]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/scsi/libata-core.c
[PATCH] ata: add some NVIDIA chipset IDs
[net-next-2.6.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
d7bb4cc7
TH
64/* debounce timing parameters in msecs { interval, duration, timeout } */
65const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
66const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
67const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
68
3373efd8
TH
69static unsigned int ata_dev_init_params(struct ata_device *dev,
70 u16 heads, u16 sectors);
71static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
72static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
73
74static unsigned int ata_unique_id = 1;
75static struct workqueue_struct *ata_wq;
76
453b07ac
TH
77struct workqueue_struct *ata_aux_wq;
78
418dc1f5 79int atapi_enabled = 1;
1623c81e
JG
80module_param(atapi_enabled, int, 0444);
81MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82
95de719a
AL
83int atapi_dmadir = 0;
84module_param(atapi_dmadir, int, 0444);
85MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86
c3c013a2
JG
87int libata_fua = 0;
88module_param_named(fua, libata_fua, int, 0444);
89MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
90
a8601e5f
AM
91static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
92module_param(ata_probe_timeout, int, 0444);
93MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
94
1da177e4
LT
95MODULE_AUTHOR("Jeff Garzik");
96MODULE_DESCRIPTION("Library module for ATA devices");
97MODULE_LICENSE("GPL");
98MODULE_VERSION(DRV_VERSION);
99
0baab86b 100
1da177e4
LT
101/**
102 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
103 * @tf: Taskfile to convert
104 * @fis: Buffer into which data will output
105 * @pmp: Port multiplier port
106 *
107 * Converts a standard ATA taskfile to a Serial ATA
108 * FIS structure (Register - Host to Device).
109 *
110 * LOCKING:
111 * Inherited from caller.
112 */
113
057ace5e 114void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
115{
116 fis[0] = 0x27; /* Register - Host to Device FIS */
117 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
118 bit 7 indicates Command FIS */
119 fis[2] = tf->command;
120 fis[3] = tf->feature;
121
122 fis[4] = tf->lbal;
123 fis[5] = tf->lbam;
124 fis[6] = tf->lbah;
125 fis[7] = tf->device;
126
127 fis[8] = tf->hob_lbal;
128 fis[9] = tf->hob_lbam;
129 fis[10] = tf->hob_lbah;
130 fis[11] = tf->hob_feature;
131
132 fis[12] = tf->nsect;
133 fis[13] = tf->hob_nsect;
134 fis[14] = 0;
135 fis[15] = tf->ctl;
136
137 fis[16] = 0;
138 fis[17] = 0;
139 fis[18] = 0;
140 fis[19] = 0;
141}
142
143/**
144 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
145 * @fis: Buffer from which data will be input
146 * @tf: Taskfile to output
147 *
e12a1be6 148 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
149 *
150 * LOCKING:
151 * Inherited from caller.
152 */
153
057ace5e 154void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
155{
156 tf->command = fis[2]; /* status */
157 tf->feature = fis[3]; /* error */
158
159 tf->lbal = fis[4];
160 tf->lbam = fis[5];
161 tf->lbah = fis[6];
162 tf->device = fis[7];
163
164 tf->hob_lbal = fis[8];
165 tf->hob_lbam = fis[9];
166 tf->hob_lbah = fis[10];
167
168 tf->nsect = fis[12];
169 tf->hob_nsect = fis[13];
170}
171
8cbd6df1
AL
172static const u8 ata_rw_cmds[] = {
173 /* pio multi */
174 ATA_CMD_READ_MULTI,
175 ATA_CMD_WRITE_MULTI,
176 ATA_CMD_READ_MULTI_EXT,
177 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
178 0,
179 0,
180 0,
181 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
182 /* pio */
183 ATA_CMD_PIO_READ,
184 ATA_CMD_PIO_WRITE,
185 ATA_CMD_PIO_READ_EXT,
186 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
187 0,
188 0,
189 0,
190 0,
8cbd6df1
AL
191 /* dma */
192 ATA_CMD_READ,
193 ATA_CMD_WRITE,
194 ATA_CMD_READ_EXT,
9a3dccc4
TH
195 ATA_CMD_WRITE_EXT,
196 0,
197 0,
198 0,
199 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 200};
1da177e4
LT
201
202/**
8cbd6df1
AL
203 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
204 * @qc: command to examine and configure
1da177e4 205 *
2e9edbf8 206 * Examine the device configuration and tf->flags to calculate
8cbd6df1 207 * the proper read/write commands and protocol to use.
1da177e4
LT
208 *
209 * LOCKING:
210 * caller.
211 */
9a3dccc4 212int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 213{
8cbd6df1
AL
214 struct ata_taskfile *tf = &qc->tf;
215 struct ata_device *dev = qc->dev;
9a3dccc4 216 u8 cmd;
1da177e4 217
9a3dccc4 218 int index, fua, lba48, write;
2e9edbf8 219
9a3dccc4 220 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
221 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
222 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 223
8cbd6df1
AL
224 if (dev->flags & ATA_DFLAG_PIO) {
225 tf->protocol = ATA_PROT_PIO;
9a3dccc4 226 index = dev->multi_count ? 0 : 8;
8d238e01
AC
227 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
228 /* Unable to use DMA due to host limitation */
229 tf->protocol = ATA_PROT_PIO;
0565c26d 230 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
231 } else {
232 tf->protocol = ATA_PROT_DMA;
9a3dccc4 233 index = 16;
8cbd6df1 234 }
1da177e4 235
9a3dccc4
TH
236 cmd = ata_rw_cmds[index + fua + lba48 + write];
237 if (cmd) {
238 tf->command = cmd;
239 return 0;
240 }
241 return -1;
1da177e4
LT
242}
243
cb95d562
TH
244/**
245 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
246 * @pio_mask: pio_mask
247 * @mwdma_mask: mwdma_mask
248 * @udma_mask: udma_mask
249 *
250 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
251 * unsigned int xfer_mask.
252 *
253 * LOCKING:
254 * None.
255 *
256 * RETURNS:
257 * Packed xfer_mask.
258 */
259static unsigned int ata_pack_xfermask(unsigned int pio_mask,
260 unsigned int mwdma_mask,
261 unsigned int udma_mask)
262{
263 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
264 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
265 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
266}
267
c0489e4e
TH
268/**
269 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
270 * @xfer_mask: xfer_mask to unpack
271 * @pio_mask: resulting pio_mask
272 * @mwdma_mask: resulting mwdma_mask
273 * @udma_mask: resulting udma_mask
274 *
275 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
276 * Any NULL distination masks will be ignored.
277 */
278static void ata_unpack_xfermask(unsigned int xfer_mask,
279 unsigned int *pio_mask,
280 unsigned int *mwdma_mask,
281 unsigned int *udma_mask)
282{
283 if (pio_mask)
284 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
285 if (mwdma_mask)
286 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
287 if (udma_mask)
288 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
289}
290
cb95d562 291static const struct ata_xfer_ent {
be9a50c8 292 int shift, bits;
cb95d562
TH
293 u8 base;
294} ata_xfer_tbl[] = {
295 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
296 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
297 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
298 { -1, },
299};
300
301/**
302 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
303 * @xfer_mask: xfer_mask of interest
304 *
305 * Return matching XFER_* value for @xfer_mask. Only the highest
306 * bit of @xfer_mask is considered.
307 *
308 * LOCKING:
309 * None.
310 *
311 * RETURNS:
312 * Matching XFER_* value, 0 if no match found.
313 */
314static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
315{
316 int highbit = fls(xfer_mask) - 1;
317 const struct ata_xfer_ent *ent;
318
319 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
320 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
321 return ent->base + highbit - ent->shift;
322 return 0;
323}
324
325/**
326 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
327 * @xfer_mode: XFER_* of interest
328 *
329 * Return matching xfer_mask for @xfer_mode.
330 *
331 * LOCKING:
332 * None.
333 *
334 * RETURNS:
335 * Matching xfer_mask, 0 if no match found.
336 */
337static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
338{
339 const struct ata_xfer_ent *ent;
340
341 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
342 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
343 return 1 << (ent->shift + xfer_mode - ent->base);
344 return 0;
345}
346
347/**
348 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
349 * @xfer_mode: XFER_* of interest
350 *
351 * Return matching xfer_shift for @xfer_mode.
352 *
353 * LOCKING:
354 * None.
355 *
356 * RETURNS:
357 * Matching xfer_shift, -1 if no match found.
358 */
359static int ata_xfer_mode2shift(unsigned int xfer_mode)
360{
361 const struct ata_xfer_ent *ent;
362
363 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
364 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
365 return ent->shift;
366 return -1;
367}
368
1da177e4 369/**
1da7b0d0
TH
370 * ata_mode_string - convert xfer_mask to string
371 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
372 *
373 * Determine string which represents the highest speed
1da7b0d0 374 * (highest bit in @modemask).
1da177e4
LT
375 *
376 * LOCKING:
377 * None.
378 *
379 * RETURNS:
380 * Constant C string representing highest speed listed in
1da7b0d0 381 * @mode_mask, or the constant C string "<n/a>".
1da177e4 382 */
1da7b0d0 383static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 384{
75f554bc
TH
385 static const char * const xfer_mode_str[] = {
386 "PIO0",
387 "PIO1",
388 "PIO2",
389 "PIO3",
390 "PIO4",
391 "MWDMA0",
392 "MWDMA1",
393 "MWDMA2",
394 "UDMA/16",
395 "UDMA/25",
396 "UDMA/33",
397 "UDMA/44",
398 "UDMA/66",
399 "UDMA/100",
400 "UDMA/133",
401 "UDMA7",
402 };
1da7b0d0 403 int highbit;
1da177e4 404
1da7b0d0
TH
405 highbit = fls(xfer_mask) - 1;
406 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
407 return xfer_mode_str[highbit];
1da177e4 408 return "<n/a>";
1da177e4
LT
409}
410
4c360c81
TH
411static const char *sata_spd_string(unsigned int spd)
412{
413 static const char * const spd_str[] = {
414 "1.5 Gbps",
415 "3.0 Gbps",
416 };
417
418 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
419 return "<unknown>";
420 return spd_str[spd - 1];
421}
422
3373efd8 423void ata_dev_disable(struct ata_device *dev)
0b8efb0a 424{
0dd4b21f 425 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 426 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
427 dev->class++;
428 }
429}
430
1da177e4
LT
431/**
432 * ata_pio_devchk - PATA device presence detection
433 * @ap: ATA channel to examine
434 * @device: Device to examine (starting at zero)
435 *
436 * This technique was originally described in
437 * Hale Landis's ATADRVR (www.ata-atapi.com), and
438 * later found its way into the ATA/ATAPI spec.
439 *
440 * Write a pattern to the ATA shadow registers,
441 * and if a device is present, it will respond by
442 * correctly storing and echoing back the
443 * ATA shadow register contents.
444 *
445 * LOCKING:
446 * caller.
447 */
448
449static unsigned int ata_pio_devchk(struct ata_port *ap,
450 unsigned int device)
451{
452 struct ata_ioports *ioaddr = &ap->ioaddr;
453 u8 nsect, lbal;
454
455 ap->ops->dev_select(ap, device);
456
457 outb(0x55, ioaddr->nsect_addr);
458 outb(0xaa, ioaddr->lbal_addr);
459
460 outb(0xaa, ioaddr->nsect_addr);
461 outb(0x55, ioaddr->lbal_addr);
462
463 outb(0x55, ioaddr->nsect_addr);
464 outb(0xaa, ioaddr->lbal_addr);
465
466 nsect = inb(ioaddr->nsect_addr);
467 lbal = inb(ioaddr->lbal_addr);
468
469 if ((nsect == 0x55) && (lbal == 0xaa))
470 return 1; /* we found a device */
471
472 return 0; /* nothing found */
473}
474
475/**
476 * ata_mmio_devchk - PATA device presence detection
477 * @ap: ATA channel to examine
478 * @device: Device to examine (starting at zero)
479 *
480 * This technique was originally described in
481 * Hale Landis's ATADRVR (www.ata-atapi.com), and
482 * later found its way into the ATA/ATAPI spec.
483 *
484 * Write a pattern to the ATA shadow registers,
485 * and if a device is present, it will respond by
486 * correctly storing and echoing back the
487 * ATA shadow register contents.
488 *
489 * LOCKING:
490 * caller.
491 */
492
493static unsigned int ata_mmio_devchk(struct ata_port *ap,
494 unsigned int device)
495{
496 struct ata_ioports *ioaddr = &ap->ioaddr;
497 u8 nsect, lbal;
498
499 ap->ops->dev_select(ap, device);
500
501 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
502 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
503
504 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
505 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
506
507 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
508 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
509
510 nsect = readb((void __iomem *) ioaddr->nsect_addr);
511 lbal = readb((void __iomem *) ioaddr->lbal_addr);
512
513 if ((nsect == 0x55) && (lbal == 0xaa))
514 return 1; /* we found a device */
515
516 return 0; /* nothing found */
517}
518
519/**
520 * ata_devchk - PATA device presence detection
521 * @ap: ATA channel to examine
522 * @device: Device to examine (starting at zero)
523 *
524 * Dispatch ATA device presence detection, depending
525 * on whether we are using PIO or MMIO to talk to the
526 * ATA shadow registers.
527 *
528 * LOCKING:
529 * caller.
530 */
531
532static unsigned int ata_devchk(struct ata_port *ap,
533 unsigned int device)
534{
535 if (ap->flags & ATA_FLAG_MMIO)
536 return ata_mmio_devchk(ap, device);
537 return ata_pio_devchk(ap, device);
538}
539
540/**
541 * ata_dev_classify - determine device type based on ATA-spec signature
542 * @tf: ATA taskfile register set for device to be identified
543 *
544 * Determine from taskfile register contents whether a device is
545 * ATA or ATAPI, as per "Signature and persistence" section
546 * of ATA/PI spec (volume 1, sect 5.14).
547 *
548 * LOCKING:
549 * None.
550 *
551 * RETURNS:
552 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
553 * the event of failure.
554 */
555
057ace5e 556unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
557{
558 /* Apple's open source Darwin code hints that some devices only
559 * put a proper signature into the LBA mid/high registers,
560 * So, we only check those. It's sufficient for uniqueness.
561 */
562
563 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
564 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
565 DPRINTK("found ATA device by sig\n");
566 return ATA_DEV_ATA;
567 }
568
569 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
570 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
571 DPRINTK("found ATAPI device by sig\n");
572 return ATA_DEV_ATAPI;
573 }
574
575 DPRINTK("unknown device\n");
576 return ATA_DEV_UNKNOWN;
577}
578
579/**
580 * ata_dev_try_classify - Parse returned ATA device signature
581 * @ap: ATA channel to examine
582 * @device: Device to examine (starting at zero)
b4dc7623 583 * @r_err: Value of error register on completion
1da177e4
LT
584 *
585 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
586 * an ATA/ATAPI-defined set of values is placed in the ATA
587 * shadow registers, indicating the results of device detection
588 * and diagnostics.
589 *
590 * Select the ATA device, and read the values from the ATA shadow
591 * registers. Then parse according to the Error register value,
592 * and the spec-defined values examined by ata_dev_classify().
593 *
594 * LOCKING:
595 * caller.
b4dc7623
TH
596 *
597 * RETURNS:
598 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
599 */
600
b4dc7623
TH
601static unsigned int
602ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 603{
1da177e4
LT
604 struct ata_taskfile tf;
605 unsigned int class;
606 u8 err;
607
608 ap->ops->dev_select(ap, device);
609
610 memset(&tf, 0, sizeof(tf));
611
1da177e4 612 ap->ops->tf_read(ap, &tf);
0169e284 613 err = tf.feature;
b4dc7623
TH
614 if (r_err)
615 *r_err = err;
1da177e4
LT
616
617 /* see if device passed diags */
618 if (err == 1)
619 /* do nothing */ ;
620 else if ((device == 0) && (err == 0x81))
621 /* do nothing */ ;
622 else
b4dc7623 623 return ATA_DEV_NONE;
1da177e4 624
b4dc7623 625 /* determine if device is ATA or ATAPI */
1da177e4 626 class = ata_dev_classify(&tf);
b4dc7623 627
1da177e4 628 if (class == ATA_DEV_UNKNOWN)
b4dc7623 629 return ATA_DEV_NONE;
1da177e4 630 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
631 return ATA_DEV_NONE;
632 return class;
1da177e4
LT
633}
634
635/**
6a62a04d 636 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
637 * @id: IDENTIFY DEVICE results we will examine
638 * @s: string into which data is output
639 * @ofs: offset into identify device page
640 * @len: length of string to return. must be an even number.
641 *
642 * The strings in the IDENTIFY DEVICE page are broken up into
643 * 16-bit chunks. Run through the string, and output each
644 * 8-bit chunk linearly, regardless of platform.
645 *
646 * LOCKING:
647 * caller.
648 */
649
6a62a04d
TH
650void ata_id_string(const u16 *id, unsigned char *s,
651 unsigned int ofs, unsigned int len)
1da177e4
LT
652{
653 unsigned int c;
654
655 while (len > 0) {
656 c = id[ofs] >> 8;
657 *s = c;
658 s++;
659
660 c = id[ofs] & 0xff;
661 *s = c;
662 s++;
663
664 ofs++;
665 len -= 2;
666 }
667}
668
0e949ff3 669/**
6a62a04d 670 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
671 * @id: IDENTIFY DEVICE results we will examine
672 * @s: string into which data is output
673 * @ofs: offset into identify device page
674 * @len: length of string to return. must be an odd number.
675 *
6a62a04d 676 * This function is identical to ata_id_string except that it
0e949ff3
TH
677 * trims trailing spaces and terminates the resulting string with
678 * null. @len must be actual maximum length (even number) + 1.
679 *
680 * LOCKING:
681 * caller.
682 */
6a62a04d
TH
683void ata_id_c_string(const u16 *id, unsigned char *s,
684 unsigned int ofs, unsigned int len)
0e949ff3
TH
685{
686 unsigned char *p;
687
688 WARN_ON(!(len & 1));
689
6a62a04d 690 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
691
692 p = s + strnlen(s, len - 1);
693 while (p > s && p[-1] == ' ')
694 p--;
695 *p = '\0';
696}
0baab86b 697
2940740b
TH
698static u64 ata_id_n_sectors(const u16 *id)
699{
700 if (ata_id_has_lba(id)) {
701 if (ata_id_has_lba48(id))
702 return ata_id_u64(id, 100);
703 else
704 return ata_id_u32(id, 60);
705 } else {
706 if (ata_id_current_chs_valid(id))
707 return ata_id_u32(id, 57);
708 else
709 return id[1] * id[3] * id[6];
710 }
711}
712
0baab86b
EF
713/**
714 * ata_noop_dev_select - Select device 0/1 on ATA bus
715 * @ap: ATA channel to manipulate
716 * @device: ATA device (numbered from zero) to select
717 *
718 * This function performs no actual function.
719 *
720 * May be used as the dev_select() entry in ata_port_operations.
721 *
722 * LOCKING:
723 * caller.
724 */
1da177e4
LT
725void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
726{
727}
728
0baab86b 729
1da177e4
LT
730/**
731 * ata_std_dev_select - Select device 0/1 on ATA bus
732 * @ap: ATA channel to manipulate
733 * @device: ATA device (numbered from zero) to select
734 *
735 * Use the method defined in the ATA specification to
736 * make either device 0, or device 1, active on the
0baab86b
EF
737 * ATA channel. Works with both PIO and MMIO.
738 *
739 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
740 *
741 * LOCKING:
742 * caller.
743 */
744
745void ata_std_dev_select (struct ata_port *ap, unsigned int device)
746{
747 u8 tmp;
748
749 if (device == 0)
750 tmp = ATA_DEVICE_OBS;
751 else
752 tmp = ATA_DEVICE_OBS | ATA_DEV1;
753
754 if (ap->flags & ATA_FLAG_MMIO) {
755 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
756 } else {
757 outb(tmp, ap->ioaddr.device_addr);
758 }
759 ata_pause(ap); /* needed; also flushes, for mmio */
760}
761
762/**
763 * ata_dev_select - Select device 0/1 on ATA bus
764 * @ap: ATA channel to manipulate
765 * @device: ATA device (numbered from zero) to select
766 * @wait: non-zero to wait for Status register BSY bit to clear
767 * @can_sleep: non-zero if context allows sleeping
768 *
769 * Use the method defined in the ATA specification to
770 * make either device 0, or device 1, active on the
771 * ATA channel.
772 *
773 * This is a high-level version of ata_std_dev_select(),
774 * which additionally provides the services of inserting
775 * the proper pauses and status polling, where needed.
776 *
777 * LOCKING:
778 * caller.
779 */
780
781void ata_dev_select(struct ata_port *ap, unsigned int device,
782 unsigned int wait, unsigned int can_sleep)
783{
0dd4b21f
BP
784 if (ata_msg_probe(ap)) {
785 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
786 "device %u, wait %u\n",
787 ap->id, device, wait);
788 }
1da177e4
LT
789
790 if (wait)
791 ata_wait_idle(ap);
792
793 ap->ops->dev_select(ap, device);
794
795 if (wait) {
796 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
797 msleep(150);
798 ata_wait_idle(ap);
799 }
800}
801
802/**
803 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 804 * @id: IDENTIFY DEVICE page to dump
1da177e4 805 *
0bd3300a
TH
806 * Dump selected 16-bit words from the given IDENTIFY DEVICE
807 * page.
1da177e4
LT
808 *
809 * LOCKING:
810 * caller.
811 */
812
0bd3300a 813static inline void ata_dump_id(const u16 *id)
1da177e4
LT
814{
815 DPRINTK("49==0x%04x "
816 "53==0x%04x "
817 "63==0x%04x "
818 "64==0x%04x "
819 "75==0x%04x \n",
0bd3300a
TH
820 id[49],
821 id[53],
822 id[63],
823 id[64],
824 id[75]);
1da177e4
LT
825 DPRINTK("80==0x%04x "
826 "81==0x%04x "
827 "82==0x%04x "
828 "83==0x%04x "
829 "84==0x%04x \n",
0bd3300a
TH
830 id[80],
831 id[81],
832 id[82],
833 id[83],
834 id[84]);
1da177e4
LT
835 DPRINTK("88==0x%04x "
836 "93==0x%04x\n",
0bd3300a
TH
837 id[88],
838 id[93]);
1da177e4
LT
839}
840
cb95d562
TH
841/**
842 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
843 * @id: IDENTIFY data to compute xfer mask from
844 *
845 * Compute the xfermask for this device. This is not as trivial
846 * as it seems if we must consider early devices correctly.
847 *
848 * FIXME: pre IDE drive timing (do we care ?).
849 *
850 * LOCKING:
851 * None.
852 *
853 * RETURNS:
854 * Computed xfermask
855 */
856static unsigned int ata_id_xfermask(const u16 *id)
857{
858 unsigned int pio_mask, mwdma_mask, udma_mask;
859
860 /* Usual case. Word 53 indicates word 64 is valid */
861 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
862 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
863 pio_mask <<= 3;
864 pio_mask |= 0x7;
865 } else {
866 /* If word 64 isn't valid then Word 51 high byte holds
867 * the PIO timing number for the maximum. Turn it into
868 * a mask.
