]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/via-rhine.c
tg3: use dma_alloc_coherent() instead of pci_alloc_consistent()
[net-next-2.6.git] / drivers / net / via-rhine.c
CommitLineData
1da177e4
LT
1/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2/*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
03a8c661 28 [link no longer provides useful info -jgarzik]
1da177e4
LT
29
30*/
31
32#define DRV_NAME "via-rhine"
e84df485
RL
33#define DRV_VERSION "1.4.3"
34#define DRV_RELDATE "2007-03-06"
1da177e4
LT
35
36
37/* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
39
40static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41static int max_interrupt_work = 20;
42
43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
8e95a202
JP
45#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
46 defined(CONFIG_SPARC) || defined(__ia64__) || \
47 defined(__sh__) || defined(__mips__)
b47157f0
DM
48static int rx_copybreak = 1518;
49#else
1da177e4 50static int rx_copybreak;
b47157f0 51#endif
1da177e4 52
b933b4d9
RL
53/* Work-around for broken BIOSes: they are unable to get the chip back out of
54 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
55static int avoid_D3;
56
1da177e4
LT
57/*
58 * In case you are looking for 'options[]' or 'full_duplex[]', they
59 * are gone. Use ethtool(8) instead.
60 */
61
62/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
63 The Rhine has a 64 element 8390-like hash table. */
64static const int multicast_filter_limit = 32;
65
66
67/* Operational parameters that are set at compile time. */
68
69/* Keep the ring sizes a power of two for compile efficiency.
70 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
71 Making the Tx ring too large decreases the effectiveness of channel
72 bonding and packet priority.
73 There are no ill effects from too-large receive rings. */
74#define TX_RING_SIZE 16
75#define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
633949a1 76#define RX_RING_SIZE 64
1da177e4
LT
77
78/* Operational parameters that usually are not changed. */
79
80/* Time in jiffies before concluding the transmitter is hung. */
81#define TX_TIMEOUT (2*HZ)
82
83#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84
85#include <linux/module.h>
86#include <linux/moduleparam.h>
87#include <linux/kernel.h>
88#include <linux/string.h>
89#include <linux/timer.h>
90#include <linux/errno.h>
91#include <linux/ioport.h>
1da177e4
LT
92#include <linux/interrupt.h>
93#include <linux/pci.h>
1e7f0bd8 94#include <linux/dma-mapping.h>
1da177e4
LT
95#include <linux/netdevice.h>
96#include <linux/etherdevice.h>
97#include <linux/skbuff.h>
98#include <linux/init.h>
99#include <linux/delay.h>
100#include <linux/mii.h>
101#include <linux/ethtool.h>
102#include <linux/crc32.h>
103#include <linux/bitops.h>
c0d7a021 104#include <linux/workqueue.h>
1da177e4
LT
105#include <asm/processor.h> /* Processor type for cache alignment. */
106#include <asm/io.h>
107#include <asm/irq.h>
108#include <asm/uaccess.h>
e84df485 109#include <linux/dmi.h>
1da177e4
LT
110
111/* These identify the driver base version and may not be removed. */
c8de1fce
SH
112static const char version[] __devinitconst =
113 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE
114 " Written by Donald Becker\n";
1da177e4
LT
115
116/* This driver was written to use PCI memory space. Some early versions
117 of the Rhine may only work correctly with I/O space accesses. */
118#ifdef CONFIG_VIA_RHINE_MMIO
119#define USE_MMIO
120#else
121#endif
122
123MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
124MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
125MODULE_LICENSE("GPL");
126
127module_param(max_interrupt_work, int, 0);
128module_param(debug, int, 0);
129module_param(rx_copybreak, int, 0);
b933b4d9 130module_param(avoid_D3, bool, 0);
1da177e4
LT
131MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
132MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
133MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
b933b4d9 134MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
1da177e4
LT
135
136/*
137 Theory of Operation
138
139I. Board Compatibility
140
141This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
142controller.
143
144II. Board-specific settings
145
146Boards with this chip are functional only in a bus-master PCI slot.
147
148Many operational settings are loaded from the EEPROM to the Config word at
149offset 0x78. For most of these settings, this driver assumes that they are
150correct.
151If this driver is compiled to use PCI memory space operations the EEPROM
152must be configured to enable memory ops.
153
154III. Driver operation
155
156IIIa. Ring buffers
157
158This driver uses two statically allocated fixed-size descriptor lists
159formed into rings by a branch from the final descriptor to the beginning of
160the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
161
162IIIb/c. Transmit/Receive Structure
163
164This driver attempts to use a zero-copy receive and transmit scheme.
165
166Alas, all data buffers are required to start on a 32 bit boundary, so
167the driver must often copy transmit packets into bounce buffers.
168
169The driver allocates full frame size skbuffs for the Rx ring buffers at
170open() time and passes the skb->data field to the chip as receive data
171buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
172a fresh skbuff is allocated and the frame is copied to the new skbuff.
173When the incoming frame is larger, the skbuff is passed directly up the
174protocol stack. Buffers consumed this way are replaced by newly allocated
175skbuffs in the last phase of rhine_rx().
176
177The RX_COPYBREAK value is chosen to trade-off the memory wasted by
178using a full-sized skbuff for small frames vs. the copying costs of larger
179frames. New boards are typically used in generously configured machines
180and the underfilled buffers have negligible impact compared to the benefit of
181a single allocation size, so the default value of zero results in never
182copying packets. When copying is done, the cost is usually mitigated by using
183a combined copy/checksum routine. Copying also preloads the cache, which is
184most useful with small frames.
185
186Since the VIA chips are only able to transfer data to buffers on 32 bit
187boundaries, the IP header at offset 14 in an ethernet frame isn't
188longword aligned for further processing. Copying these unaligned buffers
189has the beneficial effect of 16-byte aligning the IP header.
190
191IIId. Synchronization
192
193The driver runs as two independent, single-threaded flows of control. One
194is the send-packet routine, which enforces single-threaded use by the
b74ca3a8
WC
195netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
196which is single threaded by the hardware and interrupt handling software.
1da177e4
LT
197
198The send packet thread has partial control over the Tx ring. It locks the
b74ca3a8
WC
199netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
200the ring is not available it stops the transmit queue by
201calling netif_stop_queue.
1da177e4
LT
202
203The interrupt handler has exclusive control over the Rx ring and records stats
204from the Tx ring. After reaping the stats, it marks the Tx queue entry as
205empty by incrementing the dirty_tx mark. If at least half of the entries in
206the Rx ring are available the transmit queue is woken up if it was stopped.
207
208IV. Notes
209
210IVb. References
211
212Preliminary VT86C100A manual from http://www.via.com.tw/
213http://www.scyld.com/expert/100mbps.html
214http://www.scyld.com/expert/NWay.html
215ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
216ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
217
218
219IVc. Errata
220
221The VT86C100A manual is not reliable information.
222The 3043 chip does not handle unaligned transmit or receive buffers, resulting
223in significant performance degradation for bounce buffer copies on transmit
224and unaligned IP headers on receive.
225The chip does not pad to minimum transmit length.
226
227*/
228
229
230/* This table drives the PCI probe routines. It's mostly boilerplate in all
231 of the drivers, and will likely be provided by some future kernel.
232 Note the matching code -- the first table entry matchs all 56** cards but
233 second only the 1234 card.
