]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/wan/farsync.c
headers: remove sched.h from interrupt.h
[net-next-2.6.git] / drivers / net / wan / farsync.c
CommitLineData
1da177e4
LT
1/*
2 * FarSync WAN driver for Linux (2.6.x kernel version)
3 *
4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5 *
6 * Copyright (C) 2001-2004 FarSite Communications Ltd.
7 * www.farsite.co.uk
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 *
14 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
15 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
16 */
17
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/version.h>
21#include <linux/pci.h>
d43c36dc 22#include <linux/sched.h>
1da177e4
LT
23#include <linux/ioport.h>
24#include <linux/init.h>
25#include <linux/if.h>
26#include <linux/hdlc.h>
27#include <asm/io.h>
28#include <asm/uaccess.h>
29
30#include "farsync.h"
31
32/*
33 * Module info
34 */
35MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
36MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
37MODULE_LICENSE("GPL");
38
39/* Driver configuration and global parameters
40 * ==========================================
41 */
42
43/* Number of ports (per card) and cards supported
44 */
45#define FST_MAX_PORTS 4
46#define FST_MAX_CARDS 32
47
48/* Default parameters for the link
49 */
50#define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
0bee8db8 51 * useful */
1da177e4
LT
52#define FST_TXQ_DEPTH 16 /* This one is for the buffering
53 * of frames on the way down to the card
54 * so that we can keep the card busy
55 * and maximise throughput
56 */
57#define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
58 * network layer */
59#define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
60 * control from network layer */
61#define FST_MAX_MTU 8000 /* Huge but possible */
62#define FST_DEF_MTU 1500 /* Common sane value */
63
64#define FST_TX_TIMEOUT (2*HZ)
65
66#ifdef ARPHRD_RAWHDLC
67#define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
68#else
69#define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
70#endif
71
72/*
3a070ad1 73 * Modules parameters and associated variables
1da177e4 74 */
7665a089
AB
75static int fst_txq_low = FST_LOW_WATER_MARK;
76static int fst_txq_high = FST_HIGH_WATER_MARK;
77static int fst_max_reads = 7;
78static int fst_excluded_cards = 0;
79static int fst_excluded_list[FST_MAX_CARDS];
1da177e4
LT
80
81module_param(fst_txq_low, int, 0);
82module_param(fst_txq_high, int, 0);
83module_param(fst_max_reads, int, 0);
84module_param(fst_excluded_cards, int, 0);
85module_param_array(fst_excluded_list, int, NULL, 0);
86
87/* Card shared memory layout
88 * =========================
89 */
90#pragma pack(1)
91
92/* This information is derived in part from the FarSite FarSync Smc.h
93 * file. Unfortunately various name clashes and the non-portability of the
94 * bit field declarations in that file have meant that I have chosen to
95 * recreate the information here.
96 *
97 * The SMC (Shared Memory Configuration) has a version number that is
98 * incremented every time there is a significant change. This number can
99 * be used to check that we have not got out of step with the firmware
100 * contained in the .CDE files.
101 */
102#define SMC_VERSION 24
103
104#define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
105
106#define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
107 * configuration structure */
108#define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
109 * buffers */
110
111#define LEN_TX_BUFFER 8192 /* Size of packet buffers */
112#define LEN_RX_BUFFER 8192
113
114#define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
115#define LEN_SMALL_RX_BUFFER 256
116
117#define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
118#define NUM_RX_BUFFER 8
119
120/* Interrupt retry time in milliseconds */
121#define INT_RETRY_TIME 2
122
123/* The Am186CH/CC processors support a SmartDMA mode using circular pools
124 * of buffer descriptors. The structure is almost identical to that used
125 * in the LANCE Ethernet controllers. Details available as PDF from the
126 * AMD web site: http://www.amd.com/products/epd/processors/\
127 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf
128 */
129struct txdesc { /* Transmit descriptor */
130 volatile u16 ladr; /* Low order address of packet. This is a
131 * linear address in the Am186 memory space
132 */
133 volatile u8 hadr; /* High order address. Low 4 bits only, high 4
134 * bits must be zero
135 */
136 volatile u8 bits; /* Status and config */
137 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits.
138 * Transmit terminal count interrupt enable in
139 * top bit.
140 */
141 u16 unused; /* Not used in Tx */
142};
143
144struct rxdesc { /* Receive descriptor */
145 volatile u16 ladr; /* Low order address of packet */
146 volatile u8 hadr; /* High order address */
147 volatile u8 bits; /* Status and config */
148 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits.
149 * Receive terminal count interrupt enable in
150 * top bit.
151 */
152 volatile u16 mcnt; /* Message byte count (15 bits) */
153};
154
155/* Convert a length into the 15 bit 2's complement */
156/* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
157/* Since we need to set the high bit to enable the completion interrupt this
158 * can be made a lot simpler
159 */
160#define cnv_bcnt(len) (-(len))
161
162/* Status and config bits for the above */
163#define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
164#define TX_STP 0x02 /* Tx: start of packet */
165#define TX_ENP 0x01 /* Tx: end of packet */
166#define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
167#define RX_FRAM 0x20 /* Rx: framing error */
168#define RX_OFLO 0x10 /* Rx: overflow error */
169#define RX_CRC 0x08 /* Rx: CRC error */
170#define RX_HBUF 0x04 /* Rx: buffer error */
171#define RX_STP 0x02 /* Rx: start of packet */
172#define RX_ENP 0x01 /* Rx: end of packet */
173
174/* Interrupts from the card are caused by various events which are presented
175 * in a circular buffer as several events may be processed on one physical int
176 */
177#define MAX_CIRBUFF 32
178
179struct cirbuff {
180 u8 rdindex; /* read, then increment and wrap */
181 u8 wrindex; /* write, then increment and wrap */
182 u8 evntbuff[MAX_CIRBUFF];
183};
184
185/* Interrupt event codes.
186 * Where appropriate the two low order bits indicate the port number
187 */
188#define CTLA_CHG 0x18 /* Control signal changed */
189#define CTLB_CHG 0x19
190#define CTLC_CHG 0x1A
191#define CTLD_CHG 0x1B
192
193#define INIT_CPLT 0x20 /* Initialisation complete */
194#define INIT_FAIL 0x21 /* Initialisation failed */
195
196#define ABTA_SENT 0x24 /* Abort sent */
197#define ABTB_SENT 0x25
198#define ABTC_SENT 0x26
199#define ABTD_SENT 0x27
200
201#define TXA_UNDF 0x28 /* Transmission underflow */
202#define TXB_UNDF 0x29
203#define TXC_UNDF 0x2A
204#define TXD_UNDF 0x2B
205
206#define F56_INT 0x2C
207#define M32_INT 0x2D
208
209#define TE1_ALMA 0x30
210
211/* Port physical configuration. See farsync.h for field values */
212struct port_cfg {
213 u16 lineInterface; /* Physical interface type */
214 u8 x25op; /* Unused at present */
215 u8 internalClock; /* 1 => internal clock, 0 => external */
216 u8 transparentMode; /* 1 => on, 0 => off */
217 u8 invertClock; /* 0 => normal, 1 => inverted */
218 u8 padBytes[6]; /* Padding */
219 u32 lineSpeed; /* Speed in bps */
220};
221
222/* TE1 port physical configuration */
223struct su_config {
224 u32 dataRate;
225 u8 clocking;
226 u8 framing;
227 u8 structure;
228 u8 interface;
229 u8 coding;
230 u8 lineBuildOut;
231 u8 equalizer;
232 u8 transparentMode;
233 u8 loopMode;
234 u8 range;
235 u8 txBufferMode;
236 u8 rxBufferMode;
237 u8 startingSlot;
238 u8 losThreshold;
239 u8 enableIdleCode;
240 u8 idleCode;
241 u8 spare[44];
242};
243
244/* TE1 Status */
245struct su_status {
246 u32 receiveBufferDelay;
247 u32 framingErrorCount;
248 u32 codeViolationCount;
249 u32 crcErrorCount;
250 u32 lineAttenuation;
251 u8 portStarted;
252 u8 lossOfSignal;
253 u8 receiveRemoteAlarm;
254 u8 alarmIndicationSignal;
255 u8 spare[40];
256};
257
258/* Finally sling all the above together into the shared memory structure.
259 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
260 * evolving under NT for some time so I guess we're stuck with it.
261 * The structure starts at offset SMC_BASE.
262 * See farsync.h for some field values.
263 */
264struct fst_shared {
265 /* DMA descriptor rings */
266 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
267 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
268
269 /* Obsolete small buffers */
270 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
271 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
272
273 u8 taskStatus; /* 0x00 => initialising, 0x01 => running,
274 * 0xFF => halted
275 */
276
277 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt,
278 * set to 0xEE by host to acknowledge interrupt
279 */
280
281 u16 smcVersion; /* Must match SMC_VERSION */
282
283 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
284 * version, RR = revision and BB = build
285 */
286
287 u16 txa_done; /* Obsolete completion flags */
288 u16 rxa_done;
289 u16 txb_done;
290 u16 rxb_done;
291 u16 txc_done;
292 u16 rxc_done;
293 u16 txd_done;
294 u16 rxd_done;
295
296 u16 mailbox[4]; /* Diagnostics mailbox. Not used */
297
298 struct cirbuff interruptEvent; /* interrupt causes */
299
300 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */
301 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */
302
303 struct port_cfg portConfig[FST_MAX_PORTS];
304
305 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
306
307 u16 cableStatus; /* lsb: 0=> present, 1=> absent */
308
309 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */
310 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */
311
312 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */
313 u16 cardMailbox[4]; /* Not used */
314
315 /* Number of times the card thinks the host has
316 * missed an interrupt by not acknowledging
317 * within 2mS (I guess NT has problems)
318 */
319 u32 interruptRetryCount;
320
321 /* Driver private data used as an ID. We'll not
322 * use this as I'd rather keep such things
323 * in main memory rather than on the PCI bus
324 */
325 u32 portHandle[FST_MAX_PORTS];
326
327 /* Count of Tx underflows for stats */
328 u32 transmitBufferUnderflow[FST_MAX_PORTS];
329
330 /* Debounced V.24 control input status */
331 u32 v24DebouncedSts[FST_MAX_PORTS];
332
333 /* Adapter debounce timers. Don't touch */
334 u32 ctsTimer[FST_MAX_PORTS];
335 u32 ctsTimerRun[FST_MAX_PORTS];
336 u32 dcdTimer[FST_MAX_PORTS];
337 u32 dcdTimerRun[FST_MAX_PORTS];
338
339 u32 numberOfPorts; /* Number of ports detected at startup */
340
341 u16 _reserved[64];
342
343 u16 cardMode; /* Bit-mask to enable features:
344 * Bit 0: 1 enables LED identify mode
345 */
346
347 u16 portScheduleOffset;
348
349 struct su_config suConfig; /* TE1 Bits */
350 struct su_status suStatus;
351
352 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of
353 * the structure and marks the end of shared
354 * memory. Adapter code initializes it as
355 * END_SIG.
