf.ctl |= ATA_NIEN;
1866 tf.command = ATA_CMD_EDD;
1867 tf.protocol = ATA_PROT_NODATA;
1868
1869 /* do bus reset */
e5338254 1870 spin_lock_irqsave(&ap->host_set->lock, flags);
1da177e4 1871 ata_tf_to_host(ap, &tf);
e5338254 1872 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1da177e4
LT
1873
1874 /* spec says at least 2ms. but who knows with those
1875 * crazy ATAPI devices...
1876 */
1877 msleep(150);
1878
1879 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1880}
1881
1882static unsigned int ata_bus_softreset(struct ata_port *ap,
1883 unsigned int devmask)
1884{
1885 struct ata_ioports *ioaddr = &ap->ioaddr;
1886
1887 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1888
1889 /* software reset. causes dev0 to be selected */
1890 if (ap->flags & ATA_FLAG_MMIO) {
1891 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1892 udelay(20); /* FIXME: flush */
1893 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1894 udelay(20); /* FIXME: flush */
1895 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1896 } else {
1897 outb(ap->ctl, ioaddr->ctl_addr);
1898 udelay(10);
1899 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1900 udelay(10);
1901 outb(ap->ctl, ioaddr->ctl_addr);
1902 }
1903
1904 /* spec mandates ">= 2ms" before checking status.
1905 * We wait 150ms, because that was the magic delay used for
1906 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1907 * between when the ATA command register is written, and then
1908 * status is checked. Because waiting for "a while" before
1909 * checking status is fine, post SRST, we perform this magic
1910 * delay here as well.
1911 */
1912 msleep(150);
1913
1914 ata_bus_post_reset(ap, devmask);
1915
1916 return 0;
1917}
1918
1919/**
1920 * ata_bus_reset - reset host port and associated ATA channel
1921 * @ap: port to reset
1922 *
1923 * This is typically the first time we actually start issuing
1924 * commands to the ATA channel. We wait for BSY to clear, then
1925 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1926 * result. Determine what devices, if any, are on the channel
1927 * by looking at the device 0/1 error register. Look at the signature
1928 * stored in each device's taskfile registers, to determine if
1929 * the device is ATA or ATAPI.
1930 *
1931 * LOCKING:
0cba632b
JG
1932 * PCI/etc. bus probe sem.
1933 * Obtains host_set lock.
1da177e4
LT
1934 *
1935 * SIDE EFFECTS:
1936 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1937 */
1938
1939void ata_bus_reset(struct ata_port *ap)
1940{
1941 struct ata_ioports *ioaddr = &ap->ioaddr;
1942 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1943 u8 err;
1944 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1945
1946 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1947
1948 /* determine if device 0/1 are present */
1949 if (ap->flags & ATA_FLAG_SATA_RESET)
1950 dev0 = 1;
1951 else {
1952 dev0 = ata_devchk(ap, 0);
1953 if (slave_possible)
1954 dev1 = ata_devchk(ap, 1);
1955 }
1956
1957 if (dev0)
1958 devmask |= (1 << 0);
1959 if (dev1)
1960 devmask |= (1 << 1);
1961
1962 /* select device 0 again */
1963 ap->ops->dev_select(ap, 0);
1964
1965 /* issue bus reset */
1966 if (ap->flags & ATA_FLAG_SRST)
1967 rc = ata_bus_softreset(ap, devmask);
1968 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1969 /* set up device control */
1970 if (ap->flags & ATA_FLAG_MMIO)
1971 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1972 else
1973 outb(ap->ctl, ioaddr->ctl_addr);
1974 rc = ata_bus_edd(ap);
1975 }
1976
1977 if (rc)
1978 goto err_out;
1979
1980 /*
1981 * determine by signature whether we have ATA or ATAPI devices
1982 */
b4dc7623 1983 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 1984 if ((slave_possible) && (err != 0x81))
b4dc7623 1985 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
1986
1987 /* re-enable interrupts */
1988 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
1989 ata_irq_on(ap);
1990
1991 /* is double-select really necessary? */
1992 if (ap->device[1].class != ATA_DEV_NONE)
1993 ap->ops->dev_select(ap, 1);
1994 if (ap->device[0].class != ATA_DEV_NONE)
1995 ap->ops->dev_select(ap, 0);
1996
1997 /* if no devices were detected, disable this port */
1998 if ((ap->device[0].class == ATA_DEV_NONE) &&
1999 (ap->device[1].class == ATA_DEV_NONE))
2000 goto err_out;
2001
2002 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2003 /* set up device control for ATA_FLAG_SATA_RESET */
2004 if (ap->flags & ATA_FLAG_MMIO)
2005 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2006 else
2007 outb(ap->ctl, ioaddr->ctl_addr);
2008 }
2009
2010 DPRINTK("EXIT\n");
2011 return;
2012
2013err_out:
2014 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2015 ap->ops->port_disable(ap);
2016
2017 DPRINTK("EXIT\n");
2018}
2019
7a7921e8
TH
2020static int sata_phy_resume(struct ata_port *ap)
2021{
2022 unsigned long timeout = jiffies + (HZ * 5);
2023 u32 sstatus;
2024
2025 scr_write_flush(ap, SCR_CONTROL, 0x300);
2026
2027 /* Wait for phy to become ready, if necessary. */
2028 do {
2029 msleep(200);
2030 sstatus = scr_read(ap, SCR_STATUS);
2031 if ((sstatus & 0xf) != 1)
2032 return 0;
2033 } while (time_before(jiffies, timeout));
2034
2035 return -1;
2036}
2037
8a19ac89
TH
2038/**
2039 * ata_std_probeinit - initialize probing
2040 * @ap: port to be probed
2041 *
2042 * @ap is about to be probed. Initialize it. This function is
2043 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2044 *
2045 * NOTE!!! Do not use this function as probeinit if a low level
2046 * driver implements only hardreset. Just pass NULL as probeinit
2047 * in that case. Using this function is probably okay but doing
2048 * so makes reset sequence different from the original
2049 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89
TH
2050 */
2051extern void ata_std_probeinit(struct ata_port *ap)
2052{
3a39746a 2053 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) {
8a19ac89 2054 sata_phy_resume(ap);
3a39746a
TH
2055 if (sata_dev_present(ap))
2056 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2057 }
8a19ac89
TH
2058}
2059
c2bd5804
TH
2060/**
2061 * ata_std_softreset - reset host port via ATA SRST
2062 * @ap: port to reset
2063 * @verbose: fail verbosely
2064 * @classes: resulting classes of attached devices
2065 *
2066 * Reset host port using ATA SRST. This function is to be used
2067 * as standard callback for ata_drive_*_reset() functions.
2068 *
2069 * LOCKING:
2070 * Kernel thread context (may sleep)
2071 *
2072 * RETURNS:
2073 * 0 on success, -errno otherwise.
2074 */
2075int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2076{
2077 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2078 unsigned int devmask = 0, err_mask;
2079 u8 err;
2080
2081 DPRINTK("ENTER\n");
2082
3a39746a
TH
2083 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2084 classes[0] = ATA_DEV_NONE;
2085 goto out;
2086 }
2087
c2bd5804
TH
2088 /* determine if device 0/1 are present */
2089 if (ata_devchk(ap, 0))
2090 devmask |= (1 << 0);
2091 if (slave_possible && ata_devchk(ap, 1))
2092 devmask |= (1 << 1);
2093
c2bd5804
TH
2094 /* select device 0 again */
2095 ap->ops->dev_select(ap, 0);
2096
2097 /* issue bus reset */
2098 DPRINTK("about to softreset, devmask=%x\n", devmask);
2099 err_mask = ata_bus_softreset(ap, devmask);
2100 if (err_mask) {
2101 if (verbose)
2102 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2103 ap->id, err_mask);
2104 else
2105 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2106 err_mask);
2107 return -EIO;
2108 }
2109
2110 /* determine by signature whether we have ATA or ATAPI devices */
2111 classes[0] = ata_dev_try_classify(ap, 0, &err);
2112 if (slave_possible && err != 0x81)
2113 classes[1] = ata_dev_try_classify(ap, 1, &err);
2114
3a39746a 2115 out:
c2bd5804
TH
2116 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2117 return 0;
2118}
2119
2120/**
2121 * sata_std_hardreset - reset host port via SATA phy reset
2122 * @ap: port to reset
2123 * @verbose: fail verbosely
2124 * @class: resulting class of attached device
2125 *
2126 * SATA phy-reset host port using DET bits of SControl register.
2127 * This function is to be used as standard callback for
2128 * ata_drive_*_reset().
2129 *
2130 * LOCKING:
2131 * Kernel thread context (may sleep)
2132 *
2133 * RETURNS:
2134 * 0 on success, -errno otherwise.
2135 */
2136int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2137{
c2bd5804
TH
2138 DPRINTK("ENTER\n");
2139
2140 /* Issue phy wake/reset */
2141 scr_write_flush(ap, SCR_CONTROL, 0x301);
2142
2143 /*
2144 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2145 * 10.4.2 says at least 1 ms.
2146 */
2147 msleep(1);
2148
7a7921e8
TH
2149 /* Bring phy back */
2150 sata_phy_resume(ap);
c2bd5804 2151
c2bd5804
TH
2152 /* TODO: phy layer with polling, timeouts, etc. */
2153 if (!sata_dev_present(ap)) {
2154 *class = ATA_DEV_NONE;
2155 DPRINTK("EXIT, link offline\n");
2156 return 0;
2157 }
2158
2159 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2160 if (verbose)
2161 printk(KERN_ERR "ata%u: COMRESET failed "
2162 "(device not ready)\n", ap->id);
2163 else
2164 DPRINTK("EXIT, device not ready\n");
2165 return -EIO;
2166 }
2167
3a39746a
TH
2168 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2169
c2bd5804
TH
2170 *class = ata_dev_try_classify(ap, 0, NULL);
2171
2172 DPRINTK("EXIT, class=%u\n", *class);
2173 return 0;
2174}
2175
2176/**
2177 * ata_std_postreset - standard postreset callback
2178 * @ap: the target ata_port
2179 * @classes: classes of attached devices
2180 *
2181 * This function is invoked after a successful reset. Note that
2182 * the device might have been reset more than once using
2183 * different reset methods before postreset is invoked.
c2bd5804
TH
2184 *
2185 * This function is to be used as standard callback for
2186 * ata_drive_*_reset().
2187 *
2188 * LOCKING:
2189 * Kernel thread context (may sleep)
2190 */
2191void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2192{
2193 DPRINTK("ENTER\n");
2194
56497bd5 2195 /* set cable type if it isn't already set */
c2bd5804
TH
2196 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2197 ap->cbl = ATA_CBL_SATA;
2198
2199 /* print link status */
2200 if (ap->cbl == ATA_CBL_SATA)
2201 sata_print_link_status(ap);
2202
3a39746a
TH
2203 /* re-enable interrupts */
2204 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2205 ata_irq_on(ap);
c2bd5804
TH
2206
2207 /* is double-select really necessary? */
2208 if (classes[0] != ATA_DEV_NONE)
2209 ap->ops->dev_select(ap, 1);
2210 if (classes[1] != ATA_DEV_NONE)
2211 ap->ops->dev_select(ap, 0);
2212
3a39746a
TH
2213 /* bail out if no device is present */
2214 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2215 DPRINTK("EXIT, no device\n");
2216 return;
2217 }
2218
2219 /* set up device control */
2220 if (ap->ioaddr.ctl_addr) {
2221 if (ap->flags & ATA_FLAG_MMIO)
2222 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2223 else
2224 outb(ap->ctl, ap->ioaddr.ctl_addr);
2225 }
c2bd5804
TH
2226
2227 DPRINTK("EXIT\n");
2228}
2229
2230/**
2231 * ata_std_probe_reset - standard probe reset method
2232 * @ap: prot to perform probe-reset
2233 * @classes: resulting classes of attached devices
2234 *
2235 * The stock off-the-shelf ->probe_reset method.
2236 *
2237 * LOCKING:
2238 * Kernel thread context (may sleep)
2239 *
2240 * RETURNS:
2241 * 0 on success, -errno otherwise.
2242 */
2243int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2244{
2245 ata_reset_fn_t hardreset;
2246
2247 hardreset = NULL;
b911fc3a 2248 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
c2bd5804
TH
2249 hardreset = sata_std_hardreset;
2250
8a19ac89 2251 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2252 ata_std_softreset, hardreset,
c2bd5804
TH
2253 ata_std_postreset, classes);
2254}
2255
a62c0fc5
TH
2256static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2257 ata_postreset_fn_t postreset,
2258 unsigned int *classes)
2259{
2260 int i, rc;
2261
2262 for (i = 0; i < ATA_MAX_DEVICES; i++)
2263 classes[i] = ATA_DEV_UNKNOWN;
2264
2265 rc = reset(ap, 0, classes);
2266 if (rc)
2267 return rc;
2268
2269 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2270 * is complete and convert all ATA_DEV_UNKNOWN to
2271 * ATA_DEV_NONE.