234*/
235
236enum rhine_revs {
237 VT86C100A = 0x00,
238 VTunknown0 = 0x20,
239 VT6102 = 0x40,
240 VT8231 = 0x50, /* Integrated MAC */
241 VT8233 = 0x60, /* Integrated MAC */
242 VT8235 = 0x74, /* Integrated MAC */
243 VT8237 = 0x78, /* Integrated MAC */
244 VTunknown1 = 0x7C,
245 VT6105 = 0x80,
246 VT6105_B0 = 0x83,
247 VT6105L = 0x8A,
248 VT6107 = 0x8C,
249 VTunknown2 = 0x8E,
250 VT6105M = 0x90, /* Management adapter */
251};
252
253enum rhine_quirks {
254 rqWOL = 0x0001, /* Wake-On-LAN support */
255 rqForceReset = 0x0002,
256 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
257 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
258 rqRhineI = 0x0100, /* See comment below */
259};
260/*
261 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
262 * MMIO as well as for the collision counter and the Tx FIFO underflow
263 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
264 */
265
266/* Beware of PCI posted writes */
267#define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
268
a3aa1884 269static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
46009c8b
JG
270 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
271 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
272 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
273 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
1da177e4
LT
274 { } /* terminate list */
275};
276MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
277
278
279/* Offsets to the device registers. */
280enum register_offsets {
281 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
282 ChipCmd1=0x09,
283 IntrStatus=0x0C, IntrEnable=0x0E,
284 MulticastFilter0=0x10, MulticastFilter1=0x14,
285 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
286 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
287 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
288 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
289 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
290 StickyHW=0x83, IntrStatus2=0x84,
291 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
292 WOLcrClr1=0xA6, WOLcgClr=0xA7,
293 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
294};
295
296/* Bits in ConfigD */
297enum backoff_bits {
298 BackOptional=0x01, BackModify=0x02,
299 BackCaptureEffect=0x04, BackRandom=0x08
300};
301
302#ifdef USE_MMIO
303/* Registers we check that mmio and reg are the same. */
304static const int mmio_verify_registers[] = {
305 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
306 0
307};
308#endif
309
310/* Bits in the interrupt status/mask registers. */
311enum intr_status_bits {
312 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
313 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
314 IntrPCIErr=0x0040,
315 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
316 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
317 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
318 IntrRxWakeUp=0x8000,
319 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
320 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
321 IntrTxErrSummary=0x082218,
322};
323
324/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
325enum wol_bits {
326 WOLucast = 0x10,
327 WOLmagic = 0x20,
328 WOLbmcast = 0x30,
329 WOLlnkon = 0x40,
330 WOLlnkoff = 0x80,
331};
332
333/* The Rx and Tx buffer descriptors. */
334struct rx_desc {
53c03f5c
AV
335 __le32 rx_status;
336 __le32 desc_length; /* Chain flag, Buffer/frame length */
337 __le32 addr;
338 __le32 next_desc;
1da177e4
LT
339};
340struct tx_desc {
53c03f5c
AV
341 __le32 tx_status;
342 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
343 __le32 addr;
344 __le32 next_desc;
1da177e4
LT
345};
346
347/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
348#define TXDESC 0x00e08000
349
350enum rx_status_bits {
351 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
352};
353
354/* Bits in *_desc.*_status */
355enum desc_status_bits {
356 DescOwn=0x80000000
357};
358
359/* Bits in ChipCmd. */
360enum chip_cmd_bits {
361 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
362 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
363 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
364 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
365};
366
367struct rhine_private {
368 /* Descriptor rings */
369 struct rx_desc *rx_ring;
370 struct tx_desc *tx_ring;
371 dma_addr_t rx_ring_dma;
372 dma_addr_t tx_ring_dma;
373
374 /* The addresses of receive-in-place skbuffs. */
375 struct sk_buff *rx_skbuff[RX_RING_SIZE];
376 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
377
378 /* The saved address of a sent-in-place packet/buffer, for later free(). */
379 struct sk_buff *tx_skbuff[TX_RING_SIZE];
380 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
381
4be5de25 382 /* Tx bounce buffers (Rhine-I only) */
1da177e4
LT
383 unsigned char *tx_buf[TX_RING_SIZE];
384 unsigned char *tx_bufs;
385 dma_addr_t tx_bufs_dma;
386
387 struct pci_dev *pdev;
388 long pioaddr;
bea3348e
SH
389 struct net_device *dev;
390 struct napi_struct napi;
1da177e4 391 spinlock_t lock;
c0d7a021 392 struct work_struct reset_task;
1da177e4
LT
393
394 /* Frequently used values: keep some adjacent for cache effect. */
395 u32 quirks;
396 struct rx_desc *rx_head_desc;
397 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
398 unsigned int cur_tx, dirty_tx;
399 unsigned int rx_buf_sz; /* Based on MTU+slack. */
400 u8 wolopts;
401
402 u8 tx_thresh, rx_thresh;
403
404 struct mii_if_info mii_if;
405 void __iomem *base;
406};
407
408static int mdio_read(struct net_device *dev, int phy_id, int location);
409static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
410static int rhine_open(struct net_device *dev);
c0d7a021 411static void rhine_reset_task(struct work_struct *work);
1da177e4 412static void rhine_tx_timeout(struct net_device *dev);
61357325
SH
413static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
414 struct net_device *dev);
7d12e780 415static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
1da177e4 416static void rhine_tx(struct net_device *dev);
633949a1 417static int rhine_rx(struct net_device *dev, int limit);
1da177e4
LT
418static void rhine_error(struct net_device *dev, int intr_status);
419static void rhine_set_rx_mode(struct net_device *dev);
420static struct net_device_stats *rhine_get_stats(struct net_device *dev);
421static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
7282d491 422static const struct ethtool_ops netdev_ethtool_ops;
1da177e4 423static int rhine_close(struct net_device *dev);
d18c3db5 424static void rhine_shutdown (struct pci_dev *pdev);
1da177e4
LT
425
426#define RHINE_WAIT_FOR(condition) do { \
427 int i=1024; \
428 while (!(condition) && --i) \
429 ; \
430 if (debug > 1 && i < 512) \
431 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
432 DRV_NAME, 1024-i, __func__, __LINE__); \
433} while(0)
434
435static inline u32 get_intr_status(struct net_device *dev)
436{
437 struct rhine_private *rp = netdev_priv(dev);
438 void __iomem *ioaddr = rp->base;
439 u32 intr_status;
440
441 intr_status = ioread16(ioaddr + IntrStatus);
442 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
443 if (rp->quirks & rqStatusWBRace)
444 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
445 return intr_status;
446}
447
448/*
449 * Get power related registers into sane state.
450 * Notify user about past WOL event.
451 */
452static void rhine_power_init(struct net_device *dev)
453{
454 struct rhine_private *rp = netdev_priv(dev);
455 void __iomem *ioaddr = rp->base;
456 u16 wolstat;
457
458 if (rp->quirks & rqWOL) {
459 /* Make sure chip is in power state D0 */
460 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
461
462 /* Disable "force PME-enable" */
463 iowrite8(0x80, ioaddr + WOLcgClr);
464
465 /* Clear power-event config bits (WOL) */
466 iowrite8(0xFF, ioaddr + WOLcrClr);
467 /* More recent cards can manage two additional patterns */
468 if (rp->quirks & rq6patterns)
469 iowrite8(0x03, ioaddr + WOLcrClr1);
470
471 /* Save power-event status bits */
472 wolstat = ioread8(ioaddr + PwrcsrSet);
473 if (rp->quirks & rq6patterns)
474 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
475
476 /* Clear power-event status bits */
477 iowrite8(0xFF, ioaddr + PwrcsrClr);
478 if (rp->quirks & rq6patterns)
479 iowrite8(0x03, ioaddr + PwrcsrClr1);
480
481 if (wolstat) {
482 char *reason;
483 switch (wolstat) {
484 case WOLmagic:
485 reason = "Magic packet";
486 break;
487 case WOLlnkon:
488 reason = "Link went up";
489 break;
490 case WOLlnkoff:
491 reason = "Link went down";
492 break;
493 case WOLucast:
494 reason = "Unicast packet";
495 break;
496 case WOLbmcast:
497 reason = "Multicast/broadcast packet";
498 break;
499 default:
500 reason = "Unknown";
501 }
502 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
503 DRV_NAME, reason);
504 }
505 }
506}
507
508static void rhine_chip_reset(struct net_device *dev)
509{
510 struct rhine_private *rp = netdev_priv(dev);
511 void __iomem *ioaddr = rp->base;
512
513 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
514 IOSYNC;
515
516 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
517 printk(KERN_INFO "%s: Reset not complete yet. "
518 "Trying harder.\n", DRV_NAME);
519
520 /* Force reset */
521 if (rp->quirks & rqForceReset)
522 iowrite8(0x40, ioaddr + MiscCmd);
523
524 /* Reset can take somewhat longer (rare) */
525 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
526 }
527
528 if (debug > 1)
529 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
530 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
531 "failed" : "succeeded");
532}
533
534#ifdef USE_MMIO
535static void enable_mmio(long pioaddr, u32 quirks)
536{
537 int n;
538 if (quirks & rqRhineI) {
539 /* More recent docs say that this bit is reserved ... */
540 n = inb(pioaddr + ConfigA) | 0x20;
541 outb(n, pioaddr + ConfigA);
542 } else {
543 n = inb(pioaddr + ConfigD) | 0x80;
544 outb(n, pioaddr + ConfigD);
545 }
546}
547#endif
548
549/*
550 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
551 * (plus 0x6C for Rhine-I/II)
552 */
553static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
554{
555 struct rhine_private *rp = netdev_priv(dev);
556 void __iomem *ioaddr = rp->base;
557
558 outb(0x20, pioaddr + MACRegEEcsr);
559 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
560
561#ifdef USE_MMIO
562 /*
563 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
564 * MMIO. If reloading EEPROM was done first this could be avoided, but
565 * it is not known if that still works with the "win98-reboot" problem.
