]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/sundance.c
drivers/net: Remove unnecessary returns from void function()s
[net-next-2.6.git] / drivers / net / sundance.c
CommitLineData
1da177e4
LT
1/* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
2/*
3 Written 1999-2000 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
15 Annapolis MD 21403
16
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
03a8c661 19 [link no longer provides useful info -jgarzik]
e714d99c
PDM
20 Archives of the mailing list are still available at
21 http://www.beowulf.org/pipermail/netdrivers/
1da177e4 22
1da177e4
LT
23*/
24
25#define DRV_NAME "sundance"
d5b20697
AG
26#define DRV_VERSION "1.2"
27#define DRV_RELDATE "11-Sep-2006"
1da177e4
LT
28
29
30/* The user-configurable values.
31 These may be modified when a driver module is loaded.*/
32static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
33/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
34 Typical is a 64 element hash table based on the Ethernet CRC. */
f71e1309 35static const int multicast_filter_limit = 32;
1da177e4
LT
36
37/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
38 Setting to > 1518 effectively disables this feature.
39 This chip can receive into offset buffers, so the Alpha does not
40 need a copy-align. */
41static int rx_copybreak;
42static int flowctrl=1;
43
44/* media[] specifies the media type the NIC operates at.
45 autosense Autosensing active media.
46 10mbps_hd 10Mbps half duplex.
47 10mbps_fd 10Mbps full duplex.
48 100mbps_hd 100Mbps half duplex.
49 100mbps_fd 100Mbps full duplex.
50 0 Autosensing active media.
51 1 10Mbps half duplex.
52 2 10Mbps full duplex.
53 3 100Mbps half duplex.
54 4 100Mbps full duplex.
55*/
56#define MAX_UNITS 8
57static char *media[MAX_UNITS];
58
59
60/* Operational parameters that are set at compile time. */
61
62/* Keep the ring sizes a power of two for compile efficiency.
63 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
64 Making the Tx ring too large decreases the effectiveness of channel
65 bonding and packet priority, and more than 128 requires modifying the
66 Tx error recovery.
67 Large receive rings merely waste memory. */
68#define TX_RING_SIZE 32
69#define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
70#define RX_RING_SIZE 64
71#define RX_BUDGET 32
72#define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
73#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
74
75/* Operational parameters that usually are not changed. */
76/* Time in jiffies before concluding the transmitter is hung. */
77#define TX_TIMEOUT (4*HZ)
78#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
79
80/* Include files, designed to support most kernel versions 2.0.0 and later. */
81#include <linux/module.h>
82#include <linux/kernel.h>
83#include <linux/string.h>
84#include <linux/timer.h>
85#include <linux/errno.h>
86#include <linux/ioport.h>
1da177e4
LT
87#include <linux/interrupt.h>
88#include <linux/pci.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/skbuff.h>
92#include <linux/init.h>
93#include <linux/bitops.h>
94#include <asm/uaccess.h>
95#include <asm/processor.h> /* Processor type for cache alignment. */
96#include <asm/io.h>
97#include <linux/delay.h>
98#include <linux/spinlock.h>
99#ifndef _COMPAT_WITH_OLD_KERNEL
100#include <linux/crc32.h>
101#include <linux/ethtool.h>
102#include <linux/mii.h>
103#else
104#include "crc32.h"
105#include "ethtool.h"
106#include "mii.h"
107#include "compat.h"
108#endif
109
110/* These identify the driver base version and may not be removed. */
3af0fe39
SH
111static const char version[] __devinitconst =
112 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE
113 " Written by Donald Becker\n";
1da177e4
LT
114
115MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
116MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
117MODULE_LICENSE("GPL");
118
119module_param(debug, int, 0);
120module_param(rx_copybreak, int, 0);
121module_param_array(media, charp, NULL, 0);
122module_param(flowctrl, int, 0);
123MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
124MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
125MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
126
127/*
128 Theory of Operation
129
130I. Board Compatibility
131
132This driver is designed for the Sundance Technologies "Alta" ST201 chip.
133
134II. Board-specific settings
135
136III. Driver operation
137
138IIIa. Ring buffers
139
140This driver uses two statically allocated fixed-size descriptor lists
141formed into rings by a branch from the final descriptor to the beginning of
142the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
143Some chips explicitly use only 2^N sized rings, while others use a
144'next descriptor' pointer that the driver forms into rings.
145
146IIIb/c. Transmit/Receive Structure
147
148This driver uses a zero-copy receive and transmit scheme.
149The driver allocates full frame size skbuffs for the Rx ring buffers at
150open() time and passes the skb->data field to the chip as receive data
151buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
152a fresh skbuff is allocated and the frame is copied to the new skbuff.
153When the incoming frame is larger, the skbuff is passed directly up the
154protocol stack. Buffers consumed this way are replaced by newly allocated
155skbuffs in a later phase of receives.
156
157The RX_COPYBREAK value is chosen to trade-off the memory wasted by
158using a full-sized skbuff for small frames vs. the copying costs of larger
159frames. New boards are typically used in generously configured machines
160and the underfilled buffers have negligible impact compared to the benefit of
161a single allocation size, so the default value of zero results in never
162copying packets. When copying is done, the cost is usually mitigated by using
163a combined copy/checksum routine. Copying also preloads the cache, which is
164most useful with small frames.
165
166A subtle aspect of the operation is that the IP header at offset 14 in an
167ethernet frame isn't longword aligned for further processing.
168Unaligned buffers are permitted by the Sundance hardware, so
169frames are received into the skbuff at an offset of "+2", 16-byte aligning
170the IP header.
171
172IIId. Synchronization
173
174The driver runs as two independent, single-threaded flows of control. One
175is the send-packet routine, which enforces single-threaded use by the
176dev->tbusy flag. The other thread is the interrupt handler, which is single
177threaded by the hardware and interrupt handling software.
178
179The send packet thread has partial control over the Tx ring and 'dev->tbusy'
180flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
181queue slot is empty, it clears the tbusy flag when finished otherwise it sets
182the 'lp->tx_full' flag.
183
184The interrupt handler has exclusive control over the Rx ring and records stats
185from the Tx ring. After reaping the stats, it marks the Tx queue entry as
186empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
187clears both the tx_full and tbusy flags.
188
189IV. Notes
190
191IVb. References
192
193The Sundance ST201 datasheet, preliminary version.
b71b95ef
PDM
194The Kendin KS8723 datasheet, preliminary version.
195The ICplus IP100 datasheet, preliminary version.
196http://www.scyld.com/expert/100mbps.html
197http://www.scyld.com/expert/NWay.html
1da177e4
LT
198
199IVc. Errata
200
201*/
202
203/* Work-around for Kendin chip bugs. */
204#ifndef CONFIG_SUNDANCE_MMIO
205#define USE_IO_OPS 1
206#endif
207
a3aa1884 208static DEFINE_PCI_DEVICE_TABLE(sundance_pci_tbl) = {
46009c8b
JG
209 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
210 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
211 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
212 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
213 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
214 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
215 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
216 { }
1da177e4
LT
217};
218MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
219
220enum {
221 netdev_io_size = 128
222};
223
224struct pci_id_info {
225 const char *name;
226};
46009c8b 227static const struct pci_id_info pci_id_tbl[] __devinitdata = {
1da177e4
LT
228 {"D-Link DFE-550TX FAST Ethernet Adapter"},
229 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
230 {"D-Link DFE-580TX 4 port Server Adapter"},
231 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
232 {"D-Link DL10050-based FAST Ethernet Adapter"},
233 {"Sundance Technology Alta"},
1668b19f 234 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
46009c8b 235 { } /* terminate list. */
1da177e4
LT
236};
237
238/* This driver was written to use PCI memory space, however x86-oriented
239 hardware often uses I/O space accesses. */
240
241/* Offsets to the device registers.
