]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/oprofile/buffer_sync.c
fs: reorder struct inotify_device on 64bits to remove padding
[net-next-2.6.git] / drivers / oprofile / buffer_sync.c
CommitLineData
1da177e4
LT
1/**
2 * @file buffer_sync.c
3 *
4 * @remark Copyright 2002 OProfile authors
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
345c2573 8 * @author Barry Kasindorf
1da177e4
LT
9 *
10 * This is the core of the buffer management. Each
11 * CPU buffer is processed and entered into the
12 * global event buffer. Such processing is necessary
13 * in several circumstances, mentioned below.
14 *
15 * The processing does the job of converting the
16 * transitory EIP value into a persistent dentry/offset
17 * value that the profiler can record at its leisure.
18 *
19 * See fs/dcookies.c for a description of the dentry/offset
20 * objects.
21 */
22
23#include <linux/mm.h>
24#include <linux/workqueue.h>
25#include <linux/notifier.h>
26#include <linux/dcookies.h>
27#include <linux/profile.h>
28#include <linux/module.h>
29#include <linux/fs.h>
1474855d 30#include <linux/oprofile.h>
e8edc6e0 31#include <linux/sched.h>
1474855d 32
1da177e4
LT
33#include "oprofile_stats.h"
34#include "event_buffer.h"
35#include "cpu_buffer.h"
36#include "buffer_sync.h"
73185e0a 37
1da177e4
LT
38static LIST_HEAD(dying_tasks);
39static LIST_HEAD(dead_tasks);
40static cpumask_t marked_cpus = CPU_MASK_NONE;
41static DEFINE_SPINLOCK(task_mortuary);
42static void process_task_mortuary(void);
43
1da177e4
LT
44/* Take ownership of the task struct and place it on the
45 * list for processing. Only after two full buffer syncs
46 * does the task eventually get freed, because by then
47 * we are sure we will not reference it again.
4369ef3c
PM
48 * Can be invoked from softirq via RCU callback due to
49 * call_rcu() of the task struct, hence the _irqsave.
1da177e4 50 */
73185e0a
RR
51static int
52task_free_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4 53{
4369ef3c 54 unsigned long flags;
73185e0a 55 struct task_struct *task = data;
4369ef3c 56 spin_lock_irqsave(&task_mortuary, flags);
1da177e4 57 list_add(&task->tasks, &dying_tasks);
4369ef3c 58 spin_unlock_irqrestore(&task_mortuary, flags);
1da177e4
LT
59 return NOTIFY_OK;
60}
61
62
63/* The task is on its way out. A sync of the buffer means we can catch
64 * any remaining samples for this task.
65 */
73185e0a
RR
66static int
67task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
68{
69 /* To avoid latency problems, we only process the current CPU,
70 * hoping that most samples for the task are on this CPU
71 */
39c715b7 72 sync_buffer(raw_smp_processor_id());
73185e0a 73 return 0;
1da177e4
LT
74}
75
76
77/* The task is about to try a do_munmap(). We peek at what it's going to
78 * do, and if it's an executable region, process the samples first, so
79 * we don't lose any. This does not have to be exact, it's a QoI issue
80 * only.
81 */
73185e0a
RR
82static int
83munmap_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
84{
85 unsigned long addr = (unsigned long)data;
73185e0a
RR
86 struct mm_struct *mm = current->mm;
87 struct vm_area_struct *mpnt;
1da177e4
LT
88
89 down_read(&mm->mmap_sem);
90
91 mpnt = find_vma(mm, addr);
92 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
93 up_read(&mm->mmap_sem);
94 /* To avoid latency problems, we only process the current CPU,
95 * hoping that most samples for the task are on this CPU
96 */
39c715b7 97 sync_buffer(raw_smp_processor_id());
1da177e4
LT
98 return 0;
99 }
100
101 up_read(&mm->mmap_sem);
102 return 0;
103}
104
73185e0a 105
1da177e4
LT
106/* We need to be told about new modules so we don't attribute to a previously
107 * loaded module, or drop the samples on the floor.
