]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/ksz884x.c
net: remove redundant code
[net-next-2.6.git] / drivers / net / ksz884x.c
CommitLineData
8ca86fd8
TH
1/**
2 * drivers/net/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
3 *
4 * Copyright (c) 2009-2010 Micrel, Inc.
5 * Tristram Ha <Tristram.Ha@micrel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
0dc7d2b3
JP
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
8ca86fd8
TH
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
8ca86fd8
TH
22#include <linux/ioport.h>
23#include <linux/pci.h>
24#include <linux/proc_fs.h>
25#include <linux/mii.h>
26#include <linux/platform_device.h>
27#include <linux/ethtool.h>
28#include <linux/etherdevice.h>
29#include <linux/in.h>
30#include <linux/ip.h>
31#include <linux/if_vlan.h>
32#include <linux/crc32.h>
33#include <linux/sched.h>
34
35
36/* DMA Registers */
37
38#define KS_DMA_TX_CTRL 0x0000
39#define DMA_TX_ENABLE 0x00000001
40#define DMA_TX_CRC_ENABLE 0x00000002
41#define DMA_TX_PAD_ENABLE 0x00000004
42#define DMA_TX_LOOPBACK 0x00000100
43#define DMA_TX_FLOW_ENABLE 0x00000200
44#define DMA_TX_CSUM_IP 0x00010000
45#define DMA_TX_CSUM_TCP 0x00020000
46#define DMA_TX_CSUM_UDP 0x00040000
47#define DMA_TX_BURST_SIZE 0x3F000000
48
49#define KS_DMA_RX_CTRL 0x0004
50#define DMA_RX_ENABLE 0x00000001
51#define KS884X_DMA_RX_MULTICAST 0x00000002
52#define DMA_RX_PROMISCUOUS 0x00000004
53#define DMA_RX_ERROR 0x00000008
54#define DMA_RX_UNICAST 0x00000010
55#define DMA_RX_ALL_MULTICAST 0x00000020
56#define DMA_RX_BROADCAST 0x00000040
57#define DMA_RX_FLOW_ENABLE 0x00000200
58#define DMA_RX_CSUM_IP 0x00010000
59#define DMA_RX_CSUM_TCP 0x00020000
60#define DMA_RX_CSUM_UDP 0x00040000
61#define DMA_RX_BURST_SIZE 0x3F000000
62
63#define DMA_BURST_SHIFT 24
64#define DMA_BURST_DEFAULT 8
65
66#define KS_DMA_TX_START 0x0008
67#define KS_DMA_RX_START 0x000C
68#define DMA_START 0x00000001
69
70#define KS_DMA_TX_ADDR 0x0010
71#define KS_DMA_RX_ADDR 0x0014
72
73#define DMA_ADDR_LIST_MASK 0xFFFFFFFC
74#define DMA_ADDR_LIST_SHIFT 2
75
76/* MTR0 */
77#define KS884X_MULTICAST_0_OFFSET 0x0020
78#define KS884X_MULTICAST_1_OFFSET 0x0021
79#define KS884X_MULTICAST_2_OFFSET 0x0022
80#define KS884x_MULTICAST_3_OFFSET 0x0023
81/* MTR1 */
82#define KS884X_MULTICAST_4_OFFSET 0x0024
83#define KS884X_MULTICAST_5_OFFSET 0x0025
84#define KS884X_MULTICAST_6_OFFSET 0x0026
85#define KS884X_MULTICAST_7_OFFSET 0x0027
86
87/* Interrupt Registers */
88
89/* INTEN */
90#define KS884X_INTERRUPTS_ENABLE 0x0028
91/* INTST */
92#define KS884X_INTERRUPTS_STATUS 0x002C
93
94#define KS884X_INT_RX_STOPPED 0x02000000
95#define KS884X_INT_TX_STOPPED 0x04000000
96#define KS884X_INT_RX_OVERRUN 0x08000000
97#define KS884X_INT_TX_EMPTY 0x10000000
98#define KS884X_INT_RX 0x20000000
99#define KS884X_INT_TX 0x40000000
100#define KS884X_INT_PHY 0x80000000
101
102#define KS884X_INT_RX_MASK \
103 (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
104#define KS884X_INT_TX_MASK \
105 (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
106#define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
107
108/* MAC Additional Station Address */
109
110/* MAAL0 */
111#define KS_ADD_ADDR_0_LO 0x0080
112/* MAAH0 */
113#define KS_ADD_ADDR_0_HI 0x0084
114/* MAAL1 */
115#define KS_ADD_ADDR_1_LO 0x0088
116/* MAAH1 */
117#define KS_ADD_ADDR_1_HI 0x008C
118/* MAAL2 */
119#define KS_ADD_ADDR_2_LO 0x0090
120/* MAAH2 */
121#define KS_ADD_ADDR_2_HI 0x0094
122/* MAAL3 */
123#define KS_ADD_ADDR_3_LO 0x0098
124/* MAAH3 */
125#define KS_ADD_ADDR_3_HI 0x009C
126/* MAAL4 */
127#define KS_ADD_ADDR_4_LO 0x00A0
128/* MAAH4 */
129#define KS_ADD_ADDR_4_HI 0x00A4
130/* MAAL5 */
131#define KS_ADD_ADDR_5_LO 0x00A8
132/* MAAH5 */
133#define KS_ADD_ADDR_5_HI 0x00AC
134/* MAAL6 */
135#define KS_ADD_ADDR_6_LO 0x00B0
136/* MAAH6 */
137#define KS_ADD_ADDR_6_HI 0x00B4
138/* MAAL7 */
139#define KS_ADD_ADDR_7_LO 0x00B8
140/* MAAH7 */
141#define KS_ADD_ADDR_7_HI 0x00BC
142/* MAAL8 */
143#define KS_ADD_ADDR_8_LO 0x00C0
144/* MAAH8 */
145#define KS_ADD_ADDR_8_HI 0x00C4
146/* MAAL9 */
147#define KS_ADD_ADDR_9_LO 0x00C8
148/* MAAH9 */
149#define KS_ADD_ADDR_9_HI 0x00CC
150/* MAAL10 */
151#define KS_ADD_ADDR_A_LO 0x00D0
152/* MAAH10 */
153#define KS_ADD_ADDR_A_HI 0x00D4
154/* MAAL11 */
155#define KS_ADD_ADDR_B_LO 0x00D8
156/* MAAH11 */
157#define KS_ADD_ADDR_B_HI 0x00DC
158/* MAAL12 */
159#define KS_ADD_ADDR_C_LO 0x00E0
160/* MAAH12 */
161#define KS_ADD_ADDR_C_HI 0x00E4
162/* MAAL13 */
163#define KS_ADD_ADDR_D_LO 0x00E8
164/* MAAH13 */
165#define KS_ADD_ADDR_D_HI 0x00EC
166/* MAAL14 */
167#define KS_ADD_ADDR_E_LO 0x00F0
168/* MAAH14 */
169#define KS_ADD_ADDR_E_HI 0x00F4
170/* MAAL15 */
171#define KS_ADD_ADDR_F_LO 0x00F8
172/* MAAH15 */
173#define KS_ADD_ADDR_F_HI 0x00FC
174
175#define ADD_ADDR_HI_MASK 0x0000FFFF
176#define ADD_ADDR_ENABLE 0x80000000
177#define ADD_ADDR_INCR 8
178
179/* Miscellaneous Registers */
180
181/* MARL */
182#define KS884X_ADDR_0_OFFSET 0x0200
183#define KS884X_ADDR_1_OFFSET 0x0201
184/* MARM */
185#define KS884X_ADDR_2_OFFSET 0x0202
186#define KS884X_ADDR_3_OFFSET 0x0203
187/* MARH */
188#define KS884X_ADDR_4_OFFSET 0x0204
189#define KS884X_ADDR_5_OFFSET 0x0205
190
191/* OBCR */
192#define KS884X_BUS_CTRL_OFFSET 0x0210
