]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/oprofile/buffer_sync.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[net-next-2.6.git] / drivers / oprofile / buffer_sync.c
CommitLineData
1da177e4
LT
1/**
2 * @file buffer_sync.c
3 *
ae735e99 4 * @remark Copyright 2002-2009 OProfile authors
1da177e4
LT
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
345c2573 8 * @author Barry Kasindorf
ae735e99 9 * @author Robert Richter <robert.richter@amd.com>
1da177e4
LT
10 *
11 * This is the core of the buffer management. Each
12 * CPU buffer is processed and entered into the
13 * global event buffer. Such processing is necessary
14 * in several circumstances, mentioned below.
15 *
16 * The processing does the job of converting the
17 * transitory EIP value into a persistent dentry/offset
18 * value that the profiler can record at its leisure.
19 *
20 * See fs/dcookies.c for a description of the dentry/offset
21 * objects.
22 */
23
24#include <linux/mm.h>
25#include <linux/workqueue.h>
26#include <linux/notifier.h>
27#include <linux/dcookies.h>
28#include <linux/profile.h>
29#include <linux/module.h>
30#include <linux/fs.h>
1474855d 31#include <linux/oprofile.h>
e8edc6e0 32#include <linux/sched.h>
5a0e3ad6 33#include <linux/gfp.h>
1474855d 34
1da177e4
LT
35#include "oprofile_stats.h"
36#include "event_buffer.h"
37#include "cpu_buffer.h"
38#include "buffer_sync.h"
73185e0a 39
1da177e4
LT
40static LIST_HEAD(dying_tasks);
41static LIST_HEAD(dead_tasks);
f7df8ed1 42static cpumask_var_t marked_cpus;
1da177e4
LT
43static DEFINE_SPINLOCK(task_mortuary);
44static void process_task_mortuary(void);
45
1da177e4
LT
46/* Take ownership of the task struct and place it on the
47 * list for processing. Only after two full buffer syncs
48 * does the task eventually get freed, because by then
49 * we are sure we will not reference it again.
4369ef3c
PM
50 * Can be invoked from softirq via RCU callback due to
51 * call_rcu() of the task struct, hence the _irqsave.
1da177e4 52 */
73185e0a
RR
53static int
54task_free_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4 55{
4369ef3c 56 unsigned long flags;
73185e0a 57 struct task_struct *task = data;
4369ef3c 58 spin_lock_irqsave(&task_mortuary, flags);
1da177e4 59 list_add(&task->tasks, &dying_tasks);
4369ef3c 60 spin_unlock_irqrestore(&task_mortuary, flags);
1da177e4
LT
61 return NOTIFY_OK;
62}
63
64
65/* The task is on its way out. A sync of the buffer means we can catch
66 * any remaining samples for this task.
67 */
73185e0a
RR
68static int
69task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
70{
71 /* To avoid latency problems, we only process the current CPU,
72 * hoping that most samples for the task are on this CPU
73 */
39c715b7 74 sync_buffer(raw_smp_processor_id());
73185e0a 75 return 0;
1da177e4
LT
76}
77
78
79/* The task is about to try a do_munmap(). We peek at what it's going to
80 * do, and if it's an executable region, process the samples first, so
81 * we don't lose any. This does not have to be exact, it's a QoI issue
82 * only.
83 */
73185e0a
RR
84static int
85munmap_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
86{
87 unsigned long addr = (unsigned long)data;
73185e0a
RR
88 struct mm_struct *mm = current->mm;
89 struct vm_area_struct *mpnt;
1da177e4
LT
90
91 down_read(&mm->mmap_sem);
92
93 mpnt = find_vma(mm, addr);
94 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
95 up_read(&mm->mmap_sem);
96 /* To avoid latency problems, we only process the current CPU,
97 * hoping that most samples for the task are on this CPU
98 */
39c715b7 99 sync_buffer(raw_smp_processor_id());
1da177e4
LT
100 return 0;
101 }
102
103 up_read(&mm->mmap_sem);
104 return 0;
105}
106
73185e0a 107
1da177e4
LT
108/* We need to be told about new modules so we don't attribute to a previously
109 * loaded module, or drop the samples on the floor.
