]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/sfc/efx.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[net-next-2.6.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
906bb26c 4 * Copyright 2005-2009 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
8ceee660 24#include "net_driver.h"
8ceee660
BH
25#include "efx.h"
26#include "mdio_10g.h"
744093c9 27#include "nic.h"
8ceee660 28
8880f4ec 29#include "mcdi.h"
fd371e32 30#include "workarounds.h"
8880f4ec 31
c459302d
BH
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41const char *efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
e58f69f4 43 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
e58f69f4
BH
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
69};
70
71/* Interrupt mode names (see INT_MODE())) */
72const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
73const char *efx_interrupt_mode_names[] = {
74 [EFX_INT_MODE_MSIX] = "MSI-X",
75 [EFX_INT_MODE_MSI] = "MSI",
76 [EFX_INT_MODE_LEGACY] = "legacy",
77};
78
79const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
80const char *efx_reset_type_names[] = {
81 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
82 [RESET_TYPE_ALL] = "ALL",
83 [RESET_TYPE_WORLD] = "WORLD",
84 [RESET_TYPE_DISABLE] = "DISABLE",
85 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
86 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
87 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
88 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
89 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
90 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 91 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
92};
93
8ceee660
BH
94#define EFX_MAX_MTU (9 * 1024)
95
1ab00629
SH
96/* Reset workqueue. If any NIC has a hardware failure then a reset will be
97 * queued onto this work queue. This is not a per-nic work queue, because
98 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
99 */
100static struct workqueue_struct *reset_workqueue;
101
8ceee660
BH
102/**************************************************************************
103 *
104 * Configurable values
105 *
106 *************************************************************************/
107
8ceee660
BH
108/*
109 * Use separate channels for TX and RX events
110 *
28b581ab
NT
111 * Set this to 1 to use separate channels for TX and RX. It allows us
112 * to control interrupt affinity separately for TX and RX.
8ceee660 113 *
28b581ab 114 * This is only used in MSI-X interrupt mode
8ceee660 115 */
28b581ab
NT
116static unsigned int separate_tx_channels;
117module_param(separate_tx_channels, uint, 0644);
118MODULE_PARM_DESC(separate_tx_channels,
119 "Use separate channels for TX and RX");
8ceee660
BH
120
121/* This is the weight assigned to each of the (per-channel) virtual
122 * NAPI devices.
123 */
124static int napi_weight = 64;
125
126/* This is the time (in jiffies) between invocations of the hardware
127 * monitor, which checks for known hardware bugs and resets the
128 * hardware and driver as necessary.
129 */
130unsigned int efx_monitor_interval = 1 * HZ;
131
8ceee660
BH
132/* This controls whether or not the driver will initialise devices
133 * with invalid MAC addresses stored in the EEPROM or flash. If true,
134 * such devices will be initialised with a random locally-generated
135 * MAC address. This allows for loading the sfc_mtd driver to
136 * reprogram the flash, even if the flash contents (including the MAC
137 * address) have previously been erased.
138 */
139static unsigned int allow_bad_hwaddr;
140
141/* Initial interrupt moderation settings. They can be modified after
142 * module load with ethtool.
143 *
144 * The default for RX should strike a balance between increasing the
145 * round-trip latency and reducing overhead.
146 */
147static unsigned int rx_irq_mod_usec = 60;
148
149/* Initial interrupt moderation settings. They can be modified after
150 * module load with ethtool.
151 *
152 * This default is chosen to ensure that a 10G link does not go idle
153 * while a TX queue is stopped after it has become full. A queue is
154 * restarted when it drops below half full. The time this takes (assuming
155 * worst case 3 descriptors per packet and 1024 descriptors) is
156 * 512 / 3 * 1.2 = 205 usec.
157 */
158static unsigned int tx_irq_mod_usec = 150;
159
160/* This is the first interrupt mode to try out of:
161 * 0 => MSI-X
162 * 1 => MSI
163 * 2 => legacy
164 */
165static unsigned int interrupt_mode;
166
167/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
168 * i.e. the number of CPUs among which we may distribute simultaneous
169 * interrupt handling.
170 *
171 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
172 * The default (0) means to assign an interrupt to each package (level II cache)
173 */
174static unsigned int rss_cpus;
175module_param(rss_cpus, uint, 0444);
176MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
177
84ae48fe
BH
178static int phy_flash_cfg;
179module_param(phy_flash_cfg, int, 0644);
180MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
181
6fb70fd1
BH
182static unsigned irq_adapt_low_thresh = 10000;
183module_param(irq_adapt_low_thresh, uint, 0644);
184MODULE_PARM_DESC(irq_adapt_low_thresh,
185 "Threshold score for reducing IRQ moderation");
186
187static unsigned irq_adapt_high_thresh = 20000;
188module_param(irq_adapt_high_thresh, uint, 0644);
189MODULE_PARM_DESC(irq_adapt_high_thresh,
190 "Threshold score for increasing IRQ moderation");
191
8ceee660
BH
192/**************************************************************************
193 *
194 * Utility functions and prototypes
195 *
196 *************************************************************************/
197static void efx_remove_channel(struct efx_channel *channel);
198static void efx_remove_port(struct efx_nic *efx);
199static void efx_fini_napi(struct efx_nic *efx);
200static void efx_fini_channels(struct efx_nic *efx);
201
202#define EFX_ASSERT_RESET_SERIALISED(efx) \
203 do { \
332c1ce9
BH
204 if ((efx->state == STATE_RUNNING) || \
205 (efx->state == STATE_DISABLED)) \
8ceee660
BH
206 ASSERT_RTNL(); \
207 } while (0)
208
209/**************************************************************************
210 *
211 * Event queue processing
212 *
213 *************************************************************************/
214
215/* Process channel's event queue
216 *
217 * This function is responsible for processing the event queue of a
218 * single channel. The caller must guarantee that this function will
219 * never be concurrently called more than once on the same channel,
220 * though different channels may be being processed concurrently.
221 */
fa236e18 222static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 223{
42cbe2d7 224 struct efx_nic *efx = channel->efx;
fa236e18 225 int spent;
8ceee660 226
42cbe2d7 227 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 228 !channel->enabled))
42cbe2d7 229 return 0;
8ceee660 230
fa236e18
BH
231 spent = efx_nic_process_eventq(channel, budget);
232 if (spent == 0)
42cbe2d7 233 return 0;
8ceee660
BH
234
235 /* Deliver last RX packet. */
236 if (channel->rx_pkt) {
237 __efx_rx_packet(channel, channel->rx_pkt,
238 channel->rx_pkt_csummed);
239 channel->rx_pkt = NULL;
240 }
241
8ceee660
BH
242 efx_rx_strategy(channel);
243
42cbe2d7 244 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 245
fa236e18 246 return spent;
8ceee660
BH
247}
248
249/* Mark channel as finished processing
250 *
251 * Note that since we will not receive further interrupts for this
252 * channel before we finish processing and call the eventq_read_ack()
253 * method, there is no need to use the interrupt hold-off timers.
254 */
255static inline void efx_channel_processed(struct efx_channel *channel)
256{
5b9e207c
BH
257 /* The interrupt handler for this channel may set work_pending
258 * as soon as we acknowledge the events we've seen. Make sure
259 * it's cleared before then. */
dc8cfa55 260 channel->work_pending = false;
5b9e207c
BH
261 smp_wmb();
262
152b6a62 263 efx_nic_eventq_read_ack(channel);
8ceee660
BH
264}
265
266/* NAPI poll handler
267 *
268 * NAPI guarantees serialisation of polls of the same device, which
269 * provides the guarantee required by efx_process_channel().
270 */
271static int efx_poll(struct napi_struct *napi, int budget)
272{
273 struct efx_channel *channel =
274 container_of(napi, struct efx_channel, napi_str);
fa236e18 275 int spent;
8ceee660
BH
276
277 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
278 channel->channel, raw_smp_processor_id());
279
fa236e18 280 spent = efx_process_channel(channel, budget);
8ceee660 281
fa236e18 282 if (spent < budget) {
6fb70fd1
BH
283 struct efx_nic *efx = channel->efx;
284
a4900ac9 285 if (channel->channel < efx->n_rx_channels &&
6fb70fd1
BH
286 efx->irq_rx_adaptive &&
287 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
288 if (unlikely(channel->irq_mod_score <
289 irq_adapt_low_thresh)) {
0d86ebd8
BH
290 if (channel->irq_moderation > 1) {
291 channel->irq_moderation -= 1;
ef2b90ee 292 efx->type->push_irq_moderation(channel);
0d86ebd8 293 }
6fb70fd1
BH
294 } else if (unlikely(channel->irq_mod_score >
295 irq_adapt_high_thresh)) {
0d86ebd8
BH
296 if (channel->irq_moderation <
297 efx->irq_rx_moderation) {
298 channel->irq_moderation += 1;
ef2b90ee 299 efx->type->push_irq_moderation(channel);
0d86ebd8 300 }
6fb70fd1 301 }
6fb70fd1
BH
302 channel->irq_count = 0;
303 channel->irq_mod_score = 0;
304 }
305
8ceee660 306 /* There is no race here; although napi_disable() will
288379f0 307 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
308 * since efx_channel_processed() will have no effect if
309 * interrupts have already been disabled.
310 */
288379f0 311 napi_complete(napi);
8ceee660
BH
312 efx_channel_processed(channel);
313 }
314
fa236e18 315 return spent;
8ceee660
BH
316}
317
318/* Process the eventq of the specified channel immediately on this CPU
319 *
320 * Disable hardware generated interrupts, wait for any existing
321 * processing to finish, then directly poll (and ack ) the eventq.
322 * Finally reenable NAPI and interrupts.
323 *
324 * Since we are touching interrupts the caller should hold the suspend lock
325 */
326void efx_process_channel_now(struct efx_channel *channel)
327{
328 struct efx_nic *efx = channel->efx;
329
8ceee660
BH
330 BUG_ON(!channel->enabled);
331
332 /* Disable interrupts and wait for ISRs to complete */
152b6a62 333 efx_nic_disable_interrupts(efx);
8ceee660
BH
334 if (efx->legacy_irq)
335 synchronize_irq(efx->legacy_irq);
64ee3120 336 if (channel->irq)
8ceee660
BH
337 synchronize_irq(channel->irq);
338
339 /* Wait for any NAPI processing to complete */
340 napi_disable(&channel->napi_str);
341
342 /* Poll the channel */
3ffeabdd 343 efx_process_channel(channel, EFX_EVQ_SIZE);
8ceee660
BH
344
345 /* Ack the eventq. This may cause an interrupt to be generated
346 * when they are reenabled */
347 efx_channel_processed(channel);
348
349 napi_enable(&channel->napi_str);
152b6a62 350 efx_nic_enable_interrupts(efx);
8ceee660
BH
351}
352
353/* Create event queue
354 * Event queue memory allocations are done only once. If the channel
355 * is reset, the memory buffer will be reused; this guards against
356 * errors during channel reset and also simplifies interrupt handling.