869 */
870 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
871
872 /* But wait.. there's more. Design your standards by
873 * committee and you too can get a free iordy field to
874 * process. However its the speeds not the modes that
875 * are supported... Note drivers using the timing API
876 * will get this right anyway
877 */
878 }
879
880 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
881
882 udma_mask = 0;
883 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
884 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
885
886 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
887}
888
86e45b6b
TH
889/**
890 * ata_port_queue_task - Queue port_task
891 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
892 * @fn: workqueue function to be scheduled
893 * @data: data value to pass to workqueue function
894 * @delay: delay time for workqueue function
86e45b6b
TH
895 *
896 * Schedule @fn(@data) for execution after @delay jiffies using
897 * port_task. There is one port_task per port and it's the
898 * user(low level driver)'s responsibility to make sure that only
899 * one task is active at any given time.
900 *
901 * libata core layer takes care of synchronization between
902 * port_task and EH. ata_port_queue_task() may be ignored for EH
903 * synchronization.
904 *
905 * LOCKING:
906 * Inherited from caller.
907 */
908void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
909 unsigned long delay)
910{
911 int rc;
912
2e755f68 913 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
914 return;
915
916 PREPARE_WORK(&ap->port_task, fn, data);
917
918 if (!delay)
919 rc = queue_work(ata_wq, &ap->port_task);
920 else
921 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
922
923 /* rc == 0 means that another user is using port task */
924 WARN_ON(rc == 0);
925}
926
927/**
928 * ata_port_flush_task - Flush port_task
929 * @ap: The ata_port to flush port_task for
930 *
931 * After this function completes, port_task is guranteed not to
932 * be running or scheduled.
933 *
934 * LOCKING:
935 * Kernel thread context (may sleep)
936 */
937void ata_port_flush_task(struct ata_port *ap)
938{
939 unsigned long flags;
940
941 DPRINTK("ENTER\n");
942
ba6a1308 943 spin_lock_irqsave(ap->lock, flags);
2e755f68 944 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
ba6a1308 945 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
946
947 DPRINTK("flush #1\n");
948 flush_workqueue(ata_wq);
949
950 /*
951 * At this point, if a task is running, it's guaranteed to see
952 * the FLUSH flag; thus, it will never queue pio tasks again.
953 * Cancel and flush.
954 */
955 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f
BP
956 if (ata_msg_ctl(ap))
957 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n", __FUNCTION__);
86e45b6b
TH
958 flush_workqueue(ata_wq);
959 }
960
ba6a1308 961 spin_lock_irqsave(ap->lock, flags);
2e755f68 962 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
ba6a1308 963 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 964
0dd4b21f
BP
965 if (ata_msg_ctl(ap))
966 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
967}
968
77853bf2 969void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 970{
77853bf2 971 struct completion *waiting = qc->private_data;
a2a7a662 972
a2a7a662 973 complete(waiting);
a2a7a662
TH
974}
975
976/**
977 * ata_exec_internal - execute libata internal command
a2a7a662
TH
978 * @dev: Device to which the command is sent
979 * @tf: Taskfile registers for the command and the result
d69cf37d 980 * @cdb: CDB for packet command
a2a7a662
TH
981 * @dma_dir: Data tranfer direction of the command
982 * @buf: Data buffer of the command
983 * @buflen: Length of data buffer
984 *
985 * Executes libata internal command with timeout. @tf contains
986 * command on entry and result on return. Timeout and error
987 * conditions are reported via return value. No recovery action
988 * is taken after a command times out. It's caller's duty to
989 * clean up after timeout.
990 *
991 * LOCKING:
992 * None. Should be called with kernel context, might sleep.
551e8889
TH
993 *
994 * RETURNS:
995 * Zero on success, AC_ERR_* mask on failure
a2a7a662 996 */
3373efd8 997unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
998 struct ata_taskfile *tf, const u8 *cdb,
999 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 1000{
3373efd8 1001 struct ata_port *ap = dev->ap;
a2a7a662
TH
1002 u8 command = tf->command;
1003 struct ata_queued_cmd *qc;
2ab7db1f 1004 unsigned int tag, preempted_tag;
dedaf2b0 1005 u32 preempted_sactive, preempted_qc_active;
a2a7a662
TH
1006 DECLARE_COMPLETION(wait);
1007 unsigned long flags;
77853bf2 1008 unsigned int err_mask;
d95a717f 1009 int rc;
a2a7a662 1010
ba6a1308 1011 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1012
e3180499
TH
1013 /* no internal command while frozen */
1014 if (ap->flags & ATA_FLAG_FROZEN) {
ba6a1308 1015 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1016 return AC_ERR_SYSTEM;
1017 }
1018
2ab7db1f 1019 /* initialize internal qc */
a2a7a662 1020
2ab7db1f
TH
1021 /* XXX: Tag 0 is used for drivers with legacy EH as some
1022 * drivers choke if any other tag is given. This breaks
1023 * ata_tag_internal() test for those drivers. Don't use new
1024 * EH stuff without converting to it.
1025 */
1026 if (ap->ops->error_handler)
1027 tag = ATA_TAG_INTERNAL;
1028 else
1029 tag = 0;
1030
6cec4a39 1031 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1032 BUG();
f69499f4 1033 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1034
1035 qc->tag = tag;
1036 qc->scsicmd = NULL;
1037 qc->ap = ap;
1038 qc->dev = dev;
1039 ata_qc_reinit(qc);
1040
1041 preempted_tag = ap->active_tag;
dedaf2b0
TH
1042 preempted_sactive = ap->sactive;
1043 preempted_qc_active = ap->qc_active;
2ab7db1f 1044 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1045 ap->sactive = 0;
1046 ap->qc_active = 0;
2ab7db1f
TH
1047
1048 /* prepare & issue qc */
a2a7a662 1049 qc->tf = *tf;
d69cf37d
TH
1050 if (cdb)
1051 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1052 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1053 qc->dma_dir = dma_dir;
1054 if (dma_dir != DMA_NONE) {
1055 ata_sg_init_one(qc, buf, buflen);
1056 qc->nsect = buflen / ATA_SECT_SIZE;
1057 }
1058
77853bf2 1059 qc->private_data = &wait;
a2a7a662
TH
1060 qc->complete_fn = ata_qc_complete_internal;
1061
8e0e694a 1062 ata_qc_issue(qc);
a2a7a662 1063
ba6a1308 1064 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1065
a8601e5f 1066 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1067
1068 ata_port_flush_task(ap);
41ade50c 1069
d95a717f 1070 if (!rc) {
ba6a1308 1071 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1072
1073 /* We're racing with irq here. If we lose, the
1074 * following test prevents us from completing the qc
d95a717f
TH
1075 * twice. If we win, the port is frozen and will be
1076 * cleaned up by ->post_internal_cmd().
a2a7a662 1077 */
77853bf2 1078 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1079 qc->err_mask |= AC_ERR_TIMEOUT;
1080
1081 if (ap->ops->error_handler)
1082 ata_port_freeze(ap);
1083 else
1084 ata_qc_complete(qc);
f15a1daf 1085
0dd4b21f
BP
1086 if (ata_msg_warn(ap))
1087 ata_dev_printk(dev, KERN_WARNING,
f15a1daf 1088 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1089 }
1090
ba6a1308 1091 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1092 }
1093
d95a717f
TH
1094 /* do post_internal_cmd */
1095 if (ap->ops->post_internal_cmd)
1096 ap->ops->post_internal_cmd(qc);
1097
1098 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
0dd4b21f
BP
1099 if (ata_msg_warn(ap))
1100 ata_dev_printk(dev, KERN_WARNING,
1101 "zero err_mask for failed "
d95a717f
TH
1102 "internal command, assuming AC_ERR_OTHER\n");
1103 qc->err_mask |= AC_ERR_OTHER;
1104 }
1105
15869303 1106 /* finish up */
ba6a1308 1107 spin_lock_irqsave(ap->lock, flags);
15869303 1108
e61e0672 1109 *tf = qc->result_tf;
77853bf2
TH
1110 err_mask = qc->err_mask;
1111
1112 ata_qc_free(qc);
2ab7db1f 1113 ap->active_tag = preempted_tag;
dedaf2b0
TH
1114 ap->sactive = preempted_sactive;
1115 ap->qc_active = preempted_qc_active;
77853bf2 1116
1f7dd3e9
TH
1117 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1118 * Until those drivers are fixed, we detect the condition
1119 * here, fail the command with AC_ERR_SYSTEM and reenable the
1120 * port.
1121 *
1122 * Note that this doesn't change any behavior as internal
1123 * command failure results in disabling the device in the
1124 * higher layer for LLDDs without new reset/EH callbacks.
1125 *
1126 * Kill the following code as soon as those drivers are fixed.
1127 */
198e0fed 1128 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1129 err_mask |= AC_ERR_SYSTEM;
1130 ata_port_probe(ap);
1131 }
1132
ba6a1308 1133 spin_unlock_irqrestore(ap->lock, flags);
15869303 1134
77853bf2 1135 return err_mask;
a2a7a662
TH
1136}
1137
977e6b9f
TH
1138/**
1139 * ata_do_simple_cmd - execute simple internal command
1140 * @dev: Device to which the command is sent
1141 * @cmd: Opcode to execute
1142 *
1143 * Execute a 'simple' command, that only consists of the opcode
1144 * 'cmd' itself, without filling any other registers
1145 *
1146 * LOCKING:
1147 * Kernel thread context (may sleep).
1148 *
1149 * RETURNS:
1150 * Zero on success, AC_ERR_* mask on failure
e58eb583 1151 */
77b08fb5 1152unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1153{
1154 struct ata_taskfile tf;
e58eb583
TH
1155
1156 ata_tf_init(dev, &tf);
1157
1158 tf.command = cmd;
1159 tf.flags |= ATA_TFLAG_DEVICE;
1160 tf.protocol = ATA_PROT_NODATA;
1161
977e6b9f 1162 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1163}
1164
1bc4ccff
AC
1165/**
1166 * ata_pio_need_iordy - check if iordy needed
1167 * @adev: ATA device
1168 *
1169 * Check if the current speed of the device requires IORDY. Used
1170 * by various controllers for chip configuration.
1171 */
1172
1173unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1174{
1175 int pio;
1176 int speed = adev->pio_mode - XFER_PIO_0;
1177
1178 if (speed < 2)
1179 return 0;
1180 if (speed > 2)
1181 return 1;
2e9edbf8 1182
1bc4ccff
AC
1183 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1184
1185 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1186 pio = adev->id[ATA_ID_EIDE_PIO];
1187 /* Is the speed faster than the drive allows non IORDY ? */
1188 if (pio) {
1189 /* This is cycle times not frequency - watch the logic! */
1190 if (pio > 240) /* PIO2 is 240nS per cycle */
1191 return 1;
1192 return 0;
1193 }
1194 }
1195 return 0;
1196}
1197
1da177e4 1198/**
49016aca 1199 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1200 * @dev: target device
1201 * @p_class: pointer to class of the target device (may be changed)
1202 * @post_reset: is this read ID post-reset?
fe635c7e 1203 * @id: buffer to read IDENTIFY data into
1da177e4 1204 *
49016aca
TH
1205 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1206 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1207 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1208 * for pre-ATA4 drives.
1da177e4
LT
1209 *
1210 * LOCKING:
49016aca
TH
1211 * Kernel thread context (may sleep)
1212 *
1213 * RETURNS:
1214 * 0 on success, -errno otherwise.
1da177e4 1215 */
a9beec95
TH
1216int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1217 int post_reset, u16 *id)
1da177e4 1218{
3373efd8 1219 struct ata_port *ap = dev->ap;
49016aca 1220 unsigned int class = *p_class;
a0123703 1221 struct ata_taskfile tf;
49016aca
TH
1222 unsigned int err_mask = 0;
1223 const char *reason;
1224 int rc;
1da177e4 1225
0dd4b21f
BP
1226 if (ata_msg_ctl(ap))
1227 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1228 __FUNCTION__, ap->id, dev->devno);
1da177e4 1229
49016aca 1230 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1231
49016aca 1232 retry:
3373efd8 1233 ata_tf_init(dev, &tf);
a0123703 1234
49016aca
TH
1235 switch (class) {
1236 case ATA_DEV_ATA:
a0123703 1237 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1238 break;
1239 case ATA_DEV_ATAPI:
a0123703 1240 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1241 break;
1242 default:
1243 rc = -ENODEV;
1244 reason = "unsupported class";
1245 goto err_out;
1da177e4
LT
1246 }
1247
a0123703 1248 tf.protocol = ATA_PROT_PIO;
1da177e4 1249
3373efd8 1250 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1251 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1252 if (err_mask) {
49016aca
TH
1253 rc = -EIO;
1254 reason = "I/O error";
1da177e4
LT
1255 goto err_out;
1256 }
1257
49016aca 1258 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1259
49016aca 1260 /* sanity check */
692785e7 1261 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1262 rc = -EINVAL;
1263 reason = "device reports illegal type";
1264 goto err_out;
1265 }
1266
1267 if (post_reset && class == ATA_DEV_ATA) {
1268 /*
1269 * The exact sequence expected by certain pre-ATA4 drives is:
1270 * SRST RESET
1271 * IDENTIFY
1272 * INITIALIZE DEVICE PARAMETERS
1273 * anything else..
1274 * Some drives were very specific about that exact sequence.
1275 */
1276 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1277 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1278 if (err_mask) {
1279 rc = -EIO;
1280 reason = "INIT_DEV_PARAMS failed";
1281 goto err_out;
1282 }
1283
1284 /* current CHS translation info (id[53-58]) might be
1285 * changed. reread the identify device info.
1286 */
1287 post_reset = 0;
1288 goto retry;
1289 }
1290 }
1291
1292 *p_class = class;
fe635c7e 1293
49016aca
TH
1294 return 0;
1295
1296 err_out:
0dd4b21f
BP
1297 if (ata_msg_warn(ap))
1298 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
f15a1daf 1299 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1300 return rc;
1301}
1302
3373efd8 1303static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1304{
3373efd8 1305 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1306}
1307
a6e6ce8e
TH
1308static void ata_dev_config_ncq(struct ata_device *dev,
1309 char *desc, size_t desc_sz)
1310{
1311 struct ata_port *ap = dev->ap;
1312 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1313
1314 if (!ata_id_has_ncq(dev->id)) {
1315 desc[0] = '\0';
1316 return;
1317 }
1318
1319 if (ap->flags & ATA_FLAG_NCQ) {
1320 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1321 dev->flags |= ATA_DFLAG_NCQ;
1322 }
1323
1324 if (hdepth >= ddepth)
1325 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1326 else
1327 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1328}
1329
49016aca 1330/**
ffeae418 1331 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1332 * @dev: Target device to configure
4c2d721a 1333 * @print_info: Enable device info printout
ffeae418
TH
1334 *
1335 * Configure @dev according to @dev->id. Generic and low-level
1336 * driver specific fixups are also applied.
49016aca
TH
1337 *
1338 * LOCKING:
ffeae418
TH
1339 * Kernel thread context (may sleep)
1340 *
1341 * RETURNS:
1342 * 0 on success, -errno otherwise
49016aca 1343 */
a9beec95 1344int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1345{
3373efd8 1346 struct ata_port *ap = dev->ap;
1148c3a7 1347 const u16 *id = dev->id;
ff8854b2 1348 unsigned int xfer_mask;
49016aca
TH
1349 int i, rc;
1350
0dd4b21f
BP
1351 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1352 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1353 __FUNCTION__, ap->id, dev->devno);
ffeae418 1354 return 0;
49016aca
TH
1355 }
1356
0dd4b21f
BP
1357 if (ata_msg_probe(ap))
1358 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1359 __FUNCTION__, ap->id, dev->devno);
1da177e4 1360
c39f5ebe 1361 /* print device capabilities */
0dd4b21f
BP
1362 if (ata_msg_probe(ap))
1363 ata_dev_printk(dev, KERN_DEBUG, "%s: cfg 49:%04x 82:%04x 83:%04x "
f15a1daf 1364 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1365 __FUNCTION__,
f15a1daf
TH
1366 id[49], id[82], id[83], id[84],
1367 id[85], id[86], id[87], id[88]);
c39f5ebe 1368
208a9933 1369 /* initialize to-be-configured parameters */
ea1dd4e1 1370 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1371 dev->max_sectors = 0;
1372 dev->cdb_len = 0;
1373 dev->n_sectors = 0;
1374 dev->cylinders = 0;
1375 dev->heads = 0;
1376 dev->sectors = 0;
1377
1da177e4
LT
1378 /*
1379 * common ATA, ATAPI feature tests
1380 */
1381
ff8854b2 1382 /* find max transfer mode; for printk only */
1148c3a7 1383 xfer_mask = ata_id_xfermask(id);
1da177e4 1384
0dd4b21f
BP
1385 if (ata_msg_probe(ap))
1386 ata_dump_id(id);
1da177e4
LT
1387
1388 /* ATA-specific feature tests */
1389 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1390 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1391
1148c3a7 1392 if (ata_id_has_lba(id)) {
4c2d721a 1393 const char *lba_desc;
a6e6ce8e 1394 char ncq_desc[20];
8bf62ece 1395
4c2d721a
TH
1396 lba_desc = "LBA";
1397 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1398 if (ata_id_has_lba48(id)) {
8bf62ece 1399 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1400 lba_desc = "LBA48";
1401 }
8bf62ece 1402
a6e6ce8e
TH
1403 /* config NCQ */
1404 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1405
8bf62ece 1406 /* print device info to dmesg */
0dd4b21f 1407 if (ata_msg_info(ap))
f15a1daf 1408 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
a6e6ce8e 1409 "max %s, %Lu sectors: %s %s\n",
f15a1daf
TH
1410 ata_id_major_version(id),
1411 ata_mode_string(xfer_mask),
1412 (unsigned long long)dev->n_sectors,
a6e6ce8e 1413 lba_desc, ncq_desc);
ffeae418 1414 } else {
8bf62ece
AL
1415 /* CHS */
1416
1417 /* Default translation */
1148c3a7
TH
1418 dev->cylinders = id[1];
1419 dev->heads = id[3];
1420 dev->sectors = id[6];
8bf62ece 1421
1148c3a7 1422 if (ata_id_current_chs_valid(id)) {
8bf62ece 1423 /* Current CHS translation is valid. */
1148c3a7
TH
1424 dev->cylinders = id[54];
1425 dev->heads = id[55];
1426 dev->sectors = id[56];
8bf62ece
AL
1427 }
1428
1429 /* print device info to dmesg */
0dd4b21f 1430 if (ata_msg_info(ap))
f15a1daf
TH
1431 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1432 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1433 ata_id_major_version(id),
1434 ata_mode_string(xfer_mask),
1435 (unsigned long long)dev->n_sectors,
1436 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1437 }
1438
07f6f7d0
AL
1439 if (dev->id[59] & 0x100) {
1440 dev->multi_count = dev->id[59] & 0xff;
0dd4b21f
BP
1441 if (ata_msg_info(ap))
1442 ata_dev_printk(dev, KERN_INFO, "ata%u: dev %u multi count %u\n",
999bb6f4 1443 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1444 }
1445
6e7846e9 1446 dev->cdb_len = 16;
1da177e4
LT
1447 }
1448
1449 /* ATAPI-specific feature tests */
2c13b7ce 1450 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1451 char *cdb_intr_string = "";
1452
1148c3a7 1453 rc = atapi_cdb_len(id);
1da177e4 1454 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f
BP
1455 if (ata_msg_warn(ap))
1456 ata_dev_printk(dev, KERN_WARNING,
1457 "unsupported CDB len\n");
ffeae418 1458 rc = -EINVAL;
1da177e4
LT
1459 goto err_out_nosup;
1460 }
6e7846e9 1461 dev->cdb_len = (unsigned int) rc;
1da177e4 1462
08a556db 1463 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1464 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1465 cdb_intr_string = ", CDB intr";
1466 }
312f7da2 1467
1da177e4 1468 /* print device info to dmesg */
0dd4b21f 1469 if (ata_msg_info(ap))
12436c30
TH
1470 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1471 ata_mode_string(xfer_mask),
1472 cdb_intr_string);
1da177e4
LT
1473 }
1474
6e7846e9
TH
1475 ap->host->max_cmd_len = 0;
1476 for (i = 0; i < ATA_MAX_DEVICES; i++)
1477 ap->host->max_cmd_len = max_t(unsigned int,
1478 ap->host->max_cmd_len,
1479 ap->device[i].cdb_len);
1480
4b2f3ede 1481 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1482 if (ata_dev_knobble(dev)) {
0dd4b21f 1483 if (ata_msg_info(ap))
f15a1daf
TH
1484 ata_dev_printk(dev, KERN_INFO,
1485 "applying bridge limits\n");
5a529139 1486 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1487 dev->max_sectors = ATA_MAX_SECTORS;
1488 }
1489
1490 if (ap->ops->dev_config)
1491 ap->ops->dev_config(ap, dev);
1492
0dd4b21f
BP
1493 if (ata_msg_probe(ap))
1494 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1495 __FUNCTION__, ata_chk_status(ap));
ffeae418 1496 return 0;
1da177e4
LT
1497
1498err_out_nosup:
0dd4b21f
BP
1499 if (ata_msg_probe(ap))
1500 ata_dev_printk(dev, KERN_DEBUG,
1501 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1502 return rc;
1da177e4
LT
1503}
1504
1505/**
1506 * ata_bus_probe - Reset and probe ATA bus
1507 * @ap: Bus to probe
1508 *
0cba632b
JG
1509 * Master ATA bus probing function. Initiates a hardware-dependent
1510 * bus reset, then attempts to identify any devices found on
1511 * the bus.
1512 *
1da177e4 1513 * LOCKING:
0cba632b 1514 * PCI/etc. bus probe sem.
1da177e4
LT
1515 *
1516 * RETURNS:
96072e69 1517 * Zero on success, negative errno otherwise.
