]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/sfc/efx.c
sfc: Implement message level control
[net-next-2.6.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
906bb26c 4 * Copyright 2005-2009 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
8ceee660 24#include "net_driver.h"
8ceee660
BH
25#include "efx.h"
26#include "mdio_10g.h"
744093c9 27#include "nic.h"
8ceee660 28
8880f4ec 29#include "mcdi.h"
fd371e32 30#include "workarounds.h"
8880f4ec 31
c459302d
BH
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41const char *efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
e58f69f4 43 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
e58f69f4
BH
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
69};
70
71/* Interrupt mode names (see INT_MODE())) */
72const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
73const char *efx_interrupt_mode_names[] = {
74 [EFX_INT_MODE_MSIX] = "MSI-X",
75 [EFX_INT_MODE_MSI] = "MSI",
76 [EFX_INT_MODE_LEGACY] = "legacy",
77};
78
79const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
80const char *efx_reset_type_names[] = {
81 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
82 [RESET_TYPE_ALL] = "ALL",
83 [RESET_TYPE_WORLD] = "WORLD",
84 [RESET_TYPE_DISABLE] = "DISABLE",
85 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
86 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
87 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
88 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
89 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
90 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 91 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
92};
93
8ceee660
BH
94#define EFX_MAX_MTU (9 * 1024)
95
1ab00629
SH
96/* Reset workqueue. If any NIC has a hardware failure then a reset will be
97 * queued onto this work queue. This is not a per-nic work queue, because
98 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
99 */
100static struct workqueue_struct *reset_workqueue;
101
8ceee660
BH
102/**************************************************************************
103 *
104 * Configurable values
105 *
106 *************************************************************************/
107
8ceee660
BH
108/*
109 * Use separate channels for TX and RX events
110 *
28b581ab
NT
111 * Set this to 1 to use separate channels for TX and RX. It allows us
112 * to control interrupt affinity separately for TX and RX.
8ceee660 113 *
28b581ab 114 * This is only used in MSI-X interrupt mode
8ceee660 115 */
28b581ab
NT
116static unsigned int separate_tx_channels;
117module_param(separate_tx_channels, uint, 0644);
118MODULE_PARM_DESC(separate_tx_channels,
119 "Use separate channels for TX and RX");
8ceee660
BH
120
121/* This is the weight assigned to each of the (per-channel) virtual
122 * NAPI devices.
123 */
124static int napi_weight = 64;
125
126/* This is the time (in jiffies) between invocations of the hardware
127 * monitor, which checks for known hardware bugs and resets the
128 * hardware and driver as necessary.
129 */
130unsigned int efx_monitor_interval = 1 * HZ;
131
8ceee660
BH
132/* This controls whether or not the driver will initialise devices
133 * with invalid MAC addresses stored in the EEPROM or flash. If true,
134 * such devices will be initialised with a random locally-generated
135 * MAC address. This allows for loading the sfc_mtd driver to
136 * reprogram the flash, even if the flash contents (including the MAC
137 * address) have previously been erased.
138 */
139static unsigned int allow_bad_hwaddr;
140
141/* Initial interrupt moderation settings. They can be modified after
142 * module load with ethtool.
143 *
144 * The default for RX should strike a balance between increasing the
145 * round-trip latency and reducing overhead.
146 */
147static unsigned int rx_irq_mod_usec = 60;
148
149/* Initial interrupt moderation settings. They can be modified after
150 * module load with ethtool.
151 *
152 * This default is chosen to ensure that a 10G link does not go idle
153 * while a TX queue is stopped after it has become full. A queue is
154 * restarted when it drops below half full. The time this takes (assuming
155 * worst case 3 descriptors per packet and 1024 descriptors) is
156 * 512 / 3 * 1.2 = 205 usec.
157 */
158static unsigned int tx_irq_mod_usec = 150;
159
160/* This is the first interrupt mode to try out of:
161 * 0 => MSI-X
162 * 1 => MSI
163 * 2 => legacy
164 */
165static unsigned int interrupt_mode;
166
167/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
168 * i.e. the number of CPUs among which we may distribute simultaneous
169 * interrupt handling.
170 *
171 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
172 * The default (0) means to assign an interrupt to each package (level II cache)
173 */
174static unsigned int rss_cpus;
175module_param(rss_cpus, uint, 0444);
176MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
177
84ae48fe
BH
178static int phy_flash_cfg;
179module_param(phy_flash_cfg, int, 0644);
180MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
181
6fb70fd1
BH
182static unsigned irq_adapt_low_thresh = 10000;
183module_param(irq_adapt_low_thresh, uint, 0644);
184MODULE_PARM_DESC(irq_adapt_low_thresh,
185 "Threshold score for reducing IRQ moderation");
186
187static unsigned irq_adapt_high_thresh = 20000;
188module_param(irq_adapt_high_thresh, uint, 0644);
189MODULE_PARM_DESC(irq_adapt_high_thresh,
190 "Threshold score for increasing IRQ moderation");
191
62776d03
BH
192static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
193 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
194 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
195 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
196module_param(debug, uint, 0);
197MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
198
8ceee660
BH
199/**************************************************************************
200 *
201 * Utility functions and prototypes
202 *
203 *************************************************************************/
204static void efx_remove_channel(struct efx_channel *channel);
205static void efx_remove_port(struct efx_nic *efx);
206static void efx_fini_napi(struct efx_nic *efx);
207static void efx_fini_channels(struct efx_nic *efx);
208
209#define EFX_ASSERT_RESET_SERIALISED(efx) \
210 do { \
332c1ce9
BH
211 if ((efx->state == STATE_RUNNING) || \
212 (efx->state == STATE_DISABLED)) \
8ceee660
BH
213 ASSERT_RTNL(); \
214 } while (0)
215
216/**************************************************************************
217 *
218 * Event queue processing
219 *
220 *************************************************************************/
221
222/* Process channel's event queue
223 *
224 * This function is responsible for processing the event queue of a
225 * single channel. The caller must guarantee that this function will
226 * never be concurrently called more than once on the same channel,
227 * though different channels may be being processed concurrently.
228 */
fa236e18 229static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 230{
42cbe2d7 231 struct efx_nic *efx = channel->efx;
fa236e18 232 int spent;
8ceee660 233
42cbe2d7 234 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 235 !channel->enabled))
42cbe2d7 236 return 0;
8ceee660 237
fa236e18
BH
238 spent = efx_nic_process_eventq(channel, budget);
239 if (spent == 0)
42cbe2d7 240 return 0;
8ceee660
BH
241
242 /* Deliver last RX packet. */
243 if (channel->rx_pkt) {
244 __efx_rx_packet(channel, channel->rx_pkt,
245 channel->rx_pkt_csummed);
246 channel->rx_pkt = NULL;
247 }
248
8ceee660
BH
249 efx_rx_strategy(channel);
250
42cbe2d7 251 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 252
fa236e18 253 return spent;
8ceee660
BH
254}
255
256/* Mark channel as finished processing
257 *
258 * Note that since we will not receive further interrupts for this
259 * channel before we finish processing and call the eventq_read_ack()
260 * method, there is no need to use the interrupt hold-off timers.
261 */
262static inline void efx_channel_processed(struct efx_channel *channel)
263{
5b9e207c
BH
264 /* The interrupt handler for this channel may set work_pending
265 * as soon as we acknowledge the events we've seen. Make sure
266 * it's cleared before then. */
dc8cfa55 267 channel->work_pending = false;
5b9e207c
BH
268 smp_wmb();
269
152b6a62 270 efx_nic_eventq_read_ack(channel);
8ceee660
BH
271}
272
273/* NAPI poll handler
274 *
275 * NAPI guarantees serialisation of polls of the same device, which
276 * provides the guarantee required by efx_process_channel().
277 */
278static int efx_poll(struct napi_struct *napi, int budget)
279{
280 struct efx_channel *channel =
281 container_of(napi, struct efx_channel, napi_str);
62776d03 282 struct efx_nic *efx = channel->efx;
fa236e18 283 int spent;
8ceee660 284
62776d03
BH
285 netif_vdbg(efx, intr, efx->net_dev,
286 "channel %d NAPI poll executing on CPU %d\n",
287 channel->channel, raw_smp_processor_id());
8ceee660 288
fa236e18 289 spent = efx_process_channel(channel, budget);
8ceee660 290
fa236e18 291 if (spent < budget) {
a4900ac9 292 if (channel->channel < efx->n_rx_channels &&
6fb70fd1
BH
293 efx->irq_rx_adaptive &&
294 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
295 if (unlikely(channel->irq_mod_score <
296 irq_adapt_low_thresh)) {
0d86ebd8
BH
297 if (channel->irq_moderation > 1) {
298 channel->irq_moderation -= 1;
ef2b90ee 299 efx->type->push_irq_moderation(channel);
0d86ebd8 300 }
6fb70fd1
BH
301 } else if (unlikely(channel->irq_mod_score >
302 irq_adapt_high_thresh)) {
0d86ebd8
BH
303 if (channel->irq_moderation <
304 efx->irq_rx_moderation) {
305 channel->irq_moderation += 1;
ef2b90ee 306 efx->type->push_irq_moderation(channel);
0d86ebd8 307 }
6fb70fd1 308 }
6fb70fd1
BH
309 channel->irq_count = 0;
310 channel->irq_mod_score = 0;
311 }
312
8ceee660 313 /* There is no race here; although napi_disable() will
288379f0 314 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
315 * since efx_channel_processed() will have no effect if
316 * interrupts have already been disabled.
317 */
288379f0 318 napi_complete(napi);
8ceee660
BH
319 efx_channel_processed(channel);
320 }
321
fa236e18 322 return spent;
8ceee660
BH
323}
324
325/* Process the eventq of the specified channel immediately on this CPU
326 *
327 * Disable hardware generated interrupts, wait for any existing
328 * processing to finish, then directly poll (and ack ) the eventq.
329 * Finally reenable NAPI and interrupts.
330 *
331 * Since we are touching interrupts the caller should hold the suspend lock
332 */
333void efx_process_channel_now(struct efx_channel *channel)
334{
335 struct efx_nic *efx = channel->efx;
336
8ceee660
BH
337 BUG_ON(!channel->enabled);
338
339 /* Disable interrupts and wait for ISRs to complete */
152b6a62 340 efx_nic_disable_interrupts(efx);
8ceee660
BH
341 if (efx->legacy_irq)
342 synchronize_irq(efx->legacy_irq);
64ee3120 343 if (channel->irq)
8ceee660
BH
344 synchronize_irq(channel->irq);
345
346 /* Wait for any NAPI processing to complete */
347 napi_disable(&channel->napi_str);
348
349 /* Poll the channel */
3ffeabdd 350 efx_process_channel(channel, EFX_EVQ_SIZE);
8ceee660
BH
351
352 /* Ack the eventq. This may cause an interrupt to be generated
353 * when they are reenabled */
354 efx_channel_processed(channel);
355
356 napi_enable(&channel->napi_str);
152b6a62 357 efx_nic_enable_interrupts(efx);
8ceee660
BH
358}
359
360/* Create event queue
361 * Event queue memory allocations are done only once. If the channel
362 * is reset, the memory buffer will be reused; this guards against
363 * errors during channel reset and also simplifies interrupt handling.