110 */
73185e0a
RR
111static int
112module_load_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
113{
114#ifdef CONFIG_MODULES
115 if (val != MODULE_STATE_COMING)
116 return 0;
117
118 /* FIXME: should we process all CPU buffers ? */
59cc185a 119 mutex_lock(&buffer_mutex);
1da177e4
LT
120 add_event_entry(ESCAPE_CODE);
121 add_event_entry(MODULE_LOADED_CODE);
59cc185a 122 mutex_unlock(&buffer_mutex);
1da177e4
LT
123#endif
124 return 0;
125}
126
73185e0a 127
1da177e4
LT
128static struct notifier_block task_free_nb = {
129 .notifier_call = task_free_notify,
130};
131
132static struct notifier_block task_exit_nb = {
133 .notifier_call = task_exit_notify,
134};
135
136static struct notifier_block munmap_nb = {
137 .notifier_call = munmap_notify,
138};
139
140static struct notifier_block module_load_nb = {
141 .notifier_call = module_load_notify,
142};
143
73185e0a 144
1da177e4
LT
145static void end_sync(void)
146{
147 end_cpu_work();
148 /* make sure we don't leak task structs */
149 process_task_mortuary();
150 process_task_mortuary();
151}
152
153
154int sync_start(void)
155{
156 int err;
157
79f55997 158 if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL))
4c50d9ea 159 return -ENOMEM;
4c50d9ea 160
1da177e4
LT
161 start_cpu_work();
162
163 err = task_handoff_register(&task_free_nb);
164 if (err)
165 goto out1;
166 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
167 if (err)
168 goto out2;
169 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
170 if (err)
171 goto out3;
172 err = register_module_notifier(&module_load_nb);
173 if (err)
174 goto out4;
175
176out:
177 return err;
178out4:
179 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
180out3:
181 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
182out2:
183 task_handoff_unregister(&task_free_nb);
184out1:
185 end_sync();
4c50d9ea 186 free_cpumask_var(marked_cpus);
1da177e4
LT
187 goto out;
188}
189
190
191void sync_stop(void)
192{
193 unregister_module_notifier(&module_load_nb);
194 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
195 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
196 task_handoff_unregister(&task_free_nb);
197 end_sync();
4c50d9ea 198 free_cpumask_var(marked_cpus);
1da177e4
LT
199}
200
448678a0 201
1da177e4
LT
202/* Optimisation. We can manage without taking the dcookie sem
203 * because we cannot reach this code without at least one
204 * dcookie user still being registered (namely, the reader
205 * of the event buffer). */
448678a0 206static inline unsigned long fast_get_dcookie(struct path *path)
1da177e4
LT
207{
208 unsigned long cookie;
448678a0 209
c2452f32 210 if (path->dentry->d_flags & DCACHE_COOKIE)
448678a0
JB
211 return (unsigned long)path->dentry;
212 get_dcookie(path, &cookie);
1da177e4
LT
213 return cookie;
214}
215
448678a0 216
1da177e4
LT
217/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
218 * which corresponds loosely to "application name". This is
219 * not strictly necessary but allows oprofile to associate
220 * shared-library samples with particular applications
221 */
73185e0a 222static unsigned long get_exec_dcookie(struct mm_struct *mm)
1da177e4 223{
0c0a400d 224 unsigned long cookie = NO_COOKIE;
73185e0a
RR
225 struct vm_area_struct *vma;
226
1da177e4
LT
227 if (!mm)
228 goto out;
73185e0a 229
1da177e4
LT
230 for (vma = mm->mmap; vma; vma = vma->vm_next) {
231 if (!vma->vm_file)
232 continue;
233 if (!(vma->vm_flags & VM_EXECUTABLE))
234 continue;
448678a0 235 cookie = fast_get_dcookie(&vma->vm_file->f_path);
1da177e4
LT
236 break;
237 }
238
239out:
240 return cookie;
241}
242
243
244/* Convert the EIP value of a sample into a persistent dentry/offset
245 * pair that can then be added to the global event buffer. We make
246 * sure to do this lookup before a mm->mmap modification happens so
247 * we don't lose track.