193
194#define BUS_SPEED_125_MHZ 0x0000
195#define BUS_SPEED_62_5_MHZ 0x0001
196#define BUS_SPEED_41_66_MHZ 0x0002
197#define BUS_SPEED_25_MHZ 0x0003
198
199/* EEPCR */
200#define KS884X_EEPROM_CTRL_OFFSET 0x0212
201
202#define EEPROM_CHIP_SELECT 0x0001
203#define EEPROM_SERIAL_CLOCK 0x0002
204#define EEPROM_DATA_OUT 0x0004
205#define EEPROM_DATA_IN 0x0008
206#define EEPROM_ACCESS_ENABLE 0x0010
207
208/* MBIR */
209#define KS884X_MEM_INFO_OFFSET 0x0214
210
211#define RX_MEM_TEST_FAILED 0x0008
212#define RX_MEM_TEST_FINISHED 0x0010
213#define TX_MEM_TEST_FAILED 0x0800
214#define TX_MEM_TEST_FINISHED 0x1000
215
216/* GCR */
217#define KS884X_GLOBAL_CTRL_OFFSET 0x0216
218#define GLOBAL_SOFTWARE_RESET 0x0001
219
220#define KS8841_POWER_MANAGE_OFFSET 0x0218
221
222/* WFCR */
223#define KS8841_WOL_CTRL_OFFSET 0x021A
224#define KS8841_WOL_MAGIC_ENABLE 0x0080
225#define KS8841_WOL_FRAME3_ENABLE 0x0008
226#define KS8841_WOL_FRAME2_ENABLE 0x0004
227#define KS8841_WOL_FRAME1_ENABLE 0x0002
228#define KS8841_WOL_FRAME0_ENABLE 0x0001
229
230/* WF0 */
231#define KS8841_WOL_FRAME_CRC_OFFSET 0x0220
232#define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224
233#define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228
234
235/* IACR */
236#define KS884X_IACR_P 0x04A0
237#define KS884X_IACR_OFFSET KS884X_IACR_P
238
239/* IADR1 */
240#define KS884X_IADR1_P 0x04A2
241#define KS884X_IADR2_P 0x04A4
242#define KS884X_IADR3_P 0x04A6
243#define KS884X_IADR4_P 0x04A8
244#define KS884X_IADR5_P 0x04AA
245
246#define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P
247#define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1)
248
249#define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P
250#define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1)
251#define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P
252#define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1)
253#define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P
254#define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1)
255#define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P
256#define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1)
257#define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P
258
259/* P1MBCR */
260#define KS884X_P1MBCR_P 0x04D0
261#define KS884X_P1MBSR_P 0x04D2
262#define KS884X_PHY1ILR_P 0x04D4
263#define KS884X_PHY1IHR_P 0x04D6
264#define KS884X_P1ANAR_P 0x04D8
265#define KS884X_P1ANLPR_P 0x04DA
266
267/* P2MBCR */
268#define KS884X_P2MBCR_P 0x04E0
269#define KS884X_P2MBSR_P 0x04E2
270#define KS884X_PHY2ILR_P 0x04E4
271#define KS884X_PHY2IHR_P 0x04E6
272#define KS884X_P2ANAR_P 0x04E8
273#define KS884X_P2ANLPR_P 0x04EA
274
275#define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P
276#define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
277
278#define KS884X_PHY_CTRL_OFFSET 0x00
279
280/* Mode Control Register */
281#define PHY_REG_CTRL 0
282
283#define PHY_RESET 0x8000
284#define PHY_LOOPBACK 0x4000
285#define PHY_SPEED_100MBIT 0x2000
286#define PHY_AUTO_NEG_ENABLE 0x1000
287#define PHY_POWER_DOWN 0x0800
288#define PHY_MII_DISABLE 0x0400
289#define PHY_AUTO_NEG_RESTART 0x0200
290#define PHY_FULL_DUPLEX 0x0100
291#define PHY_COLLISION_TEST 0x0080
292#define PHY_HP_MDIX 0x0020
293#define PHY_FORCE_MDIX 0x0010
294#define PHY_AUTO_MDIX_DISABLE 0x0008
295#define PHY_REMOTE_FAULT_DISABLE 0x0004
296#define PHY_TRANSMIT_DISABLE 0x0002
297#define PHY_LED_DISABLE 0x0001
298
299#define KS884X_PHY_STATUS_OFFSET 0x02
300
301/* Mode Status Register */
302#define PHY_REG_STATUS 1
303
304#define PHY_100BT4_CAPABLE 0x8000
305#define PHY_100BTX_FD_CAPABLE 0x4000
306#define PHY_100BTX_CAPABLE 0x2000
307#define PHY_10BT_FD_CAPABLE 0x1000
308#define PHY_10BT_CAPABLE 0x0800
309#define PHY_MII_SUPPRESS_CAPABLE 0x0040
310#define PHY_AUTO_NEG_ACKNOWLEDGE 0x0020
311#define PHY_REMOTE_FAULT 0x0010
312#define PHY_AUTO_NEG_CAPABLE 0x0008
313#define PHY_LINK_STATUS 0x0004
314#define PHY_JABBER_DETECT 0x0002
315#define PHY_EXTENDED_CAPABILITY 0x0001
316
317#define KS884X_PHY_ID_1_OFFSET 0x04
318#define KS884X_PHY_ID_2_OFFSET 0x06
319
320/* PHY Identifier Registers */
321#define PHY_REG_ID_1 2
322#define PHY_REG_ID_2 3
323
324#define KS884X_PHY_AUTO_NEG_OFFSET 0x08
325
326/* Auto-Negotiation Advertisement Register */
327#define PHY_REG_AUTO_NEGOTIATION 4
328
329#define PHY_AUTO_NEG_NEXT_PAGE 0x8000
330#define PHY_AUTO_NEG_REMOTE_FAULT 0x2000
331/* Not supported. */
332#define PHY_AUTO_NEG_ASYM_PAUSE 0x0800
333#define PHY_AUTO_NEG_SYM_PAUSE 0x0400
334#define PHY_AUTO_NEG_100BT4 0x0200
335#define PHY_AUTO_NEG_100BTX_FD 0x0100
336#define PHY_AUTO_NEG_100BTX 0x0080
337#define PHY_AUTO_NEG_10BT_FD 0x0040
338#define PHY_AUTO_NEG_10BT 0x0020
339#define PHY_AUTO_NEG_SELECTOR 0x001F
340#define PHY_AUTO_NEG_802_3 0x0001
341
342#define PHY_AUTO_NEG_PAUSE (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
343
344#define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A
345
346/* Auto-Negotiation Link Partner Ability Register */
347#define PHY_REG_REMOTE_CAPABILITY 5
348
349#define PHY_REMOTE_NEXT_PAGE 0x8000
350#define PHY_REMOTE_ACKNOWLEDGE 0x4000
351#define PHY_REMOTE_REMOTE_FAULT 0x2000
352#define PHY_REMOTE_SYM_PAUSE 0x0400