356 */
357};
358
359/* endOfSmcSignature value */
360#define END_SIG 0x12345678
361
362/* Mailbox values. (portMailbox) */
363#define NOP 0 /* No operation */
364#define ACK 1 /* Positive acknowledgement to PC driver */
365#define NAK 2 /* Negative acknowledgement to PC driver */
366#define STARTPORT 3 /* Start an HDLC port */
367#define STOPPORT 4 /* Stop an HDLC port */
368#define ABORTTX 5 /* Abort the transmitter for a port */
369#define SETV24O 6 /* Set V24 outputs */
370
371/* PLX Chip Register Offsets */
372#define CNTRL_9052 0x50 /* Control Register */
373#define CNTRL_9054 0x6c /* Control Register */
374
375#define INTCSR_9052 0x4c /* Interrupt control/status register */
376#define INTCSR_9054 0x68 /* Interrupt control/status register */
377
378/* 9054 DMA Registers */
379/*
380 * Note that we will be using DMA Channel 0 for copying rx data
381 * and Channel 1 for copying tx data
382 */
383#define DMAMODE0 0x80
384#define DMAPADR0 0x84
385#define DMALADR0 0x88
386#define DMASIZ0 0x8c
387#define DMADPR0 0x90
388#define DMAMODE1 0x94
389#define DMAPADR1 0x98
390#define DMALADR1 0x9c
391#define DMASIZ1 0xa0
392#define DMADPR1 0xa4
393#define DMACSR0 0xa8
394#define DMACSR1 0xa9
395#define DMAARB 0xac
396#define DMATHR 0xb0
397#define DMADAC0 0xb4
398#define DMADAC1 0xb8
399#define DMAMARBR 0xac
400
401#define FST_MIN_DMA_LEN 64
402#define FST_RX_DMA_INT 0x01
403#define FST_TX_DMA_INT 0x02
404#define FST_CARD_INT 0x04
405
406/* Larger buffers are positioned in memory at offset BFM_BASE */
407struct buf_window {
408 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
409 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
410};
411
412/* Calculate offset of a buffer object within the shared memory window */
413#define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
414
415#pragma pack()
416
417/* Device driver private information
418 * =================================
419 */
420/* Per port (line or channel) information
421 */
422struct fst_port_info {
423 struct net_device *dev; /* Device struct - must be first */
424 struct fst_card_info *card; /* Card we're associated with */
425 int index; /* Port index on the card */
426 int hwif; /* Line hardware (lineInterface copy) */
427 int run; /* Port is running */
428 int mode; /* Normal or FarSync raw */
429 int rxpos; /* Next Rx buffer to use */
430 int txpos; /* Next Tx buffer to use */
431 int txipos; /* Next Tx buffer to check for free */
432 int start; /* Indication of start/stop to network */
433 /*
434 * A sixteen entry transmit queue
435 */
436 int txqs; /* index to get next buffer to tx */
437 int txqe; /* index to queue next packet */
438 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */
439 int rxqdepth;
440};
441
442/* Per card information
443 */
444struct fst_card_info {
445 char __iomem *mem; /* Card memory mapped to kernel space */
446 char __iomem *ctlmem; /* Control memory for PCI cards */
447 unsigned int phys_mem; /* Physical memory window address */
448 unsigned int phys_ctlmem; /* Physical control memory address */
449 unsigned int irq; /* Interrupt request line number */
450 unsigned int nports; /* Number of serial ports */
451 unsigned int type; /* Type index of card */
452 unsigned int state; /* State of card */
453 spinlock_t card_lock; /* Lock for SMP access */
454 unsigned short pci_conf; /* PCI card config in I/O space */
455 /* Per port info */
456 struct fst_port_info ports[FST_MAX_PORTS];
457 struct pci_dev *device; /* Information about the pci device */
458 int card_no; /* Inst of the card on the system */
459 int family; /* TxP or TxU */
460 int dmarx_in_progress;
461 int dmatx_in_progress;
462 unsigned long int_count;
463 unsigned long int_time_ave;
464 void *rx_dma_handle_host;
465 dma_addr_t rx_dma_handle_card;
466 void *tx_dma_handle_host;
467 dma_addr_t tx_dma_handle_card;
468 struct sk_buff *dma_skb_rx;
469 struct fst_port_info *dma_port_rx;
470 struct fst_port_info *dma_port_tx;
471 int dma_len_rx;
472 int dma_len_tx;
473 int dma_txpos;
474 int dma_rxpos;
475};
476
477/* Convert an HDLC device pointer into a port info pointer and similar */
478#define dev_to_port(D) (dev_to_hdlc(D)->priv)
479#define port_to_dev(P) ((P)->dev)
480
481
482/*
483 * Shared memory window access macros
484 *
485 * We have a nice memory based structure above, which could be directly
486 * mapped on i386 but might not work on other architectures unless we use
487 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take
488 * physical offsets so we have to convert. The only saving grace is that
489 * this should all collapse back to a simple indirection eventually.
490 */
491#define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
492
493#define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E))
494#define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E))
495#define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E))
496
497#define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E))
498#define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E))
499#define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E))
500
501/*
502 * Debug support
503 */
504#if FST_DEBUG
505
506static int fst_debug_mask = { FST_DEBUG };
507
508/* Most common debug activity is to print something if the corresponding bit
509 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
510 * support variable numbers of macro parameters. The inverted if prevents us
511 * eating someone else's else clause.
512 */
513#define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \
514 ; \
515 else \
516 printk ( KERN_DEBUG FST_NAME ": " fmt, ## A )
517
518#else
519#define dbg(X...) /* NOP */
520#endif
521
522/* Printing short cuts
523 */
524#define printk_err(fmt,A...) printk ( KERN_ERR FST_NAME ": " fmt, ## A )
525#define printk_warn(fmt,A...) printk ( KERN_WARNING FST_NAME ": " fmt, ## A )
526#define printk_info(fmt,A...) printk ( KERN_INFO FST_NAME ": " fmt, ## A )
527
528/*
529 * PCI ID lookup table
530 */
531static struct pci_device_id fst_pci_dev_id[] __devinitdata = {
532 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
533 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
534
535 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
536 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
537
538 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
539 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
540
541 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
542 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
543
544 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
545 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
546
547 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
548 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
549
550 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
551 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
552 {0,} /* End */
553};
554
555MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
556
557/*
558 * Device Driver Work Queues
559 *
560 * So that we don't spend too much time processing events in the
561 * Interrupt Service routine, we will declare a work queue per Card
562 * and make the ISR schedule a task in the queue for later execution.
563 * In the 2.4 Kernel we used to use the immediate queue for BH's
564 * Now that they are gone, tasklets seem to be much better than work
565 * queues.
566 */
567
568static void do_bottom_half_tx(struct fst_card_info *card);
569static void do_bottom_half_rx(struct fst_card_info *card);
570static void fst_process_tx_work_q(unsigned long work_q);
571static void fst_process_int_work_q(unsigned long work_q);
572
7665a089
AB
573static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
574static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
1da177e4 575
7665a089
AB
576static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
577static spinlock_t fst_work_q_lock;
578static u64 fst_work_txq;
579static u64 fst_work_intq;
1da177e4
LT
580
581static void
582fst_q_work_item(u64 * queue, int card_index)
583{
584 unsigned long flags;
585 u64 mask;
586
587 /*
588 * Grab the queue exclusively
589 */
590 spin_lock_irqsave(&fst_work_q_lock, flags);
591
592 /*
593 * Making an entry in the queue is simply a matter of setting
594 * a bit for the card indicating that there is work to do in the
595 * bottom half for the card. Note the limitation of 64 cards.
596 * That ought to be enough
597 */
598 mask = 1 << card_index;
599 *queue |= mask;
600 spin_unlock_irqrestore(&fst_work_q_lock, flags);
601}
602
603static void
604fst_process_tx_work_q(unsigned long /*void **/work_q)
605{
606 unsigned long flags;
607 u64 work_txq;
608 int i;
609
610 /*
611 * Grab the queue exclusively
612 */
613 dbg(DBG_TX, "fst_process_tx_work_q\n");
614 spin_lock_irqsave(&fst_work_q_lock, flags);
615 work_txq = fst_work_txq;
616 fst_work_txq = 0;
617 spin_unlock_irqrestore(&fst_work_q_lock, flags);
618
619 /*
620 * Call the bottom half for each card with work waiting
621 */
622 for (i = 0; i < FST_MAX_CARDS; i++) {
623 if (work_txq & 0x01) {
624 if (fst_card_array[i] != NULL) {
625 dbg(DBG_TX, "Calling tx bh for card %d\n", i);
626 do_bottom_half_tx(fst_card_array[i]);
627 }
628 }
629 work_txq = work_txq >> 1;
630 }
631}
632
633static void
634fst_process_int_work_q(unsigned long /*void **/work_q)
635{
636 unsigned long flags;
637 u64 work_intq;
638 int i;
639
640 /*
641 * Grab the queue exclusively
642 */
643 dbg(DBG_INTR, "fst_process_int_work_q\n");
644 spin_lock_irqsave(&fst_work_q_lock, flags);
645 work_intq = fst_work_intq;
646 fst_work_intq = 0;
647 spin_unlock_irqrestore(&fst_work_q_lock, flags);
648
649 /*
650 * Call the bottom half for each card with work waiting
651 */
652 for (i = 0; i < FST_MAX_CARDS; i++) {
653 if (work_intq & 0x01) {
654 if (fst_card_array[i] != NULL) {
655 dbg(DBG_INTR,
656 "Calling rx & tx bh for card %d\n", i);
657 do_bottom_half_rx(fst_card_array[i]);
658 do_bottom_half_tx(fst_card_array[i]);
659 }
660 }
661 work_intq = work_intq >> 1;
662 }
663}
664
665/* Card control functions
666 * ======================
667 */
668/* Place the processor in reset state
669 *
670 * Used to be a simple write to card control space but a glitch in the latest
671 * AMD Am186CH processor means that we now have to do it by asserting and de-
672 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
673 * at offset 9052_CNTRL. Note the updates for the TXU.
