]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/platform/x86/intel_ips.c
NULL pointer might be used in ips_monitor()
[net-next-2.6.git] / drivers / platform / x86 / intel_ips.c
CommitLineData
aa7ffc01
JB
1/*
2 * Copyright (c) 2009-2010 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * The full GNU General Public License is included in this distribution in
18 * the file called "COPYING".
19 *
20 * Authors:
21 * Jesse Barnes <jbarnes@virtuousgeek.org>
22 */
23
24/*
25 * Some Intel Ibex Peak based platforms support so-called "intelligent
26 * power sharing", which allows the CPU and GPU to cooperate to maximize
27 * performance within a given TDP (thermal design point). This driver
28 * performs the coordination between the CPU and GPU, monitors thermal and
29 * power statistics in the platform, and initializes power monitoring
30 * hardware. It also provides a few tunables to control behavior. Its
31 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32 * by tracking power and thermal budget; secondarily it can boost turbo
33 * performance by allocating more power or thermal budget to the CPU or GPU
34 * based on available headroom and activity.
35 *
36 * The basic algorithm is driven by a 5s moving average of tempurature. If
37 * thermal headroom is available, the CPU and/or GPU power clamps may be
38 * adjusted upwards. If we hit the thermal ceiling or a thermal trigger,
39 * we scale back the clamp. Aside from trigger events (when we're critically
40 * close or over our TDP) we don't adjust the clamps more than once every
41 * five seconds.
42 *
43 * The thermal device (device 31, function 6) has a set of registers that
44 * are updated by the ME firmware. The ME should also take the clamp values
45 * written to those registers and write them to the CPU, but we currently
46 * bypass that functionality and write the CPU MSR directly.
47 *
48 * UNSUPPORTED:
49 * - dual MCP configs
50 *
51 * TODO:
52 * - handle CPU hotplug
53 * - provide turbo enable/disable api
54 * - make sure we can write turbo enable/disable reg based on MISC_EN
55 *
56 * Related documents:
57 * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
58 * - CDI 401376 - Ibex Peak EDS
59 * - ref 26037, 26641 - IPS BIOS spec
60 * - ref 26489 - Nehalem BIOS writer's guide
61 * - ref 26921 - Ibex Peak BIOS Specification
62 */
63
64#include <linux/debugfs.h>
65#include <linux/delay.h>
66#include <linux/interrupt.h>
67#include <linux/kernel.h>
68#include <linux/kthread.h>
69#include <linux/module.h>
70#include <linux/pci.h>
71#include <linux/sched.h>
72#include <linux/seq_file.h>
73#include <linux/string.h>
74#include <linux/tick.h>
75#include <linux/timer.h>
76#include <drm/i915_drm.h>
77#include <asm/msr.h>
78#include <asm/processor.h>
79
80#define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
81
82/*
83 * Package level MSRs for monitor/control
84 */
85#define PLATFORM_INFO 0xce
86#define PLATFORM_TDP (1<<29)
87#define PLATFORM_RATIO (1<<28)
88
89#define IA32_MISC_ENABLE 0x1a0
90#define IA32_MISC_TURBO_EN (1ULL<<38)
91
92#define TURBO_POWER_CURRENT_LIMIT 0x1ac
93#define TURBO_TDC_OVR_EN (1UL<<31)
94#define TURBO_TDC_MASK (0x000000007fff0000UL)
95#define TURBO_TDC_SHIFT (16)
96#define TURBO_TDP_OVR_EN (1UL<<15)
97#define TURBO_TDP_MASK (0x0000000000003fffUL)
98
99/*
100 * Core/thread MSRs for monitoring
101 */
102#define IA32_PERF_CTL 0x199
103#define IA32_PERF_TURBO_DIS (1ULL<<32)
104
105/*
106 * Thermal PCI device regs
107 */
108#define THM_CFG_TBAR 0x10
109#define THM_CFG_TBAR_HI 0x14
110
111#define THM_TSIU 0x00
112#define THM_TSE 0x01
113#define TSE_EN 0xb8
114#define THM_TSS 0x02
115#define THM_TSTR 0x03
116#define THM_TSTTP 0x04
117#define THM_TSCO 0x08
118#define THM_TSES 0x0c
119#define THM_TSGPEN 0x0d
120#define TSGPEN_HOT_LOHI (1<<1)
121#define TSGPEN_CRIT_LOHI (1<<2)
122#define THM_TSPC 0x0e
123#define THM_PPEC 0x10
124#define THM_CTA 0x12
125#define THM_PTA 0x14
126#define PTA_SLOPE_MASK (0xff00)
127#define PTA_SLOPE_SHIFT 8
128#define PTA_OFFSET_MASK (0x00ff)
129#define THM_MGTA 0x16
130#define MGTA_SLOPE_MASK (0xff00)
131#define MGTA_SLOPE_SHIFT 8
132#define MGTA_OFFSET_MASK (0x00ff)
133#define THM_TRC 0x1a
134#define TRC_CORE2_EN (1<<15)
135#define TRC_THM_EN (1<<12)
136#define TRC_C6_WAR (1<<8)
137#define TRC_CORE1_EN (1<<7)
138#define TRC_CORE_PWR (1<<6)
139#define TRC_PCH_EN (1<<5)
140#define TRC_MCH_EN (1<<4)
141#define TRC_DIMM4 (1<<3)
142#define TRC_DIMM3 (1<<2)
143#define TRC_DIMM2 (1<<1)
144#define TRC_DIMM1 (1<<0)
145#define THM_TES 0x20
146#define THM_TEN 0x21
147#define TEN_UPDATE_EN 1
148#define THM_PSC 0x24
149#define PSC_NTG (1<<0) /* No GFX turbo support */
150#define PSC_NTPC (1<<1) /* No CPU turbo support */
151#define PSC_PP_DEF (0<<2) /* Perf policy up to driver */
152#define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */
153#define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */
154#define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */
155#define PSP_PBRT (1<<4) /* BIOS run time support */
156#define THM_CTV1 0x30
157#define CTV_TEMP_ERROR (1<<15)
158#define CTV_TEMP_MASK 0x3f
159#define CTV_
160#define THM_CTV2 0x32
161#define THM_CEC 0x34 /* undocumented power accumulator in joules */
162#define THM_AE 0x3f
163#define THM_HTS 0x50 /* 32 bits */
164#define HTS_PCPL_MASK (0x7fe00000)
165#define HTS_PCPL_SHIFT 21