1da177e4
LT
1518 */
1519
1520static int ata_bus_probe(struct ata_port *ap)
1521{
28ca5c57 1522 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1523 int tries[ATA_MAX_DEVICES];
1524 int i, rc, down_xfermask;
e82cbdb9 1525 struct ata_device *dev;
1da177e4 1526
28ca5c57 1527 ata_port_probe(ap);
c19ba8af 1528
14d2bac1
TH
1529 for (i = 0; i < ATA_MAX_DEVICES; i++)
1530 tries[i] = ATA_PROBE_MAX_TRIES;
1531
1532 retry:
1533 down_xfermask = 0;
1534
2044470c 1535 /* reset and determine device classes */
52783c5d 1536 ap->ops->phy_reset(ap);
2061a47a 1537
52783c5d
TH
1538 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1539 dev = &ap->device[i];
c19ba8af 1540
52783c5d
TH
1541 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1542 dev->class != ATA_DEV_UNKNOWN)
1543 classes[dev->devno] = dev->class;
1544 else
1545 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1546
52783c5d 1547 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1548 }
1da177e4 1549
52783c5d 1550 ata_port_probe(ap);
2044470c 1551
b6079ca4
AC
1552 /* after the reset the device state is PIO 0 and the controller
1553 state is undefined. Record the mode */
1554
1555 for (i = 0; i < ATA_MAX_DEVICES; i++)
1556 ap->device[i].pio_mode = XFER_PIO_0;
1557
28ca5c57 1558 /* read IDENTIFY page and configure devices */
1da177e4 1559 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1560 dev = &ap->device[i];
28ca5c57 1561
ec573755
TH
1562 if (tries[i])
1563 dev->class = classes[i];
ffeae418 1564
14d2bac1 1565 if (!ata_dev_enabled(dev))
ffeae418 1566 continue;
ffeae418 1567
3373efd8 1568 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1569 if (rc)
1570 goto fail;
1571
3373efd8 1572 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1573 if (rc)
1574 goto fail;
1da177e4
LT
1575 }
1576
e82cbdb9 1577 /* configure transfer mode */
3adcebb2 1578 rc = ata_set_mode(ap, &dev);
51713d35
TH
1579 if (rc) {
1580 down_xfermask = 1;
1581 goto fail;
e82cbdb9 1582 }
1da177e4 1583
e82cbdb9
TH
1584 for (i = 0; i < ATA_MAX_DEVICES; i++)
1585 if (ata_dev_enabled(&ap->device[i]))
1586 return 0;
1da177e4 1587
e82cbdb9
TH
1588 /* no device present, disable port */
1589 ata_port_disable(ap);
1da177e4 1590 ap->ops->port_disable(ap);
96072e69 1591 return -ENODEV;
14d2bac1
TH
1592
1593 fail:
1594 switch (rc) {
1595 case -EINVAL:
1596 case -ENODEV:
1597 tries[dev->devno] = 0;
1598 break;
1599 case -EIO:
3c567b7d 1600 sata_down_spd_limit(ap);
14d2bac1
TH
1601 /* fall through */
1602 default:
1603 tries[dev->devno]--;
1604 if (down_xfermask &&
3373efd8 1605 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1606 tries[dev->devno] = 0;
1607 }
1608
ec573755 1609 if (!tries[dev->devno]) {
3373efd8
TH
1610 ata_down_xfermask_limit(dev, 1);
1611 ata_dev_disable(dev);
ec573755
TH
1612 }
1613
14d2bac1 1614 goto retry;
1da177e4
LT
1615}
1616
1617/**
0cba632b
JG
1618 * ata_port_probe - Mark port as enabled
1619 * @ap: Port for which we indicate enablement
1da177e4 1620 *
0cba632b
JG
1621 * Modify @ap data structure such that the system
1622 * thinks that the entire port is enabled.
1623 *
1624 * LOCKING: host_set lock, or some other form of
1625 * serialization.
1da177e4
LT
1626 */
1627
1628void ata_port_probe(struct ata_port *ap)
1629{
198e0fed 1630 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1631}
1632
3be680b7
TH
1633/**
1634 * sata_print_link_status - Print SATA link status
1635 * @ap: SATA port to printk link status about
1636 *
1637 * This function prints link speed and status of a SATA link.
1638 *
1639 * LOCKING:
1640 * None.
1641 */
1642static void sata_print_link_status(struct ata_port *ap)
1643{
6d5f9732 1644 u32 sstatus, scontrol, tmp;
3be680b7 1645
81952c54 1646 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1647 return;
81952c54 1648 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1649
81952c54 1650 if (ata_port_online(ap)) {
3be680b7 1651 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1652 ata_port_printk(ap, KERN_INFO,
1653 "SATA link up %s (SStatus %X SControl %X)\n",
1654 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1655 } else {
f15a1daf
TH
1656 ata_port_printk(ap, KERN_INFO,
1657 "SATA link down (SStatus %X SControl %X)\n",
1658 sstatus, scontrol);
3be680b7
TH
1659 }
1660}
1661
1da177e4 1662/**
780a87f7
JG
1663 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1664 * @ap: SATA port associated with target SATA PHY.
1da177e4 1665 *
780a87f7
JG
1666 * This function issues commands to standard SATA Sxxx
1667 * PHY registers, to wake up the phy (and device), and
1668 * clear any reset condition.
1da177e4
LT
1669 *
1670 * LOCKING:
0cba632b 1671 * PCI/etc. bus probe sem.
1da177e4
LT
1672 *
1673 */
1674void __sata_phy_reset(struct ata_port *ap)
1675{
1676 u32 sstatus;
1677 unsigned long timeout = jiffies + (HZ * 5);
1678
1679 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1680 /* issue phy wake/reset */
81952c54 1681 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1682 /* Couldn't find anything in SATA I/II specs, but
1683 * AHCI-1.1 10.4.2 says at least 1 ms. */
1684 mdelay(1);
1da177e4 1685 }
81952c54
TH
1686 /* phy wake/clear reset */
1687 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1688
1689 /* wait for phy to become ready, if necessary */
1690 do {
1691 msleep(200);
81952c54 1692 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1693 if ((sstatus & 0xf) != 1)
1694 break;
1695 } while (time_before(jiffies, timeout));
1696
3be680b7
TH
1697 /* print link status */
1698 sata_print_link_status(ap);
656563e3 1699
3be680b7 1700 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1701 if (!ata_port_offline(ap))
1da177e4 1702 ata_port_probe(ap);
3be680b7 1703 else
1da177e4 1704 ata_port_disable(ap);
1da177e4 1705
198e0fed 1706 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1707 return;
1708
1709 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1710 ata_port_disable(ap);
1711 return;
1712 }
1713
1714 ap->cbl = ATA_CBL_SATA;
1715}
1716
1717/**
780a87f7
JG
1718 * sata_phy_reset - Reset SATA bus.
1719 * @ap: SATA port associated with target SATA PHY.
1da177e4 1720 *
780a87f7
JG
1721 * This function resets the SATA bus, and then probes
1722 * the bus for devices.
1da177e4
LT
1723 *
1724 * LOCKING:
0cba632b 1725 * PCI/etc. bus probe sem.
1da177e4
LT
1726 *
1727 */
1728void sata_phy_reset(struct ata_port *ap)
1729{
1730 __sata_phy_reset(ap);
198e0fed 1731 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1732 return;
1733 ata_bus_reset(ap);
1734}
1735
ebdfca6e
AC
1736/**
1737 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1738 * @adev: device
1739 *
1740 * Obtain the other device on the same cable, or if none is
1741 * present NULL is returned
1742 */
2e9edbf8 1743
3373efd8 1744struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1745{
3373efd8 1746 struct ata_port *ap = adev->ap;
ebdfca6e 1747 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1748 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1749 return NULL;
1750 return pair;
1751}
1752
1da177e4 1753/**
780a87f7
JG
1754 * ata_port_disable - Disable port.
1755 * @ap: Port to be disabled.
1da177e4 1756 *
780a87f7
JG
1757 * Modify @ap data structure such that the system
1758 * thinks that the entire port is disabled, and should
1759 * never attempt to probe or communicate with devices
1760 * on this port.
1761 *
1762 * LOCKING: host_set lock, or some other form of
1763 * serialization.
1da177e4
LT
1764 */
1765
1766void ata_port_disable(struct ata_port *ap)
1767{
1768 ap->device[0].class = ATA_DEV_NONE;
1769 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1770 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1771}
1772
1c3fae4d 1773/**
3c567b7d 1774 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1775 * @ap: Port to adjust SATA spd limit for
1776 *
1777 * Adjust SATA spd limit of @ap downward. Note that this
1778 * function only adjusts the limit. The change must be applied
3c567b7d 1779 * using sata_set_spd().
1c3fae4d
TH
1780 *
1781 * LOCKING:
1782 * Inherited from caller.
1783 *
1784 * RETURNS:
1785 * 0 on success, negative errno on failure
1786 */
3c567b7d 1787int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1788{
81952c54
TH
1789 u32 sstatus, spd, mask;
1790 int rc, highbit;
1c3fae4d 1791
81952c54
TH
1792 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1793 if (rc)
1794 return rc;
1c3fae4d
TH
1795
1796 mask = ap->sata_spd_limit;
1797 if (mask <= 1)
1798 return -EINVAL;
1799 highbit = fls(mask) - 1;
1800 mask &= ~(1 << highbit);
1801
81952c54 1802 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1803 if (spd <= 1)
1804 return -EINVAL;
1805 spd--;
1806 mask &= (1 << spd) - 1;
1807 if (!mask)
1808 return -EINVAL;
1809
1810 ap->sata_spd_limit = mask;
1811
f15a1daf
TH
1812 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1813 sata_spd_string(fls(mask)));
1c3fae4d
TH
1814
1815 return 0;
1816}
1817
3c567b7d 1818static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1819{
1820 u32 spd, limit;
1821
1822 if (ap->sata_spd_limit == UINT_MAX)
1823 limit = 0;
1824 else
1825 limit = fls(ap->sata_spd_limit);
1826
1827 spd = (*scontrol >> 4) & 0xf;
1828 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1829
1830 return spd != limit;
1831}
1832
1833/**
3c567b7d 1834 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1835 * @ap: Port in question
1836 *
1837 * Test whether the spd limit in SControl matches
1838 * @ap->sata_spd_limit. This function is used to determine
1839 * whether hardreset is necessary to apply SATA spd
1840 * configuration.
1841 *
1842 * LOCKING:
1843 * Inherited from caller.
1844 *
1845 * RETURNS:
1846 * 1 if SATA spd configuration is needed, 0 otherwise.
1847 */
3c567b7d 1848int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1849{
1850 u32 scontrol;
1851
81952c54 1852 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1853 return 0;
1854
3c567b7d 1855 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1856}
1857
1858/**
3c567b7d 1859 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1860 * @ap: Port to set SATA spd for
1861 *
1862 * Set SATA spd of @ap according to sata_spd_limit.
1863 *
1864 * LOCKING:
1865 * Inherited from caller.
1866 *
1867 * RETURNS:
1868 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1869 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1870 */
3c567b7d 1871int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1872{
1873 u32 scontrol;
81952c54 1874 int rc;
1c3fae4d 1875
81952c54
TH
1876 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1877 return rc;
1c3fae4d 1878
3c567b7d 1879 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1880 return 0;
1881
81952c54
TH
1882 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1883 return rc;
1884
1c3fae4d
TH
1885 return 1;
1886}
1887
452503f9
AC
1888/*
1889 * This mode timing computation functionality is ported over from
1890 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1891 */
1892/*
1893 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1894 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1895 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1896 * is currently supported only by Maxtor drives.
452503f9
AC
1897 */
1898
1899static const struct ata_timing ata_timing[] = {
1900
1901 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1902 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1903 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1904 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1905
1906 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1907 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1908 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1909
1910/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1911
452503f9
AC
1912 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1913 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1914 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1915
452503f9
AC
1916 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1917 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1918 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1919
1920/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1921 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1922 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1923
1924 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1925 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1926 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1927
1928/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1929
1930 { 0xFF }
1931};
1932
1933#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1934#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1935
1936static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1937{
1938 q->setup = EZ(t->setup * 1000, T);
1939 q->act8b = EZ(t->act8b * 1000, T);
1940 q->rec8b = EZ(t->rec8b * 1000, T);
1941 q->cyc8b = EZ(t->cyc8b * 1000, T);
1942 q->active = EZ(t->active * 1000, T);
1943 q->recover = EZ(t->recover * 1000, T);
1944 q->cycle = EZ(t->cycle * 1000, T);
1945 q->udma = EZ(t->udma * 1000, UT);
1946}
1947
1948void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1949 struct ata_timing *m, unsigned int what)
1950{
1951 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1952 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1953 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1954 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1955 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1956 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1957 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1958 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1959}
1960
1961static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1962{
1963 const struct ata_timing *t;
1964
1965 for (t = ata_timing; t->mode != speed; t++)
91190758 1966 if (t->mode == 0xFF)
452503f9 1967 return NULL;
2e9edbf8 1968 return t;
452503f9
AC
1969}
1970
1971int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1972 struct ata_timing *t, int T, int UT)
1973{
1974 const struct ata_timing *s;
1975 struct ata_timing p;
1976
1977 /*
2e9edbf8 1978 * Find the mode.
75b1f2f8 1979 */
452503f9
AC
1980
1981 if (!(s = ata_timing_find_mode(speed)))
1982 return -EINVAL;
1983
75b1f2f8
AL
1984 memcpy(t, s, sizeof(*s));
1985
452503f9
AC
1986 /*
1987 * If the drive is an EIDE drive, it can tell us it needs extended
1988 * PIO/MW_DMA cycle timing.
1989 */
1990
1991 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1992 memset(&p, 0, sizeof(p));
1993 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1994 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1995 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1996 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1997 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1998 }
1999 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2000 }
2001
2002 /*
2003 * Convert the timing to bus clock counts.
2004 */
2005
75b1f2f8 2006 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2007
2008 /*
c893a3ae
RD
2009 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2010 * S.M.A.R.T * and some other commands. We have to ensure that the
2011 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2012 */
2013
2014 if (speed > XFER_PIO_4) {
2015 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2016 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2017 }
2018
2019 /*
c893a3ae 2020 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2021 */
2022
2023 if (t->act8b + t->rec8b < t->cyc8b) {
2024 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2025 t->rec8b = t->cyc8b - t->act8b;
2026 }
2027
2028 if (t->active + t->recover < t->cycle) {
2029 t->active += (t->cycle - (t->active + t->recover)) / 2;
2030 t->recover = t->cycle - t->active;
2031 }
2032
2033 return 0;
2034}
2035
cf176e1a
TH
2036/**
2037 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
2038 * @dev: Device to adjust xfer masks
2039 * @force_pio0: Force PIO0
2040 *
2041 * Adjust xfer masks of @dev downward. Note that this function
2042 * does not apply the change. Invoking ata_set_mode() afterwards
2043 * will apply the limit.
2044 *
2045 * LOCKING:
2046 * Inherited from caller.
2047 *
2048 * RETURNS:
2049 * 0 on success, negative errno on failure
2050 */
3373efd8 2051int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2052{
2053 unsigned long xfer_mask;
2054 int highbit;
2055
2056 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2057 dev->udma_mask);
2058
2059 if (!xfer_mask)
2060 goto fail;
2061 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2062 if (xfer_mask & ATA_MASK_UDMA)
2063 xfer_mask &= ~ATA_MASK_MWDMA;
2064
2065 highbit = fls(xfer_mask) - 1;
2066 xfer_mask &= ~(1 << highbit);
2067 if (force_pio0)
2068 xfer_mask &= 1 << ATA_SHIFT_PIO;
2069 if (!xfer_mask)
2070 goto fail;
2071
2072 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2073 &dev->udma_mask);
2074
f15a1daf
TH
2075 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2076 ata_mode_string(xfer_mask));
cf176e1a
TH
2077
2078 return 0;
2079
2080 fail:
2081 return -EINVAL;
2082}
2083
3373efd8 2084static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2085{
83206a29
TH
2086 unsigned int err_mask;
2087 int rc;
1da177e4 2088
e8384607 2089 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2090 if (dev->xfer_shift == ATA_SHIFT_PIO)
2091 dev->flags |= ATA_DFLAG_PIO;
2092
3373efd8 2093 err_mask = ata_dev_set_xfermode(dev);
83206a29 2094 if (err_mask) {
f15a1daf
TH
2095 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2096 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2097 return -EIO;
2098 }
1da177e4 2099
3373efd8 2100 rc = ata_dev_revalidate(dev, 0);
5eb45c02 2101 if (rc)
83206a29 2102 return rc;
48a8a14f 2103
23e71c3d
TH
2104 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2105 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2106
f15a1daf
TH
2107 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2108 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2109 return 0;
1da177e4
LT
2110}
2111
1da177e4
LT
2112/**
2113 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2114 * @ap: port on which timings will be programmed
e82cbdb9 2115 * @r_failed_dev: out paramter for failed device
1da177e4 2116 *
e82cbdb9
TH
2117 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2118 * ata_set_mode() fails, pointer to the failing device is
2119 * returned in @r_failed_dev.
780a87f7 2120 *
1da177e4 2121 * LOCKING:
0cba632b 2122 * PCI/etc. bus probe sem.
e82cbdb9
TH
2123 *
2124 * RETURNS:
2125 * 0 on success, negative errno otherwise
1da177e4 2126 */
1ad8e7f9 2127int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2128{
e8e0619f 2129 struct ata_device *dev;
e82cbdb9 2130 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2131
3adcebb2
TH
2132 /* has private set_mode? */
2133 if (ap->ops->set_mode) {
2134 /* FIXME: make ->set_mode handle no device case and
2135 * return error code and failing device on failure.
2136 */
2137 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2138 if (ata_dev_enabled(&ap->device[i])) {
2139 ap->ops->set_mode(ap);
2140 break;
2141 }
2142 }
2143 return 0;
2144 }
2145
a6d5a51c
TH
2146 /* step 1: calculate xfer_mask */
2147 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2148 unsigned int pio_mask, dma_mask;
a6d5a51c 2149
e8e0619f
TH
2150 dev = &ap->device[i];
2151
e1211e3f 2152 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2153 continue;
2154
3373efd8 2155 ata_dev_xfermask(dev);
1da177e4 2156
acf356b1
TH
2157 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2158 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2159 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2160 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2161
4f65977d 2162 found = 1;
5444a6f4
AC
2163 if (dev->dma_mode)
2164 used_dma = 1;
a6d5a51c 2165 }
4f65977d 2166 if (!found)
e82cbdb9 2167 goto out;
a6d5a51c
TH
2168
2169 /* step 2: always set host PIO timings */
e8e0619f
TH
2170 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2171 dev = &ap->device[i];
2172 if (!ata_dev_enabled(dev))
2173 continue;
2174
2175 if (!dev->pio_mode) {
f15a1daf 2176 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2177 rc = -EINVAL;
e82cbdb9 2178 goto out;
e8e0619f
TH
2179 }
2180
2181 dev->xfer_mode = dev->pio_mode;
2182 dev->xfer_shift = ATA_SHIFT_PIO;
2183 if (ap->ops->set_piomode)
2184 ap->ops->set_piomode(ap, dev);
2185 }
1da177e4 2186
a6d5a51c 2187 /* step 3: set host DMA timings */
e8e0619f
TH
2188 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2189 dev = &ap->device[i];
2190
2191 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2192 continue;
2193
2194 dev->xfer_mode = dev->dma_mode;
2195 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2196 if (ap->ops->set_dmamode)
2197 ap->ops->set_dmamode(ap, dev);
2198 }
1da177e4
LT
2199
2200 /* step 4: update devices' xfer mode */
83206a29 2201 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2202 dev = &ap->device[i];
1da177e4 2203
e1211e3f 2204 if (!ata_dev_enabled(dev))
83206a29
TH
2205 continue;
2206
3373efd8 2207 rc = ata_dev_set_mode(dev);
5bbc53f4 2208 if (rc)
e82cbdb9 2209 goto out;
83206a29 2210 }
1da177e4 2211
e8e0619f
TH
2212 /* Record simplex status. If we selected DMA then the other
2213 * host channels are not permitted to do so.
5444a6f4 2214 */
5444a6f4
AC
2215 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2216 ap->host_set->simplex_claimed = 1;
2217
e8e0619f 2218 /* step5: chip specific finalisation */
1da177e4
LT
2219 if (ap->ops->post_set_mode)
2220 ap->ops->post_set_mode(ap);
2221
e82cbdb9
TH
2222 out:
2223 if (rc)
2224 *r_failed_dev = dev;
2225 return rc;
1da177e4
LT
2226}
2227
1fdffbce
JG
2228/**
2229 * ata_tf_to_host - issue ATA taskfile to host controller
2230 * @ap: port to which command is being issued
2231 * @tf: ATA taskfile register set
2232 *
2233 * Issues ATA taskfile register set to ATA host controller,
2234 * with proper synchronization with interrupt handler and
2235 * other threads.
2236 *
2237 * LOCKING:
2238 * spin_lock_irqsave(host_set lock)
2239 */
2240
2241static inline void ata_tf_to_host(struct ata_port *ap,
2242 const struct ata_taskfile *tf)
2243{
2244 ap->ops->tf_load(ap, tf);
2245 ap->ops->exec_command(ap, tf);
2246}
2247
1da177e4
LT
2248/**
2249 * ata_busy_sleep - sleep until BSY clears, or timeout
2250 * @ap: port containing status register to be polled
2251 * @tmout_pat: impatience timeout
2252 * @tmout: overall timeout
2253 *
780a87f7
JG
2254 * Sleep until ATA Status register bit BSY clears,
2255 * or a timeout occurs.
2256 *
2257 * LOCKING: None.
1da177e4
LT
2258 */
2259
6f8b9958
TH
2260unsigned int ata_busy_sleep (struct ata_port *ap,
2261 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2262{
2263 unsigned long timer_start, timeout;
2264 u8 status;
2265
2266 status = ata_busy_wait(ap, ATA_BUSY, 300);
2267 timer_start = jiffies;
2268 timeout = timer_start + tmout_pat;
2269 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2270 msleep(50);
2271 status = ata_busy_wait(ap, ATA_BUSY, 3);
2272 }
2273
2274 if (status & ATA_BUSY)
f15a1daf
TH
2275 ata_port_printk(ap, KERN_WARNING,
2276 "port is slow to respond, please be patient\n");
1da177e4
LT
2277
2278 timeout = timer_start + tmout;
2279 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2280 msleep(50);
2281 status = ata_chk_status(ap);
2282 }
2283
2284 if (status & ATA_BUSY) {
f15a1daf
TH
2285 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2286 "(%lu secs)\n", tmout / HZ);
1da177e4
LT
2287 return 1;
2288 }
2289
2290 return 0;
2291}
2292
2293static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2294{
2295 struct ata_ioports *ioaddr = &ap->ioaddr;
2296 unsigned int dev0 = devmask & (1 << 0);
2297 unsigned int dev1 = devmask & (1 << 1);
2298 unsigned long timeout;
2299
2300 /* if device 0 was found in ata_devchk, wait for its
2301 * BSY bit to clear
2302 */
2303 if (dev0)
2304 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2305
2306 /* if device 1 was found in ata_devchk, wait for
2307 * register access, then wait for BSY to clear
2308 */
2309 timeout = jiffies + ATA_TMOUT_BOOT;
2310 while (dev1) {
2311 u8 nsect, lbal;
2312
2313 ap->ops->dev_select(ap, 1);
2314 if (ap->flags & ATA_FLAG_MMIO) {
2315 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2316 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2317 } else {
2318 nsect = inb(ioaddr->nsect_addr);
2319 lbal = inb(ioaddr->lbal_addr);
2320 }
2321 if ((nsect == 1) && (lbal == 1))
2322 break;
2323 if (time_after(jiffies, timeout)) {
2324 dev1 = 0;
2325 break;
2326 }
2327 msleep(50); /* give drive a breather */
2328 }
2329 if (dev1)
2330 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2331
2332 /* is all this really necessary? */
2333 ap->ops->dev_select(ap, 0);
2334 if (dev1)
2335 ap->ops->dev_select(ap, 1);
2336 if (dev0)
2337 ap->ops->dev_select(ap, 0);
2338}
2339
1da177e4
LT
2340static unsigned int ata_bus_softreset(struct ata_port *ap,
2341 unsigned int devmask)
2342{
2343 struct ata_ioports *ioaddr = &ap->ioaddr;
2344
2345 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2346
2347 /* software reset. causes dev0 to be selected */
2348 if (ap->flags & ATA_FLAG_MMIO) {
2349 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2350 udelay(20); /* FIXME: flush */
2351 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2352 udelay(20); /* FIXME: flush */
2353 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2354 } else {
2355 outb(ap->ctl, ioaddr->ctl_addr);
2356 udelay(10);
2357 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2358 udelay(10);
2359 outb(ap->ctl, ioaddr->ctl_addr);
2360 }
2361
2362 /* spec mandates ">= 2ms" before checking status.
