]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/sfc/efx.c
sfc: Add support for RX flow hash control
[net-next-2.6.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
906bb26c 4 * Copyright 2005-2009 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
8ceee660 24#include "net_driver.h"
8ceee660
BH
25#include "efx.h"
26#include "mdio_10g.h"
744093c9 27#include "nic.h"
8ceee660 28
8880f4ec 29#include "mcdi.h"
fd371e32 30#include "workarounds.h"
8880f4ec 31
c459302d
BH
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41const char *efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
e58f69f4 43 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
e58f69f4
BH
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
69};
70
71/* Interrupt mode names (see INT_MODE())) */
72const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
73const char *efx_interrupt_mode_names[] = {
74 [EFX_INT_MODE_MSIX] = "MSI-X",
75 [EFX_INT_MODE_MSI] = "MSI",
76 [EFX_INT_MODE_LEGACY] = "legacy",
77};
78
79const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
80const char *efx_reset_type_names[] = {
81 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
82 [RESET_TYPE_ALL] = "ALL",
83 [RESET_TYPE_WORLD] = "WORLD",
84 [RESET_TYPE_DISABLE] = "DISABLE",
85 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
86 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
87 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
88 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
89 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
90 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 91 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
92};
93
8ceee660
BH
94#define EFX_MAX_MTU (9 * 1024)
95
1ab00629
SH
96/* Reset workqueue. If any NIC has a hardware failure then a reset will be
97 * queued onto this work queue. This is not a per-nic work queue, because
98 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
99 */
100static struct workqueue_struct *reset_workqueue;
101
8ceee660
BH
102/**************************************************************************
103 *
104 * Configurable values
105 *
106 *************************************************************************/
107
8ceee660
BH
108/*
109 * Use separate channels for TX and RX events
110 *
28b581ab
NT
111 * Set this to 1 to use separate channels for TX and RX. It allows us
112 * to control interrupt affinity separately for TX and RX.
8ceee660 113 *
28b581ab 114 * This is only used in MSI-X interrupt mode
8ceee660 115 */
28b581ab
NT
116static unsigned int separate_tx_channels;
117module_param(separate_tx_channels, uint, 0644);
118MODULE_PARM_DESC(separate_tx_channels,
119 "Use separate channels for TX and RX");
8ceee660
BH
120
121/* This is the weight assigned to each of the (per-channel) virtual
122 * NAPI devices.
123 */
124static int napi_weight = 64;
125
126/* This is the time (in jiffies) between invocations of the hardware
127 * monitor, which checks for known hardware bugs and resets the
128 * hardware and driver as necessary.
129 */
130unsigned int efx_monitor_interval = 1 * HZ;
131
8ceee660
BH
132/* This controls whether or not the driver will initialise devices
133 * with invalid MAC addresses stored in the EEPROM or flash. If true,
134 * such devices will be initialised with a random locally-generated
135 * MAC address. This allows for loading the sfc_mtd driver to
136 * reprogram the flash, even if the flash contents (including the MAC
137 * address) have previously been erased.
138 */
139static unsigned int allow_bad_hwaddr;
140
141/* Initial interrupt moderation settings. They can be modified after
142 * module load with ethtool.
143 *
144 * The default for RX should strike a balance between increasing the
145 * round-trip latency and reducing overhead.
146 */
147static unsigned int rx_irq_mod_usec = 60;
148
149/* Initial interrupt moderation settings. They can be modified after
150 * module load with ethtool.
151 *
152 * This default is chosen to ensure that a 10G link does not go idle
153 * while a TX queue is stopped after it has become full. A queue is
154 * restarted when it drops below half full. The time this takes (assuming
155 * worst case 3 descriptors per packet and 1024 descriptors) is
156 * 512 / 3 * 1.2 = 205 usec.
157 */
158static unsigned int tx_irq_mod_usec = 150;
159
160/* This is the first interrupt mode to try out of:
161 * 0 => MSI-X
162 * 1 => MSI
163 * 2 => legacy
164 */
165static unsigned int interrupt_mode;
166
167/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
168 * i.e. the number of CPUs among which we may distribute simultaneous
169 * interrupt handling.
170 *
171 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
172 * The default (0) means to assign an interrupt to each package (level II cache)
173 */
174static unsigned int rss_cpus;
175module_param(rss_cpus, uint, 0444);
176MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
177
84ae48fe
BH
178static int phy_flash_cfg;
179module_param(phy_flash_cfg, int, 0644);
180MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
181
6fb70fd1
BH
182static unsigned irq_adapt_low_thresh = 10000;
183module_param(irq_adapt_low_thresh, uint, 0644);
184MODULE_PARM_DESC(irq_adapt_low_thresh,
185 "Threshold score for reducing IRQ moderation");
186
187static unsigned irq_adapt_high_thresh = 20000;
188module_param(irq_adapt_high_thresh, uint, 0644);
189MODULE_PARM_DESC(irq_adapt_high_thresh,
190 "Threshold score for increasing IRQ moderation");
191
62776d03
BH
192static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
193 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
194 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
195 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
196module_param(debug, uint, 0);
197MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
198
8ceee660
BH
199/**************************************************************************
200 *
201 * Utility functions and prototypes
202 *
203 *************************************************************************/
204static void efx_remove_channel(struct efx_channel *channel);
205static void efx_remove_port(struct efx_nic *efx);
206static void efx_fini_napi(struct efx_nic *efx);
207static void efx_fini_channels(struct efx_nic *efx);
208
209#define EFX_ASSERT_RESET_SERIALISED(efx) \
210 do { \
332c1ce9
BH
211 if ((efx->state == STATE_RUNNING) || \
212 (efx->state == STATE_DISABLED)) \
8ceee660
BH
213 ASSERT_RTNL(); \
214 } while (0)
215
216/**************************************************************************
217 *
218 * Event queue processing
219 *
220 *************************************************************************/
221
222/* Process channel's event queue
223 *
224 * This function is responsible for processing the event queue of a
225 * single channel. The caller must guarantee that this function will
226 * never be concurrently called more than once on the same channel,
227 * though different channels may be being processed concurrently.
228 */
fa236e18 229static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 230{
42cbe2d7 231 struct efx_nic *efx = channel->efx;
fa236e18 232 int spent;
8ceee660 233
42cbe2d7 234 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 235 !channel->enabled))
42cbe2d7 236 return 0;
8ceee660 237
fa236e18
BH
238 spent = efx_nic_process_eventq(channel, budget);
239 if (spent == 0)
42cbe2d7 240 return 0;
8ceee660
BH
241
242 /* Deliver last RX packet. */
243 if (channel->rx_pkt) {
244 __efx_rx_packet(channel, channel->rx_pkt,
245 channel->rx_pkt_csummed);
246 channel->rx_pkt = NULL;
247 }
248
8ceee660
BH
249 efx_rx_strategy(channel);
250
42cbe2d7 251 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 252
fa236e18 253 return spent;
8ceee660
BH
254}
255
256/* Mark channel as finished processing
257 *
258 * Note that since we will not receive further interrupts for this
259 * channel before we finish processing and call the eventq_read_ack()
260 * method, there is no need to use the interrupt hold-off timers.
261 */
262static inline void efx_channel_processed(struct efx_channel *channel)
263{
5b9e207c
BH
264 /* The interrupt handler for this channel may set work_pending
265 * as soon as we acknowledge the events we've seen. Make sure
266 * it's cleared before then. */
dc8cfa55 267 channel->work_pending = false;
5b9e207c
BH
268 smp_wmb();
269
152b6a62 270 efx_nic_eventq_read_ack(channel);
8ceee660
BH
271}
272
273/* NAPI poll handler
274 *
275 * NAPI guarantees serialisation of polls of the same device, which
276 * provides the guarantee required by efx_process_channel().
277 */
278static int efx_poll(struct napi_struct *napi, int budget)
279{
280 struct efx_channel *channel =
281 container_of(napi, struct efx_channel, napi_str);
62776d03 282 struct efx_nic *efx = channel->efx;
fa236e18 283 int spent;
8ceee660 284
62776d03
BH
285 netif_vdbg(efx, intr, efx->net_dev,
286 "channel %d NAPI poll executing on CPU %d\n",
287 channel->channel, raw_smp_processor_id());
8ceee660 288
fa236e18 289 spent = efx_process_channel(channel, budget);
8ceee660 290
fa236e18 291 if (spent < budget) {
a4900ac9 292 if (channel->channel < efx->n_rx_channels &&
6fb70fd1
BH
293 efx->irq_rx_adaptive &&
294 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
295 if (unlikely(channel->irq_mod_score <
296 irq_adapt_low_thresh)) {
0d86ebd8
BH
297 if (channel->irq_moderation > 1) {
298 channel->irq_moderation -= 1;
ef2b90ee 299 efx->type->push_irq_moderation(channel);
0d86ebd8 300 }
6fb70fd1
BH
301 } else if (unlikely(channel->irq_mod_score >
302 irq_adapt_high_thresh)) {
0d86ebd8
BH
303 if (channel->irq_moderation <
304 efx->irq_rx_moderation) {
305 channel->irq_moderation += 1;
ef2b90ee 306 efx->type->push_irq_moderation(channel);
0d86ebd8 307 }
6fb70fd1 308 }
6fb70fd1
BH
309 channel->irq_count = 0;
310 channel->irq_mod_score = 0;
311 }
312
8ceee660 313 /* There is no race here; although napi_disable() will
288379f0 314 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
315 * since efx_channel_processed() will have no effect if
316 * interrupts have already been disabled.
317 */
288379f0 318 napi_complete(napi);
8ceee660
BH
319 efx_channel_processed(channel);
320 }
321
fa236e18 322 return spent;
8ceee660
BH
323}
324
325/* Process the eventq of the specified channel immediately on this CPU
326 *
327 * Disable hardware generated interrupts, wait for any existing
328 * processing to finish, then directly poll (and ack ) the eventq.
329 * Finally reenable NAPI and interrupts.
330 *
331 * Since we are touching interrupts the caller should hold the suspend lock
332 */
333void efx_process_channel_now(struct efx_channel *channel)
334{
335 struct efx_nic *efx = channel->efx;
336
8ceee660
BH
337 BUG_ON(!channel->enabled);
338
339 /* Disable interrupts and wait for ISRs to complete */
152b6a62 340 efx_nic_disable_interrupts(efx);
8ceee660
BH
341 if (efx->legacy_irq)
342 synchronize_irq(efx->legacy_irq);
64ee3120 343 if (channel->irq)
8ceee660
BH
344 synchronize_irq(channel->irq);
345
346 /* Wait for any NAPI processing to complete */
347 napi_disable(&channel->napi_str);
348
349 /* Poll the channel */
3ffeabdd 350 efx_process_channel(channel, EFX_EVQ_SIZE);
8ceee660
BH
351
352 /* Ack the eventq. This may cause an interrupt to be generated
353 * when they are reenabled */
354 efx_channel_processed(channel);
355
356 napi_enable(&channel->napi_str);
152b6a62 357 efx_nic_enable_interrupts(efx);
8ceee660
BH
358}
359
360/* Create event queue
361 * Event queue memory allocations are done only once. If the channel
362 * is reset, the memory buffer will be reused; this guards against
363 * errors during channel reset and also simplifies interrupt handling.