166#define HTS_GPL_MASK (0x001ff000)
167#define HTS_GPL_SHIFT 12
168#define HTS_PP_MASK (0x00000c00)
169#define HTS_PP_SHIFT 10
170#define HTS_PP_DEF 0
171#define HTS_PP_PROC 1
172#define HTS_PP_BAL 2
173#define HTS_PP_GFX 3
174#define HTS_PCTD_DIS (1<<9)
175#define HTS_GTD_DIS (1<<8)
176#define HTS_PTL_MASK (0x000000fe)
177#define HTS_PTL_SHIFT 1
178#define HTS_NVV (1<<0)
179#define THM_HTSHI 0x54 /* 16 bits */
180#define HTS2_PPL_MASK (0x03ff)
181#define HTS2_PRST_MASK (0x3c00)
182#define HTS2_PRST_SHIFT 10
183#define HTS2_PRST_UNLOADED 0
184#define HTS2_PRST_RUNNING 1
185#define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */
186#define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */
187#define HTS2_PRST_TDISUSR 4 /* user disabled turbo */
188#define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */
189#define HTS2_PRST_TDISPM 6 /* power management disabled turbo */
190#define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */
191#define THM_PTL 0x56
192#define THM_MGTV 0x58
193#define TV_MASK 0x000000000000ff00
194#define TV_SHIFT 8
195#define THM_PTV 0x60
196#define PTV_MASK 0x00ff
197#define THM_MMGPC 0x64
198#define THM_MPPC 0x66
199#define THM_MPCPC 0x68
200#define THM_TSPIEN 0x82
201#define TSPIEN_AUX_LOHI (1<<0)
202#define TSPIEN_HOT_LOHI (1<<1)
203#define TSPIEN_CRIT_LOHI (1<<2)
204#define TSPIEN_AUX2_LOHI (1<<3)
205#define THM_TSLOCK 0x83
206#define THM_ATR 0x84
207#define THM_TOF 0x87
208#define THM_STS 0x98
209#define STS_PCPL_MASK (0x7fe00000)
210#define STS_PCPL_SHIFT 21
211#define STS_GPL_MASK (0x001ff000)
212#define STS_GPL_SHIFT 12
213#define STS_PP_MASK (0x00000c00)
214#define STS_PP_SHIFT 10
215#define STS_PP_DEF 0
216#define STS_PP_PROC 1
217#define STS_PP_BAL 2
218#define STS_PP_GFX 3
219#define STS_PCTD_DIS (1<<9)
220#define STS_GTD_DIS (1<<8)
221#define STS_PTL_MASK (0x000000fe)
222#define STS_PTL_SHIFT 1
223#define STS_NVV (1<<0)
224#define THM_SEC 0x9c
225#define SEC_ACK (1<<0)
226#define THM_TC3 0xa4
227#define THM_TC1 0xa8
228#define STS_PPL_MASK (0x0003ff00)
229#define STS_PPL_SHIFT 16
230#define THM_TC2 0xac
231#define THM_DTV 0xb0
232#define THM_ITV 0xd8
6230d18c 233#define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
aa7ffc01
JB
234#define ITV_ME_SEQNO_SHIFT (16)
235#define ITV_MCH_TEMP_MASK 0x0000ff00
236#define ITV_MCH_TEMP_SHIFT (8)
237#define ITV_PCH_TEMP_MASK 0x000000ff
238
239#define thm_readb(off) readb(ips->regmap + (off))
240#define thm_readw(off) readw(ips->regmap + (off))
241#define thm_readl(off) readl(ips->regmap + (off))
242#define thm_readq(off) readq(ips->regmap + (off))
243
244#define thm_writeb(off, val) writeb((val), ips->regmap + (off))
245#define thm_writew(off, val) writew((val), ips->regmap + (off))
246#define thm_writel(off, val) writel((val), ips->regmap + (off))
247
248static const int IPS_ADJUST_PERIOD = 5000; /* ms */
249
250/* For initial average collection */
251static const int IPS_SAMPLE_PERIOD = 200; /* ms */
252static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
253#define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
254
255/* Per-SKU limits */
256struct ips_mcp_limits {
257 int cpu_family;
258 int cpu_model; /* includes extended model... */
259 int mcp_power_limit; /* mW units */
260 int core_power_limit;
261 int mch_power_limit;
262 int core_temp_limit; /* degrees C */
263 int mch_temp_limit;
264};
265
266/* Max temps are -10 degrees C to avoid PROCHOT# */
267
268struct ips_mcp_limits ips_sv_limits = {
269 .mcp_power_limit = 35000,
270 .core_power_limit = 29000,
271 .mch_power_limit = 20000,
272 .core_temp_limit = 95,
273 .mch_temp_limit = 90
274};
275
276struct ips_mcp_limits ips_lv_limits = {
277 .mcp_power_limit = 25000,
278 .core_power_limit = 21000,
279 .mch_power_limit = 13000,
280 .core_temp_limit = 95,
281 .mch_temp_limit = 90
282};
283
284struct ips_mcp_limits ips_ulv_limits = {
285 .mcp_power_limit = 18000,
286 .core_power_limit = 14000,
287 .mch_power_limit = 11000,
288 .core_temp_limit = 95,
289 .mch_temp_limit = 90
290};
291
292struct ips_driver {
293 struct pci_dev *dev;
294 void *regmap;
295 struct task_struct *monitor;
296 struct task_struct *adjust;
297 struct dentry *debug_root;
298
299 /* Average CPU core temps (all averages in .01 degrees C for precision) */
300 u16 ctv1_avg_temp;
301 u16 ctv2_avg_temp;
302 /* GMCH average */
303 u16 mch_avg_temp;
304 /* Average for the CPU (both cores?) */
305 u16 mcp_avg_temp;
306 /* Average power consumption (in mW) */
307 u32 cpu_avg_power;
308 u32 mch_avg_power;
309
310 /* Offset values */
311 u16 cta_val;
312 u16 pta_val;
313 u16 mgta_val;
314
315 /* Maximums & prefs, protected by turbo status lock */
316 spinlock_t turbo_status_lock;
317 u16 mcp_temp_limit;
318 u16 mcp_power_limit;
319 u16 core_power_limit;
320 u16 mch_power_limit;
321 bool cpu_turbo_enabled;
322 bool __cpu_turbo_on;
323 bool gpu_turbo_enabled;
324 bool __gpu_turbo_on;
325 bool gpu_preferred;
326 bool poll_turbo_status;
327 bool second_cpu;
328 struct ips_mcp_limits *limits;
329
330 /* Optional MCH interfaces for if i915 is in use */
331 unsigned long (*read_mch_val)(void);
332 bool (*gpu_raise)(void);
333 bool (*gpu_lower)(void);
334 bool (*gpu_busy)(void);
335 bool (*gpu_turbo_disable)(void);
336
337 /* For restoration at unload */
338 u64 orig_turbo_limit;
339 u64 orig_turbo_ratios;
340};
341
342/**
343 * ips_cpu_busy - is CPU busy?