242 Unlike software-only systems, device drivers interact with complex hardware.
243 It's not useful to define symbolic names for every register bit in the
244 device. The name can only partially document the semantics and make
245 the driver longer and more difficult to read.
246 In general, only the important configuration values or bits changed
247 multiple times should be defined symbolically.
248*/
249enum alta_offsets {
250 DMACtrl = 0x00,
251 TxListPtr = 0x04,
252 TxDMABurstThresh = 0x08,
253 TxDMAUrgentThresh = 0x09,
254 TxDMAPollPeriod = 0x0a,
255 RxDMAStatus = 0x0c,
256 RxListPtr = 0x10,
257 DebugCtrl0 = 0x1a,
258 DebugCtrl1 = 0x1c,
259 RxDMABurstThresh = 0x14,
260 RxDMAUrgentThresh = 0x15,
261 RxDMAPollPeriod = 0x16,
262 LEDCtrl = 0x1a,
263 ASICCtrl = 0x30,
264 EEData = 0x34,
265 EECtrl = 0x36,
1da177e4
LT
266 FlashAddr = 0x40,
267 FlashData = 0x44,
268 TxStatus = 0x46,
269 TxFrameId = 0x47,
270 DownCounter = 0x18,
271 IntrClear = 0x4a,
272 IntrEnable = 0x4c,
273 IntrStatus = 0x4e,
274 MACCtrl0 = 0x50,
275 MACCtrl1 = 0x52,
276 StationAddr = 0x54,
277 MaxFrameSize = 0x5A,
278 RxMode = 0x5c,
279 MIICtrl = 0x5e,
280 MulticastFilter0 = 0x60,
281 MulticastFilter1 = 0x64,
282 RxOctetsLow = 0x68,
283 RxOctetsHigh = 0x6a,
284 TxOctetsLow = 0x6c,
285 TxOctetsHigh = 0x6e,
286 TxFramesOK = 0x70,
287 RxFramesOK = 0x72,
288 StatsCarrierError = 0x74,
289 StatsLateColl = 0x75,
290 StatsMultiColl = 0x76,
291 StatsOneColl = 0x77,
292 StatsTxDefer = 0x78,
293 RxMissed = 0x79,
294 StatsTxXSDefer = 0x7a,
295 StatsTxAbort = 0x7b,
296 StatsBcastTx = 0x7c,
297 StatsBcastRx = 0x7d,
298 StatsMcastTx = 0x7e,
299 StatsMcastRx = 0x7f,
300 /* Aliased and bogus values! */
301 RxStatus = 0x0c,
302};
303enum ASICCtrl_HiWord_bit {
304 GlobalReset = 0x0001,
305 RxReset = 0x0002,
306 TxReset = 0x0004,
307 DMAReset = 0x0008,
308 FIFOReset = 0x0010,
309 NetworkReset = 0x0020,
310 HostReset = 0x0040,
311 ResetBusy = 0x0400,
312};
313
314/* Bits in the interrupt status/mask registers. */
315enum intr_status_bits {
316 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
317 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
318 IntrDrvRqst=0x0040,
319 StatsMax=0x0080, LinkChange=0x0100,
320 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
321};
322
323/* Bits in the RxMode register. */
324enum rx_mode_bits {
325 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
326 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
327};
328/* Bits in MACCtrl. */
329enum mac_ctrl0_bits {
330 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
331 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
332};
333enum mac_ctrl1_bits {
334 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
335 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
336 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
337};
338
339/* The Rx and Tx buffer descriptors. */
340/* Note that using only 32 bit fields simplifies conversion to big-endian
341 architectures. */
342struct netdev_desc {
14c9d9b0
AV
343 __le32 next_desc;
344 __le32 status;
345 struct desc_frag { __le32 addr, length; } frag[1];
1da177e4
LT
346};
347
348/* Bits in netdev_desc.status */
349enum desc_status_bits {
350 DescOwn=0x8000,
351 DescEndPacket=0x4000,
352 DescEndRing=0x2000,
353 LastFrag=0x80000000,
354 DescIntrOnTx=0x8000,
355 DescIntrOnDMADone=0x80000000,
356 DisableAlign = 0x00000001,
357};
358
359#define PRIV_ALIGN 15 /* Required alignment mask */
360/* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
361 within the structure. */
362#define MII_CNT 4
363struct netdev_private {
364 /* Descriptor rings first for alignment. */
365 struct netdev_desc *rx_ring;
366 struct netdev_desc *tx_ring;
367 struct sk_buff* rx_skbuff[RX_RING_SIZE];
368 struct sk_buff* tx_skbuff[TX_RING_SIZE];
369 dma_addr_t tx_ring_dma;
370 dma_addr_t rx_ring_dma;
1da177e4
LT
371 struct timer_list timer; /* Media monitoring timer. */
372 /* Frequently used values: keep some adjacent for cache effect. */
373 spinlock_t lock;
374 spinlock_t rx_lock; /* Group with Tx control cache line. */
375 int msg_enable;
376 int chip_id;
377 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
378 unsigned int rx_buf_sz; /* Based on MTU+slack. */
379 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
380 unsigned int cur_tx, dirty_tx;
381 /* These values are keep track of the transceiver/media in use. */
382 unsigned int flowctrl:1;
383 unsigned int default_port:4; /* Last dev->if_port value. */
384 unsigned int an_enable:1;
385 unsigned int speed;
386 struct tasklet_struct rx_tasklet;
387 struct tasklet_struct tx_tasklet;
388 int budget;
389 int cur_task;
390 /* Multicast and receive mode. */
391 spinlock_t mcastlock; /* SMP lock multicast updates. */
392 u16 mcast_filter[4];
393 /* MII transceiver section. */
394 struct mii_if_info mii_if;
395 int mii_preamble_required;
396 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
397 struct pci_dev *pci_dev;
398 void __iomem *base;
1da177e4
LT
399};
400
401/* The station address location in the EEPROM. */
402#define EEPROM_SA_OFFSET 0x10
403#define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
404 IntrDrvRqst | IntrTxDone | StatsMax | \
405 LinkChange)
406
407static int change_mtu(struct net_device *dev, int new_mtu);
408static int eeprom_read(void __iomem *ioaddr, int location);
409static int mdio_read(struct net_device *dev, int phy_id, int location);
410static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
50500155 411static int mdio_wait_link(struct net_device *dev, int wait);
1da177e4
LT
412static int netdev_open(struct net_device *dev);
413static void check_duplex(struct net_device *dev);
414static void netdev_timer(unsigned long data);
415static void tx_timeout(struct net_device *dev);
416static void init_ring(struct net_device *dev);
61357325 417static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
1da177e4 418static int reset_tx (struct net_device *dev);
7d12e780 419static irqreturn_t intr_handler(int irq, void *dev_instance);
1da177e4
LT
420static void rx_poll(unsigned long data);
421static void tx_poll(unsigned long data);
422static void refill_rx (struct net_device *dev);
423static void netdev_error(struct net_device *dev, int intr_status);
424static void netdev_error(struct net_device *dev, int intr_status);
425static void set_rx_mode(struct net_device *dev);
426static int __set_mac_addr(struct net_device *dev);
427static struct net_device_stats *get_stats(struct net_device *dev);
428static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
429static int netdev_close(struct net_device *dev);
7282d491 430static const struct ethtool_ops ethtool_ops;
1da177e4 431
b71b95ef
PDM
432static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
433{
434 struct netdev_private *np = netdev_priv(dev);
435 void __iomem *ioaddr = np->base + ASICCtrl;
436 int countdown;
437
438 /* ST201 documentation states ASICCtrl is a 32bit register */
439 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
440 /* ST201 documentation states reset can take up to 1 ms */
441 countdown = 10 + 1;
442 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
443 if (--countdown == 0) {
444 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
445 break;
446 }
447 udelay(100);
448 }
449}
450
633a277e
SH
451static const struct net_device_ops netdev_ops = {
452 .ndo_open = netdev_open,
453 .ndo_stop = netdev_close,
454 .ndo_start_xmit = start_tx,
455 .ndo_get_stats = get_stats,
456 .ndo_set_multicast_list = set_rx_mode,
457 .ndo_do_ioctl = netdev_ioctl,
458 .ndo_tx_timeout = tx_timeout,