364 */
365static int efx_probe_eventq(struct efx_channel *channel)
366{
62776d03
BH
367 netif_dbg(channel->efx, probe, channel->efx->net_dev,
368 "chan %d create event queue\n", channel->channel);
8ceee660 369
152b6a62 370 return efx_nic_probe_eventq(channel);
8ceee660
BH
371}
372
373/* Prepare channel's event queue */
bc3c90a2 374static void efx_init_eventq(struct efx_channel *channel)
8ceee660 375{
62776d03
BH
376 netif_dbg(channel->efx, drv, channel->efx->net_dev,
377 "chan %d init event queue\n", channel->channel);
8ceee660
BH
378
379 channel->eventq_read_ptr = 0;
380
152b6a62 381 efx_nic_init_eventq(channel);
8ceee660
BH
382}
383
384static void efx_fini_eventq(struct efx_channel *channel)
385{
62776d03
BH
386 netif_dbg(channel->efx, drv, channel->efx->net_dev,
387 "chan %d fini event queue\n", channel->channel);
8ceee660 388
152b6a62 389 efx_nic_fini_eventq(channel);
8ceee660
BH
390}
391
392static void efx_remove_eventq(struct efx_channel *channel)
393{
62776d03
BH
394 netif_dbg(channel->efx, drv, channel->efx->net_dev,
395 "chan %d remove event queue\n", channel->channel);
8ceee660 396
152b6a62 397 efx_nic_remove_eventq(channel);
8ceee660
BH
398}
399
400/**************************************************************************
401 *
402 * Channel handling
403 *
404 *************************************************************************/
405
8ceee660
BH
406static int efx_probe_channel(struct efx_channel *channel)
407{
408 struct efx_tx_queue *tx_queue;
409 struct efx_rx_queue *rx_queue;
410 int rc;
411
62776d03
BH
412 netif_dbg(channel->efx, probe, channel->efx->net_dev,
413 "creating channel %d\n", channel->channel);
8ceee660
BH
414
415 rc = efx_probe_eventq(channel);
416 if (rc)
417 goto fail1;
418
419 efx_for_each_channel_tx_queue(tx_queue, channel) {
420 rc = efx_probe_tx_queue(tx_queue);
421 if (rc)
422 goto fail2;
423 }
424
425 efx_for_each_channel_rx_queue(rx_queue, channel) {
426 rc = efx_probe_rx_queue(rx_queue);
427 if (rc)
428 goto fail3;
429 }
430
431 channel->n_rx_frm_trunc = 0;
432
433 return 0;
434
435 fail3:
436 efx_for_each_channel_rx_queue(rx_queue, channel)
437 efx_remove_rx_queue(rx_queue);
438 fail2:
439 efx_for_each_channel_tx_queue(tx_queue, channel)
440 efx_remove_tx_queue(tx_queue);
441 fail1:
442 return rc;
443}
444
445
56536e9c
BH
446static void efx_set_channel_names(struct efx_nic *efx)
447{
448 struct efx_channel *channel;
449 const char *type = "";
450 int number;
451
452 efx_for_each_channel(channel, efx) {
453 number = channel->channel;
a4900ac9
BH
454 if (efx->n_channels > efx->n_rx_channels) {
455 if (channel->channel < efx->n_rx_channels) {
56536e9c
BH
456 type = "-rx";
457 } else {
458 type = "-tx";
a4900ac9 459 number -= efx->n_rx_channels;
56536e9c
BH
460 }
461 }
462 snprintf(channel->name, sizeof(channel->name),
463 "%s%s-%d", efx->name, type, number);
464 }
465}
466
8ceee660
BH
467/* Channels are shutdown and reinitialised whilst the NIC is running
468 * to propagate configuration changes (mtu, checksum offload), or
469 * to clear hardware error conditions
470 */
bc3c90a2 471static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
472{
473 struct efx_tx_queue *tx_queue;
474 struct efx_rx_queue *rx_queue;
475 struct efx_channel *channel;
8ceee660 476
f7f13b0b
BH
477 /* Calculate the rx buffer allocation parameters required to
478 * support the current MTU, including padding for header
479 * alignment and overruns.
480 */
481 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
482 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
39c9cf07 483 efx->type->rx_buffer_hash_size +
f7f13b0b 484 efx->type->rx_buffer_padding);
62b330ba
SH
485 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
486 sizeof(struct efx_rx_page_state));
8ceee660
BH
487
488 /* Initialise the channels */
489 efx_for_each_channel(channel, efx) {
62776d03
BH
490 netif_dbg(channel->efx, drv, channel->efx->net_dev,
491 "init chan %d\n", channel->channel);
8ceee660 492
bc3c90a2 493 efx_init_eventq(channel);
8ceee660 494
bc3c90a2
BH
495 efx_for_each_channel_tx_queue(tx_queue, channel)
496 efx_init_tx_queue(tx_queue);
8ceee660
BH
497
498 /* The rx buffer allocation strategy is MTU dependent */
499 efx_rx_strategy(channel);
500
bc3c90a2
BH
501 efx_for_each_channel_rx_queue(rx_queue, channel)
502 efx_init_rx_queue(rx_queue);
8ceee660
BH
503
504 WARN_ON(channel->rx_pkt != NULL);
505 efx_rx_strategy(channel);
506 }
8ceee660
BH
507}
508
509/* This enables event queue processing and packet transmission.
510 *
511 * Note that this function is not allowed to fail, since that would
512 * introduce too much complexity into the suspend/resume path.
513 */
514static void efx_start_channel(struct efx_channel *channel)
515{
516 struct efx_rx_queue *rx_queue;
517
62776d03
BH
518 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
519 "starting chan %d\n", channel->channel);
8ceee660 520
5b9e207c
BH
521 /* The interrupt handler for this channel may set work_pending
522 * as soon as we enable it. Make sure it's cleared before
523 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
524 channel->work_pending = false;
525 channel->enabled = true;
5b9e207c 526 smp_wmb();
8ceee660 527
90d683af 528 /* Fill the queues before enabling NAPI */
8ceee660
BH
529 efx_for_each_channel_rx_queue(rx_queue, channel)
530 efx_fast_push_rx_descriptors(rx_queue);
90d683af
SH
531
532 napi_enable(&channel->napi_str);
8ceee660
BH
533}
534
535/* This disables event queue processing and packet transmission.
536 * This function does not guarantee that all queue processing
537 * (e.g. RX refill) is complete.
538 */
539static void efx_stop_channel(struct efx_channel *channel)
540{
8ceee660
BH
541 if (!channel->enabled)
542 return;
543
62776d03
BH
544 netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
545 "stop chan %d\n", channel->channel);
8ceee660 546
dc8cfa55 547 channel->enabled = false;
8ceee660 548 napi_disable(&channel->napi_str);
8ceee660
BH
549}
550
551static void efx_fini_channels(struct efx_nic *efx)
552{
553 struct efx_channel *channel;
554 struct efx_tx_queue *tx_queue;
555 struct efx_rx_queue *rx_queue;
6bc5d3a9 556 int rc;
8ceee660
BH
557
558 EFX_ASSERT_RESET_SERIALISED(efx);
559 BUG_ON(efx->port_enabled);
560
152b6a62 561 rc = efx_nic_flush_queues(efx);
fd371e32
SH
562 if (rc && EFX_WORKAROUND_7803(efx)) {
563 /* Schedule a reset to recover from the flush failure. The
564 * descriptor caches reference memory we're about to free,
565 * but falcon_reconfigure_mac_wrapper() won't reconnect
566 * the MACs because of the pending reset. */
62776d03
BH
567 netif_err(efx, drv, efx->net_dev,
568 "Resetting to recover from flush failure\n");
fd371e32
SH
569 efx_schedule_reset(efx, RESET_TYPE_ALL);
570 } else if (rc) {
62776d03 571 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
fd371e32 572 } else {
62776d03
BH
573 netif_dbg(efx, drv, efx->net_dev,
574 "successfully flushed all queues\n");
fd371e32 575 }
6bc5d3a9 576
8ceee660 577 efx_for_each_channel(channel, efx) {
62776d03
BH
578 netif_dbg(channel->efx, drv, channel->efx->net_dev,
579 "shut down chan %d\n", channel->channel);
8ceee660
BH
580
581 efx_for_each_channel_rx_queue(rx_queue, channel)
582 efx_fini_rx_queue(rx_queue);
583 efx_for_each_channel_tx_queue(tx_queue, channel)
584 efx_fini_tx_queue(tx_queue);
8ceee660
BH
585 efx_fini_eventq(channel);
586 }
587}
588
589static void efx_remove_channel(struct efx_channel *channel)
590{
591 struct efx_tx_queue *tx_queue;
592 struct efx_rx_queue *rx_queue;
593
62776d03
BH
594 netif_dbg(channel->efx, drv, channel->efx->net_dev,
595 "destroy chan %d\n", channel->channel);
8ceee660
BH
596
597 efx_for_each_channel_rx_queue(rx_queue, channel)
598 efx_remove_rx_queue(rx_queue);
599 efx_for_each_channel_tx_queue(tx_queue, channel)
600 efx_remove_tx_queue(tx_queue);
601 efx_remove_eventq(channel);
8ceee660
BH
602}
603
90d683af 604void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 605{
90d683af 606 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
607}
608
609/**************************************************************************
610 *
611 * Port handling
612 *
613 **************************************************************************/
614
615/* This ensures that the kernel is kept informed (via
616 * netif_carrier_on/off) of the link status, and also maintains the
617 * link status's stop on the port's TX queue.
