]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/wireless/ath/ath5k/phy.c
Merge branch 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[net-next-2.6.git] / drivers / net / wireless / ath / ath5k / phy.c
CommitLineData
fa1c114f
JS
1/*
2 * PHY functions
3 *
c6e387a2 4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
33a31826 5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
c6e387a2 6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8f655dde 7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
fa1c114f
JS
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
5a0e3ad6 24#include <linux/slab.h>
fa1c114f
JS
25
26#include "ath5k.h"
27#include "reg.h"
28#include "base.h"
33a31826
NK
29#include "rfbuffer.h"
30#include "rfgain.h"
fa1c114f
JS
31
32/*
33 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
34 */
8892e4ec
NK
35static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
36 const struct ath5k_rf_reg *rf_regs,
37 u32 val, u8 reg_id, bool set)
fa1c114f 38{
8892e4ec
NK
39 const struct ath5k_rf_reg *rfreg = NULL;
40 u8 offset, bank, num_bits, col, position;
41 u16 entry;
42 u32 mask, data, last_bit, bits_shifted, first_bit;
43 u32 *rfb;
44 s32 bits_left;
fa1c114f
JS
45 int i;
46
47 data = 0;
8892e4ec 48 rfb = ah->ah_rf_banks;
fa1c114f 49
8892e4ec
NK
50 for (i = 0; i < ah->ah_rf_regs_count; i++) {
51 if (rf_regs[i].index == reg_id) {
52 rfreg = &rf_regs[i];
53 break;
54 }
55 }
56
57 if (rfb == NULL || rfreg == NULL) {
58 ATH5K_PRINTF("Rf register not found!\n");
fa1c114f
JS
59 /* should not happen */
60 return 0;
8892e4ec
NK
61 }
62
63 bank = rfreg->bank;
64 num_bits = rfreg->field.len;
65 first_bit = rfreg->field.pos;
66 col = rfreg->field.col;
67
68 /* first_bit is an offset from bank's
69 * start. Since we have all banks on
70 * the same array, we use this offset
71 * to mark each bank's start */
72 offset = ah->ah_offset[bank];
fa1c114f 73
8892e4ec
NK
74 /* Boundary check */
75 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
fa1c114f
JS
76 ATH5K_PRINTF("invalid values at offset %u\n", offset);
77 return 0;
78 }
79
8892e4ec
NK
80 entry = ((first_bit - 1) / 8) + offset;
81 position = (first_bit - 1) % 8;
fa1c114f 82
e9010e2f 83 if (set)
8892e4ec 84 data = ath5k_hw_bitswap(val, num_bits);
fa1c114f 85
8892e4ec
NK
86 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
87 position = 0, entry++) {
88
89 last_bit = (position + bits_left > 8) ? 8 :
90 position + bits_left;
91
92 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
93 (col * 8);
fa1c114f 94
e9010e2f 95 if (set) {
8892e4ec
NK
96 rfb[entry] &= ~mask;
97 rfb[entry] |= ((data << position) << (col * 8)) & mask;
fa1c114f
JS
98 data >>= (8 - position);
99 } else {
8892e4ec
NK
100 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
101 << bits_shifted;
102 bits_shifted += last_bit - position;
fa1c114f
JS
103 }
104
8892e4ec 105 bits_left -= 8 - position;
fa1c114f
JS
106 }
107
8892e4ec 108 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
fa1c114f
JS
109
110 return data;
111}
112
6f3b414a
NK
113/**********************\
114* RF Gain optimization *
115\**********************/
116
117/*
118 * This code is used to optimize rf gain on different environments
af901ca1 119 * (temperature mostly) based on feedback from a power detector.
6f3b414a
NK
120 *
121 * It's only used on RF5111 and RF5112, later RF chips seem to have
122 * auto adjustment on hw -notice they have a much smaller BANK 7 and
123 * no gain optimization ladder-.
124 *
125 * For more infos check out this patent doc
126 * http://www.freepatentsonline.com/7400691.html
127 *
128 * This paper describes power drops as seen on the receiver due to
129 * probe packets
130 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
131 * %20of%20Power%20Control.pdf
132 *
133 * And this is the MadWiFi bug entry related to the above
134 * http://madwifi-project.org/ticket/1659
135 * with various measurements and diagrams
136 *
137 * TODO: Deal with power drops due to probes by setting an apropriate
138 * tx power on the probe packets ! Make this part of the calibration process.
139 */
140
141/* Initialize ah_gain durring attach */
142int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
143{
144 /* Initialize the gain optimization values */
145 switch (ah->ah_radio) {
146 case AR5K_RF5111:
147 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
148 ah->ah_gain.g_low = 20;
149 ah->ah_gain.g_high = 35;
150 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
151 break;
152 case AR5K_RF5112:
153 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
154 ah->ah_gain.g_low = 20;
155 ah->ah_gain.g_high = 85;
156 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
157 break;
158 default:
159 return -EINVAL;
160 }
161
162 return 0;
163}
164
165/* Schedule a gain probe check on the next transmited packet.
166 * That means our next packet is going to be sent with lower
167 * tx power and a Peak to Average Power Detector (PAPD) will try
168 * to measure the gain.
169 *
6f3b414a
NK
170 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
171 * just after we enable the probe so that we don't mess with
172 * standard traffic ? Maybe it's time to use sw interrupts and
173 * a probe tasklet !!!
174 */
175static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
176{
177
178 /* Skip if gain calibration is inactive or
179 * we already handle a probe request */
180 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
181 return;
182
8f655dde
NK
183 /* Send the packet with 2dB below max power as
184 * patent doc suggest */
a0823810 185 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
6f3b414a
NK
186 AR5K_PHY_PAPD_PROBE_TXPOWER) |
187 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
188
189 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
190
191}
192
193/* Calculate gain_F measurement correction
194 * based on the current step for RF5112 rev. 2 */
195static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
fa1c114f
JS
196{
197 u32 mix, step;
198 u32 *rf;
6f3b414a
NK
199 const struct ath5k_gain_opt *go;
200 const struct ath5k_gain_opt_step *g_step;
8892e4ec 201 const struct ath5k_rf_reg *rf_regs;
6f3b414a
NK
202
203 /* Only RF5112 Rev. 2 supports it */
204 if ((ah->ah_radio != AR5K_RF5112) ||
205 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
206 return 0;
207
208 go = &rfgain_opt_5112;
8892e4ec
NK
209 rf_regs = rf_regs_5112a;
210 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
6f3b414a
NK
211
212 g_step = &go->go_step[ah->ah_gain.g_step_idx];
fa1c114f
JS
213
214 if (ah->ah_rf_banks == NULL)
215 return 0;
216
217 rf = ah->ah_rf_banks;
218 ah->ah_gain.g_f_corr = 0;
219
6f3b414a 220 /* No VGA (Variable Gain Amplifier) override, skip */
8892e4ec 221 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
fa1c114f
JS
222 return 0;
223
6f3b414a 224 /* Mix gain stepping */
8892e4ec 225 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
6f3b414a
NK
226
227 /* Mix gain override */
228 mix = g_step->gos_param[0];
fa1c114f
JS
229
230 switch (mix) {
231 case 3:
232 ah->ah_gain.g_f_corr = step * 2;
233 break;
234 case 2:
235 ah->ah_gain.g_f_corr = (step - 5) * 2;
236 break;
237 case 1:
238 ah->ah_gain.g_f_corr = step;
239 break;
240 default:
241 ah->ah_gain.g_f_corr = 0;
242 break;
243 }
244
245 return ah->ah_gain.g_f_corr;
246}
247
6f3b414a
NK
248/* Check if current gain_F measurement is in the range of our
249 * power detector windows. If we get a measurement outside range
250 * we know it's not accurate (detectors can't measure anything outside
251 * their detection window) so we must ignore it */
252static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
fa1c114f 253{
8892e4ec 254 const struct ath5k_rf_reg *rf_regs;
6f3b414a 255 u32 step, mix_ovr, level[4];
fa1c114f
JS
256 u32 *rf;
257
258 if (ah->ah_rf_banks == NULL)
259 return false;
260
261 rf = ah->ah_rf_banks;
262
263 if (ah->ah_radio == AR5K_RF5111) {
8892e4ec
NK
264
265 rf_regs = rf_regs_5111;
266 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
267
268 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
269 false);
270
fa1c114f 271 level[0] = 0;
6f3b414a
NK
272 level[1] = (step == 63) ? 50 : step + 4;
273 level[2] = (step != 63) ? 64 : level[0];
274 level[3] = level[2] + 50 ;
fa1c114f
JS
275
276 ah->ah_gain.g_high = level[3] -
6f3b414a 277 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
fa1c114f 278 ah->ah_gain.g_low = level[0] +
6f3b414a 279 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
fa1c114f 280 } else {
8892e4ec
NK
281
282 rf_regs = rf_regs_5112;
283 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
284
285 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
286 false);
287
fa1c114f
JS
288 level[0] = level[2] = 0;
289
6f3b414a 290 if (mix_ovr == 1) {
fa1c114f
JS
291 level[1] = level[3] = 83;
292 } else {
293 level[1] = level[3] = 107;
294 ah->ah_gain.g_high = 55;
295 }
296 }
297
298 return (ah->ah_gain.g_current >= level[0] &&
299 ah->ah_gain.g_current <= level[1]) ||
300 (ah->ah_gain.g_current >= level[2] &&
301 ah->ah_gain.g_current <= level[3]);
302}
303
6f3b414a
NK
304/* Perform gain_F adjustment by choosing the right set
305 * of parameters from rf gain optimization ladder */
306static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
fa1c114f
JS
307{
308 const struct ath5k_gain_opt *go;
6f3b414a 309 const struct ath5k_gain_opt_step *g_step;
fa1c114f
JS
310 int ret = 0;
311
312 switch (ah->ah_radio) {
313 case AR5K_RF5111:
314 go = &rfgain_opt_5111;
315 break;
316 case AR5K_RF5112:
fa1c114f
JS
317 go = &rfgain_opt_5112;
318 break;
319 default:
320 return 0;
321 }
322
6f3b414a 323 g_step = &go->go_step[ah->ah_gain.g_step_idx];
fa1c114f
JS
324
325 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
6f3b414a
NK
326
327 /* Reached maximum */
fa1c114f
JS
328 if (ah->ah_gain.g_step_idx == 0)
329 return -1;
6f3b414a 330
fa1c114f
JS
331 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
332 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
333 ah->ah_gain.g_step_idx > 0;
6f3b414a 334 g_step = &go->go_step[ah->ah_gain.g_step_idx])
fa1c114f
JS
335 ah->ah_gain.g_target -= 2 *
336 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
6f3b414a 337 g_step->gos_gain);
fa1c114f
JS
338
339 ret = 1;
340 goto done;
341 }
342
343 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
6f3b414a
NK
344
345 /* Reached minimum */
fa1c114f
JS
346 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
347 return -2;
6f3b414a 348
fa1c114f
JS
349 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
350 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
351 ah->ah_gain.g_step_idx < go->go_steps_count-1;
6f3b414a 352 g_step = &go->go_step[ah->ah_gain.g_step_idx])
fa1c114f
JS
353 ah->ah_gain.g_target -= 2 *
354 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
6f3b414a 355 g_step->gos_gain);
fa1c114f
JS
356
357 ret = 2;
358 goto done;
359 }
360
361done:
362 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
363 "ret %d, gain step %u, current gain %u, target gain %u\n",
364 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
365 ah->ah_gain.g_target);
366
367 return ret;
368}
369
6f3b414a
NK
370/* Main callback for thermal rf gain calibration engine
371 * Check for a new gain reading and schedule an adjustment
372 * if needed.