108 */
73185e0a
RR
109static int
110module_load_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
111{
112#ifdef CONFIG_MODULES
113 if (val != MODULE_STATE_COMING)
114 return 0;
115
116 /* FIXME: should we process all CPU buffers ? */
59cc185a 117 mutex_lock(&buffer_mutex);
1da177e4
LT
118 add_event_entry(ESCAPE_CODE);
119 add_event_entry(MODULE_LOADED_CODE);
59cc185a 120 mutex_unlock(&buffer_mutex);
1da177e4
LT
121#endif
122 return 0;
123}
124
73185e0a 125
1da177e4
LT
126static struct notifier_block task_free_nb = {
127 .notifier_call = task_free_notify,
128};
129
130static struct notifier_block task_exit_nb = {
131 .notifier_call = task_exit_notify,
132};
133
134static struct notifier_block munmap_nb = {
135 .notifier_call = munmap_notify,
136};
137
138static struct notifier_block module_load_nb = {
139 .notifier_call = module_load_notify,
140};
141
73185e0a 142
1da177e4
LT
143static void end_sync(void)
144{
145 end_cpu_work();
146 /* make sure we don't leak task structs */
147 process_task_mortuary();
148 process_task_mortuary();
149}
150
151
152int sync_start(void)
153{
154 int err;
155
156 start_cpu_work();
157
158 err = task_handoff_register(&task_free_nb);
159 if (err)
160 goto out1;
161 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
162 if (err)
163 goto out2;
164 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
165 if (err)
166 goto out3;
167 err = register_module_notifier(&module_load_nb);
168 if (err)
169 goto out4;
170
171out:
172 return err;
173out4:
174 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
175out3:
176 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
177out2:
178 task_handoff_unregister(&task_free_nb);
179out1:
180 end_sync();
181 goto out;
182}
183
184
185void sync_stop(void)
186{
187 unregister_module_notifier(&module_load_nb);
188 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
189 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
190 task_handoff_unregister(&task_free_nb);
191 end_sync();
192}
193
448678a0 194
1da177e4
LT
195/* Optimisation. We can manage without taking the dcookie sem
196 * because we cannot reach this code without at least one
197 * dcookie user still being registered (namely, the reader
198 * of the event buffer). */
448678a0 199static inline unsigned long fast_get_dcookie(struct path *path)
1da177e4
LT
200{
201 unsigned long cookie;
448678a0
JB
202
203 if (path->dentry->d_cookie)
204 return (unsigned long)path->dentry;
205 get_dcookie(path, &cookie);
1da177e4
LT
206 return cookie;
207}
208
448678a0 209
1da177e4
LT
210/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
211 * which corresponds loosely to "application name". This is
212 * not strictly necessary but allows oprofile to associate
213 * shared-library samples with particular applications
214 */
73185e0a 215static unsigned long get_exec_dcookie(struct mm_struct *mm)
1da177e4 216{
0c0a400d 217 unsigned long cookie = NO_COOKIE;
73185e0a
RR
218 struct vm_area_struct *vma;
219
1da177e4
LT
220 if (!mm)
221 goto out;
73185e0a 222
1da177e4
LT
223 for (vma = mm->mmap; vma; vma = vma->vm_next) {
224 if (!vma->vm_file)
225 continue;
226 if (!(vma->vm_flags & VM_EXECUTABLE))
227 continue;
448678a0 228 cookie = fast_get_dcookie(&vma->vm_file->f_path);
1da177e4
LT
229 break;
230 }
231
232out:
233 return cookie;
234}
235
236
237/* Convert the EIP value of a sample into a persistent dentry/offset
238 * pair that can then be added to the global event buffer. We make
239 * sure to do this lookup before a mm->mmap modification happens so
240 * we don't lose track.
