]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/qlge/qlge_main.c
net: Remove redundant NAPI functions
[net-next-2.6.git] / drivers / net / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
36#include <linux/skbuff.h>
37#include <linux/rtnetlink.h>
38#include <linux/if_vlan.h>
c4e84bde
RM
39#include <linux/delay.h>
40#include <linux/mm.h>
41#include <linux/vmalloc.h>
b7c6bfb7 42#include <net/ip6_checksum.h>
c4e84bde
RM
43
44#include "qlge.h"
45
46char qlge_driver_name[] = DRV_NAME;
47const char qlge_driver_version[] = DRV_VERSION;
48
49MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50MODULE_DESCRIPTION(DRV_STRING " ");
51MODULE_LICENSE("GPL");
52MODULE_VERSION(DRV_VERSION);
53
54static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56/* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 NETIF_MSG_TX_QUEUED |
62 NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63/* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66static int debug = 0x00007fff; /* defaults above */
67module_param(debug, int, 0);
68MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70#define MSIX_IRQ 0
71#define MSI_IRQ 1
72#define LEG_IRQ 2
73static int irq_type = MSIX_IRQ;
74module_param(irq_type, int, MSIX_IRQ);
75MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
c4e84bde
RM
79 /* required last entry */
80 {0,}
81};
82
83MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84
85/* This hardware semaphore causes exclusive access to
86 * resources shared between the NIC driver, MPI firmware,
87 * FCOE firmware and the FC driver.
88 */
89static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90{
91 u32 sem_bits = 0;
92
93 switch (sem_mask) {
94 case SEM_XGMAC0_MASK:
95 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96 break;
97 case SEM_XGMAC1_MASK:
98 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99 break;
100 case SEM_ICB_MASK:
101 sem_bits = SEM_SET << SEM_ICB_SHIFT;
102 break;
103 case SEM_MAC_ADDR_MASK:
104 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105 break;
106 case SEM_FLASH_MASK:
107 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108 break;
109 case SEM_PROBE_MASK:
110 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111 break;
112 case SEM_RT_IDX_MASK:
113 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114 break;
115 case SEM_PROC_REG_MASK:
116 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117 break;
118 default:
119 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120 return -EINVAL;
121 }
122
123 ql_write32(qdev, SEM, sem_bits | sem_mask);
124 return !(ql_read32(qdev, SEM) & sem_bits);
125}
126
127int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128{
0857e9d7 129 unsigned int wait_count = 30;
c4e84bde
RM
130 do {
131 if (!ql_sem_trylock(qdev, sem_mask))
132 return 0;
0857e9d7
RM
133 udelay(100);
134 } while (--wait_count);
c4e84bde
RM
135 return -ETIMEDOUT;
136}
137
138void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139{
140 ql_write32(qdev, SEM, sem_mask);
141 ql_read32(qdev, SEM); /* flush */
142}
143
144/* This function waits for a specific bit to come ready
145 * in a given register. It is used mostly by the initialize
146 * process, but is also used in kernel thread API such as
147 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148 */
149int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150{
151 u32 temp;
152 int count = UDELAY_COUNT;
153
154 while (count) {
155 temp = ql_read32(qdev, reg);
156
157 /* check for errors */
158 if (temp & err_bit) {
159 QPRINTK(qdev, PROBE, ALERT,
160 "register 0x%.08x access error, value = 0x%.08x!.\n",
161 reg, temp);
162 return -EIO;
163 } else if (temp & bit)
164 return 0;
165 udelay(UDELAY_DELAY);
166 count--;
167 }
168 QPRINTK(qdev, PROBE, ALERT,
169 "Timed out waiting for reg %x to come ready.\n", reg);
170 return -ETIMEDOUT;
171}
172
173/* The CFG register is used to download TX and RX control blocks
174 * to the chip. This function waits for an operation to complete.
175 */
176static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177{
178 int count = UDELAY_COUNT;
179 u32 temp;
180
181 while (count) {
182 temp = ql_read32(qdev, CFG);
183 if (temp & CFG_LE)
184 return -EIO;
185 if (!(temp & bit))
186 return 0;
187 udelay(UDELAY_DELAY);
188 count--;
189 }
190 return -ETIMEDOUT;
191}
192
193
194/* Used to issue init control blocks to hw. Maps control block,
195 * sets address, triggers download, waits for completion.
196 */
197int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198 u16 q_id)
199{
200 u64 map;
201 int status = 0;
202 int direction;
203 u32 mask;
204 u32 value;
205
206 direction =
207 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208 PCI_DMA_FROMDEVICE;
209
210 map = pci_map_single(qdev->pdev, ptr, size, direction);
211 if (pci_dma_mapping_error(qdev->pdev, map)) {
212 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213 return -ENOMEM;
214 }
215
216 status = ql_wait_cfg(qdev, bit);
217 if (status) {
218 QPRINTK(qdev, IFUP, ERR,
219 "Timed out waiting for CFG to come ready.\n");
220 goto exit;
221 }
222
223 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
224 if (status)
225 goto exit;
226 ql_write32(qdev, ICB_L, (u32) map);
227 ql_write32(qdev, ICB_H, (u32) (map >> 32));
228 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
229
230 mask = CFG_Q_MASK | (bit << 16);
231 value = bit | (q_id << CFG_Q_SHIFT);
232 ql_write32(qdev, CFG, (mask | value));
233
234 /*
235 * Wait for the bit to clear after signaling hw.
236 */
237 status = ql_wait_cfg(qdev, bit);
238exit:
239 pci_unmap_single(qdev->pdev, map, size, direction);
240 return status;
241}
242
243/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
244int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
245 u32 *value)
246{
247 u32 offset = 0;
248 int status;
249
250 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
251 if (status)
252 return status;
253 switch (type) {
254 case MAC_ADDR_TYPE_MULTI_MAC:
255 case MAC_ADDR_TYPE_CAM_MAC:
256 {
257 status =
258 ql_wait_reg_rdy(qdev,
939678f8 259 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
260 if (status)
261 goto exit;
262 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
263 (index << MAC_ADDR_IDX_SHIFT) | /* index */
264 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
265 status =
266 ql_wait_reg_rdy(qdev,
939678f8 267 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
268 if (status)
269 goto exit;
270 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
271 status =
272 ql_wait_reg_rdy(qdev,
939678f8 273 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
274 if (status)
275 goto exit;
276 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
277 (index << MAC_ADDR_IDX_SHIFT) | /* index */
278 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
279 status =
280 ql_wait_reg_rdy(qdev,
939678f8 281 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
282 if (status)
283 goto exit;
284 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
285 if (type == MAC_ADDR_TYPE_CAM_MAC) {
286 status =
287 ql_wait_reg_rdy(qdev,
939678f8 288 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
289 if (status)
290 goto exit;
291 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292 (index << MAC_ADDR_IDX_SHIFT) | /* index */
293 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294 status =
295 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 296 MAC_ADDR_MR, 0);
c4e84bde
RM
297 if (status)
298 goto exit;
299 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300 }
301 break;
302 }
303 case MAC_ADDR_TYPE_VLAN:
304 case MAC_ADDR_TYPE_MULTI_FLTR:
305 default:
306 QPRINTK(qdev, IFUP, CRIT,
307 "Address type %d not yet supported.\n", type);
308 status = -EPERM;
309 }
310exit:
311 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
312 return status;
313}
314
315/* Set up a MAC, multicast or VLAN address for the
316 * inbound frame matching.
317 */
318static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
319 u16 index)
320{
321 u32 offset = 0;
322 int status = 0;
323
324 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
325 if (status)
326 return status;
327 switch (type) {
328 case MAC_ADDR_TYPE_MULTI_MAC:
329 case MAC_ADDR_TYPE_CAM_MAC:
330 {
331 u32 cam_output;
332 u32 upper = (addr[0] << 8) | addr[1];
333 u32 lower =
334 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
335 (addr[5]);
336
337 QPRINTK(qdev, IFUP, INFO,
7c510e4b 338 "Adding %s address %pM"
c4e84bde
RM
339 " at index %d in the CAM.\n",
340 ((type ==
341 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
7c510e4b 342 "UNICAST"), addr, index);
c4e84bde
RM
343
344 status =
345 ql_wait_reg_rdy(qdev,
939678f8 346 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
347 if (status)
348 goto exit;
349 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
350 (index << MAC_ADDR_IDX_SHIFT) | /* index */
351 type); /* type */
352 ql_write32(qdev, MAC_ADDR_DATA, lower);
353 status =
354 ql_wait_reg_rdy(qdev,
939678f8 355 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
356 if (status)
357 goto exit;
358 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
359 (index << MAC_ADDR_IDX_SHIFT) | /* index */
360 type); /* type */
361 ql_write32(qdev, MAC_ADDR_DATA, upper);
362 status =
363 ql_wait_reg_rdy(qdev,
939678f8 364 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
365 if (status)
366 goto exit;
367 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
368 (index << MAC_ADDR_IDX_SHIFT) | /* index */
369 type); /* type */
370 /* This field should also include the queue id
371 and possibly the function id. Right now we hardcode
372 the route field to NIC core.
373 */
374 if (type == MAC_ADDR_TYPE_CAM_MAC) {
375 cam_output = (CAM_OUT_ROUTE_NIC |
376 (qdev->
377 func << CAM_OUT_FUNC_SHIFT) |
378 (qdev->
379 rss_ring_first_cq_id <<
380 CAM_OUT_CQ_ID_SHIFT));
381 if (qdev->vlgrp)
382 cam_output |= CAM_OUT_RV;
383 /* route to NIC core */
384 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
385 }
386 break;
387 }
388 case MAC_ADDR_TYPE_VLAN:
389 {
390 u32 enable_bit = *((u32 *) &addr[0]);
391 /* For VLAN, the addr actually holds a bit that
392 * either enables or disables the vlan id we are
393 * addressing. It's either MAC_ADDR_E on or off.
394 * That's bit-27 we're talking about.
395 */
396 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
397 (enable_bit ? "Adding" : "Removing"),
398 index, (enable_bit ? "to" : "from"));
399
400 status =
401 ql_wait_reg_rdy(qdev,
939678f8 402 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
403 if (status)
404 goto exit;
405 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
406 (index << MAC_ADDR_IDX_SHIFT) | /* index */
407 type | /* type */
408 enable_bit); /* enable/disable */
409 break;
410 }
411 case MAC_ADDR_TYPE_MULTI_FLTR:
412 default:
413 QPRINTK(qdev, IFUP, CRIT,
414 "Address type %d not yet supported.\n", type);
415 status = -EPERM;
416 }
417exit:
418 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
419 return status;
420}
421
422/* Get a specific frame routing value from the CAM.
423 * Used for debug and reg dump.
424 */
425int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
426{
427 int status = 0;
428
429 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
430 if (status)
431 goto exit;
432
939678f8 433 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
434 if (status)
435 goto exit;
436
437 ql_write32(qdev, RT_IDX,
438 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 439 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
440 if (status)
441 goto exit;
442 *value = ql_read32(qdev, RT_DATA);
443exit:
444 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
445 return status;
446}
447
448/* The NIC function for this chip has 16 routing indexes. Each one can be used
449 * to route different frame types to various inbound queues. We send broadcast/
450 * multicast/error frames to the default queue for slow handling,
451 * and CAM hit/RSS frames to the fast handling queues.
452 */
453static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
454 int enable)
455{
456 int status;
457 u32 value = 0;
458
459 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
460 if (status)
461 return status;
462
463 QPRINTK(qdev, IFUP, DEBUG,
464 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
465 (enable ? "Adding" : "Removing"),
466 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
467 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
468 ((index ==
469 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
470 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
471 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
472 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
473 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
474 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
475 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
476 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
477 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
478 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
479 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
480 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
481 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
482 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
483 (enable ? "to" : "from"));
484
485 switch (mask) {
486 case RT_IDX_CAM_HIT:
487 {
488 value = RT_IDX_DST_CAM_Q | /* dest */
489 RT_IDX_TYPE_NICQ | /* type */
490 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
491 break;
492 }
493 case RT_IDX_VALID: /* Promiscuous Mode frames. */
494 {
495 value = RT_IDX_DST_DFLT_Q | /* dest */
496 RT_IDX_TYPE_NICQ | /* type */
497 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
498 break;
499 }
500 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
501 {
502 value = RT_IDX_DST_DFLT_Q | /* dest */
503 RT_IDX_TYPE_NICQ | /* type */
504 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
505 break;
506 }
507 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
508 {
509 value = RT_IDX_DST_DFLT_Q | /* dest */
510 RT_IDX_TYPE_NICQ | /* type */
511 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
512 break;
513 }
514 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
515 {
516 value = RT_IDX_DST_CAM_Q | /* dest */
517 RT_IDX_TYPE_NICQ | /* type */
518 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
519 break;
520 }
521 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
522 {
523 value = RT_IDX_DST_CAM_Q | /* dest */
524 RT_IDX_TYPE_NICQ | /* type */
525 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
526 break;
527 }
528 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
529 {
530 value = RT_IDX_DST_RSS | /* dest */
531 RT_IDX_TYPE_NICQ | /* type */
532 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
533 break;
534 }
535 case 0: /* Clear the E-bit on an entry. */
536 {
537 value = RT_IDX_DST_DFLT_Q | /* dest */
538 RT_IDX_TYPE_NICQ | /* type */
539 (index << RT_IDX_IDX_SHIFT);/* index */
540 break;
541 }
542 default:
543 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
544 mask);
545 status = -EPERM;
546 goto exit;
547 }
548
549 if (value) {
550 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
551 if (status)
552 goto exit;
553 value |= (enable ? RT_IDX_E : 0);
554 ql_write32(qdev, RT_IDX, value);
555 ql_write32(qdev, RT_DATA, enable ? mask : 0);
556 }
557exit:
558 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
559 return status;
560}
561
562static void ql_enable_interrupts(struct ql_adapter *qdev)
563{
564 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
565}
566
567static void ql_disable_interrupts(struct ql_adapter *qdev)
568{
569 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
570}
571
572/* If we're running with multiple MSI-X vectors then we enable on the fly.
573 * Otherwise, we may have multiple outstanding workers and don't want to
574 * enable until the last one finishes. In this case, the irq_cnt gets
575 * incremented everytime we queue a worker and decremented everytime
576 * a worker finishes. Once it hits zero we enable the interrupt.
577 */
bb0d215c 578u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 579{
bb0d215c
RM
580 u32 var = 0;
581 unsigned long hw_flags = 0;
582 struct intr_context *ctx = qdev->intr_context + intr;
583
584 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
585 /* Always enable if we're MSIX multi interrupts and
586 * it's not the default (zeroeth) interrupt.