344 * @ips: IPS driver struct
345 *
346 * Check CPU for load to see whether we should increase its thermal budget.
347 *
348 * RETURNS:
349 * True if the CPU could use more power, false otherwise.
350 */
351static bool ips_cpu_busy(struct ips_driver *ips)
352{
353 if ((avenrun[0] >> FSHIFT) > 1)
354 return true;
355
356 return false;
357}
358
359/**
360 * ips_cpu_raise - raise CPU power clamp
361 * @ips: IPS driver struct
362 *
363 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
364 * this platform.
365 *
366 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
367 * long as we haven't hit the TDP limit for the SKU).
368 */
369static void ips_cpu_raise(struct ips_driver *ips)
370{
371 u64 turbo_override;
372 u16 cur_tdp_limit, new_tdp_limit;
373
374 if (!ips->cpu_turbo_enabled)
375 return;
376
377 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
378
379 cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
380 new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
381
382 /* Clamp to SKU TDP limit */
383 if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
384 new_tdp_limit = cur_tdp_limit;
385
386 thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
387
388 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN;
389 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
390
391 turbo_override &= ~TURBO_TDP_MASK;
392 turbo_override |= new_tdp_limit;
393
394 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
395}
396
397/**
398 * ips_cpu_lower - lower CPU power clamp
399 * @ips: IPS driver struct
400 *
401 * Lower CPU power clamp b %IPS_CPU_STEP if possible.
402 *
403 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
404 * as low as the platform limits will allow (though we could go lower there
405 * wouldn't be much point).
406 */
407static void ips_cpu_lower(struct ips_driver *ips)
408{
409 u64 turbo_override;
410 u16 cur_limit, new_limit;
411
412 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
413
414 cur_limit = turbo_override & TURBO_TDP_MASK;
415 new_limit = cur_limit - 8; /* 1W decrease */
416
417 /* Clamp to SKU TDP limit */
418 if (((new_limit * 10) / 8) < (ips->orig_turbo_limit & TURBO_TDP_MASK))
419 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
420
421 thm_writew(THM_MPCPC, (new_limit * 10) / 8);
422
423 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN;
424 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
425
426 turbo_override &= ~TURBO_TDP_MASK;
427 turbo_override |= new_limit;
428
429 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
430}
431
432/**
433 * do_enable_cpu_turbo - internal turbo enable function
434 * @data: unused
435 *
436 * Internal function for actually updating MSRs. When we enable/disable
437 * turbo, we need to do it on each CPU; this function is the one called
438 * by on_each_cpu() when needed.
439 */
440static void do_enable_cpu_turbo(void *data)
441{
442 u64 perf_ctl;
443
444 rdmsrl(IA32_PERF_CTL, perf_ctl);
445 if (perf_ctl & IA32_PERF_TURBO_DIS) {
446 perf_ctl &= ~IA32_PERF_TURBO_DIS;
447 wrmsrl(IA32_PERF_CTL, perf_ctl);
448 }
449}
450
451/**
452 * ips_enable_cpu_turbo - enable turbo mode on all CPUs
453 * @ips: IPS driver struct
454 *
455 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
456 * all logical threads.
457 */
458static void ips_enable_cpu_turbo(struct ips_driver *ips)
459{
460 /* Already on, no need to mess with MSRs */
461 if (ips->__cpu_turbo_on)
462 return;
463
464 on_each_cpu(do_enable_cpu_turbo, ips, 1);
465
466 ips->__cpu_turbo_on = true;
467}
468
469/**
470 * do_disable_cpu_turbo - internal turbo disable function
471 * @data: unused
472 *
473 * Internal function for actually updating MSRs. When we enable/disable
474 * turbo, we need to do it on each CPU; this function is the one called
475 * by on_each_cpu() when needed.
476 */
477static void do_disable_cpu_turbo(void *data)
478{
479 u64 perf_ctl;
480
481 rdmsrl(IA32_PERF_CTL, perf_ctl);
482 if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
483 perf_ctl |= IA32_PERF_TURBO_DIS;
484 wrmsrl(IA32_PERF_CTL, perf_ctl);
485 }
486}
487
488/**
489 * ips_disable_cpu_turbo - disable turbo mode on all CPUs
490 * @ips: IPS driver struct
491 *
492 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
493 * all logical threads.
494 */
495static void ips_disable_cpu_turbo(struct ips_driver *ips)
496{
497 /* Already off, leave it */
498 if (!ips->__cpu_turbo_on)
499 return;
500
501 on_each_cpu(do_disable_cpu_turbo, ips, 1);
502
503 ips->__cpu_turbo_on = false;
504}
505
506/**
507 * ips_gpu_busy - is GPU busy?
508 * @ips: IPS driver struct
509 *
510 * Check GPU for load to see whether we should increase its thermal budget.
511 * We need to call into the i915 driver in this case.
512 *
513 * RETURNS:
514 * True if the GPU could use more power, false otherwise.
515 */
516static bool ips_gpu_busy(struct ips_driver *ips)
517{
0385e521
JB
518 if (!ips->gpu_turbo_enabled)
519 return false;
520
521 return ips->gpu_busy();
aa7ffc01
JB
522}
523
524/**
525 * ips_gpu_raise - raise GPU power clamp
526 * @ips: IPS driver struct
527 *
528 * Raise the GPU frequency/power if possible. We need to call into the
529 * i915 driver in this case.
530 */
531static void ips_gpu_raise(struct ips_driver *ips)
532{
533 if (!ips->gpu_turbo_enabled)
534 return;
535
536 if (!ips->gpu_raise())
537 ips->gpu_turbo_enabled = false;
538
539 return;
540}
541
542/**
543 * ips_gpu_lower - lower GPU power clamp
544 * @ips: IPS driver struct
545 *
546 * Lower GPU frequency/power if possible. Need to call i915.
547 */
548static void ips_gpu_lower(struct ips_driver *ips)
549{
550 if (!ips->gpu_turbo_enabled)
551 return;
552
553 if (!ips->gpu_lower())
554 ips->gpu_turbo_enabled = false;
555
556 return;
557}
558
559/**
560 * ips_enable_gpu_turbo - notify the gfx driver turbo is available
561 * @ips: IPS driver struct
562 *
563 * Call into the graphics driver indicating that it can safely use
564 * turbo mode.
565 */
566static void ips_enable_gpu_turbo(struct ips_driver *ips)
567{
568 if (ips->__gpu_turbo_on)
569 return;
570 ips->__gpu_turbo_on = true;
571}
572
573/**
574 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
575 * @ips: IPS driver struct
576 *
577 * Request that the graphics driver disable turbo mode.
