]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/scsi/libata-core.c
[PATCH] libata: Fix a drive detection problem
[net-next-2.6.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
6aff8f1f
TH
64static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev);
1da177e4
LT
66static void ata_set_mode(struct ata_port *ap);
67static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
a6d5a51c
TH
68static unsigned int ata_dev_xfermask(struct ata_port *ap,
69 struct ata_device *dev);
1da177e4
LT
70
71static unsigned int ata_unique_id = 1;
72static struct workqueue_struct *ata_wq;
73
418dc1f5 74int atapi_enabled = 1;
1623c81e
JG
75module_param(atapi_enabled, int, 0444);
76MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
77
c3c013a2
JG
78int libata_fua = 0;
79module_param_named(fua, libata_fua, int, 0444);
80MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
81
1da177e4
LT
82MODULE_AUTHOR("Jeff Garzik");
83MODULE_DESCRIPTION("Library module for ATA devices");
84MODULE_LICENSE("GPL");
85MODULE_VERSION(DRV_VERSION);
86
0baab86b 87
1da177e4
LT
88/**
89 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
90 * @tf: Taskfile to convert
91 * @fis: Buffer into which data will output
92 * @pmp: Port multiplier port
93 *
94 * Converts a standard ATA taskfile to a Serial ATA
95 * FIS structure (Register - Host to Device).
96 *
97 * LOCKING:
98 * Inherited from caller.
99 */
100
057ace5e 101void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
102{
103 fis[0] = 0x27; /* Register - Host to Device FIS */
104 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
105 bit 7 indicates Command FIS */
106 fis[2] = tf->command;
107 fis[3] = tf->feature;
108
109 fis[4] = tf->lbal;
110 fis[5] = tf->lbam;
111 fis[6] = tf->lbah;
112 fis[7] = tf->device;
113
114 fis[8] = tf->hob_lbal;
115 fis[9] = tf->hob_lbam;
116 fis[10] = tf->hob_lbah;
117 fis[11] = tf->hob_feature;
118
119 fis[12] = tf->nsect;
120 fis[13] = tf->hob_nsect;
121 fis[14] = 0;
122 fis[15] = tf->ctl;
123
124 fis[16] = 0;
125 fis[17] = 0;
126 fis[18] = 0;
127 fis[19] = 0;
128}
129
130/**
131 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
132 * @fis: Buffer from which data will be input
133 * @tf: Taskfile to output
134 *
e12a1be6 135 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
136 *
137 * LOCKING:
138 * Inherited from caller.
139 */
140
057ace5e 141void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
142{
143 tf->command = fis[2]; /* status */
144 tf->feature = fis[3]; /* error */
145
146 tf->lbal = fis[4];
147 tf->lbam = fis[5];
148 tf->lbah = fis[6];
149 tf->device = fis[7];
150
151 tf->hob_lbal = fis[8];
152 tf->hob_lbam = fis[9];
153 tf->hob_lbah = fis[10];
154
155 tf->nsect = fis[12];
156 tf->hob_nsect = fis[13];
157}
158
8cbd6df1
AL
159static const u8 ata_rw_cmds[] = {
160 /* pio multi */
161 ATA_CMD_READ_MULTI,
162 ATA_CMD_WRITE_MULTI,
163 ATA_CMD_READ_MULTI_EXT,
164 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
165 0,
166 0,
167 0,
168 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
169 /* pio */
170 ATA_CMD_PIO_READ,
171 ATA_CMD_PIO_WRITE,
172 ATA_CMD_PIO_READ_EXT,
173 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
174 0,
175 0,
176 0,
177 0,
8cbd6df1
AL
178 /* dma */
179 ATA_CMD_READ,
180 ATA_CMD_WRITE,
181 ATA_CMD_READ_EXT,
9a3dccc4
TH
182 ATA_CMD_WRITE_EXT,
183 0,
184 0,
185 0,
186 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 187};
1da177e4
LT
188
189/**
8cbd6df1
AL
190 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
191 * @qc: command to examine and configure
1da177e4 192 *
8cbd6df1
AL
193 * Examine the device configuration and tf->flags to calculate
194 * the proper read/write commands and protocol to use.
1da177e4
LT
195 *
196 * LOCKING:
197 * caller.
198 */
9a3dccc4 199int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 200{
8cbd6df1
AL
201 struct ata_taskfile *tf = &qc->tf;
202 struct ata_device *dev = qc->dev;
9a3dccc4 203 u8 cmd;
1da177e4 204
9a3dccc4 205 int index, fua, lba48, write;
8cbd6df1 206
9a3dccc4 207 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
208 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
209 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 210
8cbd6df1
AL
211 if (dev->flags & ATA_DFLAG_PIO) {
212 tf->protocol = ATA_PROT_PIO;
9a3dccc4 213 index = dev->multi_count ? 0 : 8;
8d238e01
AC
214 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
215 /* Unable to use DMA due to host limitation */
216 tf->protocol = ATA_PROT_PIO;
0565c26d 217 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
218 } else {
219 tf->protocol = ATA_PROT_DMA;
9a3dccc4 220 index = 16;
8cbd6df1 221 }
1da177e4 222
9a3dccc4
TH
223 cmd = ata_rw_cmds[index + fua + lba48 + write];
224 if (cmd) {
225 tf->command = cmd;
226 return 0;
227 }
228 return -1;
1da177e4
LT
229}
230
cb95d562
TH
231/**
232 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
233 * @pio_mask: pio_mask
234 * @mwdma_mask: mwdma_mask
235 * @udma_mask: udma_mask
236 *
237 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
238 * unsigned int xfer_mask.
239 *
240 * LOCKING:
241 * None.
242 *
243 * RETURNS:
244 * Packed xfer_mask.
245 */
246static unsigned int ata_pack_xfermask(unsigned int pio_mask,
247 unsigned int mwdma_mask,
248 unsigned int udma_mask)
249{
250 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
251 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
252 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
253}
254
255static const struct ata_xfer_ent {
256 unsigned int shift, bits;
257 u8 base;
258} ata_xfer_tbl[] = {
259 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
260 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
261 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
262 { -1, },
263};
264
265/**
266 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
267 * @xfer_mask: xfer_mask of interest
268 *
269 * Return matching XFER_* value for @xfer_mask. Only the highest
270 * bit of @xfer_mask is considered.
271 *
272 * LOCKING:
273 * None.
274 *
275 * RETURNS:
276 * Matching XFER_* value, 0 if no match found.
277 */
278static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
279{
280 int highbit = fls(xfer_mask) - 1;
281 const struct ata_xfer_ent *ent;
282
283 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
284 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
285 return ent->base + highbit - ent->shift;
286 return 0;
287}
288
289/**
290 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
291 * @xfer_mode: XFER_* of interest
292 *
293 * Return matching xfer_mask for @xfer_mode.
294 *
295 * LOCKING:
296 * None.
297 *
298 * RETURNS:
299 * Matching xfer_mask, 0 if no match found.
300 */
301static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
302{
303 const struct ata_xfer_ent *ent;
304
305 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
306 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
307 return 1 << (ent->shift + xfer_mode - ent->base);
308 return 0;
309}
310
311/**
312 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
313 * @xfer_mode: XFER_* of interest
314 *
315 * Return matching xfer_shift for @xfer_mode.
316 *
317 * LOCKING:
318 * None.
319 *
320 * RETURNS:
321 * Matching xfer_shift, -1 if no match found.
322 */
323static int ata_xfer_mode2shift(unsigned int xfer_mode)
324{
325 const struct ata_xfer_ent *ent;
326
327 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
328 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
329 return ent->shift;
330 return -1;
331}
332
1da177e4 333/**
1da7b0d0
TH
334 * ata_mode_string - convert xfer_mask to string
335 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
336 *
337 * Determine string which represents the highest speed
1da7b0d0 338 * (highest bit in @modemask).
1da177e4
LT
339 *
340 * LOCKING:
341 * None.
342 *
343 * RETURNS:
344 * Constant C string representing highest speed listed in
1da7b0d0 345 * @mode_mask, or the constant C string "<n/a>".
1da177e4 346 */
1da7b0d0 347static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 348{
75f554bc
TH
349 static const char * const xfer_mode_str[] = {
350 "PIO0",
351 "PIO1",
352 "PIO2",
353 "PIO3",
354 "PIO4",
355 "MWDMA0",
356 "MWDMA1",
357 "MWDMA2",
358 "UDMA/16",
359 "UDMA/25",
360 "UDMA/33",
361 "UDMA/44",
362 "UDMA/66",
363 "UDMA/100",
364 "UDMA/133",
365 "UDMA7",
366 };
1da7b0d0 367 int highbit;
1da177e4 368
1da7b0d0
TH
369 highbit = fls(xfer_mask) - 1;
370 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
371 return xfer_mode_str[highbit];
1da177e4 372 return "<n/a>";
1da177e4
LT
373}
374
375/**
376 * ata_pio_devchk - PATA device presence detection
377 * @ap: ATA channel to examine
378 * @device: Device to examine (starting at zero)
379 *
380 * This technique was originally described in
381 * Hale Landis's ATADRVR (www.ata-atapi.com), and
382 * later found its way into the ATA/ATAPI spec.
383 *
384 * Write a pattern to the ATA shadow registers,
385 * and if a device is present, it will respond by
386 * correctly storing and echoing back the
387 * ATA shadow register contents.
388 *
389 * LOCKING:
390 * caller.
391 */
392
393static unsigned int ata_pio_devchk(struct ata_port *ap,
394 unsigned int device)
395{
396 struct ata_ioports *ioaddr = &ap->ioaddr;
397 u8 nsect, lbal;
398
399 ap->ops->dev_select(ap, device);
400
401 outb(0x55, ioaddr->nsect_addr);
402 outb(0xaa, ioaddr->lbal_addr);
403
404 outb(0xaa, ioaddr->nsect_addr);
405 outb(0x55, ioaddr->lbal_addr);
406
407 outb(0x55, ioaddr->nsect_addr);
408 outb(0xaa, ioaddr->lbal_addr);
409
410 nsect = inb(ioaddr->nsect_addr);
411 lbal = inb(ioaddr->lbal_addr);
412
413 if ((nsect == 0x55) && (lbal == 0xaa))
414 return 1; /* we found a device */
415
416 return 0; /* nothing found */
417}
418
419/**
420 * ata_mmio_devchk - PATA device presence detection
421 * @ap: ATA channel to examine
422 * @device: Device to examine (starting at zero)
423 *
424 * This technique was originally described in
425 * Hale Landis's ATADRVR (www.ata-atapi.com), and
426 * later found its way into the ATA/ATAPI spec.
427 *
428 * Write a pattern to the ATA shadow registers,
429 * and if a device is present, it will respond by
430 * correctly storing and echoing back the
431 * ATA shadow register contents.
432 *
433 * LOCKING:
434 * caller.
435 */
436
437static unsigned int ata_mmio_devchk(struct ata_port *ap,
438 unsigned int device)
439{
440 struct ata_ioports *ioaddr = &ap->ioaddr;
441 u8 nsect, lbal;
442
443 ap->ops->dev_select(ap, device);
444
445 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
446 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
447
448 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
449 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
450
451 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
452 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
453
454 nsect = readb((void __iomem *) ioaddr->nsect_addr);
455 lbal = readb((void __iomem *) ioaddr->lbal_addr);
456
457 if ((nsect == 0x55) && (lbal == 0xaa))
458 return 1; /* we found a device */
459
460 return 0; /* nothing found */
461}
462
463/**
464 * ata_devchk - PATA device presence detection
465 * @ap: ATA channel to examine
466 * @device: Device to examine (starting at zero)
467 *
468 * Dispatch ATA device presence detection, depending
469 * on whether we are using PIO or MMIO to talk to the
470 * ATA shadow registers.
471 *
472 * LOCKING:
473 * caller.
474 */
475
476static unsigned int ata_devchk(struct ata_port *ap,
477 unsigned int device)
478{
479 if (ap->flags & ATA_FLAG_MMIO)
480 return ata_mmio_devchk(ap, device);
481 return ata_pio_devchk(ap, device);
482}
483
484/**
485 * ata_dev_classify - determine device type based on ATA-spec signature
486 * @tf: ATA taskfile register set for device to be identified
487 *
488 * Determine from taskfile register contents whether a device is
489 * ATA or ATAPI, as per "Signature and persistence" section
490 * of ATA/PI spec (volume 1, sect 5.14).
491 *
492 * LOCKING:
493 * None.
494 *
495 * RETURNS:
496 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
497 * the event of failure.
498 */
499
057ace5e 500unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
501{
502 /* Apple's open source Darwin code hints that some devices only
503 * put a proper signature into the LBA mid/high registers,
504 * So, we only check those. It's sufficient for uniqueness.
505 */
506
507 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
508 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
509 DPRINTK("found ATA device by sig\n");
510 return ATA_DEV_ATA;
511 }
512
513 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
514 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
515 DPRINTK("found ATAPI device by sig\n");
516 return ATA_DEV_ATAPI;
517 }
518
519 DPRINTK("unknown device\n");
520 return ATA_DEV_UNKNOWN;
521}
522
523/**
524 * ata_dev_try_classify - Parse returned ATA device signature
525 * @ap: ATA channel to examine
526 * @device: Device to examine (starting at zero)
b4dc7623 527 * @r_err: Value of error register on completion
1da177e4
LT
528 *
529 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
530 * an ATA/ATAPI-defined set of values is placed in the ATA
531 * shadow registers, indicating the results of device detection
532 * and diagnostics.
533 *
534 * Select the ATA device, and read the values from the ATA shadow
535 * registers. Then parse according to the Error register value,
536 * and the spec-defined values examined by ata_dev_classify().
537 *
538 * LOCKING:
539 * caller.
b4dc7623
TH
540 *
541 * RETURNS:
542 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
543 */
544
b4dc7623
TH
545static unsigned int
546ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 547{
1da177e4
LT
548 struct ata_taskfile tf;
549 unsigned int class;
550 u8 err;
551
552 ap->ops->dev_select(ap, device);
553
554 memset(&tf, 0, sizeof(tf));
555
1da177e4 556 ap->ops->tf_read(ap, &tf);
0169e284 557 err = tf.feature;
b4dc7623
TH
558 if (r_err)
559 *r_err = err;
1da177e4
LT
560
561 /* see if device passed diags */
562 if (err == 1)
563 /* do nothing */ ;
564 else if ((device == 0) && (err == 0x81))
565 /* do nothing */ ;
566 else
b4dc7623 567 return ATA_DEV_NONE;
1da177e4 568
b4dc7623 569 /* determine if device is ATA or ATAPI */
1da177e4 570 class = ata_dev_classify(&tf);
b4dc7623 571
1da177e4 572 if (class == ATA_DEV_UNKNOWN)
b4dc7623 573 return ATA_DEV_NONE;
1da177e4 574 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
575 return ATA_DEV_NONE;
576 return class;
1da177e4
LT
577}
578
579/**
6a62a04d 580 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
581 * @id: IDENTIFY DEVICE results we will examine
582 * @s: string into which data is output
583 * @ofs: offset into identify device page
584 * @len: length of string to return. must be an even number.
585 *
586 * The strings in the IDENTIFY DEVICE page are broken up into
587 * 16-bit chunks. Run through the string, and output each
588 * 8-bit chunk linearly, regardless of platform.
589 *
590 * LOCKING:
591 * caller.
592 */
593
6a62a04d
TH
594void ata_id_string(const u16 *id, unsigned char *s,
595 unsigned int ofs, unsigned int len)
1da177e4
LT
596{
597 unsigned int c;
598
599 while (len > 0) {
600 c = id[ofs] >> 8;
601 *s = c;
602 s++;
603
604 c = id[ofs] & 0xff;
605 *s = c;
606 s++;
607
608 ofs++;
609 len -= 2;
610 }
611}
612
0e949ff3 613/**
6a62a04d 614 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
615 * @id: IDENTIFY DEVICE results we will examine
616 * @s: string into which data is output
617 * @ofs: offset into identify device page
618 * @len: length of string to return. must be an odd number.
619 *
6a62a04d 620 * This function is identical to ata_id_string except that it
0e949ff3
TH
621 * trims trailing spaces and terminates the resulting string with
622 * null. @len must be actual maximum length (even number) + 1.
623 *
624 * LOCKING:
625 * caller.
626 */
6a62a04d
TH
627void ata_id_c_string(const u16 *id, unsigned char *s,
628 unsigned int ofs, unsigned int len)
0e949ff3
TH
629{
630 unsigned char *p;
631
632 WARN_ON(!(len & 1));
633
6a62a04d 634 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
635
636 p = s + strnlen(s, len - 1);
637 while (p > s && p[-1] == ' ')
638 p--;
639 *p = '\0';
640}
0baab86b 641
2940740b
TH
642static u64 ata_id_n_sectors(const u16 *id)
643{
644 if (ata_id_has_lba(id)) {
645 if (ata_id_has_lba48(id))
646 return ata_id_u64(id, 100);
647 else
648 return ata_id_u32(id, 60);
649 } else {
650 if (ata_id_current_chs_valid(id))
651 return ata_id_u32(id, 57);
652 else
653 return id[1] * id[3] * id[6];
654 }
655}
656
0baab86b
EF
657/**
658 * ata_noop_dev_select - Select device 0/1 on ATA bus
659 * @ap: ATA channel to manipulate
660 * @device: ATA device (numbered from zero) to select
661 *
662 * This function performs no actual function.
663 *
664 * May be used as the dev_select() entry in ata_port_operations.
665 *
666 * LOCKING:
667 * caller.
668 */
1da177e4
LT
669void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
670{
671}
672
0baab86b 673
1da177e4
LT
674/**
675 * ata_std_dev_select - Select device 0/1 on ATA bus
676 * @ap: ATA channel to manipulate
677 * @device: ATA device (numbered from zero) to select
678 *
679 * Use the method defined in the ATA specification to
680 * make either device 0, or device 1, active on the
0baab86b
EF
681 * ATA channel. Works with both PIO and MMIO.
682 *
683 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
684 *
685 * LOCKING:
686 * caller.
687 */
688
689void ata_std_dev_select (struct ata_port *ap, unsigned int device)
690{
691 u8 tmp;
692
693 if (device == 0)
694 tmp = ATA_DEVICE_OBS;
695 else
696 tmp = ATA_DEVICE_OBS | ATA_DEV1;
697
698 if (ap->flags & ATA_FLAG_MMIO) {
699 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
700 } else {
701 outb(tmp, ap->ioaddr.device_addr);
702 }
703 ata_pause(ap); /* needed; also flushes, for mmio */
704}
705
706/**
707 * ata_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
710 * @wait: non-zero to wait for Status register BSY bit to clear
711 * @can_sleep: non-zero if context allows sleeping
712 *
713 * Use the method defined in the ATA specification to
714 * make either device 0, or device 1, active on the
715 * ATA channel.
716 *
717 * This is a high-level version of ata_std_dev_select(),
718 * which additionally provides the services of inserting
719 * the proper pauses and status polling, where needed.
720 *
721 * LOCKING:
722 * caller.
723 */
724
725void ata_dev_select(struct ata_port *ap, unsigned int device,
726 unsigned int wait, unsigned int can_sleep)
727{
728 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
729 ap->id, device, wait);
730
731 if (wait)
732 ata_wait_idle(ap);
733
734 ap->ops->dev_select(ap, device);
735
736 if (wait) {
737 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
738 msleep(150);
739 ata_wait_idle(ap);
740 }
741}
742
743/**
744 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 745 * @id: IDENTIFY DEVICE page to dump
1da177e4 746 *
0bd3300a
TH
747 * Dump selected 16-bit words from the given IDENTIFY DEVICE
748 * page.
1da177e4
LT
749 *
750 * LOCKING:
751 * caller.