459 .ndo_change_mtu = change_mtu,
460 .ndo_set_mac_address = eth_mac_addr,
461 .ndo_validate_addr = eth_validate_addr,
462};
463
1da177e4
LT
464static int __devinit sundance_probe1 (struct pci_dev *pdev,
465 const struct pci_device_id *ent)
466{
467 struct net_device *dev;
468 struct netdev_private *np;
469 static int card_idx;
470 int chip_idx = ent->driver_data;
471 int irq;
472 int i;
473 void __iomem *ioaddr;
474 u16 mii_ctl;
475 void *ring_space;
476 dma_addr_t ring_dma;
477#ifdef USE_IO_OPS
478 int bar = 0;
479#else
480 int bar = 1;
481#endif
ac1d49f8 482 int phy, phy_end, phy_idx = 0;
1da177e4
LT
483
484/* when built into the kernel, we only print version if device is found */
485#ifndef MODULE
486 static int printed_version;
487 if (!printed_version++)
488 printk(version);
489#endif
490
491 if (pci_enable_device(pdev))
492 return -EIO;
493 pci_set_master(pdev);
494
495 irq = pdev->irq;
496
497 dev = alloc_etherdev(sizeof(*np));
498 if (!dev)
499 return -ENOMEM;
1da177e4
LT
500 SET_NETDEV_DEV(dev, &pdev->dev);
501
502 if (pci_request_regions(pdev, DRV_NAME))
503 goto err_out_netdev;
504
505 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
506 if (!ioaddr)
507 goto err_out_res;
508
509 for (i = 0; i < 3; i++)
14c9d9b0
AV
510 ((__le16 *)dev->dev_addr)[i] =
511 cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
30d60a82 512 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1da177e4
LT
513
514 dev->base_addr = (unsigned long)ioaddr;
515 dev->irq = irq;
516
517 np = netdev_priv(dev);
518 np->base = ioaddr;
519 np->pci_dev = pdev;
520 np->chip_id = chip_idx;
521 np->msg_enable = (1 << debug) - 1;
522 spin_lock_init(&np->lock);
523 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
524 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);
525
526 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
527 if (!ring_space)
528 goto err_out_cleardev;
529 np->tx_ring = (struct netdev_desc *)ring_space;
530 np->tx_ring_dma = ring_dma;
531
532 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
533 if (!ring_space)
534 goto err_out_unmap_tx;
535 np->rx_ring = (struct netdev_desc *)ring_space;
536 np->rx_ring_dma = ring_dma;
537
538 np->mii_if.dev = dev;
539 np->mii_if.mdio_read = mdio_read;
540 np->mii_if.mdio_write = mdio_write;
541 np->mii_if.phy_id_mask = 0x1f;
542 np->mii_if.reg_num_mask = 0x1f;
543
544 /* The chip-specific entries in the device structure. */
633a277e 545 dev->netdev_ops = &netdev_ops;
1da177e4 546 SET_ETHTOOL_OPS(dev, &ethtool_ops);
1da177e4 547 dev->watchdog_timeo = TX_TIMEOUT;
633a277e 548
1da177e4
LT
549 pci_set_drvdata(pdev, dev);
550
1da177e4
LT
551 i = register_netdev(dev);
552 if (i)
553 goto err_out_unmap_rx;
554
e174961c 555 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
0795af57 556 dev->name, pci_id_tbl[chip_idx].name, ioaddr,
e174961c 557 dev->dev_addr, irq);
1da177e4 558
67ec2f80
JL
559 np->phys[0] = 1; /* Default setting */
560 np->mii_preamble_required++;
ac1d49f8 561
0d615ec2
ACM
562 /*
563 * It seems some phys doesn't deal well with address 0 being accessed
ac1d49f8 564 * first
0d615ec2 565 */
ac1d49f8
JG
566 if (sundance_pci_tbl[np->chip_id].device == 0x0200) {
567 phy = 0;
568 phy_end = 31;
569 } else {
570 phy = 1;
571 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */
572 }
573 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) {
b06c093e 574 int phyx = phy & 0x1f;
0d615ec2 575 int mii_status = mdio_read(dev, phyx, MII_BMSR);
67ec2f80 576 if (mii_status != 0xffff && mii_status != 0x0000) {
b06c093e
JL
577 np->phys[phy_idx++] = phyx;
578 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
67ec2f80
JL
579 if ((mii_status & 0x0040) == 0)
580 np->mii_preamble_required++;
581 printk(KERN_INFO "%s: MII PHY found at address %d, status "
582 "0x%4.4x advertising %4.4x.\n",
b06c093e 583 dev->name, phyx, mii_status, np->mii_if.advertising);
1da177e4 584 }
67ec2f80
JL
585 }
586 np->mii_preamble_required--;
1da177e4 587
67ec2f80
JL
588 if (phy_idx == 0) {
589 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
590 dev->name, ioread32(ioaddr + ASICCtrl));
591 goto err_out_unregister;
1da177e4
LT
592 }
593
67ec2f80
JL
594 np->mii_if.phy_id = np->phys[0];
595
1da177e4
LT
596 /* Parse override configuration */
597 np->an_enable = 1;
598 if (card_idx < MAX_UNITS) {
599 if (media[card_idx] != NULL) {
600 np->an_enable = 0;
601 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
602 strcmp (media[card_idx], "4") == 0) {
603 np->speed = 100;
604 np->mii_if.full_duplex = 1;
8e95a202
JP
605 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
606 strcmp (media[card_idx], "3") == 0) {
1da177e4
LT
607 np->speed = 100;
608 np->mii_if.full_duplex = 0;
609 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
610 strcmp (media[card_idx], "2") == 0) {
611 np->speed = 10;
612 np->mii_if.full_duplex = 1;
613 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
614 strcmp (media[card_idx], "1") == 0) {
615 np->speed = 10;
616 np->mii_if.full_duplex = 0;
617 } else {
618 np->an_enable = 1;
619 }
620 }
621 if (flowctrl == 1)
622 np->flowctrl = 1;
623 }
624
625 /* Fibre PHY? */
626 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
627 /* Default 100Mbps Full */
628 if (np->an_enable) {
629 np->speed = 100;
630 np->mii_if.full_duplex = 1;
631 np->an_enable = 0;
632 }
633 }
634 /* Reset PHY */
635 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
636 mdelay (300);
637 /* If flow control enabled, we need to advertise it.*/
638 if (np->flowctrl)
639 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
640 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
641 /* Force media type */
642 if (!np->an_enable) {
643 mii_ctl = 0;
644 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
645 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
646 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
647 printk (KERN_INFO "Override speed=%d, %s duplex\n",
648 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
649
650 }
651
652 /* Perhaps move the reset here? */
653 /* Reset the chip to erase previous misconfiguration. */
654 if (netif_msg_hw(np))
655 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
e714d99c 656 sundance_reset(dev, 0x00ff << 16);
1da177e4
LT
657 if (netif_msg_hw(np))
658 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
659
660 card_idx++;
661 return 0;
662
663err_out_unregister:
664 unregister_netdev(dev);
665err_out_unmap_rx:
666 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
667err_out_unmap_tx:
668 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
669err_out_cleardev:
670 pci_set_drvdata(pdev, NULL);
671 pci_iounmap(pdev, ioaddr);
672err_out_res:
673 pci_release_regions(pdev);
674err_out_netdev:
675 free_netdev (dev);
676 return -ENODEV;
677}
678
679static int change_mtu(struct net_device *dev, int new_mtu)
680{
681 if ((new_mtu < 68) || (new_mtu > 8191)) /* Set by RxDMAFrameLen */
682 return -EINVAL;
683 if (netif_running(dev))
684 return -EBUSY;
685 dev->mtu = new_mtu;
686 return 0;
687}
688
689#define eeprom_delay(ee_addr) ioread32(ee_addr)
690/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
691static int __devinit eeprom_read(void __iomem *ioaddr, int location)
692{
693 int boguscnt = 10000; /* Typical 1900 ticks. */
694 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
695 do {
696 eeprom_delay(ioaddr + EECtrl);
697 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
698 return ioread16(ioaddr + EEData);
699 }
700 } while (--boguscnt > 0);
701 return 0;
702}
703
704/* MII transceiver control section.