364 */
365static int efx_probe_eventq(struct efx_channel *channel)
366{
62776d03
BH
367 netif_dbg(channel->efx, probe, channel->efx->net_dev,
368 "chan %d create event queue\n", channel->channel);
8ceee660 369
152b6a62 370 return efx_nic_probe_eventq(channel);
8ceee660
BH
371}
372
373/* Prepare channel's event queue */
bc3c90a2 374static void efx_init_eventq(struct efx_channel *channel)
8ceee660 375{
62776d03
BH
376 netif_dbg(channel->efx, drv, channel->efx->net_dev,
377 "chan %d init event queue\n", channel->channel);
8ceee660
BH
378
379 channel->eventq_read_ptr = 0;
380
152b6a62 381 efx_nic_init_eventq(channel);
8ceee660
BH
382}
383
384static void efx_fini_eventq(struct efx_channel *channel)
385{
62776d03
BH
386 netif_dbg(channel->efx, drv, channel->efx->net_dev,
387 "chan %d fini event queue\n", channel->channel);
8ceee660 388
152b6a62 389 efx_nic_fini_eventq(channel);
8ceee660
BH
390}
391
392static void efx_remove_eventq(struct efx_channel *channel)
393{
62776d03
BH
394 netif_dbg(channel->efx, drv, channel->efx->net_dev,
395 "chan %d remove event queue\n", channel->channel);
8ceee660 396
152b6a62 397 efx_nic_remove_eventq(channel);
8ceee660
BH
398}
399
400/**************************************************************************
401 *
402 * Channel handling
403 *
404 *************************************************************************/
405
8ceee660
BH
406static int efx_probe_channel(struct efx_channel *channel)
407{
408 struct efx_tx_queue *tx_queue;
409 struct efx_rx_queue *rx_queue;
410 int rc;
411
62776d03
BH
412 netif_dbg(channel->efx, probe, channel->efx->net_dev,
413 "creating channel %d\n", channel->channel);
8ceee660
BH
414
415 rc = efx_probe_eventq(channel);
416 if (rc)
417 goto fail1;
418
419 efx_for_each_channel_tx_queue(tx_queue, channel) {
420 rc = efx_probe_tx_queue(tx_queue);
421 if (rc)
422 goto fail2;
423 }
424
425 efx_for_each_channel_rx_queue(rx_queue, channel) {
426 rc = efx_probe_rx_queue(rx_queue);
427 if (rc)
428 goto fail3;
429 }
430
431 channel->n_rx_frm_trunc = 0;
432
433 return 0;
434
435 fail3:
436 efx_for_each_channel_rx_queue(rx_queue, channel)
437 efx_remove_rx_queue(rx_queue);
438 fail2:
439 efx_for_each_channel_tx_queue(tx_queue, channel)
440 efx_remove_tx_queue(tx_queue);
441 fail1:
442 return rc;
443}
444
445
56536e9c
BH
446static void efx_set_channel_names(struct efx_nic *efx)
447{
448 struct efx_channel *channel;
449 const char *type = "";
450 int number;
451
452 efx_for_each_channel(channel, efx) {
453 number = channel->channel;
a4900ac9
BH
454 if (efx->n_channels > efx->n_rx_channels) {
455 if (channel->channel < efx->n_rx_channels) {
56536e9c
BH
456 type = "-rx";
457 } else {
458 type = "-tx";
a4900ac9 459 number -= efx->n_rx_channels;
56536e9c
BH
460 }
461 }
462 snprintf(channel->name, sizeof(channel->name),
463 "%s%s-%d", efx->name, type, number);
464 }
465}
466
8ceee660
BH
467/* Channels are shutdown and reinitialised whilst the NIC is running
468 * to propagate configuration changes (mtu, checksum offload), or
469 * to clear hardware error conditions
470 */
bc3c90a2 471static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
472{
473 struct efx_tx_queue *tx_queue;
474 struct efx_rx_queue *rx_queue;
475 struct efx_channel *channel;
8ceee660 476
f7f13b0b
BH
477 /* Calculate the rx buffer allocation parameters required to
478 * support the current MTU, including padding for header
479 * alignment and overruns.
480 */
481 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
482 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
483 efx->type->rx_buffer_padding);
62b330ba
SH
484 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
485 sizeof(struct efx_rx_page_state));
8ceee660
BH
486
487 /* Initialise the channels */
488 efx_for_each_channel(channel, efx) {
62776d03
BH
489 netif_dbg(channel->efx, drv, channel->efx->net_dev,
490 "init chan %d\n", channel->channel);
8ceee660 491
bc3c90a2 492 efx_init_eventq(channel);
8ceee660 493
bc3c90a2
BH
494 efx_for_each_channel_tx_queue(tx_queue, channel)
495 efx_init_tx_queue(tx_queue);
8ceee660
BH
496
497 /* The rx buffer allocation strategy is MTU dependent */
498 efx_rx_strategy(channel);
499
bc3c90a2
BH
500 efx_for_each_channel_rx_queue(rx_queue, channel)
501 efx_init_rx_queue(rx_queue);
8ceee660
BH
502
503 WARN_ON(channel->rx_pkt != NULL);
504 efx_rx_strategy(channel);
505 }
8ceee660
BH
506}
507
508/* This enables event queue processing and packet transmission.
509 *
510 * Note that this function is not allowed to fail, since that would
511 * introduce too much complexity into the suspend/resume path.
512 */
513static void efx_start_channel(struct efx_channel *channel)
514{
515 struct efx_rx_queue *rx_queue;
516
62776d03
BH
517 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
518 "starting chan %d\n", channel->channel);
8ceee660 519
5b9e207c
BH
520 /* The interrupt handler for this channel may set work_pending
521 * as soon as we enable it. Make sure it's cleared before
522 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
523 channel->work_pending = false;
524 channel->enabled = true;
5b9e207c 525 smp_wmb();
8ceee660 526
90d683af 527 /* Fill the queues before enabling NAPI */
8ceee660
BH
528 efx_for_each_channel_rx_queue(rx_queue, channel)
529 efx_fast_push_rx_descriptors(rx_queue);
90d683af
SH
530
531 napi_enable(&channel->napi_str);
8ceee660
BH
532}
533
534/* This disables event queue processing and packet transmission.
535 * This function does not guarantee that all queue processing
536 * (e.g. RX refill) is complete.
537 */
538static void efx_stop_channel(struct efx_channel *channel)
539{
8ceee660
BH
540 if (!channel->enabled)
541 return;
542
62776d03
BH
543 netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
544 "stop chan %d\n", channel->channel);
8ceee660 545
dc8cfa55 546 channel->enabled = false;
8ceee660 547 napi_disable(&channel->napi_str);
8ceee660
BH
548}
549
550static void efx_fini_channels(struct efx_nic *efx)
551{
552 struct efx_channel *channel;
553 struct efx_tx_queue *tx_queue;
554 struct efx_rx_queue *rx_queue;
6bc5d3a9 555 int rc;
8ceee660
BH
556
557 EFX_ASSERT_RESET_SERIALISED(efx);
558 BUG_ON(efx->port_enabled);
559
152b6a62 560 rc = efx_nic_flush_queues(efx);
fd371e32
SH
561 if (rc && EFX_WORKAROUND_7803(efx)) {
562 /* Schedule a reset to recover from the flush failure. The
563 * descriptor caches reference memory we're about to free,
564 * but falcon_reconfigure_mac_wrapper() won't reconnect
565 * the MACs because of the pending reset. */
62776d03
BH
566 netif_err(efx, drv, efx->net_dev,
567 "Resetting to recover from flush failure\n");
fd371e32
SH
568 efx_schedule_reset(efx, RESET_TYPE_ALL);
569 } else if (rc) {
62776d03 570 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
fd371e32 571 } else {
62776d03
BH
572 netif_dbg(efx, drv, efx->net_dev,
573 "successfully flushed all queues\n");
fd371e32 574 }
6bc5d3a9 575
8ceee660 576 efx_for_each_channel(channel, efx) {
62776d03
BH
577 netif_dbg(channel->efx, drv, channel->efx->net_dev,
578 "shut down chan %d\n", channel->channel);
8ceee660
BH
579
580 efx_for_each_channel_rx_queue(rx_queue, channel)
581 efx_fini_rx_queue(rx_queue);
582 efx_for_each_channel_tx_queue(tx_queue, channel)
583 efx_fini_tx_queue(tx_queue);
8ceee660
BH
584 efx_fini_eventq(channel);
585 }
586}
587
588static void efx_remove_channel(struct efx_channel *channel)
589{
590 struct efx_tx_queue *tx_queue;
591 struct efx_rx_queue *rx_queue;
592
62776d03
BH
593 netif_dbg(channel->efx, drv, channel->efx->net_dev,
594 "destroy chan %d\n", channel->channel);
8ceee660
BH
595
596 efx_for_each_channel_rx_queue(rx_queue, channel)
597 efx_remove_rx_queue(rx_queue);
598 efx_for_each_channel_tx_queue(tx_queue, channel)
599 efx_remove_tx_queue(tx_queue);
600 efx_remove_eventq(channel);
8ceee660
BH
601}
602
90d683af 603void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 604{
90d683af 605 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
606}
607
608/**************************************************************************
609 *
610 * Port handling
611 *
612 **************************************************************************/
613
614/* This ensures that the kernel is kept informed (via
615 * netif_carrier_on/off) of the link status, and also maintains the
616 * link status's stop on the port's TX queue.