353#define PHY_REMOTE_100BTX_FD 0x0100
354#define PHY_REMOTE_100BTX 0x0080
355#define PHY_REMOTE_10BT_FD 0x0040
356#define PHY_REMOTE_10BT 0x0020
357
358/* P1VCT */
359#define KS884X_P1VCT_P 0x04F0
360#define KS884X_P1PHYCTRL_P 0x04F2
361
362/* P2VCT */
363#define KS884X_P2VCT_P 0x04F4
364#define KS884X_P2PHYCTRL_P 0x04F6
365
366#define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P
367#define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P)
368
369#define KS884X_PHY_LINK_MD_OFFSET 0x00
370
371#define PHY_START_CABLE_DIAG 0x8000
372#define PHY_CABLE_DIAG_RESULT 0x6000
373#define PHY_CABLE_STAT_NORMAL 0x0000
374#define PHY_CABLE_STAT_OPEN 0x2000
375#define PHY_CABLE_STAT_SHORT 0x4000
376#define PHY_CABLE_STAT_FAILED 0x6000
377#define PHY_CABLE_10M_SHORT 0x1000
378#define PHY_CABLE_FAULT_COUNTER 0x01FF
379
380#define KS884X_PHY_PHY_CTRL_OFFSET 0x02
381
382#define PHY_STAT_REVERSED_POLARITY 0x0020
383#define PHY_STAT_MDIX 0x0010
384#define PHY_FORCE_LINK 0x0008
385#define PHY_POWER_SAVING_DISABLE 0x0004
386#define PHY_REMOTE_LOOPBACK 0x0002
387
388/* SIDER */
389#define KS884X_SIDER_P 0x0400
390#define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P
391#define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1)
392
393#define REG_FAMILY_ID 0x88
394
395#define REG_CHIP_ID_41 0x8810
396#define REG_CHIP_ID_42 0x8800
397
398#define KS884X_CHIP_ID_MASK_41 0xFF10
399#define KS884X_CHIP_ID_MASK 0xFFF0
400#define KS884X_CHIP_ID_SHIFT 4
401#define KS884X_REVISION_MASK 0x000E
402#define KS884X_REVISION_SHIFT 1
403#define KS8842_START 0x0001
404
405#define CHIP_IP_41_M 0x8810
406#define CHIP_IP_42_M 0x8800
407#define CHIP_IP_61_M 0x8890
408#define CHIP_IP_62_M 0x8880
409
410#define CHIP_IP_41_P 0x8850
411#define CHIP_IP_42_P 0x8840
412#define CHIP_IP_61_P 0x88D0
413#define CHIP_IP_62_P 0x88C0
414
415/* SGCR1 */
416#define KS8842_SGCR1_P 0x0402
417#define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P
418
419#define SWITCH_PASS_ALL 0x8000
420#define SWITCH_TX_FLOW_CTRL 0x2000
421#define SWITCH_RX_FLOW_CTRL 0x1000
422#define SWITCH_CHECK_LENGTH 0x0800
423#define SWITCH_AGING_ENABLE 0x0400
424#define SWITCH_FAST_AGING 0x0200
425#define SWITCH_AGGR_BACKOFF 0x0100
426#define SWITCH_PASS_PAUSE 0x0008
427#define SWITCH_LINK_AUTO_AGING 0x0001
428
429/* SGCR2 */
430#define KS8842_SGCR2_P 0x0404
431#define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P
432
433#define SWITCH_VLAN_ENABLE 0x8000
434#define SWITCH_IGMP_SNOOP 0x4000
435#define IPV6_MLD_SNOOP_ENABLE 0x2000
436#define IPV6_MLD_SNOOP_OPTION 0x1000
437#define PRIORITY_SCHEME_SELECT 0x0800
438#define SWITCH_MIRROR_RX_TX 0x0100
439#define UNICAST_VLAN_BOUNDARY 0x0080
440#define MULTICAST_STORM_DISABLE 0x0040
441#define SWITCH_BACK_PRESSURE 0x0020
442#define FAIR_FLOW_CTRL 0x0010
443#define NO_EXC_COLLISION_DROP 0x0008
444#define SWITCH_HUGE_PACKET 0x0004
445#define SWITCH_LEGAL_PACKET 0x0002
446#define SWITCH_BUF_RESERVE 0x0001
447
448/* SGCR3 */
449#define KS8842_SGCR3_P 0x0406
450#define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P
451
452#define BROADCAST_STORM_RATE_LO 0xFF00
453#define SWITCH_REPEATER 0x0080
454#define SWITCH_HALF_DUPLEX 0x0040
455#define SWITCH_FLOW_CTRL 0x0020
456#define SWITCH_10_MBIT 0x0010
457#define SWITCH_REPLACE_NULL_VID 0x0008
458#define BROADCAST_STORM_RATE_HI 0x0007
459
460#define BROADCAST_STORM_RATE 0x07FF
461
462/* SGCR4 */
463#define KS8842_SGCR4_P 0x0408
464
465/* SGCR5 */
466#define KS8842_SGCR5_P 0x040A
467#define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P
468
469#define LED_MODE 0x8200
470#define LED_SPEED_DUPLEX_ACT 0x0000
471#define LED_SPEED_DUPLEX_LINK_ACT 0x8000
472#define LED_DUPLEX_10_100 0x0200
473
474/* SGCR6 */
475#define KS8842_SGCR6_P 0x0410
476#define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P
477
478#define KS8842_PRIORITY_MASK 3
479#define KS8842_PRIORITY_SHIFT 2
480
481/* SGCR7 */
482#define KS8842_SGCR7_P 0x0412
483#define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P
484
485#define SWITCH_UNK_DEF_PORT_ENABLE 0x0008
486#define SWITCH_UNK_DEF_PORT_3 0x0004
487#define SWITCH_UNK_DEF_PORT_2 0x0002
488#define SWITCH_UNK_DEF_PORT_1 0x0001
489
490/* MACAR1 */
491#define KS8842_MACAR1_P 0x0470
492#define KS8842_MACAR2_P 0x0472
493#define KS8842_MACAR3_P 0x0474
494#define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P
495#define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1)
496#define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P
497#define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1)
498#define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P
499#define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1)
500
501/* TOSR1 */
502#define KS8842_TOSR1_P 0x0480
503#define KS8842_TOSR2_P 0x0482
504#define KS8842_TOSR3_P 0x0484
505#define KS8842_TOSR4_P 0x0486
506#define KS8842_TOSR5_P 0x0488
507#define KS8842_TOSR6_P 0x048A
508#define KS8842_TOSR7_P 0x0490
509#define KS8842_TOSR8_P 0x0492
510#define KS8842_TOS_1_OFFSET KS8842_TOSR1_P
511#define KS8842_TOS_2_OFFSET KS8842_TOSR2_P
512#define KS8842_TOS_3_OFFSET KS8842_TOSR3_P
513#define KS8842_TOS_4_OFFSET KS8842_TOSR4_P
514#define KS8842_TOS_5_OFFSET KS8842_TOSR5_P
515#define KS8842_TOS_6_OFFSET KS8842_TOSR6_P
516