752 */
753
0bd3300a 754static inline void ata_dump_id(const u16 *id)
1da177e4
LT
755{
756 DPRINTK("49==0x%04x "
757 "53==0x%04x "
758 "63==0x%04x "
759 "64==0x%04x "
760 "75==0x%04x \n",
0bd3300a
TH
761 id[49],
762 id[53],
763 id[63],
764 id[64],
765 id[75]);
1da177e4
LT
766 DPRINTK("80==0x%04x "
767 "81==0x%04x "
768 "82==0x%04x "
769 "83==0x%04x "
770 "84==0x%04x \n",
0bd3300a
TH
771 id[80],
772 id[81],
773 id[82],
774 id[83],
775 id[84]);
1da177e4
LT
776 DPRINTK("88==0x%04x "
777 "93==0x%04x\n",
0bd3300a
TH
778 id[88],
779 id[93]);
1da177e4
LT
780}
781
cb95d562
TH
782/**
783 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
784 * @id: IDENTIFY data to compute xfer mask from
785 *
786 * Compute the xfermask for this device. This is not as trivial
787 * as it seems if we must consider early devices correctly.
788 *
789 * FIXME: pre IDE drive timing (do we care ?).
790 *
791 * LOCKING:
792 * None.
793 *
794 * RETURNS:
795 * Computed xfermask
796 */
797static unsigned int ata_id_xfermask(const u16 *id)
798{
799 unsigned int pio_mask, mwdma_mask, udma_mask;
800
801 /* Usual case. Word 53 indicates word 64 is valid */
802 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
803 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
804 pio_mask <<= 3;
805 pio_mask |= 0x7;
806 } else {
807 /* If word 64 isn't valid then Word 51 high byte holds
808 * the PIO timing number for the maximum. Turn it into
809 * a mask.
810 */
811 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
812
813 /* But wait.. there's more. Design your standards by
814 * committee and you too can get a free iordy field to
815 * process. However its the speeds not the modes that
816 * are supported... Note drivers using the timing API
817 * will get this right anyway
818 */
819 }
820
821 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
822
823 udma_mask = 0;
824 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
825 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
826
827 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
828}
829
86e45b6b
TH
830/**
831 * ata_port_queue_task - Queue port_task
832 * @ap: The ata_port to queue port_task for
833 *
834 * Schedule @fn(@data) for execution after @delay jiffies using
835 * port_task. There is one port_task per port and it's the
836 * user(low level driver)'s responsibility to make sure that only
837 * one task is active at any given time.
838 *
839 * libata core layer takes care of synchronization between
840 * port_task and EH. ata_port_queue_task() may be ignored for EH
841 * synchronization.
842 *
843 * LOCKING:
844 * Inherited from caller.
845 */
846void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
847 unsigned long delay)
848{
849 int rc;
850
2e755f68 851 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
852 return;
853
854 PREPARE_WORK(&ap->port_task, fn, data);
855
856 if (!delay)
857 rc = queue_work(ata_wq, &ap->port_task);
858 else
859 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
860
861 /* rc == 0 means that another user is using port task */
862 WARN_ON(rc == 0);
863}
864
865/**
866 * ata_port_flush_task - Flush port_task
867 * @ap: The ata_port to flush port_task for
868 *
869 * After this function completes, port_task is guranteed not to
870 * be running or scheduled.
871 *
872 * LOCKING:
873 * Kernel thread context (may sleep)
874 */
875void ata_port_flush_task(struct ata_port *ap)
876{
877 unsigned long flags;
878
879 DPRINTK("ENTER\n");
880
881 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 882 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
883 spin_unlock_irqrestore(&ap->host_set->lock, flags);
884
885 DPRINTK("flush #1\n");
886 flush_workqueue(ata_wq);
887
888 /*
889 * At this point, if a task is running, it's guaranteed to see
890 * the FLUSH flag; thus, it will never queue pio tasks again.
891 * Cancel and flush.
892 */
893 if (!cancel_delayed_work(&ap->port_task)) {
894 DPRINTK("flush #2\n");
895 flush_workqueue(ata_wq);
896 }
897
898 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 899 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
900 spin_unlock_irqrestore(&ap->host_set->lock, flags);
901
902 DPRINTK("EXIT\n");
903}
904
77853bf2 905void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 906{
77853bf2 907 struct completion *waiting = qc->private_data;
a2a7a662 908
77853bf2 909 qc->ap->ops->tf_read(qc->ap, &qc->tf);
a2a7a662 910 complete(waiting);
a2a7a662
TH
911}
912
913/**
914 * ata_exec_internal - execute libata internal command
915 * @ap: Port to which the command is sent
916 * @dev: Device to which the command is sent
917 * @tf: Taskfile registers for the command and the result
918 * @dma_dir: Data tranfer direction of the command
919 * @buf: Data buffer of the command
920 * @buflen: Length of data buffer
921 *
922 * Executes libata internal command with timeout. @tf contains
923 * command on entry and result on return. Timeout and error
924 * conditions are reported via return value. No recovery action
925 * is taken after a command times out. It's caller's duty to
926 * clean up after timeout.
927 *
928 * LOCKING:
929 * None. Should be called with kernel context, might sleep.
930 */
931
932static unsigned
933ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
934 struct ata_taskfile *tf,
935 int dma_dir, void *buf, unsigned int buflen)
936{
937 u8 command = tf->command;
938 struct ata_queued_cmd *qc;
939 DECLARE_COMPLETION(wait);
940 unsigned long flags;
77853bf2 941 unsigned int err_mask;
a2a7a662
TH
942
943 spin_lock_irqsave(&ap->host_set->lock, flags);
944
945 qc = ata_qc_new_init(ap, dev);
946 BUG_ON(qc == NULL);
947
948 qc->tf = *tf;
949 qc->dma_dir = dma_dir;
950 if (dma_dir != DMA_NONE) {
951 ata_sg_init_one(qc, buf, buflen);
952 qc->nsect = buflen / ATA_SECT_SIZE;
953 }
954
77853bf2 955 qc->private_data = &wait;
a2a7a662
TH
956 qc->complete_fn = ata_qc_complete_internal;
957
9a3d9eb0
TH
958 qc->err_mask = ata_qc_issue(qc);
959 if (qc->err_mask)
8e436af9 960 ata_qc_complete(qc);
a2a7a662
TH
961
962 spin_unlock_irqrestore(&ap->host_set->lock, flags);
963
964 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
41ade50c
AL
965 ata_port_flush_task(ap);
966
a2a7a662
TH
967 spin_lock_irqsave(&ap->host_set->lock, flags);
968
969 /* We're racing with irq here. If we lose, the
970 * following test prevents us from completing the qc
971 * again. If completion irq occurs after here but
972 * before the caller cleans up, it will result in a
973 * spurious interrupt. We can live with that.
974 */
77853bf2 975 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 976 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
977 ata_qc_complete(qc);
978 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
979 ap->id, command);
980 }
981
982 spin_unlock_irqrestore(&ap->host_set->lock, flags);
983 }
984
77853bf2
TH
985 *tf = qc->tf;
986 err_mask = qc->err_mask;
987
988 ata_qc_free(qc);
989
990 return err_mask;
a2a7a662
TH
991}
992
1bc4ccff
AC
993/**
994 * ata_pio_need_iordy - check if iordy needed
995 * @adev: ATA device
996 *
997 * Check if the current speed of the device requires IORDY. Used
998 * by various controllers for chip configuration.
999 */
1000
1001unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1002{
1003 int pio;
1004 int speed = adev->pio_mode - XFER_PIO_0;
1005
1006 if (speed < 2)
1007 return 0;
1008 if (speed > 2)
1009 return 1;
1010
1011 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1012
1013 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1014 pio = adev->id[ATA_ID_EIDE_PIO];
1015 /* Is the speed faster than the drive allows non IORDY ? */
1016 if (pio) {
1017 /* This is cycle times not frequency - watch the logic! */
1018 if (pio > 240) /* PIO2 is 240nS per cycle */
1019 return 1;
1020 return 0;
1021 }
1022 }
1023 return 0;
1024}
1025
1da177e4 1026/**
49016aca
TH
1027 * ata_dev_read_id - Read ID data from the specified device
1028 * @ap: port on which target device resides
1029 * @dev: target device
1030 * @p_class: pointer to class of the target device (may be changed)
1031 * @post_reset: is this read ID post-reset?
d9572b1d 1032 * @p_id: read IDENTIFY page (newly allocated)
1da177e4 1033 *
49016aca
TH
1034 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1035 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1036 * devices. This function also takes care of EDD signature
1037 * misreporting (to be removed once EDD support is gone) and
1038 * issues ATA_CMD_INIT_DEV_PARAMS for pre-ATA4 drives.
1da177e4
LT
1039 *
1040 * LOCKING:
49016aca
TH
1041 * Kernel thread context (may sleep)
1042 *
1043 * RETURNS:
1044 * 0 on success, -errno otherwise.
1da177e4 1045 */
49016aca 1046static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
d9572b1d 1047 unsigned int *p_class, int post_reset, u16 **p_id)
1da177e4 1048{
49016aca 1049 unsigned int class = *p_class;
1da177e4 1050 unsigned int using_edd;
a0123703 1051 struct ata_taskfile tf;
49016aca 1052 unsigned int err_mask = 0;
d9572b1d 1053 u16 *id;
49016aca
TH
1054 const char *reason;
1055 int rc;
1da177e4 1056
49016aca 1057 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1058
61eb066a
TH
1059 if (ap->ops->probe_reset ||
1060 ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1da177e4
LT
1061 using_edd = 0;
1062 else
1063 using_edd = 1;
1064
49016aca 1065 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1066
d9572b1d
TH
1067 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1068 if (id == NULL) {
1069 rc = -ENOMEM;
1070 reason = "out of memory";
1071 goto err_out;
1072 }
1073
49016aca
TH
1074 retry:
1075 ata_tf_init(ap, &tf, dev->devno);
a0123703 1076
49016aca
TH
1077 switch (class) {
1078 case ATA_DEV_ATA:
a0123703 1079 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1080 break;
1081 case ATA_DEV_ATAPI:
a0123703 1082 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1083 break;
1084 default:
1085 rc = -ENODEV;
1086 reason = "unsupported class";
1087 goto err_out;
1da177e4
LT
1088 }
1089
a0123703 1090 tf.protocol = ATA_PROT_PIO;
1da177e4 1091
a0123703 1092 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
49016aca 1093 id, sizeof(id[0]) * ATA_ID_WORDS);
1da177e4 1094
a0123703 1095 if (err_mask) {
49016aca
TH
1096 rc = -EIO;
1097 reason = "I/O error";
1098
a0123703
TH
1099 if (err_mask & ~AC_ERR_DEV)
1100 goto err_out;
0169e284 1101
1da177e4
LT
1102 /*
1103 * arg! EDD works for all test cases, but seems to return
1104 * the ATA signature for some ATAPI devices. Until the
1105 * reason for this is found and fixed, we fix up the mess
1106 * here. If IDENTIFY DEVICE returns command aborted
1107 * (as ATAPI devices do), then we issue an
1108 * IDENTIFY PACKET DEVICE.
1109 *
1110 * ATA software reset (SRST, the default) does not appear
1111 * to have this problem.
1112 */
49016aca 1113 if ((using_edd) && (class == ATA_DEV_ATA)) {
a0123703 1114 u8 err = tf.feature;
1da177e4 1115 if (err & ATA_ABORTED) {
49016aca 1116 class = ATA_DEV_ATAPI;
1da177e4
LT
1117 goto retry;
1118 }
1119 }
1120 goto err_out;
1121 }
1122
49016aca 1123 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1124
49016aca
TH
1125 /* sanity check */
1126 if ((class == ATA_DEV_ATA) != ata_id_is_ata(id)) {
1127 rc = -EINVAL;
1128 reason = "device reports illegal type";
1129 goto err_out;
1130 }
1131
1132 if (post_reset && class == ATA_DEV_ATA) {
1133 /*
1134 * The exact sequence expected by certain pre-ATA4 drives is:
1135 * SRST RESET
1136 * IDENTIFY
1137 * INITIALIZE DEVICE PARAMETERS
1138 * anything else..
1139 * Some drives were very specific about that exact sequence.
1140 */
1141 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1142 err_mask = ata_dev_init_params(ap, dev);
1143 if (err_mask) {
1144 rc = -EIO;
1145 reason = "INIT_DEV_PARAMS failed";
1146 goto err_out;
1147 }
1148
1149 /* current CHS translation info (id[53-58]) might be
1150 * changed. reread the identify device info.
1151 */
1152 post_reset = 0;
1153 goto retry;
1154 }
1155 }
1156
1157 *p_class = class;
d9572b1d 1158 *p_id = id;
49016aca
TH
1159 return 0;
1160
1161 err_out:
1162 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1163 ap->id, dev->devno, reason);
d9572b1d 1164 kfree(id);
49016aca
TH
1165 return rc;
1166}
1167
4b2f3ede
TH
1168static inline u8 ata_dev_knobble(const struct ata_port *ap,
1169 struct ata_device *dev)
1170{
1171 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1172}
1173
49016aca 1174/**
ffeae418
TH
1175 * ata_dev_configure - Configure the specified ATA/ATAPI device
1176 * @ap: Port on which target device resides
1177 * @dev: Target device to configure
4c2d721a 1178 * @print_info: Enable device info printout
ffeae418
TH
1179 *
1180 * Configure @dev according to @dev->id. Generic and low-level
1181 * driver specific fixups are also applied.
49016aca
TH
1182 *
1183 * LOCKING:
ffeae418
TH
1184 * Kernel thread context (may sleep)
1185 *
1186 * RETURNS:
1187 * 0 on success, -errno otherwise
49016aca 1188 */
4c2d721a
TH
1189static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1190 int print_info)
49016aca 1191{
1148c3a7 1192 const u16 *id = dev->id;
ff8854b2 1193 unsigned int xfer_mask;
49016aca
TH
1194 int i, rc;
1195
1196 if (!ata_dev_present(dev)) {
1197 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1198 ap->id, dev->devno);
1199 return 0;
49016aca
TH
1200 }
1201
ffeae418 1202 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1203
c39f5ebe
TH
1204 /* print device capabilities */
1205 if (print_info)
1206 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1207 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1208 ap->id, dev->devno, id[49], id[82], id[83],
1209 id[84], id[85], id[86], id[87], id[88]);
1210
208a9933
TH
1211 /* initialize to-be-configured parameters */
1212 dev->flags = 0;
1213 dev->max_sectors = 0;
1214 dev->cdb_len = 0;
1215 dev->n_sectors = 0;
1216 dev->cylinders = 0;
1217 dev->heads = 0;
1218 dev->sectors = 0;
1219
1da177e4
LT
1220 /*
1221 * common ATA, ATAPI feature tests
1222 */
1223
8bf62ece 1224 /* we require DMA support (bits 8 of word 49) */
1148c3a7 1225 if (!ata_id_has_dma(id)) {
8bf62ece 1226 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
ffeae418 1227 rc = -EINVAL;
1da177e4
LT
1228 goto err_out_nosup;
1229 }
1230
ff8854b2 1231 /* find max transfer mode; for printk only */
1148c3a7 1232 xfer_mask = ata_id_xfermask(id);
1da177e4 1233
1148c3a7 1234 ata_dump_id(id);
1da177e4
LT
1235
1236 /* ATA-specific feature tests */
1237 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1238 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1239
1148c3a7 1240 if (ata_id_has_lba(id)) {
4c2d721a 1241 const char *lba_desc;
8bf62ece 1242
4c2d721a
TH
1243 lba_desc = "LBA";
1244 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1245 if (ata_id_has_lba48(id)) {
8bf62ece 1246 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1247 lba_desc = "LBA48";
1248 }
8bf62ece
AL
1249
1250 /* print device info to dmesg */
4c2d721a
TH
1251 if (print_info)
1252 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1253 "max %s, %Lu sectors: %s\n",
1254 ap->id, dev->devno,
1148c3a7 1255 ata_id_major_version(id),
ff8854b2 1256 ata_mode_string(xfer_mask),
4c2d721a
TH
1257 (unsigned long long)dev->n_sectors,
1258 lba_desc);
ffeae418 1259 } else {
8bf62ece
AL
1260 /* CHS */
1261
1262 /* Default translation */
1148c3a7
TH
1263 dev->cylinders = id[1];
1264 dev->heads = id[3];
1265 dev->sectors = id[6];
8bf62ece 1266
1148c3a7 1267 if (ata_id_current_chs_valid(id)) {
8bf62ece 1268 /* Current CHS translation is valid. */
1148c3a7
TH
1269 dev->cylinders = id[54];
1270 dev->heads = id[55];
1271 dev->sectors = id[56];
8bf62ece
AL
1272 }
1273
1274 /* print device info to dmesg */
4c2d721a
TH
1275 if (print_info)
1276 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1277 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1278 ap->id, dev->devno,
1148c3a7 1279 ata_id_major_version(id),
ff8854b2 1280 ata_mode_string(xfer_mask),
4c2d721a
TH
1281 (unsigned long long)dev->n_sectors,
1282 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1283 }
1284
6e7846e9 1285 dev->cdb_len = 16;
1da177e4
LT
1286 }
1287
1288 /* ATAPI-specific feature tests */
2c13b7ce 1289 else if (dev->class == ATA_DEV_ATAPI) {
1148c3a7 1290 rc = atapi_cdb_len(id);
1da177e4
LT
1291 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1292 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
ffeae418 1293 rc = -EINVAL;
1da177e4
LT
1294 goto err_out_nosup;
1295 }
6e7846e9 1296 dev->cdb_len = (unsigned int) rc;
1da177e4
LT
1297
1298 /* print device info to dmesg */
4c2d721a
TH
1299 if (print_info)
1300 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
ff8854b2 1301 ap->id, dev->devno, ata_mode_string(xfer_mask));
1da177e4
LT
1302 }
1303
6e7846e9
TH
1304 ap->host->max_cmd_len = 0;
1305 for (i = 0; i < ATA_MAX_DEVICES; i++)
1306 ap->host->max_cmd_len = max_t(unsigned int,
1307 ap->host->max_cmd_len,
1308 ap->device[i].cdb_len);
1309
4b2f3ede
TH
1310 /* limit bridge transfers to udma5, 200 sectors */
1311 if (ata_dev_knobble(ap, dev)) {
4c2d721a
TH
1312 if (print_info)
1313 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1314 ap->id, dev->devno);
4b2f3ede
TH
1315 ap->udma_mask &= ATA_UDMA5;
1316 dev->max_sectors = ATA_MAX_SECTORS;
1317 }
1318
1319 if (ap->ops->dev_config)
1320 ap->ops->dev_config(ap, dev);
1321
1da177e4 1322 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1323 return 0;
1da177e4
LT
1324
1325err_out_nosup:
1326 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
ffeae418 1327 ap->id, dev->devno);
1da177e4 1328 DPRINTK("EXIT, err\n");
ffeae418 1329 return rc;
1da177e4
LT
1330}
1331
1332/**
1333 * ata_bus_probe - Reset and probe ATA bus
1334 * @ap: Bus to probe
1335 *
0cba632b
JG
1336 * Master ATA bus probing function. Initiates a hardware-dependent
1337 * bus reset, then attempts to identify any devices found on
1338 * the bus.
1339 *
1da177e4 1340 * LOCKING:
0cba632b 1341 * PCI/etc. bus probe sem.
1da177e4
LT
1342 *
1343 * RETURNS:
1344 * Zero on success, non-zero on error.