2363 * We wait 150ms, because that was the magic delay used for
2364 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2365 * between when the ATA command register is written, and then
2366 * status is checked. Because waiting for "a while" before
2367 * checking status is fine, post SRST, we perform this magic
2368 * delay here as well.
09c7ad79
AC
2369 *
2370 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2371 */
2372 msleep(150);
2373
2e9edbf8 2374 /* Before we perform post reset processing we want to see if
298a41ca
TH
2375 * the bus shows 0xFF because the odd clown forgets the D7
2376 * pulldown resistor.
2377 */
987d2f05 2378 if (ata_check_status(ap) == 0xFF) {
f15a1daf 2379 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
298a41ca 2380 return AC_ERR_OTHER;
987d2f05 2381 }
09c7ad79 2382
1da177e4
LT
2383 ata_bus_post_reset(ap, devmask);
2384
2385 return 0;
2386}
2387
2388/**
2389 * ata_bus_reset - reset host port and associated ATA channel
2390 * @ap: port to reset
2391 *
2392 * This is typically the first time we actually start issuing
2393 * commands to the ATA channel. We wait for BSY to clear, then
2394 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2395 * result. Determine what devices, if any, are on the channel
2396 * by looking at the device 0/1 error register. Look at the signature
2397 * stored in each device's taskfile registers, to determine if
2398 * the device is ATA or ATAPI.
2399 *
2400 * LOCKING:
0cba632b
JG
2401 * PCI/etc. bus probe sem.
2402 * Obtains host_set lock.
1da177e4
LT
2403 *
2404 * SIDE EFFECTS:
198e0fed 2405 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2406 */
2407
2408void ata_bus_reset(struct ata_port *ap)
2409{
2410 struct ata_ioports *ioaddr = &ap->ioaddr;
2411 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2412 u8 err;
aec5c3c1 2413 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2414
2415 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2416
2417 /* determine if device 0/1 are present */
2418 if (ap->flags & ATA_FLAG_SATA_RESET)
2419 dev0 = 1;
2420 else {
2421 dev0 = ata_devchk(ap, 0);
2422 if (slave_possible)
2423 dev1 = ata_devchk(ap, 1);
2424 }
2425
2426 if (dev0)
2427 devmask |= (1 << 0);
2428 if (dev1)
2429 devmask |= (1 << 1);
2430
2431 /* select device 0 again */
2432 ap->ops->dev_select(ap, 0);
2433
2434 /* issue bus reset */
2435 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2436 if (ata_bus_softreset(ap, devmask))
2437 goto err_out;
1da177e4
LT
2438
2439 /*
2440 * determine by signature whether we have ATA or ATAPI devices
2441 */
b4dc7623 2442 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2443 if ((slave_possible) && (err != 0x81))
b4dc7623 2444 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2445
2446 /* re-enable interrupts */
2447 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2448 ata_irq_on(ap);
2449
2450 /* is double-select really necessary? */
2451 if (ap->device[1].class != ATA_DEV_NONE)
2452 ap->ops->dev_select(ap, 1);
2453 if (ap->device[0].class != ATA_DEV_NONE)
2454 ap->ops->dev_select(ap, 0);
2455
2456 /* if no devices were detected, disable this port */
2457 if ((ap->device[0].class == ATA_DEV_NONE) &&
2458 (ap->device[1].class == ATA_DEV_NONE))
2459 goto err_out;
2460
2461 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2462 /* set up device control for ATA_FLAG_SATA_RESET */
2463 if (ap->flags & ATA_FLAG_MMIO)
2464 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2465 else
2466 outb(ap->ctl, ioaddr->ctl_addr);
2467 }
2468
2469 DPRINTK("EXIT\n");
2470 return;
2471
2472err_out:
f15a1daf 2473 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2474 ap->ops->port_disable(ap);
2475
2476 DPRINTK("EXIT\n");
2477}
2478
d7bb4cc7
TH
2479/**
2480 * sata_phy_debounce - debounce SATA phy status
2481 * @ap: ATA port to debounce SATA phy status for
2482 * @params: timing parameters { interval, duratinon, timeout } in msec
2483 *
2484 * Make sure SStatus of @ap reaches stable state, determined by
2485 * holding the same value where DET is not 1 for @duration polled
2486 * every @interval, before @timeout. Timeout constraints the
2487 * beginning of the stable state. Because, after hot unplugging,
2488 * DET gets stuck at 1 on some controllers, this functions waits
2489 * until timeout then returns 0 if DET is stable at 1.
2490 *
2491 * LOCKING:
2492 * Kernel thread context (may sleep)
2493 *
2494 * RETURNS:
2495 * 0 on success, -errno on failure.
2496 */
2497int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2498{
d7bb4cc7
TH
2499 unsigned long interval_msec = params[0];
2500 unsigned long duration = params[1] * HZ / 1000;
2501 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2502 unsigned long last_jiffies;
2503 u32 last, cur;
2504 int rc;
2505
2506 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2507 return rc;
2508 cur &= 0xf;
2509
2510 last = cur;
2511 last_jiffies = jiffies;
2512
2513 while (1) {
2514 msleep(interval_msec);
2515 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2516 return rc;
2517 cur &= 0xf;
2518
2519 /* DET stable? */
2520 if (cur == last) {
2521 if (cur == 1 && time_before(jiffies, timeout))
2522 continue;
2523 if (time_after(jiffies, last_jiffies + duration))
2524 return 0;
2525 continue;
2526 }
2527
2528 /* unstable, start over */
2529 last = cur;
2530 last_jiffies = jiffies;
2531
2532 /* check timeout */
2533 if (time_after(jiffies, timeout))
2534 return -EBUSY;
2535 }
2536}
2537
2538/**
2539 * sata_phy_resume - resume SATA phy
2540 * @ap: ATA port to resume SATA phy for
2541 * @params: timing parameters { interval, duratinon, timeout } in msec
2542 *
2543 * Resume SATA phy of @ap and debounce it.
2544 *
2545 * LOCKING:
2546 * Kernel thread context (may sleep)
2547 *
2548 * RETURNS:
2549 * 0 on success, -errno on failure.
2550 */
2551int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2552{
2553 u32 scontrol;
81952c54
TH
2554 int rc;
2555
2556 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2557 return rc;
7a7921e8 2558
852ee16a 2559 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2560
2561 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2562 return rc;
7a7921e8 2563
d7bb4cc7
TH
2564 /* Some PHYs react badly if SStatus is pounded immediately
2565 * after resuming. Delay 200ms before debouncing.
2566 */
2567 msleep(200);
7a7921e8 2568
d7bb4cc7 2569 return sata_phy_debounce(ap, params);
7a7921e8
TH
2570}
2571
f5914a46
TH
2572static void ata_wait_spinup(struct ata_port *ap)
2573{
2574 struct ata_eh_context *ehc = &ap->eh_context;
2575 unsigned long end, secs;
2576 int rc;
2577
2578 /* first, debounce phy if SATA */
2579 if (ap->cbl == ATA_CBL_SATA) {
2580 rc = sata_phy_debounce(ap, sata_deb_timing_eh);
2581
2582 /* if debounced successfully and offline, no need to wait */
2583 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2584 return;
2585 }
2586
2587 /* okay, let's give the drive time to spin up */
2588 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2589 secs = ((end - jiffies) + HZ - 1) / HZ;
2590
2591 if (time_after(jiffies, end))
2592 return;
2593
2594 if (secs > 5)
2595 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2596 "(%lu secs)\n", secs);
2597
2598 schedule_timeout_uninterruptible(end - jiffies);
2599}
2600
2601/**
2602 * ata_std_prereset - prepare for reset
2603 * @ap: ATA port to be reset
2604 *
2605 * @ap is about to be reset. Initialize it.
2606 *
2607 * LOCKING:
2608 * Kernel thread context (may sleep)
2609 *
2610 * RETURNS:
2611 * 0 on success, -errno otherwise.
2612 */
2613int ata_std_prereset(struct ata_port *ap)
2614{
2615 struct ata_eh_context *ehc = &ap->eh_context;
2616 const unsigned long *timing;
2617 int rc;
2618
2619 /* hotplug? */
2620 if (ehc->i.flags & ATA_EHI_HOTPLUGGED) {
2621 if (ap->flags & ATA_FLAG_HRST_TO_RESUME)
2622 ehc->i.action |= ATA_EH_HARDRESET;
2623 if (ap->flags & ATA_FLAG_SKIP_D2H_BSY)
2624 ata_wait_spinup(ap);
2625 }
2626
2627 /* if we're about to do hardreset, nothing more to do */
2628 if (ehc->i.action & ATA_EH_HARDRESET)
2629 return 0;
2630
2631 /* if SATA, resume phy */
2632 if (ap->cbl == ATA_CBL_SATA) {
2633 if (ap->flags & ATA_FLAG_LOADING)
2634 timing = sata_deb_timing_boot;
2635 else
2636 timing = sata_deb_timing_eh;
2637
2638 rc = sata_phy_resume(ap, timing);
2639 if (rc && rc != -EOPNOTSUPP) {
2640 /* phy resume failed */
2641 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2642 "link for reset (errno=%d)\n", rc);
2643 return rc;
2644 }
2645 }
2646
2647 /* Wait for !BSY if the controller can wait for the first D2H
2648 * Reg FIS and we don't know that no device is attached.
2649 */
2650 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2651 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2652
2653 return 0;
2654}
2655
c2bd5804
TH
2656/**
2657 * ata_std_softreset - reset host port via ATA SRST
2658 * @ap: port to reset
c2bd5804
TH
2659 * @classes: resulting classes of attached devices
2660 *
52783c5d 2661 * Reset host port using ATA SRST.
c2bd5804
TH
2662 *
2663 * LOCKING:
2664 * Kernel thread context (may sleep)
2665 *
2666 * RETURNS:
2667 * 0 on success, -errno otherwise.
2668 */
2bf2cb26 2669int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2670{
2671 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2672 unsigned int devmask = 0, err_mask;
2673 u8 err;
2674
2675 DPRINTK("ENTER\n");
2676
81952c54 2677 if (ata_port_offline(ap)) {
3a39746a
TH
2678 classes[0] = ATA_DEV_NONE;
2679 goto out;
2680 }
2681
c2bd5804
TH
2682 /* determine if device 0/1 are present */
2683 if (ata_devchk(ap, 0))
2684 devmask |= (1 << 0);
2685 if (slave_possible && ata_devchk(ap, 1))
2686 devmask |= (1 << 1);
2687
c2bd5804
TH
2688 /* select device 0 again */
2689 ap->ops->dev_select(ap, 0);
2690
2691 /* issue bus reset */
2692 DPRINTK("about to softreset, devmask=%x\n", devmask);
2693 err_mask = ata_bus_softreset(ap, devmask);
2694 if (err_mask) {
f15a1daf
TH
2695 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2696 err_mask);
c2bd5804
TH
2697 return -EIO;
2698 }
2699
2700 /* determine by signature whether we have ATA or ATAPI devices */
2701 classes[0] = ata_dev_try_classify(ap, 0, &err);
2702 if (slave_possible && err != 0x81)
2703 classes[1] = ata_dev_try_classify(ap, 1, &err);
2704
3a39746a 2705 out:
c2bd5804
TH
2706 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2707 return 0;
2708}
2709
2710/**
2711 * sata_std_hardreset - reset host port via SATA phy reset
2712 * @ap: port to reset
c2bd5804
TH
2713 * @class: resulting class of attached device
2714 *
2715 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
2716 *
2717 * LOCKING:
2718 * Kernel thread context (may sleep)
2719 *
2720 * RETURNS:
2721 * 0 on success, -errno otherwise.
2722 */
2bf2cb26 2723int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2724{
852ee16a 2725 u32 scontrol;
81952c54 2726 int rc;
852ee16a 2727
c2bd5804
TH
2728 DPRINTK("ENTER\n");
2729
3c567b7d 2730 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2731 /* SATA spec says nothing about how to reconfigure
2732 * spd. To be on the safe side, turn off phy during
2733 * reconfiguration. This works for at least ICH7 AHCI
2734 * and Sil3124.
2735 */
81952c54
TH
2736 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2737 return rc;
2738
1c3fae4d 2739 scontrol = (scontrol & 0x0f0) | 0x302;
81952c54
TH
2740
2741 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2742 return rc;
1c3fae4d 2743
3c567b7d 2744 sata_set_spd(ap);
1c3fae4d
TH
2745 }
2746
2747 /* issue phy wake/reset */
81952c54
TH
2748 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2749 return rc;
2750
852ee16a 2751 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2752
2753 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2754 return rc;
c2bd5804 2755
1c3fae4d 2756 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2757 * 10.4.2 says at least 1 ms.
2758 */
2759 msleep(1);
2760
1c3fae4d 2761 /* bring phy back */
d7bb4cc7 2762 sata_phy_resume(ap, sata_deb_timing_eh);
c2bd5804 2763
c2bd5804 2764 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2765 if (ata_port_offline(ap)) {
c2bd5804
TH
2766 *class = ATA_DEV_NONE;
2767 DPRINTK("EXIT, link offline\n");
2768 return 0;
2769 }
2770
2771 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2772 ata_port_printk(ap, KERN_ERR,
2773 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2774 return -EIO;
2775 }
2776
3a39746a
TH
2777 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2778
c2bd5804
TH
2779 *class = ata_dev_try_classify(ap, 0, NULL);
2780
2781 DPRINTK("EXIT, class=%u\n", *class);
2782 return 0;
2783}
2784
2785/**
2786 * ata_std_postreset - standard postreset callback
2787 * @ap: the target ata_port
2788 * @classes: classes of attached devices
2789 *
2790 * This function is invoked after a successful reset. Note that
2791 * the device might have been reset more than once using
2792 * different reset methods before postreset is invoked.
c2bd5804 2793 *
c2bd5804
TH
2794 * LOCKING:
2795 * Kernel thread context (may sleep)
2796 */
2797void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2798{
dc2b3515
TH
2799 u32 serror;
2800
c2bd5804
TH
2801 DPRINTK("ENTER\n");
2802
c2bd5804 2803 /* print link status */
81952c54 2804 sata_print_link_status(ap);
c2bd5804 2805
dc2b3515
TH
2806 /* clear SError */
2807 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2808 sata_scr_write(ap, SCR_ERROR, serror);
2809
3a39746a 2810 /* re-enable interrupts */
e3180499
TH
2811 if (!ap->ops->error_handler) {
2812 /* FIXME: hack. create a hook instead */
2813 if (ap->ioaddr.ctl_addr)
2814 ata_irq_on(ap);
2815 }
c2bd5804
TH
2816
2817 /* is double-select really necessary? */
2818 if (classes[0] != ATA_DEV_NONE)
2819 ap->ops->dev_select(ap, 1);
2820 if (classes[1] != ATA_DEV_NONE)
2821 ap->ops->dev_select(ap, 0);
2822
3a39746a
TH
2823 /* bail out if no device is present */
2824 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2825 DPRINTK("EXIT, no device\n");
2826 return;
2827 }
2828
2829 /* set up device control */
2830 if (ap->ioaddr.ctl_addr) {
2831 if (ap->flags & ATA_FLAG_MMIO)
2832 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2833 else
2834 outb(ap->ctl, ap->ioaddr.ctl_addr);
2835 }
c2bd5804
TH
2836
2837 DPRINTK("EXIT\n");
2838}
2839
623a3128
TH
2840/**
2841 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2842 * @dev: device to compare against
2843 * @new_class: class of the new device
2844 * @new_id: IDENTIFY page of the new device
2845 *
2846 * Compare @new_class and @new_id against @dev and determine
2847 * whether @dev is the device indicated by @new_class and
2848 * @new_id.
2849 *
2850 * LOCKING:
2851 * None.
2852 *
2853 * RETURNS:
2854 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2855 */
3373efd8
TH
2856static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2857 const u16 *new_id)
623a3128
TH
2858{
2859 const u16 *old_id = dev->id;
2860 unsigned char model[2][41], serial[2][21];
2861 u64 new_n_sectors;
2862
2863 if (dev->class != new_class) {
f15a1daf
TH
2864 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2865 dev->class, new_class);
623a3128
TH
2866 return 0;
2867 }
2868
2869 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2870 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2871 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2872 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2873 new_n_sectors = ata_id_n_sectors(new_id);
2874
2875 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2876 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2877 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2878 return 0;
2879 }
2880
2881 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2882 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2883 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
2884 return 0;
2885 }
2886
2887 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
2888 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2889 "%llu != %llu\n",
2890 (unsigned long long)dev->n_sectors,
2891 (unsigned long long)new_n_sectors);
623a3128
TH
2892 return 0;
2893 }
2894
2895 return 1;
2896}
2897
2898/**
2899 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
2900 * @dev: device to revalidate
2901 * @post_reset: is this revalidation after reset?
2902 *
2903 * Re-read IDENTIFY page and make sure @dev is still attached to
2904 * the port.
2905 *
2906 * LOCKING:
2907 * Kernel thread context (may sleep)
2908 *
2909 * RETURNS:
2910 * 0 on success, negative errno otherwise
2911 */
3373efd8 2912int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 2913{
5eb45c02 2914 unsigned int class = dev->class;
f15a1daf 2915 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
2916 int rc;
2917
5eb45c02
TH
2918 if (!ata_dev_enabled(dev)) {
2919 rc = -ENODEV;
2920 goto fail;
2921 }
623a3128 2922
fe635c7e 2923 /* read ID data */
3373efd8 2924 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
2925 if (rc)
2926 goto fail;
2927
2928 /* is the device still there? */
3373efd8 2929 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
2930 rc = -ENODEV;
2931 goto fail;
2932 }
2933
fe635c7e 2934 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
2935
2936 /* configure device according to the new ID */
3373efd8 2937 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
2938 if (rc == 0)
2939 return 0;
623a3128
TH
2940
2941 fail:
f15a1daf 2942 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
2943 return rc;
2944}
2945
98ac62de 2946static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2947 "WDC AC11000H", NULL,
2948 "WDC AC22100H", NULL,
2949 "WDC AC32500H", NULL,
2950 "WDC AC33100H", NULL,
2951 "WDC AC31600H", NULL,
2952 "WDC AC32100H", "24.09P07",
2953 "WDC AC23200L", "21.10N21",
2954 "Compaq CRD-8241B", NULL,
2955 "CRD-8400B", NULL,
2956 "CRD-8480B", NULL,
2957 "CRD-8482B", NULL,
2958 "CRD-84", NULL,
2959 "SanDisk SDP3B", NULL,
2960 "SanDisk SDP3B-64", NULL,
2961 "SANYO CD-ROM CRD", NULL,
2962 "HITACHI CDR-8", NULL,
2e9edbf8 2963 "HITACHI CDR-8335", NULL,
f4b15fef 2964 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2965 "Toshiba CD-ROM XM-6202B", NULL,
2966 "TOSHIBA CD-ROM XM-1702BC", NULL,
2967 "CD-532E-A", NULL,
2968 "E-IDE CD-ROM CR-840", NULL,
2969 "CD-ROM Drive/F5A", NULL,
2970 "WPI CDD-820", NULL,
f4b15fef 2971 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2972 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2973 "SanDisk SDP3B-64", NULL,
2974 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2975 "_NEC DV5800A", NULL,
2976 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2977};
2e9edbf8 2978
f4b15fef
AC
2979static int ata_strim(char *s, size_t len)
2980{
2981 len = strnlen(s, len);
2982
2983 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2984 while ((len > 0) && (s[len - 1] == ' ')) {
2985 len--;
2986 s[len] = 0;
2987 }
2988 return len;
2989}
1da177e4 2990
057ace5e 2991static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2992{
f4b15fef
AC
2993 unsigned char model_num[40];
2994 unsigned char model_rev[16];
2995 unsigned int nlen, rlen;
1da177e4
LT
2996 int i;
2997
3a778275
AL
2998 /* We don't support polling DMA.
2999 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3000 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3001 */
3002 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3003 (dev->flags & ATA_DFLAG_CDB_INTR))
3004 return 1;
3005
f4b15fef
AC
3006 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3007 sizeof(model_num));
3008 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3009 sizeof(model_rev));
3010 nlen = ata_strim(model_num, sizeof(model_num));
3011 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 3012
f4b15fef
AC
3013 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3014 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3015 if (ata_dma_blacklist[i+1] == NULL)
3016 return 1;
3017 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3018 return 1;
3019 }
3020 }
1da177e4
LT
3021 return 0;
3022}
3023
a6d5a51c
TH
3024/**
3025 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3026 * @dev: Device to compute xfermask for
3027 *
acf356b1
TH
3028 * Compute supported xfermask of @dev and store it in
3029 * dev->*_mask. This function is responsible for applying all
3030 * known limits including host controller limits, device
3031 * blacklist, etc...
a6d5a51c 3032 *
600511e8
TH
3033 * FIXME: The current implementation limits all transfer modes to
3034 * the fastest of the lowested device on the port. This is not
05c8e0ac 3035 * required on most controllers.
600511e8 3036 *
a6d5a51c
TH
3037 * LOCKING:
3038 * None.
a6d5a51c 3039 */
3373efd8 3040static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3041{
3373efd8 3042 struct ata_port *ap = dev->ap;
5444a6f4 3043 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
3044 unsigned long xfer_mask;
3045 int i;
1da177e4 3046
565083e1
TH
3047 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3048 ap->mwdma_mask, ap->udma_mask);
3049
3050 /* Apply cable rule here. Don't apply it early because when
3051 * we handle hot plug the cable type can itself change.