674 */
675static inline void
676fst_cpureset(struct fst_card_info *card)
677{
678 unsigned char interrupt_line_register;
679 unsigned long j = jiffies + 1;
680 unsigned int regval;
681
682 if (card->family == FST_FAMILY_TXU) {
683 if (pci_read_config_byte
684 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
685 dbg(DBG_ASS,
686 "Error in reading interrupt line register\n");
687 }
688 /*
689 * Assert PLX software reset and Am186 hardware reset
690 * and then deassert the PLX software reset but 186 still in reset
691 */
692 outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
693 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
694 /*
695 * We are delaying here to allow the 9054 to reset itself
696 */
697 j = jiffies + 1;
698 while (jiffies < j)
699 /* Do nothing */ ;
700 outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
701 /*
702 * We are delaying here to allow the 9054 to reload its eeprom
703 */
704 j = jiffies + 1;
705 while (jiffies < j)
706 /* Do nothing */ ;
707 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
708
709 if (pci_write_config_byte
710 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
711 dbg(DBG_ASS,
712 "Error in writing interrupt line register\n");
713 }
714
715 } else {
716 regval = inl(card->pci_conf + CNTRL_9052);
717
718 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
719 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
720 }
721}
722
723/* Release the processor from reset
724 */
725static inline void
726fst_cpurelease(struct fst_card_info *card)
727{
728 if (card->family == FST_FAMILY_TXU) {
729 /*
730 * Force posted writes to complete
731 */
732 (void) readb(card->mem);
733
734 /*
735 * Release LRESET DO = 1
736 * Then release Local Hold, DO = 1
737 */
738 outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
739 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
740 } else {
741 (void) readb(card->ctlmem);
742 }
743}
744
745/* Clear the cards interrupt flag
746 */
747static inline void
748fst_clear_intr(struct fst_card_info *card)
749{
750 if (card->family == FST_FAMILY_TXU) {
751 (void) readb(card->ctlmem);
752 } else {
753 /* Poke the appropriate PLX chip register (same as enabling interrupts)
754 */
755 outw(0x0543, card->pci_conf + INTCSR_9052);
756 }
757}
758
759/* Enable card interrupts
760 */
761static inline void
762fst_enable_intr(struct fst_card_info *card)
763{
764 if (card->family == FST_FAMILY_TXU) {
765 outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
766 } else {
767 outw(0x0543, card->pci_conf + INTCSR_9052);
768 }
769}
770
771/* Disable card interrupts
772 */
773static inline void
774fst_disable_intr(struct fst_card_info *card)
775{
776 if (card->family == FST_FAMILY_TXU) {
777 outl(0x00000000, card->pci_conf + INTCSR_9054);
778 } else {
779 outw(0x0000, card->pci_conf + INTCSR_9052);
780 }
781}
782
783/* Process the result of trying to pass a received frame up the stack
784 */
785static void
786fst_process_rx_status(int rx_status, char *name)
787{
788 switch (rx_status) {
789 case NET_RX_SUCCESS:
790 {
791 /*
792 * Nothing to do here
793 */
794 break;
795 }
1da177e4
LT
796 case NET_RX_DROP:
797 {
798 dbg(DBG_ASS, "%s: Received packet dropped\n", name);
799 break;
800 }
801 }
802}
803
804/* Initilaise DMA for PLX 9054
805 */
806static inline void
807fst_init_dma(struct fst_card_info *card)
808{
809 /*
810 * This is only required for the PLX 9054
811 */
812 if (card->family == FST_FAMILY_TXU) {
813 pci_set_master(card->device);
814 outl(0x00020441, card->pci_conf + DMAMODE0);
815 outl(0x00020441, card->pci_conf + DMAMODE1);
816 outl(0x0, card->pci_conf + DMATHR);
817 }
818}
819
820/* Tx dma complete interrupt
821 */
822static void
823fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
824 int len, int txpos)
825{
826 struct net_device *dev = port_to_dev(port);
1da177e4
LT
827
828 /*
829 * Everything is now set, just tell the card to go
830 */
831 dbg(DBG_TX, "fst_tx_dma_complete\n");
832 FST_WRB(card, txDescrRing[port->index][txpos].bits,
833 DMA_OWN | TX_STP | TX_ENP);
198191c4
KH
834 dev->stats.tx_packets++;
835 dev->stats.tx_bytes += len;
1da177e4
LT
836 dev->trans_start = jiffies;
837}
838
839/*
840 * Mark it for our own raw sockets interface
841 */
ab611487 842static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
843{
844 skb->dev = dev;
459a98ed 845 skb_reset_mac_header(skb);
1da177e4
LT
846 skb->pkt_type = PACKET_HOST;
847 return htons(ETH_P_CUST);
848}
849
850/* Rx dma complete interrupt
851 */
852static void
853fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
854 int len, struct sk_buff *skb, int rxp)
855{
856 struct net_device *dev = port_to_dev(port);
1da177e4
LT
857 int pi;
858 int rx_status;
859
860 dbg(DBG_TX, "fst_rx_dma_complete\n");
861 pi = port->index;
862 memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
863
864 /* Reset buffer descriptor */
865 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
866
867 /* Update stats */
198191c4
KH
868 dev->stats.rx_packets++;
869 dev->stats.rx_bytes += len;
1da177e4
LT
870
871 /* Push upstream */
872 dbg(DBG_RX, "Pushing the frame up the stack\n");
873 if (port->mode == FST_RAW)
874 skb->protocol = farsync_type_trans(skb, dev);
875 else
876 skb->protocol = hdlc_type_trans(skb, dev);
877 rx_status = netif_rx(skb);
878 fst_process_rx_status(rx_status, port_to_dev(port)->name);
879 if (rx_status == NET_RX_DROP)
198191c4 880 dev->stats.rx_dropped++;
1da177e4
LT
881}
882
883/*
884 * Receive a frame through the DMA
885 */
886static inline void
887fst_rx_dma(struct fst_card_info *card, unsigned char *skb,
888 unsigned char *mem, int len)
889{
890 /*
891 * This routine will setup the DMA and start it
892 */
893
894 dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len);
895 if (card->dmarx_in_progress) {
896 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
897 }
898
899 outl((unsigned long) skb, card->pci_conf + DMAPADR0); /* Copy to here */
900 outl((unsigned long) mem, card->pci_conf + DMALADR0); /* from here */
901 outl(len, card->pci_conf + DMASIZ0); /* for this length */
902 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */
903
904 /*
905 * We use the dmarx_in_progress flag to flag the channel as busy
906 */
907 card->dmarx_in_progress = 1;
908 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */
909}
910
911/*
912 * Send a frame through the DMA
913 */
914static inline void
915fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
916 unsigned char *mem, int len)
917{
918 /*
919 * This routine will setup the DMA and start it.
920 */
921
922 dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
923 if (card->dmatx_in_progress) {
924 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
925 }
926
927 outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */
928 outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */
929 outl(len, card->pci_conf + DMASIZ1); /* for this length */
930 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */
931
932 /*
933 * We use the dmatx_in_progress to flag the channel as busy
934 */
935 card->dmatx_in_progress = 1;
936 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */
937}
938
939/* Issue a Mailbox command for a port.
940 * Note we issue them on a fire and forget basis, not expecting to see an
941 * error and not waiting for completion.
942 */
943static void
944fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
945{
946 struct fst_card_info *card;
947 unsigned short mbval;
948 unsigned long flags;
949 int safety;
950
951 card = port->card;
952 spin_lock_irqsave(&card->card_lock, flags);
953 mbval = FST_RDW(card, portMailbox[port->index][0]);
954
955 safety = 0;
956 /* Wait for any previous command to complete */
957 while (mbval > NAK) {
958 spin_unlock_irqrestore(&card->card_lock, flags);
3173c890 959 schedule_timeout_uninterruptible(1);
1da177e4
LT
960 spin_lock_irqsave(&card->card_lock, flags);
961
962 if (++safety > 2000) {
963 printk_err("Mailbox safety timeout\n");
964 break;
965 }
966
967 mbval = FST_RDW(card, portMailbox[port->index][0]);
968 }
969 if (safety > 0) {
970 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
971 }
972 if (mbval == NAK) {
973 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
974 }
975
976 FST_WRW(card, portMailbox[port->index][0], cmd);
977
978 if (cmd == ABORTTX || cmd == STARTPORT) {
979 port->txpos = 0;
980 port->txipos = 0;
981 port->start = 0;
982 }
983
984 spin_unlock_irqrestore(&card->card_lock, flags);
985}
986
987/* Port output signals control
988 */
989static inline void
990fst_op_raise(struct fst_port_info *port, unsigned int outputs)
991{
992 outputs |= FST_RDL(port->card, v24OpSts[port->index]);
993 FST_WRL(port->card, v24OpSts[port->index], outputs);
994
995 if (port->run)
996 fst_issue_cmd(port, SETV24O);
997}
998
999static inline void
1000fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1001{
1002 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1003 FST_WRL(port->card, v24OpSts[port->index], outputs);
1004
1005 if (port->run)
1006 fst_issue_cmd(port, SETV24O);
1007}
1008
1009/*
1010 * Setup port Rx buffers
1011 */
1012static void
1013fst_rx_config(struct fst_port_info *port)
1014{
1015 int i;
1016 int pi;
1017 unsigned int offset;
1018 unsigned long flags;
1019 struct fst_card_info *card;
1020
1021 pi = port->index;
1022 card = port->card;
1023 spin_lock_irqsave(&card->card_lock, flags);
1024 for (i = 0; i < NUM_RX_BUFFER; i++) {
1025 offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1026
1027 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1028 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1029 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1030 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1031 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1032 }
1033 port->rxpos = 0;
1034 spin_unlock_irqrestore(&card->card_lock, flags);
1035}
1036
1037/*
1038 * Setup port Tx buffers
1039 */
1040static void
1041fst_tx_config(struct fst_port_info *port)
1042{
1043 int i;
1044 int pi;
1045 unsigned int offset;