1345 */
1346
1347static int ata_bus_probe(struct ata_port *ap)
1348{
28ca5c57
TH
1349 unsigned int classes[ATA_MAX_DEVICES];
1350 unsigned int i, rc, found = 0;
1da177e4 1351
28ca5c57 1352 ata_port_probe(ap);
c19ba8af 1353
2044470c
TH
1354 /* reset and determine device classes */
1355 for (i = 0; i < ATA_MAX_DEVICES; i++)
1356 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1357
2044470c 1358 if (ap->ops->probe_reset) {
c19ba8af 1359 rc = ap->ops->probe_reset(ap, classes);
28ca5c57
TH
1360 if (rc) {
1361 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1362 return rc;
c19ba8af 1363 }
28ca5c57 1364 } else {
c19ba8af
TH
1365 ap->ops->phy_reset(ap);
1366
2044470c
TH
1367 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1368 for (i = 0; i < ATA_MAX_DEVICES; i++)
28ca5c57 1369 classes[i] = ap->device[i].class;
2044470c 1370
28ca5c57
TH
1371 ata_port_probe(ap);
1372 }
1da177e4 1373
2044470c
TH
1374 for (i = 0; i < ATA_MAX_DEVICES; i++)
1375 if (classes[i] == ATA_DEV_UNKNOWN)
1376 classes[i] = ATA_DEV_NONE;
1377
28ca5c57 1378 /* read IDENTIFY page and configure devices */
1da177e4 1379 for (i = 0; i < ATA_MAX_DEVICES; i++) {
ffeae418
TH
1380 struct ata_device *dev = &ap->device[i];
1381
28ca5c57
TH
1382 dev->class = classes[i];
1383
ffeae418
TH
1384 if (!ata_dev_present(dev))
1385 continue;
1386
1387 WARN_ON(dev->id != NULL);
1388 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1389 dev->class = ATA_DEV_NONE;
1390 continue;
1391 }
1392
4c2d721a 1393 if (ata_dev_configure(ap, dev, 1)) {
ffeae418
TH
1394 dev->class++; /* disable device */
1395 continue;
1da177e4 1396 }
ffeae418 1397
ffeae418 1398 found = 1;
1da177e4
LT
1399 }
1400
28ca5c57 1401 if (!found)
1da177e4
LT
1402 goto err_out_disable;
1403
1404 ata_set_mode(ap);
1405 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1406 goto err_out_disable;
1407
1408 return 0;
1409
1410err_out_disable:
1411 ap->ops->port_disable(ap);
1da177e4
LT
1412 return -1;
1413}
1414
1415/**
0cba632b
JG
1416 * ata_port_probe - Mark port as enabled
1417 * @ap: Port for which we indicate enablement
1da177e4 1418 *
0cba632b
JG
1419 * Modify @ap data structure such that the system
1420 * thinks that the entire port is enabled.
1421 *
1422 * LOCKING: host_set lock, or some other form of
1423 * serialization.
1da177e4
LT
1424 */
1425
1426void ata_port_probe(struct ata_port *ap)
1427{
1428 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1429}
1430
3be680b7
TH
1431/**
1432 * sata_print_link_status - Print SATA link status
1433 * @ap: SATA port to printk link status about
1434 *
1435 * This function prints link speed and status of a SATA link.
1436 *
1437 * LOCKING:
1438 * None.
1439 */
1440static void sata_print_link_status(struct ata_port *ap)
1441{
1442 u32 sstatus, tmp;
1443 const char *speed;
1444
1445 if (!ap->ops->scr_read)
1446 return;
1447
1448 sstatus = scr_read(ap, SCR_STATUS);
1449
1450 if (sata_dev_present(ap)) {
1451 tmp = (sstatus >> 4) & 0xf;
1452 if (tmp & (1 << 0))
1453 speed = "1.5";
1454 else if (tmp & (1 << 1))
1455 speed = "3.0";
1456 else
1457 speed = "<unknown>";
1458 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1459 ap->id, speed, sstatus);
1460 } else {
1461 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1462 ap->id, sstatus);
1463 }
1464}
1465
1da177e4 1466/**
780a87f7
JG
1467 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1468 * @ap: SATA port associated with target SATA PHY.
1da177e4 1469 *
780a87f7
JG
1470 * This function issues commands to standard SATA Sxxx
1471 * PHY registers, to wake up the phy (and device), and
1472 * clear any reset condition.
1da177e4
LT
1473 *
1474 * LOCKING:
0cba632b 1475 * PCI/etc. bus probe sem.
1da177e4
LT
1476 *
1477 */
1478void __sata_phy_reset(struct ata_port *ap)
1479{
1480 u32 sstatus;
1481 unsigned long timeout = jiffies + (HZ * 5);
1482
1483 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1484 /* issue phy wake/reset */
1485 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1486 /* Couldn't find anything in SATA I/II specs, but
1487 * AHCI-1.1 10.4.2 says at least 1 ms. */
1488 mdelay(1);
1da177e4 1489 }
cdcca89e 1490 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1491
1492 /* wait for phy to become ready, if necessary */
1493 do {
1494 msleep(200);
1495 sstatus = scr_read(ap, SCR_STATUS);
1496 if ((sstatus & 0xf) != 1)
1497 break;
1498 } while (time_before(jiffies, timeout));
1499
3be680b7
TH
1500 /* print link status */
1501 sata_print_link_status(ap);
656563e3 1502
3be680b7
TH
1503 /* TODO: phy layer with polling, timeouts, etc. */
1504 if (sata_dev_present(ap))
1da177e4 1505 ata_port_probe(ap);
3be680b7 1506 else
1da177e4 1507 ata_port_disable(ap);
1da177e4
LT
1508
1509 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1510 return;
1511
1512 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1513 ata_port_disable(ap);
1514 return;
1515 }
1516
1517 ap->cbl = ATA_CBL_SATA;
1518}
1519
1520/**
780a87f7
JG
1521 * sata_phy_reset - Reset SATA bus.
1522 * @ap: SATA port associated with target SATA PHY.
1da177e4 1523 *
780a87f7
JG
1524 * This function resets the SATA bus, and then probes
1525 * the bus for devices.
1da177e4
LT
1526 *
1527 * LOCKING:
0cba632b 1528 * PCI/etc. bus probe sem.
1da177e4
LT
1529 *
1530 */
1531void sata_phy_reset(struct ata_port *ap)
1532{
1533 __sata_phy_reset(ap);
1534 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1535 return;
1536 ata_bus_reset(ap);
1537}
1538
1539/**
780a87f7
JG
1540 * ata_port_disable - Disable port.
1541 * @ap: Port to be disabled.
1da177e4 1542 *
780a87f7
JG
1543 * Modify @ap data structure such that the system
1544 * thinks that the entire port is disabled, and should
1545 * never attempt to probe or communicate with devices
1546 * on this port.
1547 *
1548 * LOCKING: host_set lock, or some other form of
1549 * serialization.
1da177e4
LT
1550 */
1551
1552void ata_port_disable(struct ata_port *ap)
1553{
1554 ap->device[0].class = ATA_DEV_NONE;
1555 ap->device[1].class = ATA_DEV_NONE;
1556 ap->flags |= ATA_FLAG_PORT_DISABLED;
1557}
1558
452503f9
AC
1559/*
1560 * This mode timing computation functionality is ported over from
1561 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1562 */
1563/*
1564 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1565 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1566 * for PIO 5, which is a nonstandard extension and UDMA6, which
1567 * is currently supported only by Maxtor drives.
1568 */
1569
1570static const struct ata_timing ata_timing[] = {
1571
1572 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1573 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1574 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1575 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1576
1577 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1578 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1579 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1580
1581/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1582
1583 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1584 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1585 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1586
1587 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1588 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1589 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1590
1591/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1592 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1593 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1594
1595 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1596 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1597 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1598
1599/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1600
1601 { 0xFF }
1602};
1603
1604#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1605#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1606
1607static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1608{
1609 q->setup = EZ(t->setup * 1000, T);
1610 q->act8b = EZ(t->act8b * 1000, T);
1611 q->rec8b = EZ(t->rec8b * 1000, T);
1612 q->cyc8b = EZ(t->cyc8b * 1000, T);
1613 q->active = EZ(t->active * 1000, T);
1614 q->recover = EZ(t->recover * 1000, T);
1615 q->cycle = EZ(t->cycle * 1000, T);
1616 q->udma = EZ(t->udma * 1000, UT);
1617}
1618
1619void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1620 struct ata_timing *m, unsigned int what)
1621{
1622 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1623 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1624 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1625 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1626 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1627 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1628 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1629 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1630}
1631
1632static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1633{
1634 const struct ata_timing *t;
1635
1636 for (t = ata_timing; t->mode != speed; t++)
91190758 1637 if (t->mode == 0xFF)
452503f9
AC
1638 return NULL;
1639 return t;
1640}
1641
1642int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1643 struct ata_timing *t, int T, int UT)
1644{
1645 const struct ata_timing *s;
1646 struct ata_timing p;
1647
1648 /*
1649 * Find the mode.
75b1f2f8 1650 */
452503f9
AC
1651
1652 if (!(s = ata_timing_find_mode(speed)))
1653 return -EINVAL;
1654
75b1f2f8
AL
1655 memcpy(t, s, sizeof(*s));
1656
452503f9
AC
1657 /*
1658 * If the drive is an EIDE drive, it can tell us it needs extended
1659 * PIO/MW_DMA cycle timing.
1660 */
1661
1662 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1663 memset(&p, 0, sizeof(p));
1664 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1665 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1666 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1667 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1668 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1669 }
1670 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1671 }
1672
1673 /*
1674 * Convert the timing to bus clock counts.
1675 */
1676
75b1f2f8 1677 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1678
1679 /*
c893a3ae
RD
1680 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1681 * S.M.A.R.T * and some other commands. We have to ensure that the
1682 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1683 */
1684
1685 if (speed > XFER_PIO_4) {
1686 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1687 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1688 }
1689
1690 /*
c893a3ae 1691 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1692 */
1693
1694 if (t->act8b + t->rec8b < t->cyc8b) {
1695 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1696 t->rec8b = t->cyc8b - t->act8b;
1697 }
1698
1699 if (t->active + t->recover < t->cycle) {
1700 t->active += (t->cycle - (t->active + t->recover)) / 2;
1701 t->recover = t->cycle - t->active;
1702 }
1703
1704 return 0;
1705}
1706
1da177e4
LT
1707static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1708{
1da177e4
LT
1709 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1710 return;
1711
1712 if (dev->xfer_shift == ATA_SHIFT_PIO)
1713 dev->flags |= ATA_DFLAG_PIO;
1714
1715 ata_dev_set_xfermode(ap, dev);
1716
48a8a14f
TH
1717 if (ata_dev_revalidate(ap, dev, 0)) {
1718 printk(KERN_ERR "ata%u: failed to revalidate after set "
1719 "xfermode, disabled\n", ap->id);
1720 ata_port_disable(ap);
1721 }
1722
23e71c3d
TH
1723 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1724 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4
LT
1725
1726 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
23e71c3d
TH
1727 ap->id, dev->devno,
1728 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1da177e4
LT
1729}
1730
1731static int ata_host_set_pio(struct ata_port *ap)
1732{
a6d5a51c 1733 int i;
1da177e4
LT
1734
1735 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1736 struct ata_device *dev = &ap->device[i];
a6d5a51c
TH
1737
1738 if (!ata_dev_present(dev))
1739 continue;
1740
1741 if (!dev->pio_mode) {
88f93a31 1742 printk(KERN_WARNING "ata%u: no PIO support for device %d.\n", ap->id, i);
a6d5a51c 1743 return -1;
1da177e4 1744 }
a6d5a51c
TH
1745
1746 dev->xfer_mode = dev->pio_mode;
1747 dev->xfer_shift = ATA_SHIFT_PIO;
1748 if (ap->ops->set_piomode)
1749 ap->ops->set_piomode(ap, dev);
1da177e4
LT
1750 }
1751
1752 return 0;
1753}
1754
a6d5a51c 1755static void ata_host_set_dma(struct ata_port *ap)
1da177e4
LT
1756{
1757 int i;
1758
1759 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1760 struct ata_device *dev = &ap->device[i];
a6d5a51c
TH
1761
1762 if (!ata_dev_present(dev) || !dev->dma_mode)
1763 continue;
1764
1765 dev->xfer_mode = dev->dma_mode;
1766 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
1767 if (ap->ops->set_dmamode)
1768 ap->ops->set_dmamode(ap, dev);
1da177e4
LT
1769 }
1770}
1771
1772/**
1773 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1774 * @ap: port on which timings will be programmed
1775 *
780a87f7
JG
1776 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1777 *
1da177e4 1778 * LOCKING:
0cba632b 1779 * PCI/etc. bus probe sem.
1da177e4
LT
1780 */
1781static void ata_set_mode(struct ata_port *ap)
1782{
a6d5a51c 1783 int i, rc;
1da177e4 1784
a6d5a51c
TH
1785 /* step 1: calculate xfer_mask */
1786 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1787 struct ata_device *dev = &ap->device[i];
1788 unsigned int xfer_mask;
1789
1790 if (!ata_dev_present(dev))
1791 continue;
1792
1793 xfer_mask = ata_dev_xfermask(ap, dev);
1da177e4 1794
a6d5a51c
TH
1795 dev->pio_mode = ata_xfer_mask2mode(xfer_mask & ATA_MASK_PIO);
1796 dev->dma_mode = ata_xfer_mask2mode(xfer_mask & (ATA_MASK_MWDMA |
1797 ATA_MASK_UDMA));
1798 }
1799
1800 /* step 2: always set host PIO timings */
1801 rc = ata_host_set_pio(ap);
1da177e4
LT
1802 if (rc)
1803 goto err_out;
1804
a6d5a51c
TH
1805 /* step 3: set host DMA timings */
1806 ata_host_set_dma(ap);
1da177e4
LT
1807
1808 /* step 4: update devices' xfer mode */
a6d5a51c
TH
1809 for (i = 0; i < ATA_MAX_DEVICES; i++)
1810 ata_dev_set_mode(ap, &ap->device[i]);
1da177e4
LT
1811
1812 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1813 return;
1814
1815 if (ap->ops->post_set_mode)
1816 ap->ops->post_set_mode(ap);
1817
1da177e4
LT
1818 return;
1819
1820err_out:
1821 ata_port_disable(ap);
1822}
1823
1fdffbce
JG
1824/**
1825 * ata_tf_to_host - issue ATA taskfile to host controller
1826 * @ap: port to which command is being issued
1827 * @tf: ATA taskfile register set
1828 *
1829 * Issues ATA taskfile register set to ATA host controller,
1830 * with proper synchronization with interrupt handler and
1831 * other threads.
1832 *
1833 * LOCKING:
1834 * spin_lock_irqsave(host_set lock)
1835 */
1836
1837static inline void ata_tf_to_host(struct ata_port *ap,
1838 const struct ata_taskfile *tf)
1839{
1840 ap->ops->tf_load(ap, tf);
1841 ap->ops->exec_command(ap, tf);
1842}
1843
1da177e4
LT
1844/**
1845 * ata_busy_sleep - sleep until BSY clears, or timeout
1846 * @ap: port containing status register to be polled
1847 * @tmout_pat: impatience timeout
1848 * @tmout: overall timeout
1849 *
780a87f7
JG
1850 * Sleep until ATA Status register bit BSY clears,
1851 * or a timeout occurs.
1852 *
1853 * LOCKING: None.
1da177e4
LT
1854 */
1855
6f8b9958
TH
1856unsigned int ata_busy_sleep (struct ata_port *ap,
1857 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
1858{
1859 unsigned long timer_start, timeout;
1860 u8 status;
1861
1862 status = ata_busy_wait(ap, ATA_BUSY, 300);
1863 timer_start = jiffies;
1864 timeout = timer_start + tmout_pat;
1865 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1866 msleep(50);
1867 status = ata_busy_wait(ap, ATA_BUSY, 3);
1868 }
1869
1870 if (status & ATA_BUSY)
1871 printk(KERN_WARNING "ata%u is slow to respond, "
1872 "please be patient\n", ap->id);
1873
1874 timeout = timer_start + tmout;
1875 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1876 msleep(50);
1877 status = ata_chk_status(ap);
1878 }
1879
1880 if (status & ATA_BUSY) {
1881 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1882 ap->id, tmout / HZ);
1883 return 1;
1884 }
1885
1886 return 0;
1887}
1888
1889static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1890{
1891 struct ata_ioports *ioaddr = &ap->ioaddr;
1892 unsigned int dev0 = devmask & (1 << 0);
1893 unsigned int dev1 = devmask & (1 << 1);
1894 unsigned long timeout;
1895
1896 /* if device 0 was found in ata_devchk, wait for its
1897 * BSY bit to clear
1898 */
1899 if (dev0)
1900 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1901
1902 /* if device 1 was found in ata_devchk, wait for
1903 * register access, then wait for BSY to clear
1904 */
1905 timeout = jiffies + ATA_TMOUT_BOOT;
1906 while (dev1) {
1907 u8 nsect, lbal;
1908
1909 ap->ops->dev_select(ap, 1);
1910 if (ap->flags & ATA_FLAG_MMIO) {
1911 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1912 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1913 } else {
1914 nsect = inb(ioaddr->nsect_addr);
1915 lbal = inb(ioaddr->lbal_addr);
1916 }
1917 if ((nsect == 1) && (lbal == 1))
1918 break;
1919 if (time_after(jiffies, timeout)) {
1920 dev1 = 0;
1921 break;
1922 }
1923 msleep(50); /* give drive a breather */
1924 }
1925 if (dev1)
1926 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1927
1928 /* is all this really necessary? */
1929 ap->ops->dev_select(ap, 0);
1930 if (dev1)
1931 ap->ops->dev_select(ap, 1);
1932 if (dev0)
1933 ap->ops->dev_select(ap, 0);
1934}
1935
1936/**
0cba632b
JG
1937 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1938 * @ap: Port to reset and probe
1939 *
1940 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1941 * probe the bus. Not often used these days.
1da177e4
LT
1942 *
1943 * LOCKING:
0cba632b 1944 * PCI/etc. bus probe sem.
e5338254 1945 * Obtains host_set lock.
1da177e4
LT
1946 *
1947 */
1948
1949static unsigned int ata_bus_edd(struct ata_port *ap)
1950{
1951 struct ata_taskfile tf;
e5338254 1952 unsigned long flags;
1da177e4
LT
1953
1954 /* set up execute-device-diag (bus reset) taskfile */
1955 /* also, take interrupts to a known state (disabled) */
1956 DPRINTK("execute-device-diag\n");
1957 ata_tf_init(ap, &tf, 0);
1958 tf.ctl |= ATA_NIEN;
1959 tf.command = ATA_CMD_EDD;
1960 tf.protocol = ATA_PROT_NODATA;
1961
1962 /* do bus reset */
e5338254 1963 spin_lock_irqsave(&ap->host_set->lock, flags);
1da177e4 1964 ata_tf_to_host(ap, &tf);
e5338254 1965 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1da177e4
LT
1966
1967 /* spec says at least 2ms. but who knows with those
1968 * crazy ATAPI devices...
1969 */
1970 msleep(150);
1971
1972 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1973}
1974
1975static unsigned int ata_bus_softreset(struct ata_port *ap,
1976 unsigned int devmask)
1977{
1978 struct ata_ioports *ioaddr = &ap->ioaddr;
1979
1980 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1981
1982 /* software reset. causes dev0 to be selected */
1983 if (ap->flags & ATA_FLAG_MMIO) {
1984 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1985 udelay(20); /* FIXME: flush */
1986 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1987 udelay(20); /* FIXME: flush */
1988 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1989 } else {
1990 outb(ap->ctl, ioaddr->ctl_addr);
1991 udelay(10);
1992 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1993 udelay(10);
1994 outb(ap->ctl, ioaddr->ctl_addr);
1995 }
1996
1997 /* spec mandates ">= 2ms" before checking status.
1998 * We wait 150ms, because that was the magic delay used for
1999 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2000 * between when the ATA command register is written, and then
2001 * status is checked. Because waiting for "a while" before
2002 * checking status is fine, post SRST, we perform this magic
2003 * delay here as well.