578 */
579static void ips_disable_gpu_turbo(struct ips_driver *ips)
580{
581 /* Avoid calling i915 if turbo is already disabled */
582 if (!ips->__gpu_turbo_on)
583 return;
584
585 if (!ips->gpu_turbo_disable())
586 dev_err(&ips->dev->dev, "failed to disable graphis turbo\n");
587 else
588 ips->__gpu_turbo_on = false;
589}
590
591/**
592 * mcp_exceeded - check whether we're outside our thermal & power limits
593 * @ips: IPS driver struct
594 *
595 * Check whether the MCP is over its thermal or power budget.
596 */
597static bool mcp_exceeded(struct ips_driver *ips)
598{
599 unsigned long flags;
600 bool ret = false;
601
602 spin_lock_irqsave(&ips->turbo_status_lock, flags);
603 if (ips->mcp_avg_temp > (ips->mcp_temp_limit * 100))
604 ret = true;
605 if (ips->cpu_avg_power + ips->mch_avg_power > ips->mcp_power_limit)
606 ret = true;
607 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
608
609 if (ret)
1a14703d 610 dev_info(&ips->dev->dev,
aa7ffc01
JB
611 "MCP power or thermal limit exceeded\n");
612
613 return ret;
614}
615
616/**
617 * cpu_exceeded - check whether a CPU core is outside its limits
618 * @ips: IPS driver struct
619 * @cpu: CPU number to check
620 *
621 * Check a given CPU's average temp or power is over its limit.
622 */
623static bool cpu_exceeded(struct ips_driver *ips, int cpu)
624{
625 unsigned long flags;
626 int avg;
627 bool ret = false;
628
629 spin_lock_irqsave(&ips->turbo_status_lock, flags);
630 avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
631 if (avg > (ips->limits->core_temp_limit * 100))
632 ret = true;
0385e521 633 if (ips->cpu_avg_power > ips->core_power_limit * 100)
aa7ffc01
JB
634 ret = true;
635 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
636
637 if (ret)
1a14703d 638 dev_info(&ips->dev->dev,
aa7ffc01
JB
639 "CPU power or thermal limit exceeded\n");
640
641 return ret;
642}
643
644/**
645 * mch_exceeded - check whether the GPU is over budget
646 * @ips: IPS driver struct
647 *
648 * Check the MCH temp & power against their maximums.
649 */
650static bool mch_exceeded(struct ips_driver *ips)
651{
652 unsigned long flags;
653 bool ret = false;
654
655 spin_lock_irqsave(&ips->turbo_status_lock, flags);
656 if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
657 ret = true;
0385e521
JB
658 if (ips->mch_avg_power > ips->mch_power_limit)
659 ret = true;
aa7ffc01
JB
660 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
661
662 return ret;
663}
664
665/**
666 * update_turbo_limits - get various limits & settings from regs
667 * @ips: IPS driver struct
668 *
669 * Update the IPS power & temp limits, along with turbo enable flags,
670 * based on latest register contents.
671 *
672 * Used at init time and for runtime BIOS support, which requires polling
673 * the regs for updates (as a result of AC->DC transition for example).
674 *
675 * LOCKING:
676 * Caller must hold turbo_status_lock (outside of init)
677 */
678static void update_turbo_limits(struct ips_driver *ips)
679{
680 u32 hts = thm_readl(THM_HTS);
681
682 ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
683 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
684 ips->core_power_limit = thm_readw(THM_MPCPC);
685 ips->mch_power_limit = thm_readw(THM_MMGPC);
686 ips->mcp_temp_limit = thm_readw(THM_PTL);
687 ips->mcp_power_limit = thm_readw(THM_MPPC);
688
689 /* Ignore BIOS CPU vs GPU pref */
690}
691
692/**
693 * ips_adjust - adjust power clamp based on thermal state
694 * @data: ips driver structure
695 *
696 * Wake up every 5s or so and check whether we should adjust the power clamp.
697 * Check CPU and GPU load to determine which needs adjustment. There are
698 * several things to consider here:
699 * - do we need to adjust up or down?
700 * - is CPU busy?
701 * - is GPU busy?
702 * - is CPU in turbo?
703 * - is GPU in turbo?
704 * - is CPU or GPU preferred? (CPU is default)
705 *
706 * So, given the above, we do the following:
707 * - up (TDP available)
708 * - CPU not busy, GPU not busy - nothing
709 * - CPU busy, GPU not busy - adjust CPU up
710 * - CPU not busy, GPU busy - adjust GPU up
711 * - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
712 * non-preferred unit if necessary
713 * - down (at TDP limit)
714 * - adjust both CPU and GPU down if possible
715 *
716 cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu-
717cpu < gpu < cpu+gpu+ cpu+ gpu+ nothing
718cpu < gpu >= cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu-
719cpu >= gpu < cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu-
720cpu >= gpu >= cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu-
721 *
722 */
723static int ips_adjust(void *data)
724{
725 struct ips_driver *ips = data;
726 unsigned long flags;
727
728 dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
729
730 /*
731 * Adjust CPU and GPU clamps every 5s if needed. Doing it more
732 * often isn't recommended due to ME interaction.
733 */
734 do {
735 bool cpu_busy = ips_cpu_busy(ips);
736 bool gpu_busy = ips_gpu_busy(ips);
737
738 spin_lock_irqsave(&ips->turbo_status_lock, flags);
739 if (ips->poll_turbo_status)
740 update_turbo_limits(ips);
741 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
742
743 /* Update turbo status if necessary */
744 if (ips->cpu_turbo_enabled)
745 ips_enable_cpu_turbo(ips);
746 else
747 ips_disable_cpu_turbo(ips);
748
749 if (ips->gpu_turbo_enabled)
750 ips_enable_gpu_turbo(ips);
751 else
752 ips_disable_gpu_turbo(ips);
753
754 /* We're outside our comfort zone, crank them down */
0385e521 755 if (mcp_exceeded(ips)) {
aa7ffc01
JB
756 ips_cpu_lower(ips);
757 ips_gpu_lower(ips);
758 goto sleep;
759 }
760
761 if (!cpu_exceeded(ips, 0) && cpu_busy)
762 ips_cpu_raise(ips);
763 else
764 ips_cpu_lower(ips);
765
766 if (!mch_exceeded(ips) && gpu_busy)
767 ips_gpu_raise(ips);
768 else
769 ips_gpu_lower(ips);
770
771sleep:
772 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
773 } while (!kthread_should_stop());
774
775 dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
776
777 return 0;
778}
779
780/*
781 * Helpers for reading out temp/power values and calculating their
782 * averages for the decision making and monitoring functions.