617 */
fdaa9aed 618void efx_link_status_changed(struct efx_nic *efx)
8ceee660 619{
eb50c0d6
BH
620 struct efx_link_state *link_state = &efx->link_state;
621
8ceee660
BH
622 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
623 * that no events are triggered between unregister_netdev() and the
624 * driver unloading. A more general condition is that NETDEV_CHANGE
625 * can only be generated between NETDEV_UP and NETDEV_DOWN */
626 if (!netif_running(efx->net_dev))
627 return;
628
8c8661e4
BH
629 if (efx->port_inhibited) {
630 netif_carrier_off(efx->net_dev);
631 return;
632 }
633
eb50c0d6 634 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
635 efx->n_link_state_changes++;
636
eb50c0d6 637 if (link_state->up)
8ceee660
BH
638 netif_carrier_on(efx->net_dev);
639 else
640 netif_carrier_off(efx->net_dev);
641 }
642
643 /* Status message for kernel log */
eb50c0d6 644 if (link_state->up) {
62776d03
BH
645 netif_info(efx, link, efx->net_dev,
646 "link up at %uMbps %s-duplex (MTU %d)%s\n",
647 link_state->speed, link_state->fd ? "full" : "half",
648 efx->net_dev->mtu,
649 (efx->promiscuous ? " [PROMISC]" : ""));
8ceee660 650 } else {
62776d03 651 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
652 }
653
654}
655
d3245b28
BH
656void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
657{
658 efx->link_advertising = advertising;
659 if (advertising) {
660 if (advertising & ADVERTISED_Pause)
661 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
662 else
663 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
664 if (advertising & ADVERTISED_Asym_Pause)
665 efx->wanted_fc ^= EFX_FC_TX;
666 }
667}
668
669void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
670{
671 efx->wanted_fc = wanted_fc;
672 if (efx->link_advertising) {
673 if (wanted_fc & EFX_FC_RX)
674 efx->link_advertising |= (ADVERTISED_Pause |
675 ADVERTISED_Asym_Pause);
676 else
677 efx->link_advertising &= ~(ADVERTISED_Pause |
678 ADVERTISED_Asym_Pause);
679 if (wanted_fc & EFX_FC_TX)
680 efx->link_advertising ^= ADVERTISED_Asym_Pause;
681 }
682}
683
115122af
BH
684static void efx_fini_port(struct efx_nic *efx);
685
d3245b28
BH
686/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
687 * the MAC appropriately. All other PHY configuration changes are pushed
688 * through phy_op->set_settings(), and pushed asynchronously to the MAC
689 * through efx_monitor().
690 *
691 * Callers must hold the mac_lock
692 */
693int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 694{
d3245b28
BH
695 enum efx_phy_mode phy_mode;
696 int rc;
8ceee660 697
d3245b28 698 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 699
a816f75a
BH
700 /* Serialise the promiscuous flag with efx_set_multicast_list. */
701 if (efx_dev_registered(efx)) {
702 netif_addr_lock_bh(efx->net_dev);
703 netif_addr_unlock_bh(efx->net_dev);
704 }
705
d3245b28
BH
706 /* Disable PHY transmit in mac level loopbacks */
707 phy_mode = efx->phy_mode;
177dfcd8
BH
708 if (LOOPBACK_INTERNAL(efx))
709 efx->phy_mode |= PHY_MODE_TX_DISABLED;
710 else
711 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 712
d3245b28 713 rc = efx->type->reconfigure_port(efx);
8ceee660 714
d3245b28
BH
715 if (rc)
716 efx->phy_mode = phy_mode;
177dfcd8 717
d3245b28 718 return rc;
8ceee660
BH
719}
720
721/* Reinitialise the MAC to pick up new PHY settings, even if the port is
722 * disabled. */
d3245b28 723int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 724{
d3245b28
BH
725 int rc;
726
8ceee660
BH
727 EFX_ASSERT_RESET_SERIALISED(efx);
728
729 mutex_lock(&efx->mac_lock);
d3245b28 730 rc = __efx_reconfigure_port(efx);
8ceee660 731 mutex_unlock(&efx->mac_lock);
d3245b28
BH
732
733 return rc;
8ceee660
BH
734}
735
8be4f3e6
BH
736/* Asynchronous work item for changing MAC promiscuity and multicast
737 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
738 * MAC directly. */
766ca0fa
BH
739static void efx_mac_work(struct work_struct *data)
740{
741 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
742
743 mutex_lock(&efx->mac_lock);
8be4f3e6 744 if (efx->port_enabled) {
ef2b90ee 745 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
746 efx->mac_op->reconfigure(efx);
747 }
766ca0fa
BH
748 mutex_unlock(&efx->mac_lock);
749}
750
8ceee660
BH
751static int efx_probe_port(struct efx_nic *efx)
752{
753 int rc;
754
62776d03 755 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 756
ff3b00a0
SH
757 if (phy_flash_cfg)
758 efx->phy_mode = PHY_MODE_SPECIAL;
759
ef2b90ee
BH
760 /* Connect up MAC/PHY operations table */
761 rc = efx->type->probe_port(efx);
8ceee660
BH
762 if (rc)
763 goto err;
764
765 /* Sanity check MAC address */
766 if (is_valid_ether_addr(efx->mac_address)) {
767 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
768 } else {
62776d03
BH
769 netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
770 efx->mac_address);
8ceee660
BH
771 if (!allow_bad_hwaddr) {
772 rc = -EINVAL;
773 goto err;
774 }
775 random_ether_addr(efx->net_dev->dev_addr);
62776d03
BH
776 netif_info(efx, probe, efx->net_dev,
777 "using locally-generated MAC %pM\n",
778 efx->net_dev->dev_addr);
8ceee660
BH
779 }
780
781 return 0;
782
783 err:
784 efx_remove_port(efx);
785 return rc;
786}
787
788static int efx_init_port(struct efx_nic *efx)
789{
790 int rc;
791
62776d03 792 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 793
1dfc5cea
BH
794 mutex_lock(&efx->mac_lock);
795
177dfcd8 796 rc = efx->phy_op->init(efx);
8ceee660 797 if (rc)
1dfc5cea 798 goto fail1;
8ceee660 799
dc8cfa55 800 efx->port_initialized = true;
1dfc5cea 801
d3245b28
BH
802 /* Reconfigure the MAC before creating dma queues (required for
803 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
804 efx->mac_op->reconfigure(efx);
805
806 /* Ensure the PHY advertises the correct flow control settings */
807 rc = efx->phy_op->reconfigure(efx);
808 if (rc)
809 goto fail2;
810
1dfc5cea 811 mutex_unlock(&efx->mac_lock);
8ceee660 812 return 0;
177dfcd8 813
1dfc5cea 814fail2:
177dfcd8 815 efx->phy_op->fini(efx);
1dfc5cea
BH
816fail1:
817 mutex_unlock(&efx->mac_lock);
177dfcd8 818 return rc;
8ceee660
BH
819}
820
8ceee660
BH
821static void efx_start_port(struct efx_nic *efx)
822{
62776d03 823 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
824 BUG_ON(efx->port_enabled);
825
826 mutex_lock(&efx->mac_lock);
dc8cfa55 827 efx->port_enabled = true;
8be4f3e6
BH
828
829 /* efx_mac_work() might have been scheduled after efx_stop_port(),
830 * and then cancelled by efx_flush_all() */
ef2b90ee 831 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
832 efx->mac_op->reconfigure(efx);
833
8ceee660
BH
834 mutex_unlock(&efx->mac_lock);
835}
836
fdaa9aed 837/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
838static void efx_stop_port(struct efx_nic *efx)
839{
62776d03 840 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660
BH
841
842 mutex_lock(&efx->mac_lock);
dc8cfa55 843 efx->port_enabled = false;
8ceee660
BH
844 mutex_unlock(&efx->mac_lock);
845
846 /* Serialise against efx_set_multicast_list() */
55668611 847 if (efx_dev_registered(efx)) {
b9e40857
DM
848 netif_addr_lock_bh(efx->net_dev);
849 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
850 }
851}
852
853static void efx_fini_port(struct efx_nic *efx)
854{
62776d03 855 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
856
857 if (!efx->port_initialized)
858 return;
859
177dfcd8 860 efx->phy_op->fini(efx);
dc8cfa55 861 efx->port_initialized = false;
8ceee660 862
eb50c0d6 863 efx->link_state.up = false;
8ceee660
BH
864 efx_link_status_changed(efx);
865}
866
867static void efx_remove_port(struct efx_nic *efx)
868{
62776d03 869 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 870
ef2b90ee 871 efx->type->remove_port(efx);
8ceee660
BH
872}
873
874/**************************************************************************
875 *
876 * NIC handling
877 *
878 **************************************************************************/
879
880/* This configures the PCI device to enable I/O and DMA. */
881static int efx_init_io(struct efx_nic *efx)
882{
883 struct pci_dev *pci_dev = efx->pci_dev;
884 dma_addr_t dma_mask = efx->type->max_dma_mask;
885 int rc;
886
62776d03 887 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660
BH
888
889 rc = pci_enable_device(pci_dev);
890 if (rc) {
62776d03
BH
891 netif_err(efx, probe, efx->net_dev,
892 "failed to enable PCI device\n");
8ceee660
BH
893 goto fail1;
894 }
895
896 pci_set_master(pci_dev);
897
898 /* Set the PCI DMA mask. Try all possibilities from our
899 * genuine mask down to 32 bits, because some architectures
900 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
901 * masks event though they reject 46 bit masks.
902 */
903 while (dma_mask > 0x7fffffffUL) {
904 if (pci_dma_supported(pci_dev, dma_mask) &&
905 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
906 break;
907 dma_mask >>= 1;
908 }
909 if (rc) {
62776d03
BH
910 netif_err(efx, probe, efx->net_dev,
911 "could not find a suitable DMA mask\n");
8ceee660
BH
912 goto fail2;
913 }
62776d03
BH
914 netif_dbg(efx, probe, efx->net_dev,
915 "using DMA mask %llx\n", (unsigned long long) dma_mask);
8ceee660
BH
916 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
917 if (rc) {
918 /* pci_set_consistent_dma_mask() is not *allowed* to
919 * fail with a mask that pci_set_dma_mask() accepted,
920 * but just in case...