373 *
374 * TODO: Use sw interrupt to schedule reset if gain_F needs
375 * adjustment */
376enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
377{
378 u32 data, type;
379 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
380
381 ATH5K_TRACE(ah->ah_sc);
382
383 if (ah->ah_rf_banks == NULL ||
384 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
385 return AR5K_RFGAIN_INACTIVE;
386
387 /* No check requested, either engine is inactive
388 * or an adjustment is already requested */
389 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
390 goto done;
391
392 /* Read the PAPD (Peak to Average Power Detector)
393 * register */
394 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
395
396 /* No probe is scheduled, read gain_F measurement */
397 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
398 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
399 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
400
401 /* If tx packet is CCK correct the gain_F measurement
402 * by cck ofdm gain delta */
403 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
404 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
405 ah->ah_gain.g_current +=
406 ee->ee_cck_ofdm_gain_delta;
407 else
408 ah->ah_gain.g_current +=
409 AR5K_GAIN_CCK_PROBE_CORR;
410 }
411
412 /* Further correct gain_F measurement for
413 * RF5112A radios */
414 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
415 ath5k_hw_rf_gainf_corr(ah);
416 ah->ah_gain.g_current =
417 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
418 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
419 0;
420 }
421
422 /* Check if measurement is ok and if we need
423 * to adjust gain, schedule a gain adjustment,
424 * else switch back to the acive state */
425 if (ath5k_hw_rf_check_gainf_readback(ah) &&
426 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
427 ath5k_hw_rf_gainf_adjust(ah)) {
428 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
429 } else {
430 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
431 }
432 }
433
434done:
435 return ah->ah_gain.g_state;
436}
437
438/* Write initial rf gain table to set the RF sensitivity
439 * this one works on all RF chips and has nothing to do
440 * with gain_F calibration */
441int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
442{
443 const struct ath5k_ini_rfgain *ath5k_rfg;
444 unsigned int i, size;
445
446 switch (ah->ah_radio) {
447 case AR5K_RF5111:
448 ath5k_rfg = rfgain_5111;
449 size = ARRAY_SIZE(rfgain_5111);
450 break;
451 case AR5K_RF5112:
452 ath5k_rfg = rfgain_5112;
453 size = ARRAY_SIZE(rfgain_5112);
454 break;
455 case AR5K_RF2413:
456 ath5k_rfg = rfgain_2413;
457 size = ARRAY_SIZE(rfgain_2413);
458 break;
459 case AR5K_RF2316:
460 ath5k_rfg = rfgain_2316;
461 size = ARRAY_SIZE(rfgain_2316);
462 break;
463 case AR5K_RF5413:
464 ath5k_rfg = rfgain_5413;
465 size = ARRAY_SIZE(rfgain_5413);
466 break;
467 case AR5K_RF2317:
468 case AR5K_RF2425:
469 ath5k_rfg = rfgain_2425;
470 size = ARRAY_SIZE(rfgain_2425);
471 break;
472 default:
473 return -EINVAL;
474 }
475
476 switch (freq) {
477 case AR5K_INI_RFGAIN_2GHZ:
478 case AR5K_INI_RFGAIN_5GHZ:
479 break;
480 default:
481 return -EINVAL;
482 }
483
484 for (i = 0; i < size; i++) {
485 AR5K_REG_WAIT(i);
486 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
487 (u32)ath5k_rfg[i].rfg_register);
488 }
489
490 return 0;
491}
492
493
494
495/********************\
496* RF Registers setup *
497\********************/
498
8892e4ec 499
fa1c114f 500/*
8892e4ec 501 * Setup RF registers by writing rf buffer on hw
fa1c114f 502 */
8892e4ec
NK
503int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
504 unsigned int mode)
fa1c114f 505{
8892e4ec
NK
506 const struct ath5k_rf_reg *rf_regs;
507 const struct ath5k_ini_rfbuffer *ini_rfb;
508 const struct ath5k_gain_opt *go = NULL;
509 const struct ath5k_gain_opt_step *g_step;
fa1c114f 510 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
8892e4ec
NK
511 u8 ee_mode = 0;
512 u32 *rfb;
513 int i, obdb = -1, bank = -1;
fa1c114f 514
8892e4ec
NK
515 switch (ah->ah_radio) {
516 case AR5K_RF5111:
517 rf_regs = rf_regs_5111;
518 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
519 ini_rfb = rfb_5111;
520 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
521 go = &rfgain_opt_5111;
522 break;
523 case AR5K_RF5112:
524 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
525 rf_regs = rf_regs_5112a;
526 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
527 ini_rfb = rfb_5112a;
528 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
529 } else {
530 rf_regs = rf_regs_5112;
531 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
532 ini_rfb = rfb_5112;
533 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
534 }
535 go = &rfgain_opt_5112;
536 break;
537 case AR5K_RF2413:
538 rf_regs = rf_regs_2413;
539 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
540 ini_rfb = rfb_2413;
541 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
542 break;
543 case AR5K_RF2316:
544 rf_regs = rf_regs_2316;
545 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
546 ini_rfb = rfb_2316;
547 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
548 break;
549 case AR5K_RF5413:
550 rf_regs = rf_regs_5413;
551 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
552 ini_rfb = rfb_5413;
553 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
554 break;
555 case AR5K_RF2317:
556 rf_regs = rf_regs_2425;
557 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
558 ini_rfb = rfb_2317;
559 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
560 break;
561 case AR5K_RF2425:
562 rf_regs = rf_regs_2425;
563 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
564 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
565 ini_rfb = rfb_2425;
566 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
567 } else {
568 ini_rfb = rfb_2417;
569 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
570 }
571 break;
572 default:
573 return -EINVAL;
574 }
fa1c114f 575
8892e4ec
NK
576 /* If it's the first time we set rf buffer, allocate
577 * ah->ah_rf_banks based on ah->ah_rf_banks_size
578 * we set above */
579 if (ah->ah_rf_banks == NULL) {
580 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
581 GFP_KERNEL);
582 if (ah->ah_rf_banks == NULL) {
583 ATH5K_ERR(ah->ah_sc, "out of memory\n");
584 return -ENOMEM;
585 }
586 }
fa1c114f
JS
587
588 /* Copy values to modify them */
8892e4ec
NK
589 rfb = ah->ah_rf_banks;
590
591 for (i = 0; i < ah->ah_rf_banks_size; i++) {
592 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
fa1c114f
JS
593 ATH5K_ERR(ah->ah_sc, "invalid bank\n");
594 return -EINVAL;
595 }
596
8892e4ec
NK
597 /* Bank changed, write down the offset */
598 if (bank != ini_rfb[i].rfb_bank) {
599 bank = ini_rfb[i].rfb_bank;
fa1c114f
JS
600 ah->ah_offset[bank] = i;
601 }
602
8892e4ec 603 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
fa1c114f
JS
604 }
605
8892e4ec 606 /* Set Output and Driver bias current (OB/DB) */
d8ee398d 607 if (channel->hw_value & CHANNEL_2GHZ) {
8892e4ec 608
d8ee398d 609 if (channel->hw_value & CHANNEL_CCK)
fa1c114f
JS
610 ee_mode = AR5K_EEPROM_MODE_11B;
611 else
612 ee_mode = AR5K_EEPROM_MODE_11G;
fa1c114f 613
8892e4ec
NK
614 /* For RF511X/RF211X combination we
615 * use b_OB and b_DB parameters stored
616 * in eeprom on ee->ee_ob[ee_mode][0]
617 *
618 * For all other chips we use OB/DB for 2Ghz
619 * stored in the b/g modal section just like
620 * 802.11a on ee->ee_ob[ee_mode][1] */
621 if ((ah->ah_radio == AR5K_RF5111) ||
622 (ah->ah_radio == AR5K_RF5112))
623 obdb = 0;
624 else
625 obdb = 1;
fa1c114f 626
8892e4ec
NK
627 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
628 AR5K_RF_OB_2GHZ, true);
fa1c114f 629
8892e4ec
NK
630 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
631 AR5K_RF_DB_2GHZ, true);
632
633 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
634 } else if ((channel->hw_value & CHANNEL_5GHZ) ||
635 (ah->ah_radio == AR5K_RF5111)) {
636
637 /* For 11a, Turbo and XR we need to choose
638 * OB/DB based on frequency range */
fa1c114f 639 ee_mode = AR5K_EEPROM_MODE_11A;
d8ee398d
LR
640 obdb = channel->center_freq >= 5725 ? 3 :
641 (channel->center_freq >= 5500 ? 2 :
642 (channel->center_freq >= 5260 ? 1 :
643 (channel->center_freq > 4000 ? 0 : -1)));
fa1c114f 644
8892e4ec 645 if (obdb < 0)
fa1c114f
JS
646 return -EINVAL;
647
8892e4ec
NK
648 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
649 AR5K_RF_OB_5GHZ, true);
650
651 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
652 AR5K_RF_DB_5GHZ, true);
fa1c114f
JS
653 }
654
8892e4ec 655 g_step = &go->go_step[ah->ah_gain.g_step_idx];
fa1c114f 656
8892e4ec
NK
657 /* Bank Modifications (chip-specific) */
658 if (ah->ah_radio == AR5K_RF5111) {
fa1c114f 659
8892e4ec
NK
660 /* Set gain_F settings according to current step */
661 if (channel->hw_value & CHANNEL_OFDM) {
fa1c114f 662
8892e4ec
NK
663 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
664 AR5K_PHY_FRAME_CTL_TX_CLIP,
665 g_step->gos_param[0]);
fa1c114f 666
8892e4ec
NK
667 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
668 AR5K_RF_PWD_90, true);
fa1c114f 669
8892e4ec
NK
670 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
671 AR5K_RF_PWD_84, true);
fa1c114f 672
8892e4ec
NK
673 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
674 AR5K_RF_RFGAIN_SEL, true);
fa1c114f 675
8892e4ec
NK
676 /* We programmed gain_F parameters, switch back
677 * to active state */
678 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
6f3b414a 679
8892e4ec 680 }
fa1c114f 681
8892e4ec 682 /* Bank 6/7 setup */
fa1c114f 683
8892e4ec
NK
684 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
685 AR5K_RF_PWD_XPD, true);
fa1c114f 686
8892e4ec
NK
687 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
688 AR5K_RF_XPD_GAIN, true);
fa1c114f 689
8892e4ec
NK
690 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
691 AR5K_RF_GAIN_I, true);
fa1c114f 692
8892e4ec
NK
693 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
694 AR5K_RF_PLO_SEL, true);
fa1c114f 695
8892e4ec 696 /* TODO: Half/quarter channel support */
fa1c114f
JS
697 }
698
8892e4ec 699 if (ah->ah_radio == AR5K_RF5112) {
fa1c114f 700
8892e4ec
NK
701 /* Set gain_F settings according to current step */
702 if (channel->hw_value & CHANNEL_OFDM) {
fa1c114f 703
8892e4ec
NK
704 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
705 AR5K_RF_MIXGAIN_OVR, true);
fa1c114f 706
8892e4ec
NK
707 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
708 AR5K_RF_PWD_138, true);
e71c9fac 709
8892e4ec
NK
710 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
711 AR5K_RF_PWD_137, true);
fa1c114f 712
8892e4ec
NK
713 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
714 AR5K_RF_PWD_136, true);
fa1c114f 715
8892e4ec
NK
716 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
717 AR5K_RF_PWD_132, true);
fa1c114f 718
8892e4ec
NK
719 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
720 AR5K_RF_PWD_131, true);
fa1c114f 721
8892e4ec
NK
722 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
723 AR5K_RF_PWD_130, true);
fa1c114f 724
8892e4ec
NK
725 /* We programmed gain_F parameters, switch back
726 * to active state */
727 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
728 }
fa1c114f 729
8892e4ec 730 /* Bank 6/7 setup */
6f3b414a 731
8892e4ec
NK
732 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
733 AR5K_RF_XPD_SEL, true);
6f3b414a 734
8892e4ec
NK
735 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
736 /* Rev. 1 supports only one xpd */
737 ath5k_hw_rfb_op(ah, rf_regs,
738 ee->ee_x_gain[ee_mode],
739 AR5K_RF_XPD_GAIN, true);
fa1c114f 740
8892e4ec 741 } else {
d1cb0bda
NK
742 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
743 if (ee->ee_pd_gains[ee_mode] > 1) {
744 ath5k_hw_rfb_op(ah, rf_regs,
745 pdg_curve_to_idx[0],
8892e4ec 746 AR5K_RF_PD_GAIN_LO, true);
d1cb0bda
NK
747 ath5k_hw_rfb_op(ah, rf_regs,
748 pdg_curve_to_idx[1],