2272 */
2273 for (i = 0; i < ATA_MAX_DEVICES; i++)
2274 if (classes[i] != ATA_DEV_UNKNOWN)
2275 break;
2276
2277 if (i < ATA_MAX_DEVICES)
2278 for (i = 0; i < ATA_MAX_DEVICES; i++)
2279 if (classes[i] == ATA_DEV_UNKNOWN)
2280 classes[i] = ATA_DEV_NONE;
2281
2282 if (postreset)
2283 postreset(ap, classes);
2284
2285 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2286}
2287
2288/**
2289 * ata_drive_probe_reset - Perform probe reset with given methods
2290 * @ap: port to reset
7944ea95 2291 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2292 * @softreset: softreset method (can be NULL)
2293 * @hardreset: hardreset method (can be NULL)
2294 * @postreset: postreset method (can be NULL)
2295 * @classes: resulting classes of attached devices
2296 *
2297 * Reset the specified port and classify attached devices using
2298 * given methods. This function prefers softreset but tries all
2299 * possible reset sequences to reset and classify devices. This
2300 * function is intended to be used for constructing ->probe_reset
2301 * callback by low level drivers.
2302 *
2303 * Reset methods should follow the following rules.
2304 *
2305 * - Return 0 on sucess, -errno on failure.
2306 * - If classification is supported, fill classes[] with
2307 * recognized class codes.
2308 * - If classification is not supported, leave classes[] alone.
2309 * - If verbose is non-zero, print error message on failure;
2310 * otherwise, shut up.
2311 *
2312 * LOCKING:
2313 * Kernel thread context (may sleep)
2314 *
2315 * RETURNS:
2316 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2317 * if classification fails, and any error code from reset
2318 * methods.
2319 */
7944ea95 2320int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2321 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2322 ata_postreset_fn_t postreset, unsigned int *classes)
2323{
2324 int rc = -EINVAL;
2325
7944ea95
TH
2326 if (probeinit)
2327 probeinit(ap);
2328
a62c0fc5
TH
2329 if (softreset) {
2330 rc = do_probe_reset(ap, softreset, postreset, classes);
2331 if (rc == 0)
2332 return 0;
2333 }
2334
2335 if (!hardreset)
2336 return rc;
2337
2338 rc = do_probe_reset(ap, hardreset, postreset, classes);
2339 if (rc == 0 || rc != -ENODEV)
2340 return rc;
2341
2342 if (softreset)
2343 rc = do_probe_reset(ap, softreset, postreset, classes);
2344
2345 return rc;
2346}
2347
057ace5e
JG
2348static void ata_pr_blacklisted(const struct ata_port *ap,
2349 const struct ata_device *dev)
1da177e4
LT
2350{
2351 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2352 ap->id, dev->devno);
2353}
2354
98ac62de 2355static const char * const ata_dma_blacklist [] = {
1da177e4
LT
2356 "WDC AC11000H",
2357 "WDC AC22100H",
2358 "WDC AC32500H",
2359 "WDC AC33100H",
2360 "WDC AC31600H",
2361 "WDC AC32100H",
2362 "WDC AC23200L",
2363 "Compaq CRD-8241B",
2364 "CRD-8400B",
2365 "CRD-8480B",
2366 "CRD-8482B",
2367 "CRD-84",
2368 "SanDisk SDP3B",
2369 "SanDisk SDP3B-64",
2370 "SANYO CD-ROM CRD",
2371 "HITACHI CDR-8",
2372 "HITACHI CDR-8335",
2373 "HITACHI CDR-8435",
2374 "Toshiba CD-ROM XM-6202B",
e922256a 2375 "TOSHIBA CD-ROM XM-1702BC",
1da177e4
LT
2376 "CD-532E-A",
2377 "E-IDE CD-ROM CR-840",
2378 "CD-ROM Drive/F5A",
2379 "WPI CDD-820",
2380 "SAMSUNG CD-ROM SC-148C",
2381 "SAMSUNG CD-ROM SC",
2382 "SanDisk SDP3B-64",
1da177e4
LT
2383 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2384 "_NEC DV5800A",
2385};
2386
057ace5e 2387static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2388{
2e02671d 2389 unsigned char model_num[41];
1da177e4
LT
2390 int i;
2391
6a62a04d 2392 ata_id_c_string(dev->id, model_num, ATA_ID_PROD_OFS, sizeof(model_num));
1da177e4
LT
2393
2394 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2e02671d 2395 if (!strcmp(ata_dma_blacklist[i], model_num))
1da177e4
LT
2396 return 1;
2397
2398 return 0;
2399}
2400
057ace5e 2401static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
1da177e4 2402{
057ace5e 2403 const struct ata_device *master, *slave;
1da177e4
LT
2404 unsigned int mask;
2405
2406 master = &ap->device[0];
2407 slave = &ap->device[1];
2408
a4631474 2409 WARN_ON(!ata_dev_present(master) && !ata_dev_present(slave));
1da177e4
LT
2410
2411 if (shift == ATA_SHIFT_UDMA) {
2412 mask = ap->udma_mask;
2413 if (ata_dev_present(master)) {
2414 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
057ace5e 2415 if (ata_dma_blacklisted(master)) {
1da177e4
LT
2416 mask = 0;
2417 ata_pr_blacklisted(ap, master);
2418 }
2419 }
2420 if (ata_dev_present(slave)) {
2421 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
057ace5e 2422 if (ata_dma_blacklisted(slave)) {
1da177e4
LT
2423 mask = 0;
2424 ata_pr_blacklisted(ap, slave);
2425 }
2426 }
2427 }
2428 else if (shift == ATA_SHIFT_MWDMA) {
2429 mask = ap->mwdma_mask;
2430 if (ata_dev_present(master)) {
2431 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
057ace5e 2432 if (ata_dma_blacklisted(master)) {
1da177e4
LT
2433 mask = 0;
2434 ata_pr_blacklisted(ap, master);
2435 }
2436 }
2437 if (ata_dev_present(slave)) {
2438 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
057ace5e 2439 if (ata_dma_blacklisted(slave)) {
1da177e4
LT
2440 mask = 0;
2441 ata_pr_blacklisted(ap, slave);
2442 }
2443 }
2444 }
2445 else if (shift == ATA_SHIFT_PIO) {
2446 mask = ap->pio_mask;
2447 if (ata_dev_present(master)) {
2448 /* spec doesn't return explicit support for
2449 * PIO0-2, so we fake it
2450 */
2451 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2452 tmp_mode <<= 3;
2453 tmp_mode |= 0x7;
2454 mask &= tmp_mode;
2455 }
2456 if (ata_dev_present(slave)) {
2457 /* spec doesn't return explicit support for
2458 * PIO0-2, so we fake it
2459 */
2460 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2461 tmp_mode <<= 3;
2462 tmp_mode |= 0x7;
2463 mask &= tmp_mode;
2464 }
2465 }
2466 else {
2467 mask = 0xffffffff; /* shut up compiler warning */
2468 BUG();
2469 }
2470
2471 return mask;
2472}
2473
2474/* find greatest bit */
2475static int fgb(u32 bitmap)
2476{
2477 unsigned int i;
2478 int x = -1;
2479
2480 for (i = 0; i < 32; i++)
2481 if (bitmap & (1 << i))
2482 x = i;
2483
2484 return x;
2485}
2486
2487/**
2488 * ata_choose_xfer_mode - attempt to find best transfer mode
2489 * @ap: Port for which an xfer mode will be selected
2490 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2491 * @xfer_shift_out: (output) bit shift that selects this mode
2492 *
0cba632b
JG
2493 * Based on host and device capabilities, determine the
2494 * maximum transfer mode that is amenable to all.
2495 *
1da177e4 2496 * LOCKING:
0cba632b 2497 * PCI/etc. bus probe sem.
1da177e4
LT
2498 *
2499 * RETURNS:
2500 * Zero on success, negative on error.
2501 */
2502
057ace5e 2503static int ata_choose_xfer_mode(const struct ata_port *ap,
1da177e4
LT
2504 u8 *xfer_mode_out,
2505 unsigned int *xfer_shift_out)
2506{
2507 unsigned int mask, shift;
2508 int x, i;
2509
2510 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2511 shift = xfer_mode_classes[i].shift;
2512 mask = ata_get_mode_mask(ap, shift);
2513
2514 x = fgb(mask);
2515 if (x >= 0) {
2516 *xfer_mode_out = xfer_mode_classes[i].base + x;
2517 *xfer_shift_out = shift;
2518 return 0;
2519 }
2520 }
2521
2522 return -1;
2523}
2524
2525/**
2526 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2527 * @ap: Port associated with device @dev
2528 * @dev: Device to which command will be sent
2529 *
780a87f7
JG
2530 * Issue SET FEATURES - XFER MODE command to device @dev
2531 * on port @ap.
2532 *
1da177e4 2533 * LOCKING:
0cba632b 2534 * PCI/etc. bus probe sem.
1da177e4
LT
2535 */
2536
2537static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2538{
a0123703 2539 struct ata_taskfile tf;
1da177e4
LT
2540
2541 /* set up set-features taskfile */
2542 DPRINTK("set features - xfer mode\n");
2543
a0123703
TH
2544 ata_tf_init(ap, &tf, dev->devno);
2545 tf.command = ATA_CMD_SET_FEATURES;
2546 tf.feature = SETFEATURES_XFER;
2547 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2548 tf.protocol = ATA_PROT_NODATA;
2549 tf.nsect = dev->xfer_mode;
1da177e4 2550
a0123703
TH
2551 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2552 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2553 ap->id);
1da177e4 2554 ata_port_disable(ap);
a0123703 2555 }
1da177e4
LT
2556
2557 DPRINTK("EXIT\n");
2558}
2559
8bf62ece
AL
2560/**
2561 * ata_dev_init_params - Issue INIT DEV PARAMS command
2562 * @ap: Port associated with device @dev
2563 * @dev: Device to which command will be sent
2564 *
2565 * LOCKING:
6aff8f1f
TH
2566 * Kernel thread context (may sleep)
2567 *
2568 * RETURNS:
2569 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece
AL
2570 */
2571
6aff8f1f
TH
2572static unsigned int ata_dev_init_params(struct ata_port *ap,
2573 struct ata_device *dev)
8bf62ece 2574{
a0123703 2575 struct ata_taskfile tf;
6aff8f1f 2576 unsigned int err_mask;
8bf62ece
AL
2577 u16 sectors = dev->id[6];
2578 u16 heads = dev->id[3];
2579
2580 /* Number of sectors per track 1-255. Number of heads 1-16 */
2581 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
6aff8f1f 2582 return 0;
8bf62ece
AL
2583
2584 /* set up init dev params taskfile */
2585 DPRINTK("init dev params \n");
2586
a0123703
TH
2587 ata_tf_init(ap, &tf, dev->devno);
2588 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2589 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2590 tf.protocol = ATA_PROT_NODATA;
2591 tf.nsect = sectors;
2592 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 2593
6aff8f1f 2594 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
8bf62ece 2595
6aff8f1f
TH
2596 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2597 return err_mask;
8bf62ece
AL
2598}
2599
1da177e4 2600/**
0cba632b
JG
2601 * ata_sg_clean - Unmap DMA memory associated with command
2602 * @qc: Command containing DMA memory to be released
2603 *
2604 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
2605 *
2606 * LOCKING:
0cba632b 2607 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2608 */
2609
2610static void ata_sg_clean(struct ata_queued_cmd *qc)
2611{
2612 struct ata_port *ap = qc->ap;
cedc9a47 2613 struct scatterlist *sg = qc->__sg;
1da177e4 2614 int dir = qc->dma_dir;
cedc9a47 2615 void *pad_buf = NULL;
1da177e4 2616
a4631474
TH
2617 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2618 WARN_ON(sg == NULL);
1da177e4
LT
2619
2620 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 2621 WARN_ON(qc->n_elem > 1);
1da177e4 2622
2c13b7ce 2623 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 2624
cedc9a47
JG
2625 /* if we padded the buffer out to 32-bit bound, and data
2626 * xfer direction is from-device, we must copy from the
2627 * pad buffer back into the supplied buffer
2628 */
2629 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2630 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2631
2632 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d
JG
2633 if (qc->n_elem)
2634 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
cedc9a47
JG
2635 /* restore last sg */
2636 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2637 if (pad_buf) {
2638 struct scatterlist *psg = &qc->pad_sgent;
2639 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2640 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 2641 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
2642 }
2643 } else {
2e242fa9 2644 if (qc->n_elem)
e1410f2d
JG
2645 dma_unmap_single(ap->host_set->dev,
2646 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2647 dir);
cedc9a47
JG
2648 /* restore sg */
2649 sg->length += qc->pad_len;
2650 if (pad_buf)
2651 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2652 pad_buf, qc->pad_len);
2653 }
1da177e4
LT
2654
2655 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 2656 qc->__sg = NULL;
1da177e4
LT
2657}
2658
2659/**
2660 * ata_fill_sg - Fill PCI IDE PRD table
2661 * @qc: Metadata associated with taskfile to be transferred
2662 *
780a87f7
JG
2663 * Fill PCI IDE PRD (scatter-gather) table with segments
2664 * associated with the current disk command.