248 */
73185e0a
RR
249static unsigned long
250lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
1da177e4 251{
0c0a400d 252 unsigned long cookie = NO_COOKIE;
73185e0a 253 struct vm_area_struct *vma;
1da177e4
LT
254
255 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
73185e0a 256
1da177e4
LT
257 if (addr < vma->vm_start || addr >= vma->vm_end)
258 continue;
259
0c0a400d 260 if (vma->vm_file) {
448678a0 261 cookie = fast_get_dcookie(&vma->vm_file->f_path);
0c0a400d
JL
262 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
263 vma->vm_start;
264 } else {
265 /* must be an anonymous map */
266 *offset = addr;
267 }
268
1da177e4
LT
269 break;
270 }
271
0c0a400d
JL
272 if (!vma)
273 cookie = INVALID_COOKIE;
274
1da177e4
LT
275 return cookie;
276}
277
0c0a400d 278static unsigned long last_cookie = INVALID_COOKIE;
73185e0a 279
1da177e4
LT
280static void add_cpu_switch(int i)
281{
282 add_event_entry(ESCAPE_CODE);
283 add_event_entry(CPU_SWITCH_CODE);
284 add_event_entry(i);
0c0a400d 285 last_cookie = INVALID_COOKIE;
1da177e4
LT
286}
287
288static void add_kernel_ctx_switch(unsigned int in_kernel)
289{
290 add_event_entry(ESCAPE_CODE);
291 if (in_kernel)
73185e0a 292 add_event_entry(KERNEL_ENTER_SWITCH_CODE);
1da177e4 293 else
73185e0a 294 add_event_entry(KERNEL_EXIT_SWITCH_CODE);
1da177e4 295}
73185e0a 296
1da177e4 297static void
73185e0a 298add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
1da177e4
LT
299{
300 add_event_entry(ESCAPE_CODE);
73185e0a 301 add_event_entry(CTX_SWITCH_CODE);
1da177e4
LT
302 add_event_entry(task->pid);
303 add_event_entry(cookie);
304 /* Another code for daemon back-compat */
305 add_event_entry(ESCAPE_CODE);
306 add_event_entry(CTX_TGID_CODE);
307 add_event_entry(task->tgid);
308}
309
73185e0a 310
1da177e4
LT
311static void add_cookie_switch(unsigned long cookie)
312{
313 add_event_entry(ESCAPE_CODE);
314 add_event_entry(COOKIE_SWITCH_CODE);
315 add_event_entry(cookie);
316}
317
73185e0a 318
1da177e4
LT
319static void add_trace_begin(void)
320{
321 add_event_entry(ESCAPE_CODE);
322 add_event_entry(TRACE_BEGIN_CODE);
323}
324
1acda878 325static void add_data(struct op_entry *entry, struct mm_struct *mm)
345c2573 326{
1acda878
RR
327 unsigned long code, pc, val;
328 unsigned long cookie;
345c2573 329 off_t offset;
345c2573 330
1acda878
RR
331 if (!op_cpu_buffer_get_data(entry, &code))
332 return;
333 if (!op_cpu_buffer_get_data(entry, &pc))
334 return;
335 if (!op_cpu_buffer_get_size(entry))
dbe6e283 336 return;
345c2573
BK
337
338 if (mm) {
d358e75f 339 cookie = lookup_dcookie(mm, pc, &offset);
345c2573 340
d358e75f
RR
341 if (cookie == NO_COOKIE)
342 offset = pc;
343 if (cookie == INVALID_COOKIE) {
345c2573 344 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
d358e75f 345 offset = pc;
345c2573 346 }
d358e75f
RR
347 if (cookie != last_cookie) {
348 add_cookie_switch(cookie);
349 last_cookie = cookie;
345c2573
BK
350 }
351 } else
d358e75f 352 offset = pc;
345c2573
BK
353
354 add_event_entry(ESCAPE_CODE);
355 add_event_entry(code);
356 add_event_entry(offset); /* Offset from Dcookie */
357
1acda878
RR
358 while (op_cpu_buffer_get_data(entry, &val))
359 add_event_entry(val);
345c2573 360}
1da177e4 361
6368a1f4 362static inline void add_sample_entry(unsigned long offset, unsigned long event)
1da177e4
LT
363{
364 add_event_entry(offset);
365 add_event_entry(event);
366}
367
368
9741b309
RR
369/*
370 * Add a sample to the global event buffer. If possible the
371 * sample is converted into a persistent dentry/offset pair
372 * for later lookup from userspace. Return 0 on failure.