618 */
fdaa9aed 619void efx_link_status_changed(struct efx_nic *efx)
8ceee660 620{
eb50c0d6
BH
621 struct efx_link_state *link_state = &efx->link_state;
622
8ceee660
BH
623 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
624 * that no events are triggered between unregister_netdev() and the
625 * driver unloading. A more general condition is that NETDEV_CHANGE
626 * can only be generated between NETDEV_UP and NETDEV_DOWN */
627 if (!netif_running(efx->net_dev))
628 return;
629
8c8661e4
BH
630 if (efx->port_inhibited) {
631 netif_carrier_off(efx->net_dev);
632 return;
633 }
634
eb50c0d6 635 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
636 efx->n_link_state_changes++;
637
eb50c0d6 638 if (link_state->up)
8ceee660
BH
639 netif_carrier_on(efx->net_dev);
640 else
641 netif_carrier_off(efx->net_dev);
642 }
643
644 /* Status message for kernel log */
eb50c0d6 645 if (link_state->up) {
62776d03
BH
646 netif_info(efx, link, efx->net_dev,
647 "link up at %uMbps %s-duplex (MTU %d)%s\n",
648 link_state->speed, link_state->fd ? "full" : "half",
649 efx->net_dev->mtu,
650 (efx->promiscuous ? " [PROMISC]" : ""));
8ceee660 651 } else {
62776d03 652 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
653 }
654
655}
656
d3245b28
BH
657void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
658{
659 efx->link_advertising = advertising;
660 if (advertising) {
661 if (advertising & ADVERTISED_Pause)
662 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
663 else
664 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
665 if (advertising & ADVERTISED_Asym_Pause)
666 efx->wanted_fc ^= EFX_FC_TX;
667 }
668}
669
670void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
671{
672 efx->wanted_fc = wanted_fc;
673 if (efx->link_advertising) {
674 if (wanted_fc & EFX_FC_RX)
675 efx->link_advertising |= (ADVERTISED_Pause |
676 ADVERTISED_Asym_Pause);
677 else
678 efx->link_advertising &= ~(ADVERTISED_Pause |
679 ADVERTISED_Asym_Pause);
680 if (wanted_fc & EFX_FC_TX)
681 efx->link_advertising ^= ADVERTISED_Asym_Pause;
682 }
683}
684
115122af
BH
685static void efx_fini_port(struct efx_nic *efx);
686
d3245b28
BH
687/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
688 * the MAC appropriately. All other PHY configuration changes are pushed
689 * through phy_op->set_settings(), and pushed asynchronously to the MAC
690 * through efx_monitor().
691 *
692 * Callers must hold the mac_lock
693 */
694int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 695{
d3245b28
BH
696 enum efx_phy_mode phy_mode;
697 int rc;
8ceee660 698
d3245b28 699 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 700
a816f75a
BH
701 /* Serialise the promiscuous flag with efx_set_multicast_list. */
702 if (efx_dev_registered(efx)) {
703 netif_addr_lock_bh(efx->net_dev);
704 netif_addr_unlock_bh(efx->net_dev);
705 }
706
d3245b28
BH
707 /* Disable PHY transmit in mac level loopbacks */
708 phy_mode = efx->phy_mode;
177dfcd8
BH
709 if (LOOPBACK_INTERNAL(efx))
710 efx->phy_mode |= PHY_MODE_TX_DISABLED;
711 else
712 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 713
d3245b28 714 rc = efx->type->reconfigure_port(efx);
8ceee660 715
d3245b28
BH
716 if (rc)
717 efx->phy_mode = phy_mode;
177dfcd8 718
d3245b28 719 return rc;
8ceee660
BH
720}
721
722/* Reinitialise the MAC to pick up new PHY settings, even if the port is
723 * disabled. */
d3245b28 724int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 725{
d3245b28
BH
726 int rc;
727
8ceee660
BH
728 EFX_ASSERT_RESET_SERIALISED(efx);
729
730 mutex_lock(&efx->mac_lock);
d3245b28 731 rc = __efx_reconfigure_port(efx);
8ceee660 732 mutex_unlock(&efx->mac_lock);
d3245b28
BH
733
734 return rc;
8ceee660
BH
735}
736
8be4f3e6
BH
737/* Asynchronous work item for changing MAC promiscuity and multicast
738 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
739 * MAC directly. */
766ca0fa
BH
740static void efx_mac_work(struct work_struct *data)
741{
742 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
743
744 mutex_lock(&efx->mac_lock);
8be4f3e6 745 if (efx->port_enabled) {
ef2b90ee 746 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
747 efx->mac_op->reconfigure(efx);
748 }
766ca0fa
BH
749 mutex_unlock(&efx->mac_lock);
750}
751
8ceee660
BH
752static int efx_probe_port(struct efx_nic *efx)
753{
754 int rc;
755
62776d03 756 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 757
ff3b00a0
SH
758 if (phy_flash_cfg)
759 efx->phy_mode = PHY_MODE_SPECIAL;
760
ef2b90ee
BH
761 /* Connect up MAC/PHY operations table */
762 rc = efx->type->probe_port(efx);
8ceee660
BH
763 if (rc)
764 goto err;
765
766 /* Sanity check MAC address */
767 if (is_valid_ether_addr(efx->mac_address)) {
768 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
769 } else {
62776d03
BH
770 netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
771 efx->mac_address);
8ceee660
BH
772 if (!allow_bad_hwaddr) {
773 rc = -EINVAL;
774 goto err;
775 }
776 random_ether_addr(efx->net_dev->dev_addr);
62776d03
BH
777 netif_info(efx, probe, efx->net_dev,
778 "using locally-generated MAC %pM\n",
779 efx->net_dev->dev_addr);
8ceee660
BH
780 }
781
782 return 0;
783
784 err:
785 efx_remove_port(efx);
786 return rc;
787}
788
789static int efx_init_port(struct efx_nic *efx)
790{
791 int rc;
792
62776d03 793 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 794
1dfc5cea
BH
795 mutex_lock(&efx->mac_lock);
796
177dfcd8 797 rc = efx->phy_op->init(efx);
8ceee660 798 if (rc)
1dfc5cea 799 goto fail1;
8ceee660 800
dc8cfa55 801 efx->port_initialized = true;
1dfc5cea 802
d3245b28
BH
803 /* Reconfigure the MAC before creating dma queues (required for
804 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
805 efx->mac_op->reconfigure(efx);
806
807 /* Ensure the PHY advertises the correct flow control settings */
808 rc = efx->phy_op->reconfigure(efx);
809 if (rc)
810 goto fail2;
811
1dfc5cea 812 mutex_unlock(&efx->mac_lock);
8ceee660 813 return 0;
177dfcd8 814
1dfc5cea 815fail2:
177dfcd8 816 efx->phy_op->fini(efx);
1dfc5cea
BH
817fail1:
818 mutex_unlock(&efx->mac_lock);
177dfcd8 819 return rc;
8ceee660
BH
820}
821
8ceee660
BH
822static void efx_start_port(struct efx_nic *efx)
823{
62776d03 824 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
825 BUG_ON(efx->port_enabled);
826
827 mutex_lock(&efx->mac_lock);
dc8cfa55 828 efx->port_enabled = true;
8be4f3e6
BH
829
830 /* efx_mac_work() might have been scheduled after efx_stop_port(),
831 * and then cancelled by efx_flush_all() */
ef2b90ee 832 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
833 efx->mac_op->reconfigure(efx);
834
8ceee660
BH
835 mutex_unlock(&efx->mac_lock);
836}
837
fdaa9aed 838/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
839static void efx_stop_port(struct efx_nic *efx)
840{
62776d03 841 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660
BH
842
843 mutex_lock(&efx->mac_lock);
dc8cfa55 844 efx->port_enabled = false;
8ceee660
BH
845 mutex_unlock(&efx->mac_lock);
846
847 /* Serialise against efx_set_multicast_list() */
55668611 848 if (efx_dev_registered(efx)) {
b9e40857
DM
849 netif_addr_lock_bh(efx->net_dev);
850 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
851 }
852}
853
854static void efx_fini_port(struct efx_nic *efx)
855{
62776d03 856 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
857
858 if (!efx->port_initialized)
859 return;
860
177dfcd8 861 efx->phy_op->fini(efx);
dc8cfa55 862 efx->port_initialized = false;
8ceee660 863
eb50c0d6 864 efx->link_state.up = false;
8ceee660
BH
865 efx_link_status_changed(efx);
866}
867
868static void efx_remove_port(struct efx_nic *efx)
869{
62776d03 870 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 871
ef2b90ee 872 efx->type->remove_port(efx);
8ceee660
BH
873}
874
875/**************************************************************************
876 *
877 * NIC handling
878 *
879 **************************************************************************/
880
881/* This configures the PCI device to enable I/O and DMA. */
882static int efx_init_io(struct efx_nic *efx)
883{
884 struct pci_dev *pci_dev = efx->pci_dev;
885 dma_addr_t dma_mask = efx->type->max_dma_mask;
886 int rc;
887
62776d03 888 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660
BH
889
890 rc = pci_enable_device(pci_dev);
891 if (rc) {
62776d03
BH
892 netif_err(efx, probe, efx->net_dev,
893 "failed to enable PCI device\n");
8ceee660
BH
894 goto fail1;
895 }
896
897 pci_set_master(pci_dev);
898
899 /* Set the PCI DMA mask. Try all possibilities from our
900 * genuine mask down to 32 bits, because some architectures
901 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
902 * masks event though they reject 46 bit masks.
903 */
904 while (dma_mask > 0x7fffffffUL) {
905 if (pci_dma_supported(pci_dev, dma_mask) &&
906 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
907 break;
908 dma_mask >>= 1;
909 }
910 if (rc) {
62776d03
BH
911 netif_err(efx, probe, efx->net_dev,
912 "could not find a suitable DMA mask\n");
8ceee660
BH
913 goto fail2;
914 }
62776d03
BH
915 netif_dbg(efx, probe, efx->net_dev,
916 "using DMA mask %llx\n", (unsigned long long) dma_mask);
8ceee660
BH
917 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
918 if (rc) {
919 /* pci_set_consistent_dma_mask() is not *allowed* to
920 * fail with a mask that pci_set_dma_mask() accepted,
921 * but just in case...