587 */
c4e84bde 588 ql_write32(qdev, INTR_EN,
bb0d215c
RM
589 ctx->intr_en_mask);
590 var = ql_read32(qdev, STS);
591 return var;
c4e84bde 592 }
bb0d215c
RM
593
594 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
595 if (atomic_dec_and_test(&ctx->irq_cnt)) {
596 ql_write32(qdev, INTR_EN,
597 ctx->intr_en_mask);
598 var = ql_read32(qdev, STS);
599 }
600 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
601 return var;
c4e84bde
RM
602}
603
604static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
605{
606 u32 var = 0;
bb0d215c
RM
607 unsigned long hw_flags;
608 struct intr_context *ctx;
c4e84bde 609
bb0d215c
RM
610 /* HW disables for us if we're MSIX multi interrupts and
611 * it's not the default (zeroeth) interrupt.
612 */
613 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
614 return 0;
615
616 ctx = qdev->intr_context + intr;
617 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
618 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 619 ql_write32(qdev, INTR_EN,
bb0d215c 620 ctx->intr_dis_mask);
c4e84bde
RM
621 var = ql_read32(qdev, STS);
622 }
bb0d215c
RM
623 atomic_inc(&ctx->irq_cnt);
624 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
c4e84bde
RM
625 return var;
626}
627
628static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
629{
630 int i;
631 for (i = 0; i < qdev->intr_count; i++) {
632 /* The enable call does a atomic_dec_and_test
633 * and enables only if the result is zero.
634 * So we precharge it here.
635 */
bb0d215c
RM
636 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
637 i == 0))
638 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
639 ql_enable_completion_interrupt(qdev, i);
640 }
641
642}
643
8668ae92 644static int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
c4e84bde
RM
645{
646 int status = 0;
647 /* wait for reg to come ready */
648 status = ql_wait_reg_rdy(qdev,
649 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
650 if (status)
651 goto exit;
652 /* set up for reg read */
653 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
654 /* wait for reg to come ready */
655 status = ql_wait_reg_rdy(qdev,
656 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
657 if (status)
658 goto exit;
659 /* get the data */
660 *data = ql_read32(qdev, FLASH_DATA);
661exit:
662 return status;
663}
664
665static int ql_get_flash_params(struct ql_adapter *qdev)
666{
667 int i;
668 int status;
669 u32 *p = (u32 *)&qdev->flash;
670
671 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
672 return -ETIMEDOUT;
673
674 for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
675 status = ql_read_flash_word(qdev, i, p);
676 if (status) {
677 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
678 goto exit;
679 }
680
681 }
682exit:
683 ql_sem_unlock(qdev, SEM_FLASH_MASK);
684 return status;
685}
686
687/* xgmac register are located behind the xgmac_addr and xgmac_data
688 * register pair. Each read/write requires us to wait for the ready
689 * bit before reading/writing the data.
690 */
691static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
692{
693 int status;
694 /* wait for reg to come ready */
695 status = ql_wait_reg_rdy(qdev,
696 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
697 if (status)
698 return status;
699 /* write the data to the data reg */
700 ql_write32(qdev, XGMAC_DATA, data);
701 /* trigger the write */
702 ql_write32(qdev, XGMAC_ADDR, reg);
703 return status;
704}
705
706/* xgmac register are located behind the xgmac_addr and xgmac_data
707 * register pair. Each read/write requires us to wait for the ready
708 * bit before reading/writing the data.
709 */
710int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
711{
712 int status = 0;
713 /* wait for reg to come ready */
714 status = ql_wait_reg_rdy(qdev,
715 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
716 if (status)
717 goto exit;
718 /* set up for reg read */
719 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
720 /* wait for reg to come ready */
721 status = ql_wait_reg_rdy(qdev,
722 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
723 if (status)
724 goto exit;
725 /* get the data */
726 *data = ql_read32(qdev, XGMAC_DATA);
727exit:
728 return status;
729}
730
731/* This is used for reading the 64-bit statistics regs. */
732int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
733{
734 int status = 0;
735 u32 hi = 0;
736 u32 lo = 0;
737
738 status = ql_read_xgmac_reg(qdev, reg, &lo);
739 if (status)
740 goto exit;
741
742 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
743 if (status)
744 goto exit;
745
746 *data = (u64) lo | ((u64) hi << 32);
747
748exit:
749 return status;
750}
751
752/* Take the MAC Core out of reset.
753 * Enable statistics counting.
754 * Take the transmitter/receiver out of reset.
755 * This functionality may be done in the MPI firmware at a
756 * later date.
757 */
758static int ql_port_initialize(struct ql_adapter *qdev)
759{
760 int status = 0;
761 u32 data;
762
763 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
764 /* Another function has the semaphore, so
765 * wait for the port init bit to come ready.
766 */
767 QPRINTK(qdev, LINK, INFO,
768 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
769 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
770 if (status) {
771 QPRINTK(qdev, LINK, CRIT,
772 "Port initialize timed out.\n");
773 }
774 return status;
775 }
776
777 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
778 /* Set the core reset. */
779 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
780 if (status)
781 goto end;
782 data |= GLOBAL_CFG_RESET;
783 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
784 if (status)
785 goto end;
786
787 /* Clear the core reset and turn on jumbo for receiver. */
788 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
789 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
790 data |= GLOBAL_CFG_TX_STAT_EN;
791 data |= GLOBAL_CFG_RX_STAT_EN;
792 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
793 if (status)
794 goto end;
795
796 /* Enable transmitter, and clear it's reset. */
797 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
798 if (status)
799 goto end;
800 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
801 data |= TX_CFG_EN; /* Enable the transmitter. */
802 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
803 if (status)
804 goto end;
805
806 /* Enable receiver and clear it's reset. */
807 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
808 if (status)
809 goto end;
810 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
811 data |= RX_CFG_EN; /* Enable the receiver. */
812 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
813 if (status)
814 goto end;
815
816 /* Turn on jumbo. */
817 status =
818 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
819 if (status)
820 goto end;
821 status =
822 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
823 if (status)
824 goto end;
825
826 /* Signal to the world that the port is enabled. */
827 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
828end:
829 ql_sem_unlock(qdev, qdev->xg_sem_mask);
830 return status;
831}
832
833/* Get the next large buffer. */
8668ae92 834static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
835{
836 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
837 rx_ring->lbq_curr_idx++;
838 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
839 rx_ring->lbq_curr_idx = 0;
840 rx_ring->lbq_free_cnt++;
841 return lbq_desc;
842}
843
844/* Get the next small buffer. */
8668ae92 845static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
846{
847 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
848 rx_ring->sbq_curr_idx++;
849 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
850 rx_ring->sbq_curr_idx = 0;
851 rx_ring->sbq_free_cnt++;
852 return sbq_desc;
853}
854
855/* Update an rx ring index. */
856static void ql_update_cq(struct rx_ring *rx_ring)
857{
858 rx_ring->cnsmr_idx++;
859 rx_ring->curr_entry++;
860 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
861 rx_ring->cnsmr_idx = 0;
862 rx_ring->curr_entry = rx_ring->cq_base;
863 }
864}
865
866static void ql_write_cq_idx(struct rx_ring *rx_ring)
867{
868 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
869}
870
871/* Process (refill) a large buffer queue. */
872static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
873{
874 int clean_idx = rx_ring->lbq_clean_idx;
875 struct bq_desc *lbq_desc;
c4e84bde
RM
876 u64 map;
877 int i;
878
879 while (rx_ring->lbq_free_cnt > 16) {
880 for (i = 0; i < 16; i++) {
881 QPRINTK(qdev, RX_STATUS, DEBUG,
882 "lbq: try cleaning clean_idx = %d.\n",
883 clean_idx);
884 lbq_desc = &rx_ring->lbq[clean_idx];
c4e84bde
RM
885 if (lbq_desc->p.lbq_page == NULL) {
886 QPRINTK(qdev, RX_STATUS, DEBUG,
887 "lbq: getting new page for index %d.\n",
888 lbq_desc->index);
889 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
890 if (lbq_desc->p.lbq_page == NULL) {
891 QPRINTK(qdev, RX_STATUS, ERR,
892 "Couldn't get a page.\n");
893 return;
894 }
895 map = pci_map_page(qdev->pdev,
896 lbq_desc->p.lbq_page,
897 0, PAGE_SIZE,
898 PCI_DMA_FROMDEVICE);
899 if (pci_dma_mapping_error(qdev->pdev, map)) {
900 QPRINTK(qdev, RX_STATUS, ERR,
901 "PCI mapping failed.\n");
902 return;
903 }
904 pci_unmap_addr_set(lbq_desc, mapaddr, map);
905 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2c9a0d41 906 *lbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
907 }
908 clean_idx++;
909 if (clean_idx == rx_ring->lbq_len)
910 clean_idx = 0;
911 }
912
913 rx_ring->lbq_clean_idx = clean_idx;
914 rx_ring->lbq_prod_idx += 16;
915 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
916 rx_ring->lbq_prod_idx = 0;
917 QPRINTK(qdev, RX_STATUS, DEBUG,
918 "lbq: updating prod idx = %d.\n",
919 rx_ring->lbq_prod_idx);
920 ql_write_db_reg(rx_ring->lbq_prod_idx,
921 rx_ring->lbq_prod_idx_db_reg);
922 rx_ring->lbq_free_cnt -= 16;
923 }
924}
925
926/* Process (refill) a small buffer queue. */
927static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
928{
929 int clean_idx = rx_ring->sbq_clean_idx;
930 struct bq_desc *sbq_desc;
c4e84bde
RM
931 u64 map;
932 int i;
933
934 while (rx_ring->sbq_free_cnt > 16) {
935 for (i = 0; i < 16; i++) {
936 sbq_desc = &rx_ring->sbq[clean_idx];
937 QPRINTK(qdev, RX_STATUS, DEBUG,
938 "sbq: try cleaning clean_idx = %d.\n",
939 clean_idx);
c4e84bde
RM
940 if (sbq_desc->p.skb == NULL) {
941 QPRINTK(qdev, RX_STATUS, DEBUG,
942 "sbq: getting new skb for index %d.\n",
943 sbq_desc->index);
944 sbq_desc->p.skb =
945 netdev_alloc_skb(qdev->ndev,
946 rx_ring->sbq_buf_size);
947 if (sbq_desc->p.skb == NULL) {
948 QPRINTK(qdev, PROBE, ERR,
949 "Couldn't get an skb.\n");
950 rx_ring->sbq_clean_idx = clean_idx;
951 return;
952 }
953 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
954 map = pci_map_single(qdev->pdev,
955 sbq_desc->p.skb->data,
956 rx_ring->sbq_buf_size /
957 2, PCI_DMA_FROMDEVICE);
c907a35a
RM
958 if (pci_dma_mapping_error(qdev->pdev, map)) {
959 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
960 rx_ring->sbq_clean_idx = clean_idx;
961 return;
962 }
c4e84bde
RM
963 pci_unmap_addr_set(sbq_desc, mapaddr, map);
964 pci_unmap_len_set(sbq_desc, maplen,
965 rx_ring->sbq_buf_size / 2);
2c9a0d41 966 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
967 }
968
969 clean_idx++;
970 if (clean_idx == rx_ring->sbq_len)
971 clean_idx = 0;
972 }
973 rx_ring->sbq_clean_idx = clean_idx;
974 rx_ring->sbq_prod_idx += 16;
975 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
976 rx_ring->sbq_prod_idx = 0;
977 QPRINTK(qdev, RX_STATUS, DEBUG,
978 "sbq: updating prod idx = %d.\n",
979 rx_ring->sbq_prod_idx);
980 ql_write_db_reg(rx_ring->sbq_prod_idx,
981 rx_ring->sbq_prod_idx_db_reg);
982
983 rx_ring->sbq_free_cnt -= 16;
984 }
985}
986
987static void ql_update_buffer_queues(struct ql_adapter *qdev,
988 struct rx_ring *rx_ring)
989{
990 ql_update_sbq(qdev, rx_ring);
991 ql_update_lbq(qdev, rx_ring);
992}
993
994/* Unmaps tx buffers. Can be called from send() if a pci mapping
995 * fails at some stage, or from the interrupt when a tx completes.
996 */
997static void ql_unmap_send(struct ql_adapter *qdev,
998 struct tx_ring_desc *tx_ring_desc, int mapped)
999{
1000 int i;
1001 for (i = 0; i < mapped; i++) {
1002 if (i == 0 || (i == 7 && mapped > 7)) {
1003 /*
1004 * Unmap the skb->data area, or the
1005 * external sglist (AKA the Outbound
1006 * Address List (OAL)).
1007 * If its the zeroeth element, then it's
1008 * the skb->data area. If it's the 7th
1009 * element and there is more than 6 frags,
1010 * then its an OAL.
1011 */
1012 if (i == 7) {
1013 QPRINTK(qdev, TX_DONE, DEBUG,
1014 "unmapping OAL area.\n");
1015 }
1016 pci_unmap_single(qdev->pdev,
1017 pci_unmap_addr(&tx_ring_desc->map[i],
1018 mapaddr),
1019 pci_unmap_len(&tx_ring_desc->map[i],
1020 maplen),
1021 PCI_DMA_TODEVICE);
1022 } else {
1023 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1024 i);
1025 pci_unmap_page(qdev->pdev,
1026 pci_unmap_addr(&tx_ring_desc->map[i],
1027 mapaddr),
1028 pci_unmap_len(&tx_ring_desc->map[i],
1029 maplen), PCI_DMA_TODEVICE);
1030 }
1031 }
1032
1033}
1034
1035/* Map the buffers for this transmit. This will return
1036 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1037 */
1038static int ql_map_send(struct ql_adapter *qdev,
1039 struct ob_mac_iocb_req *mac_iocb_ptr,
1040 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1041{
1042 int len = skb_headlen(skb);
1043 dma_addr_t map;
1044 int frag_idx, err, map_idx = 0;
1045 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1046 int frag_cnt = skb_shinfo(skb)->nr_frags;
1047
1048 if (frag_cnt) {
1049 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1050 }
1051 /*
1052 * Map the skb buffer first.
1053 */
1054 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1055
1056 err = pci_dma_mapping_error(qdev->pdev, map);
1057 if (err) {
1058 QPRINTK(qdev, TX_QUEUED, ERR,
1059 "PCI mapping failed with error: %d\n", err);
1060
1061 return NETDEV_TX_BUSY;
1062 }
1063
1064 tbd->len = cpu_to_le32(len);
1065 tbd->addr = cpu_to_le64(map);
1066 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1067 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1068 map_idx++;
1069
1070 /*
1071 * This loop fills the remainder of the 8 address descriptors
1072 * in the IOCB. If there are more than 7 fragments, then the
1073 * eighth address desc will point to an external list (OAL).
1074 * When this happens, the remainder of the frags will be stored
1075 * in this list.
1076 */
1077 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1078 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1079 tbd++;
1080 if (frag_idx == 6 && frag_cnt > 7) {
1081 /* Let's tack on an sglist.