783 */
784
785static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
786{
787 u64 total = 0;
788 int i;
789 u16 avg;
790
791 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
792 total += (u64)(array[i] * 100);
793
794 do_div(total, IPS_SAMPLE_COUNT);
795
796 avg = (u16)total;
797
798 return avg;
799}
800
801static u16 read_mgtv(struct ips_driver *ips)
802{
803 u16 ret;
804 u64 slope, offset;
805 u64 val;
806
807 val = thm_readq(THM_MGTV);
808 val = (val & TV_MASK) >> TV_SHIFT;
809
810 slope = offset = thm_readw(THM_MGTA);
811 slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
812 offset = offset & MGTA_OFFSET_MASK;
813
814 ret = ((val * slope + 0x40) >> 7) + offset;
815
0385e521 816 return 0; /* MCH temp reporting buggy */
aa7ffc01
JB
817}
818
819static u16 read_ptv(struct ips_driver *ips)
820{
821 u16 val, slope, offset;
822
823 slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
824 offset = ips->pta_val & PTA_OFFSET_MASK;
825
826 val = thm_readw(THM_PTV) & PTV_MASK;
827
828 return val;
829}
830
831static u16 read_ctv(struct ips_driver *ips, int cpu)
832{
833 int reg = cpu ? THM_CTV2 : THM_CTV1;
834 u16 val;
835
836 val = thm_readw(reg);
837 if (!(val & CTV_TEMP_ERROR))
838 val = (val) >> 6; /* discard fractional component */
839 else
840 val = 0;
841
842 return val;
843}
844
845static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
846{
847 u32 val;
848 u32 ret;
849
850 /*
851 * CEC is in joules/65535. Take difference over time to
852 * get watts.
853 */
854 val = thm_readl(THM_CEC);
855
856 /* period is in ms and we want mW */
857 ret = (((val - *last) * 1000) / period);
858 ret = (ret * 1000) / 65535;
859 *last = val;
860
861 return ret;
862}
863
864static const u16 temp_decay_factor = 2;
865static u16 update_average_temp(u16 avg, u16 val)
866{
867 u16 ret;
868
869 /* Multiply by 100 for extra precision */
870 ret = (val * 100 / temp_decay_factor) +
871 (((temp_decay_factor - 1) * avg) / temp_decay_factor);
872 return ret;
873}
874
875static const u16 power_decay_factor = 2;
876static u16 update_average_power(u32 avg, u32 val)
877{
878 u32 ret;
879
880 ret = (val / power_decay_factor) +
881 (((power_decay_factor - 1) * avg) / power_decay_factor);
882
883 return ret;
884}
885
886static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
887{
888 u64 total = 0;
889 u32 avg;
890 int i;
891
892 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
893 total += array[i];
894
895 do_div(total, IPS_SAMPLE_COUNT);
896 avg = (u32)total;
897
898 return avg;
899}
900
901static void monitor_timeout(unsigned long arg)
902{
903 wake_up_process((struct task_struct *)arg);
904}
905
906/**
907 * ips_monitor - temp/power monitoring thread
908 * @data: ips driver structure
909 *
910 * This is the main function for the IPS driver. It monitors power and
911 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
912 *
913 * We keep a 5s moving average of power consumption and tempurature. Using
914 * that data, along with CPU vs GPU preference, we adjust the power clamps
915 * up or down.
916 */
917static int ips_monitor(void *data)
918{
919 struct ips_driver *ips = data;
920 struct timer_list timer;
921 unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
922 int i;
e9ec7f35
JS
923 u32 *cpu_samples, *mchp_samples, old_cpu_power;
924 u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
aa7ffc01
JB
925 u8 cur_seqno, last_seqno;
926
927 mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
928 ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
929 ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
930 mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
931 cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
932 mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
e9ec7f35
JS
933 if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
934 !cpu_samples || !mchp_samples) {
aa7ffc01
JB
935 dev_err(&ips->dev->dev,
936 "failed to allocate sample array, ips disabled\n");
937 kfree(mcp_samples);
938 kfree(ctv1_samples);
939 kfree(ctv2_samples);
940 kfree(mch_samples);
941 kfree(cpu_samples);
e9ec7f35 942 kfree(mchp_samples);
aa7ffc01
JB
943 return -ENOMEM;
944 }
945
946 last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
947 ITV_ME_SEQNO_SHIFT;
948 seqno_timestamp = get_jiffies_64();
949
c21eae4f 950 old_cpu_power = thm_readl(THM_CEC);
aa7ffc01
JB
951 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
952
953 /* Collect an initial average */
954 for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
955 u32 mchp, cpu_power;
956 u16 val;
957
958 mcp_samples[i] = read_ptv(ips);
959
960 val = read_ctv(ips, 0);
961 ctv1_samples[i] = val;
962
963 val = read_ctv(ips, 1);
964 ctv2_samples[i] = val;
965
966 val = read_mgtv(ips);
967 mch_samples[i] = val;
968
969 cpu_power = get_cpu_power(ips, &old_cpu_power,
970 IPS_SAMPLE_PERIOD);
971 cpu_samples[i] = cpu_power;
972
973 if (ips->read_mch_val) {
974 mchp = ips->read_mch_val();
975 mchp_samples[i] = mchp;
976 }
977
978 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
979 if (kthread_should_stop())
980 break;
981 }
982
983 ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
984 ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
985 ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
986 ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
987 ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
988 ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
989 kfree(mcp_samples);
990 kfree(ctv1_samples);
991 kfree(ctv2_samples);
992 kfree(mch_samples);
993 kfree(cpu_samples);
994 kfree(mchp_samples);
995
996 /* Start the adjustment thread now that we have data */
997 wake_up_process(ips->adjust);
998
999 /*
1000 * Ok, now we have an initial avg. From here on out, we track the
1001 * running avg using a decaying average calculation. This allows
1002 * us to reduce the sample frequency if the CPU and GPU are idle.
1003 */
1004 old_cpu_power = thm_readl(THM_CEC);
1005 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1006 last_sample_period = IPS_SAMPLE_PERIOD;
1007
1008 setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1009 (unsigned long)current);
1010 do {
1011 u32 cpu_val, mch_val;
1012 u16 val;
1013
1014 /* MCP itself */
1015 val = read_ptv(ips);
1016 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1017
1018 /* Processor 0 */
1019 val = read_ctv(ips, 0);
1020 ips->ctv1_avg_temp =
1021 update_average_temp(ips->ctv1_avg_temp, val);
1022 /* Power */
1023 cpu_val = get_cpu_power(ips, &old_cpu_power,
1024 last_sample_period);
1025 ips->cpu_avg_power =
1026 update_average_power(ips->cpu_avg_power, cpu_val);
1027
1028 if (ips->second_cpu) {
1029 /* Processor 1 */
1030 val = read_ctv(ips, 1);
1031 ips->ctv2_avg_temp =
1032 update_average_temp(ips->ctv2_avg_temp, val);
1033 }
1034
1035 /* MCH */
1036 val = read_mgtv(ips);
1037 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1038 /* Power */
1039 if (ips->read_mch_val) {
1040 mch_val = ips->read_mch_val();
1041 ips->mch_avg_power =
1042 update_average_power(ips->mch_avg_power,
1043 mch_val);
1044 }
1045
1046 /*
1047 * Make sure ME is updating thermal regs.