922 */
62776d03
BH
923 netif_err(efx, probe, efx->net_dev,
924 "failed to set consistent DMA mask\n");
8ceee660
BH
925 goto fail2;
926 }
927
dc803df8
BH
928 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
929 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660 930 if (rc) {
62776d03
BH
931 netif_err(efx, probe, efx->net_dev,
932 "request for memory BAR failed\n");
8ceee660
BH
933 rc = -EIO;
934 goto fail3;
935 }
936 efx->membase = ioremap_nocache(efx->membase_phys,
937 efx->type->mem_map_size);
938 if (!efx->membase) {
62776d03
BH
939 netif_err(efx, probe, efx->net_dev,
940 "could not map memory BAR at %llx+%x\n",
941 (unsigned long long)efx->membase_phys,
942 efx->type->mem_map_size);
8ceee660
BH
943 rc = -ENOMEM;
944 goto fail4;
945 }
62776d03
BH
946 netif_dbg(efx, probe, efx->net_dev,
947 "memory BAR at %llx+%x (virtual %p)\n",
948 (unsigned long long)efx->membase_phys,
949 efx->type->mem_map_size, efx->membase);
8ceee660
BH
950
951 return 0;
952
953 fail4:
dc803df8 954 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 955 fail3:
2c118e0f 956 efx->membase_phys = 0;
8ceee660
BH
957 fail2:
958 pci_disable_device(efx->pci_dev);
959 fail1:
960 return rc;
961}
962
963static void efx_fini_io(struct efx_nic *efx)
964{
62776d03 965 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
966
967 if (efx->membase) {
968 iounmap(efx->membase);
969 efx->membase = NULL;
970 }
971
972 if (efx->membase_phys) {
dc803df8 973 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 974 efx->membase_phys = 0;
8ceee660
BH
975 }
976
977 pci_disable_device(efx->pci_dev);
978}
979
a4900ac9
BH
980/* Get number of channels wanted. Each channel will have its own IRQ,
981 * 1 RX queue and/or 2 TX queues. */
982static int efx_wanted_channels(void)
46123d04 983{
2f8975fb 984 cpumask_var_t core_mask;
46123d04
BH
985 int count;
986 int cpu;
987
79f55997 988 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
2f8975fb 989 printk(KERN_WARNING
3977d033 990 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
991 return 1;
992 }
993
46123d04
BH
994 count = 0;
995 for_each_online_cpu(cpu) {
2f8975fb 996 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 997 ++count;
2f8975fb 998 cpumask_or(core_mask, core_mask,
fbd59a8d 999 topology_core_cpumask(cpu));
46123d04
BH
1000 }
1001 }
1002
2f8975fb 1003 free_cpumask_var(core_mask);
46123d04
BH
1004 return count;
1005}
1006
1007/* Probe the number and type of interrupts we are able to obtain, and
1008 * the resulting numbers of channels and RX queues.
1009 */
8ceee660
BH
1010static void efx_probe_interrupts(struct efx_nic *efx)
1011{
46123d04
BH
1012 int max_channels =
1013 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
1014 int rc, i;
1015
1016 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1017 struct msix_entry xentries[EFX_MAX_CHANNELS];
a4900ac9 1018 int n_channels;
aa6ef27e 1019
a4900ac9
BH
1020 n_channels = efx_wanted_channels();
1021 if (separate_tx_channels)
1022 n_channels *= 2;
1023 n_channels = min(n_channels, max_channels);
8ceee660 1024
a4900ac9 1025 for (i = 0; i < n_channels; i++)
8ceee660 1026 xentries[i].entry = i;
a4900ac9 1027 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 1028 if (rc > 0) {
62776d03
BH
1029 netif_err(efx, drv, efx->net_dev,
1030 "WARNING: Insufficient MSI-X vectors"
1031 " available (%d < %d).\n", rc, n_channels);
1032 netif_err(efx, drv, efx->net_dev,
1033 "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1034 EFX_BUG_ON_PARANOID(rc >= n_channels);
1035 n_channels = rc;
8ceee660 1036 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1037 n_channels);
8ceee660
BH
1038 }
1039
1040 if (rc == 0) {
a4900ac9
BH
1041 efx->n_channels = n_channels;
1042 if (separate_tx_channels) {
1043 efx->n_tx_channels =
1044 max(efx->n_channels / 2, 1U);
1045 efx->n_rx_channels =
1046 max(efx->n_channels -
1047 efx->n_tx_channels, 1U);
1048 } else {
1049 efx->n_tx_channels = efx->n_channels;
1050 efx->n_rx_channels = efx->n_channels;
1051 }
1052 for (i = 0; i < n_channels; i++)
8ceee660 1053 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
1054 } else {
1055 /* Fall back to single channel MSI */
1056 efx->interrupt_mode = EFX_INT_MODE_MSI;
62776d03
BH
1057 netif_err(efx, drv, efx->net_dev,
1058 "could not enable MSI-X\n");
8ceee660
BH
1059 }
1060 }
1061
1062 /* Try single interrupt MSI */
1063 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1064 efx->n_channels = 1;
a4900ac9
BH
1065 efx->n_rx_channels = 1;
1066 efx->n_tx_channels = 1;
8ceee660
BH
1067 rc = pci_enable_msi(efx->pci_dev);
1068 if (rc == 0) {
1069 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660 1070 } else {
62776d03
BH
1071 netif_err(efx, drv, efx->net_dev,
1072 "could not enable MSI\n");
8ceee660
BH
1073 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1074 }
1075 }
1076
1077 /* Assume legacy interrupts */
1078 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1079 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1080 efx->n_rx_channels = 1;
1081 efx->n_tx_channels = 1;
8ceee660
BH
1082 efx->legacy_irq = efx->pci_dev->irq;
1083 }
1084}
1085
1086static void efx_remove_interrupts(struct efx_nic *efx)
1087{
1088 struct efx_channel *channel;
1089
1090 /* Remove MSI/MSI-X interrupts */
64ee3120 1091 efx_for_each_channel(channel, efx)
8ceee660
BH
1092 channel->irq = 0;
1093 pci_disable_msi(efx->pci_dev);
1094 pci_disable_msix(efx->pci_dev);
1095
1096 /* Remove legacy interrupt */
1097 efx->legacy_irq = 0;
1098}
1099
8831da7b 1100static void efx_set_channels(struct efx_nic *efx)
8ceee660 1101{
a4900ac9 1102 struct efx_channel *channel;
8ceee660
BH
1103 struct efx_tx_queue *tx_queue;
1104 struct efx_rx_queue *rx_queue;
a4900ac9
BH
1105 unsigned tx_channel_offset =
1106 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
8ceee660 1107
a4900ac9
BH
1108 efx_for_each_channel(channel, efx) {
1109 if (channel->channel - tx_channel_offset < efx->n_tx_channels) {
1110 channel->tx_queue = &efx->tx_queue[
1111 (channel->channel - tx_channel_offset) *
1112 EFX_TXQ_TYPES];
1113 efx_for_each_channel_tx_queue(tx_queue, channel)
1114 tx_queue->channel = channel;
1115 }
60ac1065 1116 }
8ceee660 1117
a4900ac9 1118 efx_for_each_rx_queue(rx_queue, efx)
8831da7b 1119 rx_queue->channel = &efx->channel[rx_queue->queue];
8ceee660
BH
1120}
1121
1122static int efx_probe_nic(struct efx_nic *efx)
1123{
765c9f46 1124 size_t i;
8ceee660
BH
1125 int rc;
1126
62776d03 1127 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1128
1129 /* Carry out hardware-type specific initialisation */
ef2b90ee 1130 rc = efx->type->probe(efx);
8ceee660
BH
1131 if (rc)
1132 return rc;
1133
a4900ac9 1134 /* Determine the number of channels and queues by trying to hook
8ceee660
BH
1135 * in MSI-X interrupts. */
1136 efx_probe_interrupts(efx);
1137
5d3a6fca
BH
1138 if (efx->n_channels > 1)
1139 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
765c9f46
BH
1140 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1141 efx->rx_indir_table[i] = i % efx->n_rx_channels;
5d3a6fca 1142
8831da7b 1143 efx_set_channels(efx);
a4900ac9 1144 efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
8ceee660
BH
1145
1146 /* Initialise the interrupt moderation settings */
6fb70fd1 1147 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1148
1149 return 0;
1150}
1151
1152static void efx_remove_nic(struct efx_nic *efx)
1153{
62776d03 1154 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1155
1156 efx_remove_interrupts(efx);
ef2b90ee 1157 efx->type->remove(efx);
8ceee660
BH
1158}
1159
1160/**************************************************************************
1161 *
1162 * NIC startup/shutdown
1163 *
1164 *************************************************************************/
1165
1166static int efx_probe_all(struct efx_nic *efx)
1167{
1168 struct efx_channel *channel;
1169 int rc;
1170
1171 /* Create NIC */
1172 rc = efx_probe_nic(efx);
1173 if (rc) {
62776d03 1174 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1175 goto fail1;
1176 }
1177
1178 /* Create port */
1179 rc = efx_probe_port(efx);
1180 if (rc) {
62776d03 1181 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1182 goto fail2;
1183 }
1184
1185 /* Create channels */
1186 efx_for_each_channel(channel, efx) {
1187 rc = efx_probe_channel(channel);
1188 if (rc) {
62776d03
BH
1189 netif_err(efx, probe, efx->net_dev,
1190 "failed to create channel %d\n",
1191 channel->channel);
8ceee660
BH
1192 goto fail3;
1193 }
1194 }
56536e9c 1195 efx_set_channel_names(efx);
8ceee660
BH
1196
1197 return 0;
1198
1199 fail3:
1200 efx_for_each_channel(channel, efx)
1201 efx_remove_channel(channel);
1202 efx_remove_port(efx);
1203 fail2:
1204 efx_remove_nic(efx);
1205 fail1:
1206 return rc;
1207}
1208
1209/* Called after previous invocation(s) of efx_stop_all, restarts the
1210 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1211 * and ensures that the port is scheduled to be reconfigured.
1212 * This function is safe to call multiple times when the NIC is in any
1213 * state. */
1214static void efx_start_all(struct efx_nic *efx)
1215{
1216 struct efx_channel *channel;
1217
1218 EFX_ASSERT_RESET_SERIALISED(efx);
1219
1220 /* Check that it is appropriate to restart the interface. All
1221 * of these flags are safe to read under just the rtnl lock */
1222 if (efx->port_enabled)
1223 return;
1224 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1225 return;
55668611 1226 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1227 return;
1228
1229 /* Mark the port as enabled so port reconfigurations can start, then
1230 * restart the transmit interface early so the watchdog timer stops */
1231 efx_start_port(efx);
8ceee660 1232
a4900ac9
BH
1233 efx_for_each_channel(channel, efx) {
1234 if (efx_dev_registered(efx))
1235 efx_wake_queue(channel);
8ceee660 1236 efx_start_channel(channel);
a4900ac9 1237 }
8ceee660 1238
152b6a62 1239 efx_nic_enable_interrupts(efx);
8ceee660 1240
8880f4ec
BH
1241 /* Switch to event based MCDI completions after enabling interrupts.
1242 * If a reset has been scheduled, then we need to stay in polled mode.
1243 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1244 * reset_pending [modified from an atomic context], we instead guarantee
1245 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1246 efx_mcdi_mode_event(efx);
1247 if (efx->reset_pending != RESET_TYPE_NONE)
1248 efx_mcdi_mode_poll(efx);
1249
78c1f0a0
SH
1250 /* Start the hardware monitor if there is one. Otherwise (we're link
1251 * event driven), we have to poll the PHY because after an event queue
1252 * flush, we could have a missed a link state change */
1253 if (efx->type->monitor != NULL) {
8ceee660
BH
1254 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1255 efx_monitor_interval);
78c1f0a0
SH
1256 } else {
1257 mutex_lock(&efx->mac_lock);
1258 if (efx->phy_op->poll(efx))
1259 efx_link_status_changed(efx);
1260 mutex_unlock(&efx->mac_lock);
1261 }
55edc6e6 1262
ef2b90ee 1263 efx->type->start_stats(efx);
8ceee660
BH
1264}
1265
1266/* Flush all delayed work. Should only be called when no more delayed work
1267 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1268 * since we're holding the rtnl_lock at this point. */
1269static void efx_flush_all(struct efx_nic *efx)
1270{
8ceee660
BH
1271 /* Make sure the hardware monitor is stopped */
1272 cancel_delayed_work_sync(&efx->monitor_work);
8ceee660 1273 /* Stop scheduled port reconfigurations */
766ca0fa 1274 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1275}
1276
1277/* Quiesce hardware and software without bringing the link down.