1082 * Our control block will now
1083 * look like this:
1084 * iocb->seg[0] = skb->data
1085 * iocb->seg[1] = frag[0]
1086 * iocb->seg[2] = frag[1]
1087 * iocb->seg[3] = frag[2]
1088 * iocb->seg[4] = frag[3]
1089 * iocb->seg[5] = frag[4]
1090 * iocb->seg[6] = frag[5]
1091 * iocb->seg[7] = ptr to OAL (external sglist)
1092 * oal->seg[0] = frag[6]
1093 * oal->seg[1] = frag[7]
1094 * oal->seg[2] = frag[8]
1095 * oal->seg[3] = frag[9]
1096 * oal->seg[4] = frag[10]
1097 * etc...
1098 */
1099 /* Tack on the OAL in the eighth segment of IOCB. */
1100 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1101 sizeof(struct oal),
1102 PCI_DMA_TODEVICE);
1103 err = pci_dma_mapping_error(qdev->pdev, map);
1104 if (err) {
1105 QPRINTK(qdev, TX_QUEUED, ERR,
1106 "PCI mapping outbound address list with error: %d\n",
1107 err);
1108 goto map_error;
1109 }
1110
1111 tbd->addr = cpu_to_le64(map);
1112 /*
1113 * The length is the number of fragments
1114 * that remain to be mapped times the length
1115 * of our sglist (OAL).
1116 */
1117 tbd->len =
1118 cpu_to_le32((sizeof(struct tx_buf_desc) *
1119 (frag_cnt - frag_idx)) | TX_DESC_C);
1120 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1121 map);
1122 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1123 sizeof(struct oal));
1124 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1125 map_idx++;
1126 }
1127
1128 map =
1129 pci_map_page(qdev->pdev, frag->page,
1130 frag->page_offset, frag->size,
1131 PCI_DMA_TODEVICE);
1132
1133 err = pci_dma_mapping_error(qdev->pdev, map);
1134 if (err) {
1135 QPRINTK(qdev, TX_QUEUED, ERR,
1136 "PCI mapping frags failed with error: %d.\n",
1137 err);
1138 goto map_error;
1139 }
1140
1141 tbd->addr = cpu_to_le64(map);
1142 tbd->len = cpu_to_le32(frag->size);
1143 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1144 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1145 frag->size);
1146
1147 }
1148 /* Save the number of segments we've mapped. */
1149 tx_ring_desc->map_cnt = map_idx;
1150 /* Terminate the last segment. */
1151 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1152 return NETDEV_TX_OK;
1153
1154map_error:
1155 /*
1156 * If the first frag mapping failed, then i will be zero.
1157 * This causes the unmap of the skb->data area. Otherwise
1158 * we pass in the number of frags that mapped successfully
1159 * so they can be umapped.
1160 */
1161 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1162 return NETDEV_TX_BUSY;
1163}
1164
8668ae92 1165static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1166{
1167 void *temp_addr = skb->data;
1168
1169 /* Undo the skb_reserve(skb,32) we did before
1170 * giving to hardware, and realign data on
1171 * a 2-byte boundary.
1172 */
1173 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1174 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1175 skb_copy_to_linear_data(skb, temp_addr,
1176 (unsigned int)len);
1177}
1178
1179/*
1180 * This function builds an skb for the given inbound
1181 * completion. It will be rewritten for readability in the near
1182 * future, but for not it works well.
1183 */
1184static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1185 struct rx_ring *rx_ring,
1186 struct ib_mac_iocb_rsp *ib_mac_rsp)
1187{
1188 struct bq_desc *lbq_desc;
1189 struct bq_desc *sbq_desc;
1190 struct sk_buff *skb = NULL;
1191 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1192 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1193
1194 /*
1195 * Handle the header buffer if present.
1196 */
1197 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1198 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1199 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1200 /*
1201 * Headers fit nicely into a small buffer.
1202 */
1203 sbq_desc = ql_get_curr_sbuf(rx_ring);
1204 pci_unmap_single(qdev->pdev,
1205 pci_unmap_addr(sbq_desc, mapaddr),
1206 pci_unmap_len(sbq_desc, maplen),
1207 PCI_DMA_FROMDEVICE);
1208 skb = sbq_desc->p.skb;
1209 ql_realign_skb(skb, hdr_len);
1210 skb_put(skb, hdr_len);
1211 sbq_desc->p.skb = NULL;
1212 }
1213
1214 /*
1215 * Handle the data buffer(s).
1216 */
1217 if (unlikely(!length)) { /* Is there data too? */
1218 QPRINTK(qdev, RX_STATUS, DEBUG,
1219 "No Data buffer in this packet.\n");
1220 return skb;
1221 }
1222
1223 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1224 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1225 QPRINTK(qdev, RX_STATUS, DEBUG,
1226 "Headers in small, data of %d bytes in small, combine them.\n", length);
1227 /*
1228 * Data is less than small buffer size so it's
1229 * stuffed in a small buffer.
1230 * For this case we append the data
1231 * from the "data" small buffer to the "header" small
1232 * buffer.
1233 */
1234 sbq_desc = ql_get_curr_sbuf(rx_ring);
1235 pci_dma_sync_single_for_cpu(qdev->pdev,
1236 pci_unmap_addr
1237 (sbq_desc, mapaddr),
1238 pci_unmap_len
1239 (sbq_desc, maplen),
1240 PCI_DMA_FROMDEVICE);
1241 memcpy(skb_put(skb, length),
1242 sbq_desc->p.skb->data, length);
1243 pci_dma_sync_single_for_device(qdev->pdev,
1244 pci_unmap_addr
1245 (sbq_desc,
1246 mapaddr),
1247 pci_unmap_len
1248 (sbq_desc,
1249 maplen),
1250 PCI_DMA_FROMDEVICE);
1251 } else {
1252 QPRINTK(qdev, RX_STATUS, DEBUG,
1253 "%d bytes in a single small buffer.\n", length);
1254 sbq_desc = ql_get_curr_sbuf(rx_ring);
1255 skb = sbq_desc->p.skb;
1256 ql_realign_skb(skb, length);
1257 skb_put(skb, length);
1258 pci_unmap_single(qdev->pdev,
1259 pci_unmap_addr(sbq_desc,
1260 mapaddr),
1261 pci_unmap_len(sbq_desc,
1262 maplen),
1263 PCI_DMA_FROMDEVICE);
1264 sbq_desc->p.skb = NULL;
1265 }
1266 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1267 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1268 QPRINTK(qdev, RX_STATUS, DEBUG,
1269 "Header in small, %d bytes in large. Chain large to small!\n", length);
1270 /*
1271 * The data is in a single large buffer. We
1272 * chain it to the header buffer's skb and let
1273 * it rip.
1274 */
1275 lbq_desc = ql_get_curr_lbuf(rx_ring);
1276 pci_unmap_page(qdev->pdev,
1277 pci_unmap_addr(lbq_desc,
1278 mapaddr),
1279 pci_unmap_len(lbq_desc, maplen),
1280 PCI_DMA_FROMDEVICE);
1281 QPRINTK(qdev, RX_STATUS, DEBUG,
1282 "Chaining page to skb.\n");
1283 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1284 0, length);
1285 skb->len += length;
1286 skb->data_len += length;
1287 skb->truesize += length;
1288 lbq_desc->p.lbq_page = NULL;
1289 } else {
1290 /*
1291 * The headers and data are in a single large buffer. We
1292 * copy it to a new skb and let it go. This can happen with
1293 * jumbo mtu on a non-TCP/UDP frame.
1294 */
1295 lbq_desc = ql_get_curr_lbuf(rx_ring);
1296 skb = netdev_alloc_skb(qdev->ndev, length);
1297 if (skb == NULL) {
1298 QPRINTK(qdev, PROBE, DEBUG,
1299 "No skb available, drop the packet.\n");
1300 return NULL;
1301 }
4055c7d4
RM
1302 pci_unmap_page(qdev->pdev,
1303 pci_unmap_addr(lbq_desc,
1304 mapaddr),
1305 pci_unmap_len(lbq_desc, maplen),
1306 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1307 skb_reserve(skb, NET_IP_ALIGN);
1308 QPRINTK(qdev, RX_STATUS, DEBUG,
1309 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1310 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1311 0, length);
1312 skb->len += length;
1313 skb->data_len += length;
1314 skb->truesize += length;
1315 length -= length;
1316 lbq_desc->p.lbq_page = NULL;
1317 __pskb_pull_tail(skb,
1318 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1319 VLAN_ETH_HLEN : ETH_HLEN);
1320 }
1321 } else {
1322 /*
1323 * The data is in a chain of large buffers
1324 * pointed to by a small buffer. We loop
1325 * thru and chain them to the our small header
1326 * buffer's skb.
1327 * frags: There are 18 max frags and our small
1328 * buffer will hold 32 of them. The thing is,
1329 * we'll use 3 max for our 9000 byte jumbo
1330 * frames. If the MTU goes up we could
1331 * eventually be in trouble.
1332 */
1333 int size, offset, i = 0;
2c9a0d41 1334 __le64 *bq, bq_array[8];
c4e84bde
RM
1335 sbq_desc = ql_get_curr_sbuf(rx_ring);
1336 pci_unmap_single(qdev->pdev,
1337 pci_unmap_addr(sbq_desc, mapaddr),
1338 pci_unmap_len(sbq_desc, maplen),
1339 PCI_DMA_FROMDEVICE);
1340 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1341 /*
1342 * This is an non TCP/UDP IP frame, so
1343 * the headers aren't split into a small
1344 * buffer. We have to use the small buffer
1345 * that contains our sg list as our skb to
1346 * send upstairs. Copy the sg list here to
1347 * a local buffer and use it to find the
1348 * pages to chain.
1349 */
1350 QPRINTK(qdev, RX_STATUS, DEBUG,
1351 "%d bytes of headers & data in chain of large.\n", length);
1352 skb = sbq_desc->p.skb;
1353 bq = &bq_array[0];
1354 memcpy(bq, skb->data, sizeof(bq_array));
1355 sbq_desc->p.skb = NULL;
1356 skb_reserve(skb, NET_IP_ALIGN);
1357 } else {
1358 QPRINTK(qdev, RX_STATUS, DEBUG,
1359 "Headers in small, %d bytes of data in chain of large.\n", length);
2c9a0d41 1360 bq = (__le64 *)sbq_desc->p.skb->data;
c4e84bde
RM
1361 }
1362 while (length > 0) {
1363 lbq_desc = ql_get_curr_lbuf(rx_ring);
c4e84bde
RM
1364 pci_unmap_page(qdev->pdev,
1365 pci_unmap_addr(lbq_desc,
1366 mapaddr),
1367 pci_unmap_len(lbq_desc,
1368 maplen),
1369 PCI_DMA_FROMDEVICE);
1370 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1371 offset = 0;
1372
1373 QPRINTK(qdev, RX_STATUS, DEBUG,
1374 "Adding page %d to skb for %d bytes.\n",
1375 i, size);
1376 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1377 offset, size);
1378 skb->len += size;
1379 skb->data_len += size;
1380 skb->truesize += size;
1381 length -= size;
1382 lbq_desc->p.lbq_page = NULL;
1383 bq++;
1384 i++;
1385 }
1386 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1387 VLAN_ETH_HLEN : ETH_HLEN);
1388 }
1389 return skb;
1390}
1391
1392/* Process an inbound completion from an rx ring. */
1393static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1394 struct rx_ring *rx_ring,
1395 struct ib_mac_iocb_rsp *ib_mac_rsp)
1396{
1397 struct net_device *ndev = qdev->ndev;
1398 struct sk_buff *skb = NULL;
1399
1400 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1401
1402 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1403 if (unlikely(!skb)) {
1404 QPRINTK(qdev, RX_STATUS, DEBUG,
1405 "No skb available, drop packet.\n");
1406 return;
1407 }
1408
1409 prefetch(skb->data);
1410 skb->dev = ndev;
1411 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1412 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1413 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1414 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1415 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1416 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1417 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1418 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1419 }
1420 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1421 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1422 }
1423 if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1424 QPRINTK(qdev, RX_STATUS, ERR,
1425 "Bad checksum for this %s packet.\n",
1426 ((ib_mac_rsp->
1427 flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1428 skb->ip_summed = CHECKSUM_NONE;
1429 } else if (qdev->rx_csum &&
1430 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1431 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1432 !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1433 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1434 skb->ip_summed = CHECKSUM_UNNECESSARY;
1435 }
1436 qdev->stats.rx_packets++;
1437 qdev->stats.rx_bytes += skb->len;
1438 skb->protocol = eth_type_trans(skb, ndev);
1439 if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1440 QPRINTK(qdev, RX_STATUS, DEBUG,
1441 "Passing a VLAN packet upstream.\n");
1442 vlan_hwaccel_rx(skb, qdev->vlgrp,
1443 le16_to_cpu(ib_mac_rsp->vlan_id));
1444 } else {
1445 QPRINTK(qdev, RX_STATUS, DEBUG,
1446 "Passing a normal packet upstream.\n");
1447 netif_rx(skb);
1448 }
c4e84bde
RM
1449}
1450
1451/* Process an outbound completion from an rx ring. */
1452static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1453 struct ob_mac_iocb_rsp *mac_rsp)
1454{
1455 struct tx_ring *tx_ring;
1456 struct tx_ring_desc *tx_ring_desc;
1457
1458 QL_DUMP_OB_MAC_RSP(mac_rsp);
1459 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1460 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1461 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1462 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1463 qdev->stats.tx_packets++;
1464 dev_kfree_skb(tx_ring_desc->skb);
1465 tx_ring_desc->skb = NULL;
1466
1467 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1468 OB_MAC_IOCB_RSP_S |
1469 OB_MAC_IOCB_RSP_L |
1470 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1471 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1472 QPRINTK(qdev, TX_DONE, WARNING,
1473 "Total descriptor length did not match transfer length.\n");
1474 }
1475 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1476 QPRINTK(qdev, TX_DONE, WARNING,
1477 "Frame too short to be legal, not sent.\n");
1478 }
1479 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1480 QPRINTK(qdev, TX_DONE, WARNING,
1481 "Frame too long, but sent anyway.\n");
1482 }
1483 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1484 QPRINTK(qdev, TX_DONE, WARNING,
1485 "PCI backplane error. Frame not sent.\n");
1486 }
1487 }
1488 atomic_inc(&tx_ring->tx_count);
1489}
1490
1491/* Fire up a handler to reset the MPI processor. */
1492void ql_queue_fw_error(struct ql_adapter *qdev)
1493{
1494 netif_stop_queue(qdev->ndev);
1495 netif_carrier_off(qdev->ndev);
1496 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1497}
1498
1499void ql_queue_asic_error(struct ql_adapter *qdev)
1500{
1501 netif_stop_queue(qdev->ndev);
1502 netif_carrier_off(qdev->ndev);
1503 ql_disable_interrupts(qdev);
1504 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1505}
1506
1507static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1508 struct ib_ae_iocb_rsp *ib_ae_rsp)
1509{
1510 switch (ib_ae_rsp->event) {
1511 case MGMT_ERR_EVENT:
1512 QPRINTK(qdev, RX_ERR, ERR,
1513 "Management Processor Fatal Error.\n");
1514 ql_queue_fw_error(qdev);
1515 return;
1516
1517 case CAM_LOOKUP_ERR_EVENT:
1518 QPRINTK(qdev, LINK, ERR,
1519 "Multiple CAM hits lookup occurred.\n");
1520 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1521 ql_queue_asic_error(qdev);
1522 return;
1523
1524 case SOFT_ECC_ERROR_EVENT:
1525 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1526 ql_queue_asic_error(qdev);
1527 break;
1528
1529 case PCI_ERR_ANON_BUF_RD:
1530 QPRINTK(qdev, RX_ERR, ERR,
1531 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1532 ib_ae_rsp->q_id);
1533 ql_queue_asic_error(qdev);
1534 break;
1535
1536 default:
1537 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1538 ib_ae_rsp->event);
1539 ql_queue_asic_error(qdev);
1540 break;
1541 }
1542}
1543
1544static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1545{
1546 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1547 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1548 struct ob_mac_iocb_rsp *net_rsp = NULL;
1549 int count = 0;
1550
1551 /* While there are entries in the completion queue. */
1552 while (prod != rx_ring->cnsmr_idx) {
1553
1554 QPRINTK(qdev, RX_STATUS, DEBUG,
1555 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1556 prod, rx_ring->cnsmr_idx);
1557
1558 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1559 rmb();
1560 switch (net_rsp->opcode) {
1561
1562 case OPCODE_OB_MAC_TSO_IOCB:
1563 case OPCODE_OB_MAC_IOCB:
1564 ql_process_mac_tx_intr(qdev, net_rsp);
1565 break;
1566 default:
1567 QPRINTK(qdev, RX_STATUS, DEBUG,
1568 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1569 net_rsp->opcode);
1570 }
1571 count++;
1572 ql_update_cq(rx_ring);
ba7cd3ba 1573 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1574 }
1575 ql_write_cq_idx(rx_ring);
1576 if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1577 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1578 if (atomic_read(&tx_ring->queue_stopped) &&
1579 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1580 /*
1581 * The queue got stopped because the tx_ring was full.