921 */
62776d03
BH
922 netif_err(efx, probe, efx->net_dev,
923 "failed to set consistent DMA mask\n");
8ceee660
BH
924 goto fail2;
925 }
926
dc803df8
BH
927 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
928 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660 929 if (rc) {
62776d03
BH
930 netif_err(efx, probe, efx->net_dev,
931 "request for memory BAR failed\n");
8ceee660
BH
932 rc = -EIO;
933 goto fail3;
934 }
935 efx->membase = ioremap_nocache(efx->membase_phys,
936 efx->type->mem_map_size);
937 if (!efx->membase) {
62776d03
BH
938 netif_err(efx, probe, efx->net_dev,
939 "could not map memory BAR at %llx+%x\n",
940 (unsigned long long)efx->membase_phys,
941 efx->type->mem_map_size);
8ceee660
BH
942 rc = -ENOMEM;
943 goto fail4;
944 }
62776d03
BH
945 netif_dbg(efx, probe, efx->net_dev,
946 "memory BAR at %llx+%x (virtual %p)\n",
947 (unsigned long long)efx->membase_phys,
948 efx->type->mem_map_size, efx->membase);
8ceee660
BH
949
950 return 0;
951
952 fail4:
dc803df8 953 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 954 fail3:
2c118e0f 955 efx->membase_phys = 0;
8ceee660
BH
956 fail2:
957 pci_disable_device(efx->pci_dev);
958 fail1:
959 return rc;
960}
961
962static void efx_fini_io(struct efx_nic *efx)
963{
62776d03 964 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
965
966 if (efx->membase) {
967 iounmap(efx->membase);
968 efx->membase = NULL;
969 }
970
971 if (efx->membase_phys) {
dc803df8 972 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 973 efx->membase_phys = 0;
8ceee660
BH
974 }
975
976 pci_disable_device(efx->pci_dev);
977}
978
a4900ac9
BH
979/* Get number of channels wanted. Each channel will have its own IRQ,
980 * 1 RX queue and/or 2 TX queues. */
981static int efx_wanted_channels(void)
46123d04 982{
2f8975fb 983 cpumask_var_t core_mask;
46123d04
BH
984 int count;
985 int cpu;
986
79f55997 987 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
2f8975fb 988 printk(KERN_WARNING
3977d033 989 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
990 return 1;
991 }
992
46123d04
BH
993 count = 0;
994 for_each_online_cpu(cpu) {
2f8975fb 995 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 996 ++count;
2f8975fb 997 cpumask_or(core_mask, core_mask,
fbd59a8d 998 topology_core_cpumask(cpu));
46123d04
BH
999 }
1000 }
1001
2f8975fb 1002 free_cpumask_var(core_mask);
46123d04
BH
1003 return count;
1004}
1005
1006/* Probe the number and type of interrupts we are able to obtain, and
1007 * the resulting numbers of channels and RX queues.
1008 */
8ceee660
BH
1009static void efx_probe_interrupts(struct efx_nic *efx)
1010{
46123d04
BH
1011 int max_channels =
1012 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
1013 int rc, i;
1014
1015 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1016 struct msix_entry xentries[EFX_MAX_CHANNELS];
a4900ac9 1017 int n_channels;
aa6ef27e 1018
a4900ac9
BH
1019 n_channels = efx_wanted_channels();
1020 if (separate_tx_channels)
1021 n_channels *= 2;
1022 n_channels = min(n_channels, max_channels);
8ceee660 1023
a4900ac9 1024 for (i = 0; i < n_channels; i++)
8ceee660 1025 xentries[i].entry = i;
a4900ac9 1026 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 1027 if (rc > 0) {
62776d03
BH
1028 netif_err(efx, drv, efx->net_dev,
1029 "WARNING: Insufficient MSI-X vectors"
1030 " available (%d < %d).\n", rc, n_channels);
1031 netif_err(efx, drv, efx->net_dev,
1032 "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1033 EFX_BUG_ON_PARANOID(rc >= n_channels);
1034 n_channels = rc;
8ceee660 1035 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1036 n_channels);
8ceee660
BH
1037 }
1038
1039 if (rc == 0) {
a4900ac9
BH
1040 efx->n_channels = n_channels;
1041 if (separate_tx_channels) {
1042 efx->n_tx_channels =
1043 max(efx->n_channels / 2, 1U);
1044 efx->n_rx_channels =
1045 max(efx->n_channels -
1046 efx->n_tx_channels, 1U);
1047 } else {
1048 efx->n_tx_channels = efx->n_channels;
1049 efx->n_rx_channels = efx->n_channels;
1050 }
1051 for (i = 0; i < n_channels; i++)
8ceee660 1052 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
1053 } else {
1054 /* Fall back to single channel MSI */
1055 efx->interrupt_mode = EFX_INT_MODE_MSI;
62776d03
BH
1056 netif_err(efx, drv, efx->net_dev,
1057 "could not enable MSI-X\n");
8ceee660
BH
1058 }
1059 }
1060
1061 /* Try single interrupt MSI */
1062 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1063 efx->n_channels = 1;
a4900ac9
BH
1064 efx->n_rx_channels = 1;
1065 efx->n_tx_channels = 1;
8ceee660
BH
1066 rc = pci_enable_msi(efx->pci_dev);
1067 if (rc == 0) {
1068 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660 1069 } else {
62776d03
BH
1070 netif_err(efx, drv, efx->net_dev,
1071 "could not enable MSI\n");
8ceee660
BH
1072 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1073 }
1074 }
1075
1076 /* Assume legacy interrupts */
1077 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1078 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1079 efx->n_rx_channels = 1;
1080 efx->n_tx_channels = 1;
8ceee660
BH
1081 efx->legacy_irq = efx->pci_dev->irq;
1082 }
1083}
1084
1085static void efx_remove_interrupts(struct efx_nic *efx)
1086{
1087 struct efx_channel *channel;
1088
1089 /* Remove MSI/MSI-X interrupts */
64ee3120 1090 efx_for_each_channel(channel, efx)
8ceee660
BH
1091 channel->irq = 0;
1092 pci_disable_msi(efx->pci_dev);
1093 pci_disable_msix(efx->pci_dev);
1094
1095 /* Remove legacy interrupt */
1096 efx->legacy_irq = 0;
1097}
1098
8831da7b 1099static void efx_set_channels(struct efx_nic *efx)
8ceee660 1100{
a4900ac9 1101 struct efx_channel *channel;
8ceee660
BH
1102 struct efx_tx_queue *tx_queue;
1103 struct efx_rx_queue *rx_queue;
a4900ac9
BH
1104 unsigned tx_channel_offset =
1105 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
8ceee660 1106
a4900ac9
BH
1107 efx_for_each_channel(channel, efx) {
1108 if (channel->channel - tx_channel_offset < efx->n_tx_channels) {
1109 channel->tx_queue = &efx->tx_queue[
1110 (channel->channel - tx_channel_offset) *
1111 EFX_TXQ_TYPES];
1112 efx_for_each_channel_tx_queue(tx_queue, channel)
1113 tx_queue->channel = channel;
1114 }
60ac1065 1115 }
8ceee660 1116
a4900ac9 1117 efx_for_each_rx_queue(rx_queue, efx)
8831da7b 1118 rx_queue->channel = &efx->channel[rx_queue->queue];
8ceee660
BH
1119}
1120
1121static int efx_probe_nic(struct efx_nic *efx)
1122{
1123 int rc;
1124
62776d03 1125 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1126
1127 /* Carry out hardware-type specific initialisation */
ef2b90ee 1128 rc = efx->type->probe(efx);
8ceee660
BH
1129 if (rc)
1130 return rc;
1131
a4900ac9 1132 /* Determine the number of channels and queues by trying to hook
8ceee660
BH
1133 * in MSI-X interrupts. */
1134 efx_probe_interrupts(efx);
1135
8831da7b 1136 efx_set_channels(efx);
a4900ac9 1137 efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
8ceee660
BH
1138
1139 /* Initialise the interrupt moderation settings */
6fb70fd1 1140 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1141
1142 return 0;
1143}
1144
1145static void efx_remove_nic(struct efx_nic *efx)
1146{
62776d03 1147 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1148
1149 efx_remove_interrupts(efx);
ef2b90ee 1150 efx->type->remove(efx);
8ceee660
BH
1151}
1152
1153/**************************************************************************
1154 *
1155 * NIC startup/shutdown
1156 *
1157 *************************************************************************/
1158
1159static int efx_probe_all(struct efx_nic *efx)
1160{
1161 struct efx_channel *channel;
1162 int rc;
1163
1164 /* Create NIC */
1165 rc = efx_probe_nic(efx);
1166 if (rc) {
62776d03 1167 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1168 goto fail1;
1169 }
1170
1171 /* Create port */
1172 rc = efx_probe_port(efx);
1173 if (rc) {
62776d03 1174 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1175 goto fail2;
1176 }
1177
1178 /* Create channels */
1179 efx_for_each_channel(channel, efx) {
1180 rc = efx_probe_channel(channel);
1181 if (rc) {
62776d03
BH
1182 netif_err(efx, probe, efx->net_dev,
1183 "failed to create channel %d\n",
1184 channel->channel);
8ceee660
BH
1185 goto fail3;
1186 }
1187 }
56536e9c 1188 efx_set_channel_names(efx);
8ceee660
BH
1189
1190 return 0;
1191
1192 fail3:
1193 efx_for_each_channel(channel, efx)
1194 efx_remove_channel(channel);
1195 efx_remove_port(efx);
1196 fail2:
1197 efx_remove_nic(efx);
1198 fail1:
1199 return rc;
1200}
1201
1202/* Called after previous invocation(s) of efx_stop_all, restarts the
1203 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1204 * and ensures that the port is scheduled to be reconfigured.
1205 * This function is safe to call multiple times when the NIC is in any
1206 * state. */
1207static void efx_start_all(struct efx_nic *efx)
1208{
1209 struct efx_channel *channel;
1210
1211 EFX_ASSERT_RESET_SERIALISED(efx);
1212
1213 /* Check that it is appropriate to restart the interface. All
1214 * of these flags are safe to read under just the rtnl lock */
1215 if (efx->port_enabled)
1216 return;
1217 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1218 return;
55668611 1219 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1220 return;
1221
1222 /* Mark the port as enabled so port reconfigurations can start, then
1223 * restart the transmit interface early so the watchdog timer stops */
1224 efx_start_port(efx);
8ceee660 1225
a4900ac9
BH
1226 efx_for_each_channel(channel, efx) {
1227 if (efx_dev_registered(efx))
1228 efx_wake_queue(channel);
8ceee660 1229 efx_start_channel(channel);
a4900ac9 1230 }
8ceee660 1231
152b6a62 1232 efx_nic_enable_interrupts(efx);
8ceee660 1233
8880f4ec
BH
1234 /* Switch to event based MCDI completions after enabling interrupts.
1235 * If a reset has been scheduled, then we need to stay in polled mode.
1236 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1237 * reset_pending [modified from an atomic context], we instead guarantee
1238 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1239 efx_mcdi_mode_event(efx);
1240 if (efx->reset_pending != RESET_TYPE_NONE)
1241 efx_mcdi_mode_poll(efx);
1242
78c1f0a0
SH
1243 /* Start the hardware monitor if there is one. Otherwise (we're link
1244 * event driven), we have to poll the PHY because after an event queue
1245 * flush, we could have a missed a link state change */
1246 if (efx->type->monitor != NULL) {
8ceee660
BH
1247 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1248 efx_monitor_interval);
78c1f0a0
SH
1249 } else {
1250 mutex_lock(&efx->mac_lock);
1251 if (efx->phy_op->poll(efx))
1252 efx_link_status_changed(efx);
1253 mutex_unlock(&efx->mac_lock);
1254 }
55edc6e6 1255
ef2b90ee 1256 efx->type->start_stats(efx);
8ceee660
BH
1257}
1258
1259/* Flush all delayed work. Should only be called when no more delayed work
1260 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1261 * since we're holding the rtnl_lock at this point. */
1262static void efx_flush_all(struct efx_nic *efx)
1263{
8ceee660
BH
1264 /* Make sure the hardware monitor is stopped */
1265 cancel_delayed_work_sync(&efx->monitor_work);
8ceee660 1266 /* Stop scheduled port reconfigurations */
766ca0fa 1267 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1268}
1269
1270/* Quiesce hardware and software without bringing the link down.