8892e4ec 749 AR5K_RF_PD_GAIN_HI, true);
d1cb0bda
NK
750 } else {
751 ath5k_hw_rfb_op(ah, rf_regs,
752 pdg_curve_to_idx[0],
753 AR5K_RF_PD_GAIN_LO, true);
754 ath5k_hw_rfb_op(ah, rf_regs,
755 pdg_curve_to_idx[0],
756 AR5K_RF_PD_GAIN_HI, true);
757 }
fa1c114f 758
8892e4ec
NK
759 /* Lower synth voltage on Rev 2 */
760 ath5k_hw_rfb_op(ah, rf_regs, 2,
761 AR5K_RF_HIGH_VC_CP, true);
fa1c114f 762
8892e4ec
NK
763 ath5k_hw_rfb_op(ah, rf_regs, 2,
764 AR5K_RF_MID_VC_CP, true);
fa1c114f 765
8892e4ec
NK
766 ath5k_hw_rfb_op(ah, rf_regs, 2,
767 AR5K_RF_LOW_VC_CP, true);
136bfc79 768
8892e4ec
NK
769 ath5k_hw_rfb_op(ah, rf_regs, 2,
770 AR5K_RF_PUSH_UP, true);
136bfc79 771
8892e4ec
NK
772 /* Decrease power consumption on 5213+ BaseBand */
773 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
774 ath5k_hw_rfb_op(ah, rf_regs, 1,
775 AR5K_RF_PAD2GND, true);
136bfc79 776
8892e4ec
NK
777 ath5k_hw_rfb_op(ah, rf_regs, 1,
778 AR5K_RF_XB2_LVL, true);
136bfc79 779
8892e4ec
NK
780 ath5k_hw_rfb_op(ah, rf_regs, 1,
781 AR5K_RF_XB5_LVL, true);
fa1c114f 782
8892e4ec
NK
783 ath5k_hw_rfb_op(ah, rf_regs, 1,
784 AR5K_RF_PWD_167, true);
fa1c114f 785
8892e4ec
NK
786 ath5k_hw_rfb_op(ah, rf_regs, 1,
787 AR5K_RF_PWD_166, true);
788 }
fa1c114f
JS
789 }
790
8892e4ec
NK
791 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
792 AR5K_RF_GAIN_I, true);
fa1c114f 793
8892e4ec 794 /* TODO: Half/quarter channel support */
fa1c114f 795
8892e4ec 796 }
fa1c114f 797
8892e4ec
NK
798 if (ah->ah_radio == AR5K_RF5413 &&
799 channel->hw_value & CHANNEL_2GHZ) {
fa1c114f 800
8892e4ec
NK
801 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
802 true);
fa1c114f 803
8892e4ec
NK
804 /* Set optimum value for early revisions (on pci-e chips) */
805 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
806 ah->ah_mac_srev < AR5K_SREV_AR5413)
807 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
808 AR5K_RF_PWD_ICLOBUF_2G, true);
fa1c114f 809
fa1c114f
JS
810 }
811
8892e4ec
NK
812 /* Write RF banks on hw */
813 for (i = 0; i < ah->ah_rf_banks_size; i++) {
814 AR5K_REG_WAIT(i);
815 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
816 }
fa1c114f 817
8892e4ec 818 return 0;
fa1c114f
JS
819}
820
fa1c114f 821
fa1c114f
JS
822/**************************\
823 PHY/RF channel functions
824\**************************/
825
826/*
827 * Check if a channel is supported
828 */
829bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
830{
831 /* Check if the channel is in our supported range */
832 if (flags & CHANNEL_2GHZ) {
833 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
834 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
835 return true;
836 } else if (flags & CHANNEL_5GHZ)
837 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
838 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
839 return true;
840
841 return false;
842}
843
844/*
845 * Convertion needed for RF5110
846 */
847static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
848{
849 u32 athchan;
850
851 /*
852 * Convert IEEE channel/MHz to an internal channel value used
853 * by the AR5210 chipset. This has not been verified with
854 * newer chipsets like the AR5212A who have a completely
855 * different RF/PHY part.
856 */
400ec45a
LR
857 athchan = (ath5k_hw_bitswap(
858 (ieee80211_frequency_to_channel(
859 channel->center_freq) - 24) / 2, 5)
860 << 1) | (1 << 6) | 0x1;
fa1c114f
JS
861 return athchan;
862}
863
864/*
865 * Set channel on RF5110
866 */
867static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
868 struct ieee80211_channel *channel)
869{
870 u32 data;
871
872 /*
873 * Set the channel and wait
874 */
875 data = ath5k_hw_rf5110_chan2athchan(channel);
876 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
877 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
878 mdelay(1);
879
880 return 0;
881}
882
883/*
884 * Convertion needed for 5111
885 */
886static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
887 struct ath5k_athchan_2ghz *athchan)
888{
889 int channel;
890
891 /* Cast this value to catch negative channel numbers (>= -19) */
892 channel = (int)ieee;
893
894 /*
895 * Map 2GHz IEEE channel to 5GHz Atheros channel
896 */
897 if (channel <= 13) {
898 athchan->a2_athchan = 115 + channel;
899 athchan->a2_flags = 0x46;
900 } else if (channel == 14) {
901 athchan->a2_athchan = 124;
902 athchan->a2_flags = 0x44;
903 } else if (channel >= 15 && channel <= 26) {
904 athchan->a2_athchan = ((channel - 14) * 4) + 132;
905 athchan->a2_flags = 0x46;
906 } else
907 return -EINVAL;
908
909 return 0;
910}
911
912/*
913 * Set channel on 5111
914 */
915static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
916 struct ieee80211_channel *channel)
917{
918 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
400ec45a
LR
919 unsigned int ath5k_channel =
920 ieee80211_frequency_to_channel(channel->center_freq);
fa1c114f
JS
921 u32 data0, data1, clock;
922 int ret;
923
924 /*
925 * Set the channel on the RF5111 radio
926 */
927 data0 = data1 = 0;
928
d8ee398d 929 if (channel->hw_value & CHANNEL_2GHZ) {
fa1c114f 930 /* Map 2GHz channel to 5GHz Atheros channel ID */
400ec45a
LR
931 ret = ath5k_hw_rf5111_chan2athchan(
932 ieee80211_frequency_to_channel(channel->center_freq),
933 &ath5k_channel_2ghz);
fa1c114f
JS
934 if (ret)
935 return ret;
936
937 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
938 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
939 << 5) | (1 << 4);
940 }
941
942 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
943 clock = 1;
944 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
945 (clock << 1) | (1 << 10) | 1;
946 } else {
947 clock = 0;
948 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
949 << 2) | (clock << 1) | (1 << 10) | 1;
950 }
951
952 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
953 AR5K_RF_BUFFER);
954 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
955 AR5K_RF_BUFFER_CONTROL_3);
956
957 return 0;
958}
959
960/*
961 * Set channel on 5112 and newer
962 */
963static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
964 struct ieee80211_channel *channel)
965{
966 u32 data, data0, data1, data2;
967 u16 c;
968
969 data = data0 = data1 = data2 = 0;
d8ee398d 970 c = channel->center_freq;
fa1c114f 971
fa1c114f
JS
972 if (c < 4800) {
973 if (!((c - 2224) % 5)) {
974 data0 = ((2 * (c - 704)) - 3040) / 10;
975 data1 = 1;
976 } else if (!((c - 2192) % 5)) {
977 data0 = ((2 * (c - 672)) - 3040) / 10;
978 data1 = 0;
979 } else
980 return -EINVAL;
981
982 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1968cc78 983 } else if ((c % 5) != 2 || c > 5435) {
fa1c114f
JS
984 if (!(c % 20) && c >= 5120) {
985 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
986 data2 = ath5k_hw_bitswap(3, 2);
987 } else if (!(c % 10)) {
988 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
989 data2 = ath5k_hw_bitswap(2, 2);
990 } else if (!(c % 5)) {
991 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
992 data2 = ath5k_hw_bitswap(1, 2);
993 } else
994 return -EINVAL;
cc6323c7 995 } else {
1968cc78 996 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
cc6323c7 997 data2 = ath5k_hw_bitswap(0, 2);
fa1c114f
JS
998 }
999
1000 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1001
1002 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1003 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1004
1005 return 0;
1006}
1007
cc6323c7
NK
1008/*
1009 * Set the channel on the RF2425
1010 */
1011static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1012 struct ieee80211_channel *channel)
1013{
1014 u32 data, data0, data2;
1015 u16 c;
1016
1017 data = data0 = data2 = 0;
1018 c = channel->center_freq;
1019
1020 if (c < 4800) {
1021 data0 = ath5k_hw_bitswap((c - 2272), 8);
1022 data2 = 0;
1023 /* ? 5GHz ? */
1968cc78 1024 } else if ((c % 5) != 2 || c > 5435) {
cc6323c7
NK
1025 if (!(c % 20) && c < 5120)
1026 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1027 else if (!(c % 10))
1028 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1029 else if (!(c % 5))
1030 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1031 else
1032 return -EINVAL;
1033 data2 = ath5k_hw_bitswap(1, 2);
1034 } else {
1968cc78 1035 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
cc6323c7
NK
1036 data2 = ath5k_hw_bitswap(0, 2);
1037 }
1038
1039 data = (data0 << 4) | data2 << 2 | 0x1001;
1040
1041 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1042 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1043
1044 return 0;
1045}
1046
fa1c114f
JS
1047/*
1048 * Set a channel on the radio chip
1049 */
1050int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1051{
1052 int ret;
fa1c114f 1053 /*
400ec45a
LR
1054 * Check bounds supported by the PHY (we don't care about regultory
1055 * restrictions at this point). Note: hw_value already has the band
1056 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1057 * of the band by that */
1058 if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
fa1c114f 1059 ATH5K_ERR(ah->ah_sc,
400ec45a
LR
1060 "channel frequency (%u MHz) out of supported "
1061 "band range\n",
d8ee398d 1062 channel->center_freq);
400ec45a 1063 return -EINVAL;
fa1c114f
JS
1064 }
1065
1066 /*
1067 * Set the channel and wait
1068 */
1069 switch (ah->ah_radio) {
1070 case AR5K_RF5110:
1071 ret = ath5k_hw_rf5110_channel(ah, channel);
1072 break;
1073 case AR5K_RF5111:
1074 ret = ath5k_hw_rf5111_channel(ah, channel);
1075 break;
cc6323c7
NK
1076 case AR5K_RF2425:
1077 ret = ath5k_hw_rf2425_channel(ah, channel);
1078 break;
fa1c114f
JS
1079 default:
1080 ret = ath5k_hw_rf5112_channel(ah, channel);
1081 break;
1082 }
1083
1084 if (ret)
1085 return ret;
1086
cc6323c7
NK
1087 /* Set JAPAN setting for channel 14 */
1088 if (channel->center_freq == 2484) {
1089 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1090 AR5K_PHY_CCKTXCTL_JAPAN);
1091 } else {
1092 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1093 AR5K_PHY_CCKTXCTL_WORLD);
1094 }
1095
46026e8f 1096 ah->ah_current_channel = channel;
d8ee398d 1097 ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
fa1c114f
JS
1098
1099 return 0;
1100}
1101
1102/*****************\
1103 PHY calibration
1104\*****************/
1105
e5e2647f
BC
1106static int sign_extend(int val, const int nbits)
1107{
1108 int order = BIT(nbits-1);
1109 return (val ^ order) - order;
6e220662
NK
1110}
1111
e5e2647f
BC
1112static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1113{
1114 s32 val;
1115
1116 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1117 return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1118}
1119
1120void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1121{
1122 int i;
1123
1124 ah->ah_nfcal_hist.index = 0;
1125 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1126 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1127}
1128
1129static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1130{
1131 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1132 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1133 hist->nfval[hist->index] = noise_floor;
1134}
1135
1136static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1137{
1138 s16 sort[ATH5K_NF_CAL_HIST_MAX];
1139 s16 tmp;
1140 int i, j;
1141
1142 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1143 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1144 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1145 if (sort[j] > sort[j-1]) {
1146 tmp = sort[j];
1147 sort[j] = sort[j-1];
1148 sort[j-1] = tmp;
1149 }
1150 }
1151 }
1152 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1153 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1154 "cal %d:%d\n", i, sort[i]);
1155 }
1156 return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1157}
1158
1159/*
1160 * When we tell the hardware to perform a noise floor calibration
1161 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1162 * sample-and-hold the minimum noise level seen at the antennas.