1582 * Wake it up, because it's now at least 25% empty.
1583 */
1584 netif_wake_queue(qdev->ndev);
1585 }
1586
1587 return count;
1588}
1589
1590static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1591{
1592 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1593 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1594 struct ql_net_rsp_iocb *net_rsp;
1595 int count = 0;
1596
1597 /* While there are entries in the completion queue. */
1598 while (prod != rx_ring->cnsmr_idx) {
1599
1600 QPRINTK(qdev, RX_STATUS, DEBUG,
1601 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1602 prod, rx_ring->cnsmr_idx);
1603
1604 net_rsp = rx_ring->curr_entry;
1605 rmb();
1606 switch (net_rsp->opcode) {
1607 case OPCODE_IB_MAC_IOCB:
1608 ql_process_mac_rx_intr(qdev, rx_ring,
1609 (struct ib_mac_iocb_rsp *)
1610 net_rsp);
1611 break;
1612
1613 case OPCODE_IB_AE_IOCB:
1614 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1615 net_rsp);
1616 break;
1617 default:
1618 {
1619 QPRINTK(qdev, RX_STATUS, DEBUG,
1620 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1621 net_rsp->opcode);
1622 }
1623 }
1624 count++;
1625 ql_update_cq(rx_ring);
ba7cd3ba 1626 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1627 if (count == budget)
1628 break;
1629 }
1630 ql_update_buffer_queues(qdev, rx_ring);
1631 ql_write_cq_idx(rx_ring);
1632 return count;
1633}
1634
1635static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1636{
1637 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1638 struct ql_adapter *qdev = rx_ring->qdev;
1639 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1640
1641 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1642 rx_ring->cq_id);
1643
1644 if (work_done < budget) {
288379f0 1645 __napi_complete(napi);
c4e84bde
RM
1646 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1647 }
1648 return work_done;
1649}
1650
1651static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1652{
1653 struct ql_adapter *qdev = netdev_priv(ndev);
1654
1655 qdev->vlgrp = grp;
1656 if (grp) {
1657 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1658 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1659 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1660 } else {
1661 QPRINTK(qdev, IFUP, DEBUG,
1662 "Turning off VLAN in NIC_RCV_CFG.\n");
1663 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1664 }
1665}
1666
1667static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1668{
1669 struct ql_adapter *qdev = netdev_priv(ndev);
1670 u32 enable_bit = MAC_ADDR_E;
1671
1672 spin_lock(&qdev->hw_lock);
1673 if (ql_set_mac_addr_reg
1674 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1675 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1676 }
1677 spin_unlock(&qdev->hw_lock);
1678}
1679
1680static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1681{
1682 struct ql_adapter *qdev = netdev_priv(ndev);
1683 u32 enable_bit = 0;
1684
1685 spin_lock(&qdev->hw_lock);
1686 if (ql_set_mac_addr_reg
1687 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1688 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1689 }
1690 spin_unlock(&qdev->hw_lock);
1691
1692}
1693
1694/* Worker thread to process a given rx_ring that is dedicated
1695 * to outbound completions.
1696 */
1697static void ql_tx_clean(struct work_struct *work)
1698{
1699 struct rx_ring *rx_ring =
1700 container_of(work, struct rx_ring, rx_work.work);
1701 ql_clean_outbound_rx_ring(rx_ring);
1702 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1703
1704}
1705
1706/* Worker thread to process a given rx_ring that is dedicated
1707 * to inbound completions.
1708 */
1709static void ql_rx_clean(struct work_struct *work)
1710{
1711 struct rx_ring *rx_ring =
1712 container_of(work, struct rx_ring, rx_work.work);
1713 ql_clean_inbound_rx_ring(rx_ring, 64);
1714 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1715}
1716
1717/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1718static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1719{
1720 struct rx_ring *rx_ring = dev_id;
1721 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1722 &rx_ring->rx_work, 0);
1723 return IRQ_HANDLED;
1724}
1725
1726/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1727static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1728{
1729 struct rx_ring *rx_ring = dev_id;
288379f0 1730 napi_schedule(&rx_ring->napi);
c4e84bde
RM
1731 return IRQ_HANDLED;
1732}
1733
c4e84bde
RM
1734/* This handles a fatal error, MPI activity, and the default
1735 * rx_ring in an MSI-X multiple vector environment.
1736 * In MSI/Legacy environment it also process the rest of
1737 * the rx_rings.
1738 */
1739static irqreturn_t qlge_isr(int irq, void *dev_id)
1740{
1741 struct rx_ring *rx_ring = dev_id;
1742 struct ql_adapter *qdev = rx_ring->qdev;
1743 struct intr_context *intr_context = &qdev->intr_context[0];
1744 u32 var;
1745 int i;
1746 int work_done = 0;
1747
bb0d215c
RM
1748 spin_lock(&qdev->hw_lock);
1749 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1750 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1751 spin_unlock(&qdev->hw_lock);
1752 return IRQ_NONE;
c4e84bde 1753 }
bb0d215c 1754 spin_unlock(&qdev->hw_lock);
c4e84bde 1755
bb0d215c 1756 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
1757
1758 /*
1759 * Check for fatal error.
1760 */
1761 if (var & STS_FE) {
1762 ql_queue_asic_error(qdev);
1763 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1764 var = ql_read32(qdev, ERR_STS);
1765 QPRINTK(qdev, INTR, ERR,
1766 "Resetting chip. Error Status Register = 0x%x\n", var);
1767 return IRQ_HANDLED;
1768 }
1769
1770 /*
1771 * Check MPI processor activity.
1772 */
1773 if (var & STS_PI) {
1774 /*
1775 * We've got an async event or mailbox completion.
1776 * Handle it and clear the source of the interrupt.
1777 */
1778 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1779 ql_disable_completion_interrupt(qdev, intr_context->intr);
1780 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1781 &qdev->mpi_work, 0);
1782 work_done++;
1783 }
1784
1785 /*
1786 * Check the default queue and wake handler if active.
1787 */
1788 rx_ring = &qdev->rx_ring[0];
ba7cd3ba 1789 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
c4e84bde
RM
1790 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1791 ql_disable_completion_interrupt(qdev, intr_context->intr);
1792 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1793 &rx_ring->rx_work, 0);
1794 work_done++;
1795 }
1796
1797 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1798 /*
1799 * Start the DPC for each active queue.
1800 */
1801 for (i = 1; i < qdev->rx_ring_count; i++) {
1802 rx_ring = &qdev->rx_ring[i];
ba7cd3ba 1803 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
c4e84bde
RM
1804 rx_ring->cnsmr_idx) {
1805 QPRINTK(qdev, INTR, INFO,
1806 "Waking handler for rx_ring[%d].\n", i);
1807 ql_disable_completion_interrupt(qdev,
1808 intr_context->
1809 intr);
1810 if (i < qdev->rss_ring_first_cq_id)
1811 queue_delayed_work_on(rx_ring->cpu,
1812 qdev->q_workqueue,
1813 &rx_ring->rx_work,
1814 0);
1815 else
288379f0 1816 napi_schedule(&rx_ring->napi);
c4e84bde
RM
1817 work_done++;
1818 }
1819 }
1820 }
bb0d215c 1821 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
1822 return work_done ? IRQ_HANDLED : IRQ_NONE;
1823}
1824
1825static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1826{
1827
1828 if (skb_is_gso(skb)) {
1829 int err;
1830 if (skb_header_cloned(skb)) {
1831 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1832 if (err)
1833 return err;
1834 }
1835
1836 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1837 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1838 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1839 mac_iocb_ptr->total_hdrs_len =
1840 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1841 mac_iocb_ptr->net_trans_offset =
1842 cpu_to_le16(skb_network_offset(skb) |
1843 skb_transport_offset(skb)
1844 << OB_MAC_TRANSPORT_HDR_SHIFT);
1845 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1846 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1847 if (likely(skb->protocol == htons(ETH_P_IP))) {
1848 struct iphdr *iph = ip_hdr(skb);
1849 iph->check = 0;
1850 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1851 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1852 iph->daddr, 0,
1853 IPPROTO_TCP,
1854 0);
1855 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1856 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1857 tcp_hdr(skb)->check =
1858 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1859 &ipv6_hdr(skb)->daddr,
1860 0, IPPROTO_TCP, 0);
1861 }
1862 return 1;
1863 }
1864 return 0;
1865}
1866
1867static void ql_hw_csum_setup(struct sk_buff *skb,
1868 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1869{
1870 int len;
1871 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 1872 __sum16 *check;
c4e84bde
RM
1873 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1874 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1875 mac_iocb_ptr->net_trans_offset =
1876 cpu_to_le16(skb_network_offset(skb) |
1877 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1878
1879 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1880 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1881 if (likely(iph->protocol == IPPROTO_TCP)) {
1882 check = &(tcp_hdr(skb)->check);
1883 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1884 mac_iocb_ptr->total_hdrs_len =
1885 cpu_to_le16(skb_transport_offset(skb) +
1886 (tcp_hdr(skb)->doff << 2));
1887 } else {
1888 check = &(udp_hdr(skb)->check);
1889 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1890 mac_iocb_ptr->total_hdrs_len =
1891 cpu_to_le16(skb_transport_offset(skb) +
1892 sizeof(struct udphdr));
1893 }
1894 *check = ~csum_tcpudp_magic(iph->saddr,
1895 iph->daddr, len, iph->protocol, 0);
1896}
1897
1898static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1899{
1900 struct tx_ring_desc *tx_ring_desc;
1901 struct ob_mac_iocb_req *mac_iocb_ptr;
1902 struct ql_adapter *qdev = netdev_priv(ndev);
1903 int tso;
1904 struct tx_ring *tx_ring;
1905 u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1906
1907 tx_ring = &qdev->tx_ring[tx_ring_idx];
1908
1909 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1910 QPRINTK(qdev, TX_QUEUED, INFO,
1911 "%s: shutting down tx queue %d du to lack of resources.\n",
1912 __func__, tx_ring_idx);
1913 netif_stop_queue(ndev);
1914 atomic_inc(&tx_ring->queue_stopped);
1915 return NETDEV_TX_BUSY;
1916 }
1917 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1918 mac_iocb_ptr = tx_ring_desc->queue_entry;
1919 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1920 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
1921 QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
1922 return NETDEV_TX_BUSY;
1923 }
1924
1925 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1926 mac_iocb_ptr->tid = tx_ring_desc->index;
1927 /* We use the upper 32-bits to store the tx queue for this IO.
1928 * When we get the completion we can use it to establish the context.