3052 */
3053 if (ap->cbl == ATA_CBL_PATA40)
3054 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 3055
5444a6f4 3056 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
3057 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3058 struct ata_device *d = &ap->device[i];
565083e1
TH
3059
3060 if (ata_dev_absent(d))
3061 continue;
3062
3063 if (ata_dev_disabled(d)) {
3064 /* to avoid violating device selection timing */
3065 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3066 UINT_MAX, UINT_MAX);
a6d5a51c 3067 continue;
565083e1
TH
3068 }
3069
3070 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3071 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
3072 xfer_mask &= ata_id_xfermask(d->id);
3073 if (ata_dma_blacklisted(d))
3074 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
3075 }
3076
a6d5a51c 3077 if (ata_dma_blacklisted(dev))
f15a1daf
TH
3078 ata_dev_printk(dev, KERN_WARNING,
3079 "device is on DMA blacklist, disabling DMA\n");
a6d5a51c 3080
5444a6f4
AC
3081 if (hs->flags & ATA_HOST_SIMPLEX) {
3082 if (hs->simplex_claimed)
3083 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3084 }
565083e1 3085
5444a6f4
AC
3086 if (ap->ops->mode_filter)
3087 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3088
565083e1
TH
3089 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3090 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3091}
3092
1da177e4
LT
3093/**
3094 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3095 * @dev: Device to which command will be sent
3096 *
780a87f7
JG
3097 * Issue SET FEATURES - XFER MODE command to device @dev
3098 * on port @ap.
3099 *
1da177e4 3100 * LOCKING:
0cba632b 3101 * PCI/etc. bus probe sem.
83206a29
TH
3102 *
3103 * RETURNS:
3104 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3105 */
3106
3373efd8 3107static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3108{
a0123703 3109 struct ata_taskfile tf;
83206a29 3110 unsigned int err_mask;
1da177e4
LT
3111
3112 /* set up set-features taskfile */
3113 DPRINTK("set features - xfer mode\n");
3114
3373efd8 3115 ata_tf_init(dev, &tf);
a0123703
TH
3116 tf.command = ATA_CMD_SET_FEATURES;
3117 tf.feature = SETFEATURES_XFER;
3118 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3119 tf.protocol = ATA_PROT_NODATA;
3120 tf.nsect = dev->xfer_mode;
1da177e4 3121
3373efd8 3122 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3123
83206a29
TH
3124 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3125 return err_mask;
1da177e4
LT
3126}
3127
8bf62ece
AL
3128/**
3129 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3130 * @dev: Device to which command will be sent
e2a7f77a
RD
3131 * @heads: Number of heads (taskfile parameter)
3132 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3133 *
3134 * LOCKING:
6aff8f1f
TH
3135 * Kernel thread context (may sleep)
3136 *
3137 * RETURNS:
3138 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3139 */
3373efd8
TH
3140static unsigned int ata_dev_init_params(struct ata_device *dev,
3141 u16 heads, u16 sectors)
8bf62ece 3142{
a0123703 3143 struct ata_taskfile tf;
6aff8f1f 3144 unsigned int err_mask;
8bf62ece
AL
3145
3146 /* Number of sectors per track 1-255. Number of heads 1-16 */
3147 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3148 return AC_ERR_INVALID;
8bf62ece
AL
3149
3150 /* set up init dev params taskfile */
3151 DPRINTK("init dev params \n");
3152
3373efd8 3153 ata_tf_init(dev, &tf);
a0123703
TH
3154 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3155 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3156 tf.protocol = ATA_PROT_NODATA;
3157 tf.nsect = sectors;
3158 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3159
3373efd8 3160 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3161
6aff8f1f
TH
3162 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3163 return err_mask;
8bf62ece
AL
3164}
3165
1da177e4 3166/**
0cba632b
JG
3167 * ata_sg_clean - Unmap DMA memory associated with command
3168 * @qc: Command containing DMA memory to be released
3169 *
3170 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3171 *
3172 * LOCKING:
0cba632b 3173 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3174 */
3175
3176static void ata_sg_clean(struct ata_queued_cmd *qc)
3177{
3178 struct ata_port *ap = qc->ap;
cedc9a47 3179 struct scatterlist *sg = qc->__sg;
1da177e4 3180 int dir = qc->dma_dir;
cedc9a47 3181 void *pad_buf = NULL;
1da177e4 3182
a4631474
TH
3183 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3184 WARN_ON(sg == NULL);
1da177e4
LT
3185
3186 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3187 WARN_ON(qc->n_elem > 1);
1da177e4 3188
2c13b7ce 3189 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3190
cedc9a47
JG
3191 /* if we padded the buffer out to 32-bit bound, and data
3192 * xfer direction is from-device, we must copy from the
3193 * pad buffer back into the supplied buffer
3194 */
3195 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3196 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3197
3198 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3199 if (qc->n_elem)
2f1f610b 3200 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3201 /* restore last sg */
3202 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3203 if (pad_buf) {
3204 struct scatterlist *psg = &qc->pad_sgent;
3205 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3206 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3207 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3208 }
3209 } else {
2e242fa9 3210 if (qc->n_elem)
2f1f610b 3211 dma_unmap_single(ap->dev,
e1410f2d
JG
3212 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3213 dir);
cedc9a47
JG
3214 /* restore sg */
3215 sg->length += qc->pad_len;
3216 if (pad_buf)
3217 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3218 pad_buf, qc->pad_len);
3219 }
1da177e4
LT
3220
3221 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3222 qc->__sg = NULL;
1da177e4
LT
3223}
3224
3225/**
3226 * ata_fill_sg - Fill PCI IDE PRD table
3227 * @qc: Metadata associated with taskfile to be transferred
3228 *
780a87f7
JG
3229 * Fill PCI IDE PRD (scatter-gather) table with segments
3230 * associated with the current disk command.
3231 *
1da177e4 3232 * LOCKING:
780a87f7 3233 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3234 *
3235 */
3236static void ata_fill_sg(struct ata_queued_cmd *qc)
3237{
1da177e4 3238 struct ata_port *ap = qc->ap;
cedc9a47
JG
3239 struct scatterlist *sg;
3240 unsigned int idx;
1da177e4 3241
a4631474 3242 WARN_ON(qc->__sg == NULL);
f131883e 3243 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3244
3245 idx = 0;
cedc9a47 3246 ata_for_each_sg(sg, qc) {
1da177e4
LT
3247 u32 addr, offset;
3248 u32 sg_len, len;
3249
3250 /* determine if physical DMA addr spans 64K boundary.
3251 * Note h/w doesn't support 64-bit, so we unconditionally
3252 * truncate dma_addr_t to u32.
3253 */
3254 addr = (u32) sg_dma_address(sg);
3255 sg_len = sg_dma_len(sg);
3256
3257 while (sg_len) {
3258 offset = addr & 0xffff;
3259 len = sg_len;
3260 if ((offset + sg_len) > 0x10000)
3261 len = 0x10000 - offset;
3262
3263 ap->prd[idx].addr = cpu_to_le32(addr);
3264 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3265 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3266
3267 idx++;
3268 sg_len -= len;
3269 addr += len;
3270 }
3271 }
3272
3273 if (idx)
3274 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3275}
3276/**
3277 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3278 * @qc: Metadata associated with taskfile to check
3279 *
780a87f7
JG
3280 * Allow low-level driver to filter ATA PACKET commands, returning
3281 * a status indicating whether or not it is OK to use DMA for the
3282 * supplied PACKET command.
3283 *
1da177e4 3284 * LOCKING:
0cba632b
JG
3285 * spin_lock_irqsave(host_set lock)
3286 *
1da177e4
LT
3287 * RETURNS: 0 when ATAPI DMA can be used
3288 * nonzero otherwise
3289 */
3290int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3291{
3292 struct ata_port *ap = qc->ap;
3293 int rc = 0; /* Assume ATAPI DMA is OK by default */
3294
3295 if (ap->ops->check_atapi_dma)
3296 rc = ap->ops->check_atapi_dma(qc);
3297
3298 return rc;
3299}
3300/**
3301 * ata_qc_prep - Prepare taskfile for submission
3302 * @qc: Metadata associated with taskfile to be prepared
3303 *
780a87f7
JG
3304 * Prepare ATA taskfile for submission.
3305 *
1da177e4
LT
3306 * LOCKING:
3307 * spin_lock_irqsave(host_set lock)
3308 */
3309void ata_qc_prep(struct ata_queued_cmd *qc)
3310{
3311 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3312 return;
3313
3314 ata_fill_sg(qc);
3315}
3316
e46834cd
BK
3317void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3318
0cba632b
JG
3319/**
3320 * ata_sg_init_one - Associate command with memory buffer
3321 * @qc: Command to be associated
3322 * @buf: Memory buffer
3323 * @buflen: Length of memory buffer, in bytes.
3324 *
3325 * Initialize the data-related elements of queued_cmd @qc
3326 * to point to a single memory buffer, @buf of byte length @buflen.
3327 *
3328 * LOCKING:
3329 * spin_lock_irqsave(host_set lock)
3330 */
3331
1da177e4
LT
3332void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3333{
3334 struct scatterlist *sg;
3335
3336 qc->flags |= ATA_QCFLAG_SINGLE;
3337
3338 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3339 qc->__sg = &qc->sgent;
1da177e4 3340 qc->n_elem = 1;
cedc9a47 3341 qc->orig_n_elem = 1;
1da177e4 3342 qc->buf_virt = buf;
233277ca 3343 qc->nbytes = buflen;
1da177e4 3344
cedc9a47 3345 sg = qc->__sg;
f0612bbc 3346 sg_init_one(sg, buf, buflen);
1da177e4
LT
3347}
3348
0cba632b
JG
3349/**
3350 * ata_sg_init - Associate command with scatter-gather table.
3351 * @qc: Command to be associated
3352 * @sg: Scatter-gather table.
3353 * @n_elem: Number of elements in s/g table.
3354 *
3355 * Initialize the data-related elements of queued_cmd @qc
3356 * to point to a scatter-gather table @sg, containing @n_elem
3357 * elements.
3358 *
3359 * LOCKING:
3360 * spin_lock_irqsave(host_set lock)
3361 */
3362
1da177e4
LT
3363void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3364 unsigned int n_elem)
3365{
3366 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3367 qc->__sg = sg;
1da177e4 3368 qc->n_elem = n_elem;
cedc9a47 3369 qc->orig_n_elem = n_elem;
1da177e4
LT
3370}
3371
3372/**
0cba632b
JG
3373 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3374 * @qc: Command with memory buffer to be mapped.
3375 *
3376 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3377 *
3378 * LOCKING:
3379 * spin_lock_irqsave(host_set lock)
3380 *
3381 * RETURNS:
0cba632b 3382 * Zero on success, negative on error.
1da177e4
LT
3383 */
3384
3385static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3386{
3387 struct ata_port *ap = qc->ap;
3388 int dir = qc->dma_dir;
cedc9a47 3389 struct scatterlist *sg = qc->__sg;
1da177e4 3390 dma_addr_t dma_address;
2e242fa9 3391 int trim_sg = 0;
1da177e4 3392
cedc9a47
JG
3393 /* we must lengthen transfers to end on a 32-bit boundary */
3394 qc->pad_len = sg->length & 3;
3395 if (qc->pad_len) {
3396 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3397 struct scatterlist *psg = &qc->pad_sgent;
3398
a4631474 3399 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3400
3401 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3402
3403 if (qc->tf.flags & ATA_TFLAG_WRITE)
3404 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3405 qc->pad_len);
3406
3407 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3408 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3409 /* trim sg */
3410 sg->length -= qc->pad_len;
2e242fa9
TH
3411 if (sg->length == 0)
3412 trim_sg = 1;
cedc9a47
JG
3413
3414 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3415 sg->length, qc->pad_len);
3416 }
3417
2e242fa9
TH
3418 if (trim_sg) {
3419 qc->n_elem--;
e1410f2d
JG
3420 goto skip_map;
3421 }
3422
2f1f610b 3423 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3424 sg->length, dir);
537a95d9
TH
3425 if (dma_mapping_error(dma_address)) {
3426 /* restore sg */
3427 sg->length += qc->pad_len;
1da177e4 3428 return -1;
537a95d9 3429 }
1da177e4
LT
3430
3431 sg_dma_address(sg) = dma_address;
32529e01 3432 sg_dma_len(sg) = sg->length;
1da177e4 3433
2e242fa9 3434skip_map:
1da177e4
LT
3435 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3436 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3437
3438 return 0;
3439}
3440
3441/**
0cba632b
JG
3442 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3443 * @qc: Command with scatter-gather table to be mapped.
3444 *
3445 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3446 *
3447 * LOCKING:
3448 * spin_lock_irqsave(host_set lock)
3449 *
3450 * RETURNS:
0cba632b 3451 * Zero on success, negative on error.
1da177e4
LT
3452 *
3453 */
3454
3455static int ata_sg_setup(struct ata_queued_cmd *qc)
3456{
3457 struct ata_port *ap = qc->ap;
cedc9a47
JG
3458 struct scatterlist *sg = qc->__sg;
3459 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3460 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3461
3462 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3463 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3464
cedc9a47
JG
3465 /* we must lengthen transfers to end on a 32-bit boundary */
3466 qc->pad_len = lsg->length & 3;
3467 if (qc->pad_len) {
3468 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3469 struct scatterlist *psg = &qc->pad_sgent;
3470 unsigned int offset;
3471
a4631474 3472 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3473
3474 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3475
3476 /*
3477 * psg->page/offset are used to copy to-be-written
3478 * data in this function or read data in ata_sg_clean.
3479 */
3480 offset = lsg->offset + lsg->length - qc->pad_len;
3481 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3482 psg->offset = offset_in_page(offset);
3483
3484 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3485 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3486 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3487 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3488 }
3489
3490 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3491 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3492 /* trim last sg */
3493 lsg->length -= qc->pad_len;
e1410f2d
JG
3494 if (lsg->length == 0)
3495 trim_sg = 1;
cedc9a47
JG
3496
3497 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3498 qc->n_elem - 1, lsg->length, qc->pad_len);
3499 }
3500
e1410f2d
JG
3501 pre_n_elem = qc->n_elem;
3502 if (trim_sg && pre_n_elem)
3503 pre_n_elem--;
3504
3505 if (!pre_n_elem) {
3506 n_elem = 0;
3507 goto skip_map;
3508 }
3509
1da177e4 3510 dir = qc->dma_dir;
2f1f610b 3511 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3512 if (n_elem < 1) {
3513 /* restore last sg */
3514 lsg->length += qc->pad_len;
1da177e4 3515 return -1;
537a95d9 3516 }
1da177e4
LT
3517
3518 DPRINTK("%d sg elements mapped\n", n_elem);
3519
e1410f2d 3520skip_map:
1da177e4
LT
3521 qc->n_elem = n_elem;
3522
3523 return 0;
3524}
3525
0baab86b 3526/**
c893a3ae 3527 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3528 * @buf: Buffer to swap
3529 * @buf_words: Number of 16-bit words in buffer.
3530 *
3531 * Swap halves of 16-bit words if needed to convert from
3532 * little-endian byte order to native cpu byte order, or
3533 * vice-versa.
3534 *
3535 * LOCKING:
6f0ef4fa 3536 * Inherited from caller.
0baab86b 3537 */
1da177e4
LT
3538void swap_buf_le16(u16 *buf, unsigned int buf_words)
3539{
3540#ifdef __BIG_ENDIAN
3541 unsigned int i;
3542
3543 for (i = 0; i < buf_words; i++)
3544 buf[i] = le16_to_cpu(buf[i]);
3545#endif /* __BIG_ENDIAN */
3546}
3547
6ae4cfb5
AL
3548/**
3549 * ata_mmio_data_xfer - Transfer data by MMIO
bf717b11 3550 * @adev: device for this I/O
6ae4cfb5
AL
3551 * @buf: data buffer
3552 * @buflen: buffer length
344babaa 3553 * @write_data: read/write
6ae4cfb5
AL
3554 *
3555 * Transfer data from/to the device data register by MMIO.
3556 *
3557 * LOCKING:
3558 * Inherited from caller.
6ae4cfb5
AL
3559 */
3560
a6b2c5d4
AC
3561void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3562 unsigned int buflen, int write_data)
1da177e4 3563{
a6b2c5d4 3564 struct ata_port *ap = adev->ap;
1da177e4
LT
3565 unsigned int i;
3566 unsigned int words = buflen >> 1;
3567 u16 *buf16 = (u16 *) buf;
3568 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3569
6ae4cfb5 3570 /* Transfer multiple of 2 bytes */
1da177e4
LT
3571 if (write_data) {
3572 for (i = 0; i < words; i++)
3573 writew(le16_to_cpu(buf16[i]), mmio);
3574 } else {
3575 for (i = 0; i < words; i++)
3576 buf16[i] = cpu_to_le16(readw(mmio));
3577 }
6ae4cfb5
AL
3578
3579 /* Transfer trailing 1 byte, if any. */
3580 if (unlikely(buflen & 0x01)) {
3581 u16 align_buf[1] = { 0 };
3582 unsigned char *trailing_buf = buf + buflen - 1;
3583
3584 if (write_data) {
3585 memcpy(align_buf, trailing_buf, 1);
3586 writew(le16_to_cpu(align_buf[0]), mmio);
3587 } else {
3588 align_buf[0] = cpu_to_le16(readw(mmio));
3589 memcpy(trailing_buf, align_buf, 1);
3590 }
3591 }
1da177e4
LT
3592}
3593
6ae4cfb5
AL
3594/**
3595 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3596 * @adev: device to target
6ae4cfb5
AL
3597 * @buf: data buffer
3598 * @buflen: buffer length
344babaa 3599 * @write_data: read/write
6ae4cfb5
AL
3600 *
3601 * Transfer data from/to the device data register by PIO.
3602 *
3603 * LOCKING:
3604 * Inherited from caller.
6ae4cfb5
AL
3605 */
3606
a6b2c5d4
AC
3607void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3608 unsigned int buflen, int write_data)
1da177e4 3609{
a6b2c5d4 3610 struct ata_port *ap = adev->ap;
6ae4cfb5 3611 unsigned int words = buflen >> 1;
1da177e4 3612
6ae4cfb5 3613 /* Transfer multiple of 2 bytes */
1da177e4 3614 if (write_data)
6ae4cfb5 3615 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3616 else
6ae4cfb5
AL
3617 insw(ap->ioaddr.data_addr, buf, words);
3618
3619 /* Transfer trailing 1 byte, if any. */
3620 if (unlikely(buflen & 0x01)) {
3621 u16 align_buf[1] = { 0 };
3622 unsigned char *trailing_buf = buf + buflen - 1;
3623
3624 if (write_data) {
3625 memcpy(align_buf, trailing_buf, 1);
3626 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3627 } else {
3628 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3629 memcpy(trailing_buf, align_buf, 1);
3630 }
3631 }
1da177e4
LT
3632}
3633
75e99585
AC
3634/**
3635 * ata_pio_data_xfer_noirq - Transfer data by PIO
3636 * @adev: device to target
3637 * @buf: data buffer
3638 * @buflen: buffer length
3639 * @write_data: read/write
3640 *
3641 * Transfer data from/to the device data register by PIO. Do the
3642 * transfer with interrupts disabled.
3643 *
3644 * LOCKING:
3645 * Inherited from caller.
3646 */
3647
3648void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3649 unsigned int buflen, int write_data)
3650{
3651 unsigned long flags;
3652 local_irq_save(flags);
3653 ata_pio_data_xfer(adev, buf, buflen, write_data);
3654 local_irq_restore(flags);
3655}
3656
3657
6ae4cfb5
AL
3658/**
3659 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3660 * @qc: Command on going
3661 *
3662 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3663 *
3664 * LOCKING:
3665 * Inherited from caller.
3666 */
3667
1da177e4
LT
3668static void ata_pio_sector(struct ata_queued_cmd *qc)
3669{
3670 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3671 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3672 struct ata_port *ap = qc->ap;
3673 struct page *page;
3674 unsigned int offset;
3675 unsigned char *buf;
3676
3677 if (qc->cursect == (qc->nsect - 1))
14be71f4 3678 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3679
3680 page = sg[qc->cursg].page;
3681 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3682
3683 /* get the current page and offset */
3684 page = nth_page(page, (offset >> PAGE_SHIFT));
3685 offset %= PAGE_SIZE;
3686
1da177e4
LT
3687 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3688
91b8b313
AL
3689 if (PageHighMem(page)) {
3690 unsigned long flags;
3691
a6b2c5d4 3692 /* FIXME: use a bounce buffer */
91b8b313
AL
3693 local_irq_save(flags);
3694 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3695
91b8b313 3696 /* do the actual data transfer */
a6b2c5d4 3697 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3698
91b8b313
AL
3699 kunmap_atomic(buf, KM_IRQ0);
3700 local_irq_restore(flags);
3701 } else {
3702 buf = page_address(page);
a6b2c5d4 3703 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 3704 }
1da177e4
LT
3705
3706 qc->cursect++;
3707 qc->cursg_ofs++;
3708
32529e01 3709 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3710 qc->cursg++;
3711 qc->cursg_ofs = 0;
3712 }
1da177e4 3713}
1da177e4 3714
07f6f7d0
AL
3715/**
3716 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3717 * @qc: Command on going
3718 *
c81e29b4 3719 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
3720 * ATA device for the DRQ request.
3721 *
3722 * LOCKING:
3723 * Inherited from caller.
3724 */
1da177e4 3725
07f6f7d0
AL
3726static void ata_pio_sectors(struct ata_queued_cmd *qc)
3727{
3728 if (is_multi_taskfile(&qc->tf)) {
3729 /* READ/WRITE MULTIPLE */
3730 unsigned int nsect;
3731
587005de 3732 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3733
07f6f7d0
AL
3734 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3735 while (nsect--)
3736 ata_pio_sector(qc);
3737 } else
3738 ata_pio_sector(qc);
3739}
3740
c71c1857
AL
3741/**
3742 * atapi_send_cdb - Write CDB bytes to hardware
3743 * @ap: Port to which ATAPI device is attached.
3744 * @qc: Taskfile currently active
3745 *
3746 * When device has indicated its readiness to accept
3747 * a CDB, this function is called. Send the CDB.
3748 *
3749 * LOCKING:
3750 * caller.
3751 */
3752
3753static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3754{
3755 /* send SCSI cdb */
3756 DPRINTK("send cdb\n");
db024d53 3757 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3758
a6b2c5d4 3759 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3760 ata_altstatus(ap); /* flush */
3761
3762 switch (qc->tf.protocol) {
3763 case ATA_PROT_ATAPI:
3764 ap->hsm_task_state = HSM_ST;
3765 break;
3766 case ATA_PROT_ATAPI_NODATA:
3767 ap->hsm_task_state = HSM_ST_LAST;
3768 break;
3769 case ATA_PROT_ATAPI_DMA:
3770 ap->hsm_task_state = HSM_ST_LAST;
3771 /* initiate bmdma */
3772 ap->ops->bmdma_start(qc);
3773 break;
3774 }
1da177e4
LT
3775}
3776
6ae4cfb5
AL
3777/**
3778 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3779 * @qc: Command on going
3780 * @bytes: number of bytes
3781 *
3782 * Transfer Transfer data from/to the ATAPI device.
3783 *
3784 * LOCKING:
3785 * Inherited from caller.