1163 * This value is then stored in a ring buffer of recently measured
1164 * noise floor values so we have a moving window of the last few
1165 * samples.
fa1c114f 1166 *
e5e2647f
BC
1167 * The median of the values in the history is then loaded into the
1168 * hardware for its own use for RSSI and CCA measurements.
fa1c114f 1169 */
626ede6b 1170static void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
fa1c114f 1171{
e5e2647f
BC
1172 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1173 u32 val;
1174 s16 nf, threshold;
1175 u8 ee_mode;
fa1c114f 1176
e5e2647f
BC
1177 /* keep last value if calibration hasn't completed */
1178 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1179 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1180 "NF did not complete in calibration window\n");
fa1c114f 1181
e5e2647f 1182 return;
fa1c114f
JS
1183 }
1184
e5e2647f
BC
1185 switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1186 case CHANNEL_A:
1187 case CHANNEL_T:
1188 case CHANNEL_XR:
1189 ee_mode = AR5K_EEPROM_MODE_11A;
1190 break;
1191 case CHANNEL_G:
1192 case CHANNEL_TG:
1193 ee_mode = AR5K_EEPROM_MODE_11G;
1194 break;
1195 default:
1196 case CHANNEL_B:
1197 ee_mode = AR5K_EEPROM_MODE_11B;
1198 break;
fa1c114f
JS
1199 }
1200
fa1c114f 1201
e5e2647f
BC
1202 /* completed NF calibration, test threshold */
1203 nf = ath5k_hw_read_measured_noise_floor(ah);
1204 threshold = ee->ee_noise_floor_thr[ee_mode];
1205
1206 if (nf > threshold) {
1207 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1208 "noise floor failure detected; "
1209 "read %d, threshold %d\n",
1210 nf, threshold);
1211
1212 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
fa1c114f
JS
1213 }
1214
e5e2647f
BC
1215 ath5k_hw_update_nfcal_hist(ah, nf);
1216 nf = ath5k_hw_get_median_noise_floor(ah);
fa1c114f 1217
e5e2647f
BC
1218 /* load noise floor (in .5 dBm) so the hardware will use it */
1219 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1220 val |= (nf * 2) & AR5K_PHY_NF_M;
1221 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1222
1223 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1224 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1225
1226 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1227 0, false);
1228
1229 /*
1230 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1231 * so that we're not capped by the median we just loaded.
1232 * This will be used as the initial value for the next noise
1233 * floor calibration.
1234 */
1235 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1236 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1237 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1238 AR5K_PHY_AGCCTL_NF_EN |
1239 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1240 AR5K_PHY_AGCCTL_NF);
1241
1242 ah->ah_noise_floor = nf;
1243
1244 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1245 "noise floor calibrated: %d\n", nf);
fa1c114f
JS
1246}
1247
1248/*
1249 * Perform a PHY calibration on RF5110
1250 * -Fix BPSK/QAM Constellation (I/Q correction)
1251 * -Calculate Noise Floor
1252 */
1253static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1254 struct ieee80211_channel *channel)
1255{
1256 u32 phy_sig, phy_agc, phy_sat, beacon;
1257 int ret;
1258
1259 /*
1260 * Disable beacons and RX/TX queues, wait
1261 */
1262 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1263 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1264 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1265 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1266
84e463fa 1267 mdelay(2);
fa1c114f
JS
1268
1269 /*
1270 * Set the channel (with AGC turned off)
1271 */
1272 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1273 udelay(10);
1274 ret = ath5k_hw_channel(ah, channel);
1275
1276 /*
1277 * Activate PHY and wait
1278 */
1279 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1280 mdelay(1);
1281
1282 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1283
1284 if (ret)
1285 return ret;
1286
1287 /*
1288 * Calibrate the radio chip
1289 */
1290
1291 /* Remember normal state */
1292 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1293 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1294 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1295
1296 /* Update radio registers */
1297 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1298 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1299
1300 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1301 AR5K_PHY_AGCCOARSE_LO)) |
1302 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1303 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1304
1305 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1306 AR5K_PHY_ADCSAT_THR)) |
1307 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1308 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1309
1310 udelay(20);
1311
1312 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1313 udelay(10);
1314 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1315 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1316
1317 mdelay(1);
1318
1319 /*
1320 * Enable calibration and wait until completion
1321 */
1322 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1323
1324 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1325 AR5K_PHY_AGCCTL_CAL, 0, false);
1326
1327 /* Reset to normal state */
1328 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1329 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1330 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1331
1332 if (ret) {
1333 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
d8ee398d 1334 channel->center_freq);
fa1c114f
JS
1335 return ret;
1336 }
1337
e5e2647f 1338 ath5k_hw_update_noise_floor(ah);
fa1c114f
JS
1339
1340 /*
1341 * Re-enable RX/TX and beacons
1342 */
1343 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1344 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1345 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1346
1347 return 0;
1348}
1349
1350/*
f860ee26 1351 * Perform a PHY calibration on RF5111/5112 and newer chips
fa1c114f
JS
1352 */
1353static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1354 struct ieee80211_channel *channel)
1355{
1356 u32 i_pwr, q_pwr;
1357 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
f860ee26 1358 int i;
fa1c114f
JS
1359 ATH5K_TRACE(ah->ah_sc);
1360
e9010e2f 1361 if (!ah->ah_calibration ||
f860ee26 1362 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
fa1c114f
JS
1363 goto done;
1364
f860ee26 1365 /* Calibration has finished, get the results and re-run */
86415d43
BR
1366
1367 /* work around empty results which can apparently happen on 5212 */
f860ee26
NK
1368 for (i = 0; i <= 10; i++) {
1369 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1370 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1371 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
86415d43
BR
1372 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1373 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1374 if (i_pwr && q_pwr)
1375 break;
f860ee26 1376 }
fa1c114f 1377
fa1c114f 1378 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
49a85d21
BR
1379
1380 if (ah->ah_version == AR5K_AR5211)
1381 q_coffd = q_pwr >> 6;
1382 else
1383 q_coffd = q_pwr >> 7;
fa1c114f 1384
86415d43
BR
1385 /* protect against divide by 0 and loss of sign bits */
1386 if (i_coffd == 0 || q_coffd < 2)
fa1c114f
JS
1387 goto done;
1388
86415d43
BR
1389 i_coff = (-iq_corr) / i_coffd;
1390 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
fa1c114f 1391
ace5d5de
JL
1392 if (ah->ah_version == AR5K_AR5211)
1393 q_coff = (i_pwr / q_coffd) - 64;
1394 else
1395 q_coff = (i_pwr / q_coffd) - 128;
86415d43 1396 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
f860ee26 1397
86415d43
BR
1398 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1399 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1400 i_coff, q_coff, i_coffd, q_coffd);
f860ee26 1401
86415d43
BR
1402 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1403 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1404 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1405 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
fa1c114f 1406
f860ee26
NK
1407 /* Re-enable calibration -if we don't we'll commit
1408 * the same values again and again */
1409 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1410 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1411 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1412
fa1c114f 1413done:
f860ee26
NK
1414
1415 /* TODO: Separate noise floor calibration from I/Q calibration
1416 * since noise floor calibration interrupts rx path while I/Q
1417 * calibration doesn't. We don't need to run noise floor calibration
1418 * as often as I/Q calibration.*/
e5e2647f 1419 ath5k_hw_update_noise_floor(ah);
fa1c114f 1420
6f3b414a
NK
1421 /* Initiate a gain_F calibration */
1422 ath5k_hw_request_rfgain_probe(ah);
fa1c114f
JS
1423
1424 return 0;
1425}
1426
1427/*
1428 * Perform a PHY calibration
1429 */
1430int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1431 struct ieee80211_channel *channel)
1432{
1433 int ret;
1434
1435 if (ah->ah_radio == AR5K_RF5110)
1436 ret = ath5k_hw_rf5110_calibrate(ah, channel);
1437 else
1438 ret = ath5k_hw_rf511x_calibrate(ah, channel);
1439
1440 return ret;
1441}
1442
57e6c56d
NK
1443/***************************\
1444* Spur mitigation functions *
1445\***************************/
1446
1447bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1448 struct ieee80211_channel *channel)
1449{
1450 u8 refclk_freq;
1451
1452 if ((ah->ah_radio == AR5K_RF5112) ||
1453 (ah->ah_radio == AR5K_RF5413) ||
1454 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1455 refclk_freq = 40;
1456 else
1457 refclk_freq = 32;
1458
1459 if ((channel->center_freq % refclk_freq != 0) &&
1460 ((channel->center_freq % refclk_freq < 10) ||
1461 (channel->center_freq % refclk_freq > 22)))
1462 return true;
1463 else
1464 return false;
1465}
1466
1467void
1468ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1469 struct ieee80211_channel *channel)
1470{
1471 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1472 u32 mag_mask[4] = {0, 0, 0, 0};
1473 u32 pilot_mask[2] = {0, 0};
1474 /* Note: fbin values are scaled up by 2 */
1475 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1476 s32 spur_delta_phase, spur_freq_sigma_delta;
1477 s32 spur_offset, num_symbols_x16;
1478 u8 num_symbol_offsets, i, freq_band;
1479
1480 /* Convert current frequency to fbin value (the same way channels
1481 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1482 * up by 2 so we can compare it later */
1483 if (channel->hw_value & CHANNEL_2GHZ) {
1484 chan_fbin = (channel->center_freq - 2300) * 10;
1485 freq_band = AR5K_EEPROM_BAND_2GHZ;
1486 } else {
1487 chan_fbin = (channel->center_freq - 4900) * 10;
1488 freq_band = AR5K_EEPROM_BAND_5GHZ;
1489 }
1490
1491 /* Check if any spur_chan_fbin from EEPROM is
1492 * within our current channel's spur detection range */
1493 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1494 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1495 /* XXX: Half/Quarter channels ?*/
1496 if (channel->hw_value & CHANNEL_TURBO)
1497 spur_detection_window *= 2;
1498
1499 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1500 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1501
1502 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1503 * so it's zero if we got nothing from EEPROM */
1504 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1505 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1506 break;
1507 }
1508
1509 if ((chan_fbin - spur_detection_window <=
1510 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1511 (chan_fbin + spur_detection_window >=
1512 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1513 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1514 break;
1515 }
1516 }
1517
1518 /* We need to enable spur filter for this channel */
1519 if (spur_chan_fbin) {
1520 spur_offset = spur_chan_fbin - chan_fbin;
1521 /*
1522 * Calculate deltas:
1523 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1524 * spur_delta_phase -> spur_offset / chip_freq << 11
1525 * Note: Both values have 100KHz resolution
1526 */
1527 /* XXX: Half/Quarter rate channels ? */
1528 switch (channel->hw_value) {
1529 case CHANNEL_A:
1530 /* Both sample_freq and chip_freq are 40MHz */
1531 spur_delta_phase = (spur_offset << 17) / 25;
1532 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1533 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1534 break;
1535 case CHANNEL_G:
1536 /* sample_freq -> 40MHz chip_freq -> 44MHz
1537 * (for b compatibility) */
1538 spur_freq_sigma_delta = (spur_offset << 8) / 55;
1539 spur_delta_phase = (spur_offset << 17) / 25;
1540 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1541 break;