566 */
567 enable_mmio(pioaddr, rp->quirks);
568#endif
569
570 /* Turn off EEPROM-controlled wake-up (magic packet) */
571 if (rp->quirks & rqWOL)
572 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
573
574}
575
576#ifdef CONFIG_NET_POLL_CONTROLLER
577static void rhine_poll(struct net_device *dev)
578{
579 disable_irq(dev->irq);
7d12e780 580 rhine_interrupt(dev->irq, (void *)dev);
1da177e4
LT
581 enable_irq(dev->irq);
582}
583#endif
584
bea3348e 585static int rhine_napipoll(struct napi_struct *napi, int budget)
633949a1 586{
bea3348e
SH
587 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
588 struct net_device *dev = rp->dev;
633949a1 589 void __iomem *ioaddr = rp->base;
bea3348e 590 int work_done;
633949a1 591
bea3348e 592 work_done = rhine_rx(dev, budget);
633949a1 593
bea3348e 594 if (work_done < budget) {
288379f0 595 napi_complete(napi);
633949a1
RL
596
597 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
598 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
599 IntrTxDone | IntrTxError | IntrTxUnderrun |
600 IntrPCIErr | IntrStatsMax | IntrLinkChange,
601 ioaddr + IntrEnable);
633949a1 602 }
bea3348e 603 return work_done;
633949a1 604}
633949a1 605
de4e7c88 606static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
1da177e4
LT
607{
608 struct rhine_private *rp = netdev_priv(dev);
609
610 /* Reset the chip to erase previous misconfiguration. */
611 rhine_chip_reset(dev);
612
613 /* Rhine-I needs extra time to recuperate before EEPROM reload */
614 if (rp->quirks & rqRhineI)
615 msleep(5);
616
617 /* Reload EEPROM controlled bytes cleared by soft reset */
618 rhine_reload_eeprom(pioaddr, dev);
619}
620
5d1d07d8
SH
621static const struct net_device_ops rhine_netdev_ops = {
622 .ndo_open = rhine_open,
623 .ndo_stop = rhine_close,
624 .ndo_start_xmit = rhine_start_tx,
625 .ndo_get_stats = rhine_get_stats,
626 .ndo_set_multicast_list = rhine_set_rx_mode,
635ecaa7 627 .ndo_change_mtu = eth_change_mtu,
5d1d07d8 628 .ndo_validate_addr = eth_validate_addr,
fe96aaa1 629 .ndo_set_mac_address = eth_mac_addr,
5d1d07d8
SH
630 .ndo_do_ioctl = netdev_ioctl,
631 .ndo_tx_timeout = rhine_tx_timeout,
632#ifdef CONFIG_NET_POLL_CONTROLLER
633 .ndo_poll_controller = rhine_poll,
634#endif
635};
636
1da177e4
LT
637static int __devinit rhine_init_one(struct pci_dev *pdev,
638 const struct pci_device_id *ent)
639{
640 struct net_device *dev;
641 struct rhine_private *rp;
642 int i, rc;
1da177e4
LT
643 u32 quirks;
644 long pioaddr;
645 long memaddr;
646 void __iomem *ioaddr;
647 int io_size, phy_id;
648 const char *name;
649#ifdef USE_MMIO
650 int bar = 1;
651#else
652 int bar = 0;
653#endif
654
655/* when built into the kernel, we only print version if device is found */
656#ifndef MODULE
657 static int printed_version;
658 if (!printed_version++)
659 printk(version);
660#endif
661
1da177e4
LT
662 io_size = 256;
663 phy_id = 0;
664 quirks = 0;
665 name = "Rhine";
44c10138 666 if (pdev->revision < VTunknown0) {
1da177e4
LT
667 quirks = rqRhineI;
668 io_size = 128;
669 }
44c10138 670 else if (pdev->revision >= VT6102) {
1da177e4 671 quirks = rqWOL | rqForceReset;
44c10138 672 if (pdev->revision < VT6105) {
1da177e4
LT
673 name = "Rhine II";
674 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
675 }
676 else {
677 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
44c10138 678 if (pdev->revision >= VT6105_B0)
1da177e4 679 quirks |= rq6patterns;
44c10138 680 if (pdev->revision < VT6105M)
1da177e4
LT
681 name = "Rhine III";
682 else
683 name = "Rhine III (Management Adapter)";
684 }
685 }
686
687 rc = pci_enable_device(pdev);
688 if (rc)
689 goto err_out;
690
691 /* this should always be supported */
284901a9 692 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1da177e4
LT
693 if (rc) {
694 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
695 "the card!?\n");
696 goto err_out;
697 }
698
699 /* sanity check */
700 if ((pci_resource_len(pdev, 0) < io_size) ||
701 (pci_resource_len(pdev, 1) < io_size)) {
702 rc = -EIO;
703 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
704 goto err_out;
705 }
706
707 pioaddr = pci_resource_start(pdev, 0);
708 memaddr = pci_resource_start(pdev, 1);
709
710 pci_set_master(pdev);
711
712 dev = alloc_etherdev(sizeof(struct rhine_private));
713 if (!dev) {
714 rc = -ENOMEM;
715 printk(KERN_ERR "alloc_etherdev failed\n");
716 goto err_out;
717 }
1da177e4
LT
718 SET_NETDEV_DEV(dev, &pdev->dev);
719
720 rp = netdev_priv(dev);
bea3348e 721 rp->dev = dev;
1da177e4
LT
722 rp->quirks = quirks;
723 rp->pioaddr = pioaddr;
724 rp->pdev = pdev;
725
726 rc = pci_request_regions(pdev, DRV_NAME);
727 if (rc)
728 goto err_out_free_netdev;
729
730 ioaddr = pci_iomap(pdev, bar, io_size);
731 if (!ioaddr) {
732 rc = -EIO;
733 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
734 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
735 goto err_out_free_res;
736 }
737
738#ifdef USE_MMIO
739 enable_mmio(pioaddr, quirks);
740
741 /* Check that selected MMIO registers match the PIO ones */
742 i = 0;
743 while (mmio_verify_registers[i]) {
744 int reg = mmio_verify_registers[i++];
745 unsigned char a = inb(pioaddr+reg);
746 unsigned char b = readb(ioaddr+reg);
747 if (a != b) {
748 rc = -EIO;
749 printk(KERN_ERR "MMIO do not match PIO [%02x] "
750 "(%02x != %02x)\n", reg, a, b);
751 goto err_out_unmap;
752 }
753 }
754#endif /* USE_MMIO */
755
756 dev->base_addr = (unsigned long)ioaddr;
757 rp->base = ioaddr;
758
759 /* Get chip registers into a sane state */
760 rhine_power_init(dev);
761 rhine_hw_init(dev, pioaddr);
762
763 for (i = 0; i < 6; i++)
764 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
b81e8e1f 765 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1da177e4 766
b81e8e1f 767 if (!is_valid_ether_addr(dev->perm_addr)) {
1da177e4
LT
768 rc = -EIO;
769 printk(KERN_ERR "Invalid MAC address\n");
770 goto err_out_unmap;
771 }
772
773 /* For Rhine-I/II, phy_id is loaded from EEPROM */
774 if (!phy_id)
775 phy_id = ioread8(ioaddr + 0x6C);
776
777 dev->irq = pdev->irq;
778
779 spin_lock_init(&rp->lock);
c0d7a021
JP
780 INIT_WORK(&rp->reset_task, rhine_reset_task);
781
1da177e4
LT
782 rp->mii_if.dev = dev;
783 rp->mii_if.mdio_read = mdio_read;
784 rp->mii_if.mdio_write = mdio_write;
785 rp->mii_if.phy_id_mask = 0x1f;
786 rp->mii_if.reg_num_mask = 0x1f;
787
788 /* The chip-specific entries in the device structure. */
5d1d07d8
SH
789 dev->netdev_ops = &rhine_netdev_ops;
790 dev->ethtool_ops = &netdev_ethtool_ops,
1da177e4 791 dev->watchdog_timeo = TX_TIMEOUT;
5d1d07d8 792
bea3348e 793 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
32b0f53e 794
1da177e4
LT
795 if (rp->quirks & rqRhineI)
796 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
797
798 /* dev->name not defined before register_netdev()! */
799 rc = register_netdev(dev);
800 if (rc)
801 goto err_out_unmap;
802
e174961c 803 printk(KERN_INFO "%s: VIA %s at 0x%lx, %pM, IRQ %d.\n",
1da177e4
LT
804 dev->name, name,
805#ifdef USE_MMIO
0795af57 806 memaddr,
1da177e4 807#else
0795af57 808 (long)ioaddr,
1da177e4 809#endif
e174961c 810 dev->dev_addr, pdev->irq);
1da177e4
LT
811
812 pci_set_drvdata(pdev, dev);
813
814 {
815 u16 mii_cmd;
816 int mii_status = mdio_read(dev, phy_id, 1);
817 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
818 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
819 if (mii_status != 0xffff && mii_status != 0x0000) {
820 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
821 printk(KERN_INFO "%s: MII PHY found at address "
822 "%d, status 0x%4.4x advertising %4.4x "
823 "Link %4.4x.\n", dev->name, phy_id,
824 mii_status, rp->mii_if.advertising,
825 mdio_read(dev, phy_id, 5));
826
827 /* set IFF_RUNNING */
828 if (mii_status & BMSR_LSTATUS)
829 netif_carrier_on(dev);
830 else