09c7ad79
AC
2004 *
2005 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2006 */
2007 msleep(150);
2008
09c7ad79
AC
2009
2010 /* Before we perform post reset processing we want to see if
2011 the bus shows 0xFF because the odd clown forgets the D7 pulldown
2012 resistor */
2013
2014 if (ata_check_status(ap) == 0xFF)
2015 return 1; /* Positive is failure for some reason */
2016
1da177e4
LT
2017 ata_bus_post_reset(ap, devmask);
2018
2019 return 0;
2020}
2021
2022/**
2023 * ata_bus_reset - reset host port and associated ATA channel
2024 * @ap: port to reset
2025 *
2026 * This is typically the first time we actually start issuing
2027 * commands to the ATA channel. We wait for BSY to clear, then
2028 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2029 * result. Determine what devices, if any, are on the channel
2030 * by looking at the device 0/1 error register. Look at the signature
2031 * stored in each device's taskfile registers, to determine if
2032 * the device is ATA or ATAPI.
2033 *
2034 * LOCKING:
0cba632b
JG
2035 * PCI/etc. bus probe sem.
2036 * Obtains host_set lock.
1da177e4
LT
2037 *
2038 * SIDE EFFECTS:
2039 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2040 */
2041
2042void ata_bus_reset(struct ata_port *ap)
2043{
2044 struct ata_ioports *ioaddr = &ap->ioaddr;
2045 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2046 u8 err;
2047 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
2048
2049 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2050
2051 /* determine if device 0/1 are present */
2052 if (ap->flags & ATA_FLAG_SATA_RESET)
2053 dev0 = 1;
2054 else {
2055 dev0 = ata_devchk(ap, 0);
2056 if (slave_possible)
2057 dev1 = ata_devchk(ap, 1);
2058 }
2059
2060 if (dev0)
2061 devmask |= (1 << 0);
2062 if (dev1)
2063 devmask |= (1 << 1);
2064
2065 /* select device 0 again */
2066 ap->ops->dev_select(ap, 0);
2067
2068 /* issue bus reset */
2069 if (ap->flags & ATA_FLAG_SRST)
2070 rc = ata_bus_softreset(ap, devmask);
2071 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2072 /* set up device control */
2073 if (ap->flags & ATA_FLAG_MMIO)
2074 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2075 else
2076 outb(ap->ctl, ioaddr->ctl_addr);
2077 rc = ata_bus_edd(ap);
2078 }
2079
2080 if (rc)
2081 goto err_out;
2082
2083 /*
2084 * determine by signature whether we have ATA or ATAPI devices
2085 */
b4dc7623 2086 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2087 if ((slave_possible) && (err != 0x81))
b4dc7623 2088 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2089
2090 /* re-enable interrupts */
2091 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2092 ata_irq_on(ap);
2093
2094 /* is double-select really necessary? */
2095 if (ap->device[1].class != ATA_DEV_NONE)
2096 ap->ops->dev_select(ap, 1);
2097 if (ap->device[0].class != ATA_DEV_NONE)
2098 ap->ops->dev_select(ap, 0);
2099
2100 /* if no devices were detected, disable this port */
2101 if ((ap->device[0].class == ATA_DEV_NONE) &&
2102 (ap->device[1].class == ATA_DEV_NONE))
2103 goto err_out;
2104
2105 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2106 /* set up device control for ATA_FLAG_SATA_RESET */
2107 if (ap->flags & ATA_FLAG_MMIO)
2108 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2109 else
2110 outb(ap->ctl, ioaddr->ctl_addr);
2111 }
2112
2113 DPRINTK("EXIT\n");
2114 return;
2115
2116err_out:
2117 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2118 ap->ops->port_disable(ap);
2119
2120 DPRINTK("EXIT\n");
2121}
2122
7a7921e8
TH
2123static int sata_phy_resume(struct ata_port *ap)
2124{
2125 unsigned long timeout = jiffies + (HZ * 5);
2126 u32 sstatus;
2127
2128 scr_write_flush(ap, SCR_CONTROL, 0x300);
2129
2130 /* Wait for phy to become ready, if necessary. */
2131 do {
2132 msleep(200);
2133 sstatus = scr_read(ap, SCR_STATUS);
2134 if ((sstatus & 0xf) != 1)
2135 return 0;
2136 } while (time_before(jiffies, timeout));
2137
2138 return -1;
2139}
2140
8a19ac89
TH
2141/**
2142 * ata_std_probeinit - initialize probing
2143 * @ap: port to be probed
2144 *
2145 * @ap is about to be probed. Initialize it. This function is
2146 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2147 *
2148 * NOTE!!! Do not use this function as probeinit if a low level
2149 * driver implements only hardreset. Just pass NULL as probeinit
2150 * in that case. Using this function is probably okay but doing
2151 * so makes reset sequence different from the original
2152 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89
TH
2153 */
2154extern void ata_std_probeinit(struct ata_port *ap)
2155{
3a39746a 2156 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) {
8a19ac89 2157 sata_phy_resume(ap);
3a39746a
TH
2158 if (sata_dev_present(ap))
2159 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2160 }
8a19ac89
TH
2161}
2162
c2bd5804
TH
2163/**
2164 * ata_std_softreset - reset host port via ATA SRST
2165 * @ap: port to reset
2166 * @verbose: fail verbosely
2167 * @classes: resulting classes of attached devices
2168 *
2169 * Reset host port using ATA SRST. This function is to be used
2170 * as standard callback for ata_drive_*_reset() functions.
2171 *
2172 * LOCKING:
2173 * Kernel thread context (may sleep)
2174 *
2175 * RETURNS:
2176 * 0 on success, -errno otherwise.
2177 */
2178int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2179{
2180 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2181 unsigned int devmask = 0, err_mask;
2182 u8 err;
2183
2184 DPRINTK("ENTER\n");
2185
3a39746a
TH
2186 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2187 classes[0] = ATA_DEV_NONE;
2188 goto out;
2189 }
2190
c2bd5804
TH
2191 /* determine if device 0/1 are present */
2192 if (ata_devchk(ap, 0))
2193 devmask |= (1 << 0);
2194 if (slave_possible && ata_devchk(ap, 1))
2195 devmask |= (1 << 1);
2196
c2bd5804
TH
2197 /* select device 0 again */
2198 ap->ops->dev_select(ap, 0);
2199
2200 /* issue bus reset */
2201 DPRINTK("about to softreset, devmask=%x\n", devmask);
2202 err_mask = ata_bus_softreset(ap, devmask);
2203 if (err_mask) {
2204 if (verbose)
2205 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2206 ap->id, err_mask);
2207 else
2208 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2209 err_mask);
2210 return -EIO;
2211 }
2212
2213 /* determine by signature whether we have ATA or ATAPI devices */
2214 classes[0] = ata_dev_try_classify(ap, 0, &err);
2215 if (slave_possible && err != 0x81)
2216 classes[1] = ata_dev_try_classify(ap, 1, &err);
2217
3a39746a 2218 out:
c2bd5804
TH
2219 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2220 return 0;
2221}
2222
2223/**
2224 * sata_std_hardreset - reset host port via SATA phy reset
2225 * @ap: port to reset
2226 * @verbose: fail verbosely
2227 * @class: resulting class of attached device
2228 *
2229 * SATA phy-reset host port using DET bits of SControl register.
2230 * This function is to be used as standard callback for
2231 * ata_drive_*_reset().
2232 *
2233 * LOCKING:
2234 * Kernel thread context (may sleep)
2235 *
2236 * RETURNS:
2237 * 0 on success, -errno otherwise.
2238 */
2239int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2240{
c2bd5804
TH
2241 DPRINTK("ENTER\n");
2242
2243 /* Issue phy wake/reset */
2244 scr_write_flush(ap, SCR_CONTROL, 0x301);
2245
2246 /*
2247 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2248 * 10.4.2 says at least 1 ms.
2249 */
2250 msleep(1);
2251
7a7921e8
TH
2252 /* Bring phy back */
2253 sata_phy_resume(ap);
c2bd5804 2254
c2bd5804
TH
2255 /* TODO: phy layer with polling, timeouts, etc. */
2256 if (!sata_dev_present(ap)) {
2257 *class = ATA_DEV_NONE;
2258 DPRINTK("EXIT, link offline\n");
2259 return 0;
2260 }
2261
2262 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2263 if (verbose)
2264 printk(KERN_ERR "ata%u: COMRESET failed "
2265 "(device not ready)\n", ap->id);
2266 else
2267 DPRINTK("EXIT, device not ready\n");
2268 return -EIO;
2269 }
2270
3a39746a
TH
2271 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2272
c2bd5804
TH
2273 *class = ata_dev_try_classify(ap, 0, NULL);
2274
2275 DPRINTK("EXIT, class=%u\n", *class);
2276 return 0;
2277}
2278
2279/**
2280 * ata_std_postreset - standard postreset callback
2281 * @ap: the target ata_port
2282 * @classes: classes of attached devices
2283 *
2284 * This function is invoked after a successful reset. Note that
2285 * the device might have been reset more than once using
2286 * different reset methods before postreset is invoked.
c2bd5804
TH
2287 *
2288 * This function is to be used as standard callback for
2289 * ata_drive_*_reset().
2290 *
2291 * LOCKING:
2292 * Kernel thread context (may sleep)
2293 */
2294void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2295{
2296 DPRINTK("ENTER\n");
2297
56497bd5 2298 /* set cable type if it isn't already set */
c2bd5804
TH
2299 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2300 ap->cbl = ATA_CBL_SATA;
2301
2302 /* print link status */
2303 if (ap->cbl == ATA_CBL_SATA)
2304 sata_print_link_status(ap);
2305
3a39746a
TH
2306 /* re-enable interrupts */
2307 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2308 ata_irq_on(ap);
c2bd5804
TH
2309
2310 /* is double-select really necessary? */
2311 if (classes[0] != ATA_DEV_NONE)
2312 ap->ops->dev_select(ap, 1);
2313 if (classes[1] != ATA_DEV_NONE)
2314 ap->ops->dev_select(ap, 0);
2315
3a39746a
TH
2316 /* bail out if no device is present */
2317 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2318 DPRINTK("EXIT, no device\n");
2319 return;
2320 }
2321
2322 /* set up device control */
2323 if (ap->ioaddr.ctl_addr) {
2324 if (ap->flags & ATA_FLAG_MMIO)
2325 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2326 else
2327 outb(ap->ctl, ap->ioaddr.ctl_addr);
2328 }
c2bd5804
TH
2329
2330 DPRINTK("EXIT\n");
2331}
2332
2333/**
2334 * ata_std_probe_reset - standard probe reset method
2335 * @ap: prot to perform probe-reset
2336 * @classes: resulting classes of attached devices
2337 *
2338 * The stock off-the-shelf ->probe_reset method.
2339 *
2340 * LOCKING:
2341 * Kernel thread context (may sleep)
2342 *
2343 * RETURNS:
2344 * 0 on success, -errno otherwise.
2345 */
2346int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2347{
2348 ata_reset_fn_t hardreset;
2349
2350 hardreset = NULL;
b911fc3a 2351 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
c2bd5804
TH
2352 hardreset = sata_std_hardreset;
2353
8a19ac89 2354 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2355 ata_std_softreset, hardreset,
c2bd5804
TH
2356 ata_std_postreset, classes);
2357}
2358
a62c0fc5
TH
2359static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2360 ata_postreset_fn_t postreset,
2361 unsigned int *classes)
2362{
2363 int i, rc;
2364
2365 for (i = 0; i < ATA_MAX_DEVICES; i++)
2366 classes[i] = ATA_DEV_UNKNOWN;
2367
2368 rc = reset(ap, 0, classes);
2369 if (rc)
2370 return rc;
2371
2372 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2373 * is complete and convert all ATA_DEV_UNKNOWN to
2374 * ATA_DEV_NONE.
2375 */
2376 for (i = 0; i < ATA_MAX_DEVICES; i++)
2377 if (classes[i] != ATA_DEV_UNKNOWN)
2378 break;
2379
2380 if (i < ATA_MAX_DEVICES)
2381 for (i = 0; i < ATA_MAX_DEVICES; i++)
2382 if (classes[i] == ATA_DEV_UNKNOWN)
2383 classes[i] = ATA_DEV_NONE;
2384
2385 if (postreset)
2386 postreset(ap, classes);
2387
2388 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2389}
2390
2391/**
2392 * ata_drive_probe_reset - Perform probe reset with given methods
2393 * @ap: port to reset
7944ea95 2394 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2395 * @softreset: softreset method (can be NULL)
2396 * @hardreset: hardreset method (can be NULL)
2397 * @postreset: postreset method (can be NULL)
2398 * @classes: resulting classes of attached devices
2399 *
2400 * Reset the specified port and classify attached devices using
2401 * given methods. This function prefers softreset but tries all
2402 * possible reset sequences to reset and classify devices. This
2403 * function is intended to be used for constructing ->probe_reset
2404 * callback by low level drivers.
2405 *
2406 * Reset methods should follow the following rules.
2407 *
2408 * - Return 0 on sucess, -errno on failure.
2409 * - If classification is supported, fill classes[] with
2410 * recognized class codes.
2411 * - If classification is not supported, leave classes[] alone.
2412 * - If verbose is non-zero, print error message on failure;
2413 * otherwise, shut up.
2414 *
2415 * LOCKING:
2416 * Kernel thread context (may sleep)
2417 *
2418 * RETURNS:
2419 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2420 * if classification fails, and any error code from reset
2421 * methods.
2422 */
7944ea95 2423int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2424 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2425 ata_postreset_fn_t postreset, unsigned int *classes)
2426{
2427 int rc = -EINVAL;
2428
7944ea95
TH
2429 if (probeinit)
2430 probeinit(ap);
2431
a62c0fc5
TH
2432 if (softreset) {
2433 rc = do_probe_reset(ap, softreset, postreset, classes);
2434 if (rc == 0)
2435 return 0;
2436 }
2437
2438 if (!hardreset)
2439 return rc;
2440
2441 rc = do_probe_reset(ap, hardreset, postreset, classes);
2442 if (rc == 0 || rc != -ENODEV)
2443 return rc;
2444
2445 if (softreset)
2446 rc = do_probe_reset(ap, softreset, postreset, classes);
2447
2448 return rc;
2449}
2450
623a3128
TH
2451/**
2452 * ata_dev_same_device - Determine whether new ID matches configured device
2453 * @ap: port on which the device to compare against resides
2454 * @dev: device to compare against
2455 * @new_class: class of the new device
2456 * @new_id: IDENTIFY page of the new device
2457 *
2458 * Compare @new_class and @new_id against @dev and determine
2459 * whether @dev is the device indicated by @new_class and
2460 * @new_id.
2461 *
2462 * LOCKING:
2463 * None.
2464 *
2465 * RETURNS:
2466 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2467 */
2468static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2469 unsigned int new_class, const u16 *new_id)
2470{
2471 const u16 *old_id = dev->id;
2472 unsigned char model[2][41], serial[2][21];
2473 u64 new_n_sectors;
2474
2475 if (dev->class != new_class) {
2476 printk(KERN_INFO
2477 "ata%u: dev %u class mismatch %d != %d\n",
2478 ap->id, dev->devno, dev->class, new_class);
2479 return 0;
2480 }
2481
2482 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2483 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2484 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2485 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2486 new_n_sectors = ata_id_n_sectors(new_id);
2487
2488 if (strcmp(model[0], model[1])) {
2489 printk(KERN_INFO
2490 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2491 ap->id, dev->devno, model[0], model[1]);
2492 return 0;
2493 }
2494
2495 if (strcmp(serial[0], serial[1])) {
2496 printk(KERN_INFO
2497 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2498 ap->id, dev->devno, serial[0], serial[1]);
2499 return 0;
2500 }
2501
2502 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2503 printk(KERN_INFO
2504 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2505 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2506 (unsigned long long)new_n_sectors);
2507 return 0;
2508 }
2509
2510 return 1;
2511}
2512
2513/**
2514 * ata_dev_revalidate - Revalidate ATA device
2515 * @ap: port on which the device to revalidate resides
2516 * @dev: device to revalidate
2517 * @post_reset: is this revalidation after reset?
2518 *
2519 * Re-read IDENTIFY page and make sure @dev is still attached to
2520 * the port.
2521 *
2522 * LOCKING:
2523 * Kernel thread context (may sleep)
2524 *
2525 * RETURNS:
2526 * 0 on success, negative errno otherwise
2527 */
2528int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2529 int post_reset)
2530{
2531 unsigned int class;
2532 u16 *id;
2533 int rc;
2534
2535 if (!ata_dev_present(dev))
2536 return -ENODEV;
2537
2538 class = dev->class;
2539 id = NULL;
2540
2541 /* allocate & read ID data */
2542 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2543 if (rc)
2544 goto fail;
2545
2546 /* is the device still there? */
2547 if (!ata_dev_same_device(ap, dev, class, id)) {
2548 rc = -ENODEV;
2549 goto fail;
2550 }
2551
2552 kfree(dev->id);
2553 dev->id = id;
2554
2555 /* configure device according to the new ID */
2556 return ata_dev_configure(ap, dev, 0);
2557
2558 fail:
2559 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2560 ap->id, dev->devno, rc);
2561 kfree(id);
2562 return rc;
2563}
2564
98ac62de 2565static const char * const ata_dma_blacklist [] = {
1da177e4
LT
2566 "WDC AC11000H",
2567 "WDC AC22100H",
2568 "WDC AC32500H",
2569 "WDC AC33100H",
2570 "WDC AC31600H",
2571 "WDC AC32100H",
2572 "WDC AC23200L",
2573 "Compaq CRD-8241B",
2574 "CRD-8400B",
2575 "CRD-8480B",
2576 "CRD-8482B",
2577 "CRD-84",
2578 "SanDisk SDP3B",
2579 "SanDisk SDP3B-64",
2580 "SANYO CD-ROM CRD",
2581 "HITACHI CDR-8",
2582 "HITACHI CDR-8335",
2583 "HITACHI CDR-8435",
2584 "Toshiba CD-ROM XM-6202B",
e922256a 2585 "TOSHIBA CD-ROM XM-1702BC",
1da177e4
LT
2586 "CD-532E-A",
2587 "E-IDE CD-ROM CR-840",
2588 "CD-ROM Drive/F5A",
2589 "WPI CDD-820",
2590 "SAMSUNG CD-ROM SC-148C",
2591 "SAMSUNG CD-ROM SC",
2592 "SanDisk SDP3B-64",
1da177e4
LT
2593 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2594 "_NEC DV5800A",
2595};
2596
057ace5e 2597static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2598{
2e02671d 2599 unsigned char model_num[41];
1da177e4
LT
2600 int i;
2601
6a62a04d 2602 ata_id_c_string(dev->id, model_num, ATA_ID_PROD_OFS, sizeof(model_num));
1da177e4
LT
2603
2604 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2e02671d 2605 if (!strcmp(ata_dma_blacklist[i], model_num))
1da177e4
LT
2606 return 1;
2607
2608 return 0;
2609}
2610
a6d5a51c
TH
2611/**
2612 * ata_dev_xfermask - Compute supported xfermask of the given device
2613 * @ap: Port on which the device to compute xfermask for resides
2614 * @dev: Device to compute xfermask for
2615 *
2616 * Compute supported xfermask of @dev. This function is
2617 * responsible for applying all known limits including host
2618 * controller limits, device blacklist, etc...
2619 *
2620 * LOCKING:
2621 * None.
2622 *
2623 * RETURNS:
2624 * Computed xfermask.