1048 * Note:
1049 * If it's been more than a second since the last update,
1050 * the ME is probably hung.
1051 */
1052 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1053 ITV_ME_SEQNO_SHIFT;
1054 if (cur_seqno == last_seqno &&
1055 time_after(jiffies, seqno_timestamp + HZ)) {
1056 dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1057 } else {
1058 seqno_timestamp = get_jiffies_64();
1059 last_seqno = cur_seqno;
1060 }
1061
1062 last_msecs = jiffies_to_msecs(jiffies);
1063 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1064
1065 __set_current_state(TASK_UNINTERRUPTIBLE);
1066 mod_timer(&timer, expire);
1067 schedule();
1068
1069 /* Calculate actual sample period for power averaging */
1070 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1071 if (!last_sample_period)
1072 last_sample_period = 1;
1073 } while (!kthread_should_stop());
1074
1075 del_timer_sync(&timer);
1076 destroy_timer_on_stack(&timer);
1077
1078 dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1079
1080 return 0;
1081}
1082
1083#if 0
1084#define THM_DUMPW(reg) \
1085 { \
1086 u16 val = thm_readw(reg); \
1087 dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1088 }
1089#define THM_DUMPL(reg) \
1090 { \
1091 u32 val = thm_readl(reg); \
1092 dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1093 }
1094#define THM_DUMPQ(reg) \
1095 { \
1096 u64 val = thm_readq(reg); \
1097 dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1098 }
1099
1100static void dump_thermal_info(struct ips_driver *ips)
1101{
1102 u16 ptl;
1103
1104 ptl = thm_readw(THM_PTL);
1105 dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1106
1107 THM_DUMPW(THM_CTA);
1108 THM_DUMPW(THM_TRC);
1109 THM_DUMPW(THM_CTV1);
1110 THM_DUMPL(THM_STS);
1111 THM_DUMPW(THM_PTV);
1112 THM_DUMPQ(THM_MGTV);
1113}
1114#endif
1115
1116/**
1117 * ips_irq_handler - handle temperature triggers and other IPS events
1118 * @irq: irq number
1119 * @arg: unused
1120 *
1121 * Handle temperature limit trigger events, generally by lowering the clamps.
1122 * If we're at a critical limit, we clamp back to the lowest possible value
1123 * to prevent emergency shutdown.
1124 */
1125static irqreturn_t ips_irq_handler(int irq, void *arg)
1126{
1127 struct ips_driver *ips = arg;
1128 u8 tses = thm_readb(THM_TSES);
1129 u8 tes = thm_readb(THM_TES);
1130
1131 if (!tses && !tes)
1132 return IRQ_NONE;
1133
1134 dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1135 dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1136
1137 /* STS update from EC? */
1138 if (tes & 1) {
1139 u32 sts, tc1;
1140
1141 sts = thm_readl(THM_STS);
1142 tc1 = thm_readl(THM_TC1);
1143
1144 if (sts & STS_NVV) {
1145 spin_lock(&ips->turbo_status_lock);
1146 ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1147 STS_PCPL_SHIFT;
1148 ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1149 STS_GPL_SHIFT;
1150 /* ignore EC CPU vs GPU pref */
1151 ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1152 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1153 ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1154 STS_PTL_SHIFT;
1155 ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1156 STS_PPL_SHIFT;
1157 spin_unlock(&ips->turbo_status_lock);
1158
1159 thm_writeb(THM_SEC, SEC_ACK);
1160 }
1161 thm_writeb(THM_TES, tes);
1162 }
1163
1164 /* Thermal trip */
1165 if (tses) {
1166 dev_warn(&ips->dev->dev,
1167 "thermal trip occurred, tses: 0x%04x\n", tses);
1168 thm_writeb(THM_TSES, tses);
1169 }
1170
1171 return IRQ_HANDLED;
1172}
1173
1174#ifndef CONFIG_DEBUG_FS
1175static void ips_debugfs_init(struct ips_driver *ips) { return; }
1176static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1177#else
1178
1179/* Expose current state and limits in debugfs if possible */
1180
1181struct ips_debugfs_node {
1182 struct ips_driver *ips;
1183 char *name;
1184 int (*show)(struct seq_file *m, void *data);
1185};
1186
1187static int show_cpu_temp(struct seq_file *m, void *data)
1188{
1189 struct ips_driver *ips = m->private;
1190
1191 seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1192 ips->ctv1_avg_temp % 100);
1193
1194 return 0;
1195}
1196
1197static int show_cpu_power(struct seq_file *m, void *data)
1198{
1199 struct ips_driver *ips = m->private;
1200
1201 seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1202
1203 return 0;
1204}
1205
1206static int show_cpu_clamp(struct seq_file *m, void *data)
1207{
1208 u64 turbo_override;
1209 int tdp, tdc;
1210
1211 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1212
1213 tdp = (int)(turbo_override & TURBO_TDP_MASK);
1214 tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1215
1216 /* Convert to .1W/A units */
1217 tdp = tdp * 10 / 8;
1218 tdc = tdc * 10 / 8;
1219
1220 /* Watts Amperes */
1221 seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1222 tdc / 10, tdc % 10);
1223
1224 return 0;
1225}
1226
1227static int show_mch_temp(struct seq_file *m, void *data)
1228{
1229 struct ips_driver *ips = m->private;
1230
1231 seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1232 ips->mch_avg_temp % 100);
1233
1234 return 0;
1235}
1236
1237static int show_mch_power(struct seq_file *m, void *data)
1238{
1239 struct ips_driver *ips = m->private;
1240
1241 seq_printf(m, "%dmW\n", ips->mch_avg_power);
1242
1243 return 0;
1244}
1245
1246static struct ips_debugfs_node ips_debug_files[] = {
1247 { NULL, "cpu_temp", show_cpu_temp },
1248 { NULL, "cpu_power", show_cpu_power },
1249 { NULL, "cpu_clamp", show_cpu_clamp },
1250 { NULL, "mch_temp", show_mch_temp },
1251 { NULL, "mch_power", show_mch_power },
1252};
1253
1254static int ips_debugfs_open(struct inode *inode, struct file *file)
1255{
1256 struct ips_debugfs_node *node = inode->i_private;
1257
1258 return single_open(file, node->show, node->ips);
1259}
1260
1261static const struct file_operations ips_debugfs_ops = {
1262 .owner = THIS_MODULE,
1263 .open = ips_debugfs_open,
1264 .read = seq_read,
1265 .llseek = seq_lseek,
1266 .release = single_release,
1267};
1268
1269static void ips_debugfs_cleanup(struct ips_driver *ips)
1270{
1271 if (ips->debug_root)
1272 debugfs_remove_recursive(ips->debug_root);
1273 return;
1274}
1275
1276static void ips_debugfs_init(struct ips_driver *ips)
1277{
1278 int i;
1279
1280 ips->debug_root = debugfs_create_dir("ips", NULL);
1281 if (!ips->debug_root) {
1282 dev_err(&ips->dev->dev,
1283 "failed to create debugfs entries: %ld\n",
1284 PTR_ERR(ips->debug_root));
1285 return;
1286 }
1287
1288 for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1289 struct dentry *ent;
1290 struct ips_debugfs_node *node = &ips_debug_files[i];
1291
1292 node->ips = ips;
1293 ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1294 ips->debug_root, node,
1295 &ips_debugfs_ops);
1296 if (!ent) {
1297 dev_err(&ips->dev->dev,
1298 "failed to create debug file: %ld\n",
1299 PTR_ERR(ent));
1300 goto err_cleanup;
1301 }
1302 }
1303
1304 return;
1305
1306err_cleanup:
1307 ips_debugfs_cleanup(ips);
1308 return;
1309}
1310#endif /* CONFIG_DEBUG_FS */
1311
1312/**
1313 * ips_detect_cpu - detect whether CPU supports IPS
1314 *
1315 * Walk our list and see if we're on a supported CPU. If we find one,
1316 * return the limits for it.