241 */
73185e0a
RR
242static unsigned long
243lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
1da177e4 244{
0c0a400d 245 unsigned long cookie = NO_COOKIE;
73185e0a 246 struct vm_area_struct *vma;
1da177e4
LT
247
248 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
73185e0a 249
1da177e4
LT
250 if (addr < vma->vm_start || addr >= vma->vm_end)
251 continue;
252
0c0a400d 253 if (vma->vm_file) {
448678a0 254 cookie = fast_get_dcookie(&vma->vm_file->f_path);
0c0a400d
JL
255 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
256 vma->vm_start;
257 } else {
258 /* must be an anonymous map */
259 *offset = addr;
260 }
261
1da177e4
LT
262 break;
263 }
264
0c0a400d
JL
265 if (!vma)
266 cookie = INVALID_COOKIE;
267
1da177e4
LT
268 return cookie;
269}
270
0c0a400d 271static unsigned long last_cookie = INVALID_COOKIE;
73185e0a 272
1da177e4
LT
273static void add_cpu_switch(int i)
274{
275 add_event_entry(ESCAPE_CODE);
276 add_event_entry(CPU_SWITCH_CODE);
277 add_event_entry(i);
0c0a400d 278 last_cookie = INVALID_COOKIE;
1da177e4
LT
279}
280
281static void add_kernel_ctx_switch(unsigned int in_kernel)
282{
283 add_event_entry(ESCAPE_CODE);
284 if (in_kernel)
73185e0a 285 add_event_entry(KERNEL_ENTER_SWITCH_CODE);
1da177e4 286 else
73185e0a 287 add_event_entry(KERNEL_EXIT_SWITCH_CODE);
1da177e4 288}
73185e0a 289
1da177e4 290static void
73185e0a 291add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
1da177e4
LT
292{
293 add_event_entry(ESCAPE_CODE);
73185e0a 294 add_event_entry(CTX_SWITCH_CODE);
1da177e4
LT
295 add_event_entry(task->pid);
296 add_event_entry(cookie);
297 /* Another code for daemon back-compat */
298 add_event_entry(ESCAPE_CODE);
299 add_event_entry(CTX_TGID_CODE);
300 add_event_entry(task->tgid);
301}
302
73185e0a 303
1da177e4
LT
304static void add_cookie_switch(unsigned long cookie)
305{
306 add_event_entry(ESCAPE_CODE);
307 add_event_entry(COOKIE_SWITCH_CODE);
308 add_event_entry(cookie);
309}
310
73185e0a 311
1da177e4
LT
312static void add_trace_begin(void)
313{
314 add_event_entry(ESCAPE_CODE);
315 add_event_entry(TRACE_BEGIN_CODE);
316}
317
852402cc
RR
318#ifdef CONFIG_OPROFILE_IBS
319
345c2573
BK
320#define IBS_FETCH_CODE_SIZE 2
321#define IBS_OP_CODE_SIZE 5
345c2573
BK
322
323/*
324 * Add IBS fetch and op entries to event buffer
325 */
6dad828b 326static void add_ibs_begin(int cpu, int code, struct mm_struct *mm)
345c2573
BK
327{
328 unsigned long rip;
329 int i, count;
330 unsigned long ibs_cookie = 0;
331 off_t offset;
6dad828b 332 struct op_sample *sample;
345c2573 333
6dad828b
RR
334 sample = cpu_buffer_read_entry(cpu);
335 if (!sample)
336 goto Error;
337 rip = sample->eip;
345c2573
BK
338
339#ifdef __LP64__
6dad828b 340 rip += sample->event << 32;
345c2573
BK
341#endif
342
343 if (mm) {
344 ibs_cookie = lookup_dcookie(mm, rip, &offset);
345
346 if (ibs_cookie == NO_COOKIE)
347 offset = rip;
348 if (ibs_cookie == INVALID_COOKIE) {
349 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
350 offset = rip;
351 }
352 if (ibs_cookie != last_cookie) {
353 add_cookie_switch(ibs_cookie);
354 last_cookie = ibs_cookie;
355 }
356 } else
357 offset = rip;
358
359 add_event_entry(ESCAPE_CODE);
360 add_event_entry(code);
361 add_event_entry(offset); /* Offset from Dcookie */
362
363 /* we send the Dcookie offset, but send the raw Linear Add also*/
6dad828b
RR
364 add_event_entry(sample->eip);
365 add_event_entry(sample->event);
345c2573
BK
366
367 if (code == IBS_FETCH_CODE)
368 count = IBS_FETCH_CODE_SIZE; /*IBS FETCH is 2 int64s*/
369 else
370 count = IBS_OP_CODE_SIZE; /*IBS OP is 5 int64s*/
371
372 for (i = 0; i < count; i++) {
6dad828b
RR
373 sample = cpu_buffer_read_entry(cpu);