1046 unsigned long flags;
1047 struct fst_card_info *card;
1048
1049 pi = port->index;
1050 card = port->card;
1051 spin_lock_irqsave(&card->card_lock, flags);
1052 for (i = 0; i < NUM_TX_BUFFER; i++) {
1053 offset = BUF_OFFSET(txBuffer[pi][i][0]);
1054
1055 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1056 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1057 FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1058 FST_WRB(card, txDescrRing[pi][i].bits, 0);
1059 }
1060 port->txpos = 0;
1061 port->txipos = 0;
1062 port->start = 0;
1063 spin_unlock_irqrestore(&card->card_lock, flags);
1064}
1065
1066/* TE1 Alarm change interrupt event
1067 */
1068static void
1069fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1070{
1071 u8 los;
1072 u8 rra;
1073 u8 ais;
1074
1075 los = FST_RDB(card, suStatus.lossOfSignal);
1076 rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1077 ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1078
1079 if (los) {
1080 /*
1081 * Lost the link
1082 */
1083 if (netif_carrier_ok(port_to_dev(port))) {
1084 dbg(DBG_INTR, "Net carrier off\n");
1085 netif_carrier_off(port_to_dev(port));
1086 }
1087 } else {
1088 /*
1089 * Link available
1090 */
1091 if (!netif_carrier_ok(port_to_dev(port))) {
1092 dbg(DBG_INTR, "Net carrier on\n");
1093 netif_carrier_on(port_to_dev(port));
1094 }
1095 }
1096
1097 if (los)
1098 dbg(DBG_INTR, "Assert LOS Alarm\n");
1099 else
1100 dbg(DBG_INTR, "De-assert LOS Alarm\n");
1101 if (rra)
1102 dbg(DBG_INTR, "Assert RRA Alarm\n");
1103 else
1104 dbg(DBG_INTR, "De-assert RRA Alarm\n");
1105
1106 if (ais)
1107 dbg(DBG_INTR, "Assert AIS Alarm\n");
1108 else
1109 dbg(DBG_INTR, "De-assert AIS Alarm\n");
1110}
1111
1112/* Control signal change interrupt event
1113 */
1114static void
1115fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1116{
1117 int signals;
1118
1119 signals = FST_RDL(card, v24DebouncedSts[port->index]);
1120
1121 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1122 ? IPSTS_INDICATE : IPSTS_DCD)) {
1123 if (!netif_carrier_ok(port_to_dev(port))) {
1124 dbg(DBG_INTR, "DCD active\n");
1125 netif_carrier_on(port_to_dev(port));
1126 }
1127 } else {
1128 if (netif_carrier_ok(port_to_dev(port))) {
1129 dbg(DBG_INTR, "DCD lost\n");
1130 netif_carrier_off(port_to_dev(port));
1131 }
1132 }
1133}
1134
1135/* Log Rx Errors
1136 */
1137static void
1138fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1139 unsigned char dmabits, int rxp, unsigned short len)
1140{
1141 struct net_device *dev = port_to_dev(port);
1da177e4 1142
198191c4 1143 /*
1da177e4
LT
1144 * Increment the appropriate error counter
1145 */
198191c4 1146 dev->stats.rx_errors++;
1da177e4 1147 if (dmabits & RX_OFLO) {
198191c4 1148 dev->stats.rx_fifo_errors++;
1da177e4
LT
1149 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1150 card->card_no, port->index, rxp);
1151 }
1152 if (dmabits & RX_CRC) {
198191c4 1153 dev->stats.rx_crc_errors++;
1da177e4
LT
1154 dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1155 card->card_no, port->index);
1156 }
1157 if (dmabits & RX_FRAM) {
198191c4 1158 dev->stats.rx_frame_errors++;
1da177e4
LT
1159 dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1160 card->card_no, port->index);
1161 }
1162 if (dmabits == (RX_STP | RX_ENP)) {
198191c4 1163 dev->stats.rx_length_errors++;
1da177e4
LT
1164 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1165 len, card->card_no, port->index);
1166 }
1167}
1168
1169/* Rx Error Recovery
1170 */
1171static void
1172fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1173 unsigned char dmabits, int rxp, unsigned short len)
1174{
1175 int i;
1176 int pi;
1177
1178 pi = port->index;
1179 /*
1180 * Discard buffer descriptors until we see the start of the
1181 * next frame. Note that for long frames this could be in
1182 * a subsequent interrupt.
1183 */
1184 i = 0;
1185 while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1186 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1187 rxp = (rxp+1) % NUM_RX_BUFFER;
1188 if (++i > NUM_RX_BUFFER) {
1189 dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1190 " than we have\n");
1191 break;
1192 }
1193 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1194 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1195 }
1196 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1197
1198 /* Discard the terminal buffer */
1199 if (!(dmabits & DMA_OWN)) {
1200 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1201 rxp = (rxp+1) % NUM_RX_BUFFER;
1202 }
1203 port->rxpos = rxp;
1204 return;
1205
1206}
1207
1208/* Rx complete interrupt
1209 */
1210static void
1211fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1212{
1213 unsigned char dmabits;
1214 int pi;
1215 int rxp;
1216 int rx_status;
1217 unsigned short len;
1218 struct sk_buff *skb;
1219 struct net_device *dev = port_to_dev(port);
1da177e4
LT
1220
1221 /* Check we have a buffer to process */
1222 pi = port->index;
1223 rxp = port->rxpos;
1224 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1225 if (dmabits & DMA_OWN) {
1226 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1227 pi, rxp);
1228 return;
1229 }
1230 if (card->dmarx_in_progress) {
1231 return;
1232 }
1233
1234 /* Get buffer length */
1235 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1236 /* Discard the CRC */
1237 len -= 2;
1238 if (len == 0) {
1239 /*
1240 * This seems to happen on the TE1 interface sometimes
1241 * so throw the frame away and log the event.
1242 */
1243 printk_err("Frame received with 0 length. Card %d Port %d\n",
1244 card->card_no, port->index);
1245 /* Return descriptor to card */
1246 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1247
1248 rxp = (rxp+1) % NUM_RX_BUFFER;
1249 port->rxpos = rxp;
1250 return;
1251 }
1252
1253 /* Check buffer length and for other errors. We insist on one packet
1254 * in one buffer. This simplifies things greatly and since we've
1255 * allocated 8K it shouldn't be a real world limitation
1256 */
1257 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1258 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1259 fst_log_rx_error(card, port, dmabits, rxp, len);
1260 fst_recover_rx_error(card, port, dmabits, rxp, len);
1261 return;
1262 }
1263
1264 /* Allocate SKB */
1265 if ((skb = dev_alloc_skb(len)) == NULL) {
1266 dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1267
198191c4 1268 dev->stats.rx_dropped++;
1da177e4
LT
1269
1270 /* Return descriptor to card */
1271 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1272
1273 rxp = (rxp+1) % NUM_RX_BUFFER;
1274 port->rxpos = rxp;
1275 return;
1276 }
1277
1278 /*
1279 * We know the length we need to receive, len.
1280 * It's not worth using the DMA for reads of less than
1281 * FST_MIN_DMA_LEN
1282 */
1283
1284 if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1285 memcpy_fromio(skb_put(skb, len),
1286 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1287 len);
1288
1289 /* Reset buffer descriptor */
1290 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1291
1292 /* Update stats */
198191c4
KH
1293 dev->stats.rx_packets++;
1294 dev->stats.rx_bytes += len;
1da177e4
LT
1295
1296 /* Push upstream */
1297 dbg(DBG_RX, "Pushing frame up the stack\n");
1298 if (port->mode == FST_RAW)
1299 skb->protocol = farsync_type_trans(skb, dev);
1300 else
1301 skb->protocol = hdlc_type_trans(skb, dev);
1302 rx_status = netif_rx(skb);
1303 fst_process_rx_status(rx_status, port_to_dev(port)->name);
198191c4
KH
1304 if (rx_status == NET_RX_DROP)
1305 dev->stats.rx_dropped++;
1da177e4
LT
1306 } else {
1307 card->dma_skb_rx = skb;
1308 card->dma_port_rx = port;
1309 card->dma_len_rx = len;
1310 card->dma_rxpos = rxp;
1311 fst_rx_dma(card, (char *) card->rx_dma_handle_card,
1312 (char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1313 }
1314 if (rxp != port->rxpos) {
1315 dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1316 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1317 }
1318 rxp = (rxp+1) % NUM_RX_BUFFER;
1319 port->rxpos = rxp;
1320}
1321
1322/*
1323 * The bottom halfs to the ISR
1324 *
1325 */
1326
1327static void
1328do_bottom_half_tx(struct fst_card_info *card)
1329{
1330 struct fst_port_info *port;
1331 int pi;
1332 int txq_length;
1333 struct sk_buff *skb;
1334 unsigned long flags;
1335 struct net_device *dev;
1da177e4
LT
1336
1337 /*
1338 * Find a free buffer for the transmit
1339 * Step through each port on this card
1340 */
1341
1342 dbg(DBG_TX, "do_bottom_half_tx\n");
1343 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1344 if (!port->run)
1345 continue;
1346
198191c4
KH
1347 dev = port_to_dev(port);
1348 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1349 DMA_OWN)
1350 && !(card->dmatx_in_progress)) {
1da177e4
LT
1351 /*
1352 * There doesn't seem to be a txdone event per-se
1353 * We seem to have to deduce it, by checking the DMA_OWN
1354 * bit on the next buffer we think we can use
1355 */
1356 spin_lock_irqsave(&card->card_lock, flags);
1357 if ((txq_length = port->txqe - port->txqs) < 0) {
1358 /*
1359 * This is the case where one has wrapped and the
1360 * maths gives us a negative number
1361 */
1362 txq_length = txq_length + FST_TXQ_DEPTH;
1363 }
1364 spin_unlock_irqrestore(&card->card_lock, flags);
1365 if (txq_length > 0) {
1366 /*
1367 * There is something to send
1368 */
1369 spin_lock_irqsave(&card->card_lock, flags);
1370 skb = port->txq[port->txqs];
1371 port->txqs++;
1372 if (port->txqs == FST_TXQ_DEPTH) {
1373 port->txqs = 0;
1374 }
1375 spin_unlock_irqrestore(&card->card_lock, flags);
1376 /*
1377 * copy the data and set the required indicators on the
1378 * card.
1379 */
1380 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1381 cnv_bcnt(skb->len));
1382 if ((skb->len < FST_MIN_DMA_LEN)
1383 || (card->family == FST_FAMILY_TXP)) {
1384 /* Enqueue the packet with normal io */
1385 memcpy_toio(card->mem +
1386 BUF_OFFSET(txBuffer[pi]
1387 [port->
1388 txpos][0]),
1389 skb->data, skb->len);
1390 FST_WRB(card,
1391 txDescrRing[pi][port->txpos].