357 */
358static int efx_probe_eventq(struct efx_channel *channel)
359{
360 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
361
152b6a62 362 return efx_nic_probe_eventq(channel);
8ceee660
BH
363}
364
365/* Prepare channel's event queue */
bc3c90a2 366static void efx_init_eventq(struct efx_channel *channel)
8ceee660
BH
367{
368 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
369
370 channel->eventq_read_ptr = 0;
371
152b6a62 372 efx_nic_init_eventq(channel);
8ceee660
BH
373}
374
375static void efx_fini_eventq(struct efx_channel *channel)
376{
377 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
378
152b6a62 379 efx_nic_fini_eventq(channel);
8ceee660
BH
380}
381
382static void efx_remove_eventq(struct efx_channel *channel)
383{
384 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
385
152b6a62 386 efx_nic_remove_eventq(channel);
8ceee660
BH
387}
388
389/**************************************************************************
390 *
391 * Channel handling
392 *
393 *************************************************************************/
394
8ceee660
BH
395static int efx_probe_channel(struct efx_channel *channel)
396{
397 struct efx_tx_queue *tx_queue;
398 struct efx_rx_queue *rx_queue;
399 int rc;
400
401 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
402
403 rc = efx_probe_eventq(channel);
404 if (rc)
405 goto fail1;
406
407 efx_for_each_channel_tx_queue(tx_queue, channel) {
408 rc = efx_probe_tx_queue(tx_queue);
409 if (rc)
410 goto fail2;
411 }
412
413 efx_for_each_channel_rx_queue(rx_queue, channel) {
414 rc = efx_probe_rx_queue(rx_queue);
415 if (rc)
416 goto fail3;
417 }
418
419 channel->n_rx_frm_trunc = 0;
420
421 return 0;
422
423 fail3:
424 efx_for_each_channel_rx_queue(rx_queue, channel)
425 efx_remove_rx_queue(rx_queue);
426 fail2:
427 efx_for_each_channel_tx_queue(tx_queue, channel)
428 efx_remove_tx_queue(tx_queue);
429 fail1:
430 return rc;
431}
432
433
56536e9c
BH
434static void efx_set_channel_names(struct efx_nic *efx)
435{
436 struct efx_channel *channel;
437 const char *type = "";
438 int number;
439
440 efx_for_each_channel(channel, efx) {
441 number = channel->channel;
a4900ac9
BH
442 if (efx->n_channels > efx->n_rx_channels) {
443 if (channel->channel < efx->n_rx_channels) {
56536e9c
BH
444 type = "-rx";
445 } else {
446 type = "-tx";
a4900ac9 447 number -= efx->n_rx_channels;
56536e9c
BH
448 }
449 }
450 snprintf(channel->name, sizeof(channel->name),
451 "%s%s-%d", efx->name, type, number);
452 }
453}
454
8ceee660
BH
455/* Channels are shutdown and reinitialised whilst the NIC is running
456 * to propagate configuration changes (mtu, checksum offload), or
457 * to clear hardware error conditions
458 */
bc3c90a2 459static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
460{
461 struct efx_tx_queue *tx_queue;
462 struct efx_rx_queue *rx_queue;
463 struct efx_channel *channel;
8ceee660 464
f7f13b0b
BH
465 /* Calculate the rx buffer allocation parameters required to
466 * support the current MTU, including padding for header
467 * alignment and overruns.
468 */
469 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
470 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
471 efx->type->rx_buffer_padding);
62b330ba
SH
472 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
473 sizeof(struct efx_rx_page_state));
8ceee660
BH
474
475 /* Initialise the channels */
476 efx_for_each_channel(channel, efx) {
477 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
478
bc3c90a2 479 efx_init_eventq(channel);
8ceee660 480
bc3c90a2
BH
481 efx_for_each_channel_tx_queue(tx_queue, channel)
482 efx_init_tx_queue(tx_queue);
8ceee660
BH
483
484 /* The rx buffer allocation strategy is MTU dependent */
485 efx_rx_strategy(channel);
486
bc3c90a2
BH
487 efx_for_each_channel_rx_queue(rx_queue, channel)
488 efx_init_rx_queue(rx_queue);
8ceee660
BH
489
490 WARN_ON(channel->rx_pkt != NULL);
491 efx_rx_strategy(channel);
492 }
8ceee660
BH
493}
494
495/* This enables event queue processing and packet transmission.
496 *
497 * Note that this function is not allowed to fail, since that would
498 * introduce too much complexity into the suspend/resume path.
499 */
500static void efx_start_channel(struct efx_channel *channel)
501{
502 struct efx_rx_queue *rx_queue;
503
504 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
505
5b9e207c
BH
506 /* The interrupt handler for this channel may set work_pending
507 * as soon as we enable it. Make sure it's cleared before
508 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
509 channel->work_pending = false;
510 channel->enabled = true;
5b9e207c 511 smp_wmb();
8ceee660 512
90d683af 513 /* Fill the queues before enabling NAPI */
8ceee660
BH
514 efx_for_each_channel_rx_queue(rx_queue, channel)
515 efx_fast_push_rx_descriptors(rx_queue);
90d683af
SH
516
517 napi_enable(&channel->napi_str);
8ceee660
BH
518}
519
520/* This disables event queue processing and packet transmission.
521 * This function does not guarantee that all queue processing
522 * (e.g. RX refill) is complete.
523 */
524static void efx_stop_channel(struct efx_channel *channel)
525{
8ceee660
BH
526 if (!channel->enabled)
527 return;
528
529 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
530
dc8cfa55 531 channel->enabled = false;
8ceee660 532 napi_disable(&channel->napi_str);
8ceee660
BH
533}
534
535static void efx_fini_channels(struct efx_nic *efx)
536{
537 struct efx_channel *channel;
538 struct efx_tx_queue *tx_queue;
539 struct efx_rx_queue *rx_queue;
6bc5d3a9 540 int rc;
8ceee660
BH
541
542 EFX_ASSERT_RESET_SERIALISED(efx);
543 BUG_ON(efx->port_enabled);
544
152b6a62 545 rc = efx_nic_flush_queues(efx);
fd371e32
SH
546 if (rc && EFX_WORKAROUND_7803(efx)) {
547 /* Schedule a reset to recover from the flush failure. The
548 * descriptor caches reference memory we're about to free,
549 * but falcon_reconfigure_mac_wrapper() won't reconnect
550 * the MACs because of the pending reset. */
551 EFX_ERR(efx, "Resetting to recover from flush failure\n");
552 efx_schedule_reset(efx, RESET_TYPE_ALL);
553 } else if (rc) {
6bc5d3a9 554 EFX_ERR(efx, "failed to flush queues\n");
fd371e32 555 } else {
6bc5d3a9 556 EFX_LOG(efx, "successfully flushed all queues\n");
fd371e32 557 }
6bc5d3a9 558
8ceee660
BH
559 efx_for_each_channel(channel, efx) {
560 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
561
562 efx_for_each_channel_rx_queue(rx_queue, channel)
563 efx_fini_rx_queue(rx_queue);
564 efx_for_each_channel_tx_queue(tx_queue, channel)
565 efx_fini_tx_queue(tx_queue);
8ceee660
BH
566 efx_fini_eventq(channel);
567 }
568}
569
570static void efx_remove_channel(struct efx_channel *channel)
571{
572 struct efx_tx_queue *tx_queue;
573 struct efx_rx_queue *rx_queue;
574
575 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
576
577 efx_for_each_channel_rx_queue(rx_queue, channel)
578 efx_remove_rx_queue(rx_queue);
579 efx_for_each_channel_tx_queue(tx_queue, channel)
580 efx_remove_tx_queue(tx_queue);
581 efx_remove_eventq(channel);
8ceee660
BH
582}
583
90d683af 584void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 585{
90d683af 586 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
587}
588
589/**************************************************************************
590 *
591 * Port handling
592 *
593 **************************************************************************/
594
595/* This ensures that the kernel is kept informed (via
596 * netif_carrier_on/off) of the link status, and also maintains the
597 * link status's stop on the port's TX queue.
598 */
fdaa9aed 599void efx_link_status_changed(struct efx_nic *efx)
8ceee660 600{
eb50c0d6
BH
601 struct efx_link_state *link_state = &efx->link_state;
602
8ceee660
BH
603 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
604 * that no events are triggered between unregister_netdev() and the
605 * driver unloading. A more general condition is that NETDEV_CHANGE
606 * can only be generated between NETDEV_UP and NETDEV_DOWN */
607 if (!netif_running(efx->net_dev))
608 return;
609
8c8661e4
BH
610 if (efx->port_inhibited) {
611 netif_carrier_off(efx->net_dev);
612 return;
613 }
614
eb50c0d6 615 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
616 efx->n_link_state_changes++;
617
eb50c0d6 618 if (link_state->up)
8ceee660
BH
619 netif_carrier_on(efx->net_dev);
620 else
621 netif_carrier_off(efx->net_dev);
622 }
623
624 /* Status message for kernel log */
eb50c0d6 625 if (link_state->up) {
f31a45d2 626 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
eb50c0d6 627 link_state->speed, link_state->fd ? "full" : "half",
8ceee660
BH
628 efx->net_dev->mtu,
629 (efx->promiscuous ? " [PROMISC]" : ""));
630 } else {
631 EFX_INFO(efx, "link down\n");
632 }
633
634}
635
d3245b28
BH
636void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
637{
638 efx->link_advertising = advertising;
639 if (advertising) {
640 if (advertising & ADVERTISED_Pause)
641 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
642 else
643 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
644 if (advertising & ADVERTISED_Asym_Pause)
645 efx->wanted_fc ^= EFX_FC_TX;
646 }
647}
648
649void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
650{
651 efx->wanted_fc = wanted_fc;
652 if (efx->link_advertising) {
653 if (wanted_fc & EFX_FC_RX)
654 efx->link_advertising |= (ADVERTISED_Pause |
655 ADVERTISED_Asym_Pause);
656 else
657 efx->link_advertising &= ~(ADVERTISED_Pause |
658 ADVERTISED_Asym_Pause);
659 if (wanted_fc & EFX_FC_TX)
660 efx->link_advertising ^= ADVERTISED_Asym_Pause;
661 }
662}
663
115122af
BH
664static void efx_fini_port(struct efx_nic *efx);
665
d3245b28
BH
666/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
667 * the MAC appropriately. All other PHY configuration changes are pushed
668 * through phy_op->set_settings(), and pushed asynchronously to the MAC
669 * through efx_monitor().