2625 */
2626static unsigned int ata_dev_xfermask(struct ata_port *ap,
2627 struct ata_device *dev)
1da177e4 2628{
a6d5a51c
TH
2629 unsigned long xfer_mask;
2630 int i;
1da177e4 2631
a6d5a51c
TH
2632 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
2633 ap->udma_mask);
1da177e4 2634
a6d5a51c
TH
2635 /* use port-wide xfermask for now */
2636 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2637 struct ata_device *d = &ap->device[i];
2638 if (!ata_dev_present(d))
2639 continue;
2640 xfer_mask &= ata_id_xfermask(d->id);
2641 if (ata_dma_blacklisted(d))
2642 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
2643 }
2644
a6d5a51c
TH
2645 if (ata_dma_blacklisted(dev))
2646 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2647 "disabling DMA\n", ap->id, dev->devno);
2648
2649 return xfer_mask;
1da177e4
LT
2650}
2651
1da177e4
LT
2652/**
2653 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2654 * @ap: Port associated with device @dev
2655 * @dev: Device to which command will be sent
2656 *
780a87f7
JG
2657 * Issue SET FEATURES - XFER MODE command to device @dev
2658 * on port @ap.
2659 *
1da177e4 2660 * LOCKING:
0cba632b 2661 * PCI/etc. bus probe sem.
1da177e4
LT
2662 */
2663
2664static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2665{
a0123703 2666 struct ata_taskfile tf;
1da177e4
LT
2667
2668 /* set up set-features taskfile */
2669 DPRINTK("set features - xfer mode\n");
2670
a0123703
TH
2671 ata_tf_init(ap, &tf, dev->devno);
2672 tf.command = ATA_CMD_SET_FEATURES;
2673 tf.feature = SETFEATURES_XFER;
2674 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2675 tf.protocol = ATA_PROT_NODATA;
2676 tf.nsect = dev->xfer_mode;
1da177e4 2677
a0123703
TH
2678 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2679 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2680 ap->id);
1da177e4 2681 ata_port_disable(ap);
a0123703 2682 }
1da177e4
LT
2683
2684 DPRINTK("EXIT\n");
2685}
2686
8bf62ece
AL
2687/**
2688 * ata_dev_init_params - Issue INIT DEV PARAMS command
2689 * @ap: Port associated with device @dev
2690 * @dev: Device to which command will be sent
2691 *
2692 * LOCKING:
6aff8f1f
TH
2693 * Kernel thread context (may sleep)
2694 *
2695 * RETURNS:
2696 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece
AL
2697 */
2698
6aff8f1f
TH
2699static unsigned int ata_dev_init_params(struct ata_port *ap,
2700 struct ata_device *dev)
8bf62ece 2701{
a0123703 2702 struct ata_taskfile tf;
6aff8f1f 2703 unsigned int err_mask;
8bf62ece
AL
2704 u16 sectors = dev->id[6];
2705 u16 heads = dev->id[3];
2706
2707 /* Number of sectors per track 1-255. Number of heads 1-16 */
2708 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
6aff8f1f 2709 return 0;
8bf62ece
AL
2710
2711 /* set up init dev params taskfile */
2712 DPRINTK("init dev params \n");
2713
a0123703
TH
2714 ata_tf_init(ap, &tf, dev->devno);
2715 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2716 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2717 tf.protocol = ATA_PROT_NODATA;
2718 tf.nsect = sectors;
2719 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 2720
6aff8f1f 2721 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
8bf62ece 2722
6aff8f1f
TH
2723 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2724 return err_mask;
8bf62ece
AL
2725}
2726
1da177e4 2727/**
0cba632b
JG
2728 * ata_sg_clean - Unmap DMA memory associated with command
2729 * @qc: Command containing DMA memory to be released
2730 *
2731 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
2732 *
2733 * LOCKING:
0cba632b 2734 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2735 */
2736
2737static void ata_sg_clean(struct ata_queued_cmd *qc)
2738{
2739 struct ata_port *ap = qc->ap;
cedc9a47 2740 struct scatterlist *sg = qc->__sg;
1da177e4 2741 int dir = qc->dma_dir;
cedc9a47 2742 void *pad_buf = NULL;
1da177e4 2743
a4631474
TH
2744 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2745 WARN_ON(sg == NULL);
1da177e4
LT
2746
2747 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 2748 WARN_ON(qc->n_elem > 1);
1da177e4 2749
2c13b7ce 2750 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 2751
cedc9a47
JG
2752 /* if we padded the buffer out to 32-bit bound, and data
2753 * xfer direction is from-device, we must copy from the
2754 * pad buffer back into the supplied buffer
2755 */
2756 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2757 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2758
2759 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d
JG
2760 if (qc->n_elem)
2761 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
cedc9a47
JG
2762 /* restore last sg */
2763 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2764 if (pad_buf) {
2765 struct scatterlist *psg = &qc->pad_sgent;
2766 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2767 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 2768 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
2769 }
2770 } else {
2e242fa9 2771 if (qc->n_elem)
e1410f2d
JG
2772 dma_unmap_single(ap->host_set->dev,
2773 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2774 dir);
cedc9a47
JG
2775 /* restore sg */
2776 sg->length += qc->pad_len;
2777 if (pad_buf)
2778 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2779 pad_buf, qc->pad_len);
2780 }
1da177e4
LT
2781
2782 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 2783 qc->__sg = NULL;
1da177e4
LT
2784}
2785
2786/**
2787 * ata_fill_sg - Fill PCI IDE PRD table
2788 * @qc: Metadata associated with taskfile to be transferred
2789 *
780a87f7
JG
2790 * Fill PCI IDE PRD (scatter-gather) table with segments
2791 * associated with the current disk command.
2792 *
1da177e4 2793 * LOCKING:
780a87f7 2794 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2795 *
2796 */
2797static void ata_fill_sg(struct ata_queued_cmd *qc)
2798{
1da177e4 2799 struct ata_port *ap = qc->ap;
cedc9a47
JG
2800 struct scatterlist *sg;
2801 unsigned int idx;
1da177e4 2802
a4631474 2803 WARN_ON(qc->__sg == NULL);
f131883e 2804 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
2805
2806 idx = 0;
cedc9a47 2807 ata_for_each_sg(sg, qc) {
1da177e4
LT
2808 u32 addr, offset;
2809 u32 sg_len, len;
2810
2811 /* determine if physical DMA addr spans 64K boundary.
2812 * Note h/w doesn't support 64-bit, so we unconditionally
2813 * truncate dma_addr_t to u32.
2814 */
2815 addr = (u32) sg_dma_address(sg);
2816 sg_len = sg_dma_len(sg);
2817
2818 while (sg_len) {
2819 offset = addr & 0xffff;
2820 len = sg_len;
2821 if ((offset + sg_len) > 0x10000)
2822 len = 0x10000 - offset;
2823
2824 ap->prd[idx].addr = cpu_to_le32(addr);
2825 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2826 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2827
2828 idx++;
2829 sg_len -= len;
2830 addr += len;
2831 }
2832 }
2833
2834 if (idx)
2835 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2836}
2837/**
2838 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2839 * @qc: Metadata associated with taskfile to check
2840 *
780a87f7
JG
2841 * Allow low-level driver to filter ATA PACKET commands, returning
2842 * a status indicating whether or not it is OK to use DMA for the
2843 * supplied PACKET command.
2844 *
1da177e4 2845 * LOCKING:
0cba632b
JG
2846 * spin_lock_irqsave(host_set lock)
2847 *
1da177e4
LT
2848 * RETURNS: 0 when ATAPI DMA can be used
2849 * nonzero otherwise
2850 */
2851int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2852{
2853 struct ata_port *ap = qc->ap;
2854 int rc = 0; /* Assume ATAPI DMA is OK by default */
2855
2856 if (ap->ops->check_atapi_dma)
2857 rc = ap->ops->check_atapi_dma(qc);
2858
2859 return rc;
2860}
2861/**
2862 * ata_qc_prep - Prepare taskfile for submission
2863 * @qc: Metadata associated with taskfile to be prepared
2864 *
780a87f7
JG
2865 * Prepare ATA taskfile for submission.
2866 *
1da177e4
LT
2867 * LOCKING:
2868 * spin_lock_irqsave(host_set lock)
2869 */
2870void ata_qc_prep(struct ata_queued_cmd *qc)
2871{
2872 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2873 return;
2874
2875 ata_fill_sg(qc);
2876}
2877
e46834cd
BK
2878void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
2879
0cba632b
JG
2880/**
2881 * ata_sg_init_one - Associate command with memory buffer
2882 * @qc: Command to be associated
2883 * @buf: Memory buffer
2884 * @buflen: Length of memory buffer, in bytes.
2885 *
2886 * Initialize the data-related elements of queued_cmd @qc
2887 * to point to a single memory buffer, @buf of byte length @buflen.
2888 *
2889 * LOCKING:
2890 * spin_lock_irqsave(host_set lock)
2891 */
2892
1da177e4
LT
2893void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2894{
2895 struct scatterlist *sg;
2896
2897 qc->flags |= ATA_QCFLAG_SINGLE;
2898
2899 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 2900 qc->__sg = &qc->sgent;
1da177e4 2901 qc->n_elem = 1;
cedc9a47 2902 qc->orig_n_elem = 1;
1da177e4
LT
2903 qc->buf_virt = buf;
2904
cedc9a47 2905 sg = qc->__sg;
f0612bbc 2906 sg_init_one(sg, buf, buflen);
1da177e4
LT
2907}
2908
0cba632b
JG
2909/**
2910 * ata_sg_init - Associate command with scatter-gather table.
2911 * @qc: Command to be associated
2912 * @sg: Scatter-gather table.
2913 * @n_elem: Number of elements in s/g table.
2914 *
2915 * Initialize the data-related elements of queued_cmd @qc
2916 * to point to a scatter-gather table @sg, containing @n_elem
2917 * elements.
2918 *
2919 * LOCKING:
2920 * spin_lock_irqsave(host_set lock)
2921 */
2922
1da177e4
LT
2923void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2924 unsigned int n_elem)
2925{
2926 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 2927 qc->__sg = sg;
1da177e4 2928 qc->n_elem = n_elem;
cedc9a47 2929 qc->orig_n_elem = n_elem;
1da177e4
LT
2930}
2931
2932/**
0cba632b
JG
2933 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2934 * @qc: Command with memory buffer to be mapped.
2935 *
2936 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
2937 *
2938 * LOCKING:
2939 * spin_lock_irqsave(host_set lock)
2940 *
2941 * RETURNS:
0cba632b 2942 * Zero on success, negative on error.
1da177e4
LT
2943 */
2944
2945static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2946{
2947 struct ata_port *ap = qc->ap;
2948 int dir = qc->dma_dir;
cedc9a47 2949 struct scatterlist *sg = qc->__sg;
1da177e4 2950 dma_addr_t dma_address;
2e242fa9 2951 int trim_sg = 0;
1da177e4 2952
cedc9a47
JG
2953 /* we must lengthen transfers to end on a 32-bit boundary */
2954 qc->pad_len = sg->length & 3;
2955 if (qc->pad_len) {
2956 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2957 struct scatterlist *psg = &qc->pad_sgent;
2958
a4631474 2959 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
2960
2961 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2962
2963 if (qc->tf.flags & ATA_TFLAG_WRITE)
2964 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2965 qc->pad_len);
2966
2967 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2968 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2969 /* trim sg */
2970 sg->length -= qc->pad_len;
2e242fa9
TH
2971 if (sg->length == 0)
2972 trim_sg = 1;
cedc9a47
JG
2973
2974 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2975 sg->length, qc->pad_len);
2976 }
2977
2e242fa9
TH
2978 if (trim_sg) {
2979 qc->n_elem--;
e1410f2d
JG
2980 goto skip_map;
2981 }
2982
1da177e4 2983 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
32529e01 2984 sg->length, dir);
537a95d9
TH
2985 if (dma_mapping_error(dma_address)) {
2986 /* restore sg */
2987 sg->length += qc->pad_len;
1da177e4 2988 return -1;
537a95d9 2989 }
1da177e4
LT
2990
2991 sg_dma_address(sg) = dma_address;
32529e01 2992 sg_dma_len(sg) = sg->length;
1da177e4 2993
2e242fa9 2994skip_map:
1da177e4
LT
2995 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2996 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2997
2998 return 0;
2999}
3000
3001/**
0cba632b
JG
3002 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3003 * @qc: Command with scatter-gather table to be mapped.
3004 *
3005 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3006 *
3007 * LOCKING:
3008 * spin_lock_irqsave(host_set lock)
3009 *
3010 * RETURNS:
0cba632b 3011 * Zero on success, negative on error.
1da177e4
LT
3012 *
3013 */
3014
3015static int ata_sg_setup(struct ata_queued_cmd *qc)
3016{
3017 struct ata_port *ap = qc->ap;
cedc9a47
JG
3018 struct scatterlist *sg = qc->__sg;
3019 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3020 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3021
3022 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3023 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3024
cedc9a47
JG
3025 /* we must lengthen transfers to end on a 32-bit boundary */
3026 qc->pad_len = lsg->length & 3;
3027 if (qc->pad_len) {
3028 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3029 struct scatterlist *psg = &qc->pad_sgent;
3030 unsigned int offset;
3031
a4631474 3032 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3033
3034 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3035
3036 /*
3037 * psg->page/offset are used to copy to-be-written
3038 * data in this function or read data in ata_sg_clean.
3039 */
3040 offset = lsg->offset + lsg->length - qc->pad_len;
3041 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3042 psg->offset = offset_in_page(offset);
3043
3044 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3045 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3046 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3047 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3048 }
3049
3050 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3051 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3052 /* trim last sg */
3053 lsg->length -= qc->pad_len;
e1410f2d
JG
3054 if (lsg->length == 0)
3055 trim_sg = 1;
cedc9a47
JG
3056
3057 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3058 qc->n_elem - 1, lsg->length, qc->pad_len);
3059 }
3060
e1410f2d
JG
3061 pre_n_elem = qc->n_elem;
3062 if (trim_sg && pre_n_elem)
3063 pre_n_elem--;
3064
3065 if (!pre_n_elem) {
3066 n_elem = 0;
3067 goto skip_map;
3068 }
3069
1da177e4 3070 dir = qc->dma_dir;
e1410f2d 3071 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
537a95d9
TH
3072 if (n_elem < 1) {
3073 /* restore last sg */
3074 lsg->length += qc->pad_len;
1da177e4 3075 return -1;
537a95d9 3076 }
1da177e4
LT
3077
3078 DPRINTK("%d sg elements mapped\n", n_elem);
3079
e1410f2d 3080skip_map:
1da177e4
LT
3081 qc->n_elem = n_elem;
3082
3083 return 0;
3084}
3085
40e8c82c
TH
3086/**
3087 * ata_poll_qc_complete - turn irq back on and finish qc
3088 * @qc: Command to complete
8e8b77dd 3089 * @err_mask: ATA status register content
40e8c82c
TH
3090 *
3091 * LOCKING:
3092 * None. (grabs host lock)
3093 */
3094
a22e2eb0 3095void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3096{
3097 struct ata_port *ap = qc->ap;
b8f6153e 3098 unsigned long flags;
40e8c82c 3099
b8f6153e 3100 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
3101 ap->flags &= ~ATA_FLAG_NOINTR;
3102 ata_irq_on(ap);
a22e2eb0 3103 ata_qc_complete(qc);
b8f6153e 3104 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3105}
3106
1da177e4 3107/**
c893a3ae 3108 * ata_pio_poll - poll using PIO, depending on current state
6f0ef4fa 3109 * @ap: the target ata_port
1da177e4
LT
3110 *
3111 * LOCKING:
0cba632b 3112 * None. (executing in kernel thread context)
1da177e4
LT
3113 *
3114 * RETURNS:
6f0ef4fa 3115 * timeout value to use
1da177e4
LT
3116 */
3117
3118static unsigned long ata_pio_poll(struct ata_port *ap)
3119{
c14b8331 3120 struct ata_queued_cmd *qc;
1da177e4 3121 u8 status;
14be71f4
AL
3122 unsigned int poll_state = HSM_ST_UNKNOWN;
3123 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4 3124
c14b8331 3125 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3126 WARN_ON(qc == NULL);
c14b8331 3127
14be71f4
AL
3128 switch (ap->hsm_task_state) {
3129 case HSM_ST:
3130 case HSM_ST_POLL:
3131 poll_state = HSM_ST_POLL;
3132 reg_state = HSM_ST;
1da177e4 3133 break;
14be71f4
AL
3134 case HSM_ST_LAST:
3135 case HSM_ST_LAST_POLL:
3136 poll_state = HSM_ST_LAST_POLL;
3137 reg_state = HSM_ST_LAST;
1da177e4
LT
3138 break;
3139 default:
3140 BUG();
3141 break;
3142 }
3143
3144 status = ata_chk_status(ap);
3145 if (status & ATA_BUSY) {
3146 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 3147 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 3148 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
3149 return 0;
3150 }
14be71f4 3151 ap->hsm_task_state = poll_state;
1da177e4
LT
3152 return ATA_SHORT_PAUSE;
3153 }
3154
14be71f4 3155 ap->hsm_task_state = reg_state;
1da177e4
LT
3156 return 0;
3157}
3158
3159/**
6f0ef4fa
RD
3160 * ata_pio_complete - check if drive is busy or idle
3161 * @ap: the target ata_port
1da177e4
LT
3162 *
3163 * LOCKING:
0cba632b 3164 * None. (executing in kernel thread context)
7fb6ec28
JG
3165 *
3166 * RETURNS:
3167 * Non-zero if qc completed, zero otherwise.
1da177e4
LT
3168 */
3169
7fb6ec28 3170static int ata_pio_complete (struct ata_port *ap)
1da177e4
LT
3171{
3172 struct ata_queued_cmd *qc;
3173 u8 drv_stat;
3174
3175 /*
31433ea3
AC
3176 * This is purely heuristic. This is a fast path. Sometimes when
3177 * we enter, BSY will be cleared in a chk-status or two. If not,
3178 * the drive is probably seeking or something. Snooze for a couple
3179 * msecs, then chk-status again. If still busy, fall back to
14be71f4 3180 * HSM_ST_POLL state.
1da177e4 3181 */
fe79e683
AL
3182 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3183 if (drv_stat & ATA_BUSY) {
1da177e4 3184 msleep(2);
fe79e683
AL
3185 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3186 if (drv_stat & ATA_BUSY) {
14be71f4 3187 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 3188 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 3189 return 0;
1da177e4
LT
3190 }
3191 }
3192
c14b8331 3193 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3194 WARN_ON(qc == NULL);
c14b8331 3195
1da177e4
LT
3196 drv_stat = ata_wait_idle(ap);
3197 if (!ata_ok(drv_stat)) {
1c848984 3198 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3199 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3200 return 0;
1da177e4
LT
3201 }
3202
14be71f4 3203 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3204
a4631474 3205 WARN_ON(qc->err_mask);
a22e2eb0 3206 ata_poll_qc_complete(qc);
7fb6ec28
JG
3207
3208 /* another command may start at this point */
3209
3210 return 1;
1da177e4
LT
3211}
3212
0baab86b
EF
3213
3214/**
c893a3ae 3215 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3216 * @buf: Buffer to swap
3217 * @buf_words: Number of 16-bit words in buffer.
3218 *
3219 * Swap halves of 16-bit words if needed to convert from
3220 * little-endian byte order to native cpu byte order, or
3221 * vice-versa.
3222 *
3223 * LOCKING:
6f0ef4fa 3224 * Inherited from caller.
0baab86b 3225 */
1da177e4
LT
3226void swap_buf_le16(u16 *buf, unsigned int buf_words)
3227{
3228#ifdef __BIG_ENDIAN
3229 unsigned int i;
3230
3231 for (i = 0; i < buf_words; i++)
3232 buf[i] = le16_to_cpu(buf[i]);
3233#endif /* __BIG_ENDIAN */
3234}
3235
6ae4cfb5
AL
3236/**
3237 * ata_mmio_data_xfer - Transfer data by MMIO
3238 * @ap: port to read/write
3239 * @buf: data buffer
3240 * @buflen: buffer length
344babaa 3241 * @write_data: read/write
6ae4cfb5
AL
3242 *
3243 * Transfer data from/to the device data register by MMIO.