831 netif_carrier_off(dev);
832
833 }
834 }
835 rp->mii_if.phy_id = phy_id;
b933b4d9
RL
836 if (debug > 1 && avoid_D3)
837 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
838 dev->name);
1da177e4
LT
839
840 return 0;
841
842err_out_unmap:
843 pci_iounmap(pdev, ioaddr);
844err_out_free_res:
845 pci_release_regions(pdev);
846err_out_free_netdev:
847 free_netdev(dev);
848err_out:
849 return rc;
850}
851
852static int alloc_ring(struct net_device* dev)
853{
854 struct rhine_private *rp = netdev_priv(dev);
855 void *ring;
856 dma_addr_t ring_dma;
857
858 ring = pci_alloc_consistent(rp->pdev,
859 RX_RING_SIZE * sizeof(struct rx_desc) +
860 TX_RING_SIZE * sizeof(struct tx_desc),
861 &ring_dma);
862 if (!ring) {
863 printk(KERN_ERR "Could not allocate DMA memory.\n");
864 return -ENOMEM;
865 }
866 if (rp->quirks & rqRhineI) {
867 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
868 PKT_BUF_SZ * TX_RING_SIZE,
869 &rp->tx_bufs_dma);
870 if (rp->tx_bufs == NULL) {
871 pci_free_consistent(rp->pdev,
872 RX_RING_SIZE * sizeof(struct rx_desc) +
873 TX_RING_SIZE * sizeof(struct tx_desc),
874 ring, ring_dma);
875 return -ENOMEM;
876 }
877 }
878
879 rp->rx_ring = ring;
880 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
881 rp->rx_ring_dma = ring_dma;
882 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
883
884 return 0;
885}
886
887static void free_ring(struct net_device* dev)
888{
889 struct rhine_private *rp = netdev_priv(dev);
890
891 pci_free_consistent(rp->pdev,
892 RX_RING_SIZE * sizeof(struct rx_desc) +
893 TX_RING_SIZE * sizeof(struct tx_desc),
894 rp->rx_ring, rp->rx_ring_dma);
895 rp->tx_ring = NULL;
896
897 if (rp->tx_bufs)
898 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
899 rp->tx_bufs, rp->tx_bufs_dma);
900
901 rp->tx_bufs = NULL;
902
903}
904
905static void alloc_rbufs(struct net_device *dev)
906{
907 struct rhine_private *rp = netdev_priv(dev);
908 dma_addr_t next;
909 int i;
910
911 rp->dirty_rx = rp->cur_rx = 0;
912
913 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
914 rp->rx_head_desc = &rp->rx_ring[0];
915 next = rp->rx_ring_dma;
916
917 /* Init the ring entries */
918 for (i = 0; i < RX_RING_SIZE; i++) {
919 rp->rx_ring[i].rx_status = 0;
920 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
921 next += sizeof(struct rx_desc);
922 rp->rx_ring[i].next_desc = cpu_to_le32(next);
923 rp->rx_skbuff[i] = NULL;
924 }
925 /* Mark the last entry as wrapping the ring. */
926 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
927
928 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
929 for (i = 0; i < RX_RING_SIZE; i++) {
b26b555a 930 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
931 rp->rx_skbuff[i] = skb;
932 if (skb == NULL)
933 break;
934 skb->dev = dev; /* Mark as being used by this device. */
935
936 rp->rx_skbuff_dma[i] =
689be439 937 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1da177e4
LT
938 PCI_DMA_FROMDEVICE);
939
940 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
941 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
942 }
943 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
944}
945
946static void free_rbufs(struct net_device* dev)
947{
948 struct rhine_private *rp = netdev_priv(dev);
949 int i;
950
951 /* Free all the skbuffs in the Rx queue. */
952 for (i = 0; i < RX_RING_SIZE; i++) {
953 rp->rx_ring[i].rx_status = 0;
954 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
955 if (rp->rx_skbuff[i]) {
956 pci_unmap_single(rp->pdev,
957 rp->rx_skbuff_dma[i],
958 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
959 dev_kfree_skb(rp->rx_skbuff[i]);
960 }
961 rp->rx_skbuff[i] = NULL;
962 }
963}
964
965static void alloc_tbufs(struct net_device* dev)
966{
967 struct rhine_private *rp = netdev_priv(dev);
968 dma_addr_t next;
969 int i;
970
971 rp->dirty_tx = rp->cur_tx = 0;
972 next = rp->tx_ring_dma;
973 for (i = 0; i < TX_RING_SIZE; i++) {
974 rp->tx_skbuff[i] = NULL;
975 rp->tx_ring[i].tx_status = 0;
976 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
977 next += sizeof(struct tx_desc);
978 rp->tx_ring[i].next_desc = cpu_to_le32(next);
4be5de25
RL
979 if (rp->quirks & rqRhineI)
980 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1da177e4
LT
981 }
982 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
983
984}
985
986static void free_tbufs(struct net_device* dev)
987{
988 struct rhine_private *rp = netdev_priv(dev);
989 int i;
990
991 for (i = 0; i < TX_RING_SIZE; i++) {
992 rp->tx_ring[i].tx_status = 0;
993 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
994 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
995 if (rp->tx_skbuff[i]) {
996 if (rp->tx_skbuff_dma[i]) {
997 pci_unmap_single(rp->pdev,
998 rp->tx_skbuff_dma[i],
999 rp->tx_skbuff[i]->len,
1000 PCI_DMA_TODEVICE);
1001 }
1002 dev_kfree_skb(rp->tx_skbuff[i]);
1003 }
1004 rp->tx_skbuff[i] = NULL;
1005 rp->tx_buf[i] = NULL;
1006 }
1007}
1008
1009static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1010{
1011 struct rhine_private *rp = netdev_priv(dev);
1012 void __iomem *ioaddr = rp->base;
1013
1014 mii_check_media(&rp->mii_if, debug, init_media);
1015
1016 if (rp->mii_if.full_duplex)
1017 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1018 ioaddr + ChipCmd1);
1019 else
1020 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1021 ioaddr + ChipCmd1);
00b428c2
RL
1022 if (debug > 1)
1023 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1024 rp->mii_if.force_media, netif_carrier_ok(dev));
1025}
1026
1027/* Called after status of force_media possibly changed */
0761be4f 1028static void rhine_set_carrier(struct mii_if_info *mii)
00b428c2
RL
1029{
1030 if (mii->force_media) {
1031 /* autoneg is off: Link is always assumed to be up */
1032 if (!netif_carrier_ok(mii->dev))
1033 netif_carrier_on(mii->dev);
1034 }
1035 else /* Let MMI library update carrier status */
1036 rhine_check_media(mii->dev, 0);
1037 if (debug > 1)
1038 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1039 mii->dev->name, mii->force_media,
1040 netif_carrier_ok(mii->dev));
1da177e4
LT
1041}
1042
1043static void init_registers(struct net_device *dev)
1044{
1045 struct rhine_private *rp = netdev_priv(dev);
1046 void __iomem *ioaddr = rp->base;
1047 int i;
1048
1049 for (i = 0; i < 6; i++)
1050 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1051
1052 /* Initialize other registers. */
1053 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1054 /* Configure initial FIFO thresholds. */
1055 iowrite8(0x20, ioaddr + TxConfig);
1056 rp->tx_thresh = 0x20;
1057 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1058
1059 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1060 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1061
1062 rhine_set_rx_mode(dev);
1063
bea3348e 1064 napi_enable(&rp->napi);
ab197668 1065
1da177e4
LT
1066 /* Enable interrupts by setting the interrupt mask. */
1067 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1068 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1069 IntrTxDone | IntrTxError | IntrTxUnderrun |
1070 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1071 ioaddr + IntrEnable);
1072
1073 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1074 ioaddr + ChipCmd);
1075 rhine_check_media(dev, 1);
1076}
1077
1078/* Enable MII link status auto-polling (required for IntrLinkChange) */
1079static void rhine_enable_linkmon(void __iomem *ioaddr)
1080{
1081 iowrite8(0, ioaddr + MIICmd);
1082 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1083 iowrite8(0x80, ioaddr + MIICmd);
1084
1085 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1086
1087 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1088}
1089
1090/* Disable MII link status auto-polling (required for MDIO access) */