1542 case CHANNEL_T:
1543 case CHANNEL_TG:
1544 /* Both sample_freq and chip_freq are 80MHz */
1545 spur_delta_phase = (spur_offset << 16) / 25;
1546 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1547 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1548 break;
1549 default:
1550 return;
1551 }
1552
1553 /* Calculate pilot and magnitude masks */
1554
1555 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1556 * and divide by symbol_width to find how many symbols we have
1557 * Note: number of symbols is scaled up by 16 */
1558 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1559
1560 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1561 if (!(num_symbols_x16 & 0xF))
1562 /* _X_ */
1563 num_symbol_offsets = 3;
1564 else
1565 /* _xx_ */
1566 num_symbol_offsets = 4;
1567
1568 for (i = 0; i < num_symbol_offsets; i++) {
1569
1570 /* Calculate pilot mask */
1571 s32 curr_sym_off =
1572 (num_symbols_x16 / 16) + i + 25;
1573
1574 /* Pilot magnitude mask seems to be a way to
1575 * declare the boundaries for our detection
1576 * window or something, it's 2 for the middle
1577 * value(s) where the symbol is expected to be
1578 * and 1 on the boundary values */
1579 u8 plt_mag_map =
1580 (i == 0 || i == (num_symbol_offsets - 1))
1581 ? 1 : 2;
1582
1583 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1584 if (curr_sym_off <= 25)
1585 pilot_mask[0] |= 1 << curr_sym_off;
1586 else if (curr_sym_off >= 27)
1587 pilot_mask[0] |= 1 << (curr_sym_off - 1);
1588 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1589 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1590
1591 /* Calculate magnitude mask (for viterbi decoder) */
1592 if (curr_sym_off >= -1 && curr_sym_off <= 14)
1593 mag_mask[0] |=
1594 plt_mag_map << (curr_sym_off + 1) * 2;
1595 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1596 mag_mask[1] |=
1597 plt_mag_map << (curr_sym_off - 15) * 2;
1598 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1599 mag_mask[2] |=
1600 plt_mag_map << (curr_sym_off - 31) * 2;
1601 else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1602 mag_mask[3] |=
1603 plt_mag_map << (curr_sym_off - 47) * 2;
1604
1605 }
1606
1607 /* Write settings on hw to enable spur filter */
1608 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1609 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1610 /* XXX: Self correlator also ? */
1611 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1612 AR5K_PHY_IQ_PILOT_MASK_EN |
1613 AR5K_PHY_IQ_CHAN_MASK_EN |
1614 AR5K_PHY_IQ_SPUR_FILT_EN);
1615
1616 /* Set delta phase and freq sigma delta */
1617 ath5k_hw_reg_write(ah,
1618 AR5K_REG_SM(spur_delta_phase,
1619 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1620 AR5K_REG_SM(spur_freq_sigma_delta,
1621 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1622 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1623 AR5K_PHY_TIMING_11);
1624
1625 /* Write pilot masks */
1626 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1627 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1628 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1629 pilot_mask[1]);
1630
1631 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1632 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1633 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1634 pilot_mask[1]);
1635
1636 /* Write magnitude masks */
1637 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1638 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1639 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1640 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1641 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1642 mag_mask[3]);
1643
1644 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1645 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1646 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1647 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1648 AR5K_PHY_BIN_MASK2_4_MASK_4,
1649 mag_mask[3]);
1650
1651 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1652 AR5K_PHY_IQ_SPUR_FILT_EN) {
1653 /* Clean up spur mitigation settings and disable fliter */
1654 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1655 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1656 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1657 AR5K_PHY_IQ_PILOT_MASK_EN |
1658 AR5K_PHY_IQ_CHAN_MASK_EN |
1659 AR5K_PHY_IQ_SPUR_FILT_EN);
1660 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1661
1662 /* Clear pilot masks */
1663 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1664 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1665 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1666 0);
1667
1668 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1669 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1670 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1671 0);
1672
1673 /* Clear magnitude masks */
1674 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1675 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1676 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1677 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1678 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1679 0);
1680
1681 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1682 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1683 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1684 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1685 AR5K_PHY_BIN_MASK2_4_MASK_4,
1686 0);
1687 }
1688}
1689
1690/********************\
1691 Misc PHY functions
1692\********************/
1693
fa1c114f
JS
1694int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1695{
1696 ATH5K_TRACE(ah->ah_sc);
1697 /*Just a try M.F.*/
1698 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1699
1700 return 0;
1701}
1702
fa1c114f
JS
1703/*
1704 * Get the PHY Chip revision
1705 */
1706u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1707{
1708 unsigned int i;
1709 u32 srev;
1710 u16 ret;
1711
1712 ATH5K_TRACE(ah->ah_sc);
1713
1714 /*
1715 * Set the radio chip access register
1716 */
1717 switch (chan) {
1718 case CHANNEL_2GHZ:
1719 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1720 break;
1721 case CHANNEL_5GHZ:
1722 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1723 break;
1724 default:
1725 return 0;
1726 }
1727
1728 mdelay(2);
1729
1730 /* ...wait until PHY is ready and read the selected radio revision */
1731 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1732
1733 for (i = 0; i < 8; i++)
1734 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1735
1736 if (ah->ah_version == AR5K_AR5210) {
1737 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1738 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1739 } else {
1740 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1741 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1742 ((srev & 0x0f) << 4), 8);
1743 }
1744
1745 /* Reset to the 5GHz mode */
1746 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1747
1748 return ret;
1749}
1750
2bed03eb
NK
1751/*****************\
1752* Antenna control *
1753\*****************/
1754
626ede6b 1755static void /*TODO:Boundary check*/
2bed03eb 1756ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
fa1c114f
JS
1757{
1758 ATH5K_TRACE(ah->ah_sc);
2bed03eb 1759
fa1c114f 1760 if (ah->ah_version != AR5K_AR5210)
2bed03eb 1761 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
fa1c114f
JS
1762}
1763
2bed03eb
NK
1764/*
1765 * Enable/disable fast rx antenna diversity
1766 */
1767static void
1768ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1769{
1770 switch (ee_mode) {
1771 case AR5K_EEPROM_MODE_11G:
1772 /* XXX: This is set to
1773 * disabled on initvals !!! */
1774 case AR5K_EEPROM_MODE_11A:
1775 if (enable)
1776 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1777 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1778 else
1779 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1780 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1781 break;
1782 case AR5K_EEPROM_MODE_11B:
1783 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1784 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1785 break;
1786 default:
1787 return;
1788 }
1789
1790 if (enable) {
1791 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1792 AR5K_PHY_RESTART_DIV_GC, 0xc);
1793
1794 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1795 AR5K_PHY_FAST_ANT_DIV_EN);
1796 } else {
1797 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1798 AR5K_PHY_RESTART_DIV_GC, 0x8);
1799
1800 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1801 AR5K_PHY_FAST_ANT_DIV_EN);
1802 }
1803}
1804
1805/*
1806 * Set antenna operating mode
1807 */
1808void
1809ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1810{
46026e8f 1811 struct ieee80211_channel *channel = ah->ah_current_channel;
2bed03eb
NK
1812 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1813 bool use_def_for_sg;
1814 u8 def_ant, tx_ant, ee_mode;
1815 u32 sta_id1 = 0;
1816
436c109a
BR
1817 /* if channel is not initialized yet we can't set the antennas
1818 * so just store the mode. it will be set on the next reset */
1819 if (channel == NULL) {
1820 ah->ah_ant_mode = ant_mode;
1821 return;
1822 }
1823
2bed03eb
NK
1824 def_ant = ah->ah_def_ant;
1825
1826 ATH5K_TRACE(ah->ah_sc);
1827
1828 switch (channel->hw_value & CHANNEL_MODES) {
1829 case CHANNEL_A:
1830 case CHANNEL_T:
1831 case CHANNEL_XR:
1832 ee_mode = AR5K_EEPROM_MODE_11A;
1833 break;
1834 case CHANNEL_G:
1835 case CHANNEL_TG:
1836 ee_mode = AR5K_EEPROM_MODE_11G;
1837 break;
1838 case CHANNEL_B:
1839 ee_mode = AR5K_EEPROM_MODE_11B;
1840 break;
1841 default:
1842 ATH5K_ERR(ah->ah_sc,
1843 "invalid channel: %d\n", channel->center_freq);
1844 return;
1845 }
1846
1847 switch (ant_mode) {
1848 case AR5K_ANTMODE_DEFAULT:
1849 tx_ant = 0;
1850 use_def_for_tx = false;
1851 update_def_on_tx = false;
1852 use_def_for_rts = false;
1853 use_def_for_sg = false;
1854 fast_div = true;
1855 break;
1856 case AR5K_ANTMODE_FIXED_A:
1857 def_ant = 1;
8bd8beab 1858 tx_ant = 1;
2bed03eb
NK
1859 use_def_for_tx = true;
1860 update_def_on_tx = false;
1861 use_def_for_rts = true;
1862 use_def_for_sg = true;
1863 fast_div = false;
1864 break;
1865 case AR5K_ANTMODE_FIXED_B:
1866 def_ant = 2;
8bd8beab 1867 tx_ant = 2;
2bed03eb
NK
1868 use_def_for_tx = true;
1869 update_def_on_tx = false;
1870 use_def_for_rts = true;
1871 use_def_for_sg = true;
1872 fast_div = false;
1873 break;
1874 case AR5K_ANTMODE_SINGLE_AP:
1875 def_ant = 1; /* updated on tx */
1876 tx_ant = 0;
1877 use_def_for_tx = true;
1878 update_def_on_tx = true;
1879 use_def_for_rts = true;
1880 use_def_for_sg = true;
1881 fast_div = true;
1882 break;
1883 case AR5K_ANTMODE_SECTOR_AP:
1884 tx_ant = 1; /* variable */
1885 use_def_for_tx = false;
1886 update_def_on_tx = false;
1887 use_def_for_rts = true;
1888 use_def_for_sg = false;
1889 fast_div = false;
1890 break;
1891 case AR5K_ANTMODE_SECTOR_STA:
1892 tx_ant = 1; /* variable */
1893 use_def_for_tx = true;
1894 update_def_on_tx = false;
1895 use_def_for_rts = true;
1896 use_def_for_sg = false;
1897 fast_div = true;
1898 break;
1899 case AR5K_ANTMODE_DEBUG:
1900 def_ant = 1;
1901 tx_ant = 2;
1902 use_def_for_tx = false;
1903 update_def_on_tx = false;
1904 use_def_for_rts = false;
1905 use_def_for_sg = false;
1906 fast_div = false;
1907 break;
1908 default:
1909 return;
1910 }
1911
1912 ah->ah_tx_ant = tx_ant;
1913 ah->ah_ant_mode = ant_mode;
caec9112 1914 ah->ah_def_ant = def_ant;
2bed03eb
NK
1915
1916 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1917 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1918 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1919 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1920
1921 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1922
1923 if (sta_id1)
1924 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1925
1926 /* Note: set diversity before default antenna
1927 * because it won't work correctly */
1928 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1929 ath5k_hw_set_def_antenna(ah, def_ant);
1930}
1931
8f655dde
NK
1932
1933/****************\
1934* TX power setup *
1935\****************/
1936
1937/*
1938 * Helper functions
1939 */
1940
1941/*
1942 * Do linear interpolation between two given (x, y) points
1943 */
1944static s16
1945ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1946 s16 y_left, s16 y_right)
1947{
1948 s16 ratio, result;
1949
1950 /* Avoid divide by zero and skip interpolation
1951 * if we have the same point */
1952 if ((x_left == x_right) || (y_left == y_right))
1953 return y_left;
1954
1955 /*
1956 * Since we use ints and not fps, we need to scale up in
1957 * order to get a sane ratio value (or else we 'll eg. get
1958 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1959 * to have some accuracy both for 0.5 and 0.25 steps.