2665 *
1da177e4 2666 * LOCKING:
780a87f7 2667 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2668 *
2669 */
2670static void ata_fill_sg(struct ata_queued_cmd *qc)
2671{
1da177e4 2672 struct ata_port *ap = qc->ap;
cedc9a47
JG
2673 struct scatterlist *sg;
2674 unsigned int idx;
1da177e4 2675
a4631474 2676 WARN_ON(qc->__sg == NULL);
f131883e 2677 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
2678
2679 idx = 0;
cedc9a47 2680 ata_for_each_sg(sg, qc) {
1da177e4
LT
2681 u32 addr, offset;
2682 u32 sg_len, len;
2683
2684 /* determine if physical DMA addr spans 64K boundary.
2685 * Note h/w doesn't support 64-bit, so we unconditionally
2686 * truncate dma_addr_t to u32.
2687 */
2688 addr = (u32) sg_dma_address(sg);
2689 sg_len = sg_dma_len(sg);
2690
2691 while (sg_len) {
2692 offset = addr & 0xffff;
2693 len = sg_len;
2694 if ((offset + sg_len) > 0x10000)
2695 len = 0x10000 - offset;
2696
2697 ap->prd[idx].addr = cpu_to_le32(addr);
2698 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2699 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2700
2701 idx++;
2702 sg_len -= len;
2703 addr += len;
2704 }
2705 }
2706
2707 if (idx)
2708 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2709}
2710/**
2711 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2712 * @qc: Metadata associated with taskfile to check
2713 *
780a87f7
JG
2714 * Allow low-level driver to filter ATA PACKET commands, returning
2715 * a status indicating whether or not it is OK to use DMA for the
2716 * supplied PACKET command.
2717 *
1da177e4 2718 * LOCKING:
0cba632b
JG
2719 * spin_lock_irqsave(host_set lock)
2720 *
1da177e4
LT
2721 * RETURNS: 0 when ATAPI DMA can be used
2722 * nonzero otherwise
2723 */
2724int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2725{
2726 struct ata_port *ap = qc->ap;
2727 int rc = 0; /* Assume ATAPI DMA is OK by default */
2728
2729 if (ap->ops->check_atapi_dma)
2730 rc = ap->ops->check_atapi_dma(qc);
2731
2732 return rc;
2733}
2734/**
2735 * ata_qc_prep - Prepare taskfile for submission
2736 * @qc: Metadata associated with taskfile to be prepared
2737 *
780a87f7
JG
2738 * Prepare ATA taskfile for submission.
2739 *
1da177e4
LT
2740 * LOCKING:
2741 * spin_lock_irqsave(host_set lock)
2742 */
2743void ata_qc_prep(struct ata_queued_cmd *qc)
2744{
2745 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2746 return;
2747
2748 ata_fill_sg(qc);
2749}
2750
0cba632b
JG
2751/**
2752 * ata_sg_init_one - Associate command with memory buffer
2753 * @qc: Command to be associated
2754 * @buf: Memory buffer
2755 * @buflen: Length of memory buffer, in bytes.
2756 *
2757 * Initialize the data-related elements of queued_cmd @qc
2758 * to point to a single memory buffer, @buf of byte length @buflen.
2759 *
2760 * LOCKING:
2761 * spin_lock_irqsave(host_set lock)
2762 */
2763
1da177e4
LT
2764void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2765{
2766 struct scatterlist *sg;
2767
2768 qc->flags |= ATA_QCFLAG_SINGLE;
2769
2770 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 2771 qc->__sg = &qc->sgent;
1da177e4 2772 qc->n_elem = 1;
cedc9a47 2773 qc->orig_n_elem = 1;
1da177e4
LT
2774 qc->buf_virt = buf;
2775
cedc9a47 2776 sg = qc->__sg;
f0612bbc 2777 sg_init_one(sg, buf, buflen);
1da177e4
LT
2778}
2779
0cba632b
JG
2780/**
2781 * ata_sg_init - Associate command with scatter-gather table.
2782 * @qc: Command to be associated
2783 * @sg: Scatter-gather table.
2784 * @n_elem: Number of elements in s/g table.
2785 *
2786 * Initialize the data-related elements of queued_cmd @qc
2787 * to point to a scatter-gather table @sg, containing @n_elem
2788 * elements.
2789 *
2790 * LOCKING:
2791 * spin_lock_irqsave(host_set lock)
2792 */
2793
1da177e4
LT
2794void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2795 unsigned int n_elem)
2796{
2797 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 2798 qc->__sg = sg;
1da177e4 2799 qc->n_elem = n_elem;
cedc9a47 2800 qc->orig_n_elem = n_elem;
1da177e4
LT
2801}
2802
2803/**
0cba632b
JG
2804 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2805 * @qc: Command with memory buffer to be mapped.
2806 *
2807 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
2808 *
2809 * LOCKING:
2810 * spin_lock_irqsave(host_set lock)
2811 *
2812 * RETURNS:
0cba632b 2813 * Zero on success, negative on error.
1da177e4
LT
2814 */
2815
2816static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2817{
2818 struct ata_port *ap = qc->ap;
2819 int dir = qc->dma_dir;
cedc9a47 2820 struct scatterlist *sg = qc->__sg;
1da177e4 2821 dma_addr_t dma_address;
2e242fa9 2822 int trim_sg = 0;
1da177e4 2823
cedc9a47
JG
2824 /* we must lengthen transfers to end on a 32-bit boundary */
2825 qc->pad_len = sg->length & 3;
2826 if (qc->pad_len) {
2827 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2828 struct scatterlist *psg = &qc->pad_sgent;
2829
a4631474 2830 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
2831
2832 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2833
2834 if (qc->tf.flags & ATA_TFLAG_WRITE)
2835 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2836 qc->pad_len);
2837
2838 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2839 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2840 /* trim sg */
2841 sg->length -= qc->pad_len;
2e242fa9
TH
2842 if (sg->length == 0)
2843 trim_sg = 1;
cedc9a47
JG
2844
2845 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2846 sg->length, qc->pad_len);
2847 }
2848
2e242fa9
TH
2849 if (trim_sg) {
2850 qc->n_elem--;
e1410f2d
JG
2851 goto skip_map;
2852 }
2853
1da177e4 2854 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
32529e01 2855 sg->length, dir);
537a95d9
TH
2856 if (dma_mapping_error(dma_address)) {
2857 /* restore sg */
2858 sg->length += qc->pad_len;
1da177e4 2859 return -1;
537a95d9 2860 }
1da177e4
LT
2861
2862 sg_dma_address(sg) = dma_address;
32529e01 2863 sg_dma_len(sg) = sg->length;
1da177e4 2864
2e242fa9 2865skip_map:
1da177e4
LT
2866 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2867 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2868
2869 return 0;
2870}
2871
2872/**
0cba632b
JG
2873 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2874 * @qc: Command with scatter-gather table to be mapped.
2875 *
2876 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
2877 *
2878 * LOCKING:
2879 * spin_lock_irqsave(host_set lock)
2880 *
2881 * RETURNS:
0cba632b 2882 * Zero on success, negative on error.
1da177e4
LT
2883 *
2884 */
2885
2886static int ata_sg_setup(struct ata_queued_cmd *qc)
2887{
2888 struct ata_port *ap = qc->ap;
cedc9a47
JG
2889 struct scatterlist *sg = qc->__sg;
2890 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 2891 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
2892
2893 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 2894 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 2895
cedc9a47
JG
2896 /* we must lengthen transfers to end on a 32-bit boundary */
2897 qc->pad_len = lsg->length & 3;
2898 if (qc->pad_len) {
2899 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2900 struct scatterlist *psg = &qc->pad_sgent;
2901 unsigned int offset;
2902
a4631474 2903 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
2904
2905 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2906
2907 /*
2908 * psg->page/offset are used to copy to-be-written
2909 * data in this function or read data in ata_sg_clean.
2910 */
2911 offset = lsg->offset + lsg->length - qc->pad_len;
2912 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2913 psg->offset = offset_in_page(offset);
2914
2915 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2916 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2917 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 2918 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
2919 }
2920
2921 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2922 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2923 /* trim last sg */
2924 lsg->length -= qc->pad_len;
e1410f2d
JG
2925 if (lsg->length == 0)
2926 trim_sg = 1;
cedc9a47
JG
2927
2928 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2929 qc->n_elem - 1, lsg->length, qc->pad_len);
2930 }
2931
e1410f2d
JG
2932 pre_n_elem = qc->n_elem;
2933 if (trim_sg && pre_n_elem)
2934 pre_n_elem--;
2935
2936 if (!pre_n_elem) {
2937 n_elem = 0;
2938 goto skip_map;
2939 }
2940
1da177e4 2941 dir = qc->dma_dir;
e1410f2d 2942 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
537a95d9
TH
2943 if (n_elem < 1) {
2944 /* restore last sg */
2945 lsg->length += qc->pad_len;
1da177e4 2946 return -1;
537a95d9 2947 }
1da177e4
LT
2948
2949 DPRINTK("%d sg elements mapped\n", n_elem);
2950
e1410f2d 2951skip_map:
1da177e4
LT
2952 qc->n_elem = n_elem;
2953
2954 return 0;
2955}
2956
40e8c82c
TH
2957/**
2958 * ata_poll_qc_complete - turn irq back on and finish qc
2959 * @qc: Command to complete
8e8b77dd 2960 * @err_mask: ATA status register content
40e8c82c
TH
2961 *
2962 * LOCKING:
2963 * None. (grabs host lock)
2964 */
2965
a22e2eb0 2966void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
2967{
2968 struct ata_port *ap = qc->ap;
b8f6153e 2969 unsigned long flags;
40e8c82c 2970
b8f6153e 2971 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
2972 ap->flags &= ~ATA_FLAG_NOINTR;
2973 ata_irq_on(ap);
a22e2eb0 2974 ata_qc_complete(qc);
b8f6153e 2975 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
2976}
2977
1da177e4 2978/**
c893a3ae 2979 * ata_pio_poll - poll using PIO, depending on current state
6f0ef4fa 2980 * @ap: the target ata_port
1da177e4
LT
2981 *
2982 * LOCKING:
0cba632b 2983 * None. (executing in kernel thread context)
1da177e4
LT
2984 *
2985 * RETURNS:
6f0ef4fa 2986 * timeout value to use
1da177e4
LT
2987 */
2988
2989static unsigned long ata_pio_poll(struct ata_port *ap)
2990{
c14b8331 2991 struct ata_queued_cmd *qc;
1da177e4 2992 u8 status;
14be71f4
AL
2993 unsigned int poll_state = HSM_ST_UNKNOWN;
2994 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4 2995
c14b8331 2996 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 2997 WARN_ON(qc == NULL);
c14b8331 2998
14be71f4
AL
2999 switch (ap->hsm_task_state) {
3000 case HSM_ST:
3001 case HSM_ST_POLL:
3002 poll_state = HSM_ST_POLL;
3003 reg_state = HSM_ST;
1da177e4 3004 break;
14be71f4
AL
3005 case HSM_ST_LAST:
3006 case HSM_ST_LAST_POLL:
3007 poll_state = HSM_ST_LAST_POLL;
3008 reg_state = HSM_ST_LAST;
1da177e4
LT
3009 break;
3010 default:
3011 BUG();
3012 break;
3013 }
3014
3015 status = ata_chk_status(ap);
3016 if (status & ATA_BUSY) {
3017 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 3018 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 3019 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
3020 return 0;
3021 }
14be71f4 3022 ap->hsm_task_state = poll_state;
1da177e4
LT
3023 return ATA_SHORT_PAUSE;
3024 }
3025
14be71f4 3026 ap->hsm_task_state = reg_state;
1da177e4
LT
3027 return 0;
3028}
3029
3030/**
6f0ef4fa
RD
3031 * ata_pio_complete - check if drive is busy or idle
3032 * @ap: the target ata_port
1da177e4
LT
3033 *
3034 * LOCKING:
0cba632b 3035 * None. (executing in kernel thread context)
7fb6ec28
JG
3036 *
3037 * RETURNS:
3038 * Non-zero if qc completed, zero otherwise.