1929 */
1930 mac_iocb_ptr->txq_idx = tx_ring_idx;
1931 tx_ring_desc->skb = skb;
1932
1933 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1934
1935 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1936 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1937 vlan_tx_tag_get(skb));
1938 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1939 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1940 }
1941 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1942 if (tso < 0) {
1943 dev_kfree_skb_any(skb);
1944 return NETDEV_TX_OK;
1945 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1946 ql_hw_csum_setup(skb,
1947 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1948 }
1949 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1950 tx_ring->prod_idx++;
1951 if (tx_ring->prod_idx == tx_ring->wq_len)
1952 tx_ring->prod_idx = 0;
1953 wmb();
1954
1955 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1956 ndev->trans_start = jiffies;
1957 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1958 tx_ring->prod_idx, skb->len);
1959
1960 atomic_dec(&tx_ring->tx_count);
1961 return NETDEV_TX_OK;
1962}
1963
1964static void ql_free_shadow_space(struct ql_adapter *qdev)
1965{
1966 if (qdev->rx_ring_shadow_reg_area) {
1967 pci_free_consistent(qdev->pdev,
1968 PAGE_SIZE,
1969 qdev->rx_ring_shadow_reg_area,
1970 qdev->rx_ring_shadow_reg_dma);
1971 qdev->rx_ring_shadow_reg_area = NULL;
1972 }
1973 if (qdev->tx_ring_shadow_reg_area) {
1974 pci_free_consistent(qdev->pdev,
1975 PAGE_SIZE,
1976 qdev->tx_ring_shadow_reg_area,
1977 qdev->tx_ring_shadow_reg_dma);
1978 qdev->tx_ring_shadow_reg_area = NULL;
1979 }
1980}
1981
1982static int ql_alloc_shadow_space(struct ql_adapter *qdev)
1983{
1984 qdev->rx_ring_shadow_reg_area =
1985 pci_alloc_consistent(qdev->pdev,
1986 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
1987 if (qdev->rx_ring_shadow_reg_area == NULL) {
1988 QPRINTK(qdev, IFUP, ERR,
1989 "Allocation of RX shadow space failed.\n");
1990 return -ENOMEM;
1991 }
1992 qdev->tx_ring_shadow_reg_area =
1993 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
1994 &qdev->tx_ring_shadow_reg_dma);
1995 if (qdev->tx_ring_shadow_reg_area == NULL) {
1996 QPRINTK(qdev, IFUP, ERR,
1997 "Allocation of TX shadow space failed.\n");
1998 goto err_wqp_sh_area;
1999 }
2000 return 0;
2001
2002err_wqp_sh_area:
2003 pci_free_consistent(qdev->pdev,
2004 PAGE_SIZE,
2005 qdev->rx_ring_shadow_reg_area,
2006 qdev->rx_ring_shadow_reg_dma);
2007 return -ENOMEM;
2008}
2009
2010static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2011{
2012 struct tx_ring_desc *tx_ring_desc;
2013 int i;
2014 struct ob_mac_iocb_req *mac_iocb_ptr;
2015
2016 mac_iocb_ptr = tx_ring->wq_base;
2017 tx_ring_desc = tx_ring->q;
2018 for (i = 0; i < tx_ring->wq_len; i++) {
2019 tx_ring_desc->index = i;
2020 tx_ring_desc->skb = NULL;
2021 tx_ring_desc->queue_entry = mac_iocb_ptr;
2022 mac_iocb_ptr++;
2023 tx_ring_desc++;
2024 }
2025 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2026 atomic_set(&tx_ring->queue_stopped, 0);
2027}
2028
2029static void ql_free_tx_resources(struct ql_adapter *qdev,
2030 struct tx_ring *tx_ring)
2031{
2032 if (tx_ring->wq_base) {
2033 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2034 tx_ring->wq_base, tx_ring->wq_base_dma);
2035 tx_ring->wq_base = NULL;
2036 }
2037 kfree(tx_ring->q);
2038 tx_ring->q = NULL;
2039}
2040
2041static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2042 struct tx_ring *tx_ring)
2043{
2044 tx_ring->wq_base =
2045 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2046 &tx_ring->wq_base_dma);
2047
2048 if ((tx_ring->wq_base == NULL)
2049 || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2050 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2051 return -ENOMEM;
2052 }
2053 tx_ring->q =
2054 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2055 if (tx_ring->q == NULL)
2056 goto err;
2057
2058 return 0;
2059err:
2060 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2061 tx_ring->wq_base, tx_ring->wq_base_dma);
2062 return -ENOMEM;
2063}
2064
8668ae92 2065static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2066{
2067 int i;
2068 struct bq_desc *lbq_desc;
2069
2070 for (i = 0; i < rx_ring->lbq_len; i++) {
2071 lbq_desc = &rx_ring->lbq[i];
2072 if (lbq_desc->p.lbq_page) {
2073 pci_unmap_page(qdev->pdev,
2074 pci_unmap_addr(lbq_desc, mapaddr),
2075 pci_unmap_len(lbq_desc, maplen),
2076 PCI_DMA_FROMDEVICE);
2077
2078 put_page(lbq_desc->p.lbq_page);
2079 lbq_desc->p.lbq_page = NULL;
2080 }
c4e84bde
RM
2081 }
2082}
2083
2084/*
2085 * Allocate and map a page for each element of the lbq.
2086 */
2087static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2088 struct rx_ring *rx_ring)
2089{
2090 int i;
2091 struct bq_desc *lbq_desc;
2092 u64 map;
2c9a0d41 2093 __le64 *bq = rx_ring->lbq_base;
c4e84bde
RM
2094
2095 for (i = 0; i < rx_ring->lbq_len; i++) {
2096 lbq_desc = &rx_ring->lbq[i];
2097 memset(lbq_desc, 0, sizeof(lbq_desc));
2c9a0d41 2098 lbq_desc->addr = bq;
c4e84bde
RM
2099 lbq_desc->index = i;
2100 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2101 if (unlikely(!lbq_desc->p.lbq_page)) {
2102 QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2103 goto mem_error;
2104 } else {
2105 map = pci_map_page(qdev->pdev,
2106 lbq_desc->p.lbq_page,
2107 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2108 if (pci_dma_mapping_error(qdev->pdev, map)) {
2109 QPRINTK(qdev, IFUP, ERR,
2110 "PCI mapping failed.\n");
2111 goto mem_error;
2112 }
2113 pci_unmap_addr_set(lbq_desc, mapaddr, map);
2114 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2c9a0d41 2115 *lbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
2116 }
2117 bq++;
2118 }
2119 return 0;
2120mem_error:
2121 ql_free_lbq_buffers(qdev, rx_ring);
2122 return -ENOMEM;
2123}
2124
8668ae92 2125static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2126{
2127 int i;
2128 struct bq_desc *sbq_desc;
2129
2130 for (i = 0; i < rx_ring->sbq_len; i++) {
2131 sbq_desc = &rx_ring->sbq[i];
2132 if (sbq_desc == NULL) {
2133 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2134 return;
2135 }
2136 if (sbq_desc->p.skb) {
2137 pci_unmap_single(qdev->pdev,
2138 pci_unmap_addr(sbq_desc, mapaddr),
2139 pci_unmap_len(sbq_desc, maplen),
2140 PCI_DMA_FROMDEVICE);
2141 dev_kfree_skb(sbq_desc->p.skb);
2142 sbq_desc->p.skb = NULL;
2143 }
c4e84bde
RM
2144 }
2145}
2146
2147/* Allocate and map an skb for each element of the sbq. */
2148static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2149 struct rx_ring *rx_ring)
2150{
2151 int i;
2152 struct bq_desc *sbq_desc;
2153 struct sk_buff *skb;
2154 u64 map;
2c9a0d41 2155 __le64 *bq = rx_ring->sbq_base;
c4e84bde
RM
2156
2157 for (i = 0; i < rx_ring->sbq_len; i++) {
2158 sbq_desc = &rx_ring->sbq[i];
2159 memset(sbq_desc, 0, sizeof(sbq_desc));
2160 sbq_desc->index = i;
2c9a0d41 2161 sbq_desc->addr = bq;
c4e84bde
RM
2162 skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2163 if (unlikely(!skb)) {
2164 /* Better luck next round */
2165 QPRINTK(qdev, IFUP, ERR,
2166 "small buff alloc failed for %d bytes at index %d.\n",
2167 rx_ring->sbq_buf_size, i);
2168 goto mem_err;
2169 }
2170 skb_reserve(skb, QLGE_SB_PAD);
2171 sbq_desc->p.skb = skb;
2172 /*
2173 * Map only half the buffer. Because the
2174 * other half may get some data copied to it
2175 * when the completion arrives.
2176 */
2177 map = pci_map_single(qdev->pdev,
2178 skb->data,
2179 rx_ring->sbq_buf_size / 2,
2180 PCI_DMA_FROMDEVICE);
2181 if (pci_dma_mapping_error(qdev->pdev, map)) {
2182 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2183 goto mem_err;
2184 }
2185 pci_unmap_addr_set(sbq_desc, mapaddr, map);
2186 pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2c9a0d41 2187 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
2188 bq++;
2189 }
2190 return 0;
2191mem_err:
2192 ql_free_sbq_buffers(qdev, rx_ring);
2193 return -ENOMEM;
2194}
2195
2196static void ql_free_rx_resources(struct ql_adapter *qdev,
2197 struct rx_ring *rx_ring)
2198{
2199 if (rx_ring->sbq_len)
2200 ql_free_sbq_buffers(qdev, rx_ring);
2201 if (rx_ring->lbq_len)
2202 ql_free_lbq_buffers(qdev, rx_ring);
2203
2204 /* Free the small buffer queue. */
2205 if (rx_ring->sbq_base) {
2206 pci_free_consistent(qdev->pdev,
2207 rx_ring->sbq_size,
2208 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2209 rx_ring->sbq_base = NULL;
2210 }
2211
2212 /* Free the small buffer queue control blocks. */
2213 kfree(rx_ring->sbq);
2214 rx_ring->sbq = NULL;
2215
2216 /* Free the large buffer queue. */
2217 if (rx_ring->lbq_base) {
2218 pci_free_consistent(qdev->pdev,
2219 rx_ring->lbq_size,
2220 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2221 rx_ring->lbq_base = NULL;
2222 }
2223
2224 /* Free the large buffer queue control blocks. */
2225 kfree(rx_ring->lbq);
2226 rx_ring->lbq = NULL;
2227
2228 /* Free the rx queue. */
2229 if (rx_ring->cq_base) {
2230 pci_free_consistent(qdev->pdev,
2231 rx_ring->cq_size,
2232 rx_ring->cq_base, rx_ring->cq_base_dma);
2233 rx_ring->cq_base = NULL;
2234 }
2235}
2236
2237/* Allocate queues and buffers for this completions queue based
2238 * on the values in the parameter structure. */
2239static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2240 struct rx_ring *rx_ring)
2241{
2242
2243 /*
2244 * Allocate the completion queue for this rx_ring.
2245 */
2246 rx_ring->cq_base =
2247 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2248 &rx_ring->cq_base_dma);
2249
2250 if (rx_ring->cq_base == NULL) {
2251 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2252 return -ENOMEM;
2253 }
2254
2255 if (rx_ring->sbq_len) {
2256 /*
2257 * Allocate small buffer queue.
2258 */
2259 rx_ring->sbq_base =
2260 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2261 &rx_ring->sbq_base_dma);
2262
2263 if (rx_ring->sbq_base == NULL) {
2264 QPRINTK(qdev, IFUP, ERR,
2265 "Small buffer queue allocation failed.\n");
2266 goto err_mem;
2267 }
2268
2269 /*
2270 * Allocate small buffer queue control blocks.
2271 */
2272 rx_ring->sbq =
2273 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2274 GFP_KERNEL);
2275 if (rx_ring->sbq == NULL) {
2276 QPRINTK(qdev, IFUP, ERR,
2277 "Small buffer queue control block allocation failed.\n");
2278 goto err_mem;
2279 }
2280
2281 if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2282 QPRINTK(qdev, IFUP, ERR,
2283 "Small buffer allocation failed.\n");
2284 goto err_mem;
2285 }
2286 }
2287
2288 if (rx_ring->lbq_len) {
2289 /*
2290 * Allocate large buffer queue.
2291 */
2292 rx_ring->lbq_base =
2293 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2294 &rx_ring->lbq_base_dma);
2295
2296 if (rx_ring->lbq_base == NULL) {
2297 QPRINTK(qdev, IFUP, ERR,
2298 "Large buffer queue allocation failed.\n");
2299 goto err_mem;
2300 }
2301 /*
2302 * Allocate large buffer queue control blocks.
2303 */
2304 rx_ring->lbq =
2305 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2306 GFP_KERNEL);
2307 if (rx_ring->lbq == NULL) {
2308 QPRINTK(qdev, IFUP, ERR,
2309 "Large buffer queue control block allocation failed.\n");
2310 goto err_mem;
2311 }
2312
2313 /*
2314 * Allocate the buffers.
2315 */
2316 if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2317 QPRINTK(qdev, IFUP, ERR,
2318 "Large buffer allocation failed.\n");
2319 goto err_mem;
2320 }
2321 }
2322
2323 return 0;
2324
2325err_mem:
2326 ql_free_rx_resources(qdev, rx_ring);
2327 return -ENOMEM;
2328}
2329
2330static void ql_tx_ring_clean(struct ql_adapter *qdev)
2331{
2332 struct tx_ring *tx_ring;
2333 struct tx_ring_desc *tx_ring_desc;
2334 int i, j;
2335
2336 /*
2337 * Loop through all queues and free
2338 * any resources.
2339 */
2340 for (j = 0; j < qdev->tx_ring_count; j++) {
2341 tx_ring = &qdev->tx_ring[j];
2342 for (i = 0; i < tx_ring->wq_len; i++) {
2343 tx_ring_desc = &tx_ring->q[i];
2344 if (tx_ring_desc && tx_ring_desc->skb) {
2345 QPRINTK(qdev, IFDOWN, ERR,
2346 "Freeing lost SKB %p, from queue %d, index %d.\n",
2347 tx_ring_desc->skb, j,
2348 tx_ring_desc->index);
2349 ql_unmap_send(qdev, tx_ring_desc,
2350 tx_ring_desc->map_cnt);
2351 dev_kfree_skb(tx_ring_desc->skb);
2352 tx_ring_desc->skb = NULL;
2353 }
2354 }
2355 }
2356}
2357
c4e84bde
RM
2358static void ql_free_mem_resources(struct ql_adapter *qdev)
2359{
2360 int i;
2361
2362 for (i = 0; i < qdev->tx_ring_count; i++)
2363 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2364 for (i = 0; i < qdev->rx_ring_count; i++)
2365 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2366 ql_free_shadow_space(qdev);
2367}
2368
2369static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2370{
2371 int i;
2372
2373 /* Allocate space for our shadow registers and such. */
2374 if (ql_alloc_shadow_space(qdev))
2375 return -ENOMEM;
2376
2377 for (i = 0; i < qdev->rx_ring_count; i++) {
2378 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2379 QPRINTK(qdev, IFUP, ERR,
2380 "RX resource allocation failed.\n");
2381 goto err_mem;
2382 }
2383 }
2384 /* Allocate tx queue resources */
2385 for (i = 0; i < qdev->tx_ring_count; i++) {
2386 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2387 QPRINTK(qdev, IFUP, ERR,
2388 "TX resource allocation failed.\n");
2389 goto err_mem;
2390 }
2391 }
2392 return 0;
2393
2394err_mem:
2395 ql_free_mem_resources(qdev);
2396 return -ENOMEM;
2397}
2398
2399/* Set up the rx ring control block and pass it to the chip.
2400 * The control block is defined as
2401 * "Completion Queue Initialization Control Block", or cqicb.
2402 */
2403static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2404{
2405 struct cqicb *cqicb = &rx_ring->cqicb;
2406 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2407 (rx_ring->cq_id * sizeof(u64) * 4);
2408 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2409 (rx_ring->cq_id * sizeof(u64) * 4);
2410 void __iomem *doorbell_area =
2411 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2412 int err = 0;
2413 u16 bq_len;
2414
2415 /* Set up the shadow registers for this ring. */
2416 rx_ring->prod_idx_sh_reg = shadow_reg;
2417 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2418 shadow_reg += sizeof(u64);
2419 shadow_reg_dma += sizeof(u64);
2420 rx_ring->lbq_base_indirect = shadow_reg;
2421 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2422 shadow_reg += sizeof(u64);
2423 shadow_reg_dma += sizeof(u64);
2424 rx_ring->sbq_base_indirect = shadow_reg;
2425 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2426
2427 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 2428 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2429 rx_ring->cnsmr_idx = 0;
2430 rx_ring->curr_entry = rx_ring->cq_base;
2431
2432 /* PCI doorbell mem area + 0x04 for valid register */
2433 rx_ring->valid_db_reg = doorbell_area + 0x04;
2434
2435 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 2436 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
2437
2438 /* PCI doorbell mem area + 0x1c */
8668ae92 2439 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
2440
2441 memset((void *)cqicb, 0, sizeof(struct cqicb));
2442 cqicb->msix_vect = rx_ring->irq;
2443
459caf5a
RM
2444 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2445 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 2446
97345524 2447 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 2448
97345524 2449 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
2450
2451 /*
2452 * Set up the control block load flags.