670 *
671 * Callers must hold the mac_lock
672 */
673int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 674{
d3245b28
BH
675 enum efx_phy_mode phy_mode;
676 int rc;
8ceee660 677
d3245b28 678 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 679
a816f75a
BH
680 /* Serialise the promiscuous flag with efx_set_multicast_list. */
681 if (efx_dev_registered(efx)) {
682 netif_addr_lock_bh(efx->net_dev);
683 netif_addr_unlock_bh(efx->net_dev);
684 }
685
d3245b28
BH
686 /* Disable PHY transmit in mac level loopbacks */
687 phy_mode = efx->phy_mode;
177dfcd8
BH
688 if (LOOPBACK_INTERNAL(efx))
689 efx->phy_mode |= PHY_MODE_TX_DISABLED;
690 else
691 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 692
d3245b28 693 rc = efx->type->reconfigure_port(efx);
8ceee660 694
d3245b28
BH
695 if (rc)
696 efx->phy_mode = phy_mode;
177dfcd8 697
d3245b28 698 return rc;
8ceee660
BH
699}
700
701/* Reinitialise the MAC to pick up new PHY settings, even if the port is
702 * disabled. */
d3245b28 703int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 704{
d3245b28
BH
705 int rc;
706
8ceee660
BH
707 EFX_ASSERT_RESET_SERIALISED(efx);
708
709 mutex_lock(&efx->mac_lock);
d3245b28 710 rc = __efx_reconfigure_port(efx);
8ceee660 711 mutex_unlock(&efx->mac_lock);
d3245b28
BH
712
713 return rc;
8ceee660
BH
714}
715
8be4f3e6
BH
716/* Asynchronous work item for changing MAC promiscuity and multicast
717 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
718 * MAC directly. */
766ca0fa
BH
719static void efx_mac_work(struct work_struct *data)
720{
721 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
722
723 mutex_lock(&efx->mac_lock);
8be4f3e6 724 if (efx->port_enabled) {
ef2b90ee 725 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
726 efx->mac_op->reconfigure(efx);
727 }
766ca0fa
BH
728 mutex_unlock(&efx->mac_lock);
729}
730
8ceee660
BH
731static int efx_probe_port(struct efx_nic *efx)
732{
733 int rc;
734
735 EFX_LOG(efx, "create port\n");
736
ff3b00a0
SH
737 if (phy_flash_cfg)
738 efx->phy_mode = PHY_MODE_SPECIAL;
739
ef2b90ee
BH
740 /* Connect up MAC/PHY operations table */
741 rc = efx->type->probe_port(efx);
8ceee660
BH
742 if (rc)
743 goto err;
744
745 /* Sanity check MAC address */
746 if (is_valid_ether_addr(efx->mac_address)) {
747 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
748 } else {
e174961c
JB
749 EFX_ERR(efx, "invalid MAC address %pM\n",
750 efx->mac_address);
8ceee660
BH
751 if (!allow_bad_hwaddr) {
752 rc = -EINVAL;
753 goto err;
754 }
755 random_ether_addr(efx->net_dev->dev_addr);
e174961c
JB
756 EFX_INFO(efx, "using locally-generated MAC %pM\n",
757 efx->net_dev->dev_addr);
8ceee660
BH
758 }
759
760 return 0;
761
762 err:
763 efx_remove_port(efx);
764 return rc;
765}
766
767static int efx_init_port(struct efx_nic *efx)
768{
769 int rc;
770
771 EFX_LOG(efx, "init port\n");
772
1dfc5cea
BH
773 mutex_lock(&efx->mac_lock);
774
177dfcd8 775 rc = efx->phy_op->init(efx);
8ceee660 776 if (rc)
1dfc5cea 777 goto fail1;
8ceee660 778
dc8cfa55 779 efx->port_initialized = true;
1dfc5cea 780
d3245b28
BH
781 /* Reconfigure the MAC before creating dma queues (required for
782 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
783 efx->mac_op->reconfigure(efx);
784
785 /* Ensure the PHY advertises the correct flow control settings */
786 rc = efx->phy_op->reconfigure(efx);
787 if (rc)
788 goto fail2;
789
1dfc5cea 790 mutex_unlock(&efx->mac_lock);
8ceee660 791 return 0;
177dfcd8 792
1dfc5cea 793fail2:
177dfcd8 794 efx->phy_op->fini(efx);
1dfc5cea
BH
795fail1:
796 mutex_unlock(&efx->mac_lock);
177dfcd8 797 return rc;
8ceee660
BH
798}
799
8ceee660
BH
800static void efx_start_port(struct efx_nic *efx)
801{
802 EFX_LOG(efx, "start port\n");
803 BUG_ON(efx->port_enabled);
804
805 mutex_lock(&efx->mac_lock);
dc8cfa55 806 efx->port_enabled = true;
8be4f3e6
BH
807
808 /* efx_mac_work() might have been scheduled after efx_stop_port(),
809 * and then cancelled by efx_flush_all() */
ef2b90ee 810 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
811 efx->mac_op->reconfigure(efx);
812
8ceee660
BH
813 mutex_unlock(&efx->mac_lock);
814}
815
fdaa9aed 816/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
817static void efx_stop_port(struct efx_nic *efx)
818{
819 EFX_LOG(efx, "stop port\n");
820
821 mutex_lock(&efx->mac_lock);
dc8cfa55 822 efx->port_enabled = false;
8ceee660
BH
823 mutex_unlock(&efx->mac_lock);
824
825 /* Serialise against efx_set_multicast_list() */
55668611 826 if (efx_dev_registered(efx)) {
b9e40857
DM
827 netif_addr_lock_bh(efx->net_dev);
828 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
829 }
830}
831
832static void efx_fini_port(struct efx_nic *efx)
833{
834 EFX_LOG(efx, "shut down port\n");
835
836 if (!efx->port_initialized)
837 return;
838
177dfcd8 839 efx->phy_op->fini(efx);
dc8cfa55 840 efx->port_initialized = false;
8ceee660 841
eb50c0d6 842 efx->link_state.up = false;
8ceee660
BH
843 efx_link_status_changed(efx);
844}
845
846static void efx_remove_port(struct efx_nic *efx)
847{
848 EFX_LOG(efx, "destroying port\n");
849
ef2b90ee 850 efx->type->remove_port(efx);
8ceee660
BH
851}
852
853/**************************************************************************
854 *
855 * NIC handling
856 *
857 **************************************************************************/
858
859/* This configures the PCI device to enable I/O and DMA. */
860static int efx_init_io(struct efx_nic *efx)
861{
862 struct pci_dev *pci_dev = efx->pci_dev;
863 dma_addr_t dma_mask = efx->type->max_dma_mask;
864 int rc;
865
866 EFX_LOG(efx, "initialising I/O\n");
867
868 rc = pci_enable_device(pci_dev);
869 if (rc) {
870 EFX_ERR(efx, "failed to enable PCI device\n");
871 goto fail1;
872 }
873
874 pci_set_master(pci_dev);
875
876 /* Set the PCI DMA mask. Try all possibilities from our
877 * genuine mask down to 32 bits, because some architectures
878 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
879 * masks event though they reject 46 bit masks.
880 */
881 while (dma_mask > 0x7fffffffUL) {
882 if (pci_dma_supported(pci_dev, dma_mask) &&
883 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
884 break;
885 dma_mask >>= 1;
886 }
887 if (rc) {
888 EFX_ERR(efx, "could not find a suitable DMA mask\n");
889 goto fail2;
890 }
891 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
892 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
893 if (rc) {
894 /* pci_set_consistent_dma_mask() is not *allowed* to
895 * fail with a mask that pci_set_dma_mask() accepted,
896 * but just in case...
897 */
898 EFX_ERR(efx, "failed to set consistent DMA mask\n");
899 goto fail2;
900 }
901
dc803df8
BH
902 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
903 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660
BH
904 if (rc) {
905 EFX_ERR(efx, "request for memory BAR failed\n");
906 rc = -EIO;
907 goto fail3;
908 }
909 efx->membase = ioremap_nocache(efx->membase_phys,
910 efx->type->mem_map_size);
911 if (!efx->membase) {
dc803df8 912 EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
086ea356 913 (unsigned long long)efx->membase_phys,
8ceee660
BH
914 efx->type->mem_map_size);
915 rc = -ENOMEM;
916 goto fail4;
917 }
dc803df8
BH
918 EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
919 (unsigned long long)efx->membase_phys,
086ea356 920 efx->type->mem_map_size, efx->membase);
8ceee660
BH
921
922 return 0;
923
924 fail4:
dc803df8 925 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 926 fail3:
2c118e0f 927 efx->membase_phys = 0;
8ceee660
BH
928 fail2:
929 pci_disable_device(efx->pci_dev);
930 fail1:
931 return rc;
932}
933
934static void efx_fini_io(struct efx_nic *efx)
935{
936 EFX_LOG(efx, "shutting down I/O\n");
937
938 if (efx->membase) {
939 iounmap(efx->membase);
940 efx->membase = NULL;
941 }
942
943 if (efx->membase_phys) {
dc803df8 944 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 945 efx->membase_phys = 0;
8ceee660
BH
946 }
947
948 pci_disable_device(efx->pci_dev);
949}
950
a4900ac9
BH
951/* Get number of channels wanted. Each channel will have its own IRQ,
952 * 1 RX queue and/or 2 TX queues. */
953static int efx_wanted_channels(void)
46123d04 954{
2f8975fb 955 cpumask_var_t core_mask;
46123d04
BH
956 int count;
957 int cpu;
958
79f55997 959 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
2f8975fb 960 printk(KERN_WARNING
3977d033 961 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
962 return 1;
963 }
964
46123d04
BH
965 count = 0;
966 for_each_online_cpu(cpu) {
2f8975fb 967 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 968 ++count;
2f8975fb 969 cpumask_or(core_mask, core_mask,
fbd59a8d 970 topology_core_cpumask(cpu));
46123d04
BH
971 }
972 }
973
2f8975fb 974 free_cpumask_var(core_mask);
46123d04
BH
975 return count;
976}
977
978/* Probe the number and type of interrupts we are able to obtain, and
979 * the resulting numbers of channels and RX queues.