3786 *
3787 */
3788
1da177e4
LT
3789static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3790{
3791 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3792 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3793 struct ata_port *ap = qc->ap;
3794 struct page *page;
3795 unsigned char *buf;
3796 unsigned int offset, count;
3797
563a6e1f 3798 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3799 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3800
3801next_sg:
563a6e1f 3802 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3803 /*
563a6e1f
AL
3804 * The end of qc->sg is reached and the device expects
3805 * more data to transfer. In order not to overrun qc->sg
3806 * and fulfill length specified in the byte count register,
3807 * - for read case, discard trailing data from the device
3808 * - for write case, padding zero data to the device
3809 */
3810 u16 pad_buf[1] = { 0 };
3811 unsigned int words = bytes >> 1;
3812 unsigned int i;
3813
3814 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3815 ata_dev_printk(qc->dev, KERN_WARNING,
3816 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3817
3818 for (i = 0; i < words; i++)
a6b2c5d4 3819 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 3820
14be71f4 3821 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3822 return;
3823 }
3824
cedc9a47 3825 sg = &qc->__sg[qc->cursg];
1da177e4 3826
1da177e4
LT
3827 page = sg->page;
3828 offset = sg->offset + qc->cursg_ofs;
3829
3830 /* get the current page and offset */
3831 page = nth_page(page, (offset >> PAGE_SHIFT));
3832 offset %= PAGE_SIZE;
3833
6952df03 3834 /* don't overrun current sg */
32529e01 3835 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3836
3837 /* don't cross page boundaries */
3838 count = min(count, (unsigned int)PAGE_SIZE - offset);
3839
7282aa4b
AL
3840 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3841
91b8b313
AL
3842 if (PageHighMem(page)) {
3843 unsigned long flags;
3844
a6b2c5d4 3845 /* FIXME: use bounce buffer */
91b8b313
AL
3846 local_irq_save(flags);
3847 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3848
91b8b313 3849 /* do the actual data transfer */
a6b2c5d4 3850 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 3851
91b8b313
AL
3852 kunmap_atomic(buf, KM_IRQ0);
3853 local_irq_restore(flags);
3854 } else {
3855 buf = page_address(page);
a6b2c5d4 3856 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 3857 }
1da177e4
LT
3858
3859 bytes -= count;
3860 qc->curbytes += count;
3861 qc->cursg_ofs += count;
3862
32529e01 3863 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3864 qc->cursg++;
3865 qc->cursg_ofs = 0;
3866 }
3867
563a6e1f 3868 if (bytes)
1da177e4 3869 goto next_sg;
1da177e4
LT
3870}
3871
6ae4cfb5
AL
3872/**
3873 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3874 * @qc: Command on going
3875 *
3876 * Transfer Transfer data from/to the ATAPI device.
3877 *
3878 * LOCKING:
3879 * Inherited from caller.
6ae4cfb5
AL
3880 */
3881
1da177e4
LT
3882static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3883{
3884 struct ata_port *ap = qc->ap;
3885 struct ata_device *dev = qc->dev;
3886 unsigned int ireason, bc_lo, bc_hi, bytes;
3887 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3888
eec4c3f3
AL
3889 /* Abuse qc->result_tf for temp storage of intermediate TF
3890 * here to save some kernel stack usage.
3891 * For normal completion, qc->result_tf is not relevant. For
3892 * error, qc->result_tf is later overwritten by ata_qc_complete().
3893 * So, the correctness of qc->result_tf is not affected.
3894 */
3895 ap->ops->tf_read(ap, &qc->result_tf);
3896 ireason = qc->result_tf.nsect;
3897 bc_lo = qc->result_tf.lbam;
3898 bc_hi = qc->result_tf.lbah;
1da177e4
LT
3899 bytes = (bc_hi << 8) | bc_lo;
3900
3901 /* shall be cleared to zero, indicating xfer of data */
3902 if (ireason & (1 << 0))
3903 goto err_out;
3904
3905 /* make sure transfer direction matches expected */
3906 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3907 if (do_write != i_write)
3908 goto err_out;
3909
312f7da2
AL
3910 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3911
1da177e4
LT
3912 __atapi_pio_bytes(qc, bytes);
3913
3914 return;
3915
3916err_out:
f15a1daf 3917 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 3918 qc->err_mask |= AC_ERR_HSM;
14be71f4 3919 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3920}
3921
3922/**
c234fb00
AL
3923 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3924 * @ap: the target ata_port
3925 * @qc: qc on going
1da177e4 3926 *
c234fb00
AL
3927 * RETURNS:
3928 * 1 if ok in workqueue, 0 otherwise.
1da177e4 3929 */
c234fb00
AL
3930
3931static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 3932{
c234fb00
AL
3933 if (qc->tf.flags & ATA_TFLAG_POLLING)
3934 return 1;
1da177e4 3935
c234fb00
AL
3936 if (ap->hsm_task_state == HSM_ST_FIRST) {
3937 if (qc->tf.protocol == ATA_PROT_PIO &&
3938 (qc->tf.flags & ATA_TFLAG_WRITE))
3939 return 1;
1da177e4 3940
c234fb00
AL
3941 if (is_atapi_taskfile(&qc->tf) &&
3942 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3943 return 1;
fe79e683
AL
3944 }
3945
c234fb00
AL
3946 return 0;
3947}
1da177e4 3948
c17ea20d
TH
3949/**
3950 * ata_hsm_qc_complete - finish a qc running on standard HSM
3951 * @qc: Command to complete
3952 * @in_wq: 1 if called from workqueue, 0 otherwise
3953 *
3954 * Finish @qc which is running on standard HSM.
3955 *
3956 * LOCKING:
3957 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3958 * Otherwise, none on entry and grabs host lock.
3959 */
3960static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3961{
3962 struct ata_port *ap = qc->ap;
3963 unsigned long flags;
3964
3965 if (ap->ops->error_handler) {
3966 if (in_wq) {
ba6a1308 3967 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
3968
3969 /* EH might have kicked in while host_set lock
3970 * is released.
3971 */
3972 qc = ata_qc_from_tag(ap, qc->tag);
3973 if (qc) {
3974 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3975 ata_irq_on(ap);
3976 ata_qc_complete(qc);
3977 } else
3978 ata_port_freeze(ap);
3979 }
3980
ba6a1308 3981 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
3982 } else {
3983 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3984 ata_qc_complete(qc);
3985 else
3986 ata_port_freeze(ap);
3987 }
3988 } else {
3989 if (in_wq) {
ba6a1308 3990 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
3991 ata_irq_on(ap);
3992 ata_qc_complete(qc);
ba6a1308 3993 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
3994 } else
3995 ata_qc_complete(qc);
3996 }
1da177e4 3997
c81e29b4 3998 ata_altstatus(ap); /* flush */
c17ea20d
TH
3999}
4000
bb5cb290
AL
4001/**
4002 * ata_hsm_move - move the HSM to the next state.
4003 * @ap: the target ata_port
4004 * @qc: qc on going
4005 * @status: current device status
4006 * @in_wq: 1 if called from workqueue, 0 otherwise
4007 *
4008 * RETURNS:
4009 * 1 when poll next status needed, 0 otherwise.
4010 */
9a1004d0
TH
4011int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4012 u8 status, int in_wq)
e2cec771 4013{
bb5cb290
AL
4014 unsigned long flags = 0;
4015 int poll_next;
4016
6912ccd5
AL
4017 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4018
bb5cb290
AL
4019 /* Make sure ata_qc_issue_prot() does not throw things
4020 * like DMA polling into the workqueue. Notice that
4021 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4022 */
c234fb00 4023 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4024
e2cec771 4025fsm_start:
999bb6f4
AL
4026 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4027 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4028
e2cec771
AL
4029 switch (ap->hsm_task_state) {
4030 case HSM_ST_FIRST:
bb5cb290
AL
4031 /* Send first data block or PACKET CDB */
4032
4033 /* If polling, we will stay in the work queue after
4034 * sending the data. Otherwise, interrupt handler
4035 * takes over after sending the data.
4036 */
4037 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4038
e2cec771 4039 /* check device status */
3655d1d3
AL
4040 if (unlikely((status & ATA_DRQ) == 0)) {
4041 /* handle BSY=0, DRQ=0 as error */
4042 if (likely(status & (ATA_ERR | ATA_DF)))
4043 /* device stops HSM for abort/error */
4044 qc->err_mask |= AC_ERR_DEV;
4045 else
4046 /* HSM violation. Let EH handle this */
4047 qc->err_mask |= AC_ERR_HSM;
4048
14be71f4 4049 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4050 goto fsm_start;
1da177e4
LT
4051 }
4052
71601958
AL
4053 /* Device should not ask for data transfer (DRQ=1)
4054 * when it finds something wrong.
eee6c32f
AL
4055 * We ignore DRQ here and stop the HSM by
4056 * changing hsm_task_state to HSM_ST_ERR and
4057 * let the EH abort the command or reset the device.
71601958
AL
4058 */
4059 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4060 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4061 ap->id, status);
3655d1d3 4062 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4063 ap->hsm_task_state = HSM_ST_ERR;
4064 goto fsm_start;
71601958 4065 }
1da177e4 4066
bb5cb290
AL
4067 /* Send the CDB (atapi) or the first data block (ata pio out).
4068 * During the state transition, interrupt handler shouldn't
4069 * be invoked before the data transfer is complete and
4070 * hsm_task_state is changed. Hence, the following locking.
4071 */
4072 if (in_wq)
ba6a1308 4073 spin_lock_irqsave(ap->lock, flags);
1da177e4 4074
bb5cb290
AL
4075 if (qc->tf.protocol == ATA_PROT_PIO) {
4076 /* PIO data out protocol.
4077 * send first data block.
4078 */
0565c26d 4079
bb5cb290
AL
4080 /* ata_pio_sectors() might change the state
4081 * to HSM_ST_LAST. so, the state is changed here
4082 * before ata_pio_sectors().
4083 */
4084 ap->hsm_task_state = HSM_ST;
4085 ata_pio_sectors(qc);
4086 ata_altstatus(ap); /* flush */
4087 } else
4088 /* send CDB */
4089 atapi_send_cdb(ap, qc);
4090
4091 if (in_wq)
ba6a1308 4092 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4093
4094 /* if polling, ata_pio_task() handles the rest.
4095 * otherwise, interrupt handler takes over from here.
4096 */
e2cec771 4097 break;
1c848984 4098
e2cec771
AL
4099 case HSM_ST:
4100 /* complete command or read/write the data register */
4101 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4102 /* ATAPI PIO protocol */
4103 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4104 /* No more data to transfer or device error.
4105 * Device error will be tagged in HSM_ST_LAST.
4106 */
e2cec771
AL
4107 ap->hsm_task_state = HSM_ST_LAST;
4108 goto fsm_start;
4109 }
1da177e4 4110
71601958
AL
4111 /* Device should not ask for data transfer (DRQ=1)
4112 * when it finds something wrong.
eee6c32f
AL
4113 * We ignore DRQ here and stop the HSM by
4114 * changing hsm_task_state to HSM_ST_ERR and
4115 * let the EH abort the command or reset the device.
71601958
AL
4116 */
4117 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4118 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4119 ap->id, status);
3655d1d3 4120 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4121 ap->hsm_task_state = HSM_ST_ERR;
4122 goto fsm_start;
71601958 4123 }
1da177e4 4124
e2cec771 4125 atapi_pio_bytes(qc);
7fb6ec28 4126
e2cec771
AL
4127 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4128 /* bad ireason reported by device */
4129 goto fsm_start;
1da177e4 4130
e2cec771
AL
4131 } else {
4132 /* ATA PIO protocol */
4133 if (unlikely((status & ATA_DRQ) == 0)) {
4134 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4135 if (likely(status & (ATA_ERR | ATA_DF)))
4136 /* device stops HSM for abort/error */
4137 qc->err_mask |= AC_ERR_DEV;
4138 else
4139 /* HSM violation. Let EH handle this */
4140 qc->err_mask |= AC_ERR_HSM;
4141
e2cec771
AL
4142 ap->hsm_task_state = HSM_ST_ERR;
4143 goto fsm_start;
4144 }
1da177e4 4145
eee6c32f
AL
4146 /* For PIO reads, some devices may ask for
4147 * data transfer (DRQ=1) alone with ERR=1.
4148 * We respect DRQ here and transfer one
4149 * block of junk data before changing the
4150 * hsm_task_state to HSM_ST_ERR.
4151 *
4152 * For PIO writes, ERR=1 DRQ=1 doesn't make
4153 * sense since the data block has been
4154 * transferred to the device.
71601958
AL
4155 */
4156 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4157 /* data might be corrputed */
4158 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4159
4160 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4161 ata_pio_sectors(qc);
4162 ata_altstatus(ap);
4163 status = ata_wait_idle(ap);
4164 }
4165
3655d1d3
AL
4166 if (status & (ATA_BUSY | ATA_DRQ))
4167 qc->err_mask |= AC_ERR_HSM;
4168
eee6c32f
AL
4169 /* ata_pio_sectors() might change the
4170 * state to HSM_ST_LAST. so, the state
4171 * is changed after ata_pio_sectors().
4172 */
4173 ap->hsm_task_state = HSM_ST_ERR;
4174 goto fsm_start;
71601958
AL
4175 }
4176
e2cec771
AL
4177 ata_pio_sectors(qc);
4178
4179 if (ap->hsm_task_state == HSM_ST_LAST &&
4180 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4181 /* all data read */
4182 ata_altstatus(ap);
52a32205 4183 status = ata_wait_idle(ap);
e2cec771
AL
4184 goto fsm_start;
4185 }
4186 }
4187
4188 ata_altstatus(ap); /* flush */
bb5cb290 4189 poll_next = 1;
1da177e4
LT
4190 break;
4191
14be71f4 4192 case HSM_ST_LAST:
6912ccd5
AL
4193 if (unlikely(!ata_ok(status))) {
4194 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4195 ap->hsm_task_state = HSM_ST_ERR;
4196 goto fsm_start;
4197 }
4198
4199 /* no more data to transfer */
4332a771
AL
4200 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4201 ap->id, qc->dev->devno, status);
e2cec771 4202
6912ccd5
AL
4203 WARN_ON(qc->err_mask);
4204
e2cec771 4205 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4206
e2cec771 4207 /* complete taskfile transaction */
c17ea20d 4208 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4209
4210 poll_next = 0;
1da177e4
LT
4211 break;
4212
14be71f4 4213 case HSM_ST_ERR:
e2cec771
AL
4214 /* make sure qc->err_mask is available to
4215 * know what's wrong and recover
4216 */
4217 WARN_ON(qc->err_mask == 0);
4218
4219 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4220
999bb6f4 4221 /* complete taskfile transaction */
c17ea20d 4222 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4223
4224 poll_next = 0;
e2cec771
AL
4225 break;
4226 default:
bb5cb290 4227 poll_next = 0;
6912ccd5 4228 BUG();
1da177e4
LT
4229 }
4230
bb5cb290 4231 return poll_next;
1da177e4
LT
4232}
4233
1da177e4 4234static void ata_pio_task(void *_data)
8061f5f0 4235{
c91af2c8
TH
4236 struct ata_queued_cmd *qc = _data;
4237 struct ata_port *ap = qc->ap;
8061f5f0 4238 u8 status;
a1af3734 4239 int poll_next;
8061f5f0 4240
7fb6ec28 4241fsm_start:
a1af3734 4242 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4243
a1af3734
AL
4244 /*
4245 * This is purely heuristic. This is a fast path.
4246 * Sometimes when we enter, BSY will be cleared in
4247 * a chk-status or two. If not, the drive is probably seeking
4248 * or something. Snooze for a couple msecs, then
4249 * chk-status again. If still busy, queue delayed work.
4250 */
4251 status = ata_busy_wait(ap, ATA_BUSY, 5);
4252 if (status & ATA_BUSY) {
4253 msleep(2);
4254 status = ata_busy_wait(ap, ATA_BUSY, 10);
4255 if (status & ATA_BUSY) {
31ce6dae 4256 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4257 return;
4258 }
8061f5f0
TH
4259 }
4260
a1af3734
AL
4261 /* move the HSM */
4262 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4263
a1af3734
AL
4264 /* another command or interrupt handler
4265 * may be running at this point.
4266 */
4267 if (poll_next)
7fb6ec28 4268 goto fsm_start;
8061f5f0
TH
4269}
4270
1da177e4
LT
4271/**
4272 * ata_qc_new - Request an available ATA command, for queueing
4273 * @ap: Port associated with device @dev
4274 * @dev: Device from whom we request an available command structure
4275 *
4276 * LOCKING:
0cba632b 4277 * None.
1da177e4
LT
4278 */
4279
4280static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4281{
4282 struct ata_queued_cmd *qc = NULL;
4283 unsigned int i;
4284
e3180499
TH
4285 /* no command while frozen */
4286 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4287 return NULL;
4288
2ab7db1f
TH
4289 /* the last tag is reserved for internal command. */
4290 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4291 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4292 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4293 break;
4294 }
4295
4296 if (qc)
4297 qc->tag = i;
4298
4299 return qc;
4300}
4301
4302/**
4303 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4304 * @dev: Device from whom we request an available command structure
4305 *
4306 * LOCKING:
0cba632b 4307 * None.
1da177e4
LT
4308 */
4309
3373efd8 4310struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4311{
3373efd8 4312 struct ata_port *ap = dev->ap;
1da177e4
LT
4313 struct ata_queued_cmd *qc;
4314
4315 qc = ata_qc_new(ap);
4316 if (qc) {
1da177e4
LT
4317 qc->scsicmd = NULL;
4318 qc->ap = ap;
4319 qc->dev = dev;
1da177e4 4320
2c13b7ce 4321 ata_qc_reinit(qc);
1da177e4
LT
4322 }
4323
4324 return qc;
4325}
4326
1da177e4
LT
4327/**
4328 * ata_qc_free - free unused ata_queued_cmd
4329 * @qc: Command to complete
4330 *
4331 * Designed to free unused ata_queued_cmd object
4332 * in case something prevents using it.
4333 *
4334 * LOCKING:
0cba632b 4335 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4336 */
4337void ata_qc_free(struct ata_queued_cmd *qc)
4338{
4ba946e9
TH
4339 struct ata_port *ap = qc->ap;
4340 unsigned int tag;
4341
a4631474 4342 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4343
4ba946e9
TH
4344 qc->flags = 0;
4345 tag = qc->tag;
4346 if (likely(ata_tag_valid(tag))) {
4ba946e9 4347 qc->tag = ATA_TAG_POISON;
6cec4a39 4348 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4349 }
1da177e4
LT
4350}
4351
76014427 4352void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4353{
dedaf2b0
TH
4354 struct ata_port *ap = qc->ap;
4355
a4631474
TH
4356 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4357 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4358
4359 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4360 ata_sg_clean(qc);
4361
7401abf2 4362 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4363 if (qc->tf.protocol == ATA_PROT_NCQ)
4364 ap->sactive &= ~(1 << qc->tag);
4365 else
4366 ap->active_tag = ATA_TAG_POISON;
7401abf2 4367
3f3791d3
AL
4368 /* atapi: mark qc as inactive to prevent the interrupt handler
4369 * from completing the command twice later, before the error handler
4370 * is called. (when rc != 0 and atapi request sense is needed)
4371 */
4372 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4373 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4374
1da177e4 4375 /* call completion callback */
77853bf2 4376 qc->complete_fn(qc);
1da177e4
LT
4377}
4378
f686bcb8
TH
4379/**
4380 * ata_qc_complete - Complete an active ATA command
4381 * @qc: Command to complete
4382 * @err_mask: ATA Status register contents
4383 *
4384 * Indicate to the mid and upper layers that an ATA
4385 * command has completed, with either an ok or not-ok status.
4386 *
4387 * LOCKING:
4388 * spin_lock_irqsave(host_set lock)
4389 */
4390void ata_qc_complete(struct ata_queued_cmd *qc)
4391{
4392 struct ata_port *ap = qc->ap;
4393
4394 /* XXX: New EH and old EH use different mechanisms to
4395 * synchronize EH with regular execution path.
4396 *
4397 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4398 * Normal execution path is responsible for not accessing a
4399 * failed qc. libata core enforces the rule by returning NULL
4400 * from ata_qc_from_tag() for failed qcs.
4401 *
4402 * Old EH depends on ata_qc_complete() nullifying completion
4403 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4404 * not synchronize with interrupt handler. Only PIO task is
4405 * taken care of.
4406 */
4407 if (ap->ops->error_handler) {
4408 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4409
4410 if (unlikely(qc->err_mask))
4411 qc->flags |= ATA_QCFLAG_FAILED;
4412
4413 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4414 if (!ata_tag_internal(qc->tag)) {
4415 /* always fill result TF for failed qc */
4416 ap->ops->tf_read(ap, &qc->result_tf);
4417 ata_qc_schedule_eh(qc);
4418 return;
4419 }
4420 }
4421
4422 /* read result TF if requested */
4423 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4424 ap->ops->tf_read(ap, &qc->result_tf);
4425
4426 __ata_qc_complete(qc);
4427 } else {
4428 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4429 return;
4430
4431 /* read result TF if failed or requested */
4432 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4433 ap->ops->tf_read(ap, &qc->result_tf);
4434
4435 __ata_qc_complete(qc);
4436 }
4437}
4438
dedaf2b0
TH
4439/**
4440 * ata_qc_complete_multiple - Complete multiple qcs successfully
4441 * @ap: port in question
4442 * @qc_active: new qc_active mask
4443 * @finish_qc: LLDD callback invoked before completing a qc
4444 *
4445 * Complete in-flight commands. This functions is meant to be
4446 * called from low-level driver's interrupt routine to complete
4447 * requests normally. ap->qc_active and @qc_active is compared
4448 * and commands are completed accordingly.
4449 *
4450 * LOCKING:
4451 * spin_lock_irqsave(host_set lock)
4452 *
4453 * RETURNS:
4454 * Number of completed commands on success, -errno otherwise.
4455 */
4456int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4457 void (*finish_qc)(struct ata_queued_cmd *))
4458{
4459 int nr_done = 0;
4460 u32 done_mask;
4461 int i;
4462
4463 done_mask = ap->qc_active ^ qc_active;
4464
4465 if (unlikely(done_mask & qc_active)) {
4466 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4467 "(%08x->%08x)\n", ap->qc_active, qc_active);
4468 return -EINVAL;
4469 }
4470
4471 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4472 struct ata_queued_cmd *qc;
4473
4474 if (!(done_mask & (1 << i)))
4475 continue;
4476
4477 if ((qc = ata_qc_from_tag(ap, i))) {
4478 if (finish_qc)
4479 finish_qc(qc);
4480 ata_qc_complete(qc);
4481 nr_done++;
4482 }
4483 }
4484
4485 return nr_done;
4486}
4487
1da177e4
LT
4488static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4489{
4490 struct ata_port *ap = qc->ap;
4491
4492 switch (qc->tf.protocol) {
3dc1d881 4493 case ATA_PROT_NCQ:
1da177e4
LT
4494 case ATA_PROT_DMA:
4495 case ATA_PROT_ATAPI_DMA:
4496 return 1;
4497
4498 case ATA_PROT_ATAPI:
4499 case ATA_PROT_PIO:
1da177e4
LT
4500 if (ap->flags & ATA_FLAG_PIO_DMA)
4501 return 1;
4502
4503 /* fall through */
4504
4505 default:
4506 return 0;
4507 }
4508
4509 /* never reached */
4510}
4511
4512/**
4513 * ata_qc_issue - issue taskfile to device
4514 * @qc: command to issue to device
4515 *
4516 * Prepare an ATA command to submission to device.