2453 */
2454 cqicb->flags = FLAGS_LC | /* Load queue base address */
2455 FLAGS_LV | /* Load MSI-X vector */
2456 FLAGS_LI; /* Load irq delay values */
2457 if (rx_ring->lbq_len) {
2458 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2459 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
97345524
RM
2460 cqicb->lbq_addr =
2461 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
2462 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2463 (u16) rx_ring->lbq_buf_size;
2464 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2465 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2466 (u16) rx_ring->lbq_len;
c4e84bde
RM
2467 cqicb->lbq_len = cpu_to_le16(bq_len);
2468 rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2469 rx_ring->lbq_curr_idx = 0;
2470 rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2471 rx_ring->lbq_free_cnt = 16;
2472 }
2473 if (rx_ring->sbq_len) {
2474 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2475 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
97345524
RM
2476 cqicb->sbq_addr =
2477 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde
RM
2478 cqicb->sbq_buf_size =
2479 cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
459caf5a
RM
2480 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2481 (u16) rx_ring->sbq_len;
c4e84bde
RM
2482 cqicb->sbq_len = cpu_to_le16(bq_len);
2483 rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2484 rx_ring->sbq_curr_idx = 0;
2485 rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2486 rx_ring->sbq_free_cnt = 16;
2487 }
2488 switch (rx_ring->type) {
2489 case TX_Q:
2490 /* If there's only one interrupt, then we use
2491 * worker threads to process the outbound
2492 * completion handling rx_rings. We do this so
2493 * they can be run on multiple CPUs. There is
2494 * room to play with this more where we would only
2495 * run in a worker if there are more than x number
2496 * of outbound completions on the queue and more
2497 * than one queue active. Some threshold that
2498 * would indicate a benefit in spite of the cost
2499 * of a context switch.
2500 * If there's more than one interrupt, then the
2501 * outbound completions are processed in the ISR.
2502 */
2503 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2504 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2505 else {
2506 /* With all debug warnings on we see a WARN_ON message
2507 * when we free the skb in the interrupt context.
2508 */
2509 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2510 }
2511 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2512 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2513 break;
2514 case DEFAULT_Q:
2515 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2516 cqicb->irq_delay = 0;
2517 cqicb->pkt_delay = 0;
2518 break;
2519 case RX_Q:
2520 /* Inbound completion handling rx_rings run in
2521 * separate NAPI contexts.
2522 */
2523 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2524 64);
2525 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2526 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2527 break;
2528 default:
2529 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2530 rx_ring->type);
2531 }
2532 QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2533 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2534 CFG_LCQ, rx_ring->cq_id);
2535 if (err) {
2536 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2537 return err;
2538 }
2539 QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2540 /*
2541 * Advance the producer index for the buffer queues.
2542 */
2543 wmb();
2544 if (rx_ring->lbq_len)
2545 ql_write_db_reg(rx_ring->lbq_prod_idx,
2546 rx_ring->lbq_prod_idx_db_reg);
2547 if (rx_ring->sbq_len)
2548 ql_write_db_reg(rx_ring->sbq_prod_idx,
2549 rx_ring->sbq_prod_idx_db_reg);
2550 return err;
2551}
2552
2553static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2554{
2555 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2556 void __iomem *doorbell_area =
2557 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2558 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2559 (tx_ring->wq_id * sizeof(u64));
2560 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2561 (tx_ring->wq_id * sizeof(u64));
2562 int err = 0;
2563
2564 /*
2565 * Assign doorbell registers for this tx_ring.
2566 */
2567 /* TX PCI doorbell mem area for tx producer index */
8668ae92 2568 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2569 tx_ring->prod_idx = 0;
2570 /* TX PCI doorbell mem area + 0x04 */
2571 tx_ring->valid_db_reg = doorbell_area + 0x04;
2572
2573 /*
2574 * Assign shadow registers for this tx_ring.
2575 */
2576 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2577 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2578
2579 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2580 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2581 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2582 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2583 wqicb->rid = 0;
97345524 2584 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 2585
97345524 2586 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
2587
2588 ql_init_tx_ring(qdev, tx_ring);
2589
2590 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2591 (u16) tx_ring->wq_id);
2592 if (err) {
2593 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2594 return err;
2595 }
2596 QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2597 return err;
2598}
2599
2600static void ql_disable_msix(struct ql_adapter *qdev)
2601{
2602 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2603 pci_disable_msix(qdev->pdev);
2604 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2605 kfree(qdev->msi_x_entry);
2606 qdev->msi_x_entry = NULL;
2607 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2608 pci_disable_msi(qdev->pdev);
2609 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2610 }
2611}
2612
2613static void ql_enable_msix(struct ql_adapter *qdev)
2614{
2615 int i;
2616
2617 qdev->intr_count = 1;
2618 /* Get the MSIX vectors. */
2619 if (irq_type == MSIX_IRQ) {
2620 /* Try to alloc space for the msix struct,
2621 * if it fails then go to MSI/legacy.
2622 */
2623 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2624 sizeof(struct msix_entry),
2625 GFP_KERNEL);
2626 if (!qdev->msi_x_entry) {
2627 irq_type = MSI_IRQ;
2628 goto msi;
2629 }
2630
2631 for (i = 0; i < qdev->rx_ring_count; i++)
2632 qdev->msi_x_entry[i].entry = i;
2633
2634 if (!pci_enable_msix
2635 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2636 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2637 qdev->intr_count = qdev->rx_ring_count;
2638 QPRINTK(qdev, IFUP, INFO,
2639 "MSI-X Enabled, got %d vectors.\n",
2640 qdev->intr_count);
2641 return;
2642 } else {
2643 kfree(qdev->msi_x_entry);
2644 qdev->msi_x_entry = NULL;
2645 QPRINTK(qdev, IFUP, WARNING,
2646 "MSI-X Enable failed, trying MSI.\n");
2647 irq_type = MSI_IRQ;
2648 }
2649 }
2650msi:
2651 if (irq_type == MSI_IRQ) {
2652 if (!pci_enable_msi(qdev->pdev)) {
2653 set_bit(QL_MSI_ENABLED, &qdev->flags);
2654 QPRINTK(qdev, IFUP, INFO,
2655 "Running with MSI interrupts.\n");
2656 return;
2657 }
2658 }
2659 irq_type = LEG_IRQ;
c4e84bde
RM
2660 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2661}
2662
2663/*
2664 * Here we build the intr_context structures based on
2665 * our rx_ring count and intr vector count.
2666 * The intr_context structure is used to hook each vector
2667 * to possibly different handlers.
2668 */
2669static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2670{
2671 int i = 0;
2672 struct intr_context *intr_context = &qdev->intr_context[0];
2673
2674 ql_enable_msix(qdev);
2675
2676 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2677 /* Each rx_ring has it's
2678 * own intr_context since we have separate
2679 * vectors for each queue.
2680 * This only true when MSI-X is enabled.
2681 */
2682 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2683 qdev->rx_ring[i].irq = i;
2684 intr_context->intr = i;
2685 intr_context->qdev = qdev;
2686 /*
2687 * We set up each vectors enable/disable/read bits so
2688 * there's no bit/mask calculations in the critical path.
2689 */
2690 intr_context->intr_en_mask =
2691 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2692 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2693 | i;
2694 intr_context->intr_dis_mask =
2695 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2696 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2697 INTR_EN_IHD | i;
2698 intr_context->intr_read_mask =
2699 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2700 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2701 i;
2702
2703 if (i == 0) {
2704 /*
2705 * Default queue handles bcast/mcast plus
2706 * async events. Needs buffers.
2707 */
2708 intr_context->handler = qlge_isr;
2709 sprintf(intr_context->name, "%s-default-queue",
2710 qdev->ndev->name);
2711 } else if (i < qdev->rss_ring_first_cq_id) {
2712 /*
2713 * Outbound queue is for outbound completions only.
2714 */
2715 intr_context->handler = qlge_msix_tx_isr;
c224969e 2716 sprintf(intr_context->name, "%s-tx-%d",
c4e84bde
RM
2717 qdev->ndev->name, i);
2718 } else {
2719 /*
2720 * Inbound queues handle unicast frames only.
2721 */
2722 intr_context->handler = qlge_msix_rx_isr;
c224969e 2723 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde
RM
2724 qdev->ndev->name, i);
2725 }
2726 }
2727 } else {
2728 /*
2729 * All rx_rings use the same intr_context since
2730 * there is only one vector.
2731 */
2732 intr_context->intr = 0;
2733 intr_context->qdev = qdev;
2734 /*
2735 * We set up each vectors enable/disable/read bits so
2736 * there's no bit/mask calculations in the critical path.
2737 */
2738 intr_context->intr_en_mask =
2739 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2740 intr_context->intr_dis_mask =
2741 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2742 INTR_EN_TYPE_DISABLE;
2743 intr_context->intr_read_mask =
2744 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2745 /*
2746 * Single interrupt means one handler for all rings.
2747 */
2748 intr_context->handler = qlge_isr;
2749 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2750 for (i = 0; i < qdev->rx_ring_count; i++)
2751 qdev->rx_ring[i].irq = 0;
2752 }
2753}
2754
2755static void ql_free_irq(struct ql_adapter *qdev)
2756{
2757 int i;
2758 struct intr_context *intr_context = &qdev->intr_context[0];
2759
2760 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2761 if (intr_context->hooked) {
2762 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2763 free_irq(qdev->msi_x_entry[i].vector,
2764 &qdev->rx_ring[i]);
2765 QPRINTK(qdev, IFDOWN, ERR,
2766 "freeing msix interrupt %d.\n", i);
2767 } else {
2768 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2769 QPRINTK(qdev, IFDOWN, ERR,
2770 "freeing msi interrupt %d.\n", i);
2771 }
2772 }
2773 }
2774 ql_disable_msix(qdev);
2775}
2776
2777static int ql_request_irq(struct ql_adapter *qdev)
2778{
2779 int i;
2780 int status = 0;
2781 struct pci_dev *pdev = qdev->pdev;
2782 struct intr_context *intr_context = &qdev->intr_context[0];
2783
2784 ql_resolve_queues_to_irqs(qdev);
2785
2786 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2787 atomic_set(&intr_context->irq_cnt, 0);
2788 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2789 status = request_irq(qdev->msi_x_entry[i].vector,
2790 intr_context->handler,
2791 0,
2792 intr_context->name,
2793 &qdev->rx_ring[i]);
2794 if (status) {
2795 QPRINTK(qdev, IFUP, ERR,
2796 "Failed request for MSIX interrupt %d.\n",
2797 i);
2798 goto err_irq;
2799 } else {
2800 QPRINTK(qdev, IFUP, INFO,
2801 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2802 i,
2803 qdev->rx_ring[i].type ==
2804 DEFAULT_Q ? "DEFAULT_Q" : "",
2805 qdev->rx_ring[i].type ==
2806 TX_Q ? "TX_Q" : "",
2807 qdev->rx_ring[i].type ==
2808 RX_Q ? "RX_Q" : "", intr_context->name);
2809 }
2810 } else {
2811 QPRINTK(qdev, IFUP, DEBUG,
2812 "trying msi or legacy interrupts.\n");
2813 QPRINTK(qdev, IFUP, DEBUG,
2814 "%s: irq = %d.\n", __func__, pdev->irq);
2815 QPRINTK(qdev, IFUP, DEBUG,
2816 "%s: context->name = %s.\n", __func__,
2817 intr_context->name);
2818 QPRINTK(qdev, IFUP, DEBUG,
2819 "%s: dev_id = 0x%p.\n", __func__,
2820 &qdev->rx_ring[0]);
2821 status =
2822 request_irq(pdev->irq, qlge_isr,
2823 test_bit(QL_MSI_ENABLED,
2824 &qdev->
2825 flags) ? 0 : IRQF_SHARED,
2826 intr_context->name, &qdev->rx_ring[0]);
2827 if (status)
2828 goto err_irq;
2829
2830 QPRINTK(qdev, IFUP, ERR,
2831 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2832 i,
2833 qdev->rx_ring[0].type ==
2834 DEFAULT_Q ? "DEFAULT_Q" : "",
2835 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2836 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2837 intr_context->name);
2838 }
2839 intr_context->hooked = 1;
2840 }
2841 return status;
2842err_irq:
2843 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2844 ql_free_irq(qdev);
2845 return status;
2846}
2847
2848static int ql_start_rss(struct ql_adapter *qdev)
2849{
2850 struct ricb *ricb = &qdev->ricb;
2851 int status = 0;
2852 int i;
2853 u8 *hash_id = (u8 *) ricb->hash_cq_id;
2854
2855 memset((void *)ricb, 0, sizeof(ricb));
2856
2857 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2858 ricb->flags =
2859 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2860 RSS_RT6);
2861 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2862
2863 /*
2864 * Fill out the Indirection Table.
2865 */
2866 for (i = 0; i < 32; i++)
2867 hash_id[i] = i & 1;
2868
2869 /*
2870 * Random values for the IPv6 and IPv4 Hash Keys.
2871 */
2872 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2873 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2874
2875 QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2876
2877 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2878 if (status) {
2879 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2880 return status;
2881 }
2882 QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2883 return status;
2884}
2885
2886/* Initialize the frame-to-queue routing. */
2887static int ql_route_initialize(struct ql_adapter *qdev)
2888{
2889 int status = 0;
2890 int i;
2891
2892 /* Clear all the entries in the routing table. */
2893 for (i = 0; i < 16; i++) {
2894 status = ql_set_routing_reg(qdev, i, 0, 0);
2895 if (status) {
2896 QPRINTK(qdev, IFUP, ERR,
2897 "Failed to init routing register for CAM packets.\n");
2898 return status;
2899 }
2900 }
2901
2902 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2903 if (status) {
2904 QPRINTK(qdev, IFUP, ERR,
2905 "Failed to init routing register for error packets.\n");
2906 return status;
2907 }
2908 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2909 if (status) {
2910 QPRINTK(qdev, IFUP, ERR,
2911 "Failed to init routing register for broadcast packets.\n");
2912 return status;
2913 }
2914 /* If we have more than one inbound queue, then turn on RSS in the
2915 * routing block.
2916 */
2917 if (qdev->rss_ring_count > 1) {
2918 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2919 RT_IDX_RSS_MATCH, 1);
2920 if (status) {
2921 QPRINTK(qdev, IFUP, ERR,
2922 "Failed to init routing register for MATCH RSS packets.\n");
2923 return status;
2924 }
2925 }
2926
2927 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2928 RT_IDX_CAM_HIT, 1);
2929 if (status) {
2930 QPRINTK(qdev, IFUP, ERR,
2931 "Failed to init routing register for CAM packets.\n");
2932 return status;
2933 }
2934 return status;
2935}
2936
2937static int ql_adapter_initialize(struct ql_adapter *qdev)
2938{
2939 u32 value, mask;
2940 int i;
2941 int status = 0;
2942
2943 /*
2944 * Set up the System register to halt on errors.