517#define KS8842_TOS_7_OFFSET KS8842_TOSR7_P
518#define KS8842_TOS_8_OFFSET KS8842_TOSR8_P
519
520/* P1CR1 */
521#define KS8842_P1CR1_P 0x0500
522#define KS8842_P1CR2_P 0x0502
523#define KS8842_P1VIDR_P 0x0504
524#define KS8842_P1CR3_P 0x0506
525#define KS8842_P1IRCR_P 0x0508
526#define KS8842_P1ERCR_P 0x050A
527#define KS884X_P1SCSLMD_P 0x0510
528#define KS884X_P1CR4_P 0x0512
529#define KS884X_P1SR_P 0x0514
530
531/* P2CR1 */
532#define KS8842_P2CR1_P 0x0520
533#define KS8842_P2CR2_P 0x0522
534#define KS8842_P2VIDR_P 0x0524
535#define KS8842_P2CR3_P 0x0526
536#define KS8842_P2IRCR_P 0x0528
537#define KS8842_P2ERCR_P 0x052A
538#define KS884X_P2SCSLMD_P 0x0530
539#define KS884X_P2CR4_P 0x0532
540#define KS884X_P2SR_P 0x0534
541
542/* P3CR1 */
543#define KS8842_P3CR1_P 0x0540
544#define KS8842_P3CR2_P 0x0542
545#define KS8842_P3VIDR_P 0x0544
546#define KS8842_P3CR3_P 0x0546
547#define KS8842_P3IRCR_P 0x0548
548#define KS8842_P3ERCR_P 0x054A
549
550#define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P
551#define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P
552#define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P
553
554#define PORT_CTRL_ADDR(port, addr) \
555 (addr = KS8842_PORT_1_CTRL_1 + (port) * \
556 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
557
558#define KS8842_PORT_CTRL_1_OFFSET 0x00
559
560#define PORT_BROADCAST_STORM 0x0080
561#define PORT_DIFFSERV_ENABLE 0x0040
562#define PORT_802_1P_ENABLE 0x0020
563#define PORT_BASED_PRIORITY_MASK 0x0018
564#define PORT_BASED_PRIORITY_BASE 0x0003
565#define PORT_BASED_PRIORITY_SHIFT 3
566#define PORT_BASED_PRIORITY_0 0x0000
567#define PORT_BASED_PRIORITY_1 0x0008
568#define PORT_BASED_PRIORITY_2 0x0010
569#define PORT_BASED_PRIORITY_3 0x0018
570#define PORT_INSERT_TAG 0x0004
571#define PORT_REMOVE_TAG 0x0002
572#define PORT_PRIO_QUEUE_ENABLE 0x0001
573
574#define KS8842_PORT_CTRL_2_OFFSET 0x02
575
576#define PORT_INGRESS_VLAN_FILTER 0x4000
577#define PORT_DISCARD_NON_VID 0x2000
578#define PORT_FORCE_FLOW_CTRL 0x1000
579#define PORT_BACK_PRESSURE 0x0800
580#define PORT_TX_ENABLE 0x0400
581#define PORT_RX_ENABLE 0x0200
582#define PORT_LEARN_DISABLE 0x0100
583#define PORT_MIRROR_SNIFFER 0x0080
584#define PORT_MIRROR_RX 0x0040
585#define PORT_MIRROR_TX 0x0020
586#define PORT_USER_PRIORITY_CEILING 0x0008
587#define PORT_VLAN_MEMBERSHIP 0x0007
588
589#define KS8842_PORT_CTRL_VID_OFFSET 0x04
590
591#define PORT_DEFAULT_VID 0x0001
592
593#define KS8842_PORT_CTRL_3_OFFSET 0x06
594
595#define PORT_INGRESS_LIMIT_MODE 0x000C
596#define PORT_INGRESS_ALL 0x0000
597#define PORT_INGRESS_UNICAST 0x0004
598#define PORT_INGRESS_MULTICAST 0x0008
599#define PORT_INGRESS_BROADCAST 0x000C
600#define PORT_COUNT_IFG 0x0002
601#define PORT_COUNT_PREAMBLE 0x0001
602
603#define KS8842_PORT_IN_RATE_OFFSET 0x08
604#define KS8842_PORT_OUT_RATE_OFFSET 0x0A
605
606#define PORT_PRIORITY_RATE 0x0F
607#define PORT_PRIORITY_RATE_SHIFT 4
608
609#define KS884X_PORT_LINK_MD 0x10
610
611#define PORT_CABLE_10M_SHORT 0x8000
612#define PORT_CABLE_DIAG_RESULT 0x6000
613#define PORT_CABLE_STAT_NORMAL 0x0000
614#define PORT_CABLE_STAT_OPEN 0x2000
615#define PORT_CABLE_STAT_SHORT 0x4000
616#define PORT_CABLE_STAT_FAILED 0x6000
617#define PORT_START_CABLE_DIAG 0x1000
618#define PORT_FORCE_LINK 0x0800
619#define PORT_POWER_SAVING_DISABLE 0x0400
620#define PORT_PHY_REMOTE_LOOPBACK 0x0200
621#define PORT_CABLE_FAULT_COUNTER 0x01FF
622
623#define KS884X_PORT_CTRL_4_OFFSET 0x12
624
625#define PORT_LED_OFF 0x8000
626#define PORT_TX_DISABLE 0x4000
627#define PORT_AUTO_NEG_RESTART 0x2000
628#define PORT_REMOTE_FAULT_DISABLE 0x1000
629#define PORT_POWER_DOWN 0x0800
630#define PORT_AUTO_MDIX_DISABLE 0x0400
631#define PORT_FORCE_MDIX 0x0200
632#define PORT_LOOPBACK 0x0100
633#define PORT_AUTO_NEG_ENABLE 0x0080
634#define PORT_FORCE_100_MBIT 0x0040
635#define PORT_FORCE_FULL_DUPLEX 0x0020
636#define PORT_AUTO_NEG_SYM_PAUSE 0x0010
637#define PORT_AUTO_NEG_100BTX_FD 0x0008
638#define PORT_AUTO_NEG_100BTX 0x0004
639#define PORT_AUTO_NEG_10BT_FD 0x0002
640#define PORT_AUTO_NEG_10BT 0x0001
641
642#define KS884X_PORT_STATUS_OFFSET 0x14
643
644#define PORT_HP_MDIX 0x8000
645#define PORT_REVERSED_POLARITY 0x2000
646#define PORT_RX_FLOW_CTRL 0x0800
647#define PORT_TX_FLOW_CTRL 0x1000
648#define PORT_STATUS_SPEED_100MBIT 0x0400
649#define PORT_STATUS_FULL_DUPLEX 0x0200
650#define PORT_REMOTE_FAULT 0x0100
651#define PORT_MDIX_STATUS 0x0080
652#define PORT_AUTO_NEG_COMPLETE 0x0040
653#define PORT_STATUS_LINK_GOOD 0x0020
654#define PORT_REMOTE_SYM_PAUSE 0x0010
655#define PORT_REMOTE_100BTX_FD 0x0008
656#define PORT_REMOTE_100BTX 0x0004
657#define PORT_REMOTE_10BT_FD 0x0002
658#define PORT_REMOTE_10BT 0x0001
659
660/*
661#define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
662#define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000
663#define STATIC_MAC_TABLE_VALID 00-00080000-00000000
664#define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000
665#define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000
666#define STATIC_MAC_TABLE_FID 00-03C00000-00000000
667*/
668
669#define STATIC_MAC_TABLE_ADDR 0x0000FFFF
670#define STATIC_MAC_TABLE_FWD_PORTS 0x00070000
671#define STATIC_MAC_TABLE_VALID 0x00080000
672#define STATIC_MAC_TABLE_OVERRIDE 0x00100000