1960 */
1961 ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1962
1963 /* Now scale down to be in range */
1964 result = y_left + (ratio * (target - x_left) / 100);
1965
1966 return result;
1967}
1968
1969/*
1970 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1971 *
1972 * Since we have the top of the curve and we draw the line below
1973 * until we reach 1 (1 pcdac step) we need to know which point
1974 * (x value) that is so that we don't go below y axis and have negative
1975 * pcdac values when creating the curve, or fill the table with zeroes.
1976 */
1977static s16
1978ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1979 const s16 *pwrL, const s16 *pwrR)
1980{
1981 s8 tmp;
1982 s16 min_pwrL, min_pwrR;
64cdb0e3
FR
1983 s16 pwr_i;
1984
d1cb0bda
NK
1985 /* Some vendors write the same pcdac value twice !!! */
1986 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
1987 return max(pwrL[0], pwrR[0]);
9c8b3edd 1988
64cdb0e3
FR
1989 if (pwrL[0] == pwrL[1])
1990 min_pwrL = pwrL[0];
1991 else {
1992 pwr_i = pwrL[0];
1993 do {
1994 pwr_i--;
1995 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1996 pwrL[0], pwrL[1],
1997 stepL[0], stepL[1]);
1998 } while (tmp > 1);
1999
2000 min_pwrL = pwr_i;
2001 }
8f655dde 2002
64cdb0e3
FR
2003 if (pwrR[0] == pwrR[1])
2004 min_pwrR = pwrR[0];
2005 else {
2006 pwr_i = pwrR[0];
2007 do {
2008 pwr_i--;
2009 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2010 pwrR[0], pwrR[1],
2011 stepR[0], stepR[1]);
2012 } while (tmp > 1);
2013
2014 min_pwrR = pwr_i;
2015 }
8f655dde
NK
2016
2017 /* Keep the right boundary so that it works for both curves */
2018 return max(min_pwrL, min_pwrR);
2019}
2020
2021/*
2022 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2023 * Power to PCDAC curve.
2024 *
2025 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2026 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2027 * PCDAC/PDADC step for each curve is 64 but we can write more than
2028 * one curves on hw so we can go up to 128 (which is the max step we
2029 * can write on the final table).
2030 *
2031 * We write y values (PCDAC/PDADC steps) on hw.
2032 */
2033static void
2034ath5k_create_power_curve(s16 pmin, s16 pmax,
2035 const s16 *pwr, const u8 *vpd,
2036 u8 num_points,
2037 u8 *vpd_table, u8 type)
2038{
2039 u8 idx[2] = { 0, 1 };
2040 s16 pwr_i = 2*pmin;
2041 int i;
2042
2043 if (num_points < 2)
2044 return;
2045
2046 /* We want the whole line, so adjust boundaries
2047 * to cover the entire power range. Note that
2048 * power values are already 0.25dB so no need
2049 * to multiply pwr_i by 2 */
2050 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2051 pwr_i = pmin;
2052 pmin = 0;
2053 pmax = 63;
2054 }
2055
2056 /* Find surrounding turning points (TPs)
2057 * and interpolate between them */
2058 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2059 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2060
2061 /* We passed the right TP, move to the next set of TPs
2062 * if we pass the last TP, extrapolate above using the last
2063 * two TPs for ratio */
2064 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2065 idx[0]++;
2066 idx[1]++;
2067 }
2068
2069 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2070 pwr[idx[0]], pwr[idx[1]],
2071 vpd[idx[0]], vpd[idx[1]]);
2072
2073 /* Increase by 0.5dB
2074 * (0.25 dB units) */
2075 pwr_i += 2;
2076 }
2077}
2078
2079/*
2080 * Get the surrounding per-channel power calibration piers
2081 * for a given frequency so that we can interpolate between
2082 * them and come up with an apropriate dataset for our current
2083 * channel.
2084 */
2085static void
2086ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2087 struct ieee80211_channel *channel,
2088 struct ath5k_chan_pcal_info **pcinfo_l,
2089 struct ath5k_chan_pcal_info **pcinfo_r)
2090{
2091 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2092 struct ath5k_chan_pcal_info *pcinfo;
2093 u8 idx_l, idx_r;
2094 u8 mode, max, i;
2095 u32 target = channel->center_freq;
2096
2097 idx_l = 0;
2098 idx_r = 0;
2099
2100 if (!(channel->hw_value & CHANNEL_OFDM)) {
2101 pcinfo = ee->ee_pwr_cal_b;
2102 mode = AR5K_EEPROM_MODE_11B;
2103 } else if (channel->hw_value & CHANNEL_2GHZ) {
2104 pcinfo = ee->ee_pwr_cal_g;
2105 mode = AR5K_EEPROM_MODE_11G;
2106 } else {
2107 pcinfo = ee->ee_pwr_cal_a;
2108 mode = AR5K_EEPROM_MODE_11A;
2109 }
2110 max = ee->ee_n_piers[mode] - 1;
2111
2112 /* Frequency is below our calibrated
2113 * range. Use the lowest power curve
2114 * we have */
2115 if (target < pcinfo[0].freq) {
2116 idx_l = idx_r = 0;
2117 goto done;
2118 }
2119
2120 /* Frequency is above our calibrated
2121 * range. Use the highest power curve
2122 * we have */
2123 if (target > pcinfo[max].freq) {
2124 idx_l = idx_r = max;
2125 goto done;
2126 }
2127
2128 /* Frequency is inside our calibrated
2129 * channel range. Pick the surrounding
2130 * calibration piers so that we can
2131 * interpolate */
2132 for (i = 0; i <= max; i++) {
2133
2134 /* Frequency matches one of our calibration
2135 * piers, no need to interpolate, just use
2136 * that calibration pier */
2137 if (pcinfo[i].freq == target) {
2138 idx_l = idx_r = i;
2139 goto done;
2140 }
2141
2142 /* We found a calibration pier that's above
2143 * frequency, use this pier and the previous
2144 * one to interpolate */
2145 if (target < pcinfo[i].freq) {
2146 idx_r = i;
2147 idx_l = idx_r - 1;
2148 goto done;
2149 }
2150 }
2151
2152done:
2153 *pcinfo_l = &pcinfo[idx_l];
2154 *pcinfo_r = &pcinfo[idx_r];
8f655dde
NK
2155}
2156
2157/*
2158 * Get the surrounding per-rate power calibration data
2159 * for a given frequency and interpolate between power
2160 * values to set max target power supported by hw for
2161 * each rate.
2162 */
2163static void
2164ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2165 struct ieee80211_channel *channel,
2166 struct ath5k_rate_pcal_info *rates)
2167{
2168 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2169 struct ath5k_rate_pcal_info *rpinfo;
2170 u8 idx_l, idx_r;
2171 u8 mode, max, i;
2172 u32 target = channel->center_freq;
2173
2174 idx_l = 0;
2175 idx_r = 0;
2176
2177 if (!(channel->hw_value & CHANNEL_OFDM)) {
2178 rpinfo = ee->ee_rate_tpwr_b;
2179 mode = AR5K_EEPROM_MODE_11B;
2180 } else if (channel->hw_value & CHANNEL_2GHZ) {
2181 rpinfo = ee->ee_rate_tpwr_g;
2182 mode = AR5K_EEPROM_MODE_11G;
2183 } else {
2184 rpinfo = ee->ee_rate_tpwr_a;
2185 mode = AR5K_EEPROM_MODE_11A;
2186 }
2187 max = ee->ee_rate_target_pwr_num[mode] - 1;
2188
2189 /* Get the surrounding calibration
2190 * piers - same as above */
2191 if (target < rpinfo[0].freq) {
2192 idx_l = idx_r = 0;
2193 goto done;
2194 }
2195
2196 if (target > rpinfo[max].freq) {
2197 idx_l = idx_r = max;
2198 goto done;
2199 }
2200
2201 for (i = 0; i <= max; i++) {
2202
2203 if (rpinfo[i].freq == target) {
2204 idx_l = idx_r = i;
2205 goto done;
2206 }
2207
2208 if (target < rpinfo[i].freq) {
2209 idx_r = i;
2210 idx_l = idx_r - 1;
2211 goto done;
2212 }
2213 }
2214
2215done:
2216 /* Now interpolate power value, based on the frequency */
2217 rates->freq = target;
2218
2219 rates->target_power_6to24 =
2220 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2221 rpinfo[idx_r].freq,
2222 rpinfo[idx_l].target_power_6to24,
2223 rpinfo[idx_r].target_power_6to24);
2224
2225 rates->target_power_36 =
2226 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2227 rpinfo[idx_r].freq,
2228 rpinfo[idx_l].target_power_36,
2229 rpinfo[idx_r].target_power_36);
2230
2231 rates->target_power_48 =
2232 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2233 rpinfo[idx_r].freq,
2234 rpinfo[idx_l].target_power_48,
2235 rpinfo[idx_r].target_power_48);
2236
2237 rates->target_power_54 =
2238 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2239 rpinfo[idx_r].freq,
2240 rpinfo[idx_l].target_power_54,
2241 rpinfo[idx_r].target_power_54);
2242}
2243
2244/*
2245 * Get the max edge power for this channel if
2246 * we have such data from EEPROM's Conformance Test
2247 * Limits (CTL), and limit max power if needed.
8f655dde
NK
2248 */
2249static void
2250ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2251 struct ieee80211_channel *channel)
2252{
608b88cb 2253 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
8f655dde
NK
2254 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2255 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2256 u8 *ctl_val = ee->ee_ctl;
2257 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2258 s16 edge_pwr = 0;
2259 u8 rep_idx;
2260 u8 i, ctl_mode;
2261 u8 ctl_idx = 0xFF;
2262 u32 target = channel->center_freq;
2263
608b88cb 2264 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
6752ee90 2265
8f655dde
NK
2266 switch (channel->hw_value & CHANNEL_MODES) {
2267 case CHANNEL_A:
6752ee90 2268 ctl_mode |= AR5K_CTL_11A;
8f655dde
NK
2269 break;
2270 case CHANNEL_G:
6752ee90 2271 ctl_mode |= AR5K_CTL_11G;
8f655dde
NK
2272 break;
2273 case CHANNEL_B:
6752ee90 2274 ctl_mode |= AR5K_CTL_11B;
8f655dde
NK
2275 break;
2276 case CHANNEL_T:
6752ee90 2277 ctl_mode |= AR5K_CTL_TURBO;
8f655dde
NK
2278 break;
2279 case CHANNEL_TG:
6752ee90 2280 ctl_mode |= AR5K_CTL_TURBOG;
8f655dde
NK
2281 break;
2282 case CHANNEL_XR:
2283 /* Fall through */
2284 default:
2285 return;
2286 }
2287
2288 for (i = 0; i < ee->ee_ctls; i++) {
2289 if (ctl_val[i] == ctl_mode) {
2290 ctl_idx = i;
2291 break;
2292 }
2293 }
2294
2295 /* If we have a CTL dataset available grab it and find the
2296 * edge power for our frequency */
2297 if (ctl_idx == 0xFF)
2298 return;
2299
2300 /* Edge powers are sorted by frequency from lower
2301 * to higher. Each CTL corresponds to 8 edge power
2302 * measurements. */
2303 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2304
2305 /* Don't do boundaries check because we
2306 * might have more that one bands defined
2307 * for this mode */
2308
2309 /* Get the edge power that's closer to our
2310 * frequency */
2311 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2312 rep_idx += i;
2313 if (target <= rep[rep_idx].freq)
2314 edge_pwr = (s16) rep[rep_idx].edge;
2315 }
2316
2317 if (edge_pwr)
2318 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2319}
2320
2321
2322/*
2323 * Power to PCDAC table functions
2324 */
2325
fa1c114f 2326/*
8f655dde
NK
2327 * Fill Power to PCDAC table on RF5111
2328 *
2329 * No further processing is needed for RF5111, the only thing we have to
2330 * do is fill the values below and above calibration range since eeprom data
2331 * may not cover the entire PCDAC table.