705 Read and write the MII registers using software-generated serial
706 MDIO protocol. See the MII specifications or DP83840A data sheet
707 for details.
708
709 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
710 met by back-to-back 33Mhz PCI cycles. */
711#define mdio_delay() ioread8(mdio_addr)
712
713enum mii_reg_bits {
714 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
715};
716#define MDIO_EnbIn (0)
717#define MDIO_WRITE0 (MDIO_EnbOutput)
718#define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
719
720/* Generate the preamble required for initial synchronization and
721 a few older transceivers. */
722static void mdio_sync(void __iomem *mdio_addr)
723{
724 int bits = 32;
725
726 /* Establish sync by sending at least 32 logic ones. */
727 while (--bits >= 0) {
728 iowrite8(MDIO_WRITE1, mdio_addr);
729 mdio_delay();
730 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
731 mdio_delay();
732 }
733}
734
735static int mdio_read(struct net_device *dev, int phy_id, int location)
736{
737 struct netdev_private *np = netdev_priv(dev);
738 void __iomem *mdio_addr = np->base + MIICtrl;
739 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
740 int i, retval = 0;
741
742 if (np->mii_preamble_required)
743 mdio_sync(mdio_addr);
744
745 /* Shift the read command bits out. */
746 for (i = 15; i >= 0; i--) {
747 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
748
749 iowrite8(dataval, mdio_addr);
750 mdio_delay();
751 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
752 mdio_delay();
753 }
754 /* Read the two transition, 16 data, and wire-idle bits. */
755 for (i = 19; i > 0; i--) {
756 iowrite8(MDIO_EnbIn, mdio_addr);
757 mdio_delay();
758 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
759 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
760 mdio_delay();
761 }
762 return (retval>>1) & 0xffff;
763}
764
765static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
766{
767 struct netdev_private *np = netdev_priv(dev);
768 void __iomem *mdio_addr = np->base + MIICtrl;
769 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
770 int i;
771
772 if (np->mii_preamble_required)
773 mdio_sync(mdio_addr);
774
775 /* Shift the command bits out. */
776 for (i = 31; i >= 0; i--) {
777 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
778
779 iowrite8(dataval, mdio_addr);
780 mdio_delay();
781 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
782 mdio_delay();
783 }
784 /* Clear out extra bits. */
785 for (i = 2; i > 0; i--) {
786 iowrite8(MDIO_EnbIn, mdio_addr);
787 mdio_delay();
788 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
789 mdio_delay();
790 }
1da177e4
LT
791}
792
50500155
DN
793static int mdio_wait_link(struct net_device *dev, int wait)
794{
795 int bmsr;
796 int phy_id;
797 struct netdev_private *np;
798
799 np = netdev_priv(dev);
800 phy_id = np->phys[0];
801
802 do {
803 bmsr = mdio_read(dev, phy_id, MII_BMSR);
804 if (bmsr & 0x0004)
805 return 0;
806 mdelay(1);
807 } while (--wait > 0);
808 return -1;
809}
810
1da177e4
LT
811static int netdev_open(struct net_device *dev)
812{
813 struct netdev_private *np = netdev_priv(dev);
814 void __iomem *ioaddr = np->base;
acd70c2b 815 unsigned long flags;
1da177e4
LT
816 int i;
817
818 /* Do we need to reset the chip??? */
819
a0607fd3 820 i = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
1da177e4
LT
821 if (i)
822 return i;
823
824 if (netif_msg_ifup(np))
825 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
826 dev->name, dev->irq);
827 init_ring(dev);
828
829 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
830 /* The Tx list pointer is written as packets are queued. */
831
832 /* Initialize other registers. */
833 __set_mac_addr(dev);
834#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
835 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
836#else
837 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
838#endif
839 if (dev->mtu > 2047)
840 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
841
842 /* Configure the PCI bus bursts and FIFO thresholds. */
843
844 if (dev->if_port == 0)
845 dev->if_port = np->default_port;
846
847 spin_lock_init(&np->mcastlock);
848
849 set_rx_mode(dev);
850 iowrite16(0, ioaddr + IntrEnable);
851 iowrite16(0, ioaddr + DownCounter);
852 /* Set the chip to poll every N*320nsec. */
853 iowrite8(100, ioaddr + RxDMAPollPeriod);
854 iowrite8(127, ioaddr + TxDMAPollPeriod);
855 /* Fix DFE-580TX packet drop issue */
44c10138 856 if (np->pci_dev->revision >= 0x14)
1da177e4
LT
857 iowrite8(0x01, ioaddr + DebugCtrl1);
858 netif_start_queue(dev);
859
acd70c2b
JH
860 spin_lock_irqsave(&np->lock, flags);
861 reset_tx(dev);
862 spin_unlock_irqrestore(&np->lock, flags);
863
1da177e4
LT
864 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
865
866 if (netif_msg_ifup(np))
867 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
868 "MAC Control %x, %4.4x %4.4x.\n",
869 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
870 ioread32(ioaddr + MACCtrl0),
871 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
872
873 /* Set the timer to check for link beat. */
874 init_timer(&np->timer);
875 np->timer.expires = jiffies + 3*HZ;
876 np->timer.data = (unsigned long)dev;
877 np->timer.function = &netdev_timer; /* timer handler */
878 add_timer(&np->timer);
879
880 /* Enable interrupts by setting the interrupt mask. */
881 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
882
883 return 0;
884}
885
886static void check_duplex(struct net_device *dev)
887{
888 struct netdev_private *np = netdev_priv(dev);
889 void __iomem *ioaddr = np->base;
890 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
891 int negotiated = mii_lpa & np->mii_if.advertising;
892 int duplex;
893
894 /* Force media */
895 if (!np->an_enable || mii_lpa == 0xffff) {
896 if (np->mii_if.full_duplex)
897 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
898 ioaddr + MACCtrl0);
899 return;
900 }
901
902 /* Autonegotiation */
903 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
904 if (np->mii_if.full_duplex != duplex) {
905 np->mii_if.full_duplex = duplex;
906 if (netif_msg_link(np))
907 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
908 "negotiated capability %4.4x.\n", dev->name,
909 duplex ? "full" : "half", np->phys[0], negotiated);
62660e28 910 iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0);
1da177e4
LT
911 }
912}
913
914static void netdev_timer(unsigned long data)
915{
916 struct net_device *dev = (struct net_device *)data;
917 struct netdev_private *np = netdev_priv(dev);
918 void __iomem *ioaddr = np->base;
919 int next_tick = 10*HZ;
920
921 if (netif_msg_timer(np)) {
922 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
923 "Tx %x Rx %x.\n",
924 dev->name, ioread16(ioaddr + IntrEnable),
925 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
926 }
927 check_duplex(dev);
928 np->timer.expires = jiffies + next_tick;
929 add_timer(&np->timer);
930}
931
932static void tx_timeout(struct net_device *dev)
933{
934 struct netdev_private *np = netdev_priv(dev);
935 void __iomem *ioaddr = np->base;
936 unsigned long flag;
6aa20a22 937
1da177e4
LT
938 netif_stop_queue(dev);
939 tasklet_disable(&np->tx_tasklet);
940 iowrite16(0, ioaddr + IntrEnable);
941 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
942 "TxFrameId %2.2x,"
943 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
944 ioread8(ioaddr + TxFrameId));
945
946 {
947 int i;
948 for (i=0; i<TX_RING_SIZE; i++) {
949 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
950 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
951 le32_to_cpu(np->tx_ring[i].next_desc),
952 le32_to_cpu(np->tx_ring[i].status),
953 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
6aa20a22 954 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1da177e4
LT
955 le32_to_cpu(np->tx_ring[i].frag[0].length));