3244 *
3245 * LOCKING:
3246 * Inherited from caller.
6ae4cfb5
AL
3247 */
3248
1da177e4
LT
3249static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3250 unsigned int buflen, int write_data)
3251{
3252 unsigned int i;
3253 unsigned int words = buflen >> 1;
3254 u16 *buf16 = (u16 *) buf;
3255 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3256
6ae4cfb5 3257 /* Transfer multiple of 2 bytes */
1da177e4
LT
3258 if (write_data) {
3259 for (i = 0; i < words; i++)
3260 writew(le16_to_cpu(buf16[i]), mmio);
3261 } else {
3262 for (i = 0; i < words; i++)
3263 buf16[i] = cpu_to_le16(readw(mmio));
3264 }
6ae4cfb5
AL
3265
3266 /* Transfer trailing 1 byte, if any. */
3267 if (unlikely(buflen & 0x01)) {
3268 u16 align_buf[1] = { 0 };
3269 unsigned char *trailing_buf = buf + buflen - 1;
3270
3271 if (write_data) {
3272 memcpy(align_buf, trailing_buf, 1);
3273 writew(le16_to_cpu(align_buf[0]), mmio);
3274 } else {
3275 align_buf[0] = cpu_to_le16(readw(mmio));
3276 memcpy(trailing_buf, align_buf, 1);
3277 }
3278 }
1da177e4
LT
3279}
3280
6ae4cfb5
AL
3281/**
3282 * ata_pio_data_xfer - Transfer data by PIO
3283 * @ap: port to read/write
3284 * @buf: data buffer
3285 * @buflen: buffer length
344babaa 3286 * @write_data: read/write
6ae4cfb5
AL
3287 *
3288 * Transfer data from/to the device data register by PIO.
3289 *
3290 * LOCKING:
3291 * Inherited from caller.
6ae4cfb5
AL
3292 */
3293
1da177e4
LT
3294static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3295 unsigned int buflen, int write_data)
3296{
6ae4cfb5 3297 unsigned int words = buflen >> 1;
1da177e4 3298
6ae4cfb5 3299 /* Transfer multiple of 2 bytes */
1da177e4 3300 if (write_data)
6ae4cfb5 3301 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3302 else
6ae4cfb5
AL
3303 insw(ap->ioaddr.data_addr, buf, words);
3304
3305 /* Transfer trailing 1 byte, if any. */
3306 if (unlikely(buflen & 0x01)) {
3307 u16 align_buf[1] = { 0 };
3308 unsigned char *trailing_buf = buf + buflen - 1;
3309
3310 if (write_data) {
3311 memcpy(align_buf, trailing_buf, 1);
3312 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3313 } else {
3314 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3315 memcpy(trailing_buf, align_buf, 1);
3316 }
3317 }
1da177e4
LT
3318}
3319
6ae4cfb5
AL
3320/**
3321 * ata_data_xfer - Transfer data from/to the data register.
3322 * @ap: port to read/write
3323 * @buf: data buffer
3324 * @buflen: buffer length
3325 * @do_write: read/write
3326 *
3327 * Transfer data from/to the device data register.
3328 *
3329 * LOCKING:
3330 * Inherited from caller.
6ae4cfb5
AL
3331 */
3332
1da177e4
LT
3333static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3334 unsigned int buflen, int do_write)
3335{
a1bd9e68
AC
3336 /* Make the crap hardware pay the costs not the good stuff */
3337 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3338 unsigned long flags;
3339 local_irq_save(flags);
3340 if (ap->flags & ATA_FLAG_MMIO)
3341 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3342 else
3343 ata_pio_data_xfer(ap, buf, buflen, do_write);
3344 local_irq_restore(flags);
3345 } else {
3346 if (ap->flags & ATA_FLAG_MMIO)
3347 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3348 else
3349 ata_pio_data_xfer(ap, buf, buflen, do_write);
3350 }
1da177e4
LT
3351}
3352
6ae4cfb5
AL
3353/**
3354 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3355 * @qc: Command on going
3356 *
3357 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3358 *
3359 * LOCKING:
3360 * Inherited from caller.
3361 */
3362
1da177e4
LT
3363static void ata_pio_sector(struct ata_queued_cmd *qc)
3364{
3365 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3366 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3367 struct ata_port *ap = qc->ap;
3368 struct page *page;
3369 unsigned int offset;
3370 unsigned char *buf;
3371
3372 if (qc->cursect == (qc->nsect - 1))
14be71f4 3373 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3374
3375 page = sg[qc->cursg].page;
3376 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3377
3378 /* get the current page and offset */
3379 page = nth_page(page, (offset >> PAGE_SHIFT));
3380 offset %= PAGE_SIZE;
3381
3382 buf = kmap(page) + offset;
3383
3384 qc->cursect++;
3385 qc->cursg_ofs++;
3386
32529e01 3387 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3388 qc->cursg++;
3389 qc->cursg_ofs = 0;
3390 }
3391
3392 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3393
3394 /* do the actual data transfer */
3395 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3396 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3397
3398 kunmap(page);
3399}
3400
6ae4cfb5
AL
3401/**
3402 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3403 * @qc: Command on going
3404 * @bytes: number of bytes
3405 *
3406 * Transfer Transfer data from/to the ATAPI device.
3407 *
3408 * LOCKING:
3409 * Inherited from caller.
3410 *
3411 */
3412
1da177e4
LT
3413static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3414{
3415 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3416 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3417 struct ata_port *ap = qc->ap;
3418 struct page *page;
3419 unsigned char *buf;
3420 unsigned int offset, count;
3421
563a6e1f 3422 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3423 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3424
3425next_sg:
563a6e1f 3426 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3427 /*
563a6e1f
AL
3428 * The end of qc->sg is reached and the device expects
3429 * more data to transfer. In order not to overrun qc->sg
3430 * and fulfill length specified in the byte count register,
3431 * - for read case, discard trailing data from the device
3432 * - for write case, padding zero data to the device
3433 */
3434 u16 pad_buf[1] = { 0 };
3435 unsigned int words = bytes >> 1;
3436 unsigned int i;
3437
3438 if (words) /* warning if bytes > 1 */
7fb6ec28 3439 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3440 ap->id, bytes);
3441
3442 for (i = 0; i < words; i++)
3443 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3444
14be71f4 3445 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3446 return;
3447 }
3448
cedc9a47 3449 sg = &qc->__sg[qc->cursg];
1da177e4 3450
1da177e4
LT
3451 page = sg->page;
3452 offset = sg->offset + qc->cursg_ofs;
3453
3454 /* get the current page and offset */
3455 page = nth_page(page, (offset >> PAGE_SHIFT));
3456 offset %= PAGE_SIZE;
3457
6952df03 3458 /* don't overrun current sg */
32529e01 3459 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3460
3461 /* don't cross page boundaries */
3462 count = min(count, (unsigned int)PAGE_SIZE - offset);
3463
3464 buf = kmap(page) + offset;
3465
3466 bytes -= count;
3467 qc->curbytes += count;
3468 qc->cursg_ofs += count;
3469
32529e01 3470 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3471 qc->cursg++;
3472 qc->cursg_ofs = 0;
3473 }
3474
3475 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3476
3477 /* do the actual data transfer */
3478 ata_data_xfer(ap, buf, count, do_write);
3479
3480 kunmap(page);
3481
563a6e1f 3482 if (bytes)
1da177e4 3483 goto next_sg;
1da177e4
LT
3484}
3485
6ae4cfb5
AL
3486/**
3487 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3488 * @qc: Command on going
3489 *
3490 * Transfer Transfer data from/to the ATAPI device.
3491 *
3492 * LOCKING:
3493 * Inherited from caller.
6ae4cfb5
AL
3494 */
3495
1da177e4
LT
3496static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3497{
3498 struct ata_port *ap = qc->ap;
3499 struct ata_device *dev = qc->dev;
3500 unsigned int ireason, bc_lo, bc_hi, bytes;
3501 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3502
3503 ap->ops->tf_read(ap, &qc->tf);
3504 ireason = qc->tf.nsect;
3505 bc_lo = qc->tf.lbam;
3506 bc_hi = qc->tf.lbah;
3507 bytes = (bc_hi << 8) | bc_lo;
3508
3509 /* shall be cleared to zero, indicating xfer of data */
3510 if (ireason & (1 << 0))
3511 goto err_out;
3512
3513 /* make sure transfer direction matches expected */
3514 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3515 if (do_write != i_write)
3516 goto err_out;
3517
3518 __atapi_pio_bytes(qc, bytes);
3519
3520 return;
3521
3522err_out:
3523 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3524 ap->id, dev->devno);
11a56d24 3525 qc->err_mask |= AC_ERR_HSM;
14be71f4 3526 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3527}
3528
3529/**
6f0ef4fa
RD
3530 * ata_pio_block - start PIO on a block
3531 * @ap: the target ata_port
1da177e4
LT
3532 *
3533 * LOCKING:
0cba632b 3534 * None. (executing in kernel thread context)
1da177e4
LT
3535 */
3536
3537static void ata_pio_block(struct ata_port *ap)
3538{
3539 struct ata_queued_cmd *qc;
3540 u8 status;
3541
3542 /*
6f0ef4fa 3543 * This is purely heuristic. This is a fast path.
1da177e4
LT
3544 * Sometimes when we enter, BSY will be cleared in
3545 * a chk-status or two. If not, the drive is probably seeking
3546 * or something. Snooze for a couple msecs, then
3547 * chk-status again. If still busy, fall back to
14be71f4 3548 * HSM_ST_POLL state.
1da177e4
LT
3549 */
3550 status = ata_busy_wait(ap, ATA_BUSY, 5);
3551 if (status & ATA_BUSY) {
3552 msleep(2);
3553 status = ata_busy_wait(ap, ATA_BUSY, 10);
3554 if (status & ATA_BUSY) {
14be71f4 3555 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3556 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3557 return;
3558 }
3559 }
3560
3561 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3562 WARN_ON(qc == NULL);
1da177e4 3563
fe79e683
AL
3564 /* check error */
3565 if (status & (ATA_ERR | ATA_DF)) {
3566 qc->err_mask |= AC_ERR_DEV;
3567 ap->hsm_task_state = HSM_ST_ERR;
3568 return;
3569 }
3570
3571 /* transfer data if any */
1da177e4 3572 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3573 /* DRQ=0 means no more data to transfer */
1da177e4 3574 if ((status & ATA_DRQ) == 0) {
14be71f4 3575 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3576 return;
3577 }
3578
3579 atapi_pio_bytes(qc);
3580 } else {
3581 /* handle BSY=0, DRQ=0 as error */
3582 if ((status & ATA_DRQ) == 0) {
11a56d24 3583 qc->err_mask |= AC_ERR_HSM;
14be71f4 3584 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3585 return;
3586 }
3587
3588 ata_pio_sector(qc);
3589 }
3590}
3591
3592static void ata_pio_error(struct ata_port *ap)
3593{
3594 struct ata_queued_cmd *qc;
a7dac447 3595
1da177e4 3596 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3597 WARN_ON(qc == NULL);
1da177e4 3598
0565c26d
AL
3599 if (qc->tf.command != ATA_CMD_PACKET)
3600 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3601
1c848984
AL
3602 /* make sure qc->err_mask is available to
3603 * know what's wrong and recover
3604 */
a4631474 3605 WARN_ON(qc->err_mask == 0);
1c848984 3606
14be71f4 3607 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3608
a22e2eb0 3609 ata_poll_qc_complete(qc);
1da177e4
LT
3610}
3611
3612static void ata_pio_task(void *_data)
3613{
3614 struct ata_port *ap = _data;
7fb6ec28
JG
3615 unsigned long timeout;
3616 int qc_completed;
3617
3618fsm_start:
3619 timeout = 0;
3620 qc_completed = 0;
1da177e4 3621
14be71f4
AL
3622 switch (ap->hsm_task_state) {
3623 case HSM_ST_IDLE:
1da177e4
LT
3624 return;
3625
14be71f4 3626 case HSM_ST:
1da177e4
LT
3627 ata_pio_block(ap);
3628 break;
3629
14be71f4 3630 case HSM_ST_LAST:
7fb6ec28 3631 qc_completed = ata_pio_complete(ap);
1da177e4
LT
3632 break;
3633
14be71f4
AL
3634 case HSM_ST_POLL:
3635 case HSM_ST_LAST_POLL:
1da177e4
LT
3636 timeout = ata_pio_poll(ap);
3637 break;
3638
14be71f4
AL
3639 case HSM_ST_TMOUT:
3640 case HSM_ST_ERR:
1da177e4
LT
3641 ata_pio_error(ap);
3642 return;
3643 }
3644
3645 if (timeout)
8061f5f0 3646 ata_port_queue_task(ap, ata_pio_task, ap, timeout);
7fb6ec28
JG
3647 else if (!qc_completed)
3648 goto fsm_start;
1da177e4
LT
3649}
3650
8061f5f0
TH
3651/**
3652 * atapi_packet_task - Write CDB bytes to hardware
3653 * @_data: Port to which ATAPI device is attached.
3654 *
3655 * When device has indicated its readiness to accept
3656 * a CDB, this function is called. Send the CDB.
3657 * If DMA is to be performed, exit immediately.
3658 * Otherwise, we are in polling mode, so poll
3659 * status under operation succeeds or fails.
3660 *
3661 * LOCKING:
3662 * Kernel thread context (may sleep)
3663 */
3664
3665static void atapi_packet_task(void *_data)
3666{
3667 struct ata_port *ap = _data;
3668 struct ata_queued_cmd *qc;
3669 u8 status;
3670
3671 qc = ata_qc_from_tag(ap, ap->active_tag);
3672 WARN_ON(qc == NULL);
3673 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3674
3675 /* sleep-wait for BSY to clear */
3676 DPRINTK("busy wait\n");
3677 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3678 qc->err_mask |= AC_ERR_TIMEOUT;
3679 goto err_out;
3680 }
3681
3682 /* make sure DRQ is set */
3683 status = ata_chk_status(ap);
3684 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3685 qc->err_mask |= AC_ERR_HSM;
3686 goto err_out;
3687 }
3688
3689 /* send SCSI cdb */
3690 DPRINTK("send cdb\n");
3691 WARN_ON(qc->dev->cdb_len < 12);
3692
3693 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3694 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3695 unsigned long flags;
3696
3697 /* Once we're done issuing command and kicking bmdma,
3698 * irq handler takes over. To not lose irq, we need
3699 * to clear NOINTR flag before sending cdb, but
3700 * interrupt handler shouldn't be invoked before we're
3701 * finished. Hence, the following locking.
3702 */
3703 spin_lock_irqsave(&ap->host_set->lock, flags);
3704 ap->flags &= ~ATA_FLAG_NOINTR;
3705 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3706 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3707 ap->ops->bmdma_start(qc); /* initiate bmdma */
3708 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3709 } else {
3710 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3711
3712 /* PIO commands are handled by polling */
3713 ap->hsm_task_state = HSM_ST;
3714 ata_port_queue_task(ap, ata_pio_task, ap, 0);
3715 }
3716
3717 return;
3718
3719err_out:
3720 ata_poll_qc_complete(qc);
3721}
3722
1da177e4
LT
3723/**
3724 * ata_qc_timeout - Handle timeout of queued command
3725 * @qc: Command that timed out
3726 *
3727 * Some part of the kernel (currently, only the SCSI layer)
3728 * has noticed that the active command on port @ap has not
3729 * completed after a specified length of time. Handle this
3730 * condition by disabling DMA (if necessary) and completing
3731 * transactions, with error if necessary.
3732 *
3733 * This also handles the case of the "lost interrupt", where
3734 * for some reason (possibly hardware bug, possibly driver bug)
3735 * an interrupt was not delivered to the driver, even though the
3736 * transaction completed successfully.
3737 *
3738 * LOCKING:
0cba632b 3739 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
3740 */
3741
3742static void ata_qc_timeout(struct ata_queued_cmd *qc)
3743{
3744 struct ata_port *ap = qc->ap;
b8f6153e 3745 struct ata_host_set *host_set = ap->host_set;
1da177e4 3746 u8 host_stat = 0, drv_stat;
b8f6153e 3747 unsigned long flags;
1da177e4
LT
3748
3749 DPRINTK("ENTER\n");
3750
c18d06f8
TH
3751 ap->hsm_task_state = HSM_ST_IDLE;
3752
b8f6153e
JG
3753 spin_lock_irqsave(&host_set->lock, flags);
3754
1da177e4
LT
3755 switch (qc->tf.protocol) {
3756
3757 case ATA_PROT_DMA:
3758 case ATA_PROT_ATAPI_DMA:
3759 host_stat = ap->ops->bmdma_status(ap);
3760
3761 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3762 ap->ops->bmdma_stop(qc);
1da177e4
LT
3763
3764 /* fall through */
3765
3766 default:
3767 ata_altstatus(ap);
3768 drv_stat = ata_chk_status(ap);
3769
3770 /* ack bmdma irq events */
3771 ap->ops->irq_clear(ap);
3772
3773 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3774 ap->id, qc->tf.command, drv_stat, host_stat);
3775
3776 /* complete taskfile transaction */
a22e2eb0 3777 qc->err_mask |= ac_err_mask(drv_stat);
1da177e4
LT
3778 break;
3779 }
b8f6153e
JG
3780
3781 spin_unlock_irqrestore(&host_set->lock, flags);
3782
a72ec4ce
TH
3783 ata_eh_qc_complete(qc);
3784
1da177e4
LT
3785 DPRINTK("EXIT\n");
3786}
3787
3788/**
3789 * ata_eng_timeout - Handle timeout of queued command
3790 * @ap: Port on which timed-out command is active
3791 *
3792 * Some part of the kernel (currently, only the SCSI layer)
3793 * has noticed that the active command on port @ap has not
3794 * completed after a specified length of time. Handle this
3795 * condition by disabling DMA (if necessary) and completing
3796 * transactions, with error if necessary.
3797 *
3798 * This also handles the case of the "lost interrupt", where
3799 * for some reason (possibly hardware bug, possibly driver bug)
3800 * an interrupt was not delivered to the driver, even though the
3801 * transaction completed successfully.
3802 *
3803 * LOCKING:
3804 * Inherited from SCSI layer (none, can sleep)
3805 */
3806
3807void ata_eng_timeout(struct ata_port *ap)
3808{
1da177e4
LT
3809 DPRINTK("ENTER\n");
3810
f6379020 3811 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
1da177e4 3812
1da177e4
LT
3813 DPRINTK("EXIT\n");
3814}
3815
3816/**
3817 * ata_qc_new - Request an available ATA command, for queueing
3818 * @ap: Port associated with device @dev
3819 * @dev: Device from whom we request an available command structure
3820 *
3821 * LOCKING:
0cba632b 3822 * None.
1da177e4
LT
3823 */
3824
3825static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3826{
3827 struct ata_queued_cmd *qc = NULL;
3828 unsigned int i;
3829
3830 for (i = 0; i < ATA_MAX_QUEUE; i++)
3831 if (!test_and_set_bit(i, &ap->qactive)) {
3832 qc = ata_qc_from_tag(ap, i);
3833 break;
3834 }
3835
3836 if (qc)
3837 qc->tag = i;
3838
3839 return qc;
3840}
3841
3842/**
3843 * ata_qc_new_init - Request an available ATA command, and initialize it
3844 * @ap: Port associated with device @dev
3845 * @dev: Device from whom we request an available command structure
3846 *
3847 * LOCKING:
0cba632b 3848 * None.