980 */
8ceee660
BH
981static void efx_probe_interrupts(struct efx_nic *efx)
982{
46123d04
BH
983 int max_channels =
984 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
985 int rc, i;
986
987 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 988 struct msix_entry xentries[EFX_MAX_CHANNELS];
a4900ac9 989 int n_channels;
aa6ef27e 990
a4900ac9
BH
991 n_channels = efx_wanted_channels();
992 if (separate_tx_channels)
993 n_channels *= 2;
994 n_channels = min(n_channels, max_channels);
8ceee660 995
a4900ac9 996 for (i = 0; i < n_channels; i++)
8ceee660 997 xentries[i].entry = i;
a4900ac9 998 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 999 if (rc > 0) {
28b581ab 1000 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
a4900ac9 1001 " available (%d < %d).\n", rc, n_channels);
28b581ab 1002 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1003 EFX_BUG_ON_PARANOID(rc >= n_channels);
1004 n_channels = rc;
8ceee660 1005 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1006 n_channels);
8ceee660
BH
1007 }
1008
1009 if (rc == 0) {
a4900ac9
BH
1010 efx->n_channels = n_channels;
1011 if (separate_tx_channels) {
1012 efx->n_tx_channels =
1013 max(efx->n_channels / 2, 1U);
1014 efx->n_rx_channels =
1015 max(efx->n_channels -
1016 efx->n_tx_channels, 1U);
1017 } else {
1018 efx->n_tx_channels = efx->n_channels;
1019 efx->n_rx_channels = efx->n_channels;
1020 }
1021 for (i = 0; i < n_channels; i++)
8ceee660 1022 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
1023 } else {
1024 /* Fall back to single channel MSI */
1025 efx->interrupt_mode = EFX_INT_MODE_MSI;
1026 EFX_ERR(efx, "could not enable MSI-X\n");
1027 }
1028 }
1029
1030 /* Try single interrupt MSI */
1031 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1032 efx->n_channels = 1;
a4900ac9
BH
1033 efx->n_rx_channels = 1;
1034 efx->n_tx_channels = 1;
8ceee660
BH
1035 rc = pci_enable_msi(efx->pci_dev);
1036 if (rc == 0) {
1037 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
1038 } else {
1039 EFX_ERR(efx, "could not enable MSI\n");
1040 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1041 }
1042 }
1043
1044 /* Assume legacy interrupts */
1045 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1046 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1047 efx->n_rx_channels = 1;
1048 efx->n_tx_channels = 1;
8ceee660
BH
1049 efx->legacy_irq = efx->pci_dev->irq;
1050 }
1051}
1052
1053static void efx_remove_interrupts(struct efx_nic *efx)
1054{
1055 struct efx_channel *channel;
1056
1057 /* Remove MSI/MSI-X interrupts */
64ee3120 1058 efx_for_each_channel(channel, efx)
8ceee660
BH
1059 channel->irq = 0;
1060 pci_disable_msi(efx->pci_dev);
1061 pci_disable_msix(efx->pci_dev);
1062
1063 /* Remove legacy interrupt */
1064 efx->legacy_irq = 0;
1065}
1066
8831da7b 1067static void efx_set_channels(struct efx_nic *efx)
8ceee660 1068{
a4900ac9 1069 struct efx_channel *channel;
8ceee660
BH
1070 struct efx_tx_queue *tx_queue;
1071 struct efx_rx_queue *rx_queue;
a4900ac9
BH
1072 unsigned tx_channel_offset =
1073 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
8ceee660 1074
a4900ac9
BH
1075 efx_for_each_channel(channel, efx) {
1076 if (channel->channel - tx_channel_offset < efx->n_tx_channels) {
1077 channel->tx_queue = &efx->tx_queue[
1078 (channel->channel - tx_channel_offset) *
1079 EFX_TXQ_TYPES];
1080 efx_for_each_channel_tx_queue(tx_queue, channel)
1081 tx_queue->channel = channel;
1082 }
60ac1065 1083 }
8ceee660 1084
a4900ac9 1085 efx_for_each_rx_queue(rx_queue, efx)
8831da7b 1086 rx_queue->channel = &efx->channel[rx_queue->queue];
8ceee660
BH
1087}
1088
1089static int efx_probe_nic(struct efx_nic *efx)
1090{
1091 int rc;
1092
1093 EFX_LOG(efx, "creating NIC\n");
1094
1095 /* Carry out hardware-type specific initialisation */
ef2b90ee 1096 rc = efx->type->probe(efx);
8ceee660
BH
1097 if (rc)
1098 return rc;
1099
a4900ac9 1100 /* Determine the number of channels and queues by trying to hook
8ceee660
BH
1101 * in MSI-X interrupts. */
1102 efx_probe_interrupts(efx);
1103
8831da7b 1104 efx_set_channels(efx);
a4900ac9 1105 efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
8ceee660
BH
1106
1107 /* Initialise the interrupt moderation settings */
6fb70fd1 1108 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1109
1110 return 0;
1111}
1112
1113static void efx_remove_nic(struct efx_nic *efx)
1114{
1115 EFX_LOG(efx, "destroying NIC\n");
1116
1117 efx_remove_interrupts(efx);
ef2b90ee 1118 efx->type->remove(efx);
8ceee660
BH
1119}
1120
1121/**************************************************************************
1122 *
1123 * NIC startup/shutdown
1124 *
1125 *************************************************************************/
1126
1127static int efx_probe_all(struct efx_nic *efx)
1128{
1129 struct efx_channel *channel;
1130 int rc;
1131
1132 /* Create NIC */
1133 rc = efx_probe_nic(efx);
1134 if (rc) {
1135 EFX_ERR(efx, "failed to create NIC\n");
1136 goto fail1;
1137 }
1138
1139 /* Create port */
1140 rc = efx_probe_port(efx);
1141 if (rc) {
1142 EFX_ERR(efx, "failed to create port\n");
1143 goto fail2;
1144 }
1145
1146 /* Create channels */
1147 efx_for_each_channel(channel, efx) {
1148 rc = efx_probe_channel(channel);
1149 if (rc) {
1150 EFX_ERR(efx, "failed to create channel %d\n",
1151 channel->channel);
1152 goto fail3;
1153 }
1154 }
56536e9c 1155 efx_set_channel_names(efx);
8ceee660
BH
1156
1157 return 0;
1158
1159 fail3:
1160 efx_for_each_channel(channel, efx)
1161 efx_remove_channel(channel);
1162 efx_remove_port(efx);
1163 fail2:
1164 efx_remove_nic(efx);
1165 fail1:
1166 return rc;
1167}
1168
1169/* Called after previous invocation(s) of efx_stop_all, restarts the
1170 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1171 * and ensures that the port is scheduled to be reconfigured.
1172 * This function is safe to call multiple times when the NIC is in any
1173 * state. */
1174static void efx_start_all(struct efx_nic *efx)
1175{
1176 struct efx_channel *channel;
1177
1178 EFX_ASSERT_RESET_SERIALISED(efx);
1179
1180 /* Check that it is appropriate to restart the interface. All
1181 * of these flags are safe to read under just the rtnl lock */
1182 if (efx->port_enabled)
1183 return;
1184 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1185 return;
55668611 1186 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1187 return;
1188
1189 /* Mark the port as enabled so port reconfigurations can start, then
1190 * restart the transmit interface early so the watchdog timer stops */
1191 efx_start_port(efx);
8ceee660 1192
a4900ac9
BH
1193 efx_for_each_channel(channel, efx) {
1194 if (efx_dev_registered(efx))
1195 efx_wake_queue(channel);
8ceee660 1196 efx_start_channel(channel);
a4900ac9 1197 }
8ceee660 1198
152b6a62 1199 efx_nic_enable_interrupts(efx);
8ceee660 1200
8880f4ec
BH
1201 /* Switch to event based MCDI completions after enabling interrupts.
1202 * If a reset has been scheduled, then we need to stay in polled mode.
1203 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1204 * reset_pending [modified from an atomic context], we instead guarantee
1205 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1206 efx_mcdi_mode_event(efx);
1207 if (efx->reset_pending != RESET_TYPE_NONE)
1208 efx_mcdi_mode_poll(efx);
1209
78c1f0a0
SH
1210 /* Start the hardware monitor if there is one. Otherwise (we're link
1211 * event driven), we have to poll the PHY because after an event queue
1212 * flush, we could have a missed a link state change */
1213 if (efx->type->monitor != NULL) {
8ceee660
BH
1214 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1215 efx_monitor_interval);
78c1f0a0
SH
1216 } else {
1217 mutex_lock(&efx->mac_lock);
1218 if (efx->phy_op->poll(efx))
1219 efx_link_status_changed(efx);
1220 mutex_unlock(&efx->mac_lock);
1221 }
55edc6e6 1222
ef2b90ee 1223 efx->type->start_stats(efx);
8ceee660
BH
1224}
1225
1226/* Flush all delayed work. Should only be called when no more delayed work
1227 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1228 * since we're holding the rtnl_lock at this point. */
1229static void efx_flush_all(struct efx_nic *efx)
1230{
8ceee660
BH
1231 /* Make sure the hardware monitor is stopped */
1232 cancel_delayed_work_sync(&efx->monitor_work);
8ceee660 1233 /* Stop scheduled port reconfigurations */
766ca0fa 1234 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1235}
1236
1237/* Quiesce hardware and software without bringing the link down.