1271 * Safe to call multiple times, when the nic and interface is in any
1272 * state. The caller is guaranteed to subsequently be in a position
1273 * to modify any hardware and software state they see fit without
1274 * taking locks. */
1275static void efx_stop_all(struct efx_nic *efx)
1276{
1277 struct efx_channel *channel;
1278
1279 EFX_ASSERT_RESET_SERIALISED(efx);
1280
1281 /* port_enabled can be read safely under the rtnl lock */
1282 if (!efx->port_enabled)
1283 return;
1284
ef2b90ee 1285 efx->type->stop_stats(efx);
55edc6e6 1286
8880f4ec
BH
1287 /* Switch to MCDI polling on Siena before disabling interrupts */
1288 efx_mcdi_mode_poll(efx);
1289
8ceee660 1290 /* Disable interrupts and wait for ISR to complete */
152b6a62 1291 efx_nic_disable_interrupts(efx);
8ceee660
BH
1292 if (efx->legacy_irq)
1293 synchronize_irq(efx->legacy_irq);
64ee3120 1294 efx_for_each_channel(channel, efx) {
8ceee660
BH
1295 if (channel->irq)
1296 synchronize_irq(channel->irq);
b3475645 1297 }
8ceee660
BH
1298
1299 /* Stop all NAPI processing and synchronous rx refills */
1300 efx_for_each_channel(channel, efx)
1301 efx_stop_channel(channel);
1302
1303 /* Stop all asynchronous port reconfigurations. Since all
1304 * event processing has already been stopped, there is no
1305 * window to loose phy events */
1306 efx_stop_port(efx);
1307
fdaa9aed 1308 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1309 efx_flush_all(efx);
1310
8ceee660
BH
1311 /* Stop the kernel transmit interface late, so the watchdog
1312 * timer isn't ticking over the flush */
55668611 1313 if (efx_dev_registered(efx)) {
a4900ac9
BH
1314 struct efx_channel *channel;
1315 efx_for_each_channel(channel, efx)
1316 efx_stop_queue(channel);
8ceee660
BH
1317 netif_tx_lock_bh(efx->net_dev);
1318 netif_tx_unlock_bh(efx->net_dev);
1319 }
1320}
1321
1322static void efx_remove_all(struct efx_nic *efx)
1323{
1324 struct efx_channel *channel;
1325
1326 efx_for_each_channel(channel, efx)
1327 efx_remove_channel(channel);
1328 efx_remove_port(efx);
1329 efx_remove_nic(efx);
1330}
1331
8ceee660
BH
1332/**************************************************************************
1333 *
1334 * Interrupt moderation
1335 *
1336 **************************************************************************/
1337
0d86ebd8
BH
1338static unsigned irq_mod_ticks(int usecs, int resolution)
1339{
1340 if (usecs <= 0)
1341 return 0; /* cannot receive interrupts ahead of time :-) */
1342 if (usecs < resolution)
1343 return 1; /* never round down to 0 */
1344 return usecs / resolution;
1345}
1346
8ceee660 1347/* Set interrupt moderation parameters */
6fb70fd1
BH
1348void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1349 bool rx_adaptive)
8ceee660
BH
1350{
1351 struct efx_tx_queue *tx_queue;
1352 struct efx_rx_queue *rx_queue;
152b6a62
BH
1353 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1354 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
8ceee660
BH
1355
1356 EFX_ASSERT_RESET_SERIALISED(efx);
1357
1358 efx_for_each_tx_queue(tx_queue, efx)
0d86ebd8 1359 tx_queue->channel->irq_moderation = tx_ticks;
8ceee660 1360
6fb70fd1 1361 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1362 efx->irq_rx_moderation = rx_ticks;
8ceee660 1363 efx_for_each_rx_queue(rx_queue, efx)
0d86ebd8 1364 rx_queue->channel->irq_moderation = rx_ticks;
8ceee660
BH
1365}
1366
1367/**************************************************************************
1368 *
1369 * Hardware monitor
1370 *
1371 **************************************************************************/
1372
1373/* Run periodically off the general workqueue. Serialised against
1374 * efx_reconfigure_port via the mac_lock */
1375static void efx_monitor(struct work_struct *data)
1376{
1377 struct efx_nic *efx = container_of(data, struct efx_nic,
1378 monitor_work.work);
8ceee660 1379
62776d03
BH
1380 netif_vdbg(efx, timer, efx->net_dev,
1381 "hardware monitor executing on CPU %d\n",
1382 raw_smp_processor_id());
ef2b90ee 1383 BUG_ON(efx->type->monitor == NULL);
8ceee660 1384
8ceee660
BH
1385 /* If the mac_lock is already held then it is likely a port
1386 * reconfiguration is already in place, which will likely do
1387 * most of the work of check_hw() anyway. */
766ca0fa
BH
1388 if (!mutex_trylock(&efx->mac_lock))
1389 goto out_requeue;
1390 if (!efx->port_enabled)
1391 goto out_unlock;
ef2b90ee 1392 efx->type->monitor(efx);
8ceee660 1393
766ca0fa 1394out_unlock:
8ceee660 1395 mutex_unlock(&efx->mac_lock);
766ca0fa 1396out_requeue:
8ceee660
BH
1397 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1398 efx_monitor_interval);
1399}
1400
1401/**************************************************************************
1402 *
1403 * ioctls
1404 *
1405 *************************************************************************/
1406
1407/* Net device ioctl
1408 * Context: process, rtnl_lock() held.
1409 */
1410static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1411{
767e468c 1412 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1413 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1414
1415 EFX_ASSERT_RESET_SERIALISED(efx);
1416
68e7f45e
BH
1417 /* Convert phy_id from older PRTAD/DEVAD format */
1418 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1419 (data->phy_id & 0xfc00) == 0x0400)
1420 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1421
1422 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1423}
1424
1425/**************************************************************************
1426 *
1427 * NAPI interface
1428 *
1429 **************************************************************************/
1430
1431static int efx_init_napi(struct efx_nic *efx)
1432{
1433 struct efx_channel *channel;
8ceee660
BH
1434
1435 efx_for_each_channel(channel, efx) {
1436 channel->napi_dev = efx->net_dev;
718cff1e
BH
1437 netif_napi_add(channel->napi_dev, &channel->napi_str,
1438 efx_poll, napi_weight);
8ceee660
BH
1439 }
1440 return 0;
8ceee660
BH
1441}
1442
1443static void efx_fini_napi(struct efx_nic *efx)
1444{
1445 struct efx_channel *channel;
1446
1447 efx_for_each_channel(channel, efx) {
718cff1e
BH
1448 if (channel->napi_dev)
1449 netif_napi_del(&channel->napi_str);
8ceee660
BH
1450 channel->napi_dev = NULL;
1451 }
1452}
1453
1454/**************************************************************************
1455 *
1456 * Kernel netpoll interface
1457 *
1458 *************************************************************************/
1459
1460#ifdef CONFIG_NET_POLL_CONTROLLER
1461
1462/* Although in the common case interrupts will be disabled, this is not
1463 * guaranteed. However, all our work happens inside the NAPI callback,
1464 * so no locking is required.
1465 */
1466static void efx_netpoll(struct net_device *net_dev)
1467{
767e468c 1468 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1469 struct efx_channel *channel;
1470
64ee3120 1471 efx_for_each_channel(channel, efx)
8ceee660
BH
1472 efx_schedule_channel(channel);
1473}
1474
1475#endif
1476
1477/**************************************************************************
1478 *
1479 * Kernel net device interface
1480 *
1481 *************************************************************************/
1482
1483/* Context: process, rtnl_lock() held. */
1484static int efx_net_open(struct net_device *net_dev)
1485{
767e468c 1486 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1487 EFX_ASSERT_RESET_SERIALISED(efx);
1488
62776d03
BH
1489 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1490 raw_smp_processor_id());
8ceee660 1491
f4bd954e
BH
1492 if (efx->state == STATE_DISABLED)
1493 return -EIO;
f8b87c17
BH
1494 if (efx->phy_mode & PHY_MODE_SPECIAL)
1495 return -EBUSY;
8880f4ec
BH
1496 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1497 return -EIO;
f8b87c17 1498
78c1f0a0
SH
1499 /* Notify the kernel of the link state polled during driver load,
1500 * before the monitor starts running */
1501 efx_link_status_changed(efx);
1502
8ceee660
BH
1503 efx_start_all(efx);
1504 return 0;
1505}
1506
1507/* Context: process, rtnl_lock() held.
1508 * Note that the kernel will ignore our return code; this method
1509 * should really be a void.