1091static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1092{
1093 iowrite8(0, ioaddr + MIICmd);
1094
1095 if (quirks & rqRhineI) {
1096 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1097
38bb6b28
JL
1098 /* Can be called from ISR. Evil. */
1099 mdelay(1);
1da177e4
LT
1100
1101 /* 0x80 must be set immediately before turning it off */
1102 iowrite8(0x80, ioaddr + MIICmd);
1103
1104 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1105
1106 /* Heh. Now clear 0x80 again. */
1107 iowrite8(0, ioaddr + MIICmd);
1108 }
1109 else
1110 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1111}
1112
1113/* Read and write over the MII Management Data I/O (MDIO) interface. */
1114
1115static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1116{
1117 struct rhine_private *rp = netdev_priv(dev);
1118 void __iomem *ioaddr = rp->base;
1119 int result;
1120
1121 rhine_disable_linkmon(ioaddr, rp->quirks);
1122
1123 /* rhine_disable_linkmon already cleared MIICmd */
1124 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1125 iowrite8(regnum, ioaddr + MIIRegAddr);
1126 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1127 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1128 result = ioread16(ioaddr + MIIData);
1129
1130 rhine_enable_linkmon(ioaddr);
1131 return result;
1132}
1133
1134static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1135{
1136 struct rhine_private *rp = netdev_priv(dev);
1137 void __iomem *ioaddr = rp->base;
1138
1139 rhine_disable_linkmon(ioaddr, rp->quirks);
1140
1141 /* rhine_disable_linkmon already cleared MIICmd */
1142 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1143 iowrite8(regnum, ioaddr + MIIRegAddr);
1144 iowrite16(value, ioaddr + MIIData);
1145 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1146 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1147
1148 rhine_enable_linkmon(ioaddr);
1149}
1150
1151static int rhine_open(struct net_device *dev)
1152{
1153 struct rhine_private *rp = netdev_priv(dev);
1154 void __iomem *ioaddr = rp->base;
1155 int rc;
1156
76781382 1157 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1da177e4
LT
1158 dev);
1159 if (rc)
1160 return rc;
1161
1162 if (debug > 1)
1163 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1164 dev->name, rp->pdev->irq);
1165
1166 rc = alloc_ring(dev);
1167 if (rc) {
1168 free_irq(rp->pdev->irq, dev);
1169 return rc;
1170 }
1171 alloc_rbufs(dev);
1172 alloc_tbufs(dev);
1173 rhine_chip_reset(dev);
1174 init_registers(dev);
1175 if (debug > 2)
1176 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1177 "MII status: %4.4x.\n",
1178 dev->name, ioread16(ioaddr + ChipCmd),
1179 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1180
1181 netif_start_queue(dev);
1182
1183 return 0;
1184}
1185
c0d7a021 1186static void rhine_reset_task(struct work_struct *work)
1da177e4 1187{
c0d7a021
JP
1188 struct rhine_private *rp = container_of(work, struct rhine_private,
1189 reset_task);
1190 struct net_device *dev = rp->dev;
1da177e4
LT
1191
1192 /* protect against concurrent rx interrupts */
1193 disable_irq(rp->pdev->irq);
1194
bea3348e 1195 napi_disable(&rp->napi);
bea3348e 1196
c0d7a021 1197 spin_lock_bh(&rp->lock);
1da177e4
LT
1198
1199 /* clear all descriptors */
1200 free_tbufs(dev);
1201 free_rbufs(dev);
1202 alloc_tbufs(dev);
1203 alloc_rbufs(dev);
1204
1205 /* Reinitialize the hardware. */
1206 rhine_chip_reset(dev);
1207 init_registers(dev);
1208
c0d7a021 1209 spin_unlock_bh(&rp->lock);
1da177e4
LT
1210 enable_irq(rp->pdev->irq);
1211
1ae5dc34 1212 dev->trans_start = jiffies; /* prevent tx timeout */
553e2335 1213 dev->stats.tx_errors++;
1da177e4
LT
1214 netif_wake_queue(dev);
1215}
1216
c0d7a021
JP
1217static void rhine_tx_timeout(struct net_device *dev)
1218{
1219 struct rhine_private *rp = netdev_priv(dev);
1220 void __iomem *ioaddr = rp->base;
1221
1222 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1223 "%4.4x, resetting...\n",
1224 dev->name, ioread16(ioaddr + IntrStatus),
1225 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1226
1227 schedule_work(&rp->reset_task);
1228}
1229
61357325
SH
1230static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1231 struct net_device *dev)
1da177e4
LT
1232{
1233 struct rhine_private *rp = netdev_priv(dev);
1234 void __iomem *ioaddr = rp->base;
1235 unsigned entry;
22580f89 1236 unsigned long flags;
1da177e4
LT
1237
1238 /* Caution: the write order is important here, set the field
1239 with the "ownership" bits last. */
1240
1241 /* Calculate the next Tx descriptor entry. */
1242 entry = rp->cur_tx % TX_RING_SIZE;
1243
5b057c6b 1244 if (skb_padto(skb, ETH_ZLEN))
6ed10654 1245 return NETDEV_TX_OK;
1da177e4
LT
1246
1247 rp->tx_skbuff[entry] = skb;
1248
1249 if ((rp->quirks & rqRhineI) &&
84fa7933 1250 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1da177e4
LT
1251 /* Must use alignment buffer. */
1252 if (skb->len > PKT_BUF_SZ) {
1253 /* packet too long, drop it */
1254 dev_kfree_skb(skb);
1255 rp->tx_skbuff[entry] = NULL;
553e2335 1256 dev->stats.tx_dropped++;
6ed10654 1257 return NETDEV_TX_OK;
1da177e4 1258 }
3e0d167a
CB
1259
1260 /* Padding is not copied and so must be redone. */
1da177e4 1261 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
3e0d167a
CB
1262 if (skb->len < ETH_ZLEN)
1263 memset(rp->tx_buf[entry] + skb->len, 0,
1264 ETH_ZLEN - skb->len);
1da177e4
LT
1265 rp->tx_skbuff_dma[entry] = 0;
1266 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1267 (rp->tx_buf[entry] -
1268 rp->tx_bufs));
1269 } else {
1270 rp->tx_skbuff_dma[entry] =
1271 pci_map_single(rp->pdev, skb->data, skb->len,
1272 PCI_DMA_TODEVICE);
1273 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1274 }
1275
1276 rp->tx_ring[entry].desc_length =
1277 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1278
1279 /* lock eth irq */
22580f89 1280 spin_lock_irqsave(&rp->lock, flags);
1da177e4
LT
1281 wmb();
1282 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1283 wmb();
1284
1285 rp->cur_tx++;
1286
1287 /* Non-x86 Todo: explicitly flush cache lines here. */
1288
1289 /* Wake the potentially-idle transmit channel */
1290 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1291 ioaddr + ChipCmd1);
1292 IOSYNC;
1293
1294 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1295 netif_stop_queue(dev);
1296
22580f89 1297 spin_unlock_irqrestore(&rp->lock, flags);
1da177e4
LT
1298
1299 if (debug > 4) {
1300 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1301 dev->name, rp->cur_tx-1, entry);
1302 }
6ed10654 1303 return NETDEV_TX_OK;
1da177e4
LT
1304}
1305
1306/* The interrupt handler does all of the Rx thread work and cleans up
1307 after the Tx thread. */
7d12e780 1308static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1da177e4
LT
1309{
1310 struct net_device *dev = dev_instance;
1311 struct rhine_private *rp = netdev_priv(dev);
1312 void __iomem *ioaddr = rp->base;
1313 u32 intr_status;
1314 int boguscnt = max_interrupt_work;
1315 int handled = 0;
1316
1317 while ((intr_status = get_intr_status(dev))) {
1318 handled = 1;
1319
1320 /* Acknowledge all of the current interrupt sources ASAP. */
1321 if (intr_status & IntrTxDescRace)
1322 iowrite8(0x08, ioaddr + IntrStatus2);
1323 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1324 IOSYNC;
1325
1326 if (debug > 4)
1327 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1328 dev->name, intr_status);
1329
1330 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
633949a1 1331 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
633949a1
RL
1332 iowrite16(IntrTxAborted |
1333 IntrTxDone | IntrTxError | IntrTxUnderrun |
1334 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1335 ioaddr + IntrEnable);
1336
288379f0 1337 napi_schedule(&rp->napi);
633949a1 1338 }
1da177e4
LT
1339