1392 bits,
1393 DMA_OWN | TX_STP | TX_ENP);
198191c4
KH
1394 dev->stats.tx_packets++;
1395 dev->stats.tx_bytes += skb->len;
1da177e4
LT
1396 dev->trans_start = jiffies;
1397 } else {
1398 /* Or do it through dma */
1399 memcpy(card->tx_dma_handle_host,
1400 skb->data, skb->len);
1401 card->dma_port_tx = port;
1402 card->dma_len_tx = skb->len;
1403 card->dma_txpos = port->txpos;
1404 fst_tx_dma(card,
1405 (char *) card->
1406 tx_dma_handle_card,
1407 (char *)
1408 BUF_OFFSET(txBuffer[pi]
1409 [port->txpos][0]),
1410 skb->len);
1411 }
1412 if (++port->txpos >= NUM_TX_BUFFER)
1413 port->txpos = 0;
1414 /*
1415 * If we have flow control on, can we now release it?
1416 */
1417 if (port->start) {
1418 if (txq_length < fst_txq_low) {
1419 netif_wake_queue(port_to_dev
1420 (port));
1421 port->start = 0;
1422 }
1423 }
1424 dev_kfree_skb(skb);
1425 } else {
1426 /*
1427 * Nothing to send so break out of the while loop
1428 */
1429 break;
1430 }
1431 }
1432 }
1433}
1434
1435static void
1436do_bottom_half_rx(struct fst_card_info *card)
1437{
1438 struct fst_port_info *port;
1439 int pi;
1440 int rx_count = 0;
1441
1442 /* Check for rx completions on all ports on this card */
1443 dbg(DBG_RX, "do_bottom_half_rx\n");
1444 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1445 if (!port->run)
1446 continue;
1447
1448 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1449 & DMA_OWN) && !(card->dmarx_in_progress)) {
1450 if (rx_count > fst_max_reads) {
1451 /*
1452 * Don't spend forever in receive processing
1453 * Schedule another event
1454 */
1455 fst_q_work_item(&fst_work_intq, card->card_no);
1456 tasklet_schedule(&fst_int_task);
1457 break; /* Leave the loop */
1458 }
1459 fst_intr_rx(card, port);
1460 rx_count++;
1461 }
1462 }
1463}
1464
1465/*
1466 * The interrupt service routine
1467 * Dev_id is our fst_card_info pointer
1468 */
7665a089 1469static irqreturn_t
28fc1f5a 1470fst_intr(int dummy, void *dev_id)
1da177e4 1471{
28fc1f5a 1472 struct fst_card_info *card = dev_id;
1da177e4
LT
1473 struct fst_port_info *port;
1474 int rdidx; /* Event buffer indices */
1475 int wridx;
1476 int event; /* Actual event for processing */
1477 unsigned int dma_intcsr = 0;
1478 unsigned int do_card_interrupt;
1479 unsigned int int_retry_count;
1480
1da177e4
LT
1481 /*
1482 * Check to see if the interrupt was for this card
1483 * return if not
1484 * Note that the call to clear the interrupt is important
1485 */
28fc1f5a 1486 dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1da177e4
LT
1487 if (card->state != FST_RUNNING) {
1488 printk_err
1489 ("Interrupt received for card %d in a non running state (%d)\n",
1490 card->card_no, card->state);
1491
1492 /*
1493 * It is possible to really be running, i.e. we have re-loaded
1494 * a running card
1495 * Clear and reprime the interrupt source
1496 */
1497 fst_clear_intr(card);
1498 return IRQ_HANDLED;
1499 }
1500
1501 /* Clear and reprime the interrupt source */
1502 fst_clear_intr(card);
1503
1504 /*
1505 * Is the interrupt for this card (handshake == 1)
1506 */
1507 do_card_interrupt = 0;
1508 if (FST_RDB(card, interruptHandshake) == 1) {
1509 do_card_interrupt += FST_CARD_INT;
1510 /* Set the software acknowledge */
1511 FST_WRB(card, interruptHandshake, 0xEE);
1512 }
1513 if (card->family == FST_FAMILY_TXU) {
1514 /*
1515 * Is it a DMA Interrupt
1516 */
1517 dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1518 if (dma_intcsr & 0x00200000) {
1519 /*
1520 * DMA Channel 0 (Rx transfer complete)
1521 */
1522 dbg(DBG_RX, "DMA Rx xfer complete\n");
1523 outb(0x8, card->pci_conf + DMACSR0);
1524 fst_rx_dma_complete(card, card->dma_port_rx,
1525 card->dma_len_rx, card->dma_skb_rx,
1526 card->dma_rxpos);
1527 card->dmarx_in_progress = 0;
1528 do_card_interrupt += FST_RX_DMA_INT;
1529 }
1530 if (dma_intcsr & 0x00400000) {
1531 /*
1532 * DMA Channel 1 (Tx transfer complete)
1533 */
1534 dbg(DBG_TX, "DMA Tx xfer complete\n");
1535 outb(0x8, card->pci_conf + DMACSR1);
1536 fst_tx_dma_complete(card, card->dma_port_tx,
1537 card->dma_len_tx, card->dma_txpos);
1538 card->dmatx_in_progress = 0;
1539 do_card_interrupt += FST_TX_DMA_INT;
1540 }
1541 }
1542
1543 /*
1544 * Have we been missing Interrupts
1545 */
1546 int_retry_count = FST_RDL(card, interruptRetryCount);
1547 if (int_retry_count) {
1548 dbg(DBG_ASS, "Card %d int_retry_count is %d\n",
1549 card->card_no, int_retry_count);
1550 FST_WRL(card, interruptRetryCount, 0);
1551 }
1552
1553 if (!do_card_interrupt) {
1554 return IRQ_HANDLED;
1555 }
1556
1557 /* Scehdule the bottom half of the ISR */
1558 fst_q_work_item(&fst_work_intq, card->card_no);
1559 tasklet_schedule(&fst_int_task);
1560
1561 /* Drain the event queue */
1562 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1563 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1564 while (rdidx != wridx) {
1565 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1566 port = &card->ports[event & 0x03];
1567
1568 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1569
1570 switch (event) {
1571 case TE1_ALMA:
1572 dbg(DBG_INTR, "TE1 Alarm intr\n");
1573 if (port->run)
1574 fst_intr_te1_alarm(card, port);
1575 break;
1576
1577 case CTLA_CHG:
1578 case CTLB_CHG:
1579 case CTLC_CHG:
1580 case CTLD_CHG:
1581 if (port->run)
1582 fst_intr_ctlchg(card, port);
1583 break;
1584
1585 case ABTA_SENT:
1586 case ABTB_SENT:
1587 case ABTC_SENT:
1588 case ABTD_SENT:
1589 dbg(DBG_TX, "Abort complete port %d\n", port->index);
1590 break;
1591
1592 case TXA_UNDF:
1593 case TXB_UNDF:
1594 case TXC_UNDF:
1595 case TXD_UNDF:
1596 /* Difficult to see how we'd get this given that we
1597 * always load up the entire packet for DMA.
1598 */
1599 dbg(DBG_TX, "Tx underflow port %d\n", port->index);
198191c4
KH
1600 port_to_dev(port)->stats.tx_errors++;
1601 port_to_dev(port)->stats.tx_fifo_errors++;
1da177e4
LT
1602 dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1603 card->card_no, port->index);
1604 break;
1605
1606 case INIT_CPLT:
1607 dbg(DBG_INIT, "Card init OK intr\n");
1608 break;
1609
1610 case INIT_FAIL:
1611 dbg(DBG_INIT, "Card init FAILED intr\n");
1612 card->state = FST_IFAILED;
1613 break;
1614
1615 default:
1616 printk_err("intr: unknown card event %d. ignored\n",
1617 event);
1618 break;
1619 }
1620
1621 /* Bump and wrap the index */
1622 if (++rdidx >= MAX_CIRBUFF)
1623 rdidx = 0;
1624 }
1625 FST_WRB(card, interruptEvent.rdindex, rdidx);
1626 return IRQ_HANDLED;
1627}
1628
1629/* Check that the shared memory configuration is one that we can handle
1630 * and that some basic parameters are correct
1631 */
1632static void
1633check_started_ok(struct fst_card_info *card)
1634{
1635 int i;
1636
1637 /* Check structure version and end marker */
1638 if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1639 printk_err("Bad shared memory version %d expected %d\n",
1640 FST_RDW(card, smcVersion), SMC_VERSION);
1641 card->state = FST_BADVERSION;
1642 return;
1643 }
1644 if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1645 printk_err("Missing shared memory signature\n");
1646 card->state = FST_BADVERSION;
1647 return;
1648 }
1649 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1650 if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1651 card->state = FST_RUNNING;
1652 } else if (i == 0xFF) {
1653 printk_err("Firmware initialisation failed. Card halted\n");
1654 card->state = FST_HALTED;
1655 return;
1656 } else if (i != 0x00) {
1657 printk_err("Unknown firmware status 0x%x\n", i);
1658 card->state = FST_HALTED;
1659 return;
1660 }
1661
1662 /* Finally check the number of ports reported by firmware against the
1663 * number we assumed at card detection. Should never happen with
1664 * existing firmware etc so we just report it for the moment.
1665 */
1666 if (FST_RDL(card, numberOfPorts) != card->nports) {
1667 printk_warn("Port count mismatch on card %d."
1668 " Firmware thinks %d we say %d\n", card->card_no,
1669 FST_RDL(card, numberOfPorts), card->nports);
1670 }
1671}
1672
1673static int
1674set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1675 struct fstioc_info *info)
1676{
1677 int err;
1678 unsigned char my_framing;
1679
1680 /* Set things according to the user set valid flags
1681 * Several of the old options have been invalidated/replaced by the
1682 * generic hdlc package.