1510 */
1511static int efx_net_stop(struct net_device *net_dev)
1512{
767e468c 1513 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1514
62776d03
BH
1515 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1516 raw_smp_processor_id());
8ceee660 1517
f4bd954e
BH
1518 if (efx->state != STATE_DISABLED) {
1519 /* Stop the device and flush all the channels */
1520 efx_stop_all(efx);
1521 efx_fini_channels(efx);
1522 efx_init_channels(efx);
1523 }
8ceee660
BH
1524
1525 return 0;
1526}
1527
5b9e207c 1528/* Context: process, dev_base_lock or RTNL held, non-blocking. */
4472702e 1529static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev)
8ceee660 1530{
767e468c 1531 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1532 struct efx_mac_stats *mac_stats = &efx->mac_stats;
4472702e 1533 struct rtnl_link_stats64 *stats = &net_dev->stats64;
8ceee660 1534
55edc6e6 1535 spin_lock_bh(&efx->stats_lock);
ef2b90ee 1536 efx->type->update_stats(efx);
55edc6e6 1537 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1538
1539 stats->rx_packets = mac_stats->rx_packets;
1540 stats->tx_packets = mac_stats->tx_packets;
1541 stats->rx_bytes = mac_stats->rx_bytes;
1542 stats->tx_bytes = mac_stats->tx_bytes;
1543 stats->multicast = mac_stats->rx_multicast;
1544 stats->collisions = mac_stats->tx_collision;
1545 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1546 mac_stats->rx_length_error);
1547 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1548 stats->rx_crc_errors = mac_stats->rx_bad;
1549 stats->rx_frame_errors = mac_stats->rx_align_error;
1550 stats->rx_fifo_errors = mac_stats->rx_overflow;
1551 stats->rx_missed_errors = mac_stats->rx_missed;
1552 stats->tx_window_errors = mac_stats->tx_late_collision;
1553
1554 stats->rx_errors = (stats->rx_length_errors +
8ceee660
BH
1555 stats->rx_crc_errors +
1556 stats->rx_frame_errors +
8ceee660
BH
1557 mac_stats->rx_symbol_error);
1558 stats->tx_errors = (stats->tx_window_errors +
1559 mac_stats->tx_bad);
1560
1561 return stats;
1562}
1563
1564/* Context: netif_tx_lock held, BHs disabled. */
1565static void efx_watchdog(struct net_device *net_dev)
1566{
767e468c 1567 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1568
62776d03
BH
1569 netif_err(efx, tx_err, efx->net_dev,
1570 "TX stuck with port_enabled=%d: resetting channels\n",
1571 efx->port_enabled);
8ceee660 1572
739bb23d 1573 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1574}
1575
1576
1577/* Context: process, rtnl_lock() held. */
1578static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1579{
767e468c 1580 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1581 int rc = 0;
1582
1583 EFX_ASSERT_RESET_SERIALISED(efx);
1584
1585 if (new_mtu > EFX_MAX_MTU)
1586 return -EINVAL;
1587
1588 efx_stop_all(efx);
1589
62776d03 1590 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660
BH
1591
1592 efx_fini_channels(efx);
d3245b28
BH
1593
1594 mutex_lock(&efx->mac_lock);
1595 /* Reconfigure the MAC before enabling the dma queues so that
1596 * the RX buffers don't overflow */
8ceee660 1597 net_dev->mtu = new_mtu;
d3245b28
BH
1598 efx->mac_op->reconfigure(efx);
1599 mutex_unlock(&efx->mac_lock);
1600
bc3c90a2 1601 efx_init_channels(efx);
8ceee660
BH
1602
1603 efx_start_all(efx);
1604 return rc;
8ceee660
BH
1605}
1606
1607static int efx_set_mac_address(struct net_device *net_dev, void *data)
1608{
767e468c 1609 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1610 struct sockaddr *addr = data;
1611 char *new_addr = addr->sa_data;
1612
1613 EFX_ASSERT_RESET_SERIALISED(efx);
1614
1615 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
1616 netif_err(efx, drv, efx->net_dev,
1617 "invalid ethernet MAC address requested: %pM\n",
1618 new_addr);
8ceee660
BH
1619 return -EINVAL;
1620 }
1621
1622 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1623
1624 /* Reconfigure the MAC */
d3245b28
BH
1625 mutex_lock(&efx->mac_lock);
1626 efx->mac_op->reconfigure(efx);
1627 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1628
1629 return 0;
1630}
1631
a816f75a 1632/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1633static void efx_set_multicast_list(struct net_device *net_dev)
1634{
767e468c 1635 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1636 struct netdev_hw_addr *ha;
8ceee660 1637 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1638 u32 crc;
1639 int bit;
8ceee660 1640
8be4f3e6 1641 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1642
1643 /* Build multicast hash table */
8be4f3e6 1644 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1645 memset(mc_hash, 0xff, sizeof(*mc_hash));
1646 } else {
1647 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1648 netdev_for_each_mc_addr(ha, net_dev) {
1649 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660
BH
1650 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1651 set_bit_le(bit, mc_hash->byte);
8ceee660 1652 }
8ceee660 1653
8be4f3e6
BH
1654 /* Broadcast packets go through the multicast hash filter.
1655 * ether_crc_le() of the broadcast address is 0xbe2612ff
1656 * so we always add bit 0xff to the mask.
1657 */
1658 set_bit_le(0xff, mc_hash->byte);
1659 }
a816f75a 1660
8be4f3e6
BH
1661 if (efx->port_enabled)
1662 queue_work(efx->workqueue, &efx->mac_work);
1663 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1664}
1665
c3ecb9f3
SH
1666static const struct net_device_ops efx_netdev_ops = {
1667 .ndo_open = efx_net_open,
1668 .ndo_stop = efx_net_stop,
4472702e 1669 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
1670 .ndo_tx_timeout = efx_watchdog,
1671 .ndo_start_xmit = efx_hard_start_xmit,
1672 .ndo_validate_addr = eth_validate_addr,
1673 .ndo_do_ioctl = efx_ioctl,
1674 .ndo_change_mtu = efx_change_mtu,
1675 .ndo_set_mac_address = efx_set_mac_address,
1676 .ndo_set_multicast_list = efx_set_multicast_list,
1677#ifdef CONFIG_NET_POLL_CONTROLLER
1678 .ndo_poll_controller = efx_netpoll,
1679#endif
1680};
1681
7dde596e
BH
1682static void efx_update_name(struct efx_nic *efx)
1683{
1684 strcpy(efx->name, efx->net_dev->name);
1685 efx_mtd_rename(efx);
1686 efx_set_channel_names(efx);
1687}
1688
8ceee660
BH
1689static int efx_netdev_event(struct notifier_block *this,
1690 unsigned long event, void *ptr)
1691{
d3208b5e 1692 struct net_device *net_dev = ptr;
8ceee660 1693
7dde596e
BH
1694 if (net_dev->netdev_ops == &efx_netdev_ops &&
1695 event == NETDEV_CHANGENAME)
1696 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1697
1698 return NOTIFY_DONE;
1699}
1700
1701static struct notifier_block efx_netdev_notifier = {
1702 .notifier_call = efx_netdev_event,
1703};
1704
06d5e193
BH
1705static ssize_t
1706show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1707{
1708 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1709 return sprintf(buf, "%d\n", efx->phy_type);
1710}
1711static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1712
8ceee660
BH
1713static int efx_register_netdev(struct efx_nic *efx)
1714{
1715 struct net_device *net_dev = efx->net_dev;
1716 int rc;
1717
1718 net_dev->watchdog_timeo = 5 * HZ;
1719 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1720 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1721 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1722
8ceee660 1723 /* Clear MAC statistics */
177dfcd8 1724 efx->mac_op->update_stats(efx);
8ceee660
BH
1725 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1726
7dde596e 1727 rtnl_lock();
aed0628d
BH
1728
1729 rc = dev_alloc_name(net_dev, net_dev->name);
1730 if (rc < 0)
1731 goto fail_locked;
7dde596e 1732 efx_update_name(efx);
aed0628d
BH
1733
1734 rc = register_netdevice(net_dev);
1735 if (rc)
1736 goto fail_locked;
1737
1738 /* Always start with carrier off; PHY events will detect the link */
1739 netif_carrier_off(efx->net_dev);
1740
7dde596e 1741 rtnl_unlock();
8ceee660 1742
06d5e193
BH
1743 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1744 if (rc) {
62776d03
BH
1745 netif_err(efx, drv, efx->net_dev,
1746 "failed to init net dev attributes\n");
06d5e193
BH
1747 goto fail_registered;
1748 }
1749
8ceee660 1750 return 0;
06d5e193 1751
aed0628d
BH
1752fail_locked:
1753 rtnl_unlock();
62776d03 1754 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d
BH
1755 return rc;
1756
06d5e193
BH
1757fail_registered:
1758 unregister_netdev(net_dev);
1759 return rc;
8ceee660
BH
1760}
1761
1762static void efx_unregister_netdev(struct efx_nic *efx)
1763{
1764 struct efx_tx_queue *tx_queue;
1765
1766 if (!efx->net_dev)
1767 return;
1768
767e468c 1769 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1770
1771 /* Free up any skbs still remaining. This has to happen before
1772 * we try to unregister the netdev as running their destructors
1773 * may be needed to get the device ref. count to 0. */
1774 efx_for_each_tx_queue(tx_queue, efx)
1775 efx_release_tx_buffers(tx_queue);
1776
55668611 1777 if (efx_dev_registered(efx)) {
8ceee660 1778 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1779 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1780 unregister_netdev(efx->net_dev);
1781 }
1782}
1783
1784/**************************************************************************
1785 *
1786 * Device reset and suspend
1787 *
1788 **************************************************************************/
1789
2467ca46
BH
1790/* Tears down the entire software state and most of the hardware state
1791 * before reset. */
d3245b28 1792void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 1793{
8ceee660
BH
1794 EFX_ASSERT_RESET_SERIALISED(efx);
1795
2467ca46
BH
1796 efx_stop_all(efx);
1797 mutex_lock(&efx->mac_lock);
f4150724 1798 mutex_lock(&efx->spi_lock);
2467ca46 1799
8ceee660 1800 efx_fini_channels(efx);
4b988280
SH
1801 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1802 efx->phy_op->fini(efx);
ef2b90ee 1803 efx->type->fini(efx);
8ceee660
BH
1804}
1805
2467ca46
BH
1806/* This function will always ensure that the locks acquired in
1807 * efx_reset_down() are released. A failure return code indicates
1808 * that we were unable to reinitialise the hardware, and the
1809 * driver should be disabled. If ok is false, then the rx and tx
1810 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 1811int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
1812{
1813 int rc;
1814
2467ca46 1815 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1816
ef2b90ee 1817 rc = efx->type->init(efx);
8ceee660 1818 if (rc) {
62776d03 1819 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 1820 goto fail;
8ceee660
BH
1821 }
1822
eb9f6744
BH
1823 if (!ok)
1824 goto fail;
1825
4b988280 1826 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
1827 rc = efx->phy_op->init(efx);
1828 if (rc)
1829 goto fail;
1830 if (efx->phy_op->reconfigure(efx))
62776d03
BH
1831 netif_err(efx, drv, efx->net_dev,
1832 "could not restore PHY settings\n");
4b988280
SH
1833 }
1834
eb9f6744 1835 efx->mac_op->reconfigure(efx);
8ceee660 1836
eb9f6744
BH
1837 efx_init_channels(efx);
1838
1839 mutex_unlock(&efx->spi_lock);
1840 mutex_unlock(&efx->mac_lock);
1841
1842 efx_start_all(efx);
1843
1844 return 0;
1845
1846fail:
1847 efx->port_initialized = false;
2467ca46 1848
f4150724 1849 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1850 mutex_unlock(&efx->mac_lock);
1851
8ceee660
BH
1852 return rc;
1853}
1854
eb9f6744
BH
1855/* Reset the NIC using the specified method. Note that the reset may
1856 * fail, in which case the card will be left in an unusable state.
8ceee660 1857 *
eb9f6744 1858 * Caller must hold the rtnl_lock.