673#define STATIC_MAC_TABLE_USE_FID 0x00200000
674#define STATIC_MAC_TABLE_FID 0x03C00000
675
676#define STATIC_MAC_FWD_PORTS_SHIFT 16
677#define STATIC_MAC_FID_SHIFT 22
678
679/*
680#define VLAN_TABLE_VID 00-00000000-00000FFF
681#define VLAN_TABLE_FID 00-00000000-0000F000
682#define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000
683#define VLAN_TABLE_VALID 00-00000000-00080000
684*/
685
686#define VLAN_TABLE_VID 0x00000FFF
687#define VLAN_TABLE_FID 0x0000F000
688#define VLAN_TABLE_MEMBERSHIP 0x00070000
689#define VLAN_TABLE_VALID 0x00080000
690
691#define VLAN_TABLE_FID_SHIFT 12
692#define VLAN_TABLE_MEMBERSHIP_SHIFT 16
693
694/*
695#define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
696#define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000
697#define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000
698#define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000
699#define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000
700#define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000
701#define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000
702#define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000
703*/
704
705#define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF
706#define DYNAMIC_MAC_TABLE_FID 0x000F0000
707#define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000
708#define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000
709#define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000
710
711#define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03
712#define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04
713#define DYNAMIC_MAC_TABLE_RESERVED 0x78
714#define DYNAMIC_MAC_TABLE_NOT_READY 0x80
715
716#define DYNAMIC_MAC_FID_SHIFT 16
717#define DYNAMIC_MAC_SRC_PORT_SHIFT 20
718#define DYNAMIC_MAC_TIMESTAMP_SHIFT 22
719#define DYNAMIC_MAC_ENTRIES_SHIFT 24
720#define DYNAMIC_MAC_ENTRIES_H_SHIFT 8
721
722/*
723#define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF
724#define MIB_COUNTER_VALID 00-00000000-40000000
725#define MIB_COUNTER_OVERFLOW 00-00000000-80000000
726*/
727
728#define MIB_COUNTER_VALUE 0x3FFFFFFF
729#define MIB_COUNTER_VALID 0x40000000
730#define MIB_COUNTER_OVERFLOW 0x80000000
731
732#define MIB_PACKET_DROPPED 0x0000FFFF
733
734#define KS_MIB_PACKET_DROPPED_TX_0 0x100
735#define KS_MIB_PACKET_DROPPED_TX_1 0x101
736#define KS_MIB_PACKET_DROPPED_TX 0x102
737#define KS_MIB_PACKET_DROPPED_RX_0 0x103
738#define KS_MIB_PACKET_DROPPED_RX_1 0x104
739#define KS_MIB_PACKET_DROPPED_RX 0x105
740
741/* Change default LED mode. */
742#define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT
743
744#define MAC_ADDR_LEN 6
745#define MAC_ADDR_ORDER(i) (MAC_ADDR_LEN - 1 - (i))
746
747#define MAX_ETHERNET_BODY_SIZE 1500
748#define ETHERNET_HEADER_SIZE 14
749
750#define MAX_ETHERNET_PACKET_SIZE \
751 (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
752
753#define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4)
754#define MAX_RX_BUF_SIZE (1912 + 4)
755
756#define ADDITIONAL_ENTRIES 16
757#define MAX_MULTICAST_LIST 32
758
759#define HW_MULTICAST_SIZE 8
760
761#define HW_TO_DEV_PORT(port) (port - 1)
762
763enum {
764 media_connected,
765 media_disconnected
766};
767
768enum {
769 OID_COUNTER_UNKOWN,
770
771 OID_COUNTER_FIRST,
772
773 /* total transmit errors */
774 OID_COUNTER_XMIT_ERROR,
775
776 /* total receive errors */
777 OID_COUNTER_RCV_ERROR,
778
779 OID_COUNTER_LAST
780};
781
782/*
783 * Hardware descriptor definitions
784 */
785
786#define DESC_ALIGNMENT 16
787#define BUFFER_ALIGNMENT 8
788
789#define NUM_OF_RX_DESC 64
790#define NUM_OF_TX_DESC 64
791
792#define KS_DESC_RX_FRAME_LEN 0x000007FF
793#define KS_DESC_RX_FRAME_TYPE 0x00008000
794#define KS_DESC_RX_ERROR_CRC 0x00010000
795#define KS_DESC_RX_ERROR_RUNT 0x00020000
796#define KS_DESC_RX_ERROR_TOO_LONG 0x00040000
797#define KS_DESC_RX_ERROR_PHY 0x00080000
798#define KS884X_DESC_RX_PORT_MASK 0x00300000
799#define KS_DESC_RX_MULTICAST 0x01000000
800#define KS_DESC_RX_ERROR 0x02000000
801#define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000
802#define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000
803#define KS_DESC_RX_ERROR_CSUM_IP 0x10000000
804#define KS_DESC_RX_LAST 0x20000000
805#define KS_DESC_RX_FIRST 0x40000000
806#define KS_DESC_RX_ERROR_COND \
807 (KS_DESC_RX_ERROR_CRC | \
808 KS_DESC_RX_ERROR_RUNT | \
809 KS_DESC_RX_ERROR_PHY | \
810 KS_DESC_RX_ERROR_TOO_LONG)
811
812#define KS_DESC_HW_OWNED 0x80000000
813
814#define KS_DESC_BUF_SIZE 0x000007FF
815#define KS884X_DESC_TX_PORT_MASK 0x00300000
816#define KS_DESC_END_OF_RING 0x02000000
817#define KS_DESC_TX_CSUM_GEN_UDP 0x04000000
818#define KS_DESC_TX_CSUM_GEN_TCP 0x08000000
819#define KS_DESC_TX_CSUM_GEN_IP 0x10000000
820#define KS_DESC_TX_LAST 0x20000000
821#define KS_DESC_TX_FIRST 0x40000000
822#define KS_DESC_TX_INTERRUPT 0x80000000
823
824#define KS_DESC_PORT_SHIFT 20
825
826#define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE)
827
828#define KS_DESC_TX_MASK \
829 (KS_DESC_TX_INTERRUPT | \
830 KS_DESC_TX_FIRST | \
831 KS_DESC_TX_LAST | \
832 KS_DESC_TX_CSUM_GEN_IP | \
833 KS_DESC_TX_CSUM_GEN_TCP | \
834 KS_DESC_TX_CSUM_GEN_UDP | \
835 KS_DESC_BUF_SIZE)
836