1da177e4
LT
3039 */
3040
7fb6ec28 3041static int ata_pio_complete (struct ata_port *ap)
1da177e4
LT
3042{
3043 struct ata_queued_cmd *qc;
3044 u8 drv_stat;
3045
3046 /*
31433ea3
AC
3047 * This is purely heuristic. This is a fast path. Sometimes when
3048 * we enter, BSY will be cleared in a chk-status or two. If not,
3049 * the drive is probably seeking or something. Snooze for a couple
3050 * msecs, then chk-status again. If still busy, fall back to
14be71f4 3051 * HSM_ST_POLL state.
1da177e4 3052 */
fe79e683
AL
3053 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3054 if (drv_stat & ATA_BUSY) {
1da177e4 3055 msleep(2);
fe79e683
AL
3056 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3057 if (drv_stat & ATA_BUSY) {
14be71f4 3058 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 3059 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 3060 return 0;
1da177e4
LT
3061 }
3062 }
3063
c14b8331 3064 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3065 WARN_ON(qc == NULL);
c14b8331 3066
1da177e4
LT
3067 drv_stat = ata_wait_idle(ap);
3068 if (!ata_ok(drv_stat)) {
1c848984 3069 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3070 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3071 return 0;
1da177e4
LT
3072 }
3073
14be71f4 3074 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3075
a4631474 3076 WARN_ON(qc->err_mask);
a22e2eb0 3077 ata_poll_qc_complete(qc);
7fb6ec28
JG
3078
3079 /* another command may start at this point */
3080
3081 return 1;
1da177e4
LT
3082}
3083
0baab86b
EF
3084
3085/**
c893a3ae 3086 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3087 * @buf: Buffer to swap
3088 * @buf_words: Number of 16-bit words in buffer.
3089 *
3090 * Swap halves of 16-bit words if needed to convert from
3091 * little-endian byte order to native cpu byte order, or
3092 * vice-versa.
3093 *
3094 * LOCKING:
6f0ef4fa 3095 * Inherited from caller.
0baab86b 3096 */
1da177e4
LT
3097void swap_buf_le16(u16 *buf, unsigned int buf_words)
3098{
3099#ifdef __BIG_ENDIAN
3100 unsigned int i;
3101
3102 for (i = 0; i < buf_words; i++)
3103 buf[i] = le16_to_cpu(buf[i]);
3104#endif /* __BIG_ENDIAN */
3105}
3106
6ae4cfb5
AL
3107/**
3108 * ata_mmio_data_xfer - Transfer data by MMIO
3109 * @ap: port to read/write
3110 * @buf: data buffer
3111 * @buflen: buffer length
344babaa 3112 * @write_data: read/write
6ae4cfb5
AL
3113 *
3114 * Transfer data from/to the device data register by MMIO.
3115 *
3116 * LOCKING:
3117 * Inherited from caller.
6ae4cfb5
AL
3118 */
3119
1da177e4
LT
3120static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3121 unsigned int buflen, int write_data)
3122{
3123 unsigned int i;
3124 unsigned int words = buflen >> 1;
3125 u16 *buf16 = (u16 *) buf;
3126 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3127
6ae4cfb5 3128 /* Transfer multiple of 2 bytes */
1da177e4
LT
3129 if (write_data) {
3130 for (i = 0; i < words; i++)
3131 writew(le16_to_cpu(buf16[i]), mmio);
3132 } else {
3133 for (i = 0; i < words; i++)
3134 buf16[i] = cpu_to_le16(readw(mmio));
3135 }
6ae4cfb5
AL
3136
3137 /* Transfer trailing 1 byte, if any. */
3138 if (unlikely(buflen & 0x01)) {
3139 u16 align_buf[1] = { 0 };
3140 unsigned char *trailing_buf = buf + buflen - 1;
3141
3142 if (write_data) {
3143 memcpy(align_buf, trailing_buf, 1);
3144 writew(le16_to_cpu(align_buf[0]), mmio);
3145 } else {
3146 align_buf[0] = cpu_to_le16(readw(mmio));
3147 memcpy(trailing_buf, align_buf, 1);
3148 }
3149 }
1da177e4
LT
3150}
3151
6ae4cfb5
AL
3152/**
3153 * ata_pio_data_xfer - Transfer data by PIO
3154 * @ap: port to read/write
3155 * @buf: data buffer
3156 * @buflen: buffer length
344babaa 3157 * @write_data: read/write
6ae4cfb5
AL
3158 *
3159 * Transfer data from/to the device data register by PIO.
3160 *
3161 * LOCKING:
3162 * Inherited from caller.
6ae4cfb5
AL
3163 */
3164
1da177e4
LT
3165static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3166 unsigned int buflen, int write_data)
3167{
6ae4cfb5 3168 unsigned int words = buflen >> 1;
1da177e4 3169
6ae4cfb5 3170 /* Transfer multiple of 2 bytes */
1da177e4 3171 if (write_data)
6ae4cfb5 3172 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3173 else
6ae4cfb5
AL
3174 insw(ap->ioaddr.data_addr, buf, words);
3175
3176 /* Transfer trailing 1 byte, if any. */
3177 if (unlikely(buflen & 0x01)) {
3178 u16 align_buf[1] = { 0 };
3179 unsigned char *trailing_buf = buf + buflen - 1;
3180
3181 if (write_data) {
3182 memcpy(align_buf, trailing_buf, 1);
3183 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3184 } else {
3185 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3186 memcpy(trailing_buf, align_buf, 1);
3187 }
3188 }
1da177e4
LT
3189}
3190
6ae4cfb5
AL
3191/**
3192 * ata_data_xfer - Transfer data from/to the data register.
3193 * @ap: port to read/write
3194 * @buf: data buffer
3195 * @buflen: buffer length
3196 * @do_write: read/write
3197 *
3198 * Transfer data from/to the device data register.
3199 *
3200 * LOCKING:
3201 * Inherited from caller.
6ae4cfb5
AL
3202 */
3203
1da177e4
LT
3204static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3205 unsigned int buflen, int do_write)
3206{
a1bd9e68
AC
3207 /* Make the crap hardware pay the costs not the good stuff */
3208 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3209 unsigned long flags;
3210 local_irq_save(flags);
3211 if (ap->flags & ATA_FLAG_MMIO)
3212 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3213 else
3214 ata_pio_data_xfer(ap, buf, buflen, do_write);
3215 local_irq_restore(flags);
3216 } else {
3217 if (ap->flags & ATA_FLAG_MMIO)
3218 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3219 else
3220 ata_pio_data_xfer(ap, buf, buflen, do_write);
3221 }
1da177e4
LT
3222}
3223
6ae4cfb5
AL
3224/**
3225 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3226 * @qc: Command on going
3227 *
3228 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3229 *
3230 * LOCKING:
3231 * Inherited from caller.
3232 */
3233
1da177e4
LT
3234static void ata_pio_sector(struct ata_queued_cmd *qc)
3235{
3236 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3237 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3238 struct ata_port *ap = qc->ap;
3239 struct page *page;
3240 unsigned int offset;
3241 unsigned char *buf;
3242
3243 if (qc->cursect == (qc->nsect - 1))
14be71f4 3244 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3245
3246 page = sg[qc->cursg].page;
3247 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3248
3249 /* get the current page and offset */
3250 page = nth_page(page, (offset >> PAGE_SHIFT));
3251 offset %= PAGE_SIZE;
3252
3253 buf = kmap(page) + offset;
3254
3255 qc->cursect++;
3256 qc->cursg_ofs++;
3257
32529e01 3258 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3259 qc->cursg++;
3260 qc->cursg_ofs = 0;
3261 }
3262
3263 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3264
3265 /* do the actual data transfer */
3266 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3267 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3268
3269 kunmap(page);
3270}
3271
6ae4cfb5
AL
3272/**
3273 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3274 * @qc: Command on going
3275 * @bytes: number of bytes
3276 *
3277 * Transfer Transfer data from/to the ATAPI device.
3278 *
3279 * LOCKING:
3280 * Inherited from caller.
3281 *
3282 */
3283
1da177e4
LT
3284static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3285{
3286 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3287 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3288 struct ata_port *ap = qc->ap;
3289 struct page *page;
3290 unsigned char *buf;
3291 unsigned int offset, count;
3292
563a6e1f 3293 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3294 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3295
3296next_sg:
563a6e1f 3297 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3298 /*
563a6e1f
AL
3299 * The end of qc->sg is reached and the device expects
3300 * more data to transfer. In order not to overrun qc->sg
3301 * and fulfill length specified in the byte count register,
3302 * - for read case, discard trailing data from the device
3303 * - for write case, padding zero data to the device
3304 */
3305 u16 pad_buf[1] = { 0 };
3306 unsigned int words = bytes >> 1;
3307 unsigned int i;
3308
3309 if (words) /* warning if bytes > 1 */
7fb6ec28 3310 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3311 ap->id, bytes);
3312
3313 for (i = 0; i < words; i++)
3314 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3315
14be71f4 3316 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3317 return;
3318 }
3319
cedc9a47 3320 sg = &qc->__sg[qc->cursg];
1da177e4 3321
1da177e4
LT
3322 page = sg->page;
3323 offset = sg->offset + qc->cursg_ofs;
3324
3325 /* get the current page and offset */
3326 page = nth_page(page, (offset >> PAGE_SHIFT));
3327 offset %= PAGE_SIZE;
3328
6952df03 3329 /* don't overrun current sg */
32529e01 3330 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3331
3332 /* don't cross page boundaries */
3333 count = min(count, (unsigned int)PAGE_SIZE - offset);
3334
3335 buf = kmap(page) + offset;
3336
3337 bytes -= count;
3338 qc->curbytes += count;
3339 qc->cursg_ofs += count;
3340
32529e01 3341 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3342 qc->cursg++;
3343 qc->cursg_ofs = 0;
3344 }
3345
3346 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3347
3348 /* do the actual data transfer */
3349 ata_data_xfer(ap, buf, count, do_write);
3350
3351 kunmap(page);
3352
563a6e1f 3353 if (bytes)
1da177e4 3354 goto next_sg;
1da177e4
LT
3355}
3356
6ae4cfb5
AL
3357/**
3358 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3359 * @qc: Command on going
3360 *
3361 * Transfer Transfer data from/to the ATAPI device.
3362 *
3363 * LOCKING:
3364 * Inherited from caller.
6ae4cfb5
AL
3365 */
3366
1da177e4
LT
3367static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3368{
3369 struct ata_port *ap = qc->ap;
3370 struct ata_device *dev = qc->dev;
3371 unsigned int ireason, bc_lo, bc_hi, bytes;
3372 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3373
3374 ap->ops->tf_read(ap, &qc->tf);
3375 ireason = qc->tf.nsect;
3376 bc_lo = qc->tf.lbam;
3377 bc_hi = qc->tf.lbah;
3378 bytes = (bc_hi << 8) | bc_lo;
3379
3380 /* shall be cleared to zero, indicating xfer of data */
3381 if (ireason & (1 << 0))
3382 goto err_out;
3383
3384 /* make sure transfer direction matches expected */
3385 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3386 if (do_write != i_write)
3387 goto err_out;
3388
3389 __atapi_pio_bytes(qc, bytes);
3390
3391 return;
3392
3393err_out:
3394 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3395 ap->id, dev->devno);
11a56d24 3396 qc->err_mask |= AC_ERR_HSM;
14be71f4 3397 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3398}
3399
3400/**
6f0ef4fa
RD
3401 * ata_pio_block - start PIO on a block
3402 * @ap: the target ata_port
1da177e4
LT
3403 *
3404 * LOCKING:
0cba632b 3405 * None. (executing in kernel thread context)
1da177e4
LT
3406 */
3407
3408static void ata_pio_block(struct ata_port *ap)
3409{
3410 struct ata_queued_cmd *qc;
3411 u8 status;
3412
3413 /*
6f0ef4fa 3414 * This is purely heuristic. This is a fast path.
1da177e4
LT
3415 * Sometimes when we enter, BSY will be cleared in
3416 * a chk-status or two. If not, the drive is probably seeking
3417 * or something. Snooze for a couple msecs, then
3418 * chk-status again. If still busy, fall back to
14be71f4 3419 * HSM_ST_POLL state.