373 */
374static int
375add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
1da177e4
LT
376{
377 unsigned long cookie;
378 off_t offset;
73185e0a 379
9741b309
RR
380 if (in_kernel) {
381 add_sample_entry(s->eip, s->event);
382 return 1;
383 }
384
385 /* add userspace sample */
386
387 if (!mm) {
388 atomic_inc(&oprofile_stats.sample_lost_no_mm);
389 return 0;
390 }
391
73185e0a
RR
392 cookie = lookup_dcookie(mm, s->eip, &offset);
393
0c0a400d 394 if (cookie == INVALID_COOKIE) {
1da177e4
LT
395 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
396 return 0;
397 }
398
399 if (cookie != last_cookie) {
400 add_cookie_switch(cookie);
401 last_cookie = cookie;
402 }
403
404 add_sample_entry(offset, s->event);
405
406 return 1;
407}
408
73185e0a 409
73185e0a 410static void release_mm(struct mm_struct *mm)
1da177e4
LT
411{
412 if (!mm)
413 return;
414 up_read(&mm->mmap_sem);
415 mmput(mm);
416}
417
418
73185e0a 419static struct mm_struct *take_tasks_mm(struct task_struct *task)
1da177e4 420{
73185e0a 421 struct mm_struct *mm = get_task_mm(task);
1da177e4
LT
422 if (mm)
423 down_read(&mm->mmap_sem);
424 return mm;
425}
426
427
428static inline int is_code(unsigned long val)
429{
430 return val == ESCAPE_CODE;
431}
73185e0a 432
1da177e4 433
1da177e4
LT
434/* Move tasks along towards death. Any tasks on dead_tasks
435 * will definitely have no remaining references in any
436 * CPU buffers at this point, because we use two lists,
437 * and to have reached the list, it must have gone through
438 * one full sync already.
439 */
440static void process_task_mortuary(void)
441{
4369ef3c
PM
442 unsigned long flags;
443 LIST_HEAD(local_dead_tasks);
73185e0a
RR
444 struct task_struct *task;
445 struct task_struct *ttask;
1da177e4 446
4369ef3c 447 spin_lock_irqsave(&task_mortuary, flags);
1da177e4 448
4369ef3c
PM
449 list_splice_init(&dead_tasks, &local_dead_tasks);
450 list_splice_init(&dying_tasks, &dead_tasks);
1da177e4 451
4369ef3c
PM
452 spin_unlock_irqrestore(&task_mortuary, flags);
453
454 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
1da177e4 455 list_del(&task->tasks);
4369ef3c 456 free_task(task);
1da177e4 457 }
1da177e4
LT
458}
459
460
461static void mark_done(int cpu)
462{
463 int i;
464
f7df8ed1 465 cpumask_set_cpu(cpu, marked_cpus);
1da177e4
LT
466
467 for_each_online_cpu(i) {
f7df8ed1 468 if (!cpumask_test_cpu(i, marked_cpus))
1da177e4
LT
469 return;
470 }
471
472 /* All CPUs have been processed at least once,
473 * we can process the mortuary once
474 */
475 process_task_mortuary();
476
f7df8ed1 477 cpumask_clear(marked_cpus);
1da177e4
LT
478}
479
480
481/* FIXME: this is not sufficient if we implement syscall barrier backtrace
482 * traversal, the code switch to sb_sample_start at first kernel enter/exit
483 * switch so we need a fifth state and some special handling in sync_buffer()
484 */
485typedef enum {
486 sb_bt_ignore = -2,
487 sb_buffer_start,
488 sb_bt_start,
489 sb_sample_start,
490} sync_buffer_state;
491
492/* Sync one of the CPU's buffers into the global event buffer.