1278 * Safe to call multiple times, when the nic and interface is in any
1279 * state. The caller is guaranteed to subsequently be in a position
1280 * to modify any hardware and software state they see fit without
1281 * taking locks. */
1282static void efx_stop_all(struct efx_nic *efx)
1283{
1284 struct efx_channel *channel;
1285
1286 EFX_ASSERT_RESET_SERIALISED(efx);
1287
1288 /* port_enabled can be read safely under the rtnl lock */
1289 if (!efx->port_enabled)
1290 return;
1291
ef2b90ee 1292 efx->type->stop_stats(efx);
55edc6e6 1293
8880f4ec
BH
1294 /* Switch to MCDI polling on Siena before disabling interrupts */
1295 efx_mcdi_mode_poll(efx);
1296
8ceee660 1297 /* Disable interrupts and wait for ISR to complete */
152b6a62 1298 efx_nic_disable_interrupts(efx);
8ceee660
BH
1299 if (efx->legacy_irq)
1300 synchronize_irq(efx->legacy_irq);
64ee3120 1301 efx_for_each_channel(channel, efx) {
8ceee660
BH
1302 if (channel->irq)
1303 synchronize_irq(channel->irq);
b3475645 1304 }
8ceee660
BH
1305
1306 /* Stop all NAPI processing and synchronous rx refills */
1307 efx_for_each_channel(channel, efx)
1308 efx_stop_channel(channel);
1309
1310 /* Stop all asynchronous port reconfigurations. Since all
1311 * event processing has already been stopped, there is no
1312 * window to loose phy events */
1313 efx_stop_port(efx);
1314
fdaa9aed 1315 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1316 efx_flush_all(efx);
1317
8ceee660
BH
1318 /* Stop the kernel transmit interface late, so the watchdog
1319 * timer isn't ticking over the flush */
55668611 1320 if (efx_dev_registered(efx)) {
a4900ac9
BH
1321 struct efx_channel *channel;
1322 efx_for_each_channel(channel, efx)
1323 efx_stop_queue(channel);
8ceee660
BH
1324 netif_tx_lock_bh(efx->net_dev);
1325 netif_tx_unlock_bh(efx->net_dev);
1326 }
1327}
1328
1329static void efx_remove_all(struct efx_nic *efx)
1330{
1331 struct efx_channel *channel;
1332
1333 efx_for_each_channel(channel, efx)
1334 efx_remove_channel(channel);
1335 efx_remove_port(efx);
1336 efx_remove_nic(efx);
1337}
1338
8ceee660
BH
1339/**************************************************************************
1340 *
1341 * Interrupt moderation
1342 *
1343 **************************************************************************/
1344
0d86ebd8
BH
1345static unsigned irq_mod_ticks(int usecs, int resolution)
1346{
1347 if (usecs <= 0)
1348 return 0; /* cannot receive interrupts ahead of time :-) */
1349 if (usecs < resolution)
1350 return 1; /* never round down to 0 */
1351 return usecs / resolution;
1352}
1353
8ceee660 1354/* Set interrupt moderation parameters */
6fb70fd1
BH
1355void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1356 bool rx_adaptive)
8ceee660
BH
1357{
1358 struct efx_tx_queue *tx_queue;
1359 struct efx_rx_queue *rx_queue;
152b6a62
BH
1360 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1361 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
8ceee660
BH
1362
1363 EFX_ASSERT_RESET_SERIALISED(efx);
1364
1365 efx_for_each_tx_queue(tx_queue, efx)
0d86ebd8 1366 tx_queue->channel->irq_moderation = tx_ticks;
8ceee660 1367
6fb70fd1 1368 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1369 efx->irq_rx_moderation = rx_ticks;
8ceee660 1370 efx_for_each_rx_queue(rx_queue, efx)
0d86ebd8 1371 rx_queue->channel->irq_moderation = rx_ticks;
8ceee660
BH
1372}
1373
1374/**************************************************************************
1375 *
1376 * Hardware monitor
1377 *
1378 **************************************************************************/
1379
1380/* Run periodically off the general workqueue. Serialised against
1381 * efx_reconfigure_port via the mac_lock */
1382static void efx_monitor(struct work_struct *data)
1383{
1384 struct efx_nic *efx = container_of(data, struct efx_nic,
1385 monitor_work.work);
8ceee660 1386
62776d03
BH
1387 netif_vdbg(efx, timer, efx->net_dev,
1388 "hardware monitor executing on CPU %d\n",
1389 raw_smp_processor_id());
ef2b90ee 1390 BUG_ON(efx->type->monitor == NULL);
8ceee660 1391
8ceee660
BH
1392 /* If the mac_lock is already held then it is likely a port
1393 * reconfiguration is already in place, which will likely do
1394 * most of the work of check_hw() anyway. */
766ca0fa
BH
1395 if (!mutex_trylock(&efx->mac_lock))
1396 goto out_requeue;
1397 if (!efx->port_enabled)
1398 goto out_unlock;
ef2b90ee 1399 efx->type->monitor(efx);
8ceee660 1400
766ca0fa 1401out_unlock:
8ceee660 1402 mutex_unlock(&efx->mac_lock);
766ca0fa 1403out_requeue:
8ceee660
BH
1404 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1405 efx_monitor_interval);
1406}
1407
1408/**************************************************************************
1409 *
1410 * ioctls
1411 *
1412 *************************************************************************/
1413
1414/* Net device ioctl
1415 * Context: process, rtnl_lock() held.
1416 */
1417static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1418{
767e468c 1419 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1420 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1421
1422 EFX_ASSERT_RESET_SERIALISED(efx);
1423
68e7f45e
BH
1424 /* Convert phy_id from older PRTAD/DEVAD format */
1425 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1426 (data->phy_id & 0xfc00) == 0x0400)
1427 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1428
1429 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1430}
1431
1432/**************************************************************************
1433 *
1434 * NAPI interface
1435 *
1436 **************************************************************************/
1437
1438static int efx_init_napi(struct efx_nic *efx)
1439{
1440 struct efx_channel *channel;
8ceee660
BH
1441
1442 efx_for_each_channel(channel, efx) {
1443 channel->napi_dev = efx->net_dev;
718cff1e
BH
1444 netif_napi_add(channel->napi_dev, &channel->napi_str,
1445 efx_poll, napi_weight);
8ceee660
BH
1446 }
1447 return 0;
8ceee660
BH
1448}
1449
1450static void efx_fini_napi(struct efx_nic *efx)
1451{
1452 struct efx_channel *channel;
1453
1454 efx_for_each_channel(channel, efx) {
718cff1e
BH
1455 if (channel->napi_dev)
1456 netif_napi_del(&channel->napi_str);
8ceee660
BH
1457 channel->napi_dev = NULL;
1458 }
1459}
1460
1461/**************************************************************************
1462 *
1463 * Kernel netpoll interface
1464 *
1465 *************************************************************************/
1466
1467#ifdef CONFIG_NET_POLL_CONTROLLER
1468
1469/* Although in the common case interrupts will be disabled, this is not
1470 * guaranteed. However, all our work happens inside the NAPI callback,
1471 * so no locking is required.
1472 */
1473static void efx_netpoll(struct net_device *net_dev)
1474{
767e468c 1475 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1476 struct efx_channel *channel;
1477
64ee3120 1478 efx_for_each_channel(channel, efx)
8ceee660
BH
1479 efx_schedule_channel(channel);
1480}
1481
1482#endif
1483
1484/**************************************************************************
1485 *
1486 * Kernel net device interface
1487 *
1488 *************************************************************************/
1489
1490/* Context: process, rtnl_lock() held. */
1491static int efx_net_open(struct net_device *net_dev)
1492{
767e468c 1493 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1494 EFX_ASSERT_RESET_SERIALISED(efx);
1495
62776d03
BH
1496 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1497 raw_smp_processor_id());
8ceee660 1498
f4bd954e
BH
1499 if (efx->state == STATE_DISABLED)
1500 return -EIO;
f8b87c17
BH
1501 if (efx->phy_mode & PHY_MODE_SPECIAL)
1502 return -EBUSY;
8880f4ec
BH
1503 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1504 return -EIO;
f8b87c17 1505
78c1f0a0
SH
1506 /* Notify the kernel of the link state polled during driver load,
1507 * before the monitor starts running */
1508 efx_link_status_changed(efx);
1509
8ceee660
BH
1510 efx_start_all(efx);
1511 return 0;
1512}
1513
1514/* Context: process, rtnl_lock() held.
1515 * Note that the kernel will ignore our return code; this method
1516 * should really be a void.