837struct ksz_desc_rx_stat {
838#ifdef __BIG_ENDIAN_BITFIELD
839 u32 hw_owned:1;
840 u32 first_desc:1;
841 u32 last_desc:1;
842 u32 csum_err_ip:1;
843 u32 csum_err_tcp:1;
844 u32 csum_err_udp:1;
845 u32 error:1;
846 u32 multicast:1;
847 u32 src_port:4;
848 u32 err_phy:1;
849 u32 err_too_long:1;
850 u32 err_runt:1;
851 u32 err_crc:1;
852 u32 frame_type:1;
853 u32 reserved1:4;
854 u32 frame_len:11;
855#else
856 u32 frame_len:11;
857 u32 reserved1:4;
858 u32 frame_type:1;
859 u32 err_crc:1;
860 u32 err_runt:1;
861 u32 err_too_long:1;
862 u32 err_phy:1;
863 u32 src_port:4;
864 u32 multicast:1;
865 u32 error:1;
866 u32 csum_err_udp:1;
867 u32 csum_err_tcp:1;
868 u32 csum_err_ip:1;
869 u32 last_desc:1;
870 u32 first_desc:1;
871 u32 hw_owned:1;
872#endif
873};
874
875struct ksz_desc_tx_stat {
876#ifdef __BIG_ENDIAN_BITFIELD
877 u32 hw_owned:1;
878 u32 reserved1:31;
879#else
880 u32 reserved1:31;
881 u32 hw_owned:1;
882#endif
883};
884
885struct ksz_desc_rx_buf {
886#ifdef __BIG_ENDIAN_BITFIELD
887 u32 reserved4:6;
888 u32 end_of_ring:1;
889 u32 reserved3:14;
890 u32 buf_size:11;
891#else
892 u32 buf_size:11;
893 u32 reserved3:14;
894 u32 end_of_ring:1;
895 u32 reserved4:6;
896#endif
897};
898
899struct ksz_desc_tx_buf {
900#ifdef __BIG_ENDIAN_BITFIELD
901 u32 intr:1;
902 u32 first_seg:1;
903 u32 last_seg:1;
904 u32 csum_gen_ip:1;
905 u32 csum_gen_tcp:1;
906 u32 csum_gen_udp:1;
907 u32 end_of_ring:1;
908 u32 reserved4:1;
909 u32 dest_port:4;
910 u32 reserved3:9;
911 u32 buf_size:11;
912#else
913 u32 buf_size:11;
914 u32 reserved3:9;
915 u32 dest_port:4;
916 u32 reserved4:1;
917 u32 end_of_ring:1;
918 u32 csum_gen_udp:1;
919 u32 csum_gen_tcp:1;
920 u32 csum_gen_ip:1;
921 u32 last_seg:1;
922 u32 first_seg:1;
923 u32 intr:1;
924#endif
925};
926
927union desc_stat {
928 struct ksz_desc_rx_stat rx;
929 struct ksz_desc_tx_stat tx;
930 u32 data;
931};
932
933union desc_buf {
934 struct ksz_desc_rx_buf rx;
935 struct ksz_desc_tx_buf tx;
936 u32 data;
937};
938
939/**
940 * struct ksz_hw_desc - Hardware descriptor data structure
941 * @ctrl: Descriptor control value.
942 * @buf: Descriptor buffer value.
943 * @addr: Physical address of memory buffer.
944 * @next: Pointer to next hardware descriptor.
945 */
946struct ksz_hw_desc {
947 union desc_stat ctrl;
948 union desc_buf buf;
949 u32 addr;
950 u32 next;
951};
952
953/**
954 * struct ksz_sw_desc - Software descriptor data structure
955 * @ctrl: Descriptor control value.
956 * @buf: Descriptor buffer value.
957 * @buf_size: Current buffers size value in hardware descriptor.
958 */
959struct ksz_sw_desc {
960 union desc_stat ctrl;
961 union desc_buf buf;
962 u32 buf_size;
963};
964
965/**
966 * struct ksz_dma_buf - OS dependent DMA buffer data structure
967 * @skb: Associated socket buffer.
968 * @dma: Associated physical DMA address.
969 * len: Actual len used.
970 */
971struct ksz_dma_buf {
972 struct sk_buff *skb;
973 dma_addr_t dma;
974 int len;
975};
976
977/**
978 * struct ksz_desc - Descriptor structure
979 * @phw: Hardware descriptor pointer to uncached physical memory.
980 * @sw: Cached memory to hold hardware descriptor values for
981 * manipulation.
982 * @dma_buf: Operating system dependent data structure to hold physical
983 * memory buffer allocation information.
984 */
985struct ksz_desc {
986 struct ksz_hw_desc *phw;
987 struct ksz_sw_desc sw;
988 struct ksz_dma_buf dma_buf;
989};
990
991#define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf))
992
993/**
994 * struct ksz_desc_info - Descriptor information data structure
995 * @ring: First descriptor in the ring.
996 * @cur: Current descriptor being manipulated.
997 * @ring_virt: First hardware descriptor in the ring.
998 * @ring_phys: The physical address of the first descriptor of the ring.
999 * @size: Size of hardware descriptor.
1000 * @alloc: Number of descriptors allocated.
1001 * @avail: Number of descriptors available for use.
1002 * @last: Index for last descriptor released to hardware.
1003 * @next: Index for next descriptor available for use.
1004 * @mask: Mask for index wrapping.
1005 */
1006struct ksz_desc_info {
1007 struct ksz_desc *ring;
1008 struct ksz_desc *cur;
1009 struct ksz_hw_desc *ring_virt;
1010 u32 ring_phys;
1011 int size;
1012 int alloc;
1013 int avail;
1014 int last;
1015 int next;
1016 int mask;
1017};
1018
1019/*
1020 * KSZ8842 switch definitions
1021 */
1022
1023enum {
1024 TABLE_STATIC_MAC = 0,
1025 TABLE_VLAN,
1026 TABLE_DYNAMIC_MAC,
1027 TABLE_MIB
1028};
1029
1030#define LEARNED_MAC_TABLE_ENTRIES 1024
1031#define STATIC_MAC_TABLE_ENTRIES 8
1032
1033/**
1034 * struct ksz_mac_table - Static MAC table data structure
1035 * @mac_addr: MAC address to filter.
1036 * @vid: VID value.
1037 * @fid: FID value.
1038 * @ports: Port membership.
1039 * @override: Override setting.
1040 * @use_fid: FID use setting.
1041 * @valid: Valid setting indicating the entry is being used.
1042 */
1043struct ksz_mac_table {
1044 u8 mac_addr[MAC_ADDR_LEN];
1045 u16 vid;
1046 u8 fid;
1047 u8 ports;
1048 u8 override:1;
1049 u8 use_fid:1;
1050 u8 valid:1;
1051};
1052
1053#define VLAN_TABLE_ENTRIES 16
1054
1055/**
1056 * struct ksz_vlan_table - VLAN table data structure
1057 * @vid: VID value.
1058 * @fid: FID value.
1059 * @member: Port membership.