1683 */
1684 err = 0;
1685 if (info->valid & FSTVAL_PROTO) {
1686 if (info->proto == FST_RAW)
1687 port->mode = FST_RAW;
1688 else
1689 port->mode = FST_GEN_HDLC;
1690 }
1691
1692 if (info->valid & FSTVAL_CABLE)
1693 err = -EINVAL;
1694
1695 if (info->valid & FSTVAL_SPEED)
1696 err = -EINVAL;
1697
1698 if (info->valid & FSTVAL_PHASE)
1699 FST_WRB(card, portConfig[port->index].invertClock,
1700 info->invertClock);
1701 if (info->valid & FSTVAL_MODE)
1702 FST_WRW(card, cardMode, info->cardMode);
1703 if (info->valid & FSTVAL_TE1) {
1704 FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1705 FST_WRB(card, suConfig.clocking, info->clockSource);
1706 my_framing = FRAMING_E1;
1707 if (info->framing == E1)
1708 my_framing = FRAMING_E1;
1709 if (info->framing == T1)
1710 my_framing = FRAMING_T1;
1711 if (info->framing == J1)
1712 my_framing = FRAMING_J1;
1713 FST_WRB(card, suConfig.framing, my_framing);
1714 FST_WRB(card, suConfig.structure, info->structure);
1715 FST_WRB(card, suConfig.interface, info->interface);
1716 FST_WRB(card, suConfig.coding, info->coding);
1717 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1718 FST_WRB(card, suConfig.equalizer, info->equalizer);
1719 FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1720 FST_WRB(card, suConfig.loopMode, info->loopMode);
1721 FST_WRB(card, suConfig.range, info->range);
1722 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1723 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1724 FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1725 FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1726 if (info->idleCode)
1727 FST_WRB(card, suConfig.enableIdleCode, 1);
1728 else
1729 FST_WRB(card, suConfig.enableIdleCode, 0);
1730 FST_WRB(card, suConfig.idleCode, info->idleCode);
1731#if FST_DEBUG
1732 if (info->valid & FSTVAL_TE1) {
1733 printk("Setting TE1 data\n");
1734 printk("Line Speed = %d\n", info->lineSpeed);
1735 printk("Start slot = %d\n", info->startingSlot);
1736 printk("Clock source = %d\n", info->clockSource);
1737 printk("Framing = %d\n", my_framing);
1738 printk("Structure = %d\n", info->structure);
1739 printk("interface = %d\n", info->interface);
1740 printk("Coding = %d\n", info->coding);
1741 printk("Line build out = %d\n", info->lineBuildOut);
1742 printk("Equaliser = %d\n", info->equalizer);
1743 printk("Transparent mode = %d\n",
1744 info->transparentMode);
1745 printk("Loop mode = %d\n", info->loopMode);
1746 printk("Range = %d\n", info->range);
1747 printk("Tx Buffer mode = %d\n", info->txBufferMode);
1748 printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1749 printk("LOS Threshold = %d\n", info->losThreshold);
1750 printk("Idle Code = %d\n", info->idleCode);
1751 }
1752#endif
1753 }
1754#if FST_DEBUG
1755 if (info->valid & FSTVAL_DEBUG) {
1756 fst_debug_mask = info->debug;
1757 }
1758#endif
1759
1760 return err;
1761}
1762
1763static void
1764gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1765 struct fstioc_info *info)
1766{
1767 int i;
1768
1769 memset(info, 0, sizeof (struct fstioc_info));
1770
1771 i = port->index;
1772 info->kernelVersion = LINUX_VERSION_CODE;
1773 info->nports = card->nports;
1774 info->type = card->type;
1775 info->state = card->state;
1776 info->proto = FST_GEN_HDLC;
1777 info->index = i;
1778#if FST_DEBUG
1779 info->debug = fst_debug_mask;
1780#endif
1781
1782 /* Only mark information as valid if card is running.
1783 * Copy the data anyway in case it is useful for diagnostics
1784 */
1785 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1786#if FST_DEBUG
1787 | FSTVAL_DEBUG
1788#endif
1789 ;
1790
1791 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1792 info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1793 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1794 info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1795 info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1796 info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1797 info->clockStatus = FST_RDW(card, clockStatus[i]);
1798 info->cableStatus = FST_RDW(card, cableStatus);
1799 info->cardMode = FST_RDW(card, cardMode);
1800 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1801
1802 /*
1803 * The T2U can report cable presence for both A or B
1804 * in bits 0 and 1 of cableStatus. See which port we are and
1805 * do the mapping.
1806 */
1807 if (card->family == FST_FAMILY_TXU) {
1808 if (port->index == 0) {
1809 /*
1810 * Port A
1811 */
1812 info->cableStatus = info->cableStatus & 1;
1813 } else {
1814 /*
1815 * Port B
1816 */
1817 info->cableStatus = info->cableStatus >> 1;
1818 info->cableStatus = info->cableStatus & 1;
1819 }
1820 }
1821 /*
1822 * Some additional bits if we are TE1
1823 */
1824 if (card->type == FST_TYPE_TE1) {
1825 info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1826 info->clockSource = FST_RDB(card, suConfig.clocking);
1827 info->framing = FST_RDB(card, suConfig.framing);
1828 info->structure = FST_RDB(card, suConfig.structure);
1829 info->interface = FST_RDB(card, suConfig.interface);
1830 info->coding = FST_RDB(card, suConfig.coding);
1831 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1832 info->equalizer = FST_RDB(card, suConfig.equalizer);
1833 info->loopMode = FST_RDB(card, suConfig.loopMode);
1834 info->range = FST_RDB(card, suConfig.range);
1835 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1836 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1837 info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1838 info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1839 if (FST_RDB(card, suConfig.enableIdleCode))
1840 info->idleCode = FST_RDB(card, suConfig.idleCode);
1841 else
1842 info->idleCode = 0;
1843 info->receiveBufferDelay =
1844 FST_RDL(card, suStatus.receiveBufferDelay);
1845 info->framingErrorCount =
1846 FST_RDL(card, suStatus.framingErrorCount);
1847 info->codeViolationCount =
1848 FST_RDL(card, suStatus.codeViolationCount);
1849 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1850 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1851 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1852 info->receiveRemoteAlarm =
1853 FST_RDB(card, suStatus.receiveRemoteAlarm);
1854 info->alarmIndicationSignal =
1855 FST_RDB(card, suStatus.alarmIndicationSignal);
1856 }
1857}
1858
1859static int
1860fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1861 struct ifreq *ifr)
1862{
1863 sync_serial_settings sync;
1864 int i;
1865
1866 if (ifr->ifr_settings.size != sizeof (sync)) {
1867 return -ENOMEM;
1868 }
1869
1870 if (copy_from_user
1871 (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1872 return -EFAULT;
1873 }
1874
1875 if (sync.loopback)
1876 return -EINVAL;
1877
1878 i = port->index;
1879
1880 switch (ifr->ifr_settings.type) {
1881 case IF_IFACE_V35:
1882 FST_WRW(card, portConfig[i].lineInterface, V35);
1883 port->hwif = V35;
1884 break;
1885
1886 case IF_IFACE_V24:
1887 FST_WRW(card, portConfig[i].lineInterface, V24);
1888 port->hwif = V24;
1889 break;
1890
1891 case IF_IFACE_X21:
1892 FST_WRW(card, portConfig[i].lineInterface, X21);
1893 port->hwif = X21;
1894 break;
1895
1896 case IF_IFACE_X21D:
1897 FST_WRW(card, portConfig[i].lineInterface, X21D);
1898 port->hwif = X21D;
1899 break;
1900
1901 case IF_IFACE_T1:
1902 FST_WRW(card, portConfig[i].lineInterface, T1);
1903 port->hwif = T1;
1904 break;
1905
1906 case IF_IFACE_E1:
1907 FST_WRW(card, portConfig[i].lineInterface, E1);
1908 port->hwif = E1;
1909 break;
1910
1911 case IF_IFACE_SYNC_SERIAL:
1912 break;
1913
1914 default:
1915 return -EINVAL;
1916 }
1917
1918 switch (sync.clock_type) {
1919 case CLOCK_EXT:
1920 FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1921 break;
1922
1923 case CLOCK_INT:
1924 FST_WRB(card, portConfig[i].internalClock, INTCLK);
1925 break;
1926
1927 default:
1928 return -EINVAL;
1929 }
1930 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1931 return 0;
1932}
1933
1934static int
1935fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1936 struct ifreq *ifr)
1937{
1938 sync_serial_settings sync;
1939 int i;
1940
1941 /* First check what line type is set, we'll default to reporting X.21
1942 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1943 * changed
1944 */
1945 switch (port->hwif) {
1946 case E1:
1947 ifr->ifr_settings.type = IF_IFACE_E1;
1948 break;
1949 case T1:
1950 ifr->ifr_settings.type = IF_IFACE_T1;
1951 break;
1952 case V35:
1953 ifr->ifr_settings.type = IF_IFACE_V35;
1954 break;
1955 case V24:
1956 ifr->ifr_settings.type = IF_IFACE_V24;
1957 break;
1958 case X21D:
1959 ifr->ifr_settings.type = IF_IFACE_X21D;
1960 break;
1961 case X21:
1962 default:
1963 ifr->ifr_settings.type = IF_IFACE_X21;
1964 break;
1965 }
1966 if (ifr->ifr_settings.size == 0) {
1967 return 0; /* only type requested */
1968 }
1969 if (ifr->ifr_settings.size < sizeof (sync)) {
1970 return -ENOMEM;
1971 }
1972
1973 i = port->index;
1974 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1975 /* Lucky card and linux use same encoding here */
1976 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1977 INTCLK ? CLOCK_INT : CLOCK_EXT;
1978 sync.loopback = 0;
1979
1980 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1981 return -EFAULT;
1982 }
1983
1984 ifr->ifr_settings.size = sizeof (sync);
1985 return 0;
1986}
1987
1988static int
1989fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1990{
1991 struct fst_card_info *card;
1992 struct fst_port_info *port;
1993 struct fstioc_write wrthdr;
1994 struct fstioc_info info;
1995 unsigned long flags;
5ffa6d7f 1996 void *buf;
1da177e4
LT
1997
1998 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
1999
2000 port = dev_to_port(dev);
2001 card = port->card;
2002
2003 if (!capable(CAP_NET_ADMIN))
2004 return -EPERM;
2005
2006 switch (cmd) {
2007 case FSTCPURESET:
2008 fst_cpureset(card);
2009 card->state = FST_RESET;
2010 return 0;
2011
2012 case FSTCPURELEASE:
2013 fst_cpurelease(card);
2014 card->state = FST_STARTING;
2015 return 0;