fa1c114f 2332 */
8f655dde
NK
2333static void
2334ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2335 s16 *table_max)
2336{
2337 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2338 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2339 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2340 s16 min_pwr, max_pwr;
2341
2342 /* Get table boundaries */
2343 min_pwr = table_min[0];
2344 pcdac_0 = pcdac_tmp[0];
2345
2346 max_pwr = table_max[0];
2347 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2348
2349 /* Extrapolate below minimum using pcdac_0 */
2350 pcdac_i = 0;
2351 for (i = 0; i < min_pwr; i++)
2352 pcdac_out[pcdac_i++] = pcdac_0;
2353
2354 /* Copy values from pcdac_tmp */
2355 pwr_idx = min_pwr;
2356 for (i = 0 ; pwr_idx <= max_pwr &&
2357 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2358 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2359 pwr_idx++;
2360 }
2361
2362 /* Extrapolate above maximum */
2363 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2364 pcdac_out[pcdac_i++] = pcdac_n;
2365
2366}
fa1c114f
JS
2367
2368/*
8f655dde
NK
2369 * Combine available XPD Curves and fill Linear Power to PCDAC table
2370 * on RF5112
2371 *
2372 * RFX112 can have up to 2 curves (one for low txpower range and one for
2373 * higher txpower range). We need to put them both on pcdac_out and place
2374 * them in the correct location. In case we only have one curve available
2375 * just fit it on pcdac_out (it's supposed to cover the entire range of
2376 * available pwr levels since it's always the higher power curve). Extrapolate
2377 * below and above final table if needed.
fa1c114f 2378 */
8f655dde
NK
2379static void
2380ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2381 s16 *table_max, u8 pdcurves)
fa1c114f 2382{
8f655dde
NK
2383 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2384 u8 *pcdac_low_pwr;
2385 u8 *pcdac_high_pwr;
2386 u8 *pcdac_tmp;
2387 u8 pwr;
2388 s16 max_pwr_idx;
2389 s16 min_pwr_idx;
2390 s16 mid_pwr_idx = 0;
2391 /* Edge flag turs on the 7nth bit on the PCDAC
2392 * to delcare the higher power curve (force values
2393 * to be greater than 64). If we only have one curve
2394 * we don't need to set this, if we have 2 curves and
2395 * fill the table backwards this can also be used to
2396 * switch from higher power curve to lower power curve */
2397 u8 edge_flag;
2398 int i;
2399
2400 /* When we have only one curve available
2401 * that's the higher power curve. If we have
2402 * two curves the first is the high power curve
2403 * and the next is the low power curve. */
2404 if (pdcurves > 1) {
2405 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2406 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2407 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2408 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2409
2410 /* If table size goes beyond 31.5dB, keep the
2411 * upper 31.5dB range when setting tx power.
2412 * Note: 126 = 31.5 dB in quarter dB steps */
2413 if (table_max[0] - table_min[1] > 126)
2414 min_pwr_idx = table_max[0] - 126;
2415 else
2416 min_pwr_idx = table_min[1];
2417
2418 /* Since we fill table backwards
2419 * start from high power curve */
2420 pcdac_tmp = pcdac_high_pwr;
2421
2422 edge_flag = 0x40;
8f655dde
NK
2423 } else {
2424 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2425 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2426 min_pwr_idx = table_min[0];
2427 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2428 pcdac_tmp = pcdac_high_pwr;
2429 edge_flag = 0;
2430 }
2431
2432 /* This is used when setting tx power*/
2433 ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2434
2435 /* Fill Power to PCDAC table backwards */
2436 pwr = max_pwr_idx;
2437 for (i = 63; i >= 0; i--) {
2438 /* Entering lower power range, reset
2439 * edge flag and set pcdac_tmp to lower
2440 * power curve.*/
2441 if (edge_flag == 0x40 &&
2442 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2443 edge_flag = 0x00;
2444 pcdac_tmp = pcdac_low_pwr;
2445 pwr = mid_pwr_idx/2;
2446 }
2447
2448 /* Don't go below 1, extrapolate below if we have
2449 * already swithced to the lower power curve -or
2450 * we only have one curve and edge_flag is zero
2451 * anyway */
2452 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2453 while (i >= 0) {
2454 pcdac_out[i] = pcdac_out[i + 1];
2455 i--;
2456 }
2457 break;
2458 }
2459
2460 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2461
2462 /* Extrapolate above if pcdac is greater than
2463 * 126 -this can happen because we OR pcdac_out
2464 * value with edge_flag on high power curve */
2465 if (pcdac_out[i] > 126)
2466 pcdac_out[i] = 126;
2467
2468 /* Decrease by a 0.5dB step */
2469 pwr--;
2470 }
fa1c114f
JS
2471}
2472
8f655dde
NK
2473/* Write PCDAC values on hw */
2474static void
2475ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2476{
2477 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2478 int i;
2479
2480 /*
2481 * Write TX power values
2482 */
2483 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2484 ath5k_hw_reg_write(ah,
2485 (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2486 (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2487 AR5K_PHY_PCDAC_TXPOWER(i));
2488 }
2489}
2490
2491
fa1c114f 2492/*
8f655dde 2493 * Power to PDADC table functions
fa1c114f 2494 */
8f655dde
NK
2495
2496/*
2497 * Set the gain boundaries and create final Power to PDADC table
2498 *
2499 * We can have up to 4 pd curves, we need to do a simmilar process
2500 * as we do for RF5112. This time we don't have an edge_flag but we
2501 * set the gain boundaries on a separate register.
2502 */
2503static void
2504ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2505 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
fa1c114f 2506{
8f655dde
NK
2507 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2508 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2509 u8 *pdadc_tmp;
2510 s16 pdadc_0;
2511 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2512 u8 pd_gain_overlap;
2513
2514 /* Note: Register value is initialized on initvals
2515 * there is no feedback from hw.
2516 * XXX: What about pd_gain_overlap from EEPROM ? */
2517 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2518 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2519
2520 /* Create final PDADC table */
2521 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2522 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2523
2524 if (pdg == pdcurves - 1)
2525 /* 2 dB boundary stretch for last
2526 * (higher power) curve */
2527 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2528 else
2529 /* Set gain boundary in the middle
2530 * between this curve and the next one */
2531 gain_boundaries[pdg] =
2532 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2533
2534 /* Sanity check in case our 2 db stretch got out of
2535 * range. */
2536 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2537 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2538
2539 /* For the first curve (lower power)
2540 * start from 0 dB */
2541 if (pdg == 0)
2542 pdadc_0 = 0;
2543 else
2544 /* For the other curves use the gain overlap */
2545 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2546 pd_gain_overlap;
fa1c114f 2547
8f655dde
NK
2548 /* Force each power step to be at least 0.5 dB */
2549 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2550 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2551 else
2552 pwr_step = 1;
2553
2554 /* If pdadc_0 is negative, we need to extrapolate
2555 * below this pdgain by a number of pwr_steps */
2556 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2557 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2558 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2559 pdadc_0++;
2560 }
2561
2562 /* Set last pwr level, using gain boundaries */
2563 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2564 /* Limit it to be inside pwr range */
2565 table_size = pwr_max[pdg] - pwr_min[pdg];
2566 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2567
2568 /* Fill pdadc_out table */
4f59fce9 2569 while (pdadc_0 < max_idx && pdadc_i < 128)
8f655dde
NK
2570 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2571
2572 /* Need to extrapolate above this pdgain? */
2573 if (pdadc_n <= max_idx)
2574 continue;
2575
2576 /* Force each power step to be at least 0.5 dB */
2577 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2578 pwr_step = pdadc_tmp[table_size - 1] -
2579 pdadc_tmp[table_size - 2];
2580 else
2581 pwr_step = 1;
2582
2583 /* Extrapolate above */
2584 while ((pdadc_0 < (s16) pdadc_n) &&
2585 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2586 s16 tmp = pdadc_tmp[table_size - 1] +
2587 (pdadc_0 - max_idx) * pwr_step;
2588 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2589 pdadc_0++;
2590 }
fa1c114f
JS
2591 }
2592
8f655dde
NK
2593 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2594 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2595 pdg++;
2596 }
2597
2598 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2599 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2600 pdadc_i++;
2601 }
2602
2603 /* Set gain boundaries */
2604 ath5k_hw_reg_write(ah,
2605 AR5K_REG_SM(pd_gain_overlap,
2606 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2607 AR5K_REG_SM(gain_boundaries[0],
2608 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2609 AR5K_REG_SM(gain_boundaries[1],
2610 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2611 AR5K_REG_SM(gain_boundaries[2],
2612 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2613 AR5K_REG_SM(gain_boundaries[3],
2614 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2615 AR5K_PHY_TPC_RG5);
2616
2617 /* Used for setting rate power table */
2618 ah->ah_txpower.txp_min_idx = pwr_min[0];
2619
2620}
2621
2622/* Write PDADC values on hw */
2623static void
2624ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2625 u8 pdcurves, u8 *pdg_to_idx)
2626{
2627 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2628 u32 reg;
2629 u8 i;
2630
2631 /* Select the right pdgain curves */
2632
2633 /* Clear current settings */
2634 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2635 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2636 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2637 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2638 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2639
903b474e 2640 /*
8f655dde 2641 * Use pd_gains curve from eeprom
136bfc79 2642 *
8f655dde
NK
2643 * This overrides the default setting from initvals
2644 * in case some vendors (e.g. Zcomax) don't use the default
2645 * curves. If we don't honor their settings we 'll get a
2646 * 5dB (1 * gain overlap ?) drop.
903b474e 2647 */
8f655dde 2648 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
903b474e 2649
8f655dde
NK
2650 switch (pdcurves) {
2651 case 3:
2652 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2653 /* Fall through */
2654 case 2:
2655 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2656 /* Fall through */
2657 case 1:
2658 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2659 break;
2660 }
2661 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
fa1c114f
JS
2662
2663 /*
2664 * Write TX power values
2665 */
2666 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2667 ath5k_hw_reg_write(ah,
8f655dde
NK
2668 ((pdadc_out[4*i + 0] & 0xff) << 0) |
2669 ((pdadc_out[4*i + 1] & 0xff) << 8) |
2670 ((pdadc_out[4*i + 2] & 0xff) << 16) |
2671 ((pdadc_out[4*i + 3] & 0xff) << 24),
2672 AR5K_PHY_PDADC_TXPOWER(i));
2673 }
2674}
2675
2676
2677/*
2678 * Common code for PCDAC/PDADC tables
2679 */
2680
2681/*
2682 * This is the main function that uses all of the above
2683 * to set PCDAC/PDADC table on hw for the current channel.
2684 * This table is used for tx power calibration on the basband,
2685 * without it we get weird tx power levels and in some cases
2686 * distorted spectral mask
2687 */
2688static int
2689ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2690 struct ieee80211_channel *channel,
2691 u8 ee_mode, u8 type)
2692{
2693 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2694 struct ath5k_chan_pcal_info *pcinfo_L;
2695 struct ath5k_chan_pcal_info *pcinfo_R;
2696 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2697 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2698 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2699 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2700 u8 *tmpL;
2701 u8 *tmpR;
2702 u32 target = channel->center_freq;
2703 int pdg, i;
2704
2705 /* Get surounding freq piers for this channel */
2706 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2707 &pcinfo_L,
2708 &pcinfo_R);
2709
2710 /* Loop over pd gain curves on
2711 * surounding freq piers by index */
2712 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2713
2714 /* Fill curves in reverse order
2715 * from lower power (max gain)
2716 * to higher power. Use curve -> idx
af901ca1 2717 * backmapping we did on eeprom init */
8f655dde
NK
2718 u8 idx = pdg_curve_to_idx[pdg];
2719
2720 /* Grab the needed curves by index */
2721 pdg_L = &pcinfo_L->pd_curves[idx];
2722 pdg_R = &pcinfo_R->pd_curves[idx];
2723
2724 /* Initialize the temp tables */
2725 tmpL = ah->ah_txpower.tmpL[pdg];
2726 tmpR = ah->ah_txpower.tmpR[pdg];
2727
2728 /* Set curve's x boundaries and create
2729 * curves so that they cover the same
2730 * range (if we don't do that one table
2731 * will have values on some range and the
2732 * other one won't have any so interpolation
2733 * will fail) */
2734 table_min[pdg] = min(pdg_L->pd_pwr[0],
2735 pdg_R->pd_pwr[0]) / 2;
2736
2737 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2738 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2739
2740 /* Now create the curves on surrounding channels
2741 * and interpolate if needed to get the final
2742 * curve for this gain on this channel */
2743 switch (type) {
2744 case AR5K_PWRTABLE_LINEAR_PCDAC:
2745 /* Override min/max so that we don't loose
2746 * accuracy (don't divide by 2) */
2747 table_min[pdg] = min(pdg_L->pd_pwr[0],
2748 pdg_R->pd_pwr[0]);
2749
2750 table_max[pdg] =
2751 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2752 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2753
2754 /* Override minimum so that we don't get
2755 * out of bounds while extrapolating
2756 * below. Don't do this when we have 2
2757 * curves and we are on the high power curve
2758 * because table_min is ok in this case */
2759 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2760
2761 table_min[pdg] =
2762 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2763 pdg_R->pd_step,
2764 pdg_L->pd_pwr,
2765 pdg_R->pd_pwr);
2766
2767 /* Don't go too low because we will
2768 * miss the upper part of the curve.