8ceee660 1859 */
eb9f6744 1860int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 1861{
eb9f6744
BH
1862 int rc, rc2;
1863 bool disabled;
8ceee660 1864
62776d03
BH
1865 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
1866 RESET_TYPE(method));
8ceee660 1867
d3245b28 1868 efx_reset_down(efx, method);
8ceee660 1869
ef2b90ee 1870 rc = efx->type->reset(efx, method);
8ceee660 1871 if (rc) {
62776d03 1872 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 1873 goto out;
8ceee660
BH
1874 }
1875
1876 /* Allow resets to be rescheduled. */
1877 efx->reset_pending = RESET_TYPE_NONE;
1878
1879 /* Reinitialise bus-mastering, which may have been turned off before
1880 * the reset was scheduled. This is still appropriate, even in the
1881 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1882 * can respond to requests. */
1883 pci_set_master(efx->pci_dev);
1884
eb9f6744 1885out:
8ceee660 1886 /* Leave device stopped if necessary */
eb9f6744
BH
1887 disabled = rc || method == RESET_TYPE_DISABLE;
1888 rc2 = efx_reset_up(efx, method, !disabled);
1889 if (rc2) {
1890 disabled = true;
1891 if (!rc)
1892 rc = rc2;
8ceee660
BH
1893 }
1894
eb9f6744 1895 if (disabled) {
f49a4589 1896 dev_close(efx->net_dev);
62776d03 1897 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 1898 efx->state = STATE_DISABLED;
f4bd954e 1899 } else {
62776d03 1900 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
f4bd954e 1901 }
8ceee660
BH
1902 return rc;
1903}
1904
1905/* The worker thread exists so that code that cannot sleep can
1906 * schedule a reset for later.
1907 */
1908static void efx_reset_work(struct work_struct *data)
1909{
eb9f6744 1910 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
8ceee660 1911
319ba649
SH
1912 if (efx->reset_pending == RESET_TYPE_NONE)
1913 return;
1914
eb9f6744
BH
1915 /* If we're not RUNNING then don't reset. Leave the reset_pending
1916 * flag set so that efx_pci_probe_main will be retried */
1917 if (efx->state != STATE_RUNNING) {
62776d03
BH
1918 netif_info(efx, drv, efx->net_dev,
1919 "scheduled reset quenched. NIC not RUNNING\n");
eb9f6744
BH
1920 return;
1921 }
1922
1923 rtnl_lock();
f49a4589 1924 (void)efx_reset(efx, efx->reset_pending);
eb9f6744 1925 rtnl_unlock();
8ceee660
BH
1926}
1927
1928void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1929{
1930 enum reset_type method;
1931
1932 if (efx->reset_pending != RESET_TYPE_NONE) {
62776d03
BH
1933 netif_info(efx, drv, efx->net_dev,
1934 "quenching already scheduled reset\n");
8ceee660
BH
1935 return;
1936 }
1937
1938 switch (type) {
1939 case RESET_TYPE_INVISIBLE:
1940 case RESET_TYPE_ALL:
1941 case RESET_TYPE_WORLD:
1942 case RESET_TYPE_DISABLE:
1943 method = type;
1944 break;
1945 case RESET_TYPE_RX_RECOVERY:
1946 case RESET_TYPE_RX_DESC_FETCH:
1947 case RESET_TYPE_TX_DESC_FETCH:
1948 case RESET_TYPE_TX_SKIP:
1949 method = RESET_TYPE_INVISIBLE;
1950 break;
8880f4ec 1951 case RESET_TYPE_MC_FAILURE:
8ceee660
BH
1952 default:
1953 method = RESET_TYPE_ALL;
1954 break;
1955 }
1956
1957 if (method != type)
62776d03
BH
1958 netif_dbg(efx, drv, efx->net_dev,
1959 "scheduling %s reset for %s\n",
1960 RESET_TYPE(method), RESET_TYPE(type));
8ceee660 1961 else
62776d03
BH
1962 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
1963 RESET_TYPE(method));
8ceee660
BH
1964
1965 efx->reset_pending = method;
1966
8880f4ec
BH
1967 /* efx_process_channel() will no longer read events once a
1968 * reset is scheduled. So switch back to poll'd MCDI completions. */
1969 efx_mcdi_mode_poll(efx);
1970
1ab00629 1971 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1972}
1973
1974/**************************************************************************
1975 *
1976 * List of NICs we support
1977 *
1978 **************************************************************************/
1979
1980/* PCI device ID table */
a3aa1884 1981static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
8ceee660 1982 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
daeda630 1983 .driver_data = (unsigned long) &falcon_a1_nic_type},
8ceee660 1984 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
daeda630 1985 .driver_data = (unsigned long) &falcon_b0_nic_type},
8880f4ec
BH
1986 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
1987 .driver_data = (unsigned long) &siena_a0_nic_type},
1988 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
1989 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
1990 {0} /* end of list */
1991};
1992
1993/**************************************************************************
1994 *
3759433d 1995 * Dummy PHY/MAC operations
8ceee660 1996 *
01aad7b6 1997 * Can be used for some unimplemented operations
8ceee660
BH
1998 * Needed so all function pointers are valid and do not have to be tested
1999 * before use
2000 *
2001 **************************************************************************/
2002int efx_port_dummy_op_int(struct efx_nic *efx)
2003{
2004 return 0;
2005}
2006void efx_port_dummy_op_void(struct efx_nic *efx) {}
398468ed
BH
2007void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2008{
2009}
fdaa9aed
SH
2010bool efx_port_dummy_op_poll(struct efx_nic *efx)
2011{
2012 return false;
2013}
8ceee660
BH
2014
2015static struct efx_phy_operations efx_dummy_phy_operations = {
2016 .init = efx_port_dummy_op_int,
d3245b28 2017 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2018 .poll = efx_port_dummy_op_poll,
8ceee660 2019 .fini = efx_port_dummy_op_void,
8ceee660
BH
2020};
2021
8ceee660
BH
2022/**************************************************************************
2023 *
2024 * Data housekeeping
2025 *
2026 **************************************************************************/
2027
2028/* This zeroes out and then fills in the invariants in a struct
2029 * efx_nic (including all sub-structures).
2030 */
2031static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
2032 struct pci_dev *pci_dev, struct net_device *net_dev)
2033{
2034 struct efx_channel *channel;
2035 struct efx_tx_queue *tx_queue;
2036 struct efx_rx_queue *rx_queue;
1ab00629 2037 int i;
8ceee660
BH
2038
2039 /* Initialise common structures */
2040 memset(efx, 0, sizeof(*efx));
2041 spin_lock_init(&efx->biu_lock);
ab867461 2042 mutex_init(&efx->mdio_lock);
f4150724 2043 mutex_init(&efx->spi_lock);
76884835
BH
2044#ifdef CONFIG_SFC_MTD
2045 INIT_LIST_HEAD(&efx->mtd_list);
2046#endif
8ceee660
BH
2047 INIT_WORK(&efx->reset_work, efx_reset_work);
2048 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2049 efx->pci_dev = pci_dev;
62776d03 2050 efx->msg_enable = debug;
8ceee660
BH
2051 efx->state = STATE_INIT;
2052 efx->reset_pending = RESET_TYPE_NONE;
2053 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2054
2055 efx->net_dev = net_dev;
dc8cfa55 2056 efx->rx_checksum_enabled = true;
8ceee660
BH
2057 spin_lock_init(&efx->stats_lock);
2058 mutex_init(&efx->mac_lock);
b895d73e 2059 efx->mac_op = type->default_mac_ops;
8ceee660 2060 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2061 efx->mdio.dev = net_dev;
766ca0fa 2062 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
2063
2064 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2065 channel = &efx->channel[i];
2066 channel->efx = efx;
2067 channel->channel = i;
dc8cfa55 2068 channel->work_pending = false;
a4900ac9
BH
2069 spin_lock_init(&channel->tx_stop_lock);
2070 atomic_set(&channel->tx_stop_count, 1);
8ceee660 2071 }
a4900ac9 2072 for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
8ceee660
BH
2073 tx_queue = &efx->tx_queue[i];
2074 tx_queue->efx = efx;
2075 tx_queue->queue = i;
2076 tx_queue->buffer = NULL;
2077 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 2078 tx_queue->tso_headers_free = NULL;
8ceee660
BH
2079 }
2080 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
2081 rx_queue = &efx->rx_queue[i];
2082 rx_queue->efx = efx;
2083 rx_queue->queue = i;
2084 rx_queue->channel = &efx->channel[0]; /* for safety */
2085 rx_queue->buffer = NULL;
90d683af
SH
2086 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
2087 (unsigned long)rx_queue);
8ceee660
BH
2088 }
2089
2090 efx->type = type;
2091
8ceee660 2092 /* As close as we can get to guaranteeing that we don't overflow */
3ffeabdd
BH
2093 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
2094
8ceee660
BH
2095 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2096
2097 /* Higher numbered interrupt modes are less capable! */
2098 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2099 interrupt_mode);
2100
6977dc63
BH
2101 /* Would be good to use the net_dev name, but we're too early */
2102 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2103 pci_name(pci_dev));
2104 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629
SH
2105 if (!efx->workqueue)
2106 return -ENOMEM;
8d9853d9 2107
8ceee660 2108 return 0;
8ceee660
BH
2109}
2110
2111static void efx_fini_struct(struct efx_nic *efx)
2112{
2113 if (efx->workqueue) {
2114 destroy_workqueue(efx->workqueue);
2115 efx->workqueue = NULL;
2116 }
2117}
2118
2119/**************************************************************************
2120 *
2121 * PCI interface
2122 *
2123 **************************************************************************/
2124
2125/* Main body of final NIC shutdown code
2126 * This is called only at module unload (or hotplug removal).
2127 */
2128static void efx_pci_remove_main(struct efx_nic *efx)
2129{
152b6a62 2130 efx_nic_fini_interrupt(efx);
8ceee660
BH
2131 efx_fini_channels(efx);
2132 efx_fini_port(efx);
ef2b90ee 2133 efx->type->fini(efx);
8ceee660
BH
2134 efx_fini_napi(efx);
2135 efx_remove_all(efx);
2136}
2137
2138/* Final NIC shutdown
2139 * This is called only at module unload (or hotplug removal).
2140 */
2141static void efx_pci_remove(struct pci_dev *pci_dev)
2142{
2143 struct efx_nic *efx;
2144
2145 efx = pci_get_drvdata(pci_dev);
2146 if (!efx)
2147 return;
2148
2149 /* Mark the NIC as fini, then stop the interface */
2150 rtnl_lock();
2151 efx->state = STATE_FINI;
2152 dev_close(efx->net_dev);
2153
2154 /* Allow any queued efx_resets() to complete */
2155 rtnl_unlock();
2156
8ceee660
BH
2157 efx_unregister_netdev(efx);
2158
7dde596e
BH
2159 efx_mtd_remove(efx);
2160
8ceee660
BH
2161 /* Wait for any scheduled resets to complete. No more will be
2162 * scheduled from this point because efx_stop_all() has been
2163 * called, we are no longer registered with driverlink, and
2164 * the net_device's have been removed. */
1ab00629 2165 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2166
2167 efx_pci_remove_main(efx);
2168
8ceee660 2169 efx_fini_io(efx);
62776d03 2170 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660
BH
2171
2172 pci_set_drvdata(pci_dev, NULL);
2173 efx_fini_struct(efx);
2174 free_netdev(efx->net_dev);
2175};
2176
2177/* Main body of NIC initialisation
2178 * This is called at module load (or hotplug insertion, theoretically).