1340 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1341 if (intr_status & IntrTxErrSummary) {
1342 /* Avoid scavenging before Tx engine turned off */
1343 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1344 if (debug > 2 &&
1345 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1346 printk(KERN_WARNING "%s: "
2450022a 1347 "rhine_interrupt() Tx engine "
1da177e4
LT
1348 "still on.\n", dev->name);
1349 }
1350 rhine_tx(dev);
1351 }
1352
1353 /* Abnormal error summary/uncommon events handlers. */
1354 if (intr_status & (IntrPCIErr | IntrLinkChange |
1355 IntrStatsMax | IntrTxError | IntrTxAborted |
1356 IntrTxUnderrun | IntrTxDescRace))
1357 rhine_error(dev, intr_status);
1358
1359 if (--boguscnt < 0) {
1360 printk(KERN_WARNING "%s: Too much work at interrupt, "
1361 "status=%#8.8x.\n",
1362 dev->name, intr_status);
1363 break;
1364 }
1365 }
1366
1367 if (debug > 3)
1368 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1369 dev->name, ioread16(ioaddr + IntrStatus));
1370 return IRQ_RETVAL(handled);
1371}
1372
1373/* This routine is logically part of the interrupt handler, but isolated
1374 for clarity. */
1375static void rhine_tx(struct net_device *dev)
1376{
1377 struct rhine_private *rp = netdev_priv(dev);
1378 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1379
1380 spin_lock(&rp->lock);
1381
1382 /* find and cleanup dirty tx descriptors */
1383 while (rp->dirty_tx != rp->cur_tx) {
1384 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1385 if (debug > 6)
ed4030d1 1386 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1da177e4
LT
1387 entry, txstatus);
1388 if (txstatus & DescOwn)
1389 break;
1390 if (txstatus & 0x8000) {
1391 if (debug > 1)
1392 printk(KERN_DEBUG "%s: Transmit error, "
1393 "Tx status %8.8x.\n",
1394 dev->name, txstatus);
553e2335
ED
1395 dev->stats.tx_errors++;
1396 if (txstatus & 0x0400)
1397 dev->stats.tx_carrier_errors++;
1398 if (txstatus & 0x0200)
1399 dev->stats.tx_window_errors++;
1400 if (txstatus & 0x0100)
1401 dev->stats.tx_aborted_errors++;
1402 if (txstatus & 0x0080)
1403 dev->stats.tx_heartbeat_errors++;
1da177e4
LT
1404 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1405 (txstatus & 0x0800) || (txstatus & 0x1000)) {
553e2335 1406 dev->stats.tx_fifo_errors++;
1da177e4
LT
1407 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1408 break; /* Keep the skb - we try again */
1409 }
1410 /* Transmitter restarted in 'abnormal' handler. */
1411 } else {
1412 if (rp->quirks & rqRhineI)
553e2335 1413 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1da177e4 1414 else
553e2335 1415 dev->stats.collisions += txstatus & 0x0F;
1da177e4
LT
1416 if (debug > 6)
1417 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1418 (txstatus >> 3) & 0xF,
1419 txstatus & 0xF);
553e2335
ED
1420 dev->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1421 dev->stats.tx_packets++;
1da177e4
LT
1422 }
1423 /* Free the original skb. */
1424 if (rp->tx_skbuff_dma[entry]) {
1425 pci_unmap_single(rp->pdev,
1426 rp->tx_skbuff_dma[entry],
1427 rp->tx_skbuff[entry]->len,
1428 PCI_DMA_TODEVICE);
1429 }
1430 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1431 rp->tx_skbuff[entry] = NULL;
1432 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1433 }
1434 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1435 netif_wake_queue(dev);
1436
1437 spin_unlock(&rp->lock);
1438}
1439
633949a1
RL
1440/* Process up to limit frames from receive ring */
1441static int rhine_rx(struct net_device *dev, int limit)
1da177e4
LT
1442{
1443 struct rhine_private *rp = netdev_priv(dev);
633949a1 1444 int count;
1da177e4 1445 int entry = rp->cur_rx % RX_RING_SIZE;
1da177e4
LT
1446
1447 if (debug > 4) {
1448 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1449 dev->name, entry,
1450 le32_to_cpu(rp->rx_head_desc->rx_status));
1451 }
1452
1453 /* If EOP is set on the next entry, it's a new packet. Send it up. */
633949a1 1454 for (count = 0; count < limit; ++count) {
1da177e4
LT
1455 struct rx_desc *desc = rp->rx_head_desc;
1456 u32 desc_status = le32_to_cpu(desc->rx_status);
1457 int data_size = desc_status >> 16;
1458
633949a1
RL
1459 if (desc_status & DescOwn)
1460 break;
1461
1da177e4 1462 if (debug > 4)
ed4030d1 1463 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1da177e4 1464 desc_status);
633949a1 1465
1da177e4
LT
1466 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1467 if ((desc_status & RxWholePkt) != RxWholePkt) {
1468 printk(KERN_WARNING "%s: Oversized Ethernet "
1469 "frame spanned multiple buffers, entry "
1470 "%#x length %d status %8.8x!\n",
1471 dev->name, entry, data_size,
1472 desc_status);
1473 printk(KERN_WARNING "%s: Oversized Ethernet "
1474 "frame %p vs %p.\n", dev->name,
1475 rp->rx_head_desc, &rp->rx_ring[entry]);
553e2335 1476 dev->stats.rx_length_errors++;
1da177e4
LT
1477 } else if (desc_status & RxErr) {
1478 /* There was a error. */
1479 if (debug > 2)
ed4030d1 1480 printk(KERN_DEBUG "rhine_rx() Rx "
1da177e4
LT
1481 "error was %8.8x.\n",
1482 desc_status);
553e2335
ED
1483 dev->stats.rx_errors++;
1484 if (desc_status & 0x0030)
1485 dev->stats.rx_length_errors++;
1486 if (desc_status & 0x0048)
1487 dev->stats.rx_fifo_errors++;
1488 if (desc_status & 0x0004)
1489 dev->stats.rx_frame_errors++;
1da177e4
LT
1490 if (desc_status & 0x0002) {
1491 /* this can also be updated outside the interrupt handler */
1492 spin_lock(&rp->lock);
553e2335 1493 dev->stats.rx_crc_errors++;
1da177e4
LT
1494 spin_unlock(&rp->lock);
1495 }
1496 }
1497 } else {
89d71a66 1498 struct sk_buff *skb = NULL;
1da177e4
LT
1499 /* Length should omit the CRC */
1500 int pkt_len = data_size - 4;
1501
1502 /* Check if the packet is long enough to accept without
1503 copying to a minimally-sized skbuff. */
89d71a66
ED
1504 if (pkt_len < rx_copybreak)
1505 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1506 if (skb) {
1da177e4
LT
1507 pci_dma_sync_single_for_cpu(rp->pdev,
1508 rp->rx_skbuff_dma[entry],
1509 rp->rx_buf_sz,
1510 PCI_DMA_FROMDEVICE);
1511
8c7b7faa 1512 skb_copy_to_linear_data(skb,
689be439 1513 rp->rx_skbuff[entry]->data,
8c7b7faa 1514 pkt_len);
1da177e4
LT
1515 skb_put(skb, pkt_len);
1516 pci_dma_sync_single_for_device(rp->pdev,
1517 rp->rx_skbuff_dma[entry],
1518 rp->rx_buf_sz,
1519 PCI_DMA_FROMDEVICE);
1520 } else {
1521 skb = rp->rx_skbuff[entry];
1522 if (skb == NULL) {
1523 printk(KERN_ERR "%s: Inconsistent Rx "
1524 "descriptor chain.\n",
1525 dev->name);
1526 break;
1527 }
1528 rp->rx_skbuff[entry] = NULL;
1529 skb_put(skb, pkt_len);
1530 pci_unmap_single(rp->pdev,
1531 rp->rx_skbuff_dma[entry],
1532 rp->rx_buf_sz,
1533 PCI_DMA_FROMDEVICE);
1534 }
1535 skb->protocol = eth_type_trans(skb, dev);
633949a1 1536 netif_receive_skb(skb);
553e2335
ED
1537 dev->stats.rx_bytes += pkt_len;
1538 dev->stats.rx_packets++;
1da177e4
LT
1539 }
1540 entry = (++rp->cur_rx) % RX_RING_SIZE;
1541 rp->rx_head_desc = &rp->rx_ring[entry];
1542 }
1543
1544 /* Refill the Rx ring buffers. */
1545 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1546 struct sk_buff *skb;
1547 entry = rp->dirty_rx % RX_RING_SIZE;
1548 if (rp->rx_skbuff[entry] == NULL) {
b26b555a 1549 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
1550 rp->rx_skbuff[entry] = skb;
1551 if (skb == NULL)
1552 break; /* Better luck next round. */
1553 skb->dev = dev; /* Mark as being used by this device. */
1554 rp->rx_skbuff_dma[entry] =
689be439 1555 pci_map_single(rp->pdev, skb->data,
1da177e4
LT
1556 rp->rx_buf_sz,
1557 PCI_DMA_FROMDEVICE);
1558 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1559 }
1560 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1561 }
633949a1
RL
1562
1563 return count;
1da177e4
LT
1564}
1565
1566/*
1567 * Clears the "tally counters" for CRC errors and missed frames(?).