4517 * This includes mapping the data into a DMA-able
4518 * area, filling in the S/G table, and finally
4519 * writing the taskfile to hardware, starting the command.
4520 *
4521 * LOCKING:
4522 * spin_lock_irqsave(host_set lock)
1da177e4 4523 */
8e0e694a 4524void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4525{
4526 struct ata_port *ap = qc->ap;
4527
dedaf2b0
TH
4528 /* Make sure only one non-NCQ command is outstanding. The
4529 * check is skipped for old EH because it reuses active qc to
4530 * request ATAPI sense.
4531 */
4532 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4533
4534 if (qc->tf.protocol == ATA_PROT_NCQ) {
4535 WARN_ON(ap->sactive & (1 << qc->tag));
4536 ap->sactive |= 1 << qc->tag;
4537 } else {
4538 WARN_ON(ap->sactive);
4539 ap->active_tag = qc->tag;
4540 }
4541
e4a70e76 4542 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4543 ap->qc_active |= 1 << qc->tag;
e4a70e76 4544
1da177e4
LT
4545 if (ata_should_dma_map(qc)) {
4546 if (qc->flags & ATA_QCFLAG_SG) {
4547 if (ata_sg_setup(qc))
8e436af9 4548 goto sg_err;
1da177e4
LT
4549 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4550 if (ata_sg_setup_one(qc))
8e436af9 4551 goto sg_err;
1da177e4
LT
4552 }
4553 } else {
4554 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4555 }
4556
4557 ap->ops->qc_prep(qc);
4558
8e0e694a
TH
4559 qc->err_mask |= ap->ops->qc_issue(qc);
4560 if (unlikely(qc->err_mask))
4561 goto err;
4562 return;
1da177e4 4563
8e436af9
TH
4564sg_err:
4565 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4566 qc->err_mask |= AC_ERR_SYSTEM;
4567err:
4568 ata_qc_complete(qc);
1da177e4
LT
4569}
4570
4571/**
4572 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4573 * @qc: command to issue to device
4574 *
4575 * Using various libata functions and hooks, this function
4576 * starts an ATA command. ATA commands are grouped into
4577 * classes called "protocols", and issuing each type of protocol
4578 * is slightly different.
4579 *
0baab86b
EF
4580 * May be used as the qc_issue() entry in ata_port_operations.
4581 *
1da177e4
LT
4582 * LOCKING:
4583 * spin_lock_irqsave(host_set lock)
4584 *
4585 * RETURNS:
9a3d9eb0 4586 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4587 */
4588
9a3d9eb0 4589unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4590{
4591 struct ata_port *ap = qc->ap;
4592
e50362ec
AL
4593 /* Use polling pio if the LLD doesn't handle
4594 * interrupt driven pio and atapi CDB interrupt.
4595 */
4596 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4597 switch (qc->tf.protocol) {
4598 case ATA_PROT_PIO:
4599 case ATA_PROT_ATAPI:
4600 case ATA_PROT_ATAPI_NODATA:
4601 qc->tf.flags |= ATA_TFLAG_POLLING;
4602 break;
4603 case ATA_PROT_ATAPI_DMA:
4604 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4605 /* see ata_dma_blacklisted() */
e50362ec
AL
4606 BUG();
4607 break;
4608 default:
4609 break;
4610 }
4611 }
4612
312f7da2 4613 /* select the device */
1da177e4
LT
4614 ata_dev_select(ap, qc->dev->devno, 1, 0);
4615
312f7da2 4616 /* start the command */
1da177e4
LT
4617 switch (qc->tf.protocol) {
4618 case ATA_PROT_NODATA:
312f7da2
AL
4619 if (qc->tf.flags & ATA_TFLAG_POLLING)
4620 ata_qc_set_polling(qc);
4621
e5338254 4622 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4623 ap->hsm_task_state = HSM_ST_LAST;
4624
4625 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4626 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4627
1da177e4
LT
4628 break;
4629
4630 case ATA_PROT_DMA:
587005de 4631 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4632
1da177e4
LT
4633 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4634 ap->ops->bmdma_setup(qc); /* set up bmdma */
4635 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4636 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4637 break;
4638
312f7da2
AL
4639 case ATA_PROT_PIO:
4640 if (qc->tf.flags & ATA_TFLAG_POLLING)
4641 ata_qc_set_polling(qc);
1da177e4 4642
e5338254 4643 ata_tf_to_host(ap, &qc->tf);
312f7da2 4644
54f00389
AL
4645 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4646 /* PIO data out protocol */
4647 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4648 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4649
4650 /* always send first data block using
e27486db 4651 * the ata_pio_task() codepath.
54f00389 4652 */
312f7da2 4653 } else {
54f00389
AL
4654 /* PIO data in protocol */
4655 ap->hsm_task_state = HSM_ST;
4656
4657 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4658 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4659
4660 /* if polling, ata_pio_task() handles the rest.
4661 * otherwise, interrupt handler takes over from here.
4662 */
312f7da2
AL
4663 }
4664
1da177e4
LT
4665 break;
4666
1da177e4 4667 case ATA_PROT_ATAPI:
1da177e4 4668 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4669 if (qc->tf.flags & ATA_TFLAG_POLLING)
4670 ata_qc_set_polling(qc);
4671
e5338254 4672 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4673
312f7da2
AL
4674 ap->hsm_task_state = HSM_ST_FIRST;
4675
4676 /* send cdb by polling if no cdb interrupt */
4677 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4678 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4679 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4680 break;
4681
4682 case ATA_PROT_ATAPI_DMA:
587005de 4683 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4684
1da177e4
LT
4685 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4686 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4687 ap->hsm_task_state = HSM_ST_FIRST;
4688
4689 /* send cdb by polling if no cdb interrupt */
4690 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4691 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4692 break;
4693
4694 default:
4695 WARN_ON(1);
9a3d9eb0 4696 return AC_ERR_SYSTEM;
1da177e4
LT
4697 }
4698
4699 return 0;
4700}
4701
1da177e4
LT
4702/**
4703 * ata_host_intr - Handle host interrupt for given (port, task)
4704 * @ap: Port on which interrupt arrived (possibly...)
4705 * @qc: Taskfile currently active in engine
4706 *
4707 * Handle host interrupt for given queued command. Currently,
4708 * only DMA interrupts are handled. All other commands are
4709 * handled via polling with interrupts disabled (nIEN bit).
4710 *
4711 * LOCKING:
4712 * spin_lock_irqsave(host_set lock)
4713 *
4714 * RETURNS:
4715 * One if interrupt was handled, zero if not (shared irq).
4716 */
4717
4718inline unsigned int ata_host_intr (struct ata_port *ap,
4719 struct ata_queued_cmd *qc)
4720{
312f7da2 4721 u8 status, host_stat = 0;
1da177e4 4722
312f7da2
AL
4723 VPRINTK("ata%u: protocol %d task_state %d\n",
4724 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4725
312f7da2
AL
4726 /* Check whether we are expecting interrupt in this state */
4727 switch (ap->hsm_task_state) {
4728 case HSM_ST_FIRST:
6912ccd5
AL
4729 /* Some pre-ATAPI-4 devices assert INTRQ
4730 * at this state when ready to receive CDB.
4731 */
1da177e4 4732
312f7da2
AL
4733 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4734 * The flag was turned on only for atapi devices.
4735 * No need to check is_atapi_taskfile(&qc->tf) again.
4736 */
4737 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4738 goto idle_irq;
1da177e4 4739 break;
312f7da2
AL
4740 case HSM_ST_LAST:
4741 if (qc->tf.protocol == ATA_PROT_DMA ||
4742 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4743 /* check status of DMA engine */
4744 host_stat = ap->ops->bmdma_status(ap);
4745 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4746
4747 /* if it's not our irq... */
4748 if (!(host_stat & ATA_DMA_INTR))
4749 goto idle_irq;
4750
4751 /* before we do anything else, clear DMA-Start bit */
4752 ap->ops->bmdma_stop(qc);
a4f16610
AL
4753
4754 if (unlikely(host_stat & ATA_DMA_ERR)) {
4755 /* error when transfering data to/from memory */
4756 qc->err_mask |= AC_ERR_HOST_BUS;
4757 ap->hsm_task_state = HSM_ST_ERR;
4758 }
312f7da2
AL
4759 }
4760 break;
4761 case HSM_ST:
4762 break;
1da177e4
LT
4763 default:
4764 goto idle_irq;
4765 }
4766
312f7da2
AL
4767 /* check altstatus */
4768 status = ata_altstatus(ap);
4769 if (status & ATA_BUSY)
4770 goto idle_irq;
1da177e4 4771
312f7da2
AL
4772 /* check main status, clearing INTRQ */
4773 status = ata_chk_status(ap);
4774 if (unlikely(status & ATA_BUSY))
4775 goto idle_irq;
1da177e4 4776
312f7da2
AL
4777 /* ack bmdma irq events */
4778 ap->ops->irq_clear(ap);
1da177e4 4779
bb5cb290 4780 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4781 return 1; /* irq handled */
4782
4783idle_irq:
4784 ap->stats.idle_irq++;
4785
4786#ifdef ATA_IRQ_TRAP
4787 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4788 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4789 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4790 return 1;
1da177e4
LT
4791 }
4792#endif
4793 return 0; /* irq not handled */
4794}
4795
4796/**
4797 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4798 * @irq: irq line (unused)
4799 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4800 * @regs: unused
4801 *
0cba632b
JG
4802 * Default interrupt handler for PCI IDE devices. Calls
4803 * ata_host_intr() for each port that is not disabled.
4804 *
1da177e4 4805 * LOCKING:
0cba632b 4806 * Obtains host_set lock during operation.
1da177e4
LT
4807 *
4808 * RETURNS:
0cba632b 4809 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4810 */
4811
4812irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4813{
4814 struct ata_host_set *host_set = dev_instance;
4815 unsigned int i;
4816 unsigned int handled = 0;
4817 unsigned long flags;
4818
4819 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4820 spin_lock_irqsave(&host_set->lock, flags);
4821
4822 for (i = 0; i < host_set->n_ports; i++) {
4823 struct ata_port *ap;
4824
4825 ap = host_set->ports[i];
c1389503 4826 if (ap &&
029f5468 4827 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
4828 struct ata_queued_cmd *qc;
4829
4830 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4831 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4832 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4833 handled |= ata_host_intr(ap, qc);
4834 }
4835 }
4836
4837 spin_unlock_irqrestore(&host_set->lock, flags);
4838
4839 return IRQ_RETVAL(handled);
4840}
4841
34bf2170
TH
4842/**
4843 * sata_scr_valid - test whether SCRs are accessible
4844 * @ap: ATA port to test SCR accessibility for
4845 *
4846 * Test whether SCRs are accessible for @ap.
4847 *
4848 * LOCKING:
4849 * None.
4850 *
4851 * RETURNS:
4852 * 1 if SCRs are accessible, 0 otherwise.
4853 */
4854int sata_scr_valid(struct ata_port *ap)
4855{
4856 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4857}
4858
4859/**
4860 * sata_scr_read - read SCR register of the specified port
4861 * @ap: ATA port to read SCR for
4862 * @reg: SCR to read
4863 * @val: Place to store read value
4864 *
4865 * Read SCR register @reg of @ap into *@val. This function is
4866 * guaranteed to succeed if the cable type of the port is SATA
4867 * and the port implements ->scr_read.
4868 *
4869 * LOCKING:
4870 * None.
4871 *
4872 * RETURNS:
4873 * 0 on success, negative errno on failure.
4874 */
4875int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4876{
4877 if (sata_scr_valid(ap)) {
4878 *val = ap->ops->scr_read(ap, reg);
4879 return 0;
4880 }
4881 return -EOPNOTSUPP;
4882}
4883
4884/**
4885 * sata_scr_write - write SCR register of the specified port
4886 * @ap: ATA port to write SCR for
4887 * @reg: SCR to write
4888 * @val: value to write
4889 *
4890 * Write @val to SCR register @reg of @ap. This function is
4891 * guaranteed to succeed if the cable type of the port is SATA
4892 * and the port implements ->scr_read.
4893 *
4894 * LOCKING:
4895 * None.
4896 *
4897 * RETURNS:
4898 * 0 on success, negative errno on failure.
4899 */
4900int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4901{
4902 if (sata_scr_valid(ap)) {
4903 ap->ops->scr_write(ap, reg, val);
4904 return 0;
4905 }
4906 return -EOPNOTSUPP;
4907}
4908
4909/**
4910 * sata_scr_write_flush - write SCR register of the specified port and flush
4911 * @ap: ATA port to write SCR for
4912 * @reg: SCR to write
4913 * @val: value to write
4914 *
4915 * This function is identical to sata_scr_write() except that this
4916 * function performs flush after writing to the register.
4917 *
4918 * LOCKING:
4919 * None.
4920 *
4921 * RETURNS:
4922 * 0 on success, negative errno on failure.
4923 */
4924int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4925{
4926 if (sata_scr_valid(ap)) {
4927 ap->ops->scr_write(ap, reg, val);
4928 ap->ops->scr_read(ap, reg);
4929 return 0;
4930 }
4931 return -EOPNOTSUPP;
4932}
4933
4934/**
4935 * ata_port_online - test whether the given port is online
4936 * @ap: ATA port to test
4937 *
4938 * Test whether @ap is online. Note that this function returns 0
4939 * if online status of @ap cannot be obtained, so
4940 * ata_port_online(ap) != !ata_port_offline(ap).
4941 *
4942 * LOCKING:
4943 * None.
4944 *
4945 * RETURNS:
4946 * 1 if the port online status is available and online.
4947 */
4948int ata_port_online(struct ata_port *ap)
4949{
4950 u32 sstatus;
4951
4952 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4953 return 1;
4954 return 0;
4955}
4956
4957/**
4958 * ata_port_offline - test whether the given port is offline
4959 * @ap: ATA port to test
4960 *
4961 * Test whether @ap is offline. Note that this function returns
4962 * 0 if offline status of @ap cannot be obtained, so
4963 * ata_port_online(ap) != !ata_port_offline(ap).
4964 *
4965 * LOCKING:
4966 * None.
4967 *
4968 * RETURNS:
4969 * 1 if the port offline status is available and offline.
4970 */
4971int ata_port_offline(struct ata_port *ap)
4972{
4973 u32 sstatus;
4974
4975 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4976 return 1;
4977 return 0;
4978}
0baab86b 4979
77b08fb5 4980int ata_flush_cache(struct ata_device *dev)
9b847548 4981{
977e6b9f 4982 unsigned int err_mask;
9b847548
JA
4983 u8 cmd;
4984
4985 if (!ata_try_flush_cache(dev))
4986 return 0;
4987
4988 if (ata_id_has_flush_ext(dev->id))
4989 cmd = ATA_CMD_FLUSH_EXT;
4990 else
4991 cmd = ATA_CMD_FLUSH;
4992
977e6b9f
TH
4993 err_mask = ata_do_simple_cmd(dev, cmd);
4994 if (err_mask) {
4995 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
4996 return -EIO;
4997 }
4998
4999 return 0;
9b847548
JA
5000}
5001
3373efd8 5002static int ata_standby_drive(struct ata_device *dev)
9b847548 5003{
977e6b9f
TH
5004 unsigned int err_mask;
5005
5006 err_mask = ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
5007 if (err_mask) {
5008 ata_dev_printk(dev, KERN_ERR, "failed to standby drive "
5009 "(err_mask=0x%x)\n", err_mask);
5010 return -EIO;
5011 }
5012
5013 return 0;
9b847548
JA
5014}
5015
3373efd8 5016static int ata_start_drive(struct ata_device *dev)
9b847548 5017{
977e6b9f
TH
5018 unsigned int err_mask;
5019
5020 err_mask = ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
5021 if (err_mask) {
5022 ata_dev_printk(dev, KERN_ERR, "failed to start drive "
5023 "(err_mask=0x%x)\n", err_mask);
5024 return -EIO;
5025 }
5026
5027 return 0;
9b847548
JA
5028}
5029
5030/**
5031 * ata_device_resume - wakeup a previously suspended devices
c893a3ae 5032 * @dev: the device to resume
9b847548
JA
5033 *
5034 * Kick the drive back into action, by sending it an idle immediate
5035 * command and making sure its transfer mode matches between drive
5036 * and host.
5037 *
5038 */
3373efd8 5039int ata_device_resume(struct ata_device *dev)
9b847548 5040{
3373efd8
TH
5041 struct ata_port *ap = dev->ap;
5042
9b847548 5043 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 5044 struct ata_device *failed_dev;
e42d7be2 5045
1cca0ebb 5046 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
0737ac89 5047 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
e42d7be2 5048
9b847548 5049 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9 5050 while (ata_set_mode(ap, &failed_dev))
3373efd8 5051 ata_dev_disable(failed_dev);
9b847548 5052 }
e1211e3f 5053 if (!ata_dev_enabled(dev))
9b847548
JA
5054 return 0;
5055 if (dev->class == ATA_DEV_ATA)
3373efd8 5056 ata_start_drive(dev);
9b847548
JA
5057
5058 return 0;
5059}
5060
5061/**
5062 * ata_device_suspend - prepare a device for suspend
c893a3ae 5063 * @dev: the device to suspend
e2a7f77a 5064 * @state: target power management state
9b847548
JA
5065 *
5066 * Flush the cache on the drive, if appropriate, then issue a
5067 * standbynow command.
9b847548 5068 */
3373efd8 5069int ata_device_suspend(struct ata_device *dev, pm_message_t state)
9b847548 5070{
3373efd8
TH
5071 struct ata_port *ap = dev->ap;
5072
e1211e3f 5073 if (!ata_dev_enabled(dev))
9b847548
JA
5074 return 0;
5075 if (dev->class == ATA_DEV_ATA)
3373efd8 5076 ata_flush_cache(dev);
9b847548 5077
082776e4 5078 if (state.event != PM_EVENT_FREEZE)
3373efd8 5079 ata_standby_drive(dev);
9b847548
JA
5080 ap->flags |= ATA_FLAG_SUSPENDED;
5081 return 0;
5082}
5083
c893a3ae
RD
5084/**
5085 * ata_port_start - Set port up for dma.
5086 * @ap: Port to initialize
5087 *
5088 * Called just after data structures for each port are
5089 * initialized. Allocates space for PRD table.
5090 *
5091 * May be used as the port_start() entry in ata_port_operations.
5092 *
5093 * LOCKING:
5094 * Inherited from caller.
5095 */
5096
1da177e4
LT
5097int ata_port_start (struct ata_port *ap)
5098{
2f1f610b 5099 struct device *dev = ap->dev;
6037d6bb 5100 int rc;
1da177e4
LT
5101
5102 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5103 if (!ap->prd)
5104 return -ENOMEM;
5105
6037d6bb
JG
5106 rc = ata_pad_alloc(ap, dev);
5107 if (rc) {
cedc9a47 5108 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5109 return rc;
cedc9a47
JG
5110 }
5111
1da177e4
LT
5112 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5113
5114 return 0;
5115}
5116
0baab86b
EF
5117
5118/**
5119 * ata_port_stop - Undo ata_port_start()
5120 * @ap: Port to shut down
5121 *
5122 * Frees the PRD table.
5123 *
5124 * May be used as the port_stop() entry in ata_port_operations.
5125 *
5126 * LOCKING:
6f0ef4fa 5127 * Inherited from caller.
0baab86b
EF
5128 */
5129
1da177e4
LT
5130void ata_port_stop (struct ata_port *ap)
5131{
2f1f610b 5132 struct device *dev = ap->dev;
1da177e4
LT
5133
5134 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5135 ata_pad_free(ap, dev);
1da177e4
LT
5136}
5137
aa8f0dc6
JG
5138void ata_host_stop (struct ata_host_set *host_set)
5139{
5140 if (host_set->mmio_base)
5141 iounmap(host_set->mmio_base);
5142}
5143
5144
1da177e4
LT
5145/**
5146 * ata_host_remove - Unregister SCSI host structure with upper layers
5147 * @ap: Port to unregister
5148 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5149 *
5150 * LOCKING:
6f0ef4fa 5151 * Inherited from caller.
1da177e4
LT
5152 */
5153
5154static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5155{
5156 struct Scsi_Host *sh = ap->host;
5157
5158 DPRINTK("ENTER\n");
5159
5160 if (do_unregister)
5161 scsi_remove_host(sh);
5162
5163 ap->ops->port_stop(ap);
5164}
5165
3ef3b43d
TH
5166/**
5167 * ata_dev_init - Initialize an ata_device structure
5168 * @dev: Device structure to initialize
5169 *
5170 * Initialize @dev in preparation for probing.
5171 *
5172 * LOCKING:
5173 * Inherited from caller.
5174 */
5175void ata_dev_init(struct ata_device *dev)
5176{
5177 struct ata_port *ap = dev->ap;
72fa4b74
TH
5178 unsigned long flags;
5179
5a04bf4b
TH
5180 /* SATA spd limit is bound to the first device */
5181 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5182
72fa4b74
TH
5183 /* High bits of dev->flags are used to record warm plug
5184 * requests which occur asynchronously. Synchronize using
5185 * host_set lock.
5186 */
ba6a1308 5187 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5188 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5189 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5190
72fa4b74
TH
5191 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5192 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5193 dev->pio_mask = UINT_MAX;
5194 dev->mwdma_mask = UINT_MAX;
5195 dev->udma_mask = UINT_MAX;
5196}
5197
1da177e4
LT
5198/**
5199 * ata_host_init - Initialize an ata_port structure
5200 * @ap: Structure to initialize
5201 * @host: associated SCSI mid-layer structure
5202 * @host_set: Collection of hosts to which @ap belongs
5203 * @ent: Probe information provided by low-level driver
5204 * @port_no: Port number associated with this ata_port
5205 *
0cba632b
JG
5206 * Initialize a new ata_port structure, and its associated
5207 * scsi_host.
5208 *
1da177e4 5209 * LOCKING:
0cba632b 5210 * Inherited from caller.