1da177e4
LT
3420 */
3421 status = ata_busy_wait(ap, ATA_BUSY, 5);
3422 if (status & ATA_BUSY) {
3423 msleep(2);
3424 status = ata_busy_wait(ap, ATA_BUSY, 10);
3425 if (status & ATA_BUSY) {
14be71f4 3426 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3427 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3428 return;
3429 }
3430 }
3431
3432 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3433 WARN_ON(qc == NULL);
1da177e4 3434
fe79e683
AL
3435 /* check error */
3436 if (status & (ATA_ERR | ATA_DF)) {
3437 qc->err_mask |= AC_ERR_DEV;
3438 ap->hsm_task_state = HSM_ST_ERR;
3439 return;
3440 }
3441
3442 /* transfer data if any */
1da177e4 3443 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3444 /* DRQ=0 means no more data to transfer */
1da177e4 3445 if ((status & ATA_DRQ) == 0) {
14be71f4 3446 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3447 return;
3448 }
3449
3450 atapi_pio_bytes(qc);
3451 } else {
3452 /* handle BSY=0, DRQ=0 as error */
3453 if ((status & ATA_DRQ) == 0) {
11a56d24 3454 qc->err_mask |= AC_ERR_HSM;
14be71f4 3455 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3456 return;
3457 }
3458
3459 ata_pio_sector(qc);
3460 }
3461}
3462
3463static void ata_pio_error(struct ata_port *ap)
3464{
3465 struct ata_queued_cmd *qc;
a7dac447 3466
1da177e4 3467 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3468 WARN_ON(qc == NULL);
1da177e4 3469
0565c26d
AL
3470 if (qc->tf.command != ATA_CMD_PACKET)
3471 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3472
1c848984
AL
3473 /* make sure qc->err_mask is available to
3474 * know what's wrong and recover
3475 */
a4631474 3476 WARN_ON(qc->err_mask == 0);
1c848984 3477
14be71f4 3478 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3479
a22e2eb0 3480 ata_poll_qc_complete(qc);
1da177e4
LT
3481}
3482
3483static void ata_pio_task(void *_data)
3484{
3485 struct ata_port *ap = _data;
7fb6ec28
JG
3486 unsigned long timeout;
3487 int qc_completed;
3488
3489fsm_start:
3490 timeout = 0;
3491 qc_completed = 0;
1da177e4 3492
14be71f4
AL
3493 switch (ap->hsm_task_state) {
3494 case HSM_ST_IDLE:
1da177e4
LT
3495 return;
3496
14be71f4 3497 case HSM_ST:
1da177e4
LT
3498 ata_pio_block(ap);
3499 break;
3500
14be71f4 3501 case HSM_ST_LAST:
7fb6ec28 3502 qc_completed = ata_pio_complete(ap);
1da177e4
LT
3503 break;
3504
14be71f4
AL
3505 case HSM_ST_POLL:
3506 case HSM_ST_LAST_POLL:
1da177e4
LT
3507 timeout = ata_pio_poll(ap);
3508 break;
3509
14be71f4
AL
3510 case HSM_ST_TMOUT:
3511 case HSM_ST_ERR:
1da177e4
LT
3512 ata_pio_error(ap);
3513 return;
3514 }
3515
3516 if (timeout)
95064379 3517 ata_queue_delayed_pio_task(ap, timeout);
7fb6ec28
JG
3518 else if (!qc_completed)
3519 goto fsm_start;
1da177e4
LT
3520}
3521
1da177e4
LT
3522/**
3523 * ata_qc_timeout - Handle timeout of queued command
3524 * @qc: Command that timed out
3525 *
3526 * Some part of the kernel (currently, only the SCSI layer)
3527 * has noticed that the active command on port @ap has not
3528 * completed after a specified length of time. Handle this
3529 * condition by disabling DMA (if necessary) and completing
3530 * transactions, with error if necessary.
3531 *
3532 * This also handles the case of the "lost interrupt", where
3533 * for some reason (possibly hardware bug, possibly driver bug)
3534 * an interrupt was not delivered to the driver, even though the
3535 * transaction completed successfully.
3536 *
3537 * LOCKING:
0cba632b 3538 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
3539 */
3540
3541static void ata_qc_timeout(struct ata_queued_cmd *qc)
3542{
3543 struct ata_port *ap = qc->ap;
b8f6153e 3544 struct ata_host_set *host_set = ap->host_set;
1da177e4 3545 u8 host_stat = 0, drv_stat;
b8f6153e 3546 unsigned long flags;
1da177e4
LT
3547
3548 DPRINTK("ENTER\n");
3549
c18d06f8
TH
3550 ata_flush_pio_tasks(ap);
3551 ap->hsm_task_state = HSM_ST_IDLE;
3552
b8f6153e
JG
3553 spin_lock_irqsave(&host_set->lock, flags);
3554
1da177e4
LT
3555 switch (qc->tf.protocol) {
3556
3557 case ATA_PROT_DMA:
3558 case ATA_PROT_ATAPI_DMA:
3559 host_stat = ap->ops->bmdma_status(ap);
3560
3561 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3562 ap->ops->bmdma_stop(qc);
1da177e4
LT
3563
3564 /* fall through */
3565
3566 default:
3567 ata_altstatus(ap);
3568 drv_stat = ata_chk_status(ap);
3569
3570 /* ack bmdma irq events */
3571 ap->ops->irq_clear(ap);
3572
3573 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3574 ap->id, qc->tf.command, drv_stat, host_stat);
3575
3576 /* complete taskfile transaction */
a22e2eb0 3577 qc->err_mask |= ac_err_mask(drv_stat);
1da177e4
LT
3578 break;
3579 }
b8f6153e
JG
3580
3581 spin_unlock_irqrestore(&host_set->lock, flags);
3582
a72ec4ce
TH
3583 ata_eh_qc_complete(qc);
3584
1da177e4
LT
3585 DPRINTK("EXIT\n");
3586}
3587
3588/**
3589 * ata_eng_timeout - Handle timeout of queued command
3590 * @ap: Port on which timed-out command is active
3591 *
3592 * Some part of the kernel (currently, only the SCSI layer)
3593 * has noticed that the active command on port @ap has not
3594 * completed after a specified length of time. Handle this
3595 * condition by disabling DMA (if necessary) and completing
3596 * transactions, with error if necessary.
3597 *
3598 * This also handles the case of the "lost interrupt", where
3599 * for some reason (possibly hardware bug, possibly driver bug)
3600 * an interrupt was not delivered to the driver, even though the
3601 * transaction completed successfully.
3602 *
3603 * LOCKING:
3604 * Inherited from SCSI layer (none, can sleep)
3605 */
3606
3607void ata_eng_timeout(struct ata_port *ap)
3608{
1da177e4
LT
3609 DPRINTK("ENTER\n");
3610
f6379020 3611 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
1da177e4 3612
1da177e4
LT
3613 DPRINTK("EXIT\n");
3614}
3615
3616/**
3617 * ata_qc_new - Request an available ATA command, for queueing
3618 * @ap: Port associated with device @dev
3619 * @dev: Device from whom we request an available command structure
3620 *
3621 * LOCKING:
0cba632b 3622 * None.
1da177e4
LT
3623 */
3624
3625static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3626{
3627 struct ata_queued_cmd *qc = NULL;
3628 unsigned int i;
3629
3630 for (i = 0; i < ATA_MAX_QUEUE; i++)
3631 if (!test_and_set_bit(i, &ap->qactive)) {
3632 qc = ata_qc_from_tag(ap, i);
3633 break;
3634 }
3635
3636 if (qc)
3637 qc->tag = i;
3638
3639 return qc;
3640}
3641
3642/**
3643 * ata_qc_new_init - Request an available ATA command, and initialize it
3644 * @ap: Port associated with device @dev
3645 * @dev: Device from whom we request an available command structure
3646 *
3647 * LOCKING:
0cba632b 3648 * None.
1da177e4
LT
3649 */
3650
3651struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3652 struct ata_device *dev)
3653{
3654 struct ata_queued_cmd *qc;
3655
3656 qc = ata_qc_new(ap);
3657 if (qc) {
1da177e4
LT
3658 qc->scsicmd = NULL;
3659 qc->ap = ap;
3660 qc->dev = dev;
1da177e4 3661
2c13b7ce 3662 ata_qc_reinit(qc);
1da177e4
LT
3663 }
3664
3665 return qc;
3666}
3667
1da177e4
LT
3668/**
3669 * ata_qc_free - free unused ata_queued_cmd
3670 * @qc: Command to complete
3671 *
3672 * Designed to free unused ata_queued_cmd object
3673 * in case something prevents using it.
3674 *
3675 * LOCKING:
0cba632b 3676 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3677 */
3678void ata_qc_free(struct ata_queued_cmd *qc)
3679{
4ba946e9
TH
3680 struct ata_port *ap = qc->ap;
3681 unsigned int tag;
3682
a4631474 3683 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 3684
4ba946e9
TH
3685 qc->flags = 0;
3686 tag = qc->tag;
3687 if (likely(ata_tag_valid(tag))) {
3688 if (tag == ap->active_tag)
3689 ap->active_tag = ATA_TAG_POISON;
3690 qc->tag = ATA_TAG_POISON;
3691 clear_bit(tag, &ap->qactive);
3692 }
1da177e4
LT
3693}
3694
76014427 3695void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 3696{
a4631474
TH
3697 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3698 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
3699
3700 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3701 ata_sg_clean(qc);
3702
3f3791d3
AL
3703 /* atapi: mark qc as inactive to prevent the interrupt handler
3704 * from completing the command twice later, before the error handler
3705 * is called. (when rc != 0 and atapi request sense is needed)
3706 */
3707 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3708
1da177e4 3709 /* call completion callback */
77853bf2 3710 qc->complete_fn(qc);
1da177e4
LT
3711}
3712
3713static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3714{
3715 struct ata_port *ap = qc->ap;
3716
3717 switch (qc->tf.protocol) {
3718 case ATA_PROT_DMA:
3719 case ATA_PROT_ATAPI_DMA:
3720 return 1;
3721
3722 case ATA_PROT_ATAPI:
3723 case ATA_PROT_PIO:
3724 case ATA_PROT_PIO_MULT:
3725 if (ap->flags & ATA_FLAG_PIO_DMA)
3726 return 1;
3727
3728 /* fall through */
3729
3730 default:
3731 return 0;
3732 }
3733
3734 /* never reached */
3735}
3736
3737/**
3738 * ata_qc_issue - issue taskfile to device
3739 * @qc: command to issue to device
3740 *
3741 * Prepare an ATA command to submission to device.
3742 * This includes mapping the data into a DMA-able
3743 * area, filling in the S/G table, and finally
3744 * writing the taskfile to hardware, starting the command.
3745 *
3746 * LOCKING:
3747 * spin_lock_irqsave(host_set lock)
3748 *
3749 * RETURNS:
9a3d9eb0 3750 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
3751 */
3752
9a3d9eb0 3753unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
3754{
3755 struct ata_port *ap = qc->ap;
3756
3757 if (ata_should_dma_map(qc)) {
3758 if (qc->flags & ATA_QCFLAG_SG) {
3759 if (ata_sg_setup(qc))
8e436af9 3760 goto sg_err;
1da177e4
LT
3761 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3762 if (ata_sg_setup_one(qc))
8e436af9 3763 goto sg_err;
1da177e4
LT
3764 }
3765 } else {
3766 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3767 }
3768
3769 ap->ops->qc_prep(qc);
3770
3771 qc->ap->active_tag = qc->tag;
3772 qc->flags |= ATA_QCFLAG_ACTIVE;
3773
3774 return ap->ops->qc_issue(qc);
3775
8e436af9
TH
3776sg_err:
3777 qc->flags &= ~ATA_QCFLAG_DMAMAP;
9a3d9eb0 3778 return AC_ERR_SYSTEM;
1da177e4
LT
3779}
3780
0baab86b 3781
1da177e4
LT
3782/**
3783 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3784 * @qc: command to issue to device
3785 *
3786 * Using various libata functions and hooks, this function
3787 * starts an ATA command. ATA commands are grouped into
3788 * classes called "protocols", and issuing each type of protocol
3789 * is slightly different.
3790 *
0baab86b
EF
3791 * May be used as the qc_issue() entry in ata_port_operations.