1060 */
1061struct ksz_vlan_table {
1062 u16 vid;
1063 u8 fid;
1064 u8 member;
1065};
1066
1067#define DIFFSERV_ENTRIES 64
1068#define PRIO_802_1P_ENTRIES 8
1069#define PRIO_QUEUES 4
1070
1071#define SWITCH_PORT_NUM 2
1072#define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1)
1073#define HOST_MASK (1 << SWITCH_PORT_NUM)
1074#define PORT_MASK 7
1075
1076#define MAIN_PORT 0
1077#define OTHER_PORT 1
1078#define HOST_PORT SWITCH_PORT_NUM
1079
1080#define PORT_COUNTER_NUM 0x20
1081#define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2)
1082
1083#define MIB_COUNTER_RX_LO_PRIORITY 0x00
1084#define MIB_COUNTER_RX_HI_PRIORITY 0x01
1085#define MIB_COUNTER_RX_UNDERSIZE 0x02
1086#define MIB_COUNTER_RX_FRAGMENT 0x03
1087#define MIB_COUNTER_RX_OVERSIZE 0x04
1088#define MIB_COUNTER_RX_JABBER 0x05
1089#define MIB_COUNTER_RX_SYMBOL_ERR 0x06
1090#define MIB_COUNTER_RX_CRC_ERR 0x07
1091#define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08
1092#define MIB_COUNTER_RX_CTRL_8808 0x09
1093#define MIB_COUNTER_RX_PAUSE 0x0A
1094#define MIB_COUNTER_RX_BROADCAST 0x0B
1095#define MIB_COUNTER_RX_MULTICAST 0x0C
1096#define MIB_COUNTER_RX_UNICAST 0x0D
1097#define MIB_COUNTER_RX_OCTET_64 0x0E
1098#define MIB_COUNTER_RX_OCTET_65_127 0x0F
1099#define MIB_COUNTER_RX_OCTET_128_255 0x10
1100#define MIB_COUNTER_RX_OCTET_256_511 0x11
1101#define MIB_COUNTER_RX_OCTET_512_1023 0x12
1102#define MIB_COUNTER_RX_OCTET_1024_1522 0x13
1103#define MIB_COUNTER_TX_LO_PRIORITY 0x14
1104#define MIB_COUNTER_TX_HI_PRIORITY 0x15
1105#define MIB_COUNTER_TX_LATE_COLLISION 0x16
1106#define MIB_COUNTER_TX_PAUSE 0x17
1107#define MIB_COUNTER_TX_BROADCAST 0x18
1108#define MIB_COUNTER_TX_MULTICAST 0x19
1109#define MIB_COUNTER_TX_UNICAST 0x1A
1110#define MIB_COUNTER_TX_DEFERRED 0x1B
1111#define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C
1112#define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1113#define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1114#define MIB_COUNTER_TX_MULTI_COLLISION 0x1F
1115
1116#define MIB_COUNTER_RX_DROPPED_PACKET 0x20
1117#define MIB_COUNTER_TX_DROPPED_PACKET 0x21
1118
1119/**
1120 * struct ksz_port_mib - Port MIB data structure
1121 * @cnt_ptr: Current pointer to MIB counter index.
1122 * @link_down: Indication the link has just gone down.
1123 * @state: Connection status of the port.
1124 * @mib_start: The starting counter index. Some ports do not start at 0.
1125 * @counter: 64-bit MIB counter value.
1126 * @dropped: Temporary buffer to remember last read packet dropped values.
1127 *
1128 * MIB counters needs to be read periodically so that counters do not get
1129 * overflowed and give incorrect values. A right balance is needed to
1130 * satisfy this condition and not waste too much CPU time.
1131 *
1132 * It is pointless to read MIB counters when the port is disconnected. The
1133 * @state provides the connection status so that MIB counters are read only
1134 * when the port is connected. The @link_down indicates the port is just
1135 * disconnected so that all MIB counters are read one last time to update the
1136 * information.
1137 */
1138struct ksz_port_mib {
1139 u8 cnt_ptr;
1140 u8 link_down;
1141 u8 state;
1142 u8 mib_start;
1143
1144 u64 counter[TOTAL_PORT_COUNTER_NUM];
1145 u32 dropped[2];
1146};
1147
1148/**
1149 * struct ksz_port_cfg - Port configuration data structure
1150 * @vid: VID value.
1151 * @member: Port membership.
1152 * @port_prio: Port priority.
1153 * @rx_rate: Receive priority rate.
1154 * @tx_rate: Transmit priority rate.
1155 * @stp_state: Current Spanning Tree Protocol state.
1156 */
1157struct ksz_port_cfg {
1158 u16 vid;
1159 u8 member;
1160 u8 port_prio;
1161 u32 rx_rate[PRIO_QUEUES];
1162 u32 tx_rate[PRIO_QUEUES];
1163 int stp_state;
1164};
1165
1166/**
1167 * struct ksz_switch - KSZ8842 switch data structure
1168 * @mac_table: MAC table entries information.
1169 * @vlan_table: VLAN table entries information.
1170 * @port_cfg: Port configuration information.
1171 * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS
1172 * (bit7 ~ bit2) field.
1173 * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p
1174 * Tag priority field.
1175 * @br_addr: Bridge address. Used for STP.
1176 * @other_addr: Other MAC address. Used for multiple network device mode.
1177 * @broad_per: Broadcast storm percentage.
1178 * @member: Current port membership. Used for STP.
1179 */
1180struct ksz_switch {
1181 struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1182 struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1183 struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1184
1185 u8 diffserv[DIFFSERV_ENTRIES];
1186 u8 p_802_1p[PRIO_802_1P_ENTRIES];
1187
1188 u8 br_addr[MAC_ADDR_LEN];
1189 u8 other_addr[MAC_ADDR_LEN];
1190
1191 u8 broad_per;
1192 u8 member;
1193};
1194
1195#define TX_RATE_UNIT 10000
1196
1197/**
1198 * struct ksz_port_info - Port information data structure
1199 * @state: Connection status of the port.
1200 * @tx_rate: Transmit rate divided by 10000 to get Mbit.
1201 * @duplex: Duplex mode.
1202 * @advertised: Advertised auto-negotiation setting. Used to determine link.
1203 * @partner: Auto-negotiation partner setting. Used to determine link.
1204 * @port_id: Port index to access actual hardware register.
1205 * @pdev: Pointer to OS dependent network device.
1206 */
1207struct ksz_port_info {
1208 uint state;
1209 uint tx_rate;
1210 u8 duplex;
1211 u8 advertised;
1212 u8 partner;
1213 u8 port_id;
1214 void *pdev;
1215};
1216
1217#define MAX_TX_HELD_SIZE 52000
1218
1219/* Hardware features and bug fixes. */
1220#define LINK_INT_WORKING (1 << 0)
1221#define SMALL_PACKET_TX_BUG (1 << 1)
1222#define HALF_DUPLEX_SIGNAL_BUG (1 << 2)
1223#define IPV6_CSUM_GEN_HACK (1 << 3)
1224#define RX_HUGE_FRAME (1 << 4)
1225#define STP_SUPPORT (1 << 8)
1226
1227/* Software overrides. */
1228#define PAUSE_FLOW_CTRL (1 << 0)
1229#define FAST_AGING (1 << 1)
1230
1231/**
1232 * struct ksz_hw - KSZ884X hardware data structure
1233 * @io: Virtual address assigned.
1234 * @ksz_switch: Pointer to KSZ8842 switch.
1235 * @port_info: Port information.
1236 * @port_mib: Port MIB information.
1237 * @dev_count: Number of network devices this hardware supports.
1238 * @dst_ports: Destination ports in switch for transmission.
1239 * @id: Hardware ID. Used for display only.
1240 * @mib_cnt: Number of MIB counters this hardware has.
1241 * @mib_port_cnt: Number of ports with MIB counters.
1242 * @tx_cfg: Cached transmit control settings.
1243 * @rx_cfg: Cached receive control settings.
1244 * @intr_mask: Current interrupt mask.
1245 * @intr_set: Current interrup set.
1246 * @intr_blocked: Interrupt blocked.
1247 * @rx_desc_info: Receive descriptor information.
1248 * @tx_desc_info: Transmit descriptor information.
1249 * @tx_int_cnt: Transmit interrupt count. Used for TX optimization.
1250 * @tx_int_mask: Transmit interrupt mask. Used for TX optimization.
1251 * @tx_size: Transmit data size. Used for TX optimization.
1252 * The maximum is defined by MAX_TX_HELD_SIZE.