2016
2017 case FSTWRITE: /* Code write (download) */
2018
2019 /* First copy in the header with the length and offset of data
2020 * to write
2021 */
2022 if (ifr->ifr_data == NULL) {
2023 return -EINVAL;
2024 }
2025 if (copy_from_user(&wrthdr, ifr->ifr_data,
2026 sizeof (struct fstioc_write))) {
2027 return -EFAULT;
2028 }
2029
2030 /* Sanity check the parameters. We don't support partial writes
2031 * when going over the top
2032 */
2033 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE
2034 || wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2035 return -ENXIO;
2036 }
2037
5ffa6d7f
AV
2038 /* Now copy the data to the card. */
2039
2040 buf = kmalloc(wrthdr.size, GFP_KERNEL);
2041 if (!buf)
2042 return -ENOMEM;
2043
2044 if (copy_from_user(buf,
1da177e4
LT
2045 ifr->ifr_data + sizeof (struct fstioc_write),
2046 wrthdr.size)) {
5ffa6d7f 2047 kfree(buf);
1da177e4
LT
2048 return -EFAULT;
2049 }
2050
5ffa6d7f
AV
2051 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2052 kfree(buf);
2053
1da177e4
LT
2054 /* Writes to the memory of a card in the reset state constitute
2055 * a download
2056 */
2057 if (card->state == FST_RESET) {
2058 card->state = FST_DOWNLOAD;
2059 }
2060 return 0;
2061
2062 case FSTGETCONF:
2063
2064 /* If card has just been started check the shared memory config
2065 * version and marker
2066 */
2067 if (card->state == FST_STARTING) {
2068 check_started_ok(card);
2069
2070 /* If everything checked out enable card interrupts */
2071 if (card->state == FST_RUNNING) {
2072 spin_lock_irqsave(&card->card_lock, flags);
2073 fst_enable_intr(card);
2074 FST_WRB(card, interruptHandshake, 0xEE);
2075 spin_unlock_irqrestore(&card->card_lock, flags);
2076 }
2077 }
2078
2079 if (ifr->ifr_data == NULL) {
2080 return -EINVAL;
2081 }
2082
2083 gather_conf_info(card, port, &info);
2084
2085 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2086 return -EFAULT;
2087 }
2088 return 0;
2089
2090 case FSTSETCONF:
2091
2092 /*
2093 * Most of the settings have been moved to the generic ioctls
2094 * this just covers debug and board ident now
2095 */
2096
2097 if (card->state != FST_RUNNING) {
2098 printk_err
2099 ("Attempt to configure card %d in non-running state (%d)\n",
2100 card->card_no, card->state);
2101 return -EIO;
2102 }
2103 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2104 return -EFAULT;
2105 }
2106
2107 return set_conf_from_info(card, port, &info);
2108
2109 case SIOCWANDEV:
2110 switch (ifr->ifr_settings.type) {
2111 case IF_GET_IFACE:
2112 return fst_get_iface(card, port, ifr);
2113
2114 case IF_IFACE_SYNC_SERIAL:
2115 case IF_IFACE_V35:
2116 case IF_IFACE_V24:
2117 case IF_IFACE_X21:
2118 case IF_IFACE_X21D:
2119 case IF_IFACE_T1:
2120 case IF_IFACE_E1:
2121 return fst_set_iface(card, port, ifr);
2122
2123 case IF_PROTO_RAW:
2124 port->mode = FST_RAW;
2125 return 0;
2126
2127 case IF_GET_PROTO:
2128 if (port->mode == FST_RAW) {
2129 ifr->ifr_settings.type = IF_PROTO_RAW;
2130 return 0;
2131 }
2132 return hdlc_ioctl(dev, ifr, cmd);
2133
2134 default:
2135 port->mode = FST_GEN_HDLC;
2136 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2137 ifr->ifr_settings.type);
2138 return hdlc_ioctl(dev, ifr, cmd);
2139 }
2140
2141 default:
2142 /* Not one of ours. Pass through to HDLC package */
2143 return hdlc_ioctl(dev, ifr, cmd);
2144 }
2145}
2146
2147static void
2148fst_openport(struct fst_port_info *port)
2149{
2150 int signals;
2151 int txq_length;
2152
2153 /* Only init things if card is actually running. This allows open to
2154 * succeed for downloads etc.
2155 */
2156 if (port->card->state == FST_RUNNING) {
2157 if (port->run) {
2158 dbg(DBG_OPEN, "open: found port already running\n");
2159
2160 fst_issue_cmd(port, STOPPORT);
2161 port->run = 0;
2162 }
2163
2164 fst_rx_config(port);
2165 fst_tx_config(port);
2166 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2167
2168 fst_issue_cmd(port, STARTPORT);
2169 port->run = 1;
2170
2171 signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2172 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2173 ? IPSTS_INDICATE : IPSTS_DCD))
2174 netif_carrier_on(port_to_dev(port));
2175 else
2176 netif_carrier_off(port_to_dev(port));
2177
2178 txq_length = port->txqe - port->txqs;
2179 port->txqe = 0;
2180 port->txqs = 0;
2181 }
2182
2183}
2184
2185static void
2186fst_closeport(struct fst_port_info *port)
2187{
2188 if (port->card->state == FST_RUNNING) {
2189 if (port->run) {
2190 port->run = 0;
2191 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2192
2193 fst_issue_cmd(port, STOPPORT);
2194 } else {
2195 dbg(DBG_OPEN, "close: port not running\n");
2196 }
2197 }
2198}
2199
2200static int
2201fst_open(struct net_device *dev)
2202{
2203 int err;
2204 struct fst_port_info *port;
2205
2206 port = dev_to_port(dev);
2207 if (!try_module_get(THIS_MODULE))
2208 return -EBUSY;
2209
2210 if (port->mode != FST_RAW) {
2211 err = hdlc_open(dev);
2212 if (err)
2213 return err;
2214 }
2215
2216 fst_openport(port);
2217 netif_wake_queue(dev);
2218 return 0;
2219}
2220
2221static int
2222fst_close(struct net_device *dev)
2223{
2224 struct fst_port_info *port;
2225 struct fst_card_info *card;
2226 unsigned char tx_dma_done;
2227 unsigned char rx_dma_done;
2228
2229 port = dev_to_port(dev);
2230 card = port->card;
2231
2232 tx_dma_done = inb(card->pci_conf + DMACSR1);
2233 rx_dma_done = inb(card->pci_conf + DMACSR0);
2234 dbg(DBG_OPEN,
2235 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2236 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2237 rx_dma_done);
2238
2239 netif_stop_queue(dev);
2240 fst_closeport(dev_to_port(dev));
2241 if (port->mode != FST_RAW) {
2242 hdlc_close(dev);
2243 }
2244 module_put(THIS_MODULE);
2245 return 0;
2246}
2247
2248static int
2249fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2250{
2251 /*
2252 * Setting currently fixed in FarSync card so we check and forget
2253 */
2254 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2255 return -EINVAL;
2256 return 0;
2257}
2258
2259static void
2260fst_tx_timeout(struct net_device *dev)
2261{
2262 struct fst_port_info *port;
2263 struct fst_card_info *card;
1da177e4
LT
2264
2265 port = dev_to_port(dev);
2266 card = port->card;
198191c4
KH
2267 dev->stats.tx_errors++;
2268 dev->stats.tx_aborted_errors++;
1da177e4
LT
2269 dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2270 card->card_no, port->index);
2271 fst_issue_cmd(port, ABORTTX);
2272
2273 dev->trans_start = jiffies;
2274 netif_wake_queue(dev);
2275 port->start = 0;
2276}
2277
d71a6749 2278static netdev_tx_t
1da177e4
LT
2279fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2280{
2281 struct fst_card_info *card;
2282 struct fst_port_info *port;
1da177e4
LT
2283 unsigned long flags;
2284 int txq_length;
2285
2286 port = dev_to_port(dev);
2287 card = port->card;
2288 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2289
2290 /* Drop packet with error if we don't have carrier */
2291 if (!netif_carrier_ok(dev)) {
2292 dev_kfree_skb(skb);
198191c4
KH
2293 dev->stats.tx_errors++;
2294 dev->stats.tx_carrier_errors++;
1da177e4
LT
2295 dbg(DBG_ASS,
2296 "Tried to transmit but no carrier on card %d port %d\n",
2297 card->card_no, port->index);
ec634fe3 2298 return NETDEV_TX_OK;
1da177e4
LT
2299 }
2300
2301 /* Drop it if it's too big! MTU failure ? */
2302 if (skb->len > LEN_TX_BUFFER) {
2303 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2304 LEN_TX_BUFFER);
2305 dev_kfree_skb(skb);
198191c4 2306 dev->stats.tx_errors++;
ec634fe3 2307 return NETDEV_TX_OK;
1da177e4
LT
2308 }
2309
2310 /*
2311 * We are always going to queue the packet
2312 * so that the bottom half is the only place we tx from
2313 * Check there is room in the port txq
2314 */
2315 spin_lock_irqsave(&card->card_lock, flags);
2316 if ((txq_length = port->txqe - port->txqs) < 0) {
2317 /*
2318 * This is the case where the next free has wrapped but the
2319 * last used hasn't
2320 */
2321 txq_length = txq_length + FST_TXQ_DEPTH;
2322 }
2323 spin_unlock_irqrestore(&card->card_lock, flags);
2324 if (txq_length > fst_txq_high) {
2325 /*
2326 * We have got enough buffers in the pipeline. Ask the network
2327 * layer to stop sending frames down
2328 */
2329 netif_stop_queue(dev);
2330 port->start = 1; /* I'm using this to signal stop sent up */
2331 }
2332
2333 if (txq_length == FST_TXQ_DEPTH - 1) {
2334 /*
2335 * This shouldn't have happened but such is life
2336 */
2337 dev_kfree_skb(skb);
198191c4 2338 dev->stats.tx_errors++;
1da177e4
LT
2339 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2340 card->card_no, port->index);
ec634fe3 2341 return NETDEV_TX_OK;
1da177e4
LT
2342 }
2343
2344 /*
2345 * queue the buffer
2346 */
2347 spin_lock_irqsave(&card->card_lock, flags);
2348 port->txq[port->txqe] = skb;
2349 port->txqe++;
2350 if (port->txqe == FST_TXQ_DEPTH)
2351 port->txqe = 0;
2352 spin_unlock_irqrestore(&card->card_lock, flags);
2353
2354 /* Scehdule the bottom half which now does transmit processing */
2355 fst_q_work_item(&fst_work_txq, card->card_no);
2356 tasklet_schedule(&fst_tx_task);
2357
ec634fe3 2358 return NETDEV_TX_OK;
1da177e4
LT
2359}
2360
2361/*
2362 * Card setup having checked hardware resources.
2363 * Should be pretty bizarre if we get an error here (kernel memory
2364 * exhaustion is one possibility). If we do see a problem we report it
2365 * via a printk and leave the corresponding interface and all that follow
2366 * disabled.
2367 */
2368static char *type_strings[] __devinitdata = {
2369 "no hardware", /* Should never be seen */
2370 "FarSync T2P",
2371 "FarSync T4P",
2372 "FarSync T1U",
2373 "FarSync T2U",
2374 "FarSync T4U",
2375 "FarSync TE1"
2376};
2377
2378static void __devinit
2379fst_init_card(struct fst_card_info *card)
2380{
2381 int i;
2382 int err;
2383
2384 /* We're working on a number of ports based on the card ID. If the
2385 * firmware detects something different later (should never happen)
2386 * we'll have to revise it in some way then.