3792 *
1da177e4
LT
3793 * LOCKING:
3794 * spin_lock_irqsave(host_set lock)
3795 *
3796 * RETURNS:
9a3d9eb0 3797 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
3798 */
3799
9a3d9eb0 3800unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
3801{
3802 struct ata_port *ap = qc->ap;
3803
3804 ata_dev_select(ap, qc->dev->devno, 1, 0);
3805
3806 switch (qc->tf.protocol) {
3807 case ATA_PROT_NODATA:
e5338254 3808 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
3809 break;
3810
3811 case ATA_PROT_DMA:
3812 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3813 ap->ops->bmdma_setup(qc); /* set up bmdma */
3814 ap->ops->bmdma_start(qc); /* initiate bmdma */
3815 break;
3816
3817 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3818 ata_qc_set_polling(qc);
e5338254 3819 ata_tf_to_host(ap, &qc->tf);
14be71f4 3820 ap->hsm_task_state = HSM_ST;
95064379 3821 ata_queue_pio_task(ap);
1da177e4
LT
3822 break;
3823
3824 case ATA_PROT_ATAPI:
3825 ata_qc_set_polling(qc);
e5338254 3826 ata_tf_to_host(ap, &qc->tf);
95064379 3827 ata_queue_packet_task(ap);
1da177e4
LT
3828 break;
3829
3830 case ATA_PROT_ATAPI_NODATA:
c1389503 3831 ap->flags |= ATA_FLAG_NOINTR;
e5338254 3832 ata_tf_to_host(ap, &qc->tf);
95064379 3833 ata_queue_packet_task(ap);
1da177e4
LT
3834 break;
3835
3836 case ATA_PROT_ATAPI_DMA:
c1389503 3837 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
3838 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3839 ap->ops->bmdma_setup(qc); /* set up bmdma */
95064379 3840 ata_queue_packet_task(ap);
1da177e4
LT
3841 break;
3842
3843 default:
3844 WARN_ON(1);
9a3d9eb0 3845 return AC_ERR_SYSTEM;
1da177e4
LT
3846 }
3847
3848 return 0;
3849}
3850
3851/**
0baab86b 3852 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
1da177e4
LT
3853 * @qc: Info associated with this ATA transaction.
3854 *
3855 * LOCKING:
3856 * spin_lock_irqsave(host_set lock)
3857 */
3858
3859static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3860{
3861 struct ata_port *ap = qc->ap;
3862 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3863 u8 dmactl;
3864 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3865
3866 /* load PRD table addr. */
3867 mb(); /* make sure PRD table writes are visible to controller */
3868 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3869
3870 /* specify data direction, triple-check start bit is clear */
3871 dmactl = readb(mmio + ATA_DMA_CMD);
3872 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3873 if (!rw)
3874 dmactl |= ATA_DMA_WR;
3875 writeb(dmactl, mmio + ATA_DMA_CMD);
3876
3877 /* issue r/w command */
3878 ap->ops->exec_command(ap, &qc->tf);
3879}
3880
3881/**
b73fc89f 3882 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
1da177e4
LT
3883 * @qc: Info associated with this ATA transaction.
3884 *
3885 * LOCKING:
3886 * spin_lock_irqsave(host_set lock)
3887 */
3888
3889static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3890{
3891 struct ata_port *ap = qc->ap;
3892 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3893 u8 dmactl;
3894
3895 /* start host DMA transaction */
3896 dmactl = readb(mmio + ATA_DMA_CMD);
3897 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3898
3899 /* Strictly, one may wish to issue a readb() here, to
3900 * flush the mmio write. However, control also passes
3901 * to the hardware at this point, and it will interrupt
3902 * us when we are to resume control. So, in effect,
3903 * we don't care when the mmio write flushes.
3904 * Further, a read of the DMA status register _immediately_
3905 * following the write may not be what certain flaky hardware
3906 * is expected, so I think it is best to not add a readb()
3907 * without first all the MMIO ATA cards/mobos.
3908 * Or maybe I'm just being paranoid.
3909 */
3910}
3911
3912/**
3913 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3914 * @qc: Info associated with this ATA transaction.
3915 *
3916 * LOCKING:
3917 * spin_lock_irqsave(host_set lock)
3918 */
3919
3920static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3921{
3922 struct ata_port *ap = qc->ap;
3923 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3924 u8 dmactl;
3925
3926 /* load PRD table addr. */
3927 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3928
3929 /* specify data direction, triple-check start bit is clear */
3930 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3931 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3932 if (!rw)
3933 dmactl |= ATA_DMA_WR;
3934 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3935
3936 /* issue r/w command */
3937 ap->ops->exec_command(ap, &qc->tf);
3938}
3939
3940/**
3941 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3942 * @qc: Info associated with this ATA transaction.
3943 *
3944 * LOCKING:
3945 * spin_lock_irqsave(host_set lock)
3946 */
3947
3948static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3949{
3950 struct ata_port *ap = qc->ap;
3951 u8 dmactl;
3952
3953 /* start host DMA transaction */
3954 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3955 outb(dmactl | ATA_DMA_START,
3956 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3957}
3958
0baab86b
EF
3959
3960/**
3961 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3962 * @qc: Info associated with this ATA transaction.
3963 *
3964 * Writes the ATA_DMA_START flag to the DMA command register.
3965 *
3966 * May be used as the bmdma_start() entry in ata_port_operations.
3967 *
3968 * LOCKING:
3969 * spin_lock_irqsave(host_set lock)
3970 */
1da177e4
LT
3971void ata_bmdma_start(struct ata_queued_cmd *qc)
3972{
3973 if (qc->ap->flags & ATA_FLAG_MMIO)
3974 ata_bmdma_start_mmio(qc);
3975 else
3976 ata_bmdma_start_pio(qc);
3977}
3978
0baab86b
EF
3979
3980/**
3981 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3982 * @qc: Info associated with this ATA transaction.
3983 *
3984 * Writes address of PRD table to device's PRD Table Address
3985 * register, sets the DMA control register, and calls
3986 * ops->exec_command() to start the transfer.
3987 *
3988 * May be used as the bmdma_setup() entry in ata_port_operations.
3989 *
3990 * LOCKING:
3991 * spin_lock_irqsave(host_set lock)
3992 */
1da177e4
LT
3993void ata_bmdma_setup(struct ata_queued_cmd *qc)
3994{
3995 if (qc->ap->flags & ATA_FLAG_MMIO)
3996 ata_bmdma_setup_mmio(qc);
3997 else
3998 ata_bmdma_setup_pio(qc);
3999}
4000
0baab86b
EF
4001
4002/**
4003 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
decc6d0b 4004 * @ap: Port associated with this ATA transaction.
0baab86b
EF
4005 *
4006 * Clear interrupt and error flags in DMA status register.
4007 *
4008 * May be used as the irq_clear() entry in ata_port_operations.
4009 *
4010 * LOCKING:
4011 * spin_lock_irqsave(host_set lock)
4012 */
4013
1da177e4
LT
4014void ata_bmdma_irq_clear(struct ata_port *ap)
4015{
4016 if (ap->flags & ATA_FLAG_MMIO) {
4017 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
4018 writeb(readb(mmio), mmio);
4019 } else {
4020 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
4021 outb(inb(addr), addr);
4022 }
4023
4024}
4025
0baab86b
EF
4026
4027/**
4028 * ata_bmdma_status - Read PCI IDE BMDMA status
decc6d0b 4029 * @ap: Port associated with this ATA transaction.
0baab86b
EF
4030 *
4031 * Read and return BMDMA status register.
4032 *
4033 * May be used as the bmdma_status() entry in ata_port_operations.
4034 *
4035 * LOCKING:
4036 * spin_lock_irqsave(host_set lock)
4037 */
4038
1da177e4
LT
4039u8 ata_bmdma_status(struct ata_port *ap)
4040{
4041 u8 host_stat;
4042 if (ap->flags & ATA_FLAG_MMIO) {
4043 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4044 host_stat = readb(mmio + ATA_DMA_STATUS);
4045 } else
ee500aab 4046 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
1da177e4
LT
4047 return host_stat;
4048}
4049
0baab86b
EF
4050
4051/**
4052 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
b73fc89f 4053 * @qc: Command we are ending DMA for
0baab86b
EF
4054 *
4055 * Clears the ATA_DMA_START flag in the dma control register
4056 *
4057 * May be used as the bmdma_stop() entry in ata_port_operations.
4058 *
4059 * LOCKING:
4060 * spin_lock_irqsave(host_set lock)
4061 */
4062
b73fc89f 4063void ata_bmdma_stop(struct ata_queued_cmd *qc)
1da177e4 4064{
b73fc89f 4065 struct ata_port *ap = qc->ap;
1da177e4
LT
4066 if (ap->flags & ATA_FLAG_MMIO) {
4067 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4068
4069 /* clear start/stop bit */
4070 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
4071 mmio + ATA_DMA_CMD);
4072 } else {
4073 /* clear start/stop bit */
4074 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4075 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4076 }
4077
4078 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4079 ata_altstatus(ap); /* dummy read */
4080}
4081
4082/**
4083 * ata_host_intr - Handle host interrupt for given (port, task)
4084 * @ap: Port on which interrupt arrived (possibly...)
4085 * @qc: Taskfile currently active in engine
4086 *
4087 * Handle host interrupt for given queued command. Currently,
4088 * only DMA interrupts are handled. All other commands are
4089 * handled via polling with interrupts disabled (nIEN bit).
4090 *
4091 * LOCKING:
4092 * spin_lock_irqsave(host_set lock)
4093 *
4094 * RETURNS:
4095 * One if interrupt was handled, zero if not (shared irq).
4096 */
4097
4098inline unsigned int ata_host_intr (struct ata_port *ap,
4099 struct ata_queued_cmd *qc)
4100{
4101 u8 status, host_stat;
4102
4103 switch (qc->tf.protocol) {
4104
4105 case ATA_PROT_DMA:
4106 case ATA_PROT_ATAPI_DMA:
4107 case ATA_PROT_ATAPI:
4108 /* check status of DMA engine */
4109 host_stat = ap->ops->bmdma_status(ap);
4110 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4111
4112 /* if it's not our irq... */
4113 if (!(host_stat & ATA_DMA_INTR))
4114 goto idle_irq;
4115
4116 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4117 ap->ops->bmdma_stop(qc);
1da177e4
LT
4118
4119 /* fall through */
4120
4121 case ATA_PROT_ATAPI_NODATA:
4122 case ATA_PROT_NODATA:
4123 /* check altstatus */
4124 status = ata_altstatus(ap);
4125 if (status & ATA_BUSY)
4126 goto idle_irq;
4127
4128 /* check main status, clearing INTRQ */
4129 status = ata_chk_status(ap);
4130 if (unlikely(status & ATA_BUSY))
4131 goto idle_irq;
4132 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4133 ap->id, qc->tf.protocol, status);
4134
4135 /* ack bmdma irq events */
4136 ap->ops->irq_clear(ap);
4137
4138 /* complete taskfile transaction */
a22e2eb0
AL
4139 qc->err_mask |= ac_err_mask(status);
4140 ata_qc_complete(qc);
1da177e4
LT
4141 break;
4142
4143 default:
4144 goto idle_irq;
4145 }
4146
4147 return 1; /* irq handled */
4148
4149idle_irq:
4150 ap->stats.idle_irq++;
4151
4152#ifdef ATA_IRQ_TRAP
4153 if ((ap->stats.idle_irq % 1000) == 0) {
4154 handled = 1;
4155 ata_irq_ack(ap, 0); /* debug trap */
4156 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4157 }
4158#endif
4159 return 0; /* irq not handled */
4160}
4161
4162/**
4163 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4164 * @irq: irq line (unused)
4165 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4166 * @regs: unused
4167 *
0cba632b
JG
4168 * Default interrupt handler for PCI IDE devices. Calls
4169 * ata_host_intr() for each port that is not disabled.
4170 *
1da177e4 4171 * LOCKING:
0cba632b 4172 * Obtains host_set lock during operation.
1da177e4
LT
4173 *
4174 * RETURNS:
0cba632b 4175 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4176 */
4177
4178irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4179{
4180 struct ata_host_set *host_set = dev_instance;
4181 unsigned int i;
4182 unsigned int handled = 0;
4183 unsigned long flags;
4184
4185 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4186 spin_lock_irqsave(&host_set->lock, flags);
4187
4188 for (i = 0; i < host_set->n_ports; i++) {
4189 struct ata_port *ap;
4190
4191 ap = host_set->ports[i];
c1389503
TH
4192 if (ap &&
4193 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4194 struct ata_queued_cmd *qc;
4195
4196 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4197 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4198 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4199 handled |= ata_host_intr(ap, qc);
4200 }
4201 }
4202
4203 spin_unlock_irqrestore(&host_set->lock, flags);
4204
4205 return IRQ_RETVAL(handled);
4206}
4207
4208/**
4209 * atapi_packet_task - Write CDB bytes to hardware
4210 * @_data: Port to which ATAPI device is attached.