1da177e4
LT
3849 */
3850
3851struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3852 struct ata_device *dev)
3853{
3854 struct ata_queued_cmd *qc;
3855
3856 qc = ata_qc_new(ap);
3857 if (qc) {
1da177e4
LT
3858 qc->scsicmd = NULL;
3859 qc->ap = ap;
3860 qc->dev = dev;
1da177e4 3861
2c13b7ce 3862 ata_qc_reinit(qc);
1da177e4
LT
3863 }
3864
3865 return qc;
3866}
3867
1da177e4
LT
3868/**
3869 * ata_qc_free - free unused ata_queued_cmd
3870 * @qc: Command to complete
3871 *
3872 * Designed to free unused ata_queued_cmd object
3873 * in case something prevents using it.
3874 *
3875 * LOCKING:
0cba632b 3876 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3877 */
3878void ata_qc_free(struct ata_queued_cmd *qc)
3879{
4ba946e9
TH
3880 struct ata_port *ap = qc->ap;
3881 unsigned int tag;
3882
a4631474 3883 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 3884
4ba946e9
TH
3885 qc->flags = 0;
3886 tag = qc->tag;
3887 if (likely(ata_tag_valid(tag))) {
3888 if (tag == ap->active_tag)
3889 ap->active_tag = ATA_TAG_POISON;
3890 qc->tag = ATA_TAG_POISON;
3891 clear_bit(tag, &ap->qactive);
3892 }
1da177e4
LT
3893}
3894
76014427 3895void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 3896{
a4631474
TH
3897 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3898 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
3899
3900 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3901 ata_sg_clean(qc);
3902
3f3791d3
AL
3903 /* atapi: mark qc as inactive to prevent the interrupt handler
3904 * from completing the command twice later, before the error handler
3905 * is called. (when rc != 0 and atapi request sense is needed)
3906 */
3907 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3908
1da177e4 3909 /* call completion callback */
77853bf2 3910 qc->complete_fn(qc);
1da177e4
LT
3911}
3912
3913static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3914{
3915 struct ata_port *ap = qc->ap;
3916
3917 switch (qc->tf.protocol) {
3918 case ATA_PROT_DMA:
3919 case ATA_PROT_ATAPI_DMA:
3920 return 1;
3921
3922 case ATA_PROT_ATAPI:
3923 case ATA_PROT_PIO:
1da177e4
LT
3924 if (ap->flags & ATA_FLAG_PIO_DMA)
3925 return 1;
3926
3927 /* fall through */
3928
3929 default:
3930 return 0;
3931 }
3932
3933 /* never reached */
3934}
3935
3936/**
3937 * ata_qc_issue - issue taskfile to device
3938 * @qc: command to issue to device
3939 *
3940 * Prepare an ATA command to submission to device.
3941 * This includes mapping the data into a DMA-able
3942 * area, filling in the S/G table, and finally
3943 * writing the taskfile to hardware, starting the command.
3944 *
3945 * LOCKING:
3946 * spin_lock_irqsave(host_set lock)
3947 *
3948 * RETURNS:
9a3d9eb0 3949 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
3950 */
3951
9a3d9eb0 3952unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
3953{
3954 struct ata_port *ap = qc->ap;
3955
3956 if (ata_should_dma_map(qc)) {
3957 if (qc->flags & ATA_QCFLAG_SG) {
3958 if (ata_sg_setup(qc))
8e436af9 3959 goto sg_err;
1da177e4
LT
3960 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3961 if (ata_sg_setup_one(qc))
8e436af9 3962 goto sg_err;
1da177e4
LT
3963 }
3964 } else {
3965 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3966 }
3967
3968 ap->ops->qc_prep(qc);
3969
3970 qc->ap->active_tag = qc->tag;
3971 qc->flags |= ATA_QCFLAG_ACTIVE;
3972
3973 return ap->ops->qc_issue(qc);
3974
8e436af9
TH
3975sg_err:
3976 qc->flags &= ~ATA_QCFLAG_DMAMAP;
9a3d9eb0 3977 return AC_ERR_SYSTEM;
1da177e4
LT
3978}
3979
0baab86b 3980
1da177e4
LT
3981/**
3982 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3983 * @qc: command to issue to device
3984 *
3985 * Using various libata functions and hooks, this function
3986 * starts an ATA command. ATA commands are grouped into
3987 * classes called "protocols", and issuing each type of protocol
3988 * is slightly different.
3989 *
0baab86b
EF
3990 * May be used as the qc_issue() entry in ata_port_operations.
3991 *
1da177e4
LT
3992 * LOCKING:
3993 * spin_lock_irqsave(host_set lock)
3994 *
3995 * RETURNS:
9a3d9eb0 3996 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
3997 */
3998
9a3d9eb0 3999unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4000{
4001 struct ata_port *ap = qc->ap;
4002
4003 ata_dev_select(ap, qc->dev->devno, 1, 0);
4004
4005 switch (qc->tf.protocol) {
4006 case ATA_PROT_NODATA:
e5338254 4007 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
4008 break;
4009
4010 case ATA_PROT_DMA:
4011 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4012 ap->ops->bmdma_setup(qc); /* set up bmdma */
4013 ap->ops->bmdma_start(qc); /* initiate bmdma */
4014 break;
4015
4016 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4017 ata_qc_set_polling(qc);
e5338254 4018 ata_tf_to_host(ap, &qc->tf);
14be71f4 4019 ap->hsm_task_state = HSM_ST;
8061f5f0 4020 ata_port_queue_task(ap, ata_pio_task, ap, 0);
1da177e4
LT
4021 break;
4022
4023 case ATA_PROT_ATAPI:
4024 ata_qc_set_polling(qc);
e5338254 4025 ata_tf_to_host(ap, &qc->tf);
8061f5f0 4026 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4027 break;
4028
4029 case ATA_PROT_ATAPI_NODATA:
c1389503 4030 ap->flags |= ATA_FLAG_NOINTR;
e5338254 4031 ata_tf_to_host(ap, &qc->tf);
8061f5f0 4032 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4033 break;
4034
4035 case ATA_PROT_ATAPI_DMA:
c1389503 4036 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
4037 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4038 ap->ops->bmdma_setup(qc); /* set up bmdma */
8061f5f0 4039 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4040 break;
4041
4042 default:
4043 WARN_ON(1);
9a3d9eb0 4044 return AC_ERR_SYSTEM;
1da177e4
LT
4045 }
4046
4047 return 0;
4048}
4049
4050/**
0baab86b 4051 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
1da177e4
LT
4052 * @qc: Info associated with this ATA transaction.
4053 *
4054 * LOCKING:
4055 * spin_lock_irqsave(host_set lock)
4056 */
4057
4058static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
4059{
4060 struct ata_port *ap = qc->ap;
4061 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
4062 u8 dmactl;
4063 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4064
4065 /* load PRD table addr. */
4066 mb(); /* make sure PRD table writes are visible to controller */
4067 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
4068
4069 /* specify data direction, triple-check start bit is clear */
4070 dmactl = readb(mmio + ATA_DMA_CMD);
4071 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
4072 if (!rw)
4073 dmactl |= ATA_DMA_WR;
4074 writeb(dmactl, mmio + ATA_DMA_CMD);
4075
4076 /* issue r/w command */
4077 ap->ops->exec_command(ap, &qc->tf);
4078}
4079
4080/**
b73fc89f 4081 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
1da177e4
LT
4082 * @qc: Info associated with this ATA transaction.
4083 *
4084 * LOCKING:
4085 * spin_lock_irqsave(host_set lock)
4086 */
4087
4088static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
4089{
4090 struct ata_port *ap = qc->ap;
4091 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4092 u8 dmactl;
4093
4094 /* start host DMA transaction */
4095 dmactl = readb(mmio + ATA_DMA_CMD);
4096 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
4097
4098 /* Strictly, one may wish to issue a readb() here, to
4099 * flush the mmio write. However, control also passes
4100 * to the hardware at this point, and it will interrupt
4101 * us when we are to resume control. So, in effect,
4102 * we don't care when the mmio write flushes.
4103 * Further, a read of the DMA status register _immediately_
4104 * following the write may not be what certain flaky hardware
4105 * is expected, so I think it is best to not add a readb()
4106 * without first all the MMIO ATA cards/mobos.
4107 * Or maybe I'm just being paranoid.
4108 */
4109}
4110
4111/**
4112 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
4113 * @qc: Info associated with this ATA transaction.
4114 *
4115 * LOCKING:
4116 * spin_lock_irqsave(host_set lock)
4117 */
4118
4119static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
4120{
4121 struct ata_port *ap = qc->ap;
4122 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
4123 u8 dmactl;
4124
4125 /* load PRD table addr. */
4126 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
4127
4128 /* specify data direction, triple-check start bit is clear */
4129 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4130 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
4131 if (!rw)
4132 dmactl |= ATA_DMA_WR;
4133 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4134
4135 /* issue r/w command */
4136 ap->ops->exec_command(ap, &qc->tf);
4137}
4138
4139/**
4140 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
4141 * @qc: Info associated with this ATA transaction.
4142 *
4143 * LOCKING:
4144 * spin_lock_irqsave(host_set lock)
4145 */
4146
4147static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
4148{
4149 struct ata_port *ap = qc->ap;
4150 u8 dmactl;
4151
4152 /* start host DMA transaction */
4153 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4154 outb(dmactl | ATA_DMA_START,
4155 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4156}
4157
0baab86b
EF
4158
4159/**
4160 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
4161 * @qc: Info associated with this ATA transaction.
4162 *
4163 * Writes the ATA_DMA_START flag to the DMA command register.
4164 *
4165 * May be used as the bmdma_start() entry in ata_port_operations.
4166 *
4167 * LOCKING:
4168 * spin_lock_irqsave(host_set lock)
4169 */
1da177e4
LT
4170void ata_bmdma_start(struct ata_queued_cmd *qc)
4171{
4172 if (qc->ap->flags & ATA_FLAG_MMIO)
4173 ata_bmdma_start_mmio(qc);
4174 else
4175 ata_bmdma_start_pio(qc);
4176}
4177
0baab86b
EF
4178
4179/**
4180 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
4181 * @qc: Info associated with this ATA transaction.
4182 *
4183 * Writes address of PRD table to device's PRD Table Address
4184 * register, sets the DMA control register, and calls
4185 * ops->exec_command() to start the transfer.
4186 *
4187 * May be used as the bmdma_setup() entry in ata_port_operations.
4188 *
4189 * LOCKING:
4190 * spin_lock_irqsave(host_set lock)
4191 */
1da177e4
LT
4192void ata_bmdma_setup(struct ata_queued_cmd *qc)
4193{
4194 if (qc->ap->flags & ATA_FLAG_MMIO)
4195 ata_bmdma_setup_mmio(qc);
4196 else
4197 ata_bmdma_setup_pio(qc);
4198}
4199
0baab86b
EF
4200
4201/**
4202 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
decc6d0b 4203 * @ap: Port associated with this ATA transaction.
0baab86b
EF
4204 *
4205 * Clear interrupt and error flags in DMA status register.
4206 *
4207 * May be used as the irq_clear() entry in ata_port_operations.
4208 *
4209 * LOCKING:
4210 * spin_lock_irqsave(host_set lock)
4211 */
4212
1da177e4
LT
4213void ata_bmdma_irq_clear(struct ata_port *ap)
4214{
4d4681f6
JG
4215 if (!ap->ioaddr.bmdma_addr)
4216 return;
1da177e4 4217
4d4681f6
JG
4218 if (ap->flags & ATA_FLAG_MMIO) {
4219 void __iomem *mmio =
4220 ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
4221 writeb(readb(mmio), mmio);
4222 } else {
4223 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
4224 outb(inb(addr), addr);
4225 }
1da177e4
LT
4226}
4227
0baab86b
EF
4228
4229/**
4230 * ata_bmdma_status - Read PCI IDE BMDMA status
decc6d0b 4231 * @ap: Port associated with this ATA transaction.
0baab86b
EF
4232 *
4233 * Read and return BMDMA status register.
4234 *
4235 * May be used as the bmdma_status() entry in ata_port_operations.
4236 *
4237 * LOCKING:
4238 * spin_lock_irqsave(host_set lock)
4239 */
4240
1da177e4
LT
4241u8 ata_bmdma_status(struct ata_port *ap)
4242{
4243 u8 host_stat;
4244 if (ap->flags & ATA_FLAG_MMIO) {
4245 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4246 host_stat = readb(mmio + ATA_DMA_STATUS);
4247 } else
ee500aab 4248 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
1da177e4
LT
4249 return host_stat;
4250}
4251
0baab86b
EF
4252
4253/**
4254 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
b73fc89f 4255 * @qc: Command we are ending DMA for
0baab86b
EF
4256 *
4257 * Clears the ATA_DMA_START flag in the dma control register
4258 *
4259 * May be used as the bmdma_stop() entry in ata_port_operations.
4260 *
4261 * LOCKING:
4262 * spin_lock_irqsave(host_set lock)
4263 */
4264
b73fc89f 4265void ata_bmdma_stop(struct ata_queued_cmd *qc)
1da177e4 4266{
b73fc89f 4267 struct ata_port *ap = qc->ap;
1da177e4
LT
4268 if (ap->flags & ATA_FLAG_MMIO) {
4269 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4270
4271 /* clear start/stop bit */
4272 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
4273 mmio + ATA_DMA_CMD);
4274 } else {
4275 /* clear start/stop bit */
4276 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4277 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4278 }
4279
4280 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4281 ata_altstatus(ap); /* dummy read */
4282}
4283
4284/**
4285 * ata_host_intr - Handle host interrupt for given (port, task)
4286 * @ap: Port on which interrupt arrived (possibly...)
4287 * @qc: Taskfile currently active in engine
4288 *
4289 * Handle host interrupt for given queued command. Currently,
4290 * only DMA interrupts are handled. All other commands are
4291 * handled via polling with interrupts disabled (nIEN bit).
4292 *
4293 * LOCKING:
4294 * spin_lock_irqsave(host_set lock)
4295 *
4296 * RETURNS:
4297 * One if interrupt was handled, zero if not (shared irq).
4298 */
4299
4300inline unsigned int ata_host_intr (struct ata_port *ap,
4301 struct ata_queued_cmd *qc)
4302{
4303 u8 status, host_stat;
4304
4305 switch (qc->tf.protocol) {
4306
4307 case ATA_PROT_DMA:
4308 case ATA_PROT_ATAPI_DMA:
4309 case ATA_PROT_ATAPI:
4310 /* check status of DMA engine */
4311 host_stat = ap->ops->bmdma_status(ap);
4312 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4313
4314 /* if it's not our irq... */
4315 if (!(host_stat & ATA_DMA_INTR))
4316 goto idle_irq;
4317
4318 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4319 ap->ops->bmdma_stop(qc);
1da177e4
LT
4320
4321 /* fall through */
4322
4323 case ATA_PROT_ATAPI_NODATA:
4324 case ATA_PROT_NODATA:
4325 /* check altstatus */
4326 status = ata_altstatus(ap);
4327 if (status & ATA_BUSY)
4328 goto idle_irq;
4329
4330 /* check main status, clearing INTRQ */
4331 status = ata_chk_status(ap);
4332 if (unlikely(status & ATA_BUSY))
4333 goto idle_irq;
4334 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4335 ap->id, qc->tf.protocol, status);
4336
4337 /* ack bmdma irq events */
4338 ap->ops->irq_clear(ap);
4339
4340 /* complete taskfile transaction */
a22e2eb0
AL
4341 qc->err_mask |= ac_err_mask(status);
4342 ata_qc_complete(qc);
1da177e4
LT
4343 break;
4344
4345 default:
4346 goto idle_irq;
4347 }
4348
4349 return 1; /* irq handled */
4350
4351idle_irq:
4352 ap->stats.idle_irq++;
4353
4354#ifdef ATA_IRQ_TRAP
4355 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4
LT
4356 ata_irq_ack(ap, 0); /* debug trap */
4357 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
23cfce89 4358 return 1;
1da177e4
LT
4359 }
4360#endif
4361 return 0; /* irq not handled */
4362}
4363
4364/**
4365 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4366 * @irq: irq line (unused)
4367 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4368 * @regs: unused
4369 *
0cba632b
JG
4370 * Default interrupt handler for PCI IDE devices. Calls
4371 * ata_host_intr() for each port that is not disabled.
4372 *
1da177e4 4373 * LOCKING:
0cba632b 4374 * Obtains host_set lock during operation.
1da177e4
LT
4375 *
4376 * RETURNS:
0cba632b 4377 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4378 */
4379
4380irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4381{
4382 struct ata_host_set *host_set = dev_instance;
4383 unsigned int i;
4384 unsigned int handled = 0;
4385 unsigned long flags;
4386
4387 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4388 spin_lock_irqsave(&host_set->lock, flags);
4389
4390 for (i = 0; i < host_set->n_ports; i++) {
4391 struct ata_port *ap;
4392
4393 ap = host_set->ports[i];
c1389503
TH
4394 if (ap &&
4395 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4396 struct ata_queued_cmd *qc;
4397
4398 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4399 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4400 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4401 handled |= ata_host_intr(ap, qc);
4402 }
4403 }
4404
4405 spin_unlock_irqrestore(&host_set->lock, flags);
4406
4407 return IRQ_RETVAL(handled);
4408}
4409
0baab86b 4410
9b847548
JA
4411/*
4412 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4413 * without filling any other registers
4414 */
4415static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4416 u8 cmd)
4417{
4418 struct ata_taskfile tf;
4419 int err;
4420
4421 ata_tf_init(ap, &tf, dev->devno);
4422
4423 tf.command = cmd;
4424 tf.flags |= ATA_TFLAG_DEVICE;
4425 tf.protocol = ATA_PROT_NODATA;
4426
4427 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4428 if (err)
4429 printk(KERN_ERR "%s: ata command failed: %d\n",
4430 __FUNCTION__, err);
4431
4432 return err;
4433}
4434
4435static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4436{
4437 u8 cmd;
4438
4439 if (!ata_try_flush_cache(dev))
4440 return 0;
4441
4442 if (ata_id_has_flush_ext(dev->id))
4443 cmd = ATA_CMD_FLUSH_EXT;
4444 else
4445 cmd = ATA_CMD_FLUSH;
4446
4447 return ata_do_simple_cmd(ap, dev, cmd);
4448}
4449
4450static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4451{
4452 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4453}
4454
4455static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4456{
4457 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4458}
4459
4460/**
4461 * ata_device_resume - wakeup a previously suspended devices
c893a3ae
RD
4462 * @ap: port the device is connected to
4463 * @dev: the device to resume
9b847548
JA
4464 *
4465 * Kick the drive back into action, by sending it an idle immediate
4466 * command and making sure its transfer mode matches between drive
4467 * and host.
4468 *
4469 */
4470int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4471{
4472 if (ap->flags & ATA_FLAG_SUSPENDED) {
4473 ap->flags &= ~ATA_FLAG_SUSPENDED;
4474 ata_set_mode(ap);
4475 }
4476 if (!ata_dev_present(dev))
4477 return 0;
4478 if (dev->class == ATA_DEV_ATA)
4479 ata_start_drive(ap, dev);
4480
4481 return 0;
4482}
4483
4484/**
4485 * ata_device_suspend - prepare a device for suspend
c893a3ae
RD
4486 * @ap: port the device is connected to
4487 * @dev: the device to suspend
9b847548
JA
4488 *
4489 * Flush the cache on the drive, if appropriate, then issue a
4490 * standbynow command.
9b847548
JA
4491 */
4492int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4493{
4494 if (!ata_dev_present(dev))
4495 return 0;
4496 if (dev->class == ATA_DEV_ATA)
4497 ata_flush_cache(ap, dev);
4498
4499 ata_standby_drive(ap, dev);
4500 ap->flags |= ATA_FLAG_SUSPENDED;
4501 return 0;
4502}
4503
c893a3ae
RD
4504/**
4505 * ata_port_start - Set port up for dma.