493 * Here we need to go through each batch of samples punctuated
494 * by context switch notes, taking the task's mmap_sem and doing
495 * lookup in task->mm->mmap to convert EIP into dcookie/offset
496 * value.
497 */
498void sync_buffer(int cpu)
499{
1da177e4 500 struct mm_struct *mm = NULL;
fd7826d5 501 struct mm_struct *oldmm;
bd7dc46f 502 unsigned long val;
73185e0a 503 struct task_struct *new;
1da177e4
LT
504 unsigned long cookie = 0;
505 int in_kernel = 1;
1da177e4 506 sync_buffer_state state = sb_buffer_start;
9b1f2611 507 unsigned int i;
1da177e4 508 unsigned long available;
ae735e99 509 unsigned long flags;
2d87b14c
RR
510 struct op_entry entry;
511 struct op_sample *sample;
1da177e4 512
59cc185a 513 mutex_lock(&buffer_mutex);
73185e0a 514
1da177e4
LT
515 add_cpu_switch(cpu);
516
6d2c53f3
RR
517 op_cpu_buffer_reset(cpu);
518 available = op_cpu_buffer_entries(cpu);
1da177e4
LT
519
520 for (i = 0; i < available; ++i) {
2d87b14c
RR
521 sample = op_cpu_buffer_read_entry(&entry, cpu);
522 if (!sample)
6dad828b 523 break;
73185e0a 524
2d87b14c 525 if (is_code(sample->eip)) {
ae735e99
RR
526 flags = sample->event;
527 if (flags & TRACE_BEGIN) {
528 state = sb_bt_start;
529 add_trace_begin();
530 }
531 if (flags & KERNEL_CTX_SWITCH) {
1da177e4 532 /* kernel/userspace switch */
ae735e99 533 in_kernel = flags & IS_KERNEL;
1da177e4
LT
534 if (state == sb_buffer_start)
535 state = sb_sample_start;
ae735e99
RR
536 add_kernel_ctx_switch(flags & IS_KERNEL);
537 }
bd7dc46f
RR
538 if (flags & USER_CTX_SWITCH
539 && op_cpu_buffer_get_data(&entry, &val)) {
1da177e4 540 /* userspace context switch */
bd7dc46f 541 new = (struct task_struct *)val;
fd7826d5 542 oldmm = mm;
1da177e4
LT
543 release_mm(oldmm);
544 mm = take_tasks_mm(new);
545 if (mm != oldmm)
546 cookie = get_exec_dcookie(mm);
547 add_user_ctx_switch(new, cookie);
1da177e4 548 }
1acda878
RR
549 if (op_cpu_buffer_get_size(&entry))
550 add_data(&entry, mm);
317f33bc
RR
551 continue;
552 }
553
554 if (state < sb_bt_start)
555 /* ignore sample */
556 continue;
557
2d87b14c 558 if (add_sample(mm, sample, in_kernel))
317f33bc
RR
559 continue;
560
561 /* ignore backtraces if failed to add a sample */
562 if (state == sb_bt_start) {
563 state = sb_bt_ignore;
564 atomic_inc(&oprofile_stats.bt_lost_no_mapping);
1da177e4 565 }
1da177e4
LT
566 }
567 release_mm(mm);
568
569 mark_done(cpu);
570
59cc185a 571 mutex_unlock(&buffer_mutex);
1da177e4 572}
a5598ca0
CL
573
574/* The function can be used to add a buffer worth of data directly to
575 * the kernel buffer. The buffer is assumed to be a circular buffer.
576 * Take the entries from index start and end at index end, wrapping
577 * at max_entries.
578 */
579void oprofile_put_buff(unsigned long *buf, unsigned int start,
580 unsigned int stop, unsigned int max)
581{
582 int i;
583
584 i = start;
585
586 mutex_lock(&buffer_mutex);
587 while (i != stop) {
588 add_event_entry(buf[i++]);
589
590 if (i >= max)
591 i = 0;
592 }
593
594 mutex_unlock(&buffer_mutex);
595}
596