2945 */
2946 value = SYS_EFE | SYS_FAE;
2947 mask = value << 16;
2948 ql_write32(qdev, SYS, mask | value);
2949
2950 /* Set the default queue. */
2951 value = NIC_RCV_CFG_DFQ;
2952 mask = NIC_RCV_CFG_DFQ_MASK;
2953 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
2954
2955 /* Set the MPI interrupt to enabled. */
2956 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
2957
2958 /* Enable the function, set pagesize, enable error checking. */
2959 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
2960 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
2961
2962 /* Set/clear header splitting. */
2963 mask = FSC_VM_PAGESIZE_MASK |
2964 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
2965 ql_write32(qdev, FSC, mask | value);
2966
2967 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
2968 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
2969
2970 /* Start up the rx queues. */
2971 for (i = 0; i < qdev->rx_ring_count; i++) {
2972 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
2973 if (status) {
2974 QPRINTK(qdev, IFUP, ERR,
2975 "Failed to start rx ring[%d].\n", i);
2976 return status;
2977 }
2978 }
2979
2980 /* If there is more than one inbound completion queue
2981 * then download a RICB to configure RSS.
2982 */
2983 if (qdev->rss_ring_count > 1) {
2984 status = ql_start_rss(qdev);
2985 if (status) {
2986 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
2987 return status;
2988 }
2989 }
2990
2991 /* Start up the tx queues. */
2992 for (i = 0; i < qdev->tx_ring_count; i++) {
2993 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
2994 if (status) {
2995 QPRINTK(qdev, IFUP, ERR,
2996 "Failed to start tx ring[%d].\n", i);
2997 return status;
2998 }
2999 }
3000
3001 status = ql_port_initialize(qdev);
3002 if (status) {
3003 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3004 return status;
3005 }
3006
3007 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3008 MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3009 if (status) {
3010 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3011 return status;
3012 }
3013
3014 status = ql_route_initialize(qdev);
3015 if (status) {
3016 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3017 return status;
3018 }
3019
3020 /* Start NAPI for the RSS queues. */
3021 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3022 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3023 i);
3024 napi_enable(&qdev->rx_ring[i].napi);
3025 }
3026
3027 return status;
3028}
3029
3030/* Issue soft reset to chip. */
3031static int ql_adapter_reset(struct ql_adapter *qdev)
3032{
3033 u32 value;
3034 int max_wait_time;
3035 int status = 0;
3036 int resetCnt = 0;
3037
3038#define MAX_RESET_CNT 1
3039issueReset:
3040 resetCnt++;
3041 QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3042 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3043 /* Wait for reset to complete. */
3044 max_wait_time = 3;
3045 QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3046 max_wait_time);
3047 do {
3048 value = ql_read32(qdev, RST_FO);
3049 if ((value & RST_FO_FR) == 0)
3050 break;
3051
3052 ssleep(1);
3053 } while ((--max_wait_time));
3054 if (value & RST_FO_FR) {
3055 QPRINTK(qdev, IFDOWN, ERR,
3056 "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
3057 if (resetCnt < MAX_RESET_CNT)
3058 goto issueReset;
3059 }
3060 if (max_wait_time == 0) {
3061 status = -ETIMEDOUT;
3062 QPRINTK(qdev, IFDOWN, ERR,
3063 "ETIMEOUT!!! errored out of resetting the chip!\n");
3064 }
3065
3066 return status;
3067}
3068
3069static void ql_display_dev_info(struct net_device *ndev)
3070{
3071 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3072
3073 QPRINTK(qdev, PROBE, INFO,
3074 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3075 "XG Roll = %d, XG Rev = %d.\n",
3076 qdev->func,
3077 qdev->chip_rev_id & 0x0000000f,
3078 qdev->chip_rev_id >> 4 & 0x0000000f,
3079 qdev->chip_rev_id >> 8 & 0x0000000f,
3080 qdev->chip_rev_id >> 12 & 0x0000000f);
7c510e4b 3081 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3082}
3083
3084static int ql_adapter_down(struct ql_adapter *qdev)
3085{
3086 struct net_device *ndev = qdev->ndev;
3087 int i, status = 0;
3088 struct rx_ring *rx_ring;
3089
3090 netif_stop_queue(ndev);
3091 netif_carrier_off(ndev);
3092
3093 cancel_delayed_work_sync(&qdev->asic_reset_work);
3094 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3095 cancel_delayed_work_sync(&qdev->mpi_work);
3096
3097 /* The default queue at index 0 is always processed in
3098 * a workqueue.
3099 */
3100 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3101
3102 /* The rest of the rx_rings are processed in
3103 * a workqueue only if it's a single interrupt
3104 * environment (MSI/Legacy).
3105 */
c062076c 3106 for (i = 1; i < qdev->rx_ring_count; i++) {
c4e84bde
RM
3107 rx_ring = &qdev->rx_ring[i];
3108 /* Only the RSS rings use NAPI on multi irq
3109 * environment. Outbound completion processing
3110 * is done in interrupt context.
3111 */
3112 if (i >= qdev->rss_ring_first_cq_id) {
3113 napi_disable(&rx_ring->napi);
3114 } else {
3115 cancel_delayed_work_sync(&rx_ring->rx_work);
3116 }
3117 }
3118
3119 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3120
3121 ql_disable_interrupts(qdev);
3122
3123 ql_tx_ring_clean(qdev);
3124
3125 spin_lock(&qdev->hw_lock);
3126 status = ql_adapter_reset(qdev);
3127 if (status)
3128 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3129 qdev->func);
3130 spin_unlock(&qdev->hw_lock);
3131 return status;
3132}
3133
3134static int ql_adapter_up(struct ql_adapter *qdev)
3135{
3136 int err = 0;
3137
3138 spin_lock(&qdev->hw_lock);
3139 err = ql_adapter_initialize(qdev);
3140 if (err) {
3141 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3142 spin_unlock(&qdev->hw_lock);
3143 goto err_init;
3144 }
3145 spin_unlock(&qdev->hw_lock);
3146 set_bit(QL_ADAPTER_UP, &qdev->flags);
3147 ql_enable_interrupts(qdev);
3148 ql_enable_all_completion_interrupts(qdev);
3149 if ((ql_read32(qdev, STS) & qdev->port_init)) {
3150 netif_carrier_on(qdev->ndev);
3151 netif_start_queue(qdev->ndev);
3152 }
3153
3154 return 0;
3155err_init:
3156 ql_adapter_reset(qdev);
3157 return err;
3158}
3159
3160static int ql_cycle_adapter(struct ql_adapter *qdev)
3161{
3162 int status;
3163
3164 status = ql_adapter_down(qdev);
3165 if (status)
3166 goto error;
3167
3168 status = ql_adapter_up(qdev);
3169 if (status)
3170 goto error;
3171
3172 return status;
3173error:
3174 QPRINTK(qdev, IFUP, ALERT,
3175 "Driver up/down cycle failed, closing device\n");
3176 rtnl_lock();
3177 dev_close(qdev->ndev);
3178 rtnl_unlock();
3179 return status;
3180}
3181
3182static void ql_release_adapter_resources(struct ql_adapter *qdev)
3183{
3184 ql_free_mem_resources(qdev);
3185 ql_free_irq(qdev);
3186}
3187
3188static int ql_get_adapter_resources(struct ql_adapter *qdev)
3189{
3190 int status = 0;
3191
3192 if (ql_alloc_mem_resources(qdev)) {
3193 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3194 return -ENOMEM;
3195 }
3196 status = ql_request_irq(qdev);
3197 if (status)
3198 goto err_irq;
3199 return status;
3200err_irq:
3201 ql_free_mem_resources(qdev);
3202 return status;
3203}
3204
3205static int qlge_close(struct net_device *ndev)
3206{
3207 struct ql_adapter *qdev = netdev_priv(ndev);
3208
3209 /*
3210 * Wait for device to recover from a reset.
3211 * (Rarely happens, but possible.)
3212 */
3213 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3214 msleep(1);
3215 ql_adapter_down(qdev);
3216 ql_release_adapter_resources(qdev);
c4e84bde
RM
3217 return 0;
3218}
3219
3220static int ql_configure_rings(struct ql_adapter *qdev)
3221{
3222 int i;
3223 struct rx_ring *rx_ring;
3224 struct tx_ring *tx_ring;
3225 int cpu_cnt = num_online_cpus();
3226
3227 /*
3228 * For each processor present we allocate one
3229 * rx_ring for outbound completions, and one
3230 * rx_ring for inbound completions. Plus there is
3231 * always the one default queue. For the CPU
3232 * counts we end up with the following rx_rings:
3233 * rx_ring count =
3234 * one default queue +
3235 * (CPU count * outbound completion rx_ring) +
3236 * (CPU count * inbound (RSS) completion rx_ring)
3237 * To keep it simple we limit the total number of
3238 * queues to < 32, so we truncate CPU to 8.
3239 * This limitation can be removed when requested.
3240 */
3241
683d46a9
RM
3242 if (cpu_cnt > MAX_CPUS)
3243 cpu_cnt = MAX_CPUS;
c4e84bde
RM
3244
3245 /*
3246 * rx_ring[0] is always the default queue.
3247 */
3248 /* Allocate outbound completion ring for each CPU. */
3249 qdev->tx_ring_count = cpu_cnt;
3250 /* Allocate inbound completion (RSS) ring for each CPU. */
3251 qdev->rss_ring_count = cpu_cnt;
3252 /* cq_id for the first inbound ring handler. */
3253 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3254 /*
3255 * qdev->rx_ring_count:
3256 * Total number of rx_rings. This includes the one
3257 * default queue, a number of outbound completion
3258 * handler rx_rings, and the number of inbound
3259 * completion handler rx_rings.
3260 */
3261 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3262
c4e84bde
RM
3263 for (i = 0; i < qdev->tx_ring_count; i++) {
3264 tx_ring = &qdev->tx_ring[i];
3265 memset((void *)tx_ring, 0, sizeof(tx_ring));
3266 tx_ring->qdev = qdev;
3267 tx_ring->wq_id = i;
3268 tx_ring->wq_len = qdev->tx_ring_size;
3269 tx_ring->wq_size =
3270 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3271
3272 /*
3273 * The completion queue ID for the tx rings start
3274 * immediately after the default Q ID, which is zero.
3275 */
3276 tx_ring->cq_id = i + 1;
3277 }
3278
3279 for (i = 0; i < qdev->rx_ring_count; i++) {
3280 rx_ring = &qdev->rx_ring[i];
3281 memset((void *)rx_ring, 0, sizeof(rx_ring));
3282 rx_ring->qdev = qdev;
3283 rx_ring->cq_id = i;
3284 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3285 if (i == 0) { /* Default queue at index 0. */
3286 /*
3287 * Default queue handles bcast/mcast plus
3288 * async events. Needs buffers.
3289 */
3290 rx_ring->cq_len = qdev->rx_ring_size;
3291 rx_ring->cq_size =
3292 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3293 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3294 rx_ring->lbq_size =
2c9a0d41 3295 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3296 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3297 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3298 rx_ring->sbq_size =
2c9a0d41 3299 rx_ring->sbq_len * sizeof(__le64);
c4e84bde
RM
3300 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3301 rx_ring->type = DEFAULT_Q;
3302 } else if (i < qdev->rss_ring_first_cq_id) {
3303 /*
3304 * Outbound queue handles outbound completions only.
3305 */
3306 /* outbound cq is same size as tx_ring it services. */
3307 rx_ring->cq_len = qdev->tx_ring_size;
3308 rx_ring->cq_size =
3309 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3310 rx_ring->lbq_len = 0;
3311 rx_ring->lbq_size = 0;
3312 rx_ring->lbq_buf_size = 0;
3313 rx_ring->sbq_len = 0;
3314 rx_ring->sbq_size = 0;
3315 rx_ring->sbq_buf_size = 0;
3316 rx_ring->type = TX_Q;
3317 } else { /* Inbound completions (RSS) queues */
3318 /*
3319 * Inbound queues handle unicast frames only.
3320 */
3321 rx_ring->cq_len = qdev->rx_ring_size;
3322 rx_ring->cq_size =
3323 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3324 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3325 rx_ring->lbq_size =
2c9a0d41 3326 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3327 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3328 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3329 rx_ring->sbq_size =
2c9a0d41 3330 rx_ring->sbq_len * sizeof(__le64);
c4e84bde
RM
3331 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3332 rx_ring->type = RX_Q;
3333 }
3334 }
3335 return 0;
3336}
3337
3338static int qlge_open(struct net_device *ndev)
3339{
3340 int err = 0;
3341 struct ql_adapter *qdev = netdev_priv(ndev);
3342
3343 err = ql_configure_rings(qdev);
3344 if (err)
3345 return err;
3346
3347 err = ql_get_adapter_resources(qdev);
3348 if (err)
3349 goto error_up;
3350
3351 err = ql_adapter_up(qdev);
3352 if (err)
3353 goto error_up;
3354
3355 return err;
3356
3357error_up:
3358 ql_release_adapter_resources(qdev);
c4e84bde
RM
3359 return err;
3360}
3361
3362static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3363{
3364 struct ql_adapter *qdev = netdev_priv(ndev);
3365
3366 if (ndev->mtu == 1500 && new_mtu == 9000) {
3367 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3368 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3369 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3370 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3371 (ndev->mtu == 9000 && new_mtu == 9000)) {
3372 return 0;
3373 } else
3374 return -EINVAL;
3375 ndev->mtu = new_mtu;
3376 return 0;
3377}
3378
3379static struct net_device_stats *qlge_get_stats(struct net_device
3380 *ndev)
3381{
3382 struct ql_adapter *qdev = netdev_priv(ndev);
3383 return &qdev->stats;
3384}
3385
3386static void qlge_set_multicast_list(struct net_device *ndev)
3387{
3388 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3389 struct dev_mc_list *mc_ptr;
3390 int i;
3391
3392 spin_lock(&qdev->hw_lock);
3393 /*
3394 * Set or clear promiscuous mode if a
3395 * transition is taking place.
3396 */
3397 if (ndev->flags & IFF_PROMISC) {
3398 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3399 if (ql_set_routing_reg
3400 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3401 QPRINTK(qdev, HW, ERR,
3402 "Failed to set promiscous mode.\n");
3403 } else {
3404 set_bit(QL_PROMISCUOUS, &qdev->flags);
3405 }
3406 }
3407 } else {
3408 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3409 if (ql_set_routing_reg
3410 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3411 QPRINTK(qdev, HW, ERR,
3412 "Failed to clear promiscous mode.\n");
3413 } else {
3414 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3415 }
3416 }
3417 }
3418
3419 /*
3420 * Set or clear all multicast mode if a
3421 * transition is taking place.