1517 */
1518static int efx_net_stop(struct net_device *net_dev)
1519{
767e468c 1520 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1521
62776d03
BH
1522 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1523 raw_smp_processor_id());
8ceee660 1524
f4bd954e
BH
1525 if (efx->state != STATE_DISABLED) {
1526 /* Stop the device and flush all the channels */
1527 efx_stop_all(efx);
1528 efx_fini_channels(efx);
1529 efx_init_channels(efx);
1530 }
8ceee660
BH
1531
1532 return 0;
1533}
1534
5b9e207c 1535/* Context: process, dev_base_lock or RTNL held, non-blocking. */
4472702e 1536static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev)
8ceee660 1537{
767e468c 1538 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1539 struct efx_mac_stats *mac_stats = &efx->mac_stats;
4472702e 1540 struct rtnl_link_stats64 *stats = &net_dev->stats64;
8ceee660 1541
55edc6e6 1542 spin_lock_bh(&efx->stats_lock);
ef2b90ee 1543 efx->type->update_stats(efx);
55edc6e6 1544 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1545
1546 stats->rx_packets = mac_stats->rx_packets;
1547 stats->tx_packets = mac_stats->tx_packets;
1548 stats->rx_bytes = mac_stats->rx_bytes;
1549 stats->tx_bytes = mac_stats->tx_bytes;
1550 stats->multicast = mac_stats->rx_multicast;
1551 stats->collisions = mac_stats->tx_collision;
1552 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1553 mac_stats->rx_length_error);
1554 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1555 stats->rx_crc_errors = mac_stats->rx_bad;
1556 stats->rx_frame_errors = mac_stats->rx_align_error;
1557 stats->rx_fifo_errors = mac_stats->rx_overflow;
1558 stats->rx_missed_errors = mac_stats->rx_missed;
1559 stats->tx_window_errors = mac_stats->tx_late_collision;
1560
1561 stats->rx_errors = (stats->rx_length_errors +
8ceee660
BH
1562 stats->rx_crc_errors +
1563 stats->rx_frame_errors +
8ceee660
BH
1564 mac_stats->rx_symbol_error);
1565 stats->tx_errors = (stats->tx_window_errors +
1566 mac_stats->tx_bad);
1567
1568 return stats;
1569}
1570
1571/* Context: netif_tx_lock held, BHs disabled. */
1572static void efx_watchdog(struct net_device *net_dev)
1573{
767e468c 1574 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1575
62776d03
BH
1576 netif_err(efx, tx_err, efx->net_dev,
1577 "TX stuck with port_enabled=%d: resetting channels\n",
1578 efx->port_enabled);
8ceee660 1579
739bb23d 1580 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1581}
1582
1583
1584/* Context: process, rtnl_lock() held. */
1585static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1586{
767e468c 1587 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1588 int rc = 0;
1589
1590 EFX_ASSERT_RESET_SERIALISED(efx);
1591
1592 if (new_mtu > EFX_MAX_MTU)
1593 return -EINVAL;
1594
1595 efx_stop_all(efx);
1596
62776d03 1597 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660
BH
1598
1599 efx_fini_channels(efx);
d3245b28
BH
1600
1601 mutex_lock(&efx->mac_lock);
1602 /* Reconfigure the MAC before enabling the dma queues so that
1603 * the RX buffers don't overflow */
8ceee660 1604 net_dev->mtu = new_mtu;
d3245b28
BH
1605 efx->mac_op->reconfigure(efx);
1606 mutex_unlock(&efx->mac_lock);
1607
bc3c90a2 1608 efx_init_channels(efx);
8ceee660
BH
1609
1610 efx_start_all(efx);
1611 return rc;
8ceee660
BH
1612}
1613
1614static int efx_set_mac_address(struct net_device *net_dev, void *data)
1615{
767e468c 1616 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1617 struct sockaddr *addr = data;
1618 char *new_addr = addr->sa_data;
1619
1620 EFX_ASSERT_RESET_SERIALISED(efx);
1621
1622 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
1623 netif_err(efx, drv, efx->net_dev,
1624 "invalid ethernet MAC address requested: %pM\n",
1625 new_addr);
8ceee660
BH
1626 return -EINVAL;
1627 }
1628
1629 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1630
1631 /* Reconfigure the MAC */
d3245b28
BH
1632 mutex_lock(&efx->mac_lock);
1633 efx->mac_op->reconfigure(efx);
1634 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1635
1636 return 0;
1637}
1638
a816f75a 1639/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1640static void efx_set_multicast_list(struct net_device *net_dev)
1641{
767e468c 1642 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1643 struct netdev_hw_addr *ha;
8ceee660 1644 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1645 u32 crc;
1646 int bit;
8ceee660 1647
8be4f3e6 1648 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1649
1650 /* Build multicast hash table */
8be4f3e6 1651 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1652 memset(mc_hash, 0xff, sizeof(*mc_hash));
1653 } else {
1654 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1655 netdev_for_each_mc_addr(ha, net_dev) {
1656 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660
BH
1657 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1658 set_bit_le(bit, mc_hash->byte);
8ceee660 1659 }
8ceee660 1660
8be4f3e6
BH
1661 /* Broadcast packets go through the multicast hash filter.
1662 * ether_crc_le() of the broadcast address is 0xbe2612ff
1663 * so we always add bit 0xff to the mask.
1664 */
1665 set_bit_le(0xff, mc_hash->byte);
1666 }
a816f75a 1667
8be4f3e6
BH
1668 if (efx->port_enabled)
1669 queue_work(efx->workqueue, &efx->mac_work);
1670 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1671}
1672
c3ecb9f3
SH
1673static const struct net_device_ops efx_netdev_ops = {
1674 .ndo_open = efx_net_open,
1675 .ndo_stop = efx_net_stop,
4472702e 1676 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
1677 .ndo_tx_timeout = efx_watchdog,
1678 .ndo_start_xmit = efx_hard_start_xmit,
1679 .ndo_validate_addr = eth_validate_addr,
1680 .ndo_do_ioctl = efx_ioctl,
1681 .ndo_change_mtu = efx_change_mtu,
1682 .ndo_set_mac_address = efx_set_mac_address,
1683 .ndo_set_multicast_list = efx_set_multicast_list,
1684#ifdef CONFIG_NET_POLL_CONTROLLER
1685 .ndo_poll_controller = efx_netpoll,
1686#endif
1687};
1688
7dde596e
BH
1689static void efx_update_name(struct efx_nic *efx)
1690{
1691 strcpy(efx->name, efx->net_dev->name);
1692 efx_mtd_rename(efx);
1693 efx_set_channel_names(efx);
1694}
1695
8ceee660
BH
1696static int efx_netdev_event(struct notifier_block *this,
1697 unsigned long event, void *ptr)
1698{
d3208b5e 1699 struct net_device *net_dev = ptr;
8ceee660 1700
7dde596e
BH
1701 if (net_dev->netdev_ops == &efx_netdev_ops &&
1702 event == NETDEV_CHANGENAME)
1703 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1704
1705 return NOTIFY_DONE;
1706}
1707
1708static struct notifier_block efx_netdev_notifier = {
1709 .notifier_call = efx_netdev_event,
1710};
1711
06d5e193
BH
1712static ssize_t
1713show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1714{
1715 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1716 return sprintf(buf, "%d\n", efx->phy_type);
1717}
1718static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1719
8ceee660
BH
1720static int efx_register_netdev(struct efx_nic *efx)
1721{
1722 struct net_device *net_dev = efx->net_dev;
1723 int rc;
1724
1725 net_dev->watchdog_timeo = 5 * HZ;
1726 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1727 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1728 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1729
8ceee660 1730 /* Clear MAC statistics */
177dfcd8 1731 efx->mac_op->update_stats(efx);
8ceee660
BH
1732 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1733
7dde596e 1734 rtnl_lock();
aed0628d
BH
1735
1736 rc = dev_alloc_name(net_dev, net_dev->name);
1737 if (rc < 0)
1738 goto fail_locked;
7dde596e 1739 efx_update_name(efx);
aed0628d
BH
1740
1741 rc = register_netdevice(net_dev);
1742 if (rc)
1743 goto fail_locked;
1744
1745 /* Always start with carrier off; PHY events will detect the link */
1746 netif_carrier_off(efx->net_dev);
1747
7dde596e 1748 rtnl_unlock();
8ceee660 1749
06d5e193
BH
1750 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1751 if (rc) {
62776d03
BH
1752 netif_err(efx, drv, efx->net_dev,
1753 "failed to init net dev attributes\n");
06d5e193
BH
1754 goto fail_registered;
1755 }
1756
8ceee660 1757 return 0;
06d5e193 1758
aed0628d
BH
1759fail_locked:
1760 rtnl_unlock();
62776d03 1761 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d
BH
1762 return rc;
1763
06d5e193
BH
1764fail_registered:
1765 unregister_netdev(net_dev);
1766 return rc;
8ceee660
BH
1767}
1768
1769static void efx_unregister_netdev(struct efx_nic *efx)
1770{
1771 struct efx_tx_queue *tx_queue;
1772
1773 if (!efx->net_dev)
1774 return;
1775
767e468c 1776 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1777
1778 /* Free up any skbs still remaining. This has to happen before
1779 * we try to unregister the netdev as running their destructors
1780 * may be needed to get the device ref. count to 0. */
1781 efx_for_each_tx_queue(tx_queue, efx)
1782 efx_release_tx_buffers(tx_queue);
1783
55668611 1784 if (efx_dev_registered(efx)) {
8ceee660 1785 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1786 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1787 unregister_netdev(efx->net_dev);
1788 }
1789}
1790
1791/**************************************************************************
1792 *
1793 * Device reset and suspend
1794 *
1795 **************************************************************************/
1796
2467ca46
BH
1797/* Tears down the entire software state and most of the hardware state
1798 * before reset. */
d3245b28 1799void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 1800{
8ceee660
BH
1801 EFX_ASSERT_RESET_SERIALISED(efx);
1802
2467ca46
BH
1803 efx_stop_all(efx);
1804 mutex_lock(&efx->mac_lock);
f4150724 1805 mutex_lock(&efx->spi_lock);
2467ca46 1806
8ceee660 1807 efx_fini_channels(efx);
4b988280
SH
1808 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1809 efx->phy_op->fini(efx);
ef2b90ee 1810 efx->type->fini(efx);
8ceee660
BH
1811}
1812
2467ca46
BH
1813/* This function will always ensure that the locks acquired in
1814 * efx_reset_down() are released. A failure return code indicates
1815 * that we were unable to reinitialise the hardware, and the
1816 * driver should be disabled. If ok is false, then the rx and tx
1817 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 1818int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
1819{
1820 int rc;
1821
2467ca46 1822 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1823
ef2b90ee 1824 rc = efx->type->init(efx);
8ceee660 1825 if (rc) {
62776d03 1826 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 1827 goto fail;
8ceee660
BH
1828 }
1829
eb9f6744
BH
1830 if (!ok)
1831 goto fail;
1832
4b988280 1833 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
1834 rc = efx->phy_op->init(efx);
1835 if (rc)
1836 goto fail;
1837 if (efx->phy_op->reconfigure(efx))
62776d03
BH
1838 netif_err(efx, drv, efx->net_dev,
1839 "could not restore PHY settings\n");
4b988280
SH
1840 }
1841
eb9f6744 1842 efx->mac_op->reconfigure(efx);
8ceee660 1843
eb9f6744
BH
1844 efx_init_channels(efx);
1845
1846 mutex_unlock(&efx->spi_lock);
1847 mutex_unlock(&efx->mac_lock);
1848
1849 efx_start_all(efx);
1850
1851 return 0;
1852
1853fail:
1854 efx->port_initialized = false;
2467ca46 1855
f4150724 1856 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1857 mutex_unlock(&efx->mac_lock);
1858
8ceee660
BH
1859 return rc;
1860}
1861
eb9f6744
BH
1862/* Reset the NIC using the specified method. Note that the reset may
1863 * fail, in which case the card will be left in an unusable state.
8ceee660 1864 *
eb9f6744 1865 * Caller must hold the rtnl_lock.