4506 * @ap: Port to initialize
4507 *
4508 * Called just after data structures for each port are
4509 * initialized. Allocates space for PRD table.
4510 *
4511 * May be used as the port_start() entry in ata_port_operations.
4512 *
4513 * LOCKING:
4514 * Inherited from caller.
4515 */
4516
1da177e4
LT
4517int ata_port_start (struct ata_port *ap)
4518{
4519 struct device *dev = ap->host_set->dev;
6037d6bb 4520 int rc;
1da177e4
LT
4521
4522 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4523 if (!ap->prd)
4524 return -ENOMEM;
4525
6037d6bb
JG
4526 rc = ata_pad_alloc(ap, dev);
4527 if (rc) {
cedc9a47 4528 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4529 return rc;
cedc9a47
JG
4530 }
4531
1da177e4
LT
4532 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4533
4534 return 0;
4535}
4536
0baab86b
EF
4537
4538/**
4539 * ata_port_stop - Undo ata_port_start()
4540 * @ap: Port to shut down
4541 *
4542 * Frees the PRD table.
4543 *
4544 * May be used as the port_stop() entry in ata_port_operations.
4545 *
4546 * LOCKING:
6f0ef4fa 4547 * Inherited from caller.
0baab86b
EF
4548 */
4549
1da177e4
LT
4550void ata_port_stop (struct ata_port *ap)
4551{
4552 struct device *dev = ap->host_set->dev;
4553
4554 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4555 ata_pad_free(ap, dev);
1da177e4
LT
4556}
4557
aa8f0dc6
JG
4558void ata_host_stop (struct ata_host_set *host_set)
4559{
4560 if (host_set->mmio_base)
4561 iounmap(host_set->mmio_base);
4562}
4563
4564
1da177e4
LT
4565/**
4566 * ata_host_remove - Unregister SCSI host structure with upper layers
4567 * @ap: Port to unregister
4568 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4569 *
4570 * LOCKING:
6f0ef4fa 4571 * Inherited from caller.
1da177e4
LT
4572 */
4573
4574static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4575{
4576 struct Scsi_Host *sh = ap->host;
4577
4578 DPRINTK("ENTER\n");
4579
4580 if (do_unregister)
4581 scsi_remove_host(sh);
4582
4583 ap->ops->port_stop(ap);
4584}
4585
4586/**
4587 * ata_host_init - Initialize an ata_port structure
4588 * @ap: Structure to initialize
4589 * @host: associated SCSI mid-layer structure
4590 * @host_set: Collection of hosts to which @ap belongs
4591 * @ent: Probe information provided by low-level driver
4592 * @port_no: Port number associated with this ata_port
4593 *
0cba632b
JG
4594 * Initialize a new ata_port structure, and its associated
4595 * scsi_host.
4596 *
1da177e4 4597 * LOCKING:
0cba632b 4598 * Inherited from caller.
1da177e4
LT
4599 */
4600
4601static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4602 struct ata_host_set *host_set,
057ace5e 4603 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4604{
4605 unsigned int i;
4606
4607 host->max_id = 16;
4608 host->max_lun = 1;
4609 host->max_channel = 1;
4610 host->unique_id = ata_unique_id++;
4611 host->max_cmd_len = 12;
12413197 4612
1da177e4
LT
4613 ap->flags = ATA_FLAG_PORT_DISABLED;
4614 ap->id = host->unique_id;
4615 ap->host = host;
4616 ap->ctl = ATA_DEVCTL_OBS;
4617 ap->host_set = host_set;
4618 ap->port_no = port_no;
4619 ap->hard_port_no =
4620 ent->legacy_mode ? ent->hard_port_no : port_no;
4621 ap->pio_mask = ent->pio_mask;
4622 ap->mwdma_mask = ent->mwdma_mask;
4623 ap->udma_mask = ent->udma_mask;
4624 ap->flags |= ent->host_flags;
4625 ap->ops = ent->port_ops;
4626 ap->cbl = ATA_CBL_NONE;
4627 ap->active_tag = ATA_TAG_POISON;
4628 ap->last_ctl = 0xFF;
4629
86e45b6b 4630 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4631 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4
LT
4632
4633 for (i = 0; i < ATA_MAX_DEVICES; i++)
4634 ap->device[i].devno = i;
4635
4636#ifdef ATA_IRQ_TRAP
4637 ap->stats.unhandled_irq = 1;
4638 ap->stats.idle_irq = 1;
4639#endif
4640
4641 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4642}
4643
4644/**
4645 * ata_host_add - Attach low-level ATA driver to system
4646 * @ent: Information provided by low-level driver
4647 * @host_set: Collections of ports to which we add
4648 * @port_no: Port number associated with this host
4649 *
0cba632b
JG
4650 * Attach low-level ATA driver to system.
4651 *
1da177e4 4652 * LOCKING:
0cba632b 4653 * PCI/etc. bus probe sem.
1da177e4
LT
4654 *
4655 * RETURNS:
0cba632b 4656 * New ata_port on success, for NULL on error.
1da177e4
LT
4657 */
4658
057ace5e 4659static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4660 struct ata_host_set *host_set,
4661 unsigned int port_no)
4662{
4663 struct Scsi_Host *host;
4664 struct ata_port *ap;
4665 int rc;
4666
4667 DPRINTK("ENTER\n");
4668 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4669 if (!host)
4670 return NULL;
4671
30afc84c
TH
4672 host->transportt = &ata_scsi_transport_template;
4673
1da177e4
LT
4674 ap = (struct ata_port *) &host->hostdata[0];
4675
4676 ata_host_init(ap, host, host_set, ent, port_no);
4677
4678 rc = ap->ops->port_start(ap);
4679 if (rc)
4680 goto err_out;
4681
4682 return ap;
4683
4684err_out:
4685 scsi_host_put(host);
4686 return NULL;
4687}
4688
4689/**
0cba632b
JG
4690 * ata_device_add - Register hardware device with ATA and SCSI layers
4691 * @ent: Probe information describing hardware device to be registered
4692 *
4693 * This function processes the information provided in the probe
4694 * information struct @ent, allocates the necessary ATA and SCSI
4695 * host information structures, initializes them, and registers
4696 * everything with requisite kernel subsystems.
4697 *
4698 * This function requests irqs, probes the ATA bus, and probes
4699 * the SCSI bus.
1da177e4
LT
4700 *
4701 * LOCKING:
0cba632b 4702 * PCI/etc. bus probe sem.
1da177e4
LT
4703 *
4704 * RETURNS:
0cba632b 4705 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4706 */
4707
057ace5e 4708int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4709{
4710 unsigned int count = 0, i;
4711 struct device *dev = ent->dev;
4712 struct ata_host_set *host_set;
4713
4714 DPRINTK("ENTER\n");
4715 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4716 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4717 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4718 if (!host_set)
4719 return 0;
1da177e4
LT
4720 spin_lock_init(&host_set->lock);
4721
4722 host_set->dev = dev;
4723 host_set->n_ports = ent->n_ports;
4724 host_set->irq = ent->irq;
4725 host_set->mmio_base = ent->mmio_base;
4726 host_set->private_data = ent->private_data;
4727 host_set->ops = ent->port_ops;
4728
4729 /* register each port bound to this device */
4730 for (i = 0; i < ent->n_ports; i++) {
4731 struct ata_port *ap;
4732 unsigned long xfer_mode_mask;
4733
4734 ap = ata_host_add(ent, host_set, i);
4735 if (!ap)
4736 goto err_out;
4737
4738 host_set->ports[i] = ap;
4739 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4740 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4741 (ap->pio_mask << ATA_SHIFT_PIO);
4742
4743 /* print per-port info to dmesg */
4744 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4745 "bmdma 0x%lX irq %lu\n",
4746 ap->id,
4747 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4748 ata_mode_string(xfer_mode_mask),
4749 ap->ioaddr.cmd_addr,
4750 ap->ioaddr.ctl_addr,
4751 ap->ioaddr.bmdma_addr,
4752 ent->irq);
4753
4754 ata_chk_status(ap);
4755 host_set->ops->irq_clear(ap);
4756 count++;
4757 }
4758
57f3bda8
RD
4759 if (!count)
4760 goto err_free_ret;
1da177e4
LT
4761
4762 /* obtain irq, that is shared between channels */
4763 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4764 DRV_NAME, host_set))
4765 goto err_out;
4766
4767 /* perform each probe synchronously */
4768 DPRINTK("probe begin\n");
4769 for (i = 0; i < count; i++) {
4770 struct ata_port *ap;
4771 int rc;
4772
4773 ap = host_set->ports[i];
4774
c893a3ae 4775 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4776 rc = ata_bus_probe(ap);
c893a3ae 4777 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4778
4779 if (rc) {
4780 /* FIXME: do something useful here?
4781 * Current libata behavior will
4782 * tear down everything when
4783 * the module is removed
4784 * or the h/w is unplugged.
4785 */
4786 }
4787
4788 rc = scsi_add_host(ap->host, dev);
4789 if (rc) {
4790 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4791 ap->id);
4792 /* FIXME: do something useful here */
4793 /* FIXME: handle unconditional calls to
4794 * scsi_scan_host and ata_host_remove, below,
4795 * at the very least
4796 */
4797 }
4798 }
4799
4800 /* probes are done, now scan each port's disk(s) */
c893a3ae 4801 DPRINTK("host probe begin\n");
1da177e4
LT
4802 for (i = 0; i < count; i++) {
4803 struct ata_port *ap = host_set->ports[i];
4804
644dd0cc 4805 ata_scsi_scan_host(ap);
1da177e4
LT
4806 }
4807
4808 dev_set_drvdata(dev, host_set);
4809
4810 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4811 return ent->n_ports; /* success */
4812
4813err_out:
4814 for (i = 0; i < count; i++) {
4815 ata_host_remove(host_set->ports[i], 1);
4816 scsi_host_put(host_set->ports[i]->host);
4817 }
57f3bda8 4818err_free_ret:
1da177e4
LT
4819 kfree(host_set);
4820 VPRINTK("EXIT, returning 0\n");
4821 return 0;
4822}
4823
17b14451
AC
4824/**
4825 * ata_host_set_remove - PCI layer callback for device removal
4826 * @host_set: ATA host set that was removed
4827 *
4828 * Unregister all objects associated with this host set. Free those
4829 * objects.
4830 *
4831 * LOCKING:
4832 * Inherited from calling layer (may sleep).
4833 */
4834
17b14451
AC
4835void ata_host_set_remove(struct ata_host_set *host_set)
4836{
4837 struct ata_port *ap;
4838 unsigned int i;
4839
4840 for (i = 0; i < host_set->n_ports; i++) {
4841 ap = host_set->ports[i];
4842 scsi_remove_host(ap->host);
4843 }
4844
4845 free_irq(host_set->irq, host_set);
4846
4847 for (i = 0; i < host_set->n_ports; i++) {
4848 ap = host_set->ports[i];
4849
4850 ata_scsi_release(ap->host);
4851
4852 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4853 struct ata_ioports *ioaddr = &ap->ioaddr;
4854
4855 if (ioaddr->cmd_addr == 0x1f0)
4856 release_region(0x1f0, 8);
4857 else if (ioaddr->cmd_addr == 0x170)
4858 release_region(0x170, 8);
4859 }
4860
4861 scsi_host_put(ap->host);
4862 }
4863
4864 if (host_set->ops->host_stop)
4865 host_set->ops->host_stop(host_set);
4866
4867 kfree(host_set);
4868}
4869
1da177e4
LT
4870/**
4871 * ata_scsi_release - SCSI layer callback hook for host unload
4872 * @host: libata host to be unloaded
4873 *
4874 * Performs all duties necessary to shut down a libata port...
4875 * Kill port kthread, disable port, and release resources.
4876 *
4877 * LOCKING:
4878 * Inherited from SCSI layer.
4879 *
4880 * RETURNS:
4881 * One.
4882 */
4883
4884int ata_scsi_release(struct Scsi_Host *host)
4885{
4886 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
d9572b1d 4887 int i;
1da177e4
LT
4888
4889 DPRINTK("ENTER\n");
4890
4891 ap->ops->port_disable(ap);
4892 ata_host_remove(ap, 0);
d9572b1d
TH
4893 for (i = 0; i < ATA_MAX_DEVICES; i++)
4894 kfree(ap->device[i].id);
1da177e4
LT
4895
4896 DPRINTK("EXIT\n");
4897 return 1;
4898}
4899
4900/**
4901 * ata_std_ports - initialize ioaddr with standard port offsets.
4902 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4903 *
4904 * Utility function which initializes data_addr, error_addr,
4905 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4906 * device_addr, status_addr, and command_addr to standard offsets
4907 * relative to cmd_addr.
4908 *
4909 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4910 */
0baab86b 4911
1da177e4
LT
4912void ata_std_ports(struct ata_ioports *ioaddr)
4913{
4914 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4915 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4916 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4917 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4918 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4919 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4920 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4921 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4922 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4923 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4924}
4925
0baab86b 4926
374b1873
JG
4927#ifdef CONFIG_PCI
4928
4929void ata_pci_host_stop (struct ata_host_set *host_set)
4930{
4931 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4932
4933 pci_iounmap(pdev, host_set->mmio_base);
4934}
4935
1da177e4
LT
4936/**
4937 * ata_pci_remove_one - PCI layer callback for device removal
4938 * @pdev: PCI device that was removed
4939 *
4940 * PCI layer indicates to libata via this hook that
6f0ef4fa 4941 * hot-unplug or module unload event has occurred.
1da177e4
LT
4942 * Handle this by unregistering all objects associated
4943 * with this PCI device. Free those objects. Then finally
4944 * release PCI resources and disable device.
4945 *
4946 * LOCKING:
4947 * Inherited from PCI layer (may sleep).
4948 */
4949
4950void ata_pci_remove_one (struct pci_dev *pdev)
4951{
4952 struct device *dev = pci_dev_to_dev(pdev);
4953 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4954
17b14451 4955 ata_host_set_remove(host_set);
1da177e4
LT
4956 pci_release_regions(pdev);
4957 pci_disable_device(pdev);
4958 dev_set_drvdata(dev, NULL);
4959}
4960
4961/* move to PCI subsystem */
057ace5e 4962int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
4963{
4964 unsigned long tmp = 0;
4965
4966 switch (bits->width) {
4967 case 1: {
4968 u8 tmp8 = 0;
4969 pci_read_config_byte(pdev, bits->reg, &tmp8);
4970 tmp = tmp8;
4971 break;
4972 }
4973 case 2: {
4974 u16 tmp16 = 0;
4975 pci_read_config_word(pdev, bits->reg, &tmp16);
4976 tmp = tmp16;
4977 break;
4978 }
4979 case 4: {
4980 u32 tmp32 = 0;
4981 pci_read_config_dword(pdev, bits->reg, &tmp32);
4982 tmp = tmp32;
4983 break;
4984 }
4985
4986 default:
4987 return -EINVAL;
4988 }
4989
4990 tmp &= bits->mask;
4991
4992 return (tmp == bits->val) ? 1 : 0;
4993}
9b847548
JA
4994
4995int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4996{
4997 pci_save_state(pdev);
4998 pci_disable_device(pdev);
4999 pci_set_power_state(pdev, PCI_D3hot);
5000 return 0;
5001}
5002
5003int ata_pci_device_resume(struct pci_dev *pdev)
5004{
5005 pci_set_power_state(pdev, PCI_D0);
5006 pci_restore_state(pdev);
5007 pci_enable_device(pdev);
5008 pci_set_master(pdev);
5009 return 0;
5010}
1da177e4
LT
5011#endif /* CONFIG_PCI */
5012
5013
1da177e4
LT
5014static int __init ata_init(void)
5015{
5016 ata_wq = create_workqueue("ata");
5017 if (!ata_wq)
5018 return -ENOMEM;
5019
5020 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5021 return 0;
5022}
5023
5024static void __exit ata_exit(void)
5025{
5026 destroy_workqueue(ata_wq);
5027}
5028
5029module_init(ata_init);
5030module_exit(ata_exit);
5031
67846b30
JG
5032static unsigned long ratelimit_time;
5033static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5034
5035int ata_ratelimit(void)
5036{
5037 int rc;
5038 unsigned long flags;
5039
5040 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5041
5042 if (time_after(jiffies, ratelimit_time)) {
5043 rc = 1;
5044 ratelimit_time = jiffies + (HZ/5);
5045 } else
5046 rc = 0;
5047
5048 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5049
5050 return rc;
5051}
5052
1da177e4
LT
5053/*
5054 * libata is essentially a library of internal helper functions for
5055 * low-level ATA host controller drivers. As such, the API/ABI is
5056 * likely to change as new drivers are added and updated.
5057 * Do not depend on ABI/API stability.
5058 */
5059
5060EXPORT_SYMBOL_GPL(ata_std_bios_param);
5061EXPORT_SYMBOL_GPL(ata_std_ports);
5062EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5063EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5064EXPORT_SYMBOL_GPL(ata_sg_init);
5065EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 5066EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4
LT
5067EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5068EXPORT_SYMBOL_GPL(ata_eng_timeout);
5069EXPORT_SYMBOL_GPL(ata_tf_load);
5070EXPORT_SYMBOL_GPL(ata_tf_read);
5071EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5072EXPORT_SYMBOL_GPL(ata_std_dev_select);
5073EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5074EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5075EXPORT_SYMBOL_GPL(ata_check_status);
5076EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5077EXPORT_SYMBOL_GPL(ata_exec_command);
5078EXPORT_SYMBOL_GPL(ata_port_start);
5079EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5080EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
5081EXPORT_SYMBOL_GPL(ata_interrupt);
5082EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5083EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5084EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5085EXPORT_SYMBOL_GPL(ata_bmdma_start);
5086EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5087EXPORT_SYMBOL_GPL(ata_bmdma_status);
5088EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5089EXPORT_SYMBOL_GPL(ata_port_probe);
5090EXPORT_SYMBOL_GPL(sata_phy_reset);
5091EXPORT_SYMBOL_GPL(__sata_phy_reset);
5092EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 5093EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
5094EXPORT_SYMBOL_GPL(ata_std_softreset);
5095EXPORT_SYMBOL_GPL(sata_std_hardreset);
5096EXPORT_SYMBOL_GPL(ata_std_postreset);
5097EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 5098EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 5099EXPORT_SYMBOL_GPL(ata_dev_revalidate);
1da177e4 5100EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5101EXPORT_SYMBOL_GPL(ata_ratelimit);
6f8b9958 5102EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5103EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5104EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5105EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5106EXPORT_SYMBOL_GPL(ata_scsi_error);
5107EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5108EXPORT_SYMBOL_GPL(ata_scsi_release);
5109EXPORT_SYMBOL_GPL(ata_host_intr);
5110EXPORT_SYMBOL_GPL(ata_dev_classify);
6a62a04d
TH
5111EXPORT_SYMBOL_GPL(ata_id_string);
5112EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4 5113EXPORT_SYMBOL_GPL(ata_scsi_simulate);
a72ec4ce
TH
5114EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5115EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
1da177e4 5116
1bc4ccff 5117EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5118EXPORT_SYMBOL_GPL(ata_timing_compute);
5119EXPORT_SYMBOL_GPL(ata_timing_merge);
5120
1da177e4
LT
5121#ifdef CONFIG_PCI
5122EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5123EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5124EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5125EXPORT_SYMBOL_GPL(ata_pci_init_one);
5126EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5127EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5128EXPORT_SYMBOL_GPL(ata_pci_device_resume);
1da177e4 5129#endif /* CONFIG_PCI */
9b847548
JA
5130
5131EXPORT_SYMBOL_GPL(ata_device_suspend);
5132EXPORT_SYMBOL_GPL(ata_device_resume);
5133EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5134EXPORT_SYMBOL_GPL(ata_scsi_device_resume);