2769 * Note: 126 = 31.5dB (max power supported)
2770 * in 0.25dB units */
2771 if (table_max[pdg] - table_min[pdg] > 126)
2772 table_min[pdg] = table_max[pdg] - 126;
2773 }
2774
2775 /* Fall through */
2776 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2777 case AR5K_PWRTABLE_PWR_TO_PDADC:
2778
2779 ath5k_create_power_curve(table_min[pdg],
2780 table_max[pdg],
2781 pdg_L->pd_pwr,
2782 pdg_L->pd_step,
2783 pdg_L->pd_points, tmpL, type);
2784
2785 /* We are in a calibration
2786 * pier, no need to interpolate
2787 * between freq piers */
2788 if (pcinfo_L == pcinfo_R)
2789 continue;
2790
2791 ath5k_create_power_curve(table_min[pdg],
2792 table_max[pdg],
2793 pdg_R->pd_pwr,
2794 pdg_R->pd_step,
2795 pdg_R->pd_points, tmpR, type);
2796 break;
2797 default:
2798 return -EINVAL;
2799 }
2800
2801 /* Interpolate between curves
2802 * of surounding freq piers to
2803 * get the final curve for this
2804 * pd gain. Re-use tmpL for interpolation
2805 * output */
2806 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2807 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2808 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2809 (s16) pcinfo_L->freq,
2810 (s16) pcinfo_R->freq,
2811 (s16) tmpL[i],
2812 (s16) tmpR[i]);
2813 }
fa1c114f
JS
2814 }
2815
8f655dde
NK
2816 /* Now we have a set of curves for this
2817 * channel on tmpL (x range is table_max - table_min
2818 * and y values are tmpL[pdg][]) sorted in the same
af901ca1 2819 * order as EEPROM (because we've used the backmapping).
8f655dde
NK
2820 * So for RF5112 it's from higher power to lower power
2821 * and for RF2413 it's from lower power to higher power.
2822 * For RF5111 we only have one curve. */
2823
2824 /* Fill min and max power levels for this
2825 * channel by interpolating the values on
2826 * surounding channels to complete the dataset */
2827 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2828 (s16) pcinfo_L->freq,
2829 (s16) pcinfo_R->freq,
2830 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2831
2832 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2833 (s16) pcinfo_L->freq,
2834 (s16) pcinfo_R->freq,
2835 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2836
2837 /* We are ready to go, fill PCDAC/PDADC
2838 * table and write settings on hardware */
2839 switch (type) {
2840 case AR5K_PWRTABLE_LINEAR_PCDAC:
2841 /* For RF5112 we can have one or two curves
2842 * and each curve covers a certain power lvl
2843 * range so we need to do some more processing */
2844 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2845 ee->ee_pd_gains[ee_mode]);
2846
2847 /* Set txp.offset so that we can
2848 * match max power value with max
2849 * table index */
2850 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2851
2852 /* Write settings on hw */
2853 ath5k_setup_pcdac_table(ah);
2854 break;
2855 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2856 /* We are done for RF5111 since it has only
2857 * one curve, just fit the curve on the table */
2858 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2859
2860 /* No rate powertable adjustment for RF5111 */
2861 ah->ah_txpower.txp_min_idx = 0;
2862 ah->ah_txpower.txp_offset = 0;
2863
2864 /* Write settings on hw */
2865 ath5k_setup_pcdac_table(ah);
2866 break;
2867 case AR5K_PWRTABLE_PWR_TO_PDADC:
2868 /* Set PDADC boundaries and fill
2869 * final PDADC table */
2870 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2871 ee->ee_pd_gains[ee_mode]);
2872
2873 /* Write settings on hw */
2874 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2875
2876 /* Set txp.offset, note that table_min
2877 * can be negative */
2878 ah->ah_txpower.txp_offset = table_min[0];
2879 break;
2880 default:
2881 return -EINVAL;
2882 }
2883
2884 return 0;
2885}
2886
2887
2888/*
2889 * Per-rate tx power setting
2890 *
2891 * This is the code that sets the desired tx power (below
2892 * maximum) on hw for each rate (we also have TPC that sets
2893 * power per packet). We do that by providing an index on the
2894 * PCDAC/PDADC table we set up.
2895 */
2896
2897/*
2898 * Set rate power table
2899 *
2900 * For now we only limit txpower based on maximum tx power
2901 * supported by hw (what's inside rate_info). We need to limit
2902 * this even more, based on regulatory domain etc.
2903 *
2904 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2905 * and is indexed as follows:
2906 * rates[0] - rates[7] -> OFDM rates
2907 * rates[8] - rates[14] -> CCK rates
2908 * rates[15] -> XR rates (they all have the same power)
2909 */
2910static void
2911ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2912 struct ath5k_rate_pcal_info *rate_info,
2913 u8 ee_mode)
2914{
2915 unsigned int i;
2916 u16 *rates;
2917
2918 /* max_pwr is power level we got from driver/user in 0.5dB
2919 * units, switch to 0.25dB units so we can compare */
2920 max_pwr *= 2;
2921 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2922
2923 /* apply rate limits */
2924 rates = ah->ah_txpower.txp_rates_power_table;
2925
2926 /* OFDM rates 6 to 24Mb/s */
2927 for (i = 0; i < 5; i++)
2928 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2929
2930 /* Rest OFDM rates */
2931 rates[5] = min(rates[0], rate_info->target_power_36);
2932 rates[6] = min(rates[0], rate_info->target_power_48);
2933 rates[7] = min(rates[0], rate_info->target_power_54);
2934
2935 /* CCK rates */
2936 /* 1L */
2937 rates[8] = min(rates[0], rate_info->target_power_6to24);
2938 /* 2L */
2939 rates[9] = min(rates[0], rate_info->target_power_36);
2940 /* 2S */
2941 rates[10] = min(rates[0], rate_info->target_power_36);
2942 /* 5L */
2943 rates[11] = min(rates[0], rate_info->target_power_48);
2944 /* 5S */
2945 rates[12] = min(rates[0], rate_info->target_power_48);
2946 /* 11L */
2947 rates[13] = min(rates[0], rate_info->target_power_54);
2948 /* 11S */
2949 rates[14] = min(rates[0], rate_info->target_power_54);
2950
2951 /* XR rates */
2952 rates[15] = min(rates[0], rate_info->target_power_6to24);
2953
2954 /* CCK rates have different peak to average ratio
2955 * so we have to tweak their power so that gainf
2956 * correction works ok. For this we use OFDM to
2957 * CCK delta from eeprom */
2958 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2959 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2960 for (i = 8; i <= 15; i++)
2961 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2962
a0823810
NK
2963 /* Now that we have all rates setup use table offset to
2964 * match the power range set by user with the power indices
2965 * on PCDAC/PDADC table */
2966 for (i = 0; i < 16; i++) {
2967 rates[i] += ah->ah_txpower.txp_offset;
2968 /* Don't get out of bounds */
2969 if (rates[i] > 63)
2970 rates[i] = 63;
2971 }
2972
2973 /* Min/max in 0.25dB units */
2974 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2975 ah->ah_txpower.txp_max_pwr = 2 * rates[0];
8f655dde
NK
2976 ah->ah_txpower.txp_ofdm = rates[7];
2977}
2978
2979
2980/*
2981 * Set transmition power
2982 */
2983int
2984ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2985 u8 ee_mode, u8 txpower)
2986{
2987 struct ath5k_rate_pcal_info rate_info;
2988 u8 type;
2989 int ret;
2990
2991 ATH5K_TRACE(ah->ah_sc);
2992 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2993 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2994 return -EINVAL;
2995 }
8f655dde
NK
2996
2997 /* Reset TX power values */
2998 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2999 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3000 ah->ah_txpower.txp_min_pwr = 0;
3001 ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3002
3003 /* Initialize TX power table */
3004 switch (ah->ah_radio) {
3005 case AR5K_RF5111:
3006 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3007 break;
3008 case AR5K_RF5112:
3009 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3010 break;
3011 case AR5K_RF2413:
3012 case AR5K_RF5413:
3013 case AR5K_RF2316:
3014 case AR5K_RF2317:
3015 case AR5K_RF2425:
3016 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3017 break;
3018 default:
3019 return -EINVAL;
3020 }
3021
3022 /* FIXME: Only on channel/mode change */
3023 ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3024 if (ret)
3025 return ret;
3026
3027 /* Limit max power if we have a CTL available */
3028 ath5k_get_max_ctl_power(ah, channel);
3029
3030 /* FIXME: Tx power limit for this regdomain
3031 * XXX: Mac80211/CRDA will do that anyway ? */
3032
3033 /* FIXME: Antenna reduction stuff */
3034
3035 /* FIXME: Limit power on turbo modes */
3036
3037 /* FIXME: TPC scale reduction */
3038
3039 /* Get surounding channels for per-rate power table
3040 * calibration */
3041 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3042
3043 /* Setup rate power table */
3044 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3045
3046 /* Write rate power table on hw */
fa1c114f
JS
3047 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3048 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3049 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3050
3051 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3052 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3053 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3054
3055 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3056 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3057 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3058
3059 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3060 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3061 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3062
8f655dde
NK
3063 /* FIXME: TPC support */
3064 if (ah->ah_txpower.txp_tpc) {
fa1c114f
JS
3065 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3066 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
8f655dde
NK
3067
3068 ath5k_hw_reg_write(ah,
3069 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3070 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3071 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3072 AR5K_TPC);
3073 } else {
fa1c114f
JS
3074 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3075 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
8f655dde 3076 }
fa1c114f
JS
3077
3078 return 0;
3079}
3080
a0823810 3081int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
fa1c114f
JS
3082{
3083 /*Just a try M.F.*/
46026e8f 3084 struct ieee80211_channel *channel = ah->ah_current_channel;
a0823810 3085 u8 ee_mode;
fa1c114f
JS
3086
3087 ATH5K_TRACE(ah->ah_sc);
a0823810
NK
3088
3089 switch (channel->hw_value & CHANNEL_MODES) {
3090 case CHANNEL_A:
3091 case CHANNEL_T:
3092 case CHANNEL_XR:
3093 ee_mode = AR5K_EEPROM_MODE_11A;
3094 break;
3095 case CHANNEL_G:
3096 case CHANNEL_TG:
3097 ee_mode = AR5K_EEPROM_MODE_11G;
3098 break;
3099 case CHANNEL_B:
3100 ee_mode = AR5K_EEPROM_MODE_11B;
3101 break;
3102 default:
3103 ATH5K_ERR(ah->ah_sc,
3104 "invalid channel: %d\n", channel->center_freq);
3105 return -EINVAL;
3106 }
3107
fa1c114f 3108 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
8f655dde 3109 "changing txpower to %d\n", txpower);
fa1c114f 3110
a0823810 3111 return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
fa1c114f 3112}