8ceee660 1866 */
eb9f6744 1867int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 1868{
eb9f6744
BH
1869 int rc, rc2;
1870 bool disabled;
8ceee660 1871
62776d03
BH
1872 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
1873 RESET_TYPE(method));
8ceee660 1874
d3245b28 1875 efx_reset_down(efx, method);
8ceee660 1876
ef2b90ee 1877 rc = efx->type->reset(efx, method);
8ceee660 1878 if (rc) {
62776d03 1879 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 1880 goto out;
8ceee660
BH
1881 }
1882
1883 /* Allow resets to be rescheduled. */
1884 efx->reset_pending = RESET_TYPE_NONE;
1885
1886 /* Reinitialise bus-mastering, which may have been turned off before
1887 * the reset was scheduled. This is still appropriate, even in the
1888 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1889 * can respond to requests. */
1890 pci_set_master(efx->pci_dev);
1891
eb9f6744 1892out:
8ceee660 1893 /* Leave device stopped if necessary */
eb9f6744
BH
1894 disabled = rc || method == RESET_TYPE_DISABLE;
1895 rc2 = efx_reset_up(efx, method, !disabled);
1896 if (rc2) {
1897 disabled = true;
1898 if (!rc)
1899 rc = rc2;
8ceee660
BH
1900 }
1901
eb9f6744 1902 if (disabled) {
f49a4589 1903 dev_close(efx->net_dev);
62776d03 1904 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 1905 efx->state = STATE_DISABLED;
f4bd954e 1906 } else {
62776d03 1907 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
f4bd954e 1908 }
8ceee660
BH
1909 return rc;
1910}
1911
1912/* The worker thread exists so that code that cannot sleep can
1913 * schedule a reset for later.
1914 */
1915static void efx_reset_work(struct work_struct *data)
1916{
eb9f6744 1917 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
8ceee660 1918
319ba649
SH
1919 if (efx->reset_pending == RESET_TYPE_NONE)
1920 return;
1921
eb9f6744
BH
1922 /* If we're not RUNNING then don't reset. Leave the reset_pending
1923 * flag set so that efx_pci_probe_main will be retried */
1924 if (efx->state != STATE_RUNNING) {
62776d03
BH
1925 netif_info(efx, drv, efx->net_dev,
1926 "scheduled reset quenched. NIC not RUNNING\n");
eb9f6744
BH
1927 return;
1928 }
1929
1930 rtnl_lock();
f49a4589 1931 (void)efx_reset(efx, efx->reset_pending);
eb9f6744 1932 rtnl_unlock();
8ceee660
BH
1933}
1934
1935void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1936{
1937 enum reset_type method;
1938
1939 if (efx->reset_pending != RESET_TYPE_NONE) {
62776d03
BH
1940 netif_info(efx, drv, efx->net_dev,
1941 "quenching already scheduled reset\n");
8ceee660
BH
1942 return;
1943 }
1944
1945 switch (type) {
1946 case RESET_TYPE_INVISIBLE:
1947 case RESET_TYPE_ALL:
1948 case RESET_TYPE_WORLD:
1949 case RESET_TYPE_DISABLE:
1950 method = type;
1951 break;
1952 case RESET_TYPE_RX_RECOVERY:
1953 case RESET_TYPE_RX_DESC_FETCH:
1954 case RESET_TYPE_TX_DESC_FETCH:
1955 case RESET_TYPE_TX_SKIP:
1956 method = RESET_TYPE_INVISIBLE;
1957 break;
8880f4ec 1958 case RESET_TYPE_MC_FAILURE:
8ceee660
BH
1959 default:
1960 method = RESET_TYPE_ALL;
1961 break;
1962 }
1963
1964 if (method != type)
62776d03
BH
1965 netif_dbg(efx, drv, efx->net_dev,
1966 "scheduling %s reset for %s\n",
1967 RESET_TYPE(method), RESET_TYPE(type));
8ceee660 1968 else
62776d03
BH
1969 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
1970 RESET_TYPE(method));
8ceee660
BH
1971
1972 efx->reset_pending = method;
1973
8880f4ec
BH
1974 /* efx_process_channel() will no longer read events once a
1975 * reset is scheduled. So switch back to poll'd MCDI completions. */
1976 efx_mcdi_mode_poll(efx);
1977
1ab00629 1978 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1979}
1980
1981/**************************************************************************
1982 *
1983 * List of NICs we support
1984 *
1985 **************************************************************************/
1986
1987/* PCI device ID table */
a3aa1884 1988static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
8ceee660 1989 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
daeda630 1990 .driver_data = (unsigned long) &falcon_a1_nic_type},
8ceee660 1991 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
daeda630 1992 .driver_data = (unsigned long) &falcon_b0_nic_type},
8880f4ec
BH
1993 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
1994 .driver_data = (unsigned long) &siena_a0_nic_type},
1995 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
1996 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
1997 {0} /* end of list */
1998};
1999
2000/**************************************************************************
2001 *
3759433d 2002 * Dummy PHY/MAC operations
8ceee660 2003 *
01aad7b6 2004 * Can be used for some unimplemented operations
8ceee660
BH
2005 * Needed so all function pointers are valid and do not have to be tested
2006 * before use
2007 *
2008 **************************************************************************/
2009int efx_port_dummy_op_int(struct efx_nic *efx)
2010{
2011 return 0;
2012}
2013void efx_port_dummy_op_void(struct efx_nic *efx) {}
398468ed
BH
2014void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2015{
2016}
fdaa9aed
SH
2017bool efx_port_dummy_op_poll(struct efx_nic *efx)
2018{
2019 return false;
2020}
8ceee660
BH
2021
2022static struct efx_phy_operations efx_dummy_phy_operations = {
2023 .init = efx_port_dummy_op_int,
d3245b28 2024 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2025 .poll = efx_port_dummy_op_poll,
8ceee660 2026 .fini = efx_port_dummy_op_void,
8ceee660
BH
2027};
2028
8ceee660
BH
2029/**************************************************************************
2030 *
2031 * Data housekeeping
2032 *
2033 **************************************************************************/
2034
2035/* This zeroes out and then fills in the invariants in a struct
2036 * efx_nic (including all sub-structures).
2037 */
2038static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
2039 struct pci_dev *pci_dev, struct net_device *net_dev)
2040{
2041 struct efx_channel *channel;
2042 struct efx_tx_queue *tx_queue;
2043 struct efx_rx_queue *rx_queue;
1ab00629 2044 int i;
8ceee660
BH
2045
2046 /* Initialise common structures */
2047 memset(efx, 0, sizeof(*efx));
2048 spin_lock_init(&efx->biu_lock);
ab867461 2049 mutex_init(&efx->mdio_lock);
f4150724 2050 mutex_init(&efx->spi_lock);
76884835
BH
2051#ifdef CONFIG_SFC_MTD
2052 INIT_LIST_HEAD(&efx->mtd_list);
2053#endif
8ceee660
BH
2054 INIT_WORK(&efx->reset_work, efx_reset_work);
2055 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2056 efx->pci_dev = pci_dev;
62776d03 2057 efx->msg_enable = debug;
8ceee660
BH
2058 efx->state = STATE_INIT;
2059 efx->reset_pending = RESET_TYPE_NONE;
2060 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2061
2062 efx->net_dev = net_dev;
dc8cfa55 2063 efx->rx_checksum_enabled = true;
8ceee660
BH
2064 spin_lock_init(&efx->stats_lock);
2065 mutex_init(&efx->mac_lock);
b895d73e 2066 efx->mac_op = type->default_mac_ops;
8ceee660 2067 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2068 efx->mdio.dev = net_dev;
766ca0fa 2069 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
2070
2071 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2072 channel = &efx->channel[i];
2073 channel->efx = efx;
2074 channel->channel = i;
dc8cfa55 2075 channel->work_pending = false;
a4900ac9
BH
2076 spin_lock_init(&channel->tx_stop_lock);
2077 atomic_set(&channel->tx_stop_count, 1);
8ceee660 2078 }
a4900ac9 2079 for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
8ceee660
BH
2080 tx_queue = &efx->tx_queue[i];
2081 tx_queue->efx = efx;
2082 tx_queue->queue = i;
2083 tx_queue->buffer = NULL;
2084 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 2085 tx_queue->tso_headers_free = NULL;
8ceee660
BH
2086 }
2087 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
2088 rx_queue = &efx->rx_queue[i];
2089 rx_queue->efx = efx;
2090 rx_queue->queue = i;
2091 rx_queue->channel = &efx->channel[0]; /* for safety */
2092 rx_queue->buffer = NULL;
90d683af
SH
2093 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
2094 (unsigned long)rx_queue);
8ceee660
BH
2095 }
2096
2097 efx->type = type;
2098
8ceee660 2099 /* As close as we can get to guaranteeing that we don't overflow */
3ffeabdd
BH
2100 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
2101
8ceee660
BH
2102 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2103
2104 /* Higher numbered interrupt modes are less capable! */
2105 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2106 interrupt_mode);
2107
6977dc63
BH
2108 /* Would be good to use the net_dev name, but we're too early */
2109 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2110 pci_name(pci_dev));
2111 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629
SH
2112 if (!efx->workqueue)
2113 return -ENOMEM;
8d9853d9 2114
8ceee660 2115 return 0;
8ceee660
BH
2116}
2117
2118static void efx_fini_struct(struct efx_nic *efx)
2119{
2120 if (efx->workqueue) {
2121 destroy_workqueue(efx->workqueue);
2122 efx->workqueue = NULL;
2123 }
2124}
2125
2126/**************************************************************************
2127 *
2128 * PCI interface
2129 *
2130 **************************************************************************/
2131
2132/* Main body of final NIC shutdown code
2133 * This is called only at module unload (or hotplug removal).
2134 */
2135static void efx_pci_remove_main(struct efx_nic *efx)
2136{
152b6a62 2137 efx_nic_fini_interrupt(efx);
8ceee660
BH
2138 efx_fini_channels(efx);
2139 efx_fini_port(efx);
ef2b90ee 2140 efx->type->fini(efx);
8ceee660
BH
2141 efx_fini_napi(efx);
2142 efx_remove_all(efx);
2143}
2144
2145/* Final NIC shutdown
2146 * This is called only at module unload (or hotplug removal).
2147 */
2148static void efx_pci_remove(struct pci_dev *pci_dev)
2149{
2150 struct efx_nic *efx;
2151
2152 efx = pci_get_drvdata(pci_dev);
2153 if (!efx)
2154 return;
2155
2156 /* Mark the NIC as fini, then stop the interface */
2157 rtnl_lock();
2158 efx->state = STATE_FINI;
2159 dev_close(efx->net_dev);
2160
2161 /* Allow any queued efx_resets() to complete */
2162 rtnl_unlock();
2163
8ceee660
BH
2164 efx_unregister_netdev(efx);
2165
7dde596e
BH
2166 efx_mtd_remove(efx);
2167
8ceee660
BH
2168 /* Wait for any scheduled resets to complete. No more will be
2169 * scheduled from this point because efx_stop_all() has been
2170 * called, we are no longer registered with driverlink, and
2171 * the net_device's have been removed. */
1ab00629 2172 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2173
2174 efx_pci_remove_main(efx);
2175
8ceee660 2176 efx_fini_io(efx);
62776d03 2177 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660
BH
2178
2179 pci_set_drvdata(pci_dev, NULL);
2180 efx_fini_struct(efx);
2181 free_netdev(efx->net_dev);
2182};
2183
2184/* Main body of NIC initialisation
2185 * This is called at module load (or hotplug insertion, theoretically).