1238 * Safe to call multiple times, when the nic and interface is in any
1239 * state. The caller is guaranteed to subsequently be in a position
1240 * to modify any hardware and software state they see fit without
1241 * taking locks. */
1242static void efx_stop_all(struct efx_nic *efx)
1243{
1244 struct efx_channel *channel;
1245
1246 EFX_ASSERT_RESET_SERIALISED(efx);
1247
1248 /* port_enabled can be read safely under the rtnl lock */
1249 if (!efx->port_enabled)
1250 return;
1251
ef2b90ee 1252 efx->type->stop_stats(efx);
55edc6e6 1253
8880f4ec
BH
1254 /* Switch to MCDI polling on Siena before disabling interrupts */
1255 efx_mcdi_mode_poll(efx);
1256
8ceee660 1257 /* Disable interrupts and wait for ISR to complete */
152b6a62 1258 efx_nic_disable_interrupts(efx);
8ceee660
BH
1259 if (efx->legacy_irq)
1260 synchronize_irq(efx->legacy_irq);
64ee3120 1261 efx_for_each_channel(channel, efx) {
8ceee660
BH
1262 if (channel->irq)
1263 synchronize_irq(channel->irq);
b3475645 1264 }
8ceee660
BH
1265
1266 /* Stop all NAPI processing and synchronous rx refills */
1267 efx_for_each_channel(channel, efx)
1268 efx_stop_channel(channel);
1269
1270 /* Stop all asynchronous port reconfigurations. Since all
1271 * event processing has already been stopped, there is no
1272 * window to loose phy events */
1273 efx_stop_port(efx);
1274
fdaa9aed 1275 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1276 efx_flush_all(efx);
1277
8ceee660
BH
1278 /* Stop the kernel transmit interface late, so the watchdog
1279 * timer isn't ticking over the flush */
55668611 1280 if (efx_dev_registered(efx)) {
a4900ac9
BH
1281 struct efx_channel *channel;
1282 efx_for_each_channel(channel, efx)
1283 efx_stop_queue(channel);
8ceee660
BH
1284 netif_tx_lock_bh(efx->net_dev);
1285 netif_tx_unlock_bh(efx->net_dev);
1286 }
1287}
1288
1289static void efx_remove_all(struct efx_nic *efx)
1290{
1291 struct efx_channel *channel;
1292
1293 efx_for_each_channel(channel, efx)
1294 efx_remove_channel(channel);
1295 efx_remove_port(efx);
1296 efx_remove_nic(efx);
1297}
1298
8ceee660
BH
1299/**************************************************************************
1300 *
1301 * Interrupt moderation
1302 *
1303 **************************************************************************/
1304
0d86ebd8
BH
1305static unsigned irq_mod_ticks(int usecs, int resolution)
1306{
1307 if (usecs <= 0)
1308 return 0; /* cannot receive interrupts ahead of time :-) */
1309 if (usecs < resolution)
1310 return 1; /* never round down to 0 */
1311 return usecs / resolution;
1312}
1313
8ceee660 1314/* Set interrupt moderation parameters */
6fb70fd1
BH
1315void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1316 bool rx_adaptive)
8ceee660
BH
1317{
1318 struct efx_tx_queue *tx_queue;
1319 struct efx_rx_queue *rx_queue;
152b6a62
BH
1320 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1321 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
8ceee660
BH
1322
1323 EFX_ASSERT_RESET_SERIALISED(efx);
1324
1325 efx_for_each_tx_queue(tx_queue, efx)
0d86ebd8 1326 tx_queue->channel->irq_moderation = tx_ticks;
8ceee660 1327
6fb70fd1 1328 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1329 efx->irq_rx_moderation = rx_ticks;
8ceee660 1330 efx_for_each_rx_queue(rx_queue, efx)
0d86ebd8 1331 rx_queue->channel->irq_moderation = rx_ticks;
8ceee660
BH
1332}
1333
1334/**************************************************************************
1335 *
1336 * Hardware monitor
1337 *
1338 **************************************************************************/
1339
1340/* Run periodically off the general workqueue. Serialised against
1341 * efx_reconfigure_port via the mac_lock */
1342static void efx_monitor(struct work_struct *data)
1343{
1344 struct efx_nic *efx = container_of(data, struct efx_nic,
1345 monitor_work.work);
8ceee660
BH
1346
1347 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1348 raw_smp_processor_id());
ef2b90ee 1349 BUG_ON(efx->type->monitor == NULL);
8ceee660 1350
8ceee660
BH
1351 /* If the mac_lock is already held then it is likely a port
1352 * reconfiguration is already in place, which will likely do
1353 * most of the work of check_hw() anyway. */
766ca0fa
BH
1354 if (!mutex_trylock(&efx->mac_lock))
1355 goto out_requeue;
1356 if (!efx->port_enabled)
1357 goto out_unlock;
ef2b90ee 1358 efx->type->monitor(efx);
8ceee660 1359
766ca0fa 1360out_unlock:
8ceee660 1361 mutex_unlock(&efx->mac_lock);
766ca0fa 1362out_requeue:
8ceee660
BH
1363 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1364 efx_monitor_interval);
1365}
1366
1367/**************************************************************************
1368 *
1369 * ioctls
1370 *
1371 *************************************************************************/
1372
1373/* Net device ioctl
1374 * Context: process, rtnl_lock() held.
1375 */
1376static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1377{
767e468c 1378 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1379 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1380
1381 EFX_ASSERT_RESET_SERIALISED(efx);
1382
68e7f45e
BH
1383 /* Convert phy_id from older PRTAD/DEVAD format */
1384 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1385 (data->phy_id & 0xfc00) == 0x0400)
1386 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1387
1388 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1389}
1390
1391/**************************************************************************
1392 *
1393 * NAPI interface
1394 *
1395 **************************************************************************/
1396
1397static int efx_init_napi(struct efx_nic *efx)
1398{
1399 struct efx_channel *channel;
8ceee660
BH
1400
1401 efx_for_each_channel(channel, efx) {
1402 channel->napi_dev = efx->net_dev;
718cff1e
BH
1403 netif_napi_add(channel->napi_dev, &channel->napi_str,
1404 efx_poll, napi_weight);
8ceee660
BH
1405 }
1406 return 0;
8ceee660
BH
1407}
1408
1409static void efx_fini_napi(struct efx_nic *efx)
1410{
1411 struct efx_channel *channel;
1412
1413 efx_for_each_channel(channel, efx) {
718cff1e
BH
1414 if (channel->napi_dev)
1415 netif_napi_del(&channel->napi_str);
8ceee660
BH
1416 channel->napi_dev = NULL;
1417 }
1418}
1419
1420/**************************************************************************
1421 *
1422 * Kernel netpoll interface
1423 *
1424 *************************************************************************/
1425
1426#ifdef CONFIG_NET_POLL_CONTROLLER
1427
1428/* Although in the common case interrupts will be disabled, this is not
1429 * guaranteed. However, all our work happens inside the NAPI callback,
1430 * so no locking is required.
1431 */
1432static void efx_netpoll(struct net_device *net_dev)
1433{
767e468c 1434 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1435 struct efx_channel *channel;
1436
64ee3120 1437 efx_for_each_channel(channel, efx)
8ceee660
BH
1438 efx_schedule_channel(channel);
1439}
1440
1441#endif
1442
1443/**************************************************************************
1444 *
1445 * Kernel net device interface
1446 *
1447 *************************************************************************/
1448
1449/* Context: process, rtnl_lock() held. */
1450static int efx_net_open(struct net_device *net_dev)
1451{
767e468c 1452 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1453 EFX_ASSERT_RESET_SERIALISED(efx);
1454
1455 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1456 raw_smp_processor_id());
1457
f4bd954e
BH
1458 if (efx->state == STATE_DISABLED)
1459 return -EIO;
f8b87c17
BH
1460 if (efx->phy_mode & PHY_MODE_SPECIAL)
1461 return -EBUSY;
8880f4ec
BH
1462 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1463 return -EIO;
f8b87c17 1464
78c1f0a0
SH
1465 /* Notify the kernel of the link state polled during driver load,
1466 * before the monitor starts running */
1467 efx_link_status_changed(efx);
1468
8ceee660
BH
1469 efx_start_all(efx);
1470 return 0;
1471}
1472
1473/* Context: process, rtnl_lock() held.
1474 * Note that the kernel will ignore our return code; this method
1475 * should really be a void.