2179 */
2180static int efx_pci_probe_main(struct efx_nic *efx)
2181{
2182 int rc;
2183
2184 /* Do start-of-day initialisation */
2185 rc = efx_probe_all(efx);
2186 if (rc)
2187 goto fail1;
2188
2189 rc = efx_init_napi(efx);
2190 if (rc)
2191 goto fail2;
2192
ef2b90ee 2193 rc = efx->type->init(efx);
8ceee660 2194 if (rc) {
62776d03
BH
2195 netif_err(efx, probe, efx->net_dev,
2196 "failed to initialise NIC\n");
278c0621 2197 goto fail3;
8ceee660
BH
2198 }
2199
2200 rc = efx_init_port(efx);
2201 if (rc) {
62776d03
BH
2202 netif_err(efx, probe, efx->net_dev,
2203 "failed to initialise port\n");
278c0621 2204 goto fail4;
8ceee660
BH
2205 }
2206
bc3c90a2 2207 efx_init_channels(efx);
8ceee660 2208
152b6a62 2209 rc = efx_nic_init_interrupt(efx);
8ceee660 2210 if (rc)
278c0621 2211 goto fail5;
8ceee660
BH
2212
2213 return 0;
2214
278c0621 2215 fail5:
bc3c90a2 2216 efx_fini_channels(efx);
8ceee660 2217 efx_fini_port(efx);
8ceee660 2218 fail4:
ef2b90ee 2219 efx->type->fini(efx);
8ceee660
BH
2220 fail3:
2221 efx_fini_napi(efx);
2222 fail2:
2223 efx_remove_all(efx);
2224 fail1:
2225 return rc;
2226}
2227
2228/* NIC initialisation
2229 *
2230 * This is called at module load (or hotplug insertion,
2231 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2232 * sets up and registers the network devices with the kernel and hooks
2233 * the interrupt service routine. It does not prepare the device for
2234 * transmission; this is left to the first time one of the network
2235 * interfaces is brought up (i.e. efx_net_open).
2236 */
2237static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2238 const struct pci_device_id *entry)
2239{
2240 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2241 struct net_device *net_dev;
2242 struct efx_nic *efx;
2243 int i, rc;
2244
2245 /* Allocate and initialise a struct net_device and struct efx_nic */
a4900ac9 2246 net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
8ceee660
BH
2247 if (!net_dev)
2248 return -ENOMEM;
c383b537 2249 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415
BH
2250 NETIF_F_HIGHDMA | NETIF_F_TSO |
2251 NETIF_F_GRO);
738a8f4b
BH
2252 if (type->offload_features & NETIF_F_V6_CSUM)
2253 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2254 /* Mask for features that also apply to VLAN devices */
2255 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2256 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2257 efx = netdev_priv(net_dev);
8ceee660 2258 pci_set_drvdata(pci_dev, efx);
62776d03 2259 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
8ceee660
BH
2260 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2261 if (rc)
2262 goto fail1;
2263
62776d03
BH
2264 netif_info(efx, probe, efx->net_dev,
2265 "Solarflare Communications NIC detected\n");
8ceee660
BH
2266
2267 /* Set up basic I/O (BAR mappings etc) */
2268 rc = efx_init_io(efx);
2269 if (rc)
2270 goto fail2;
2271
2272 /* No serialisation is required with the reset path because
2273 * we're in STATE_INIT. */
2274 for (i = 0; i < 5; i++) {
2275 rc = efx_pci_probe_main(efx);
8ceee660
BH
2276
2277 /* Serialise against efx_reset(). No more resets will be
2278 * scheduled since efx_stop_all() has been called, and we
2279 * have not and never have been registered with either
2280 * the rtnetlink or driverlink layers. */
1ab00629 2281 cancel_work_sync(&efx->reset_work);
8ceee660 2282
fa402b2e
SH
2283 if (rc == 0) {
2284 if (efx->reset_pending != RESET_TYPE_NONE) {
2285 /* If there was a scheduled reset during
2286 * probe, the NIC is probably hosed anyway */
2287 efx_pci_remove_main(efx);
2288 rc = -EIO;
2289 } else {
2290 break;
2291 }
2292 }
2293
8ceee660
BH
2294 /* Retry if a recoverably reset event has been scheduled */
2295 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2296 (efx->reset_pending != RESET_TYPE_ALL))
2297 goto fail3;
2298
2299 efx->reset_pending = RESET_TYPE_NONE;
2300 }
2301
2302 if (rc) {
62776d03 2303 netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
8ceee660
BH
2304 goto fail4;
2305 }
2306
55edc6e6
BH
2307 /* Switch to the running state before we expose the device to the OS,
2308 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2309 efx->state = STATE_RUNNING;
7dde596e 2310
8ceee660
BH
2311 rc = efx_register_netdev(efx);
2312 if (rc)
2313 goto fail5;
2314
62776d03 2315 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5
BH
2316
2317 rtnl_lock();
2318 efx_mtd_probe(efx); /* allowed to fail */
2319 rtnl_unlock();
8ceee660
BH
2320 return 0;
2321
2322 fail5:
2323 efx_pci_remove_main(efx);
2324 fail4:
2325 fail3:
2326 efx_fini_io(efx);
2327 fail2:
2328 efx_fini_struct(efx);
2329 fail1:
5e2a911c 2330 WARN_ON(rc > 0);
62776d03 2331 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
2332 free_netdev(net_dev);
2333 return rc;
2334}
2335
89c758fa
BH
2336static int efx_pm_freeze(struct device *dev)
2337{
2338 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2339
2340 efx->state = STATE_FINI;
2341
2342 netif_device_detach(efx->net_dev);
2343
2344 efx_stop_all(efx);
2345 efx_fini_channels(efx);
2346
2347 return 0;
2348}
2349
2350static int efx_pm_thaw(struct device *dev)
2351{
2352 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2353
2354 efx->state = STATE_INIT;
2355
2356 efx_init_channels(efx);
2357
2358 mutex_lock(&efx->mac_lock);
2359 efx->phy_op->reconfigure(efx);
2360 mutex_unlock(&efx->mac_lock);
2361
2362 efx_start_all(efx);
2363
2364 netif_device_attach(efx->net_dev);
2365
2366 efx->state = STATE_RUNNING;
2367
2368 efx->type->resume_wol(efx);
2369
319ba649
SH
2370 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2371 queue_work(reset_workqueue, &efx->reset_work);
2372
89c758fa
BH
2373 return 0;
2374}
2375
2376static int efx_pm_poweroff(struct device *dev)
2377{
2378 struct pci_dev *pci_dev = to_pci_dev(dev);
2379 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2380
2381 efx->type->fini(efx);
2382
2383 efx->reset_pending = RESET_TYPE_NONE;
2384
2385 pci_save_state(pci_dev);
2386 return pci_set_power_state(pci_dev, PCI_D3hot);
2387}
2388
2389/* Used for both resume and restore */
2390static int efx_pm_resume(struct device *dev)
2391{
2392 struct pci_dev *pci_dev = to_pci_dev(dev);
2393 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2394 int rc;
2395
2396 rc = pci_set_power_state(pci_dev, PCI_D0);
2397 if (rc)
2398 return rc;
2399 pci_restore_state(pci_dev);
2400 rc = pci_enable_device(pci_dev);
2401 if (rc)
2402 return rc;
2403 pci_set_master(efx->pci_dev);
2404 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2405 if (rc)
2406 return rc;
2407 rc = efx->type->init(efx);
2408 if (rc)
2409 return rc;
2410 efx_pm_thaw(dev);
2411 return 0;
2412}
2413
2414static int efx_pm_suspend(struct device *dev)
2415{
2416 int rc;
2417
2418 efx_pm_freeze(dev);
2419 rc = efx_pm_poweroff(dev);
2420 if (rc)
2421 efx_pm_resume(dev);
2422 return rc;
2423}
2424
2425static struct dev_pm_ops efx_pm_ops = {
2426 .suspend = efx_pm_suspend,
2427 .resume = efx_pm_resume,
2428 .freeze = efx_pm_freeze,
2429 .thaw = efx_pm_thaw,
2430 .poweroff = efx_pm_poweroff,
2431 .restore = efx_pm_resume,
2432};
2433
8ceee660
BH
2434static struct pci_driver efx_pci_driver = {
2435 .name = EFX_DRIVER_NAME,
2436 .id_table = efx_pci_table,
2437 .probe = efx_pci_probe,
2438 .remove = efx_pci_remove,
89c758fa 2439 .driver.pm = &efx_pm_ops,
8ceee660
BH
2440};
2441
2442/**************************************************************************
2443 *
2444 * Kernel module interface
2445 *
2446 *************************************************************************/
2447
2448module_param(interrupt_mode, uint, 0444);
2449MODULE_PARM_DESC(interrupt_mode,
2450 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2451
2452static int __init efx_init_module(void)
2453{
2454 int rc;
2455
2456 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2457
2458 rc = register_netdevice_notifier(&efx_netdev_notifier);
2459 if (rc)
2460 goto err_notifier;
2461
1ab00629
SH
2462 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2463 if (!reset_workqueue) {
2464 rc = -ENOMEM;
2465 goto err_reset;
2466 }
8ceee660
BH
2467
2468 rc = pci_register_driver(&efx_pci_driver);
2469 if (rc < 0)
2470 goto err_pci;
2471
2472 return 0;
2473
2474 err_pci:
1ab00629
SH
2475 destroy_workqueue(reset_workqueue);
2476 err_reset:
8ceee660
BH
2477 unregister_netdevice_notifier(&efx_netdev_notifier);
2478 err_notifier:
2479 return rc;
2480}
2481
2482static void __exit efx_exit_module(void)
2483{
2484 printk(KERN_INFO "Solarflare NET driver unloading\n");
2485
2486 pci_unregister_driver(&efx_pci_driver);
1ab00629 2487 destroy_workqueue(reset_workqueue);
8ceee660
BH
2488 unregister_netdevice_notifier(&efx_netdev_notifier);
2489
2490}
2491
2492module_init(efx_init_module);
2493module_exit(efx_exit_module);
2494
906bb26c
BH
2495MODULE_AUTHOR("Solarflare Communications and "
2496 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2497MODULE_DESCRIPTION("Solarflare Communications network driver");
2498MODULE_LICENSE("GPL");
2499MODULE_DEVICE_TABLE(pci, efx_pci_table);