2387 */
2388 for (i = 0; i < card->nports; i++) {
2389 err = register_hdlc_device(card->ports[i].dev);
2390 if (err < 0) {
2391 int j;
2392 printk_err ("Cannot register HDLC device for port %d"
2393 " (errno %d)\n", i, -err );
2394 for (j = i; j < card->nports; j++) {
2395 free_netdev(card->ports[j].dev);
2396 card->ports[j].dev = NULL;
2397 }
2398 card->nports = i;
2399 break;
2400 }
2401 }
2402
2403 printk_info("%s-%s: %s IRQ%d, %d ports\n",
2404 port_to_dev(&card->ports[0])->name,
2405 port_to_dev(&card->ports[card->nports - 1])->name,
2406 type_strings[card->type], card->irq, card->nports);
2407}
2408
991990a1
KH
2409static const struct net_device_ops fst_ops = {
2410 .ndo_open = fst_open,
2411 .ndo_stop = fst_close,
2412 .ndo_change_mtu = hdlc_change_mtu,
2413 .ndo_start_xmit = hdlc_start_xmit,
2414 .ndo_do_ioctl = fst_ioctl,
2415 .ndo_tx_timeout = fst_tx_timeout,
2416};
2417
1da177e4
LT
2418/*
2419 * Initialise card when detected.
2420 * Returns 0 to indicate success, or errno otherwise.
2421 */
2422static int __devinit
2423fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2424{
2425 static int firsttime_done = 0;
2426 static int no_of_cards_added = 0;
2427 struct fst_card_info *card;
2428 int err = 0;
2429 int i;
2430
2431 if (!firsttime_done) {
2432 printk_info("FarSync WAN driver " FST_USER_VERSION
2433 " (c) 2001-2004 FarSite Communications Ltd.\n");
2434 firsttime_done = 1;
2435 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2436 }
2437
2438 /*
2439 * We are going to be clever and allow certain cards not to be
2440 * configured. An exclude list can be provided in /etc/modules.conf
2441 */
2442 if (fst_excluded_cards != 0) {
2443 /*
2444 * There are cards to exclude
2445 *
2446 */
2447 for (i = 0; i < fst_excluded_cards; i++) {
2448 if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2449 printk_info("FarSync PCI device %d not assigned\n",
2450 (pdev->devfn) >> 3);
2451 return -EBUSY;
2452 }
2453 }
2454 }
2455
2456 /* Allocate driver private data */
dd00cc48 2457 card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL);
1da177e4
LT
2458 if (card == NULL) {
2459 printk_err("FarSync card found but insufficient memory for"
2460 " driver storage\n");
2461 return -ENOMEM;
2462 }
1da177e4
LT
2463
2464 /* Try to enable the device */
2465 if ((err = pci_enable_device(pdev)) != 0) {
2466 printk_err("Failed to enable card. Err %d\n", -err);
2467 kfree(card);
2468 return err;
2469 }
2470
2471 if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2472 printk_err("Failed to allocate regions. Err %d\n", -err);
2473 pci_disable_device(pdev);
2474 kfree(card);
2475 return err;
2476 }
2477
2478 /* Get virtual addresses of memory regions */
2479 card->pci_conf = pci_resource_start(pdev, 1);
2480 card->phys_mem = pci_resource_start(pdev, 2);
2481 card->phys_ctlmem = pci_resource_start(pdev, 3);
2482 if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2483 printk_err("Physical memory remap failed\n");
2484 pci_release_regions(pdev);
2485 pci_disable_device(pdev);
2486 kfree(card);
2487 return -ENODEV;
2488 }
2489 if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2490 printk_err("Control memory remap failed\n");
2491 pci_release_regions(pdev);
2492 pci_disable_device(pdev);
2493 kfree(card);
2494 return -ENODEV;
2495 }
2496 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2497
2498 /* Register the interrupt handler */
1fb9df5d 2499 if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
1da177e4
LT
2500 printk_err("Unable to register interrupt %d\n", card->irq);
2501 pci_release_regions(pdev);
2502 pci_disable_device(pdev);
2503 iounmap(card->ctlmem);
2504 iounmap(card->mem);
2505 kfree(card);
2506 return -ENODEV;
2507 }
2508
2509 /* Record info we need */
2510 card->irq = pdev->irq;
2511 card->type = ent->driver_data;
2512 card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2513 (ent->driver_data == FST_TYPE_T4P))
2514 ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2515 if ((ent->driver_data == FST_TYPE_T1U) ||
2516 (ent->driver_data == FST_TYPE_TE1))
2517 card->nports = 1;
2518 else
2519 card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2520 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2521
2522 card->state = FST_UNINIT;
2523 spin_lock_init ( &card->card_lock );
2524
2525 for ( i = 0 ; i < card->nports ; i++ ) {
2526 struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2527 hdlc_device *hdlc;
2528 if (!dev) {
2529 while (i--)
2530 free_netdev(card->ports[i].dev);
2531 printk_err ("FarSync: out of memory\n");
2532 free_irq(card->irq, card);
2533 pci_release_regions(pdev);
2534 pci_disable_device(pdev);
2535 iounmap(card->ctlmem);
2536 iounmap(card->mem);
2537 kfree(card);
2538 return -ENODEV;
2539 }
2540 card->ports[i].dev = dev;
2541 card->ports[i].card = card;
2542 card->ports[i].index = i;
2543 card->ports[i].run = 0;
2544
2545 hdlc = dev_to_hdlc(dev);
2546
2547 /* Fill in the net device info */
2548 /* Since this is a PCI setup this is purely
2549 * informational. Give them the buffer addresses
2550 * and basic card I/O.
2551 */
2552 dev->mem_start = card->phys_mem
2553 + BUF_OFFSET ( txBuffer[i][0][0]);
2554 dev->mem_end = card->phys_mem
2555 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2556 dev->base_addr = card->pci_conf;
2557 dev->irq = card->irq;
2558
991990a1
KH
2559 dev->netdev_ops = &fst_ops;
2560 dev->tx_queue_len = FST_TX_QUEUE_LEN;
2561 dev->watchdog_timeo = FST_TX_TIMEOUT;
1da177e4
LT
2562 hdlc->attach = fst_attach;
2563 hdlc->xmit = fst_start_xmit;
2564 }
2565
2566 card->device = pdev;
2567
2568 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2569 card->nports, card->irq);
2570 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2571 card->pci_conf, card->phys_mem, card->phys_ctlmem);
2572
2573 /* Reset the card's processor */
2574 fst_cpureset(card);
2575 card->state = FST_RESET;
2576
2577 /* Initialise DMA (if required) */
2578 fst_init_dma(card);
2579
2580 /* Record driver data for later use */
2581 pci_set_drvdata(pdev, card);
2582
2583 /* Remainder of card setup */
2584 fst_card_array[no_of_cards_added] = card;
2585 card->card_no = no_of_cards_added++; /* Record instance and bump it */
2586 fst_init_card(card);
2587 if (card->family == FST_FAMILY_TXU) {
2588 /*
2589 * Allocate a dma buffer for transmit and receives
2590 */
2591 card->rx_dma_handle_host =
2592 pci_alloc_consistent(card->device, FST_MAX_MTU,
2593 &card->rx_dma_handle_card);
2594 if (card->rx_dma_handle_host == NULL) {
2595 printk_err("Could not allocate rx dma buffer\n");
2596 fst_disable_intr(card);
2597 pci_release_regions(pdev);
2598 pci_disable_device(pdev);
2599 iounmap(card->ctlmem);
2600 iounmap(card->mem);
2601 kfree(card);
2602 return -ENOMEM;
2603 }
2604 card->tx_dma_handle_host =
2605 pci_alloc_consistent(card->device, FST_MAX_MTU,
2606 &card->tx_dma_handle_card);
2607 if (card->tx_dma_handle_host == NULL) {
2608 printk_err("Could not allocate tx dma buffer\n");
2609 fst_disable_intr(card);
2610 pci_release_regions(pdev);
2611 pci_disable_device(pdev);
2612 iounmap(card->ctlmem);
2613 iounmap(card->mem);
2614 kfree(card);
2615 return -ENOMEM;
2616 }
2617 }
2618 return 0; /* Success */
2619}
2620
2621/*
2622 * Cleanup and close down a card
2623 */
2624static void __devexit
2625fst_remove_one(struct pci_dev *pdev)
2626{
2627 struct fst_card_info *card;
2628 int i;
2629
2630 card = pci_get_drvdata(pdev);
2631
2632 for (i = 0; i < card->nports; i++) {
2633 struct net_device *dev = port_to_dev(&card->ports[i]);
2634 unregister_hdlc_device(dev);
2635 }
2636
2637 fst_disable_intr(card);
2638 free_irq(card->irq, card);
2639
2640 iounmap(card->ctlmem);
2641 iounmap(card->mem);
2642 pci_release_regions(pdev);
2643 if (card->family == FST_FAMILY_TXU) {
2644 /*
2645 * Free dma buffers
2646 */
2647 pci_free_consistent(card->device, FST_MAX_MTU,
2648 card->rx_dma_handle_host,
2649 card->rx_dma_handle_card);
2650 pci_free_consistent(card->device, FST_MAX_MTU,
2651 card->tx_dma_handle_host,
2652 card->tx_dma_handle_card);
2653 }
2654 fst_card_array[card->card_no] = NULL;
2655}
2656
2657static struct pci_driver fst_driver = {
2658 .name = FST_NAME,
2659 .id_table = fst_pci_dev_id,
2660 .probe = fst_add_one,
2661 .remove = __devexit_p(fst_remove_one),
2662 .suspend = NULL,
2663 .resume = NULL,
2664};
2665
2666static int __init
2667fst_init(void)
2668{
2669 int i;
2670
2671 for (i = 0; i < FST_MAX_CARDS; i++)
2672 fst_card_array[i] = NULL;
2673 spin_lock_init(&fst_work_q_lock);
29917620 2674 return pci_register_driver(&fst_driver);
1da177e4
LT
2675}
2676
2677static void __exit
2678fst_cleanup_module(void)
2679{
2680 printk_info("FarSync WAN driver unloading\n");
2681 pci_unregister_driver(&fst_driver);
2682}
2683
2684module_init(fst_init);
2685module_exit(fst_cleanup_module);