1568 * It has been reported that some chips need a write of 0 to clear
1569 * these, for others the counters are set to 1 when written to and
1570 * instead cleared when read. So we clear them both ways ...
1571 */
1572static inline void clear_tally_counters(void __iomem *ioaddr)
1573{
1574 iowrite32(0, ioaddr + RxMissed);
1575 ioread16(ioaddr + RxCRCErrs);
1576 ioread16(ioaddr + RxMissed);
1577}
1578
1579static void rhine_restart_tx(struct net_device *dev) {
1580 struct rhine_private *rp = netdev_priv(dev);
1581 void __iomem *ioaddr = rp->base;
1582 int entry = rp->dirty_tx % TX_RING_SIZE;
1583 u32 intr_status;
1584
1585 /*
1586 * If new errors occured, we need to sort them out before doing Tx.
1587 * In that case the ISR will be back here RSN anyway.
1588 */
1589 intr_status = get_intr_status(dev);
1590
1591 if ((intr_status & IntrTxErrSummary) == 0) {
1592
1593 /* We know better than the chip where it should continue. */
1594 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1595 ioaddr + TxRingPtr);
1596
1597 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1598 ioaddr + ChipCmd);
1599 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1600 ioaddr + ChipCmd1);
1601 IOSYNC;
1602 }
1603 else {
1604 /* This should never happen */
1605 if (debug > 1)
1606 printk(KERN_WARNING "%s: rhine_restart_tx() "
1607 "Another error occured %8.8x.\n",
1608 dev->name, intr_status);
1609 }
1610
1611}
1612
1613static void rhine_error(struct net_device *dev, int intr_status)
1614{
1615 struct rhine_private *rp = netdev_priv(dev);
1616 void __iomem *ioaddr = rp->base;
1617
1618 spin_lock(&rp->lock);
1619
1620 if (intr_status & IntrLinkChange)
38bb6b28 1621 rhine_check_media(dev, 0);
1da177e4 1622 if (intr_status & IntrStatsMax) {
553e2335
ED
1623 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1624 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1da177e4
LT
1625 clear_tally_counters(ioaddr);
1626 }
1627 if (intr_status & IntrTxAborted) {
1628 if (debug > 1)
1629 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1630 dev->name, intr_status);
1631 }
1632 if (intr_status & IntrTxUnderrun) {
1633 if (rp->tx_thresh < 0xE0)
1634 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1635 if (debug > 1)
1636 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1637 "threshold now %2.2x.\n",
1638 dev->name, rp->tx_thresh);
1639 }
1640 if (intr_status & IntrTxDescRace) {
1641 if (debug > 2)
1642 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1643 dev->name);
1644 }
1645 if ((intr_status & IntrTxError) &&
1646 (intr_status & (IntrTxAborted |
1647 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1648 if (rp->tx_thresh < 0xE0) {
1649 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1650 }
1651 if (debug > 1)
1652 printk(KERN_INFO "%s: Unspecified error. Tx "
1653 "threshold now %2.2x.\n",
1654 dev->name, rp->tx_thresh);
1655 }
1656 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1657 IntrTxError))
1658 rhine_restart_tx(dev);
1659
1660 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1661 IntrTxError | IntrTxAborted | IntrNormalSummary |
1662 IntrTxDescRace)) {
1663 if (debug > 1)
1664 printk(KERN_ERR "%s: Something Wicked happened! "
1665 "%8.8x.\n", dev->name, intr_status);
1666 }
1667
1668 spin_unlock(&rp->lock);
1669}
1670
1671static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1672{
1673 struct rhine_private *rp = netdev_priv(dev);
1674 void __iomem *ioaddr = rp->base;
1675 unsigned long flags;
1676
1677 spin_lock_irqsave(&rp->lock, flags);
553e2335
ED
1678 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1679 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1da177e4
LT
1680 clear_tally_counters(ioaddr);
1681 spin_unlock_irqrestore(&rp->lock, flags);
1682
553e2335 1683 return &dev->stats;
1da177e4
LT
1684}
1685
1686static void rhine_set_rx_mode(struct net_device *dev)
1687{
1688 struct rhine_private *rp = netdev_priv(dev);
1689 void __iomem *ioaddr = rp->base;
1690 u32 mc_filter[2]; /* Multicast hash filter */
1691 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1692
1693 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
1694 rx_mode = 0x1C;
1695 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1696 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
4cd24eaf 1697 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 1698 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
1699 /* Too many to match, or accept all multicasts. */
1700 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1701 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1702 rx_mode = 0x0C;
1703 } else {
22bedad3 1704 struct netdev_hw_addr *ha;
567ec874 1705
1da177e4 1706 memset(mc_filter, 0, sizeof(mc_filter));
22bedad3
JP
1707 netdev_for_each_mc_addr(ha, dev) {
1708 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
1da177e4
LT
1709
1710 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1711 }
1712 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1713 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1714 rx_mode = 0x0C;
1715 }
1716 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1717}
1718
1719static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1720{
1721 struct rhine_private *rp = netdev_priv(dev);
1722
1723 strcpy(info->driver, DRV_NAME);
1724 strcpy(info->version, DRV_VERSION);
1725 strcpy(info->bus_info, pci_name(rp->pdev));
1726}
1727
1728static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1729{
1730 struct rhine_private *rp = netdev_priv(dev);
1731 int rc;
1732
1733 spin_lock_irq(&rp->lock);
1734 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1735 spin_unlock_irq(&rp->lock);
1736
1737 return rc;
1738}
1739
1740static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1741{
1742 struct rhine_private *rp = netdev_priv(dev);
1743 int rc;
1744
1745 spin_lock_irq(&rp->lock);
1746 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1747 spin_unlock_irq(&rp->lock);
00b428c2 1748 rhine_set_carrier(&rp->mii_if);
1da177e4
LT
1749
1750 return rc;
1751}
1752
1753static int netdev_nway_reset(struct net_device *dev)
1754{
1755 struct rhine_private *rp = netdev_priv(dev);
1756
1757 return mii_nway_restart(&rp->mii_if);
1758}
1759
1760static u32 netdev_get_link(struct net_device *dev)
1761{
1762 struct rhine_private *rp = netdev_priv(dev);
1763
1764 return mii_link_ok(&rp->mii_if);
1765}
1766
1767static u32 netdev_get_msglevel(struct net_device *dev)
1768{
1769 return debug;
1770}
1771
1772static void netdev_set_msglevel(struct net_device *dev, u32 value)
1773{
1774 debug = value;
1775}
1776
1777static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1778{
1779 struct rhine_private *rp = netdev_priv(dev);
1780
1781 if (!(rp->quirks & rqWOL))
1782 return;
1783
1784 spin_lock_irq(&rp->lock);
1785 wol->supported = WAKE_PHY | WAKE_MAGIC |
1786 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1787 wol->wolopts = rp->wolopts;
1788 spin_unlock_irq(&rp->lock);
1789}
1790
1791static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1792{
1793 struct rhine_private *rp = netdev_priv(dev);
1794 u32 support = WAKE_PHY | WAKE_MAGIC |
1795 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1796