1476 */
1477static int efx_net_stop(struct net_device *net_dev)
1478{
767e468c 1479 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1480
1481 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1482 raw_smp_processor_id());
1483
f4bd954e
BH
1484 if (efx->state != STATE_DISABLED) {
1485 /* Stop the device and flush all the channels */
1486 efx_stop_all(efx);
1487 efx_fini_channels(efx);
1488 efx_init_channels(efx);
1489 }
8ceee660
BH
1490
1491 return 0;
1492}
1493
5b9e207c 1494/* Context: process, dev_base_lock or RTNL held, non-blocking. */
4472702e 1495static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev)
8ceee660 1496{
767e468c 1497 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1498 struct efx_mac_stats *mac_stats = &efx->mac_stats;
4472702e 1499 struct rtnl_link_stats64 *stats = &net_dev->stats64;
8ceee660 1500
55edc6e6 1501 spin_lock_bh(&efx->stats_lock);
ef2b90ee 1502 efx->type->update_stats(efx);
55edc6e6 1503 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1504
1505 stats->rx_packets = mac_stats->rx_packets;
1506 stats->tx_packets = mac_stats->tx_packets;
1507 stats->rx_bytes = mac_stats->rx_bytes;
1508 stats->tx_bytes = mac_stats->tx_bytes;
1509 stats->multicast = mac_stats->rx_multicast;
1510 stats->collisions = mac_stats->tx_collision;
1511 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1512 mac_stats->rx_length_error);
1513 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1514 stats->rx_crc_errors = mac_stats->rx_bad;
1515 stats->rx_frame_errors = mac_stats->rx_align_error;
1516 stats->rx_fifo_errors = mac_stats->rx_overflow;
1517 stats->rx_missed_errors = mac_stats->rx_missed;
1518 stats->tx_window_errors = mac_stats->tx_late_collision;
1519
1520 stats->rx_errors = (stats->rx_length_errors +
8ceee660
BH
1521 stats->rx_crc_errors +
1522 stats->rx_frame_errors +
8ceee660
BH
1523 mac_stats->rx_symbol_error);
1524 stats->tx_errors = (stats->tx_window_errors +
1525 mac_stats->tx_bad);
1526
1527 return stats;
1528}
1529
1530/* Context: netif_tx_lock held, BHs disabled. */
1531static void efx_watchdog(struct net_device *net_dev)
1532{
767e468c 1533 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1534
a4900ac9
BH
1535 EFX_ERR(efx, "TX stuck with port_enabled=%d: resetting channels\n",
1536 efx->port_enabled);
8ceee660 1537
739bb23d 1538 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1539}
1540
1541
1542/* Context: process, rtnl_lock() held. */
1543static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1544{
767e468c 1545 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1546 int rc = 0;
1547
1548 EFX_ASSERT_RESET_SERIALISED(efx);
1549
1550 if (new_mtu > EFX_MAX_MTU)
1551 return -EINVAL;
1552
1553 efx_stop_all(efx);
1554
1555 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1556
1557 efx_fini_channels(efx);
d3245b28
BH
1558
1559 mutex_lock(&efx->mac_lock);
1560 /* Reconfigure the MAC before enabling the dma queues so that
1561 * the RX buffers don't overflow */
8ceee660 1562 net_dev->mtu = new_mtu;
d3245b28
BH
1563 efx->mac_op->reconfigure(efx);
1564 mutex_unlock(&efx->mac_lock);
1565
bc3c90a2 1566 efx_init_channels(efx);
8ceee660
BH
1567
1568 efx_start_all(efx);
1569 return rc;
8ceee660
BH
1570}
1571
1572static int efx_set_mac_address(struct net_device *net_dev, void *data)
1573{
767e468c 1574 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1575 struct sockaddr *addr = data;
1576 char *new_addr = addr->sa_data;
1577
1578 EFX_ASSERT_RESET_SERIALISED(efx);
1579
1580 if (!is_valid_ether_addr(new_addr)) {
e174961c
JB
1581 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1582 new_addr);
8ceee660
BH
1583 return -EINVAL;
1584 }
1585
1586 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1587
1588 /* Reconfigure the MAC */
d3245b28
BH
1589 mutex_lock(&efx->mac_lock);
1590 efx->mac_op->reconfigure(efx);
1591 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1592
1593 return 0;
1594}
1595
a816f75a 1596/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1597static void efx_set_multicast_list(struct net_device *net_dev)
1598{
767e468c 1599 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1600 struct netdev_hw_addr *ha;
8ceee660 1601 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1602 u32 crc;
1603 int bit;
8ceee660 1604
8be4f3e6 1605 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1606
1607 /* Build multicast hash table */
8be4f3e6 1608 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1609 memset(mc_hash, 0xff, sizeof(*mc_hash));
1610 } else {
1611 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1612 netdev_for_each_mc_addr(ha, net_dev) {
1613 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660
BH
1614 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1615 set_bit_le(bit, mc_hash->byte);
8ceee660 1616 }
8ceee660 1617
8be4f3e6
BH
1618 /* Broadcast packets go through the multicast hash filter.
1619 * ether_crc_le() of the broadcast address is 0xbe2612ff
1620 * so we always add bit 0xff to the mask.
1621 */
1622 set_bit_le(0xff, mc_hash->byte);
1623 }
a816f75a 1624
8be4f3e6
BH
1625 if (efx->port_enabled)
1626 queue_work(efx->workqueue, &efx->mac_work);
1627 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1628}
1629
c3ecb9f3
SH
1630static const struct net_device_ops efx_netdev_ops = {
1631 .ndo_open = efx_net_open,
1632 .ndo_stop = efx_net_stop,
4472702e 1633 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
1634 .ndo_tx_timeout = efx_watchdog,
1635 .ndo_start_xmit = efx_hard_start_xmit,
1636 .ndo_validate_addr = eth_validate_addr,
1637 .ndo_do_ioctl = efx_ioctl,
1638 .ndo_change_mtu = efx_change_mtu,
1639 .ndo_set_mac_address = efx_set_mac_address,
1640 .ndo_set_multicast_list = efx_set_multicast_list,
1641#ifdef CONFIG_NET_POLL_CONTROLLER
1642 .ndo_poll_controller = efx_netpoll,
1643#endif
1644};
1645
7dde596e
BH
1646static void efx_update_name(struct efx_nic *efx)
1647{
1648 strcpy(efx->name, efx->net_dev->name);
1649 efx_mtd_rename(efx);
1650 efx_set_channel_names(efx);
1651}
1652
8ceee660
BH
1653static int efx_netdev_event(struct notifier_block *this,
1654 unsigned long event, void *ptr)
1655{
d3208b5e 1656 struct net_device *net_dev = ptr;
8ceee660 1657
7dde596e
BH
1658 if (net_dev->netdev_ops == &efx_netdev_ops &&
1659 event == NETDEV_CHANGENAME)
1660 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1661
1662 return NOTIFY_DONE;
1663}
1664
1665static struct notifier_block efx_netdev_notifier = {
1666 .notifier_call = efx_netdev_event,
1667};
1668
06d5e193
BH
1669static ssize_t
1670show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1671{
1672 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1673 return sprintf(buf, "%d\n", efx->phy_type);
1674}
1675static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1676
8ceee660
BH
1677static int efx_register_netdev(struct efx_nic *efx)
1678{
1679 struct net_device *net_dev = efx->net_dev;
1680 int rc;
1681
1682 net_dev->watchdog_timeo = 5 * HZ;
1683 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1684 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1685 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1686 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1687
8ceee660 1688 /* Clear MAC statistics */
177dfcd8 1689 efx->mac_op->update_stats(efx);
8ceee660
BH
1690 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1691
7dde596e 1692 rtnl_lock();
aed0628d
BH
1693
1694 rc = dev_alloc_name(net_dev, net_dev->name);
1695 if (rc < 0)
1696 goto fail_locked;
7dde596e 1697 efx_update_name(efx);
aed0628d
BH
1698
1699 rc = register_netdevice(net_dev);
1700 if (rc)
1701 goto fail_locked;
1702
1703 /* Always start with carrier off; PHY events will detect the link */
1704 netif_carrier_off(efx->net_dev);
1705
7dde596e 1706 rtnl_unlock();
8ceee660 1707
06d5e193
BH
1708 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1709 if (rc) {
1710 EFX_ERR(efx, "failed to init net dev attributes\n");
1711 goto fail_registered;
1712 }
1713
8ceee660 1714 return 0;
06d5e193 1715
aed0628d
BH
1716fail_locked:
1717 rtnl_unlock();
1718 EFX_ERR(efx, "could not register net dev\n");
1719 return rc;
1720
06d5e193
BH
1721fail_registered:
1722 unregister_netdev(net_dev);
1723 return rc;
8ceee660
BH
1724}
1725
1726static void efx_unregister_netdev(struct efx_nic *efx)
1727{
1728 struct efx_tx_queue *tx_queue;
1729
1730 if (!efx->net_dev)
1731 return;
1732
767e468c 1733 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1734
1735 /* Free up any skbs still remaining. This has to happen before
1736 * we try to unregister the netdev as running their destructors
1737 * may be needed to get the device ref. count to 0. */
1738 efx_for_each_tx_queue(tx_queue, efx)
1739 efx_release_tx_buffers(tx_queue);
1740
55668611 1741 if (efx_dev_registered(efx)) {
8ceee660 1742 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1743 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1744 unregister_netdev(efx->net_dev);
1745 }
1746}
1747
1748/**************************************************************************
1749 *
1750 * Device reset and suspend
1751 *
1752 **************************************************************************/
1753
2467ca46
BH
1754/* Tears down the entire software state and most of the hardware state
1755 * before reset. */
d3245b28 1756void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 1757{
8ceee660
BH
1758 EFX_ASSERT_RESET_SERIALISED(efx);
1759
2467ca46
BH
1760 efx_stop_all(efx);
1761 mutex_lock(&efx->mac_lock);
f4150724 1762 mutex_lock(&efx->spi_lock);
2467ca46 1763
8ceee660 1764 efx_fini_channels(efx);
4b988280
SH
1765 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1766 efx->phy_op->fini(efx);
ef2b90ee 1767 efx->type->fini(efx);
8ceee660
BH
1768}
1769
2467ca46
BH
1770/* This function will always ensure that the locks acquired in
1771 * efx_reset_down() are released. A failure return code indicates
1772 * that we were unable to reinitialise the hardware, and the
1773 * driver should be disabled. If ok is false, then the rx and tx
1774 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 1775int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
1776{
1777 int rc;
1778
2467ca46 1779 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1780
ef2b90ee 1781 rc = efx->type->init(efx);
8ceee660 1782 if (rc) {
2467ca46 1783 EFX_ERR(efx, "failed to initialise NIC\n");
eb9f6744 1784 goto fail;
8ceee660
BH
1785 }
1786
eb9f6744
BH
1787 if (!ok)
1788 goto fail;
1789
4b988280 1790 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
1791 rc = efx->phy_op->init(efx);
1792 if (rc)
1793 goto fail;
1794 if (efx->phy_op->reconfigure(efx))
1795 EFX_ERR(efx, "could not restore PHY settings\n");
4b988280
SH
1796 }
1797
eb9f6744 1798 efx->mac_op->reconfigure(efx);
8ceee660 1799
eb9f6744
BH
1800 efx_init_channels(efx);
1801
1802 mutex_unlock(&efx->spi_lock);
1803 mutex_unlock(&efx->mac_lock);
1804
1805 efx_start_all(efx);
1806
1807 return 0;
1808
1809fail:
1810 efx->port_initialized = false;
2467ca46 1811
f4150724 1812 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1813 mutex_unlock(&efx->mac_lock);
1814
8ceee660
BH
1815 return rc;
1816}
1817
eb9f6744
BH
1818/* Reset the NIC using the specified method. Note that the reset may
1819 * fail, in which case the card will be left in an unusable state.
8ceee660 1820 *
eb9f6744 1821 * Caller must hold the rtnl_lock.