2186 */
2187static int efx_pci_probe_main(struct efx_nic *efx)
2188{
2189 int rc;
2190
2191 /* Do start-of-day initialisation */
2192 rc = efx_probe_all(efx);
2193 if (rc)
2194 goto fail1;
2195
2196 rc = efx_init_napi(efx);
2197 if (rc)
2198 goto fail2;
2199
ef2b90ee 2200 rc = efx->type->init(efx);
8ceee660 2201 if (rc) {
62776d03
BH
2202 netif_err(efx, probe, efx->net_dev,
2203 "failed to initialise NIC\n");
278c0621 2204 goto fail3;
8ceee660
BH
2205 }
2206
2207 rc = efx_init_port(efx);
2208 if (rc) {
62776d03
BH
2209 netif_err(efx, probe, efx->net_dev,
2210 "failed to initialise port\n");
278c0621 2211 goto fail4;
8ceee660
BH
2212 }
2213
bc3c90a2 2214 efx_init_channels(efx);
8ceee660 2215
152b6a62 2216 rc = efx_nic_init_interrupt(efx);
8ceee660 2217 if (rc)
278c0621 2218 goto fail5;
8ceee660
BH
2219
2220 return 0;
2221
278c0621 2222 fail5:
bc3c90a2 2223 efx_fini_channels(efx);
8ceee660 2224 efx_fini_port(efx);
8ceee660 2225 fail4:
ef2b90ee 2226 efx->type->fini(efx);
8ceee660
BH
2227 fail3:
2228 efx_fini_napi(efx);
2229 fail2:
2230 efx_remove_all(efx);
2231 fail1:
2232 return rc;
2233}
2234
2235/* NIC initialisation
2236 *
2237 * This is called at module load (or hotplug insertion,
2238 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2239 * sets up and registers the network devices with the kernel and hooks
2240 * the interrupt service routine. It does not prepare the device for
2241 * transmission; this is left to the first time one of the network
2242 * interfaces is brought up (i.e. efx_net_open).
2243 */
2244static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2245 const struct pci_device_id *entry)
2246{
2247 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2248 struct net_device *net_dev;
2249 struct efx_nic *efx;
2250 int i, rc;
2251
2252 /* Allocate and initialise a struct net_device and struct efx_nic */
a4900ac9 2253 net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
8ceee660
BH
2254 if (!net_dev)
2255 return -ENOMEM;
c383b537 2256 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415
BH
2257 NETIF_F_HIGHDMA | NETIF_F_TSO |
2258 NETIF_F_GRO);
738a8f4b
BH
2259 if (type->offload_features & NETIF_F_V6_CSUM)
2260 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2261 /* Mask for features that also apply to VLAN devices */
2262 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2263 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2264 efx = netdev_priv(net_dev);
8ceee660 2265 pci_set_drvdata(pci_dev, efx);
62776d03 2266 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
8ceee660
BH
2267 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2268 if (rc)
2269 goto fail1;
2270
62776d03
BH
2271 netif_info(efx, probe, efx->net_dev,
2272 "Solarflare Communications NIC detected\n");
8ceee660
BH
2273
2274 /* Set up basic I/O (BAR mappings etc) */
2275 rc = efx_init_io(efx);
2276 if (rc)
2277 goto fail2;
2278
2279 /* No serialisation is required with the reset path because
2280 * we're in STATE_INIT. */
2281 for (i = 0; i < 5; i++) {
2282 rc = efx_pci_probe_main(efx);
8ceee660
BH
2283
2284 /* Serialise against efx_reset(). No more resets will be
2285 * scheduled since efx_stop_all() has been called, and we
2286 * have not and never have been registered with either
2287 * the rtnetlink or driverlink layers. */
1ab00629 2288 cancel_work_sync(&efx->reset_work);
8ceee660 2289
fa402b2e
SH
2290 if (rc == 0) {
2291 if (efx->reset_pending != RESET_TYPE_NONE) {
2292 /* If there was a scheduled reset during
2293 * probe, the NIC is probably hosed anyway */
2294 efx_pci_remove_main(efx);
2295 rc = -EIO;
2296 } else {
2297 break;
2298 }
2299 }
2300
8ceee660
BH
2301 /* Retry if a recoverably reset event has been scheduled */
2302 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2303 (efx->reset_pending != RESET_TYPE_ALL))
2304 goto fail3;
2305
2306 efx->reset_pending = RESET_TYPE_NONE;
2307 }
2308
2309 if (rc) {
62776d03 2310 netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
8ceee660
BH
2311 goto fail4;
2312 }
2313
55edc6e6
BH
2314 /* Switch to the running state before we expose the device to the OS,
2315 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2316 efx->state = STATE_RUNNING;
7dde596e 2317
8ceee660
BH
2318 rc = efx_register_netdev(efx);
2319 if (rc)
2320 goto fail5;
2321
62776d03 2322 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5
BH
2323
2324 rtnl_lock();
2325 efx_mtd_probe(efx); /* allowed to fail */
2326 rtnl_unlock();
8ceee660
BH
2327 return 0;
2328
2329 fail5:
2330 efx_pci_remove_main(efx);
2331 fail4:
2332 fail3:
2333 efx_fini_io(efx);
2334 fail2:
2335 efx_fini_struct(efx);
2336 fail1:
5e2a911c 2337 WARN_ON(rc > 0);
62776d03 2338 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
2339 free_netdev(net_dev);
2340 return rc;
2341}
2342
89c758fa
BH
2343static int efx_pm_freeze(struct device *dev)
2344{
2345 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2346
2347 efx->state = STATE_FINI;
2348
2349 netif_device_detach(efx->net_dev);
2350
2351 efx_stop_all(efx);
2352 efx_fini_channels(efx);
2353
2354 return 0;
2355}
2356
2357static int efx_pm_thaw(struct device *dev)
2358{
2359 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2360
2361 efx->state = STATE_INIT;
2362
2363 efx_init_channels(efx);
2364
2365 mutex_lock(&efx->mac_lock);
2366 efx->phy_op->reconfigure(efx);
2367 mutex_unlock(&efx->mac_lock);
2368
2369 efx_start_all(efx);
2370
2371 netif_device_attach(efx->net_dev);
2372
2373 efx->state = STATE_RUNNING;
2374
2375 efx->type->resume_wol(efx);
2376
319ba649
SH
2377 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2378 queue_work(reset_workqueue, &efx->reset_work);
2379
89c758fa
BH
2380 return 0;
2381}
2382
2383static int efx_pm_poweroff(struct device *dev)
2384{
2385 struct pci_dev *pci_dev = to_pci_dev(dev);
2386 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2387
2388 efx->type->fini(efx);
2389
2390 efx->reset_pending = RESET_TYPE_NONE;
2391
2392 pci_save_state(pci_dev);
2393 return pci_set_power_state(pci_dev, PCI_D3hot);
2394}
2395
2396/* Used for both resume and restore */
2397static int efx_pm_resume(struct device *dev)
2398{
2399 struct pci_dev *pci_dev = to_pci_dev(dev);
2400 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2401 int rc;
2402
2403 rc = pci_set_power_state(pci_dev, PCI_D0);
2404 if (rc)
2405 return rc;
2406 pci_restore_state(pci_dev);
2407 rc = pci_enable_device(pci_dev);
2408 if (rc)
2409 return rc;
2410 pci_set_master(efx->pci_dev);
2411 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2412 if (rc)
2413 return rc;
2414 rc = efx->type->init(efx);
2415 if (rc)
2416 return rc;
2417 efx_pm_thaw(dev);
2418 return 0;
2419}
2420
2421static int efx_pm_suspend(struct device *dev)
2422{
2423 int rc;
2424
2425 efx_pm_freeze(dev);
2426 rc = efx_pm_poweroff(dev);
2427 if (rc)
2428 efx_pm_resume(dev);
2429 return rc;
2430}
2431
2432static struct dev_pm_ops efx_pm_ops = {
2433 .suspend = efx_pm_suspend,
2434 .resume = efx_pm_resume,
2435 .freeze = efx_pm_freeze,
2436 .thaw = efx_pm_thaw,
2437 .poweroff = efx_pm_poweroff,
2438 .restore = efx_pm_resume,
2439};
2440
8ceee660 2441static struct pci_driver efx_pci_driver = {
c5d5f5fd 2442 .name = KBUILD_MODNAME,
8ceee660
BH
2443 .id_table = efx_pci_table,
2444 .probe = efx_pci_probe,
2445 .remove = efx_pci_remove,
89c758fa 2446 .driver.pm = &efx_pm_ops,
8ceee660
BH
2447};
2448
2449/**************************************************************************
2450 *
2451 * Kernel module interface
2452 *
2453 *************************************************************************/
2454
2455module_param(interrupt_mode, uint, 0444);
2456MODULE_PARM_DESC(interrupt_mode,
2457 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2458
2459static int __init efx_init_module(void)
2460{
2461 int rc;
2462
2463 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2464
2465 rc = register_netdevice_notifier(&efx_netdev_notifier);
2466 if (rc)
2467 goto err_notifier;
2468
1ab00629
SH
2469 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2470 if (!reset_workqueue) {
2471 rc = -ENOMEM;
2472 goto err_reset;
2473 }
8ceee660
BH
2474
2475 rc = pci_register_driver(&efx_pci_driver);
2476 if (rc < 0)
2477 goto err_pci;
2478
2479 return 0;
2480
2481 err_pci:
1ab00629
SH
2482 destroy_workqueue(reset_workqueue);
2483 err_reset:
8ceee660
BH
2484 unregister_netdevice_notifier(&efx_netdev_notifier);
2485 err_notifier:
2486 return rc;
2487}
2488
2489static void __exit efx_exit_module(void)
2490{
2491 printk(KERN_INFO "Solarflare NET driver unloading\n");
2492
2493 pci_unregister_driver(&efx_pci_driver);
1ab00629 2494 destroy_workqueue(reset_workqueue);
8ceee660
BH
2495 unregister_netdevice_notifier(&efx_netdev_notifier);
2496
2497}
2498
2499module_init(efx_init_module);
2500module_exit(efx_exit_module);
2501
906bb26c
BH
2502MODULE_AUTHOR("Solarflare Communications and "
2503 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2504MODULE_DESCRIPTION("Solarflare Communications network driver");
2505MODULE_LICENSE("GPL");
2506MODULE_DEVICE_TABLE(pci, efx_pci_table);