956 }
6aa20a22
JG
957 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
958 ioread32(np->base + TxListPtr),
1da177e4 959 netif_queue_stopped(dev));
6aa20a22 960 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
1da177e4
LT
961 np->cur_tx, np->cur_tx % TX_RING_SIZE,
962 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
963 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
964 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
965 }
966 spin_lock_irqsave(&np->lock, flag);
967
968 /* Stop and restart the chip's Tx processes . */
969 reset_tx(dev);
970 spin_unlock_irqrestore(&np->lock, flag);
971
972 dev->if_port = 0;
973
1ae5dc34 974 dev->trans_start = jiffies; /* prevent tx timeout */
553e2335 975 dev->stats.tx_errors++;
1da177e4
LT
976 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
977 netif_wake_queue(dev);
978 }
979 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
980 tasklet_enable(&np->tx_tasklet);
981}
982
983
984/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
985static void init_ring(struct net_device *dev)
986{
987 struct netdev_private *np = netdev_priv(dev);
988 int i;
989
990 np->cur_rx = np->cur_tx = 0;
991 np->dirty_rx = np->dirty_tx = 0;
992 np->cur_task = 0;
993
994 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
995
996 /* Initialize all Rx descriptors. */
997 for (i = 0; i < RX_RING_SIZE; i++) {
998 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
999 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
1000 np->rx_ring[i].status = 0;
1001 np->rx_ring[i].frag[0].length = 0;
1002 np->rx_skbuff[i] = NULL;
1003 }
1004
1005 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1006 for (i = 0; i < RX_RING_SIZE; i++) {
1007 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1008 np->rx_skbuff[i] = skb;
1009 if (skb == NULL)
1010 break;
1011 skb->dev = dev; /* Mark as being used by this device. */
1012 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1013 np->rx_ring[i].frag[0].addr = cpu_to_le32(
689be439 1014 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz,
1da177e4
LT
1015 PCI_DMA_FROMDEVICE));
1016 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
1017 }
1018 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1019
1020 for (i = 0; i < TX_RING_SIZE; i++) {
1021 np->tx_skbuff[i] = NULL;
1022 np->tx_ring[i].status = 0;
1023 }
1da177e4
LT
1024}
1025
1026static void tx_poll (unsigned long data)
1027{
1028 struct net_device *dev = (struct net_device *)data;
1029 struct netdev_private *np = netdev_priv(dev);
1030 unsigned head = np->cur_task % TX_RING_SIZE;
6aa20a22 1031 struct netdev_desc *txdesc =
1da177e4 1032 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
6aa20a22 1033
1da177e4
LT
1034 /* Chain the next pointer */
1035 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1036 int entry = np->cur_task % TX_RING_SIZE;
1037 txdesc = &np->tx_ring[entry];
1038 if (np->last_tx) {
1039 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1040 entry*sizeof(struct netdev_desc));
1041 }
1042 np->last_tx = txdesc;
1043 }
1044 /* Indicate the latest descriptor of tx ring */
1045 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1046
1047 if (ioread32 (np->base + TxListPtr) == 0)
1048 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1049 np->base + TxListPtr);
1da177e4
LT
1050}
1051
61357325 1052static netdev_tx_t
1da177e4
LT
1053start_tx (struct sk_buff *skb, struct net_device *dev)
1054{
1055 struct netdev_private *np = netdev_priv(dev);
1056 struct netdev_desc *txdesc;
1057 unsigned entry;
1058
1059 /* Calculate the next Tx descriptor entry. */
1060 entry = np->cur_tx % TX_RING_SIZE;
1061 np->tx_skbuff[entry] = skb;
1062 txdesc = &np->tx_ring[entry];
1063
1064 txdesc->next_desc = 0;
1065 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
1066 txdesc->frag[0].addr = cpu_to_le32 (pci_map_single (np->pci_dev, skb->data,
1067 skb->len,
1068 PCI_DMA_TODEVICE));
1069 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);
1070
1071 /* Increment cur_tx before tasklet_schedule() */
1072 np->cur_tx++;
1073 mb();
1074 /* Schedule a tx_poll() task */
1075 tasklet_schedule(&np->tx_tasklet);
1076
1077 /* On some architectures: explicitly flush cache lines here. */
8e95a202
JP
1078 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 &&
1079 !netif_queue_stopped(dev)) {
1da177e4
LT
1080 /* do nothing */
1081 } else {
1082 netif_stop_queue (dev);
1083 }
1da177e4
LT
1084 if (netif_msg_tx_queued(np)) {
1085 printk (KERN_DEBUG
1086 "%s: Transmit frame #%d queued in slot %d.\n",
1087 dev->name, np->cur_tx, entry);
1088 }
6ed10654 1089 return NETDEV_TX_OK;
1da177e4
LT
1090}
1091
1092/* Reset hardware tx and free all of tx buffers */
1093static int
1094reset_tx (struct net_device *dev)
1095{
1096 struct netdev_private *np = netdev_priv(dev);
1097 void __iomem *ioaddr = np->base;
1098 struct sk_buff *skb;
1099 int i;
1100 int irq = in_interrupt();
6aa20a22 1101
1da177e4
LT
1102 /* Reset tx logic, TxListPtr will be cleaned */
1103 iowrite16 (TxDisable, ioaddr + MACCtrl1);
e714d99c
PDM
1104 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);
1105
1da177e4
LT
1106 /* free all tx skbuff */
1107 for (i = 0; i < TX_RING_SIZE; i++) {
2109f89f
JH
1108 np->tx_ring[i].next_desc = 0;
1109
1da177e4
LT
1110 skb = np->tx_skbuff[i];
1111 if (skb) {
6aa20a22 1112 pci_unmap_single(np->pci_dev,
14c9d9b0
AV
1113 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1114 skb->len, PCI_DMA_TODEVICE);
1da177e4
LT
1115 if (irq)
1116 dev_kfree_skb_irq (skb);
1117 else
1118 dev_kfree_skb (skb);
1119 np->tx_skbuff[i] = NULL;
553e2335 1120 dev->stats.tx_dropped++;
1da177e4
LT
1121 }
1122 }
1123 np->cur_tx = np->dirty_tx = 0;
1124 np->cur_task = 0;
2109f89f 1125
bca79eb7 1126 np->last_tx = NULL;
2109f89f
JH
1127 iowrite8(127, ioaddr + TxDMAPollPeriod);
1128
1da177e4
LT
1129 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1130 return 0;
1131}
1132
6aa20a22 1133/* The interrupt handler cleans up after the Tx thread,
1da177e4 1134 and schedule a Rx thread work */
7d12e780 1135static irqreturn_t intr_handler(int irq, void *dev_instance)
1da177e4
LT
1136{
1137 struct net_device *dev = (struct net_device *)dev_instance;
1138 struct netdev_private *np = netdev_priv(dev);
1139 void __iomem *ioaddr = np->base;
1140 int hw_frame_id;
1141 int tx_cnt;
1142 int tx_status;
1143 int handled = 0;
e242040d 1144 int i;
1da177e4
LT
1145
1146
1147 do {
1148 int intr_status = ioread16(ioaddr + IntrStatus);
1149 iowrite16(intr_status, ioaddr + IntrStatus);
1150
1151 if (netif_msg_intr(np))
1152 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1153 dev->name, intr_status);
1154
1155 if (!(intr_status & DEFAULT_INTR))
1156 break;
1157
1158 handled = 1;
1159
1160 if (intr_status & (IntrRxDMADone)) {
1161 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1162 ioaddr + IntrEnable);
1163 if (np->budget < 0)
1164 np->budget = RX_BUDGET;
1165 tasklet_schedule(&np->rx_tasklet);
1166 }
1167 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1168 tx_status = ioread16 (ioaddr + TxStatus);
1169 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1170 if (netif_msg_tx_done(np))
1171 printk
1172 ("%s: Transmit status is %2.2x.\n",
1173 dev->name, tx_status);
1174 if (tx_status & 0x1e) {
b71b95ef
PDM
1175 if (netif_msg_tx_err(np))
1176 printk("%s: Transmit error status %4.4x.\n",
1177 dev->name, tx_status);
553e2335 1178 dev->stats.tx_errors++;
1da177e4 1179 if (tx_status & 0x10)
553e2335 1180 dev->stats.tx_fifo_errors++;
1da177e4 1181 if (tx_status & 0x08)
553e2335 1182 dev->stats.collisions++;
b71b95ef 1183 if (tx_status & 0x04)
553e2335 1184 dev->stats.tx_fifo_errors++;
1da177e4 1185 if (tx_status & 0x02)
553e2335 1186 dev->stats.tx_window_errors++;
e242040d 1187
b71b95ef
PDM
1188 /*
1189 ** This reset has been verified on
1190 ** DFE-580TX boards ! phdm@macqel.be.