1797 if (!(rp->quirks & rqWOL))
1798 return -EINVAL;
1799
1800 if (wol->wolopts & ~support)
1801 return -EINVAL;
1802
1803 spin_lock_irq(&rp->lock);
1804 rp->wolopts = wol->wolopts;
1805 spin_unlock_irq(&rp->lock);
1806
1807 return 0;
1808}
1809
7282d491 1810static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
1811 .get_drvinfo = netdev_get_drvinfo,
1812 .get_settings = netdev_get_settings,
1813 .set_settings = netdev_set_settings,
1814 .nway_reset = netdev_nway_reset,
1815 .get_link = netdev_get_link,
1816 .get_msglevel = netdev_get_msglevel,
1817 .set_msglevel = netdev_set_msglevel,
1818 .get_wol = rhine_get_wol,
1819 .set_wol = rhine_set_wol,
1da177e4
LT
1820};
1821
1822static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1823{
1824 struct rhine_private *rp = netdev_priv(dev);
1825 int rc;
1826
1827 if (!netif_running(dev))
1828 return -EINVAL;
1829
1830 spin_lock_irq(&rp->lock);
1831 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1832 spin_unlock_irq(&rp->lock);
00b428c2 1833 rhine_set_carrier(&rp->mii_if);
1da177e4
LT
1834
1835 return rc;
1836}
1837
1838static int rhine_close(struct net_device *dev)
1839{
1840 struct rhine_private *rp = netdev_priv(dev);
1841 void __iomem *ioaddr = rp->base;
1842
bea3348e 1843 napi_disable(&rp->napi);
c0d7a021
JP
1844 cancel_work_sync(&rp->reset_task);
1845 netif_stop_queue(dev);
1846
1847 spin_lock_irq(&rp->lock);
1da177e4
LT
1848
1849 if (debug > 1)
1850 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1851 "status was %4.4x.\n",
1852 dev->name, ioread16(ioaddr + ChipCmd));
1853
1854 /* Switch to loopback mode to avoid hardware races. */
1855 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1856
1857 /* Disable interrupts by clearing the interrupt mask. */
1858 iowrite16(0x0000, ioaddr + IntrEnable);
1859
1860 /* Stop the chip's Tx and Rx processes. */
1861 iowrite16(CmdStop, ioaddr + ChipCmd);
1862
1863 spin_unlock_irq(&rp->lock);
1864
1865 free_irq(rp->pdev->irq, dev);
1866 free_rbufs(dev);
1867 free_tbufs(dev);
1868 free_ring(dev);
1869
1870 return 0;
1871}
1872
1873
1874static void __devexit rhine_remove_one(struct pci_dev *pdev)
1875{
1876 struct net_device *dev = pci_get_drvdata(pdev);
1877 struct rhine_private *rp = netdev_priv(dev);
1878
1879 unregister_netdev(dev);
1880
1881 pci_iounmap(pdev, rp->base);
1882 pci_release_regions(pdev);
1883
1884 free_netdev(dev);
1885 pci_disable_device(pdev);
1886 pci_set_drvdata(pdev, NULL);
1887}
1888
d18c3db5 1889static void rhine_shutdown (struct pci_dev *pdev)
1da177e4 1890{
1da177e4
LT
1891 struct net_device *dev = pci_get_drvdata(pdev);
1892 struct rhine_private *rp = netdev_priv(dev);
1893 void __iomem *ioaddr = rp->base;
1894
1895 if (!(rp->quirks & rqWOL))
1896 return; /* Nothing to do for non-WOL adapters */
1897
1898 rhine_power_init(dev);
1899
1900 /* Make sure we use pattern 0, 1 and not 4, 5 */
1901 if (rp->quirks & rq6patterns)
f11cf25e 1902 iowrite8(0x04, ioaddr + WOLcgClr);
1da177e4
LT
1903
1904 if (rp->wolopts & WAKE_MAGIC) {
1905 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1906 /*
1907 * Turn EEPROM-controlled wake-up back on -- some hardware may
1908 * not cooperate otherwise.
1909 */
1910 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1911 }
1912
1913 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1914 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1915
1916 if (rp->wolopts & WAKE_PHY)
1917 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1918
1919 if (rp->wolopts & WAKE_UCAST)
1920 iowrite8(WOLucast, ioaddr + WOLcrSet);
1921
1922 if (rp->wolopts) {
1923 /* Enable legacy WOL (for old motherboards) */
1924 iowrite8(0x01, ioaddr + PwcfgSet);
1925 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1926 }
1927
1928 /* Hit power state D3 (sleep) */
b933b4d9
RL
1929 if (!avoid_D3)
1930 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1da177e4
LT
1931
1932 /* TODO: Check use of pci_enable_wake() */
1933
1934}
1935
1936#ifdef CONFIG_PM
1937static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1938{
1939 struct net_device *dev = pci_get_drvdata(pdev);
1940 struct rhine_private *rp = netdev_priv(dev);
1941 unsigned long flags;
1942
1943 if (!netif_running(dev))
1944 return 0;
1945
bea3348e 1946 napi_disable(&rp->napi);
32b0f53e 1947
1da177e4
LT
1948 netif_device_detach(dev);
1949 pci_save_state(pdev);
1950
1951 spin_lock_irqsave(&rp->lock, flags);
d18c3db5 1952 rhine_shutdown(pdev);
1da177e4
LT
1953 spin_unlock_irqrestore(&rp->lock, flags);
1954
1955 free_irq(dev->irq, dev);
1956 return 0;
1957}
1958
1959static int rhine_resume(struct pci_dev *pdev)
1960{
1961 struct net_device *dev = pci_get_drvdata(pdev);
1962 struct rhine_private *rp = netdev_priv(dev);
1963 unsigned long flags;
1964 int ret;
1965
1966 if (!netif_running(dev))
1967 return 0;
1968
1fb9df5d 1969 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1da177e4
LT
1970 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1971
1972 ret = pci_set_power_state(pdev, PCI_D0);
1973 if (debug > 1)
1974 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1975 dev->name, ret ? "failed" : "succeeded", ret);
1976
1977 pci_restore_state(pdev);
1978
1979 spin_lock_irqsave(&rp->lock, flags);
1980#ifdef USE_MMIO
1981 enable_mmio(rp->pioaddr, rp->quirks);
1982#endif
1983 rhine_power_init(dev);
1984 free_tbufs(dev);
1985 free_rbufs(dev);
1986 alloc_tbufs(dev);
1987 alloc_rbufs(dev);
1988 init_registers(dev);
1989 spin_unlock_irqrestore(&rp->lock, flags);
1990
1991 netif_device_attach(dev);
1992
1993 return 0;
1994}
1995#endif /* CONFIG_PM */
1996
1997static struct pci_driver rhine_driver = {
1998 .name = DRV_NAME,
1999 .id_table = rhine_pci_tbl,
2000 .probe = rhine_init_one,
2001 .remove = __devexit_p(rhine_remove_one),
2002#ifdef CONFIG_PM
2003 .suspend = rhine_suspend,
2004 .resume = rhine_resume,
2005#endif /* CONFIG_PM */
d18c3db5 2006 .shutdown = rhine_shutdown,
1da177e4
LT
2007};
2008
e84df485
RL
2009static struct dmi_system_id __initdata rhine_dmi_table[] = {
2010 {
2011 .ident = "EPIA-M",
2012 .matches = {
2013 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2014 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2015 },
2016 },
2017 {
2018 .ident = "KV7",
2019 .matches = {
2020 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2021 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2022 },
2023 },
2024 { NULL }
2025};
1da177e4
LT
2026
2027static int __init rhine_init(void)
2028{
2029/* when a module, this is printed whether or not devices are found in probe */
2030#ifdef MODULE
2031 printk(version);
2032#endif
e84df485
RL
2033 if (dmi_check_system(rhine_dmi_table)) {
2034 /* these BIOSes fail at PXE boot if chip is in D3 */
2035 avoid_D3 = 1;
2036 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2037 "enabled.\n",
2038 DRV_NAME);
2039 }
2040 else if (avoid_D3)
2041 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2042
29917620 2043 return pci_register_driver(&rhine_driver);
1da177e4
LT
2044}
2045
2046
2047static void __exit rhine_cleanup(void)
2048{
2049 pci_unregister_driver(&rhine_driver);
2050}
2051
2052
2053module_init(rhine_init);
2054module_exit(rhine_cleanup);