8ceee660 1822 */
eb9f6744 1823int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 1824{
eb9f6744
BH
1825 int rc, rc2;
1826 bool disabled;
8ceee660 1827
c459302d 1828 EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
8ceee660 1829
d3245b28 1830 efx_reset_down(efx, method);
8ceee660 1831
ef2b90ee 1832 rc = efx->type->reset(efx, method);
8ceee660
BH
1833 if (rc) {
1834 EFX_ERR(efx, "failed to reset hardware\n");
eb9f6744 1835 goto out;
8ceee660
BH
1836 }
1837
1838 /* Allow resets to be rescheduled. */
1839 efx->reset_pending = RESET_TYPE_NONE;
1840
1841 /* Reinitialise bus-mastering, which may have been turned off before
1842 * the reset was scheduled. This is still appropriate, even in the
1843 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1844 * can respond to requests. */
1845 pci_set_master(efx->pci_dev);
1846
eb9f6744 1847out:
8ceee660 1848 /* Leave device stopped if necessary */
eb9f6744
BH
1849 disabled = rc || method == RESET_TYPE_DISABLE;
1850 rc2 = efx_reset_up(efx, method, !disabled);
1851 if (rc2) {
1852 disabled = true;
1853 if (!rc)
1854 rc = rc2;
8ceee660
BH
1855 }
1856
eb9f6744 1857 if (disabled) {
f49a4589 1858 dev_close(efx->net_dev);
f4bd954e
BH
1859 EFX_ERR(efx, "has been disabled\n");
1860 efx->state = STATE_DISABLED;
f4bd954e
BH
1861 } else {
1862 EFX_LOG(efx, "reset complete\n");
1863 }
8ceee660
BH
1864 return rc;
1865}
1866
1867/* The worker thread exists so that code that cannot sleep can
1868 * schedule a reset for later.
1869 */
1870static void efx_reset_work(struct work_struct *data)
1871{
eb9f6744 1872 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
8ceee660 1873
319ba649
SH
1874 if (efx->reset_pending == RESET_TYPE_NONE)
1875 return;
1876
eb9f6744
BH
1877 /* If we're not RUNNING then don't reset. Leave the reset_pending
1878 * flag set so that efx_pci_probe_main will be retried */
1879 if (efx->state != STATE_RUNNING) {
1880 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1881 return;
1882 }
1883
1884 rtnl_lock();
f49a4589 1885 (void)efx_reset(efx, efx->reset_pending);
eb9f6744 1886 rtnl_unlock();
8ceee660
BH
1887}
1888
1889void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1890{
1891 enum reset_type method;
1892
1893 if (efx->reset_pending != RESET_TYPE_NONE) {
1894 EFX_INFO(efx, "quenching already scheduled reset\n");
1895 return;
1896 }
1897
1898 switch (type) {
1899 case RESET_TYPE_INVISIBLE:
1900 case RESET_TYPE_ALL:
1901 case RESET_TYPE_WORLD:
1902 case RESET_TYPE_DISABLE:
1903 method = type;
1904 break;
1905 case RESET_TYPE_RX_RECOVERY:
1906 case RESET_TYPE_RX_DESC_FETCH:
1907 case RESET_TYPE_TX_DESC_FETCH:
1908 case RESET_TYPE_TX_SKIP:
1909 method = RESET_TYPE_INVISIBLE;
1910 break;
8880f4ec 1911 case RESET_TYPE_MC_FAILURE:
8ceee660
BH
1912 default:
1913 method = RESET_TYPE_ALL;
1914 break;
1915 }
1916
1917 if (method != type)
c459302d
BH
1918 EFX_LOG(efx, "scheduling %s reset for %s\n",
1919 RESET_TYPE(method), RESET_TYPE(type));
8ceee660 1920 else
c459302d 1921 EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
8ceee660
BH
1922
1923 efx->reset_pending = method;
1924
8880f4ec
BH
1925 /* efx_process_channel() will no longer read events once a
1926 * reset is scheduled. So switch back to poll'd MCDI completions. */
1927 efx_mcdi_mode_poll(efx);
1928
1ab00629 1929 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1930}
1931
1932/**************************************************************************
1933 *
1934 * List of NICs we support
1935 *
1936 **************************************************************************/
1937
1938/* PCI device ID table */
a3aa1884 1939static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
8ceee660 1940 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
daeda630 1941 .driver_data = (unsigned long) &falcon_a1_nic_type},
8ceee660 1942 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
daeda630 1943 .driver_data = (unsigned long) &falcon_b0_nic_type},
8880f4ec
BH
1944 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
1945 .driver_data = (unsigned long) &siena_a0_nic_type},
1946 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
1947 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
1948 {0} /* end of list */
1949};
1950
1951/**************************************************************************
1952 *
3759433d 1953 * Dummy PHY/MAC operations
8ceee660 1954 *
01aad7b6 1955 * Can be used for some unimplemented operations
8ceee660
BH
1956 * Needed so all function pointers are valid and do not have to be tested
1957 * before use
1958 *
1959 **************************************************************************/
1960int efx_port_dummy_op_int(struct efx_nic *efx)
1961{
1962 return 0;
1963}
1964void efx_port_dummy_op_void(struct efx_nic *efx) {}
398468ed
BH
1965void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1966{
1967}
fdaa9aed
SH
1968bool efx_port_dummy_op_poll(struct efx_nic *efx)
1969{
1970 return false;
1971}
8ceee660
BH
1972
1973static struct efx_phy_operations efx_dummy_phy_operations = {
1974 .init = efx_port_dummy_op_int,
d3245b28 1975 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 1976 .poll = efx_port_dummy_op_poll,
8ceee660 1977 .fini = efx_port_dummy_op_void,
8ceee660
BH
1978};
1979
8ceee660
BH
1980/**************************************************************************
1981 *
1982 * Data housekeeping
1983 *
1984 **************************************************************************/
1985
1986/* This zeroes out and then fills in the invariants in a struct
1987 * efx_nic (including all sub-structures).
1988 */
1989static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1990 struct pci_dev *pci_dev, struct net_device *net_dev)
1991{
1992 struct efx_channel *channel;
1993 struct efx_tx_queue *tx_queue;
1994 struct efx_rx_queue *rx_queue;
1ab00629 1995 int i;
8ceee660
BH
1996
1997 /* Initialise common structures */
1998 memset(efx, 0, sizeof(*efx));
1999 spin_lock_init(&efx->biu_lock);
ab867461 2000 mutex_init(&efx->mdio_lock);
f4150724 2001 mutex_init(&efx->spi_lock);
76884835
BH
2002#ifdef CONFIG_SFC_MTD
2003 INIT_LIST_HEAD(&efx->mtd_list);
2004#endif
8ceee660
BH
2005 INIT_WORK(&efx->reset_work, efx_reset_work);
2006 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2007 efx->pci_dev = pci_dev;
2008 efx->state = STATE_INIT;
2009 efx->reset_pending = RESET_TYPE_NONE;
2010 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2011
2012 efx->net_dev = net_dev;
dc8cfa55 2013 efx->rx_checksum_enabled = true;
8ceee660
BH
2014 spin_lock_init(&efx->stats_lock);
2015 mutex_init(&efx->mac_lock);
b895d73e 2016 efx->mac_op = type->default_mac_ops;
8ceee660 2017 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2018 efx->mdio.dev = net_dev;
766ca0fa 2019 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
2020
2021 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2022 channel = &efx->channel[i];
2023 channel->efx = efx;
2024 channel->channel = i;
dc8cfa55 2025 channel->work_pending = false;
a4900ac9
BH
2026 spin_lock_init(&channel->tx_stop_lock);
2027 atomic_set(&channel->tx_stop_count, 1);
8ceee660 2028 }
a4900ac9 2029 for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
8ceee660
BH
2030 tx_queue = &efx->tx_queue[i];
2031 tx_queue->efx = efx;
2032 tx_queue->queue = i;
2033 tx_queue->buffer = NULL;
2034 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 2035 tx_queue->tso_headers_free = NULL;
8ceee660
BH
2036 }
2037 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
2038 rx_queue = &efx->rx_queue[i];
2039 rx_queue->efx = efx;
2040 rx_queue->queue = i;
2041 rx_queue->channel = &efx->channel[0]; /* for safety */
2042 rx_queue->buffer = NULL;
90d683af
SH
2043 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
2044 (unsigned long)rx_queue);
8ceee660
BH
2045 }
2046
2047 efx->type = type;
2048
8ceee660 2049 /* As close as we can get to guaranteeing that we don't overflow */
3ffeabdd
BH
2050 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
2051
8ceee660
BH
2052 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2053
2054 /* Higher numbered interrupt modes are less capable! */
2055 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2056 interrupt_mode);
2057
6977dc63
BH
2058 /* Would be good to use the net_dev name, but we're too early */
2059 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2060 pci_name(pci_dev));
2061 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629
SH
2062 if (!efx->workqueue)
2063 return -ENOMEM;
8d9853d9 2064
8ceee660 2065 return 0;
8ceee660
BH
2066}
2067
2068static void efx_fini_struct(struct efx_nic *efx)
2069{
2070 if (efx->workqueue) {
2071 destroy_workqueue(efx->workqueue);
2072 efx->workqueue = NULL;
2073 }
2074}
2075
2076/**************************************************************************
2077 *
2078 * PCI interface
2079 *
2080 **************************************************************************/
2081
2082/* Main body of final NIC shutdown code
2083 * This is called only at module unload (or hotplug removal).
2084 */
2085static void efx_pci_remove_main(struct efx_nic *efx)
2086{
152b6a62 2087 efx_nic_fini_interrupt(efx);
8ceee660
BH
2088 efx_fini_channels(efx);
2089 efx_fini_port(efx);
ef2b90ee 2090 efx->type->fini(efx);
8ceee660
BH
2091 efx_fini_napi(efx);
2092 efx_remove_all(efx);
2093}
2094
2095/* Final NIC shutdown
2096 * This is called only at module unload (or hotplug removal).
2097 */
2098static void efx_pci_remove(struct pci_dev *pci_dev)
2099{
2100 struct efx_nic *efx;
2101
2102 efx = pci_get_drvdata(pci_dev);
2103 if (!efx)
2104 return;
2105
2106 /* Mark the NIC as fini, then stop the interface */
2107 rtnl_lock();
2108 efx->state = STATE_FINI;
2109 dev_close(efx->net_dev);
2110
2111 /* Allow any queued efx_resets() to complete */
2112 rtnl_unlock();
2113
8ceee660
BH
2114 efx_unregister_netdev(efx);
2115
7dde596e
BH
2116 efx_mtd_remove(efx);
2117
8ceee660
BH
2118 /* Wait for any scheduled resets to complete. No more will be
2119 * scheduled from this point because efx_stop_all() has been
2120 * called, we are no longer registered with driverlink, and
2121 * the net_device's have been removed. */
1ab00629 2122 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2123
2124 efx_pci_remove_main(efx);
2125
8ceee660
BH
2126 efx_fini_io(efx);
2127 EFX_LOG(efx, "shutdown successful\n");
2128
2129 pci_set_drvdata(pci_dev, NULL);
2130 efx_fini_struct(efx);
2131 free_netdev(efx->net_dev);
2132};
2133
2134/* Main body of NIC initialisation
2135 * This is called at module load (or hotplug insertion, theoretically).