1191 */
1192 if (tx_status & 0x10) { /* TxUnderrun */
b71b95ef
PDM
1193 /* Restart Tx FIFO and transmitter */
1194 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
b71b95ef 1195 /* No need to reset the Tx pointer here */
1da177e4 1196 }
2109f89f
JH
1197 /* Restart the Tx. Need to make sure tx enabled */
1198 i = 10;
1199 do {
1200 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
1201 if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
1202 break;
1203 mdelay(1);
1204 } while (--i);
1da177e4
LT
1205 }
1206 /* Yup, this is a documentation bug. It cost me *hours*. */
1207 iowrite16 (0, ioaddr + TxStatus);
1208 if (tx_cnt < 0) {
1209 iowrite32(5000, ioaddr + DownCounter);
1210 break;
1211 }
1212 tx_status = ioread16 (ioaddr + TxStatus);
1213 }
1214 hw_frame_id = (tx_status >> 8) & 0xff;
1215 } else {
1216 hw_frame_id = ioread8(ioaddr + TxFrameId);
1217 }
6aa20a22 1218
44c10138 1219 if (np->pci_dev->revision >= 0x14) {
1da177e4
LT
1220 spin_lock(&np->lock);
1221 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1222 int entry = np->dirty_tx % TX_RING_SIZE;
1223 struct sk_buff *skb;
1224 int sw_frame_id;
1225 sw_frame_id = (le32_to_cpu(
1226 np->tx_ring[entry].status) >> 2) & 0xff;
1227 if (sw_frame_id == hw_frame_id &&
1228 !(le32_to_cpu(np->tx_ring[entry].status)
1229 & 0x00010000))
1230 break;
6aa20a22 1231 if (sw_frame_id == (hw_frame_id + 1) %
1da177e4
LT
1232 TX_RING_SIZE)
1233 break;
1234 skb = np->tx_skbuff[entry];
1235 /* Free the original skb. */
1236 pci_unmap_single(np->pci_dev,
14c9d9b0 1237 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1da177e4
LT
1238 skb->len, PCI_DMA_TODEVICE);
1239 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1240 np->tx_skbuff[entry] = NULL;
1241 np->tx_ring[entry].frag[0].addr = 0;
1242 np->tx_ring[entry].frag[0].length = 0;
1243 }
1244 spin_unlock(&np->lock);
1245 } else {
1246 spin_lock(&np->lock);
1247 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1248 int entry = np->dirty_tx % TX_RING_SIZE;
1249 struct sk_buff *skb;
6aa20a22 1250 if (!(le32_to_cpu(np->tx_ring[entry].status)
1da177e4
LT
1251 & 0x00010000))
1252 break;
1253 skb = np->tx_skbuff[entry];
1254 /* Free the original skb. */
1255 pci_unmap_single(np->pci_dev,
14c9d9b0 1256 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1da177e4
LT
1257 skb->len, PCI_DMA_TODEVICE);
1258 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1259 np->tx_skbuff[entry] = NULL;
1260 np->tx_ring[entry].frag[0].addr = 0;
1261 np->tx_ring[entry].frag[0].length = 0;
1262 }
1263 spin_unlock(&np->lock);
1264 }
6aa20a22 1265
1da177e4
LT
1266 if (netif_queue_stopped(dev) &&
1267 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1268 /* The ring is no longer full, clear busy flag. */
1269 netif_wake_queue (dev);
1270 }
1271 /* Abnormal error summary/uncommon events handlers. */
1272 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1273 netdev_error(dev, intr_status);
1274 } while (0);
1275 if (netif_msg_intr(np))
1276 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1277 dev->name, ioread16(ioaddr + IntrStatus));
1278 return IRQ_RETVAL(handled);
1279}
1280
1281static void rx_poll(unsigned long data)
1282{
1283 struct net_device *dev = (struct net_device *)data;
1284 struct netdev_private *np = netdev_priv(dev);
1285 int entry = np->cur_rx % RX_RING_SIZE;
1286 int boguscnt = np->budget;
1287 void __iomem *ioaddr = np->base;
1288 int received = 0;
1289
1290 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1291 while (1) {
1292 struct netdev_desc *desc = &(np->rx_ring[entry]);
1293 u32 frame_status = le32_to_cpu(desc->status);
1294 int pkt_len;
1295
1296 if (--boguscnt < 0) {
1297 goto not_done;
1298 }
1299 if (!(frame_status & DescOwn))
1300 break;
1301 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1302 if (netif_msg_rx_status(np))
1303 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1304 frame_status);
1305 if (frame_status & 0x001f4000) {
1306 /* There was a error. */
1307 if (netif_msg_rx_err(np))
1308 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1309 frame_status);
553e2335
ED
1310 dev->stats.rx_errors++;
1311 if (frame_status & 0x00100000)
1312 dev->stats.rx_length_errors++;
1313 if (frame_status & 0x00010000)
1314 dev->stats.rx_fifo_errors++;
1315 if (frame_status & 0x00060000)
1316 dev->stats.rx_frame_errors++;
1317 if (frame_status & 0x00080000)
1318 dev->stats.rx_crc_errors++;
1da177e4
LT
1319 if (frame_status & 0x00100000) {
1320 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1321 " status %8.8x.\n",
1322 dev->name, frame_status);
1323 }
1324 } else {
1325 struct sk_buff *skb;
1326#ifndef final_version
1327 if (netif_msg_rx_status(np))
1328 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1329 ", bogus_cnt %d.\n",
1330 pkt_len, boguscnt);
1331#endif
1332 /* Check if the packet is long enough to accept without copying
1333 to a minimally-sized skbuff. */
8e95a202
JP
1334 if (pkt_len < rx_copybreak &&
1335 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1da177e4
LT
1336 skb_reserve(skb, 2); /* 16 byte align the IP header */
1337 pci_dma_sync_single_for_cpu(np->pci_dev,
14c9d9b0 1338 le32_to_cpu(desc->frag[0].addr),
1da177e4
LT
1339 np->rx_buf_sz,
1340 PCI_DMA_FROMDEVICE);
1341
8c7b7faa 1342 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1da177e4 1343 pci_dma_sync_single_for_device(np->pci_dev,
14c9d9b0 1344 le32_to_cpu(desc->frag[0].addr),
1da177e4
LT
1345 np->rx_buf_sz,
1346 PCI_DMA_FROMDEVICE);
1347 skb_put(skb, pkt_len);
1348 } else {
1349 pci_unmap_single(np->pci_dev,
14c9d9b0 1350 le32_to_cpu(desc->frag[0].addr),
1da177e4
LT
1351 np->rx_buf_sz,
1352 PCI_DMA_FROMDEVICE);
1353 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1354 np->rx_skbuff[entry] = NULL;
1355 }
1356 skb->protocol = eth_type_trans(skb, dev);
1357 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1358 netif_rx(skb);
1da177e4
LT
1359 }
1360 entry = (entry + 1) % RX_RING_SIZE;
1361 received++;
1362 }
1363 np->cur_rx = entry;
1364 refill_rx (dev);
1365 np->budget -= received;
1366 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1367 return;
1368
1369not_done:
1370 np->cur_rx = entry;
1371 refill_rx (dev);
1372 if (!received)
1373 received = 1;
1374 np->budget -= received;
1375 if (np->budget <= 0)
1376 np->budget = RX_BUDGET;
1377 tasklet_schedule(&np->rx_tasklet);
1da177e4
LT
1378}
1379
1380static void refill_rx (struct net_device *dev)
1381{
1382 struct netdev_private *np = netdev_priv(dev);
1383 int entry;
1384 int cnt = 0;
1385
1386 /* Refill the Rx ring buffers. */