374 if (!sample)
375 goto Error;
376 add_event_entry(sample->eip);
377 add_event_entry(sample->event);
345c2573 378 }
6dad828b
RR
379
380 return;
381
382Error:
383 return;
345c2573 384}
1da177e4 385
852402cc
RR
386#endif
387
1da177e4
LT
388static void add_sample_entry(unsigned long offset, unsigned long event)
389{
390 add_event_entry(offset);
391 add_event_entry(event);
392}
393
394
73185e0a 395static int add_us_sample(struct mm_struct *mm, struct op_sample *s)
1da177e4
LT
396{
397 unsigned long cookie;
398 off_t offset;
73185e0a
RR
399
400 cookie = lookup_dcookie(mm, s->eip, &offset);
401
0c0a400d 402 if (cookie == INVALID_COOKIE) {
1da177e4
LT
403 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
404 return 0;
405 }
406
407 if (cookie != last_cookie) {
408 add_cookie_switch(cookie);
409 last_cookie = cookie;
410 }
411
412 add_sample_entry(offset, s->event);
413
414 return 1;
415}
416
73185e0a 417
1da177e4
LT
418/* Add a sample to the global event buffer. If possible the
419 * sample is converted into a persistent dentry/offset pair
420 * for later lookup from userspace.
421 */
422static int
73185e0a 423add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
1da177e4
LT
424{
425 if (in_kernel) {
426 add_sample_entry(s->eip, s->event);
427 return 1;
428 } else if (mm) {
429 return add_us_sample(mm, s);
430 } else {
431 atomic_inc(&oprofile_stats.sample_lost_no_mm);
432 }
433 return 0;
434}
1da177e4 435
73185e0a
RR
436
437static void release_mm(struct mm_struct *mm)
1da177e4
LT
438{
439 if (!mm)
440 return;
441 up_read(&mm->mmap_sem);
442 mmput(mm);
443}
444
445
73185e0a 446static struct mm_struct *take_tasks_mm(struct task_struct *task)
1da177e4 447{
73185e0a 448 struct mm_struct *mm = get_task_mm(task);
1da177e4
LT
449 if (mm)
450 down_read(&mm->mmap_sem);
451 return mm;
452}
453
454
455static inline int is_code(unsigned long val)
456{
457 return val == ESCAPE_CODE;
458}
73185e0a 459
1da177e4 460
1da177e4
LT
461/* Move tasks along towards death. Any tasks on dead_tasks
462 * will definitely have no remaining references in any
463 * CPU buffers at this point, because we use two lists,
464 * and to have reached the list, it must have gone through
465 * one full sync already.
466 */
467static void process_task_mortuary(void)
468{
4369ef3c
PM
469 unsigned long flags;
470 LIST_HEAD(local_dead_tasks);
73185e0a
RR
471 struct task_struct *task;
472 struct task_struct *ttask;
1da177e4 473
4369ef3c 474 spin_lock_irqsave(&task_mortuary, flags);
1da177e4 475
4369ef3c
PM
476 list_splice_init(&dead_tasks, &local_dead_tasks);
477 list_splice_init(&dying_tasks, &dead_tasks);
1da177e4 478
4369ef3c
PM
479 spin_unlock_irqrestore(&task_mortuary, flags);
480
481 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
1da177e4 482 list_del(&task->tasks);
4369ef3c 483 free_task(task);
1da177e4 484 }
1da177e4
LT
485}
486
487
488static void mark_done(int cpu)
489{
490 int i;
491
492 cpu_set(cpu, marked_cpus);
493
494 for_each_online_cpu(i) {
495 if (!cpu_isset(i, marked_cpus))
496 return;
497 }
498
499 /* All CPUs have been processed at least once,
500 * we can process the mortuary once
501 */
502 process_task_mortuary();
503
504 cpus_clear(marked_cpus);
505}
506
507
508/* FIXME: this is not sufficient if we implement syscall barrier backtrace
509 * traversal, the code switch to sb_sample_start at first kernel enter/exit
510 * switch so we need a fifth state and some special handling in sync_buffer()
511 */
512typedef enum {
513 sb_bt_ignore = -2,
514 sb_buffer_start,
515 sb_bt_start,
516 sb_sample_start,
517} sync_buffer_state;
518
519/* Sync one of the CPU's buffers into the global event buffer.