4211 *
4212 * When device has indicated its readiness to accept
4213 * a CDB, this function is called. Send the CDB.
4214 * If DMA is to be performed, exit immediately.
4215 * Otherwise, we are in polling mode, so poll
4216 * status under operation succeeds or fails.
4217 *
4218 * LOCKING:
4219 * Kernel thread context (may sleep)
4220 */
4221
4222static void atapi_packet_task(void *_data)
4223{
4224 struct ata_port *ap = _data;
4225 struct ata_queued_cmd *qc;
4226 u8 status;
4227
4228 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474
TH
4229 WARN_ON(qc == NULL);
4230 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4231
4232 /* sleep-wait for BSY to clear */
4233 DPRINTK("busy wait\n");
d8fe452b 4234 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
11a56d24 4235 qc->err_mask |= AC_ERR_TIMEOUT;
d8fe452b
AL
4236 goto err_out;
4237 }
1da177e4
LT
4238
4239 /* make sure DRQ is set */
4240 status = ata_chk_status(ap);
d8fe452b 4241 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
11a56d24 4242 qc->err_mask |= AC_ERR_HSM;
1da177e4 4243 goto err_out;
d8fe452b 4244 }
1da177e4
LT
4245
4246 /* send SCSI cdb */
4247 DPRINTK("send cdb\n");
6e7846e9 4248 WARN_ON(qc->dev->cdb_len < 12);
1da177e4 4249
c1389503
TH
4250 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4251 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4252 unsigned long flags;
1da177e4 4253
c1389503
TH
4254 /* Once we're done issuing command and kicking bmdma,
4255 * irq handler takes over. To not lose irq, we need
4256 * to clear NOINTR flag before sending cdb, but
4257 * interrupt handler shouldn't be invoked before we're
4258 * finished. Hence, the following locking.
4259 */
4260 spin_lock_irqsave(&ap->host_set->lock, flags);
4261 ap->flags &= ~ATA_FLAG_NOINTR;
6e7846e9 4262 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
c1389503
TH
4263 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4264 ap->ops->bmdma_start(qc); /* initiate bmdma */
4265 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4266 } else {
6e7846e9 4267 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
1da177e4 4268
c1389503 4269 /* PIO commands are handled by polling */
14be71f4 4270 ap->hsm_task_state = HSM_ST;
95064379 4271 ata_queue_pio_task(ap);
1da177e4
LT
4272 }
4273
4274 return;
4275
4276err_out:
a22e2eb0 4277 ata_poll_qc_complete(qc);
1da177e4
LT
4278}
4279
0baab86b 4280
9b847548
JA
4281/*
4282 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4283 * without filling any other registers
4284 */
4285static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4286 u8 cmd)
4287{
4288 struct ata_taskfile tf;
4289 int err;
4290
4291 ata_tf_init(ap, &tf, dev->devno);
4292
4293 tf.command = cmd;
4294 tf.flags |= ATA_TFLAG_DEVICE;
4295 tf.protocol = ATA_PROT_NODATA;
4296
4297 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4298 if (err)
4299 printk(KERN_ERR "%s: ata command failed: %d\n",
4300 __FUNCTION__, err);
4301
4302 return err;
4303}
4304
4305static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4306{
4307 u8 cmd;
4308
4309 if (!ata_try_flush_cache(dev))
4310 return 0;
4311
4312 if (ata_id_has_flush_ext(dev->id))
4313 cmd = ATA_CMD_FLUSH_EXT;
4314 else
4315 cmd = ATA_CMD_FLUSH;
4316
4317 return ata_do_simple_cmd(ap, dev, cmd);
4318}
4319
4320static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4321{
4322 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4323}
4324
4325static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4326{
4327 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4328}
4329
4330/**
4331 * ata_device_resume - wakeup a previously suspended devices
c893a3ae
RD
4332 * @ap: port the device is connected to
4333 * @dev: the device to resume
9b847548
JA
4334 *
4335 * Kick the drive back into action, by sending it an idle immediate
4336 * command and making sure its transfer mode matches between drive
4337 * and host.
4338 *
4339 */
4340int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4341{
4342 if (ap->flags & ATA_FLAG_SUSPENDED) {
4343 ap->flags &= ~ATA_FLAG_SUSPENDED;
4344 ata_set_mode(ap);
4345 }
4346 if (!ata_dev_present(dev))
4347 return 0;
4348 if (dev->class == ATA_DEV_ATA)
4349 ata_start_drive(ap, dev);
4350
4351 return 0;
4352}
4353
4354/**
4355 * ata_device_suspend - prepare a device for suspend
c893a3ae
RD
4356 * @ap: port the device is connected to
4357 * @dev: the device to suspend
9b847548
JA
4358 *
4359 * Flush the cache on the drive, if appropriate, then issue a
4360 * standbynow command.
9b847548
JA
4361 */
4362int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4363{
4364 if (!ata_dev_present(dev))
4365 return 0;
4366 if (dev->class == ATA_DEV_ATA)
4367 ata_flush_cache(ap, dev);
4368
4369 ata_standby_drive(ap, dev);
4370 ap->flags |= ATA_FLAG_SUSPENDED;
4371 return 0;
4372}
4373
c893a3ae
RD
4374/**
4375 * ata_port_start - Set port up for dma.
4376 * @ap: Port to initialize
4377 *
4378 * Called just after data structures for each port are
4379 * initialized. Allocates space for PRD table.
4380 *
4381 * May be used as the port_start() entry in ata_port_operations.
4382 *
4383 * LOCKING:
4384 * Inherited from caller.
4385 */
4386
1da177e4
LT
4387int ata_port_start (struct ata_port *ap)
4388{
4389 struct device *dev = ap->host_set->dev;
6037d6bb 4390 int rc;
1da177e4
LT
4391
4392 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4393 if (!ap->prd)
4394 return -ENOMEM;
4395
6037d6bb
JG
4396 rc = ata_pad_alloc(ap, dev);
4397 if (rc) {
cedc9a47 4398 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4399 return rc;
cedc9a47
JG
4400 }
4401
1da177e4
LT
4402 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4403
4404 return 0;
4405}
4406
0baab86b
EF
4407
4408/**
4409 * ata_port_stop - Undo ata_port_start()
4410 * @ap: Port to shut down
4411 *
4412 * Frees the PRD table.
4413 *
4414 * May be used as the port_stop() entry in ata_port_operations.
4415 *
4416 * LOCKING:
6f0ef4fa 4417 * Inherited from caller.
0baab86b
EF
4418 */
4419
1da177e4
LT
4420void ata_port_stop (struct ata_port *ap)
4421{
4422 struct device *dev = ap->host_set->dev;
4423
4424 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4425 ata_pad_free(ap, dev);
1da177e4
LT
4426}
4427
aa8f0dc6
JG
4428void ata_host_stop (struct ata_host_set *host_set)
4429{
4430 if (host_set->mmio_base)
4431 iounmap(host_set->mmio_base);
4432}
4433
4434
1da177e4
LT
4435/**
4436 * ata_host_remove - Unregister SCSI host structure with upper layers
4437 * @ap: Port to unregister
4438 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4439 *
4440 * LOCKING:
6f0ef4fa 4441 * Inherited from caller.
1da177e4
LT
4442 */
4443
4444static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4445{
4446 struct Scsi_Host *sh = ap->host;
4447
4448 DPRINTK("ENTER\n");
4449
4450 if (do_unregister)
4451 scsi_remove_host(sh);
4452
4453 ap->ops->port_stop(ap);
4454}
4455
4456/**
4457 * ata_host_init - Initialize an ata_port structure
4458 * @ap: Structure to initialize
4459 * @host: associated SCSI mid-layer structure
4460 * @host_set: Collection of hosts to which @ap belongs
4461 * @ent: Probe information provided by low-level driver
4462 * @port_no: Port number associated with this ata_port
4463 *
0cba632b
JG
4464 * Initialize a new ata_port structure, and its associated
4465 * scsi_host.
4466 *
1da177e4 4467 * LOCKING:
0cba632b 4468 * Inherited from caller.
1da177e4
LT
4469 */
4470
4471static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4472 struct ata_host_set *host_set,
057ace5e 4473 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4474{
4475 unsigned int i;
4476
4477 host->max_id = 16;
4478 host->max_lun = 1;
4479 host->max_channel = 1;
4480 host->unique_id = ata_unique_id++;
4481 host->max_cmd_len = 12;
12413197 4482
1da177e4
LT
4483 ap->flags = ATA_FLAG_PORT_DISABLED;
4484 ap->id = host->unique_id;
4485 ap->host = host;
4486 ap->ctl = ATA_DEVCTL_OBS;
4487 ap->host_set = host_set;
4488 ap->port_no = port_no;
4489 ap->hard_port_no =
4490 ent->legacy_mode ? ent->hard_port_no : port_no;
4491 ap->pio_mask = ent->pio_mask;
4492 ap->mwdma_mask = ent->mwdma_mask;
4493 ap->udma_mask = ent->udma_mask;
4494 ap->flags |= ent->host_flags;
4495 ap->ops = ent->port_ops;
4496 ap->cbl = ATA_CBL_NONE;
4497 ap->active_tag = ATA_TAG_POISON;
4498 ap->last_ctl = 0xFF;
4499
4500 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4501 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
a72ec4ce 4502 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4
LT
4503
4504 for (i = 0; i < ATA_MAX_DEVICES; i++)
4505 ap->device[i].devno = i;
4506
4507#ifdef ATA_IRQ_TRAP
4508 ap->stats.unhandled_irq = 1;
4509 ap->stats.idle_irq = 1;
4510#endif
4511
4512 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4513}
4514
4515/**
4516 * ata_host_add - Attach low-level ATA driver to system
4517 * @ent: Information provided by low-level driver
4518 * @host_set: Collections of ports to which we add
4519 * @port_no: Port number associated with this host
4520 *
0cba632b
JG
4521 * Attach low-level ATA driver to system.
4522 *
1da177e4 4523 * LOCKING:
0cba632b 4524 * PCI/etc. bus probe sem.
1da177e4
LT
4525 *
4526 * RETURNS:
0cba632b 4527 * New ata_port on success, for NULL on error.
1da177e4
LT
4528 */
4529
057ace5e 4530static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4531 struct ata_host_set *host_set,
4532 unsigned int port_no)
4533{
4534 struct Scsi_Host *host;
4535 struct ata_port *ap;
4536 int rc;
4537
4538 DPRINTK("ENTER\n");
4539 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4540 if (!host)
4541 return NULL;
4542
4543 ap = (struct ata_port *) &host->hostdata[0];
4544
4545 ata_host_init(ap, host, host_set, ent, port_no);
4546
4547 rc = ap->ops->port_start(ap);
4548 if (rc)
4549 goto err_out;
4550
4551 return ap;
4552
4553err_out:
4554 scsi_host_put(host);
4555 return NULL;
4556}
4557
4558/**
0cba632b
JG
4559 * ata_device_add - Register hardware device with ATA and SCSI layers
4560 * @ent: Probe information describing hardware device to be registered
4561 *
4562 * This function processes the information provided in the probe
4563 * information struct @ent, allocates the necessary ATA and SCSI
4564 * host information structures, initializes them, and registers
4565 * everything with requisite kernel subsystems.
4566 *
4567 * This function requests irqs, probes the ATA bus, and probes
4568 * the SCSI bus.
1da177e4
LT
4569 *
4570 * LOCKING:
0cba632b 4571 * PCI/etc. bus probe sem.