1387 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1388 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1389 struct sk_buff *skb;
1390 entry = np->dirty_rx % RX_RING_SIZE;
1391 if (np->rx_skbuff[entry] == NULL) {
1392 skb = dev_alloc_skb(np->rx_buf_sz);
1393 np->rx_skbuff[entry] = skb;
1394 if (skb == NULL)
1395 break; /* Better luck next round. */
1396 skb->dev = dev; /* Mark as being used by this device. */
1397 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1398 np->rx_ring[entry].frag[0].addr = cpu_to_le32(
689be439 1399 pci_map_single(np->pci_dev, skb->data,
1da177e4
LT
1400 np->rx_buf_sz, PCI_DMA_FROMDEVICE));
1401 }
1402 /* Perhaps we need not reset this field. */
1403 np->rx_ring[entry].frag[0].length =
1404 cpu_to_le32(np->rx_buf_sz | LastFrag);
1405 np->rx_ring[entry].status = 0;
1406 cnt++;
1407 }
1da177e4
LT
1408}
1409static void netdev_error(struct net_device *dev, int intr_status)
1410{
1411 struct netdev_private *np = netdev_priv(dev);
1412 void __iomem *ioaddr = np->base;
1413 u16 mii_ctl, mii_advertise, mii_lpa;
1414 int speed;
1415
1416 if (intr_status & LinkChange) {
50500155
DN
1417 if (mdio_wait_link(dev, 10) == 0) {
1418 printk(KERN_INFO "%s: Link up\n", dev->name);
1419 if (np->an_enable) {
1420 mii_advertise = mdio_read(dev, np->phys[0],
1421 MII_ADVERTISE);
1422 mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
1423 mii_advertise &= mii_lpa;
1424 printk(KERN_INFO "%s: Link changed: ",
1425 dev->name);
1426 if (mii_advertise & ADVERTISE_100FULL) {
1427 np->speed = 100;
1428 printk("100Mbps, full duplex\n");
1429 } else if (mii_advertise & ADVERTISE_100HALF) {
1430 np->speed = 100;
1431 printk("100Mbps, half duplex\n");
1432 } else if (mii_advertise & ADVERTISE_10FULL) {
1433 np->speed = 10;
1434 printk("10Mbps, full duplex\n");
1435 } else if (mii_advertise & ADVERTISE_10HALF) {
1436 np->speed = 10;
1437 printk("10Mbps, half duplex\n");
1438 } else
1439 printk("\n");
1da177e4 1440
50500155
DN
1441 } else {
1442 mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR);
1443 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1444 np->speed = speed;
1445 printk(KERN_INFO "%s: Link changed: %dMbps ,",
1446 dev->name, speed);
1447 printk("%s duplex.\n",
1448 (mii_ctl & BMCR_FULLDPLX) ?
1449 "full" : "half");
1450 }
1451 check_duplex(dev);
1452 if (np->flowctrl && np->mii_if.full_duplex) {
1453 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1454 ioaddr + MulticastFilter1+2);
1455 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1456 ioaddr + MACCtrl0);
1457 }
1458 netif_carrier_on(dev);
1da177e4 1459 } else {
50500155
DN
1460 printk(KERN_INFO "%s: Link down\n", dev->name);
1461 netif_carrier_off(dev);
1da177e4
LT
1462 }
1463 }
1464 if (intr_status & StatsMax) {
1465 get_stats(dev);
1466 }
1467 if (intr_status & IntrPCIErr) {
1468 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1469 dev->name, intr_status);
1470 /* We must do a global reset of DMA to continue. */
1471 }
1472}
1473
1474static struct net_device_stats *get_stats(struct net_device *dev)
1475{
1476 struct netdev_private *np = netdev_priv(dev);
1477 void __iomem *ioaddr = np->base;
1478 int i;
1479
1480 /* We should lock this segment of code for SMP eventually, although
1481 the vulnerability window is very small and statistics are
1482 non-critical. */
1483 /* The chip only need report frame silently dropped. */
553e2335
ED
1484 dev->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1485 dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1486 dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
1487 dev->stats.collisions += ioread8(ioaddr + StatsLateColl);
1488 dev->stats.collisions += ioread8(ioaddr + StatsMultiColl);
1489 dev->stats.collisions += ioread8(ioaddr + StatsOneColl);
1490 dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
1da177e4
LT
1491 ioread8(ioaddr + StatsTxDefer);
1492 for (i = StatsTxDefer; i <= StatsMcastRx; i++)
1493 ioread8(ioaddr + i);
553e2335
ED
1494 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1495 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1496 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1497 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1da177e4 1498
553e2335 1499 return &dev->stats;
1da177e4
LT
1500}
1501
1502static void set_rx_mode(struct net_device *dev)
1503{
1504 struct netdev_private *np = netdev_priv(dev);
1505 void __iomem *ioaddr = np->base;
1506 u16 mc_filter[4]; /* Multicast hash filter */
1507 u32 rx_mode;
1508 int i;
1509
1510 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
1511 memset(mc_filter, 0xff, sizeof(mc_filter));
1512 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
4cd24eaf 1513 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 1514 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
1515 /* Too many to match, or accept all multicasts. */
1516 memset(mc_filter, 0xff, sizeof(mc_filter));
1517 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
4cd24eaf 1518 } else if (!netdev_mc_empty(dev)) {
22bedad3 1519 struct netdev_hw_addr *ha;
1da177e4
LT
1520 int bit;
1521 int index;
1522 int crc;
1523 memset (mc_filter, 0, sizeof (mc_filter));
22bedad3
JP
1524 netdev_for_each_mc_addr(ha, dev) {
1525 crc = ether_crc_le(ETH_ALEN, ha->addr);
1da177e4
LT
1526 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1527 if (crc & 0x80000000) index |= 1 << bit;
1528 mc_filter[index/16] |= (1 << (index % 16));
1529 }
1530 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1531 } else {
1532 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1533 return;
1534 }
1535 if (np->mii_if.full_duplex && np->flowctrl)
1536 mc_filter[3] |= 0x0200;
1537
1538 for (i = 0; i < 4; i++)
1539 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1540 iowrite8(rx_mode, ioaddr + RxMode);
1541}
1542
1543static int __set_mac_addr(struct net_device *dev)
1544{
1545 struct netdev_private *np = netdev_priv(dev);
1546 u16 addr16;
1547
1548 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1549 iowrite16(addr16, np->base + StationAddr);
1550 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1551 iowrite16(addr16, np->base + StationAddr+2);
1552 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1553 iowrite16(addr16, np->base + StationAddr+4);
1554 return 0;
1555}
1556
1557static int check_if_running(struct net_device *dev)
1558{
1559 if (!netif_running(dev))
1560 return -EINVAL;
1561 return 0;
1562}
1563
1564static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1565{