520 * Here we need to go through each batch of samples punctuated
521 * by context switch notes, taking the task's mmap_sem and doing
522 * lookup in task->mm->mmap to convert EIP into dcookie/offset
523 * value.
524 */
525void sync_buffer(int cpu)
526{
1da177e4 527 struct mm_struct *mm = NULL;
fd7826d5 528 struct mm_struct *oldmm;
73185e0a 529 struct task_struct *new;
1da177e4
LT
530 unsigned long cookie = 0;
531 int in_kernel = 1;
1da177e4 532 sync_buffer_state state = sb_buffer_start;
9b1f2611 533 unsigned int i;
1da177e4
LT
534 unsigned long available;
535
59cc185a 536 mutex_lock(&buffer_mutex);
73185e0a 537
1da177e4
LT
538 add_cpu_switch(cpu);
539
fbc9bf9f 540 cpu_buffer_reset(cpu);
6dad828b 541 available = cpu_buffer_entries(cpu);
1da177e4
LT
542
543 for (i = 0; i < available; ++i) {
6dad828b
RR
544 struct op_sample *s = cpu_buffer_read_entry(cpu);
545 if (!s)
546 break;
73185e0a 547
1da177e4 548 if (is_code(s->eip)) {
fd7826d5
RR
549 switch (s->event) {
550 case 0:
551 case CPU_IS_KERNEL:
1da177e4
LT
552 /* kernel/userspace switch */
553 in_kernel = s->event;
554 if (state == sb_buffer_start)
555 state = sb_sample_start;
556 add_kernel_ctx_switch(s->event);
fd7826d5
RR
557 break;
558 case CPU_TRACE_BEGIN:
1da177e4
LT
559 state = sb_bt_start;
560 add_trace_begin();
fd7826d5 561 break;
852402cc 562#ifdef CONFIG_OPROFILE_IBS
fd7826d5 563 case IBS_FETCH_BEGIN:
345c2573 564 state = sb_bt_start;
6dad828b 565 add_ibs_begin(cpu, IBS_FETCH_CODE, mm);
fd7826d5
RR
566 break;
567 case IBS_OP_BEGIN:
345c2573 568 state = sb_bt_start;
6dad828b 569 add_ibs_begin(cpu, IBS_OP_CODE, mm);
fd7826d5 570 break;
852402cc 571#endif
fd7826d5 572 default:
1da177e4 573 /* userspace context switch */
fd7826d5 574 oldmm = mm;
1da177e4 575 new = (struct task_struct *)s->event;
1da177e4
LT
576 release_mm(oldmm);
577 mm = take_tasks_mm(new);
578 if (mm != oldmm)
579 cookie = get_exec_dcookie(mm);
580 add_user_ctx_switch(new, cookie);
fd7826d5 581 break;
1da177e4 582 }
73185e0a
RR
583 } else if (state >= sb_bt_start &&
584 !add_sample(mm, s, in_kernel)) {
585 if (state == sb_bt_start) {
586 state = sb_bt_ignore;
587 atomic_inc(&oprofile_stats.bt_lost_no_mapping);
1da177e4
LT
588 }
589 }
1da177e4
LT
590 }
591 release_mm(mm);
592
593 mark_done(cpu);
594
59cc185a 595 mutex_unlock(&buffer_mutex);
1da177e4 596}
a5598ca0
CL
597
598/* The function can be used to add a buffer worth of data directly to
599 * the kernel buffer. The buffer is assumed to be a circular buffer.
600 * Take the entries from index start and end at index end, wrapping
601 * at max_entries.
602 */
603void oprofile_put_buff(unsigned long *buf, unsigned int start,
604 unsigned int stop, unsigned int max)
605{
606 int i;
607
608 i = start;
609
610 mutex_lock(&buffer_mutex);
611 while (i != stop) {
612 add_event_entry(buf[i++]);
613
614 if (i >= max)
615 i = 0;
616 }
617
618 mutex_unlock(&buffer_mutex);
619}
620