3422 */
3423 if ((ndev->flags & IFF_ALLMULTI) ||
3424 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3425 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3426 if (ql_set_routing_reg
3427 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3428 QPRINTK(qdev, HW, ERR,
3429 "Failed to set all-multi mode.\n");
3430 } else {
3431 set_bit(QL_ALLMULTI, &qdev->flags);
3432 }
3433 }
3434 } else {
3435 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3436 if (ql_set_routing_reg
3437 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3438 QPRINTK(qdev, HW, ERR,
3439 "Failed to clear all-multi mode.\n");
3440 } else {
3441 clear_bit(QL_ALLMULTI, &qdev->flags);
3442 }
3443 }
3444 }
3445
3446 if (ndev->mc_count) {
3447 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3448 i++, mc_ptr = mc_ptr->next)
3449 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3450 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3451 QPRINTK(qdev, HW, ERR,
3452 "Failed to loadmulticast address.\n");
3453 goto exit;
3454 }
3455 if (ql_set_routing_reg
3456 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3457 QPRINTK(qdev, HW, ERR,
3458 "Failed to set multicast match mode.\n");
3459 } else {
3460 set_bit(QL_ALLMULTI, &qdev->flags);
3461 }
3462 }
3463exit:
3464 spin_unlock(&qdev->hw_lock);
3465}
3466
3467static int qlge_set_mac_address(struct net_device *ndev, void *p)
3468{
3469 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3470 struct sockaddr *addr = p;
8668ae92 3471 int ret = 0;
c4e84bde
RM
3472
3473 if (netif_running(ndev))
3474 return -EBUSY;
3475
3476 if (!is_valid_ether_addr(addr->sa_data))
3477 return -EADDRNOTAVAIL;
3478 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3479
3480 spin_lock(&qdev->hw_lock);
3481 if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3482 MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3483 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
8668ae92 3484 ret = -1;
c4e84bde
RM
3485 }
3486 spin_unlock(&qdev->hw_lock);
3487
8668ae92 3488 return ret;
c4e84bde
RM
3489}
3490
3491static void qlge_tx_timeout(struct net_device *ndev)
3492{
3493 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3494 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
3495}
3496
3497static void ql_asic_reset_work(struct work_struct *work)
3498{
3499 struct ql_adapter *qdev =
3500 container_of(work, struct ql_adapter, asic_reset_work.work);
3501 ql_cycle_adapter(qdev);
3502}
3503
3504static void ql_get_board_info(struct ql_adapter *qdev)
3505{
3506 qdev->func =
3507 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3508 if (qdev->func) {
3509 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3510 qdev->port_link_up = STS_PL1;
3511 qdev->port_init = STS_PI1;
3512 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3513 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3514 } else {
3515 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3516 qdev->port_link_up = STS_PL0;
3517 qdev->port_init = STS_PI0;
3518 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3519 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3520 }
3521 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3522}
3523
3524static void ql_release_all(struct pci_dev *pdev)
3525{
3526 struct net_device *ndev = pci_get_drvdata(pdev);
3527 struct ql_adapter *qdev = netdev_priv(ndev);
3528
3529 if (qdev->workqueue) {
3530 destroy_workqueue(qdev->workqueue);
3531 qdev->workqueue = NULL;
3532 }
3533 if (qdev->q_workqueue) {
3534 destroy_workqueue(qdev->q_workqueue);
3535 qdev->q_workqueue = NULL;
3536 }
3537 if (qdev->reg_base)
8668ae92 3538 iounmap(qdev->reg_base);
c4e84bde
RM
3539 if (qdev->doorbell_area)
3540 iounmap(qdev->doorbell_area);
3541 pci_release_regions(pdev);
3542 pci_set_drvdata(pdev, NULL);
3543}
3544
3545static int __devinit ql_init_device(struct pci_dev *pdev,
3546 struct net_device *ndev, int cards_found)
3547{
3548 struct ql_adapter *qdev = netdev_priv(ndev);
3549 int pos, err = 0;
3550 u16 val16;
3551
3552 memset((void *)qdev, 0, sizeof(qdev));
3553 err = pci_enable_device(pdev);
3554 if (err) {
3555 dev_err(&pdev->dev, "PCI device enable failed.\n");
3556 return err;
3557 }
3558
3559 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3560 if (pos <= 0) {
3561 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3562 "aborting.\n");
3563 goto err_out;
3564 } else {
3565 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3566 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3567 val16 |= (PCI_EXP_DEVCTL_CERE |
3568 PCI_EXP_DEVCTL_NFERE |
3569 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3570 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3571 }
3572
3573 err = pci_request_regions(pdev, DRV_NAME);
3574 if (err) {
3575 dev_err(&pdev->dev, "PCI region request failed.\n");
3576 goto err_out;
3577 }
3578
3579 pci_set_master(pdev);
3580 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3581 set_bit(QL_DMA64, &qdev->flags);
3582 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3583 } else {
3584 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3585 if (!err)
3586 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3587 }
3588
3589 if (err) {
3590 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3591 goto err_out;
3592 }
3593
3594 pci_set_drvdata(pdev, ndev);
3595 qdev->reg_base =
3596 ioremap_nocache(pci_resource_start(pdev, 1),
3597 pci_resource_len(pdev, 1));
3598 if (!qdev->reg_base) {
3599 dev_err(&pdev->dev, "Register mapping failed.\n");
3600 err = -ENOMEM;
3601 goto err_out;
3602 }
3603
3604 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3605 qdev->doorbell_area =
3606 ioremap_nocache(pci_resource_start(pdev, 3),
3607 pci_resource_len(pdev, 3));
3608 if (!qdev->doorbell_area) {
3609 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3610 err = -ENOMEM;
3611 goto err_out;
3612 }
3613
3614 ql_get_board_info(qdev);
3615 qdev->ndev = ndev;
3616 qdev->pdev = pdev;
3617 qdev->msg_enable = netif_msg_init(debug, default_msg);
3618 spin_lock_init(&qdev->hw_lock);
3619 spin_lock_init(&qdev->stats_lock);
3620
3621 /* make sure the EEPROM is good */
3622 err = ql_get_flash_params(qdev);
3623 if (err) {
3624 dev_err(&pdev->dev, "Invalid FLASH.\n");
3625 goto err_out;
3626 }
3627
3628 if (!is_valid_ether_addr(qdev->flash.mac_addr))
3629 goto err_out;
3630
3631 memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3632 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3633
3634 /* Set up the default ring sizes. */
3635 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3636 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3637
3638 /* Set up the coalescing parameters. */
3639 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3640 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3641 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3642 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3643
3644 /*
3645 * Set up the operating parameters.
3646 */
3647 qdev->rx_csum = 1;
3648
3649 qdev->q_workqueue = create_workqueue(ndev->name);
3650 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3651 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3652 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3653 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3654
3655 if (!cards_found) {
3656 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3657 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3658 DRV_NAME, DRV_VERSION);
3659 }
3660 return 0;
3661err_out:
3662 ql_release_all(pdev);
3663 pci_disable_device(pdev);
3664 return err;
3665}
3666
25ed7849
SH
3667
3668static const struct net_device_ops qlge_netdev_ops = {
3669 .ndo_open = qlge_open,
3670 .ndo_stop = qlge_close,
3671 .ndo_start_xmit = qlge_send,
3672 .ndo_change_mtu = qlge_change_mtu,
3673 .ndo_get_stats = qlge_get_stats,
3674 .ndo_set_multicast_list = qlge_set_multicast_list,
3675 .ndo_set_mac_address = qlge_set_mac_address,
3676 .ndo_validate_addr = eth_validate_addr,
3677 .ndo_tx_timeout = qlge_tx_timeout,
3678 .ndo_vlan_rx_register = ql_vlan_rx_register,
3679 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3680 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3681};
3682
c4e84bde
RM
3683static int __devinit qlge_probe(struct pci_dev *pdev,
3684 const struct pci_device_id *pci_entry)
3685{
3686 struct net_device *ndev = NULL;
3687 struct ql_adapter *qdev = NULL;
3688 static int cards_found = 0;
3689 int err = 0;
3690
3691 ndev = alloc_etherdev(sizeof(struct ql_adapter));
3692 if (!ndev)
3693 return -ENOMEM;
3694
3695 err = ql_init_device(pdev, ndev, cards_found);
3696 if (err < 0) {
3697 free_netdev(ndev);
3698 return err;
3699 }
3700
3701 qdev = netdev_priv(ndev);
3702 SET_NETDEV_DEV(ndev, &pdev->dev);
3703 ndev->features = (0
3704 | NETIF_F_IP_CSUM
3705 | NETIF_F_SG
3706 | NETIF_F_TSO
3707 | NETIF_F_TSO6
3708 | NETIF_F_TSO_ECN
3709 | NETIF_F_HW_VLAN_TX
3710 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3711
3712 if (test_bit(QL_DMA64, &qdev->flags))
3713 ndev->features |= NETIF_F_HIGHDMA;
3714
3715 /*
3716 * Set up net_device structure.
3717 */
3718 ndev->tx_queue_len = qdev->tx_ring_size;
3719 ndev->irq = pdev->irq;
25ed7849
SH
3720
3721 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 3722 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 3723 ndev->watchdog_timeo = 10 * HZ;
25ed7849 3724
c4e84bde
RM
3725 err = register_netdev(ndev);
3726 if (err) {
3727 dev_err(&pdev->dev, "net device registration failed.\n");
3728 ql_release_all(pdev);
3729 pci_disable_device(pdev);
3730 return err;
3731 }
3732 netif_carrier_off(ndev);
3733 netif_stop_queue(ndev);
3734 ql_display_dev_info(ndev);
3735 cards_found++;
3736 return 0;
3737}
3738
3739static void __devexit qlge_remove(struct pci_dev *pdev)
3740{
3741 struct net_device *ndev = pci_get_drvdata(pdev);
3742 unregister_netdev(ndev);
3743 ql_release_all(pdev);
3744 pci_disable_device(pdev);
3745 free_netdev(ndev);
3746}
3747
3748/*
3749 * This callback is called by the PCI subsystem whenever
3750 * a PCI bus error is detected.
3751 */
3752static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3753 enum pci_channel_state state)
3754{
3755 struct net_device *ndev = pci_get_drvdata(pdev);
3756 struct ql_adapter *qdev = netdev_priv(ndev);
3757
3758 if (netif_running(ndev))
3759 ql_adapter_down(qdev);
3760
3761 pci_disable_device(pdev);
3762
3763 /* Request a slot reset. */
3764 return PCI_ERS_RESULT_NEED_RESET;
3765}
3766
3767/*
3768 * This callback is called after the PCI buss has been reset.
3769 * Basically, this tries to restart the card from scratch.
3770 * This is a shortened version of the device probe/discovery code,
3771 * it resembles the first-half of the () routine.
3772 */
3773static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3774{
3775 struct net_device *ndev = pci_get_drvdata(pdev);
3776 struct ql_adapter *qdev = netdev_priv(ndev);
3777
3778 if (pci_enable_device(pdev)) {
3779 QPRINTK(qdev, IFUP, ERR,
3780 "Cannot re-enable PCI device after reset.\n");
3781 return PCI_ERS_RESULT_DISCONNECT;
3782 }
3783
3784 pci_set_master(pdev);
3785
3786 netif_carrier_off(ndev);
3787 netif_stop_queue(ndev);
3788 ql_adapter_reset(qdev);
3789
3790 /* Make sure the EEPROM is good */
3791 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3792
3793 if (!is_valid_ether_addr(ndev->perm_addr)) {
3794 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3795 return PCI_ERS_RESULT_DISCONNECT;
3796 }
3797
3798 return PCI_ERS_RESULT_RECOVERED;
3799}
3800
3801static void qlge_io_resume(struct pci_dev *pdev)
3802{
3803 struct net_device *ndev = pci_get_drvdata(pdev);
3804 struct ql_adapter *qdev = netdev_priv(ndev);
3805
3806 pci_set_master(pdev);
3807
3808 if (netif_running(ndev)) {
3809 if (ql_adapter_up(qdev)) {
3810 QPRINTK(qdev, IFUP, ERR,
3811 "Device initialization failed after reset.\n");
3812 return;
3813 }
3814 }
3815
3816 netif_device_attach(ndev);
3817}
3818
3819static struct pci_error_handlers qlge_err_handler = {
3820 .error_detected = qlge_io_error_detected,
3821 .slot_reset = qlge_io_slot_reset,
3822 .resume = qlge_io_resume,
3823};
3824
3825static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3826{
3827 struct net_device *ndev = pci_get_drvdata(pdev);
3828 struct ql_adapter *qdev = netdev_priv(ndev);
3829 int err;
3830
3831 netif_device_detach(ndev);
3832
3833 if (netif_running(ndev)) {
3834 err = ql_adapter_down(qdev);
3835 if (!err)
3836 return err;
3837 }
3838
3839 err = pci_save_state(pdev);
3840 if (err)
3841 return err;
3842
3843 pci_disable_device(pdev);
3844
3845 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3846
3847 return 0;
3848}
3849
04da2cf9 3850#ifdef CONFIG_PM
c4e84bde
RM
3851static int qlge_resume(struct pci_dev *pdev)
3852{
3853 struct net_device *ndev = pci_get_drvdata(pdev);
3854 struct ql_adapter *qdev = netdev_priv(ndev);
3855 int err;
3856
3857 pci_set_power_state(pdev, PCI_D0);
3858 pci_restore_state(pdev);
3859 err = pci_enable_device(pdev);
3860 if (err) {
3861 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3862 return err;
3863 }
3864 pci_set_master(pdev);
3865
3866 pci_enable_wake(pdev, PCI_D3hot, 0);
3867 pci_enable_wake(pdev, PCI_D3cold, 0);
3868
3869 if (netif_running(ndev)) {
3870 err = ql_adapter_up(qdev);
3871 if (err)
3872 return err;
3873 }
3874
3875 netif_device_attach(ndev);
3876
3877 return 0;
3878}
04da2cf9 3879#endif /* CONFIG_PM */
c4e84bde
RM
3880
3881static void qlge_shutdown(struct pci_dev *pdev)
3882{
3883 qlge_suspend(pdev, PMSG_SUSPEND);
3884}
3885
3886static struct pci_driver qlge_driver = {
3887 .name = DRV_NAME,
3888 .id_table = qlge_pci_tbl,
3889 .probe = qlge_probe,
3890 .remove = __devexit_p(qlge_remove),
3891#ifdef CONFIG_PM
3892 .suspend = qlge_suspend,
3893 .resume = qlge_resume,
3894#endif
3895 .shutdown = qlge_shutdown,
3896 .err_handler = &qlge_err_handler
3897};
3898
3899static int __init qlge_init_module(void)
3900{
3901 return pci_register_driver(&qlge_driver);
3902}
3903
3904static void __exit qlge_exit(void)
3905{
3906 pci_unregister_driver(&qlge_driver);
3907}
3908
3909module_init(qlge_init_module);
3910module_exit(qlge_exit);