2136 */
2137static int efx_pci_probe_main(struct efx_nic *efx)
2138{
2139 int rc;
2140
2141 /* Do start-of-day initialisation */
2142 rc = efx_probe_all(efx);
2143 if (rc)
2144 goto fail1;
2145
2146 rc = efx_init_napi(efx);
2147 if (rc)
2148 goto fail2;
2149
ef2b90ee 2150 rc = efx->type->init(efx);
8ceee660
BH
2151 if (rc) {
2152 EFX_ERR(efx, "failed to initialise NIC\n");
278c0621 2153 goto fail3;
8ceee660
BH
2154 }
2155
2156 rc = efx_init_port(efx);
2157 if (rc) {
2158 EFX_ERR(efx, "failed to initialise port\n");
278c0621 2159 goto fail4;
8ceee660
BH
2160 }
2161
bc3c90a2 2162 efx_init_channels(efx);
8ceee660 2163
152b6a62 2164 rc = efx_nic_init_interrupt(efx);
8ceee660 2165 if (rc)
278c0621 2166 goto fail5;
8ceee660
BH
2167
2168 return 0;
2169
278c0621 2170 fail5:
bc3c90a2 2171 efx_fini_channels(efx);
8ceee660 2172 efx_fini_port(efx);
8ceee660 2173 fail4:
ef2b90ee 2174 efx->type->fini(efx);
8ceee660
BH
2175 fail3:
2176 efx_fini_napi(efx);
2177 fail2:
2178 efx_remove_all(efx);
2179 fail1:
2180 return rc;
2181}
2182
2183/* NIC initialisation
2184 *
2185 * This is called at module load (or hotplug insertion,
2186 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2187 * sets up and registers the network devices with the kernel and hooks
2188 * the interrupt service routine. It does not prepare the device for
2189 * transmission; this is left to the first time one of the network
2190 * interfaces is brought up (i.e. efx_net_open).
2191 */
2192static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2193 const struct pci_device_id *entry)
2194{
2195 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2196 struct net_device *net_dev;
2197 struct efx_nic *efx;
2198 int i, rc;
2199
2200 /* Allocate and initialise a struct net_device and struct efx_nic */
a4900ac9 2201 net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
8ceee660
BH
2202 if (!net_dev)
2203 return -ENOMEM;
c383b537 2204 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415
BH
2205 NETIF_F_HIGHDMA | NETIF_F_TSO |
2206 NETIF_F_GRO);
738a8f4b
BH
2207 if (type->offload_features & NETIF_F_V6_CSUM)
2208 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2209 /* Mask for features that also apply to VLAN devices */
2210 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2211 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2212 efx = netdev_priv(net_dev);
8ceee660
BH
2213 pci_set_drvdata(pci_dev, efx);
2214 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2215 if (rc)
2216 goto fail1;
2217
2218 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2219
2220 /* Set up basic I/O (BAR mappings etc) */
2221 rc = efx_init_io(efx);
2222 if (rc)
2223 goto fail2;
2224
2225 /* No serialisation is required with the reset path because
2226 * we're in STATE_INIT. */
2227 for (i = 0; i < 5; i++) {
2228 rc = efx_pci_probe_main(efx);
8ceee660
BH
2229
2230 /* Serialise against efx_reset(). No more resets will be
2231 * scheduled since efx_stop_all() has been called, and we
2232 * have not and never have been registered with either
2233 * the rtnetlink or driverlink layers. */
1ab00629 2234 cancel_work_sync(&efx->reset_work);
8ceee660 2235
fa402b2e
SH
2236 if (rc == 0) {
2237 if (efx->reset_pending != RESET_TYPE_NONE) {
2238 /* If there was a scheduled reset during
2239 * probe, the NIC is probably hosed anyway */
2240 efx_pci_remove_main(efx);
2241 rc = -EIO;
2242 } else {
2243 break;
2244 }
2245 }
2246
8ceee660
BH
2247 /* Retry if a recoverably reset event has been scheduled */
2248 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2249 (efx->reset_pending != RESET_TYPE_ALL))
2250 goto fail3;
2251
2252 efx->reset_pending = RESET_TYPE_NONE;
2253 }
2254
2255 if (rc) {
2256 EFX_ERR(efx, "Could not reset NIC\n");
2257 goto fail4;
2258 }
2259
55edc6e6
BH
2260 /* Switch to the running state before we expose the device to the OS,
2261 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2262 efx->state = STATE_RUNNING;
7dde596e 2263
8ceee660
BH
2264 rc = efx_register_netdev(efx);
2265 if (rc)
2266 goto fail5;
2267
2268 EFX_LOG(efx, "initialisation successful\n");
a5211bb5
BH
2269
2270 rtnl_lock();
2271 efx_mtd_probe(efx); /* allowed to fail */
2272 rtnl_unlock();
8ceee660
BH
2273 return 0;
2274
2275 fail5:
2276 efx_pci_remove_main(efx);
2277 fail4:
2278 fail3:
2279 efx_fini_io(efx);
2280 fail2:
2281 efx_fini_struct(efx);
2282 fail1:
5e2a911c 2283 WARN_ON(rc > 0);
8ceee660
BH
2284 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2285 free_netdev(net_dev);
2286 return rc;
2287}
2288
89c758fa
BH
2289static int efx_pm_freeze(struct device *dev)
2290{
2291 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2292
2293 efx->state = STATE_FINI;
2294
2295 netif_device_detach(efx->net_dev);
2296
2297 efx_stop_all(efx);
2298 efx_fini_channels(efx);
2299
2300 return 0;
2301}
2302
2303static int efx_pm_thaw(struct device *dev)
2304{
2305 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2306
2307 efx->state = STATE_INIT;
2308
2309 efx_init_channels(efx);
2310
2311 mutex_lock(&efx->mac_lock);
2312 efx->phy_op->reconfigure(efx);
2313 mutex_unlock(&efx->mac_lock);
2314
2315 efx_start_all(efx);
2316
2317 netif_device_attach(efx->net_dev);
2318
2319 efx->state = STATE_RUNNING;
2320
2321 efx->type->resume_wol(efx);
2322
319ba649
SH
2323 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2324 queue_work(reset_workqueue, &efx->reset_work);
2325
89c758fa
BH
2326 return 0;
2327}
2328
2329static int efx_pm_poweroff(struct device *dev)
2330{
2331 struct pci_dev *pci_dev = to_pci_dev(dev);
2332 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2333
2334 efx->type->fini(efx);
2335
2336 efx->reset_pending = RESET_TYPE_NONE;
2337
2338 pci_save_state(pci_dev);
2339 return pci_set_power_state(pci_dev, PCI_D3hot);
2340}
2341
2342/* Used for both resume and restore */
2343static int efx_pm_resume(struct device *dev)
2344{
2345 struct pci_dev *pci_dev = to_pci_dev(dev);
2346 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2347 int rc;
2348
2349 rc = pci_set_power_state(pci_dev, PCI_D0);
2350 if (rc)
2351 return rc;
2352 pci_restore_state(pci_dev);
2353 rc = pci_enable_device(pci_dev);
2354 if (rc)
2355 return rc;
2356 pci_set_master(efx->pci_dev);
2357 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2358 if (rc)
2359 return rc;
2360 rc = efx->type->init(efx);
2361 if (rc)
2362 return rc;
2363 efx_pm_thaw(dev);
2364 return 0;
2365}
2366
2367static int efx_pm_suspend(struct device *dev)
2368{
2369 int rc;
2370
2371 efx_pm_freeze(dev);
2372 rc = efx_pm_poweroff(dev);
2373 if (rc)
2374 efx_pm_resume(dev);
2375 return rc;
2376}
2377
2378static struct dev_pm_ops efx_pm_ops = {
2379 .suspend = efx_pm_suspend,
2380 .resume = efx_pm_resume,
2381 .freeze = efx_pm_freeze,
2382 .thaw = efx_pm_thaw,
2383 .poweroff = efx_pm_poweroff,
2384 .restore = efx_pm_resume,
2385};
2386
8ceee660
BH
2387static struct pci_driver efx_pci_driver = {
2388 .name = EFX_DRIVER_NAME,
2389 .id_table = efx_pci_table,
2390 .probe = efx_pci_probe,
2391 .remove = efx_pci_remove,
89c758fa 2392 .driver.pm = &efx_pm_ops,
8ceee660
BH
2393};
2394
2395/**************************************************************************
2396 *
2397 * Kernel module interface
2398 *
2399 *************************************************************************/
2400
2401module_param(interrupt_mode, uint, 0444);
2402MODULE_PARM_DESC(interrupt_mode,
2403 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2404
2405static int __init efx_init_module(void)
2406{
2407 int rc;
2408
2409 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2410
2411 rc = register_netdevice_notifier(&efx_netdev_notifier);
2412 if (rc)
2413 goto err_notifier;
2414
1ab00629
SH
2415 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2416 if (!reset_workqueue) {
2417 rc = -ENOMEM;
2418 goto err_reset;
2419 }
8ceee660
BH
2420
2421 rc = pci_register_driver(&efx_pci_driver);
2422 if (rc < 0)
2423 goto err_pci;
2424
2425 return 0;
2426
2427 err_pci:
1ab00629
SH
2428 destroy_workqueue(reset_workqueue);
2429 err_reset:
8ceee660
BH
2430 unregister_netdevice_notifier(&efx_netdev_notifier);
2431 err_notifier:
2432 return rc;
2433}
2434
2435static void __exit efx_exit_module(void)
2436{
2437 printk(KERN_INFO "Solarflare NET driver unloading\n");
2438
2439 pci_unregister_driver(&efx_pci_driver);
1ab00629 2440 destroy_workqueue(reset_workqueue);
8ceee660
BH
2441 unregister_netdevice_notifier(&efx_netdev_notifier);
2442
2443}
2444
2445module_init(efx_init_module);
2446module_exit(efx_exit_module);
2447
906bb26c
BH
2448MODULE_AUTHOR("Solarflare Communications and "
2449 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2450MODULE_DESCRIPTION("Solarflare Communications network driver");
2451MODULE_LICENSE("GPL");
2452MODULE_DEVICE_TABLE(pci, efx_pci_table);