1317 */
1318static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1319{
1320 u64 turbo_power, misc_en;
1321 struct ips_mcp_limits *limits = NULL;
1322 u16 tdp;
1323
1324 if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1325 dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1326 goto out;
1327 }
1328
1329 rdmsrl(IA32_MISC_ENABLE, misc_en);
1330 /*
1331 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1332 * turbo manually or we'll get an illegal MSR access, even though
1333 * turbo will still be available.
1334 */
1335 if (!(misc_en & IA32_MISC_TURBO_EN))
1336 ; /* add turbo MSR write allowed flag if necessary */
1337
1338 if (strstr(boot_cpu_data.x86_model_id, "CPU M"))
1339 limits = &ips_sv_limits;
1340 else if (strstr(boot_cpu_data.x86_model_id, "CPU L"))
1341 limits = &ips_lv_limits;
1342 else if (strstr(boot_cpu_data.x86_model_id, "CPU U"))
1343 limits = &ips_ulv_limits;
52d7ee55 1344 else {
aa7ffc01 1345 dev_info(&ips->dev->dev, "No CPUID match found.\n");
52d7ee55
DC
1346 goto out;
1347 }
aa7ffc01
JB
1348
1349 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1350 tdp = turbo_power & TURBO_TDP_MASK;
1351
1352 /* Sanity check TDP against CPU */
1353 if (limits->mcp_power_limit != (tdp / 8) * 1000) {
1354 dev_warn(&ips->dev->dev, "Warning: CPU TDP doesn't match expected value (found %d, expected %d)\n",
1355 tdp / 8, limits->mcp_power_limit / 1000);
1356 }
1357
1358out:
1359 return limits;
1360}
1361
1362/**
1363 * ips_get_i915_syms - try to get GPU control methods from i915 driver
1364 * @ips: IPS driver
1365 *
1366 * The i915 driver exports several interfaces to allow the IPS driver to
1367 * monitor and control graphics turbo mode. If we can find them, we can
1368 * enable graphics turbo, otherwise we must disable it to avoid exceeding
1369 * thermal and power limits in the MCP.
1370 */
1371static bool ips_get_i915_syms(struct ips_driver *ips)
1372{
1373 ips->read_mch_val = symbol_get(i915_read_mch_val);
1374 if (!ips->read_mch_val)
1375 goto out_err;
1376 ips->gpu_raise = symbol_get(i915_gpu_raise);
1377 if (!ips->gpu_raise)
1378 goto out_put_mch;
1379 ips->gpu_lower = symbol_get(i915_gpu_lower);
1380 if (!ips->gpu_lower)
1381 goto out_put_raise;
1382 ips->gpu_busy = symbol_get(i915_gpu_busy);
1383 if (!ips->gpu_busy)
1384 goto out_put_lower;
1385 ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1386 if (!ips->gpu_turbo_disable)
1387 goto out_put_busy;
1388
1389 return true;
1390
1391out_put_busy:
fed522f7 1392 symbol_put(i915_gpu_busy);
aa7ffc01
JB
1393out_put_lower:
1394 symbol_put(i915_gpu_lower);
1395out_put_raise:
1396 symbol_put(i915_gpu_raise);
1397out_put_mch:
1398 symbol_put(i915_read_mch_val);
1399out_err:
1400 return false;
1401}
1402
1403static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = {
1404 { PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1405 PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1406 { 0, }
1407};
1408
1409MODULE_DEVICE_TABLE(pci, ips_id_table);
1410
1411static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1412{
1413 u64 platform_info;
1414 struct ips_driver *ips;
1415 u32 hts;
1416 int ret = 0;
1417 u16 htshi, trc, trc_required_mask;
1418 u8 tse;
1419
1420 ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1421 if (!ips)
1422 return -ENOMEM;
1423
1424 pci_set_drvdata(dev, ips);
1425 ips->dev = dev;
1426
1427 ips->limits = ips_detect_cpu(ips);
1428 if (!ips->limits) {
1429 dev_info(&dev->dev, "IPS not supported on this CPU\n");
1430 ret = -ENXIO;
1431 goto error_free;
1432 }
1433
1434 spin_lock_init(&ips->turbo_status_lock);
1435
5629236b
KV
1436 ret = pci_enable_device(dev);
1437 if (ret) {
1438 dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1439 goto error_free;
1440 }
1441
aa7ffc01
JB
1442 if (!pci_resource_start(dev, 0)) {
1443 dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1444 ret = -ENXIO;
1445 goto error_free;
1446 }
1447
1448 ret = pci_request_regions(dev, "ips thermal sensor");
1449 if (ret) {
1450 dev_err(&dev->dev, "thermal resource busy, aborting\n");
1451 goto error_free;
1452 }
1453
aa7ffc01
JB
1454
1455 ips->regmap = ioremap(pci_resource_start(dev, 0),
1456 pci_resource_len(dev, 0));
1457 if (!ips->regmap) {
1458 dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1459 ret = -EBUSY;
1460 goto error_release;
1461 }
1462
1463 tse = thm_readb(THM_TSE);
1464 if (tse != TSE_EN) {
1465 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1466 ret = -ENXIO;
1467 goto error_unmap;
1468 }
1469
1470 trc = thm_readw(THM_TRC);
1471 trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1472 if ((trc & trc_required_mask) != trc_required_mask) {
1473 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1474 ret = -ENXIO;
1475 goto error_unmap;
1476 }
1477
1478 if (trc & TRC_CORE2_EN)
1479 ips->second_cpu = true;
1480
aa7ffc01
JB
1481 update_turbo_limits(ips);
1482 dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1483 ips->mcp_power_limit / 10);
1484 dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1485 ips->core_power_limit / 10);
1486 /* BIOS may update limits at runtime */
1487 if (thm_readl(THM_PSC) & PSP_PBRT)
1488 ips->poll_turbo_status = true;
1489
0385e521
JB
1490 if (!ips_get_i915_syms(ips)) {
1491 dev_err(&dev->dev, "failed to get i915 symbols, graphics turbo disabled\n");
1492 ips->gpu_turbo_enabled = false;
1493 } else {
1494 dev_dbg(&dev->dev, "graphics turbo enabled\n");
1495 ips->gpu_turbo_enabled = true;
1496 }
1497
aa7ffc01
JB
1498 /*
1499 * Check PLATFORM_INFO MSR to make sure this chip is
1500 * turbo capable.