1da177e4
LT
4572 *
4573 * RETURNS:
0cba632b 4574 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4575 */
4576
057ace5e 4577int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4578{
4579 unsigned int count = 0, i;
4580 struct device *dev = ent->dev;
4581 struct ata_host_set *host_set;
4582
4583 DPRINTK("ENTER\n");
4584 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4585 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4586 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4587 if (!host_set)
4588 return 0;
1da177e4
LT
4589 spin_lock_init(&host_set->lock);
4590
4591 host_set->dev = dev;
4592 host_set->n_ports = ent->n_ports;
4593 host_set->irq = ent->irq;
4594 host_set->mmio_base = ent->mmio_base;
4595 host_set->private_data = ent->private_data;
4596 host_set->ops = ent->port_ops;
4597
4598 /* register each port bound to this device */
4599 for (i = 0; i < ent->n_ports; i++) {
4600 struct ata_port *ap;
4601 unsigned long xfer_mode_mask;
4602
4603 ap = ata_host_add(ent, host_set, i);
4604 if (!ap)
4605 goto err_out;
4606
4607 host_set->ports[i] = ap;
4608 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4609 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4610 (ap->pio_mask << ATA_SHIFT_PIO);
4611
4612 /* print per-port info to dmesg */
4613 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4614 "bmdma 0x%lX irq %lu\n",
4615 ap->id,
4616 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4617 ata_mode_string(xfer_mode_mask),
4618 ap->ioaddr.cmd_addr,
4619 ap->ioaddr.ctl_addr,
4620 ap->ioaddr.bmdma_addr,
4621 ent->irq);
4622
4623 ata_chk_status(ap);
4624 host_set->ops->irq_clear(ap);
4625 count++;
4626 }
4627
57f3bda8
RD
4628 if (!count)
4629 goto err_free_ret;
1da177e4
LT
4630
4631 /* obtain irq, that is shared between channels */
4632 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4633 DRV_NAME, host_set))
4634 goto err_out;
4635
4636 /* perform each probe synchronously */
4637 DPRINTK("probe begin\n");
4638 for (i = 0; i < count; i++) {
4639 struct ata_port *ap;
4640 int rc;
4641
4642 ap = host_set->ports[i];
4643
c893a3ae 4644 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4645 rc = ata_bus_probe(ap);
c893a3ae 4646 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4647
4648 if (rc) {
4649 /* FIXME: do something useful here?
4650 * Current libata behavior will
4651 * tear down everything when
4652 * the module is removed
4653 * or the h/w is unplugged.
4654 */
4655 }
4656
4657 rc = scsi_add_host(ap->host, dev);
4658 if (rc) {
4659 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4660 ap->id);
4661 /* FIXME: do something useful here */
4662 /* FIXME: handle unconditional calls to
4663 * scsi_scan_host and ata_host_remove, below,
4664 * at the very least
4665 */
4666 }
4667 }
4668
4669 /* probes are done, now scan each port's disk(s) */
c893a3ae 4670 DPRINTK("host probe begin\n");
1da177e4
LT
4671 for (i = 0; i < count; i++) {
4672 struct ata_port *ap = host_set->ports[i];
4673
644dd0cc 4674 ata_scsi_scan_host(ap);
1da177e4
LT
4675 }
4676
4677 dev_set_drvdata(dev, host_set);
4678
4679 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4680 return ent->n_ports; /* success */
4681
4682err_out:
4683 for (i = 0; i < count; i++) {
4684 ata_host_remove(host_set->ports[i], 1);
4685 scsi_host_put(host_set->ports[i]->host);
4686 }
57f3bda8 4687err_free_ret:
1da177e4
LT
4688 kfree(host_set);
4689 VPRINTK("EXIT, returning 0\n");
4690 return 0;
4691}
4692
17b14451
AC
4693/**
4694 * ata_host_set_remove - PCI layer callback for device removal
4695 * @host_set: ATA host set that was removed
4696 *
4697 * Unregister all objects associated with this host set. Free those
4698 * objects.
4699 *
4700 * LOCKING:
4701 * Inherited from calling layer (may sleep).
4702 */
4703
17b14451
AC
4704void ata_host_set_remove(struct ata_host_set *host_set)
4705{
4706 struct ata_port *ap;
4707 unsigned int i;
4708
4709 for (i = 0; i < host_set->n_ports; i++) {
4710 ap = host_set->ports[i];
4711 scsi_remove_host(ap->host);
4712 }
4713
4714 free_irq(host_set->irq, host_set);
4715
4716 for (i = 0; i < host_set->n_ports; i++) {
4717 ap = host_set->ports[i];
4718
4719 ata_scsi_release(ap->host);
4720
4721 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4722 struct ata_ioports *ioaddr = &ap->ioaddr;
4723
4724 if (ioaddr->cmd_addr == 0x1f0)
4725 release_region(0x1f0, 8);
4726 else if (ioaddr->cmd_addr == 0x170)
4727 release_region(0x170, 8);
4728 }
4729
4730 scsi_host_put(ap->host);
4731 }
4732
4733 if (host_set->ops->host_stop)
4734 host_set->ops->host_stop(host_set);
4735
4736 kfree(host_set);
4737}
4738
1da177e4
LT
4739/**
4740 * ata_scsi_release - SCSI layer callback hook for host unload
4741 * @host: libata host to be unloaded
4742 *
4743 * Performs all duties necessary to shut down a libata port...
4744 * Kill port kthread, disable port, and release resources.
4745 *
4746 * LOCKING:
4747 * Inherited from SCSI layer.
4748 *
4749 * RETURNS:
4750 * One.
4751 */
4752
4753int ata_scsi_release(struct Scsi_Host *host)
4754{
4755 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
d9572b1d 4756 int i;
1da177e4
LT
4757
4758 DPRINTK("ENTER\n");
4759
4760 ap->ops->port_disable(ap);
4761 ata_host_remove(ap, 0);
d9572b1d
TH
4762 for (i = 0; i < ATA_MAX_DEVICES; i++)
4763 kfree(ap->device[i].id);
1da177e4
LT
4764
4765 DPRINTK("EXIT\n");
4766 return 1;
4767}
4768
4769/**
4770 * ata_std_ports - initialize ioaddr with standard port offsets.
4771 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4772 *
4773 * Utility function which initializes data_addr, error_addr,
4774 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4775 * device_addr, status_addr, and command_addr to standard offsets
4776 * relative to cmd_addr.
4777 *
4778 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4779 */
0baab86b 4780
1da177e4
LT
4781void ata_std_ports(struct ata_ioports *ioaddr)
4782{
4783 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4784 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4785 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4786 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4787 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4788 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4789 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4790 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4791 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4792 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4793}
4794
0baab86b 4795
374b1873
JG
4796#ifdef CONFIG_PCI
4797
4798void ata_pci_host_stop (struct ata_host_set *host_set)
4799{
4800 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4801
4802 pci_iounmap(pdev, host_set->mmio_base);
4803}
4804
1da177e4
LT
4805/**
4806 * ata_pci_remove_one - PCI layer callback for device removal
4807 * @pdev: PCI device that was removed
4808 *
4809 * PCI layer indicates to libata via this hook that
6f0ef4fa 4810 * hot-unplug or module unload event has occurred.
1da177e4
LT
4811 * Handle this by unregistering all objects associated
4812 * with this PCI device. Free those objects. Then finally
4813 * release PCI resources and disable device.
4814 *
4815 * LOCKING:
4816 * Inherited from PCI layer (may sleep).
4817 */
4818
4819void ata_pci_remove_one (struct pci_dev *pdev)
4820{
4821 struct device *dev = pci_dev_to_dev(pdev);
4822 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4823
17b14451 4824 ata_host_set_remove(host_set);
1da177e4
LT
4825 pci_release_regions(pdev);
4826 pci_disable_device(pdev);
4827 dev_set_drvdata(dev, NULL);
4828}
4829
4830/* move to PCI subsystem */
057ace5e 4831int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
4832{
4833 unsigned long tmp = 0;
4834
4835 switch (bits->width) {
4836 case 1: {
4837 u8 tmp8 = 0;
4838 pci_read_config_byte(pdev, bits->reg, &tmp8);
4839 tmp = tmp8;
4840 break;
4841 }
4842 case 2: {
4843 u16 tmp16 = 0;
4844 pci_read_config_word(pdev, bits->reg, &tmp16);
4845 tmp = tmp16;
4846 break;
4847 }
4848 case 4: {
4849 u32 tmp32 = 0;
4850 pci_read_config_dword(pdev, bits->reg, &tmp32);
4851 tmp = tmp32;
4852 break;
4853 }
4854
4855 default:
4856 return -EINVAL;
4857 }
4858
4859 tmp &= bits->mask;
4860
4861 return (tmp == bits->val) ? 1 : 0;
4862}
9b847548
JA
4863
4864int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4865{
4866 pci_save_state(pdev);
4867 pci_disable_device(pdev);
4868 pci_set_power_state(pdev, PCI_D3hot);
4869 return 0;
4870}
4871
4872int ata_pci_device_resume(struct pci_dev *pdev)
4873{
4874 pci_set_power_state(pdev, PCI_D0);
4875 pci_restore_state(pdev);
4876 pci_enable_device(pdev);
4877 pci_set_master(pdev);
4878 return 0;
4879}
1da177e4
LT
4880#endif /* CONFIG_PCI */
4881
4882
1da177e4
LT
4883static int __init ata_init(void)
4884{
4885 ata_wq = create_workqueue("ata");
4886 if (!ata_wq)
4887 return -ENOMEM;
4888
4889 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4890 return 0;
4891}
4892
4893static void __exit ata_exit(void)
4894{
4895 destroy_workqueue(ata_wq);
4896}
4897
4898module_init(ata_init);
4899module_exit(ata_exit);
4900
67846b30
JG
4901static unsigned long ratelimit_time;
4902static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4903
4904int ata_ratelimit(void)
4905{
4906 int rc;
4907 unsigned long flags;
4908
4909 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4910
4911 if (time_after(jiffies, ratelimit_time)) {
4912 rc = 1;
4913 ratelimit_time = jiffies + (HZ/5);
4914 } else
4915 rc = 0;
4916
4917 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4918
4919 return rc;
4920}
4921
1da177e4
LT
4922/*
4923 * libata is essentially a library of internal helper functions for
4924 * low-level ATA host controller drivers. As such, the API/ABI is
4925 * likely to change as new drivers are added and updated.
4926 * Do not depend on ABI/API stability.
4927 */
4928
4929EXPORT_SYMBOL_GPL(ata_std_bios_param);
4930EXPORT_SYMBOL_GPL(ata_std_ports);
4931EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 4932EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
4933EXPORT_SYMBOL_GPL(ata_sg_init);
4934EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 4935EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4
LT
4936EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4937EXPORT_SYMBOL_GPL(ata_eng_timeout);
4938EXPORT_SYMBOL_GPL(ata_tf_load);
4939EXPORT_SYMBOL_GPL(ata_tf_read);
4940EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4941EXPORT_SYMBOL_GPL(ata_std_dev_select);
4942EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4943EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4944EXPORT_SYMBOL_GPL(ata_check_status);
4945EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
4946EXPORT_SYMBOL_GPL(ata_exec_command);
4947EXPORT_SYMBOL_GPL(ata_port_start);
4948EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 4949EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
4950EXPORT_SYMBOL_GPL(ata_interrupt);
4951EXPORT_SYMBOL_GPL(ata_qc_prep);
4952EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4953EXPORT_SYMBOL_GPL(ata_bmdma_start);
4954EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4955EXPORT_SYMBOL_GPL(ata_bmdma_status);
4956EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4957EXPORT_SYMBOL_GPL(ata_port_probe);
4958EXPORT_SYMBOL_GPL(sata_phy_reset);
4959EXPORT_SYMBOL_GPL(__sata_phy_reset);
4960EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 4961EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
4962EXPORT_SYMBOL_GPL(ata_std_softreset);
4963EXPORT_SYMBOL_GPL(sata_std_hardreset);
4964EXPORT_SYMBOL_GPL(ata_std_postreset);
4965EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 4966EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
1da177e4 4967EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 4968EXPORT_SYMBOL_GPL(ata_ratelimit);
6f8b9958 4969EXPORT_SYMBOL_GPL(ata_busy_sleep);
1da177e4
LT
4970EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4971EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
f29841e0 4972EXPORT_SYMBOL_GPL(ata_scsi_timed_out);
1da177e4
LT
4973EXPORT_SYMBOL_GPL(ata_scsi_error);
4974EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4975EXPORT_SYMBOL_GPL(ata_scsi_release);
4976EXPORT_SYMBOL_GPL(ata_host_intr);
4977EXPORT_SYMBOL_GPL(ata_dev_classify);
6a62a04d
TH
4978EXPORT_SYMBOL_GPL(ata_id_string);
4979EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4 4980EXPORT_SYMBOL_GPL(ata_scsi_simulate);
a72ec4ce
TH
4981EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
4982EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
1da177e4 4983
1bc4ccff 4984EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
4985EXPORT_SYMBOL_GPL(ata_timing_compute);
4986EXPORT_SYMBOL_GPL(ata_timing_merge);
4987
1da177e4
LT
4988#ifdef CONFIG_PCI
4989EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 4990EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
4991EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4992EXPORT_SYMBOL_GPL(ata_pci_init_one);
4993EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
4994EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
4995EXPORT_SYMBOL_GPL(ata_pci_device_resume);
1da177e4 4996#endif /* CONFIG_PCI */
9b847548
JA
4997
4998EXPORT_SYMBOL_GPL(ata_device_suspend);
4999EXPORT_SYMBOL_GPL(ata_device_resume);
5000EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5001EXPORT_SYMBOL_GPL(ata_scsi_device_resume);