1566 struct netdev_private *np = netdev_priv(dev);
1567 strcpy(info->driver, DRV_NAME);
1568 strcpy(info->version, DRV_VERSION);
1569 strcpy(info->bus_info, pci_name(np->pci_dev));
1570}
1571
1572static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1573{
1574 struct netdev_private *np = netdev_priv(dev);
1575 spin_lock_irq(&np->lock);
1576 mii_ethtool_gset(&np->mii_if, ecmd);
1577 spin_unlock_irq(&np->lock);
1578 return 0;
1579}
1580
1581static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1582{
1583 struct netdev_private *np = netdev_priv(dev);
1584 int res;
1585 spin_lock_irq(&np->lock);
1586 res = mii_ethtool_sset(&np->mii_if, ecmd);
1587 spin_unlock_irq(&np->lock);
1588 return res;
1589}
1590
1591static int nway_reset(struct net_device *dev)
1592{
1593 struct netdev_private *np = netdev_priv(dev);
1594 return mii_nway_restart(&np->mii_if);
1595}
1596
1597static u32 get_link(struct net_device *dev)
1598{
1599 struct netdev_private *np = netdev_priv(dev);
1600 return mii_link_ok(&np->mii_if);
1601}
1602
1603static u32 get_msglevel(struct net_device *dev)
1604{
1605 struct netdev_private *np = netdev_priv(dev);
1606 return np->msg_enable;
1607}
1608
1609static void set_msglevel(struct net_device *dev, u32 val)
1610{
1611 struct netdev_private *np = netdev_priv(dev);
1612 np->msg_enable = val;
1613}
1614
7282d491 1615static const struct ethtool_ops ethtool_ops = {
1da177e4
LT
1616 .begin = check_if_running,
1617 .get_drvinfo = get_drvinfo,
1618 .get_settings = get_settings,
1619 .set_settings = set_settings,
1620 .nway_reset = nway_reset,
1621 .get_link = get_link,
1622 .get_msglevel = get_msglevel,
1623 .set_msglevel = set_msglevel,
1624};
1625
1626static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1627{
1628 struct netdev_private *np = netdev_priv(dev);
1da177e4 1629 int rc;
1da177e4
LT
1630
1631 if (!netif_running(dev))
1632 return -EINVAL;
1633
1634 spin_lock_irq(&np->lock);
1635 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1636 spin_unlock_irq(&np->lock);
1da177e4
LT
1637
1638 return rc;
1639}
1640
1641static int netdev_close(struct net_device *dev)
1642{
1643 struct netdev_private *np = netdev_priv(dev);
1644 void __iomem *ioaddr = np->base;
1645 struct sk_buff *skb;
1646 int i;
1647
31f817e9
JH
1648 /* Wait and kill tasklet */
1649 tasklet_kill(&np->rx_tasklet);
1650 tasklet_kill(&np->tx_tasklet);
1651 np->cur_tx = 0;
1652 np->dirty_tx = 0;
1653 np->cur_task = 0;
bca79eb7 1654 np->last_tx = NULL;
31f817e9 1655
1da177e4
LT
1656 netif_stop_queue(dev);
1657
1658 if (netif_msg_ifdown(np)) {
1659 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1660 "Rx %4.4x Int %2.2x.\n",
1661 dev->name, ioread8(ioaddr + TxStatus),
1662 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1663 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1664 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1665 }
1666
1667 /* Disable interrupts by clearing the interrupt mask. */
1668 iowrite16(0x0000, ioaddr + IntrEnable);
1669
acd70c2b
JH
1670 /* Disable Rx and Tx DMA for safely release resource */
1671 iowrite32(0x500, ioaddr + DMACtrl);
1672
1da177e4
LT
1673 /* Stop the chip's Tx and Rx processes. */
1674 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1675
31f817e9
JH
1676 for (i = 2000; i > 0; i--) {
1677 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
1678 break;
1679 mdelay(1);
1680 }
1681
1682 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
1683 ioaddr +ASICCtrl + 2);
1684
1685 for (i = 2000; i > 0; i--) {
1686 if ((ioread16(ioaddr + ASICCtrl +2) & ResetBusy) == 0)
1687 break;
1688 mdelay(1);
1689 }
1da177e4
LT
1690
1691#ifdef __i386__
1692 if (netif_msg_hw(np)) {
ad361c98 1693 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1da177e4
LT
1694 (int)(np->tx_ring_dma));
1695 for (i = 0; i < TX_RING_SIZE; i++)
ad361c98 1696 printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n",
1da177e4
LT
1697 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
1698 np->tx_ring[i].frag[0].length);
ad361c98 1699 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1da177e4
LT
1700 (int)(np->rx_ring_dma));
1701 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1702 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1703 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
1704 np->rx_ring[i].frag[0].length);
1705 }
1706 }
1707#endif /* __i386__ debugging only */
1708
1709 free_irq(dev->irq, dev);
1710
1711 del_timer_sync(&np->timer);
1712
1713 /* Free all the skbuffs in the Rx queue. */
1714 for (i = 0; i < RX_RING_SIZE; i++) {
1715 np->rx_ring[i].status = 0;
1da177e4
LT
1716 skb = np->rx_skbuff[i];
1717 if (skb) {
1718 pci_unmap_single(np->pci_dev,
14c9d9b0
AV
1719 le32_to_cpu(np->rx_ring[i].frag[0].addr),
1720 np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1721 dev_kfree_skb(skb);
1722 np->rx_skbuff[i] = NULL;
1723 }
14c9d9b0 1724 np->rx_ring[i].frag[0].addr = cpu_to_le32(0xBADF00D0); /* poison */
1da177e4
LT
1725 }
1726 for (i = 0; i < TX_RING_SIZE; i++) {
31f817e9 1727 np->tx_ring[i].next_desc = 0;
1da177e4
LT
1728 skb = np->tx_skbuff[i];
1729 if (skb) {
1730 pci_unmap_single(np->pci_dev,
14c9d9b0
AV
1731 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1732 skb->len, PCI_DMA_TODEVICE);
1da177e4
LT
1733 dev_kfree_skb(skb);
1734 np->tx_skbuff[i] = NULL;
1735 }
1736 }
1737
1738 return 0;
1739}
1740
1741static void __devexit sundance_remove1 (struct pci_dev *pdev)
1742{
1743 struct net_device *dev = pci_get_drvdata(pdev);
1744
1745 if (dev) {
1746 struct netdev_private *np = netdev_priv(dev);
1747
1748 unregister_netdev(dev);
1749 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring,
1750 np->rx_ring_dma);
1751 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring,
1752 np->tx_ring_dma);
1753 pci_iounmap(pdev, np->base);
1754 pci_release_regions(pdev);
1755 free_netdev(dev);
1756 pci_set_drvdata(pdev, NULL);
1757 }
1758}
1759
1760static struct pci_driver sundance_driver = {
1761 .name = DRV_NAME,
1762 .id_table = sundance_pci_tbl,
1763 .probe = sundance_probe1,
1764 .remove = __devexit_p(sundance_remove1),
1765};
1766
1767static int __init sundance_init(void)
1768{
1769/* when a module, this is printed whether or not devices are found in probe */
1770#ifdef MODULE
1771 printk(version);
1772#endif
29917620 1773 return pci_register_driver(&sundance_driver);
1da177e4
LT
1774}
1775
1776static void __exit sundance_exit(void)
1777{
1778 pci_unregister_driver(&sundance_driver);
1779}
1780
1781module_init(sundance_init);
1782module_exit(sundance_exit);
1783
1784