1da177e4 5211 */
1da177e4
LT
5212static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5213 struct ata_host_set *host_set,
057ace5e 5214 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5215{
5216 unsigned int i;
5217
5218 host->max_id = 16;
5219 host->max_lun = 1;
5220 host->max_channel = 1;
5221 host->unique_id = ata_unique_id++;
5222 host->max_cmd_len = 12;
12413197 5223
ba6a1308 5224 ap->lock = &host_set->lock;
198e0fed 5225 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
5226 ap->id = host->unique_id;
5227 ap->host = host;
5228 ap->ctl = ATA_DEVCTL_OBS;
5229 ap->host_set = host_set;
2f1f610b 5230 ap->dev = ent->dev;
1da177e4
LT
5231 ap->port_no = port_no;
5232 ap->hard_port_no =
5233 ent->legacy_mode ? ent->hard_port_no : port_no;
5234 ap->pio_mask = ent->pio_mask;
5235 ap->mwdma_mask = ent->mwdma_mask;
5236 ap->udma_mask = ent->udma_mask;
5237 ap->flags |= ent->host_flags;
5238 ap->ops = ent->port_ops;
5a04bf4b 5239 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5240 ap->active_tag = ATA_TAG_POISON;
5241 ap->last_ctl = 0xFF;
bd5d825c
BP
5242
5243#if defined(ATA_VERBOSE_DEBUG)
5244 /* turn on all debugging levels */
5245 ap->msg_enable = 0x00FF;
5246#elif defined(ATA_DEBUG)
5247 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5248#else
0dd4b21f 5249 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5250#endif
1da177e4 5251
86e45b6b 5252 INIT_WORK(&ap->port_task, NULL, NULL);
580b2102 5253 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
3057ac3c 5254 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
a72ec4ce 5255 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5256 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5257
838df628
TH
5258 /* set cable type */
5259 ap->cbl = ATA_CBL_NONE;
5260 if (ap->flags & ATA_FLAG_SATA)
5261 ap->cbl = ATA_CBL_SATA;
5262
acf356b1
TH
5263 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5264 struct ata_device *dev = &ap->device[i];
38d87234 5265 dev->ap = ap;
72fa4b74 5266 dev->devno = i;
3ef3b43d 5267 ata_dev_init(dev);
acf356b1 5268 }
1da177e4
LT
5269
5270#ifdef ATA_IRQ_TRAP
5271 ap->stats.unhandled_irq = 1;
5272 ap->stats.idle_irq = 1;
5273#endif
5274
5275 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5276}
5277
5278/**
5279 * ata_host_add - Attach low-level ATA driver to system
5280 * @ent: Information provided by low-level driver
5281 * @host_set: Collections of ports to which we add
5282 * @port_no: Port number associated with this host
5283 *
0cba632b
JG
5284 * Attach low-level ATA driver to system.
5285 *
1da177e4 5286 * LOCKING:
0cba632b 5287 * PCI/etc. bus probe sem.
1da177e4
LT
5288 *
5289 * RETURNS:
0cba632b 5290 * New ata_port on success, for NULL on error.
1da177e4
LT
5291 */
5292
057ace5e 5293static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
5294 struct ata_host_set *host_set,
5295 unsigned int port_no)
5296{
5297 struct Scsi_Host *host;
5298 struct ata_port *ap;
5299 int rc;
5300
5301 DPRINTK("ENTER\n");
aec5c3c1 5302
52783c5d 5303 if (!ent->port_ops->error_handler &&
aec5c3c1
TH
5304 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5305 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5306 port_no);
5307 return NULL;
5308 }
5309
1da177e4
LT
5310 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5311 if (!host)
5312 return NULL;
5313
30afc84c
TH
5314 host->transportt = &ata_scsi_transport_template;
5315
35bb94b1 5316 ap = ata_shost_to_port(host);
1da177e4
LT
5317
5318 ata_host_init(ap, host, host_set, ent, port_no);
5319
5320 rc = ap->ops->port_start(ap);
5321 if (rc)
5322 goto err_out;
5323
5324 return ap;
5325
5326err_out:
5327 scsi_host_put(host);
5328 return NULL;
5329}
5330
5331/**
0cba632b
JG
5332 * ata_device_add - Register hardware device with ATA and SCSI layers
5333 * @ent: Probe information describing hardware device to be registered
5334 *
5335 * This function processes the information provided in the probe
5336 * information struct @ent, allocates the necessary ATA and SCSI
5337 * host information structures, initializes them, and registers
5338 * everything with requisite kernel subsystems.
5339 *
5340 * This function requests irqs, probes the ATA bus, and probes
5341 * the SCSI bus.
1da177e4
LT
5342 *
5343 * LOCKING:
0cba632b 5344 * PCI/etc. bus probe sem.
1da177e4
LT
5345 *
5346 * RETURNS:
0cba632b 5347 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5348 */
057ace5e 5349int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
5350{
5351 unsigned int count = 0, i;
5352 struct device *dev = ent->dev;
5353 struct ata_host_set *host_set;
39b07ce6 5354 int rc;
1da177e4
LT
5355
5356 DPRINTK("ENTER\n");
5357 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 5358 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
5359 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5360 if (!host_set)
5361 return 0;
1da177e4
LT
5362 spin_lock_init(&host_set->lock);
5363
5364 host_set->dev = dev;
5365 host_set->n_ports = ent->n_ports;
5366 host_set->irq = ent->irq;
5367 host_set->mmio_base = ent->mmio_base;
5368 host_set->private_data = ent->private_data;
5369 host_set->ops = ent->port_ops;
5444a6f4 5370 host_set->flags = ent->host_set_flags;
1da177e4
LT
5371
5372 /* register each port bound to this device */
5373 for (i = 0; i < ent->n_ports; i++) {
5374 struct ata_port *ap;
5375 unsigned long xfer_mode_mask;
5376
5377 ap = ata_host_add(ent, host_set, i);
5378 if (!ap)
5379 goto err_out;
5380
5381 host_set->ports[i] = ap;
5382 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5383 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5384 (ap->pio_mask << ATA_SHIFT_PIO);
5385
5386 /* print per-port info to dmesg */
f15a1daf
TH
5387 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5388 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5389 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5390 ata_mode_string(xfer_mode_mask),
5391 ap->ioaddr.cmd_addr,
5392 ap->ioaddr.ctl_addr,
5393 ap->ioaddr.bmdma_addr,
5394 ent->irq);
1da177e4
LT
5395
5396 ata_chk_status(ap);
5397 host_set->ops->irq_clear(ap);
e3180499 5398 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
1da177e4
LT
5399 count++;
5400 }
5401
57f3bda8
RD
5402 if (!count)
5403 goto err_free_ret;
1da177e4
LT
5404
5405 /* obtain irq, that is shared between channels */
39b07ce6
JG
5406 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5407 DRV_NAME, host_set);
5408 if (rc) {
5409 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5410 ent->irq, rc);
1da177e4 5411 goto err_out;
39b07ce6 5412 }
1da177e4
LT
5413
5414 /* perform each probe synchronously */
5415 DPRINTK("probe begin\n");
5416 for (i = 0; i < count; i++) {
5417 struct ata_port *ap;
5a04bf4b 5418 u32 scontrol;
1da177e4
LT
5419 int rc;
5420
5421 ap = host_set->ports[i];
5422
5a04bf4b
TH
5423 /* init sata_spd_limit to the current value */
5424 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5425 int spd = (scontrol >> 4) & 0xf;
5426 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5427 }
5428 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5429
1da177e4
LT
5430 rc = scsi_add_host(ap->host, dev);
5431 if (rc) {
f15a1daf 5432 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5433 /* FIXME: do something useful here */
5434 /* FIXME: handle unconditional calls to
5435 * scsi_scan_host and ata_host_remove, below,
5436 * at the very least
5437 */
5438 }
3e706399 5439
52783c5d 5440 if (ap->ops->error_handler) {
3e706399
TH
5441 unsigned long flags;
5442
5443 ata_port_probe(ap);
5444
5445 /* kick EH for boot probing */
ba6a1308 5446 spin_lock_irqsave(ap->lock, flags);
3e706399
TH
5447
5448 ap->eh_info.probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5449 ap->eh_info.action |= ATA_EH_SOFTRESET;
5450
5451 ap->flags |= ATA_FLAG_LOADING;
5452 ata_port_schedule_eh(ap);
5453
ba6a1308 5454 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5455
5456 /* wait for EH to finish */
5457 ata_port_wait_eh(ap);
5458 } else {
5459 DPRINTK("ata%u: bus probe begin\n", ap->id);
5460 rc = ata_bus_probe(ap);
5461 DPRINTK("ata%u: bus probe end\n", ap->id);
5462
5463 if (rc) {
5464 /* FIXME: do something useful here?
5465 * Current libata behavior will
5466 * tear down everything when
5467 * the module is removed
5468 * or the h/w is unplugged.
5469 */
5470 }
5471 }
1da177e4
LT
5472 }
5473
5474 /* probes are done, now scan each port's disk(s) */
c893a3ae 5475 DPRINTK("host probe begin\n");
1da177e4
LT
5476 for (i = 0; i < count; i++) {
5477 struct ata_port *ap = host_set->ports[i];
5478
644dd0cc 5479 ata_scsi_scan_host(ap);
1da177e4
LT
5480 }
5481
5482 dev_set_drvdata(dev, host_set);
5483
5484 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5485 return ent->n_ports; /* success */
5486
5487err_out:
5488 for (i = 0; i < count; i++) {
5489 ata_host_remove(host_set->ports[i], 1);
5490 scsi_host_put(host_set->ports[i]->host);
5491 }
57f3bda8 5492err_free_ret:
1da177e4
LT
5493 kfree(host_set);
5494 VPRINTK("EXIT, returning 0\n");
5495 return 0;
5496}
5497
720ba126
TH
5498/**
5499 * ata_port_detach - Detach ATA port in prepration of device removal
5500 * @ap: ATA port to be detached
5501 *
5502 * Detach all ATA devices and the associated SCSI devices of @ap;
5503 * then, remove the associated SCSI host. @ap is guaranteed to
5504 * be quiescent on return from this function.
5505 *
5506 * LOCKING:
5507 * Kernel thread context (may sleep).
5508 */
5509void ata_port_detach(struct ata_port *ap)
5510{
5511 unsigned long flags;
5512 int i;
5513
5514 if (!ap->ops->error_handler)
5515 return;
5516
5517 /* tell EH we're leaving & flush EH */
ba6a1308 5518 spin_lock_irqsave(ap->lock, flags);
720ba126 5519 ap->flags |= ATA_FLAG_UNLOADING;
ba6a1308 5520 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5521
5522 ata_port_wait_eh(ap);
5523
5524 /* EH is now guaranteed to see UNLOADING, so no new device
5525 * will be attached. Disable all existing devices.
5526 */
ba6a1308 5527 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5528
5529 for (i = 0; i < ATA_MAX_DEVICES; i++)
5530 ata_dev_disable(&ap->device[i]);
5531
ba6a1308 5532 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5533
5534 /* Final freeze & EH. All in-flight commands are aborted. EH
5535 * will be skipped and retrials will be terminated with bad
5536 * target.
5537 */
ba6a1308 5538 spin_lock_irqsave(ap->lock, flags);
720ba126 5539 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5540 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5541
5542 ata_port_wait_eh(ap);
5543
5544 /* Flush hotplug task. The sequence is similar to
5545 * ata_port_flush_task().
5546 */
5547 flush_workqueue(ata_aux_wq);
5548 cancel_delayed_work(&ap->hotplug_task);
5549 flush_workqueue(ata_aux_wq);
5550
5551 /* remove the associated SCSI host */
5552 scsi_remove_host(ap->host);
5553}
5554
17b14451
AC
5555/**
5556 * ata_host_set_remove - PCI layer callback for device removal
5557 * @host_set: ATA host set that was removed
5558 *
2e9edbf8 5559 * Unregister all objects associated with this host set. Free those
17b14451
AC
5560 * objects.
5561 *
5562 * LOCKING:
5563 * Inherited from calling layer (may sleep).
5564 */
5565
17b14451
AC
5566void ata_host_set_remove(struct ata_host_set *host_set)
5567{
17b14451
AC
5568 unsigned int i;
5569
720ba126
TH
5570 for (i = 0; i < host_set->n_ports; i++)
5571 ata_port_detach(host_set->ports[i]);
17b14451
AC
5572
5573 free_irq(host_set->irq, host_set);
5574
5575 for (i = 0; i < host_set->n_ports; i++) {
720ba126 5576 struct ata_port *ap = host_set->ports[i];
17b14451
AC
5577
5578 ata_scsi_release(ap->host);
5579
5580 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5581 struct ata_ioports *ioaddr = &ap->ioaddr;
5582
5583 if (ioaddr->cmd_addr == 0x1f0)
5584 release_region(0x1f0, 8);
5585 else if (ioaddr->cmd_addr == 0x170)
5586 release_region(0x170, 8);
5587 }
5588
5589 scsi_host_put(ap->host);
5590 }
5591
5592 if (host_set->ops->host_stop)
5593 host_set->ops->host_stop(host_set);
5594
5595 kfree(host_set);
5596}
5597
1da177e4
LT
5598/**
5599 * ata_scsi_release - SCSI layer callback hook for host unload
5600 * @host: libata host to be unloaded
5601 *
5602 * Performs all duties necessary to shut down a libata port...
5603 * Kill port kthread, disable port, and release resources.
5604 *
5605 * LOCKING:
5606 * Inherited from SCSI layer.
5607 *
5608 * RETURNS:
5609 * One.
5610 */
5611
5612int ata_scsi_release(struct Scsi_Host *host)
5613{
35bb94b1 5614 struct ata_port *ap = ata_shost_to_port(host);
1da177e4
LT
5615
5616 DPRINTK("ENTER\n");
5617
5618 ap->ops->port_disable(ap);
5619 ata_host_remove(ap, 0);
5620
5621 DPRINTK("EXIT\n");
5622 return 1;
5623}
5624
5625/**
5626 * ata_std_ports - initialize ioaddr with standard port offsets.
5627 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5628 *
5629 * Utility function which initializes data_addr, error_addr,
5630 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5631 * device_addr, status_addr, and command_addr to standard offsets
5632 * relative to cmd_addr.
5633 *
5634 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5635 */
0baab86b 5636
1da177e4
LT
5637void ata_std_ports(struct ata_ioports *ioaddr)
5638{
5639 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5640 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5641 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5642 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5643 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5644 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5645 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5646 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5647 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5648 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5649}
5650
0baab86b 5651
374b1873
JG
5652#ifdef CONFIG_PCI
5653
5654void ata_pci_host_stop (struct ata_host_set *host_set)
5655{
5656 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5657
5658 pci_iounmap(pdev, host_set->mmio_base);
5659}
5660
1da177e4
LT
5661/**
5662 * ata_pci_remove_one - PCI layer callback for device removal
5663 * @pdev: PCI device that was removed
5664 *
5665 * PCI layer indicates to libata via this hook that
6f0ef4fa 5666 * hot-unplug or module unload event has occurred.
1da177e4
LT
5667 * Handle this by unregistering all objects associated
5668 * with this PCI device. Free those objects. Then finally
5669 * release PCI resources and disable device.
5670 *
5671 * LOCKING:
5672 * Inherited from PCI layer (may sleep).
5673 */
5674
5675void ata_pci_remove_one (struct pci_dev *pdev)
5676{
5677 struct device *dev = pci_dev_to_dev(pdev);
5678 struct ata_host_set *host_set = dev_get_drvdata(dev);
f0eb62b8 5679 struct ata_host_set *host_set2 = host_set->next;
1da177e4 5680
17b14451 5681 ata_host_set_remove(host_set);
f0eb62b8
TH
5682 if (host_set2)
5683 ata_host_set_remove(host_set2);
5684
1da177e4
LT
5685 pci_release_regions(pdev);
5686 pci_disable_device(pdev);
5687 dev_set_drvdata(dev, NULL);
5688}
5689
5690/* move to PCI subsystem */
057ace5e 5691int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5692{
5693 unsigned long tmp = 0;
5694
5695 switch (bits->width) {
5696 case 1: {
5697 u8 tmp8 = 0;
5698 pci_read_config_byte(pdev, bits->reg, &tmp8);
5699 tmp = tmp8;
5700 break;
5701 }
5702 case 2: {
5703 u16 tmp16 = 0;
5704 pci_read_config_word(pdev, bits->reg, &tmp16);
5705 tmp = tmp16;
5706 break;
5707 }
5708 case 4: {
5709 u32 tmp32 = 0;
5710 pci_read_config_dword(pdev, bits->reg, &tmp32);
5711 tmp = tmp32;
5712 break;
5713 }
5714
5715 default:
5716 return -EINVAL;
5717 }
5718
5719 tmp &= bits->mask;
5720
5721 return (tmp == bits->val) ? 1 : 0;
5722}
9b847548
JA
5723
5724int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5725{
5726 pci_save_state(pdev);
5727 pci_disable_device(pdev);
5728 pci_set_power_state(pdev, PCI_D3hot);
5729 return 0;
5730}
5731
5732int ata_pci_device_resume(struct pci_dev *pdev)
5733{
5734 pci_set_power_state(pdev, PCI_D0);
5735 pci_restore_state(pdev);
5736 pci_enable_device(pdev);
5737 pci_set_master(pdev);
5738 return 0;
5739}
1da177e4
LT
5740#endif /* CONFIG_PCI */
5741
5742
1da177e4
LT
5743static int __init ata_init(void)
5744{
a8601e5f 5745 ata_probe_timeout *= HZ;
1da177e4
LT
5746 ata_wq = create_workqueue("ata");
5747 if (!ata_wq)
5748 return -ENOMEM;
5749
453b07ac
TH
5750 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5751 if (!ata_aux_wq) {
5752 destroy_workqueue(ata_wq);
5753 return -ENOMEM;
5754 }
5755
1da177e4
LT
5756 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5757 return 0;
5758}
5759
5760static void __exit ata_exit(void)
5761{
5762 destroy_workqueue(ata_wq);
453b07ac 5763 destroy_workqueue(ata_aux_wq);
1da177e4
LT
5764}
5765
5766module_init(ata_init);
5767module_exit(ata_exit);
5768
67846b30
JG
5769static unsigned long ratelimit_time;
5770static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5771
5772int ata_ratelimit(void)
5773{
5774 int rc;
5775 unsigned long flags;
5776
5777 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5778
5779 if (time_after(jiffies, ratelimit_time)) {
5780 rc = 1;
5781 ratelimit_time = jiffies + (HZ/5);
5782 } else
5783 rc = 0;
5784
5785 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5786
5787 return rc;
5788}
5789
c22daff4
TH
5790/**
5791 * ata_wait_register - wait until register value changes
5792 * @reg: IO-mapped register
5793 * @mask: Mask to apply to read register value
5794 * @val: Wait condition
5795 * @interval_msec: polling interval in milliseconds
5796 * @timeout_msec: timeout in milliseconds
5797 *
5798 * Waiting for some bits of register to change is a common
5799 * operation for ATA controllers. This function reads 32bit LE
5800 * IO-mapped register @reg and tests for the following condition.
5801 *
5802 * (*@reg & mask) != val
5803 *
5804 * If the condition is met, it returns; otherwise, the process is
5805 * repeated after @interval_msec until timeout.
5806 *
5807 * LOCKING:
5808 * Kernel thread context (may sleep)
5809 *
5810 * RETURNS:
5811 * The final register value.
5812 */
5813u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5814 unsigned long interval_msec,
5815 unsigned long timeout_msec)
5816{
5817 unsigned long timeout;
5818 u32 tmp;
5819
5820 tmp = ioread32(reg);
5821
5822 /* Calculate timeout _after_ the first read to make sure
5823 * preceding writes reach the controller before starting to
5824 * eat away the timeout.
5825 */
5826 timeout = jiffies + (timeout_msec * HZ) / 1000;
5827
5828 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5829 msleep(interval_msec);
5830 tmp = ioread32(reg);
5831 }
5832
5833 return tmp;
5834}
5835
1da177e4
LT
5836/*
5837 * libata is essentially a library of internal helper functions for
5838 * low-level ATA host controller drivers. As such, the API/ABI is
5839 * likely to change as new drivers are added and updated.
5840 * Do not depend on ABI/API stability.
5841 */
5842
d7bb4cc7
TH
5843EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
5844EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
5845EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
1da177e4
LT
5846EXPORT_SYMBOL_GPL(ata_std_bios_param);
5847EXPORT_SYMBOL_GPL(ata_std_ports);
5848EXPORT_SYMBOL_GPL(ata_device_add);
720ba126 5849EXPORT_SYMBOL_GPL(ata_port_detach);
17b14451 5850EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5851EXPORT_SYMBOL_GPL(ata_sg_init);
5852EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 5853EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 5854EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 5855EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 5856EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5857EXPORT_SYMBOL_GPL(ata_tf_load);
5858EXPORT_SYMBOL_GPL(ata_tf_read);
5859EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5860EXPORT_SYMBOL_GPL(ata_std_dev_select);
5861EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5862EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5863EXPORT_SYMBOL_GPL(ata_check_status);
5864EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5865EXPORT_SYMBOL_GPL(ata_exec_command);
5866EXPORT_SYMBOL_GPL(ata_port_start);
5867EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5868EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 5869EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
5870EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5871EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 5872EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 5873EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5874EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5875EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5876EXPORT_SYMBOL_GPL(ata_bmdma_start);
5877EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5878EXPORT_SYMBOL_GPL(ata_bmdma_status);
5879EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
5880EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5881EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5882EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5883EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5884EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 5885EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 5886EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
5887EXPORT_SYMBOL_GPL(sata_phy_debounce);
5888EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
5889EXPORT_SYMBOL_GPL(sata_phy_reset);
5890EXPORT_SYMBOL_GPL(__sata_phy_reset);
5891EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 5892EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804
TH
5893EXPORT_SYMBOL_GPL(ata_std_softreset);
5894EXPORT_SYMBOL_GPL(sata_std_hardreset);
5895EXPORT_SYMBOL_GPL(ata_std_postreset);
623a3128 5896EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5897EXPORT_SYMBOL_GPL(ata_dev_classify);
5898EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5899EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5900EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 5901EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 5902EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5903EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5904EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5905EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 5906EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 5907EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 5908EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
5909EXPORT_SYMBOL_GPL(ata_scsi_release);
5910EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
5911EXPORT_SYMBOL_GPL(sata_scr_valid);
5912EXPORT_SYMBOL_GPL(sata_scr_read);
5913EXPORT_SYMBOL_GPL(sata_scr_write);
5914EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5915EXPORT_SYMBOL_GPL(ata_port_online);
5916EXPORT_SYMBOL_GPL(ata_port_offline);
6a62a04d
TH
5917EXPORT_SYMBOL_GPL(ata_id_string);
5918EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5919EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5920
1bc4ccff 5921EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5922EXPORT_SYMBOL_GPL(ata_timing_compute);
5923EXPORT_SYMBOL_GPL(ata_timing_merge);
5924
1da177e4
LT
5925#ifdef CONFIG_PCI
5926EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5927EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5928EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5929EXPORT_SYMBOL_GPL(ata_pci_init_one);
5930EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5931EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5932EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5933EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5934EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5935#endif /* CONFIG_PCI */
9b847548
JA
5936
5937EXPORT_SYMBOL_GPL(ata_device_suspend);
5938EXPORT_SYMBOL_GPL(ata_device_resume);
5939EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5940EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 5941
ece1d636 5942EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
5943EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5944EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
5945EXPORT_SYMBOL_GPL(ata_port_freeze);
5946EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5947EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
5948EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5949EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 5950EXPORT_SYMBOL_GPL(ata_do_eh);