1501 */
1502 rdmsrl(PLATFORM_INFO, platform_info);
1503 if (!(platform_info & PLATFORM_TDP)) {
1504 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1505 ret = -ENODEV;
1506 goto error_unmap;
1507 }
1508
1509 /*
1510 * IRQ handler for ME interaction
1511 * Note: don't use MSI here as the PCH has bugs.
1512 */
1513 pci_disable_msi(dev);
1514 ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1515 ips);
1516 if (ret) {
1517 dev_err(&dev->dev, "request irq failed, aborting\n");
1518 goto error_unmap;
1519 }
1520
1521 /* Enable aux, hot & critical interrupts */
1522 thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1523 TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1524 thm_writeb(THM_TEN, TEN_UPDATE_EN);
1525
1526 /* Collect adjustment values */
1527 ips->cta_val = thm_readw(THM_CTA);
1528 ips->pta_val = thm_readw(THM_PTA);
1529 ips->mgta_val = thm_readw(THM_MGTA);
1530
1531 /* Save turbo limits & ratios */
1532 rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1533
1534 ips_enable_cpu_turbo(ips);
1535 ips->cpu_turbo_enabled = true;
1536
a7abda8d 1537 /* Create thermal adjust thread */
1538 ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1539 if (IS_ERR(ips->adjust)) {
aa7ffc01 1540 dev_err(&dev->dev,
a7abda8d 1541 "failed to create thermal adjust thread, aborting\n");
aa7ffc01
JB
1542 ret = -ENOMEM;
1543 goto error_free_irq;
a7abda8d 1544
aa7ffc01
JB
1545 }
1546
a7abda8d 1547 /*
1548 * Set up the work queue and monitor thread. The monitor thread
1549 * will wake up ips_adjust thread.
1550 */
1551 ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1552 if (IS_ERR(ips->monitor)) {
aa7ffc01 1553 dev_err(&dev->dev,
a7abda8d 1554 "failed to create thermal monitor thread, aborting\n");
aa7ffc01
JB
1555 ret = -ENOMEM;
1556 goto error_thread_cleanup;
1557 }
1558
1559 hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1560 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1561 htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1562
1563 thm_writew(THM_HTSHI, htshi);
1564 thm_writel(THM_HTS, hts);
1565
1566 ips_debugfs_init(ips);
1567
1568 dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1569 ips->mcp_temp_limit);
1570 return ret;
1571
1572error_thread_cleanup:
a7abda8d 1573 kthread_stop(ips->adjust);
aa7ffc01
JB
1574error_free_irq:
1575 free_irq(ips->dev->irq, ips);
1576error_unmap:
1577 iounmap(ips->regmap);
1578error_release:
1579 pci_release_regions(dev);
1580error_free:
1581 kfree(ips);
1582 return ret;
1583}
1584
1585static void ips_remove(struct pci_dev *dev)
1586{
1587 struct ips_driver *ips = pci_get_drvdata(dev);
1588 u64 turbo_override;
1589
1590 if (!ips)
1591 return;
1592
1593 ips_debugfs_cleanup(ips);
1594
1595 /* Release i915 driver */
1596 if (ips->read_mch_val)
1597 symbol_put(i915_read_mch_val);
1598 if (ips->gpu_raise)
1599 symbol_put(i915_gpu_raise);
1600 if (ips->gpu_lower)
1601 symbol_put(i915_gpu_lower);
1602 if (ips->gpu_busy)
1603 symbol_put(i915_gpu_busy);
1604 if (ips->gpu_turbo_disable)
1605 symbol_put(i915_gpu_turbo_disable);
1606
1607 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1608 turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1609 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1610 wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1611
1612 free_irq(ips->dev->irq, ips);
1613 if (ips->adjust)
1614 kthread_stop(ips->adjust);
1615 if (ips->monitor)
1616 kthread_stop(ips->monitor);
1617 iounmap(ips->regmap);
1618 pci_release_regions(dev);
1619 kfree(ips);
1620 dev_dbg(&dev->dev, "IPS driver removed\n");
1621}
1622
1623#ifdef CONFIG_PM
1624static int ips_suspend(struct pci_dev *dev, pm_message_t state)
1625{
1626 return 0;
1627}
1628
1629static int ips_resume(struct pci_dev *dev)
1630{
1631 return 0;
1632}
1633#else
1634#define ips_suspend NULL
1635#define ips_resume NULL
1636#endif /* CONFIG_PM */
1637
1638static void ips_shutdown(struct pci_dev *dev)
1639{
1640}
1641
1642static struct pci_driver ips_pci_driver = {
1643 .name = "intel ips",
1644 .id_table = ips_id_table,
1645 .probe = ips_probe,
1646 .remove = ips_remove,
1647 .suspend = ips_suspend,
1648 .resume = ips_resume,
1649 .shutdown = ips_shutdown,
1650};
1651
1652static int __init ips_init(void)
1653{
1654 return pci_register_driver(&ips_pci_driver);
1655}
1656module_init(ips_init);
1657
1658static void ips_exit(void)
1659{
1660 pci_unregister_driver(&ips_pci_driver);
1661 return;
1662}
1663module_exit(ips_exit);
1664
1665MODULE_LICENSE("GPL");
1666MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1667MODULE_DESCRIPTION("Intelligent Power Sharing Driver");