1253 * @perm_addr: Permanent MAC address.
1254 * @override_addr: Overrided MAC address.
1255 * @address: Additional MAC address entries.
1256 * @addr_list_size: Additional MAC address list size.
1257 * @mac_override: Indication of MAC address overrided.
1258 * @promiscuous: Counter to keep track of promiscuous mode set.
1259 * @all_multi: Counter to keep track of all multicast mode set.
1260 * @multi_list: Multicast address entries.
1261 * @multi_bits: Cached multicast hash table settings.
1262 * @multi_list_size: Multicast address list size.
1263 * @enabled: Indication of hardware enabled.
1264 * @rx_stop: Indication of receive process stop.
1265 * @features: Hardware features to enable.
1266 * @overrides: Hardware features to override.
1267 * @parent: Pointer to parent, network device private structure.
1268 */
1269struct ksz_hw {
1270 void __iomem *io;
1271
1272 struct ksz_switch *ksz_switch;
1273 struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274 struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275 int dev_count;
1276 int dst_ports;
1277 int id;
1278 int mib_cnt;
1279 int mib_port_cnt;
1280
1281 u32 tx_cfg;
1282 u32 rx_cfg;
1283 u32 intr_mask;
1284 u32 intr_set;
1285 uint intr_blocked;
1286
1287 struct ksz_desc_info rx_desc_info;
1288 struct ksz_desc_info tx_desc_info;
1289
1290 int tx_int_cnt;
1291 int tx_int_mask;
1292 int tx_size;
1293
1294 u8 perm_addr[MAC_ADDR_LEN];
1295 u8 override_addr[MAC_ADDR_LEN];
1296 u8 address[ADDITIONAL_ENTRIES][MAC_ADDR_LEN];
1297 u8 addr_list_size;
1298 u8 mac_override;
1299 u8 promiscuous;
1300 u8 all_multi;
1301 u8 multi_list[MAX_MULTICAST_LIST][MAC_ADDR_LEN];
1302 u8 multi_bits[HW_MULTICAST_SIZE];
1303 u8 multi_list_size;
1304
1305 u8 enabled;
1306 u8 rx_stop;
1307 u8 reserved2[1];
1308
1309 uint features;
1310 uint overrides;
1311
1312 void *parent;
1313};
1314
1315enum {
1316 PHY_NO_FLOW_CTRL,
1317 PHY_FLOW_CTRL,
1318 PHY_TX_ONLY,
1319 PHY_RX_ONLY
1320};
1321
1322/**
1323 * struct ksz_port - Virtual port data structure
1324 * @duplex: Duplex mode setting. 1 for half duplex, 2 for full
1325 * duplex, and 0 for auto, which normally results in full
1326 * duplex.
1327 * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and
1328 * 0 for auto, which normally results in 100 Mbit.
1329 * @force_link: Force link setting. 0 for auto-negotiation, and 1 for
1330 * force.
1331 * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow
1332 * control, and PHY_FLOW_CTRL for flow control.
1333 * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334 * Mbit PHY.
1335 * @first_port: Index of first port this port supports.
1336 * @mib_port_cnt: Number of ports with MIB counters.
1337 * @port_cnt: Number of ports this port supports.
1338 * @counter: Port statistics counter.
1339 * @hw: Pointer to hardware structure.
1340 * @linked: Pointer to port information linked to this port.
1341 */
1342struct ksz_port {
1343 u8 duplex;
1344 u8 speed;
1345 u8 force_link;
1346 u8 flow_ctrl;
1347
1348 int first_port;
1349 int mib_port_cnt;
1350 int port_cnt;
1351 u64 counter[OID_COUNTER_LAST];
1352
1353 struct ksz_hw *hw;
1354 struct ksz_port_info *linked;
1355};
1356
1357/**
1358 * struct ksz_timer_info - Timer information data structure
1359 * @timer: Kernel timer.
1360 * @cnt: Running timer counter.
1361 * @max: Number of times to run timer; -1 for infinity.
1362 * @period: Timer period in jiffies.
1363 */
1364struct ksz_timer_info {
1365 struct timer_list timer;
1366 int cnt;
1367 int max;
1368 int period;
1369};
1370
1371/**
1372 * struct ksz_shared_mem - OS dependent shared memory data structure
1373 * @dma_addr: Physical DMA address allocated.
1374 * @alloc_size: Allocation size.
1375 * @phys: Actual physical address used.
1376 * @alloc_virt: Virtual address allocated.
1377 * @virt: Actual virtual address used.
1378 */
1379struct ksz_shared_mem {
1380 dma_addr_t dma_addr;
1381 uint alloc_size;
1382 uint phys;
1383 u8 *alloc_virt;
1384 u8 *virt;
1385};
1386
1387/**
1388 * struct ksz_counter_info - OS dependent counter information data structure
1389 * @counter: Wait queue to wakeup after counters are read.
1390 * @time: Next time in jiffies to read counter.
1391 * @read: Indication of counters read in full or not.
1392 */
1393struct ksz_counter_info {
1394 wait_queue_head_t counter;
1395 unsigned long time;
1396 int read;
1397};
1398
1399/**
1400 * struct dev_info - Network device information data structure
1401 * @dev: Pointer to network device.
1402 * @pdev: Pointer to PCI device.
1403 * @hw: Hardware structure.
1404 * @desc_pool: Physical memory used for descriptor pool.
1405 * @hwlock: Spinlock to prevent hardware from accessing.
1406 * @lock: Mutex lock to prevent device from accessing.
1407 * @dev_rcv: Receive process function used.
1408 * @last_skb: Socket buffer allocated for descriptor rx fragments.
1409 * @skb_index: Buffer index for receiving fragments.
1410 * @skb_len: Buffer length for receiving fragments.
1411 * @mib_read: Workqueue to read MIB counters.
1412 * @mib_timer_info: Timer to read MIB counters.
1413 * @counter: Used for MIB reading.
1414 * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE;
1415 * the maximum is MAX_RX_BUF_SIZE.
1416 * @opened: Counter to keep track of device open.
1417 * @rx_tasklet: Receive processing tasklet.
1418 * @tx_tasklet: Transmit processing tasklet.
1419 * @wol_enable: Wake-on-LAN enable set by ethtool.
1420 * @wol_support: Wake-on-LAN support used by ethtool.
1421 * @pme_wait: Used for KSZ8841 power management.
1422 */
1423struct dev_info {
1424 struct net_device *dev;
1425 struct pci_dev *pdev;
1426
1427 struct ksz_hw hw;
1428 struct ksz_shared_mem desc_pool;
1429
1430 spinlock_t hwlock;
1431 struct mutex lock;
1432
1433 int (*dev_rcv)(struct dev_info *);
1434
1435 struct sk_buff *last_skb;
1436 int skb_index;
1437 int skb_len;
1438
1439 struct work_struct mib_read;
1440 struct ksz_timer_info mib_timer_info;
1441 struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442
1443 int mtu;
1444 int opened;
1445
1446 struct tasklet_struct rx_tasklet;
1447 struct tasklet_struct tx_tasklet;
1448
1449 int wol_enable;
1450 int wol_support;
1451 unsigned long pme_wait;
1452};
1453
1454/**
1455 * struct dev_priv - Network device private data structure
1456 * @adapter: Adapter device information.
1457 * @port: Port information.
1458 * @monitor_time_info: Timer to monitor ports.
1459 * @stats: Network statistics.
1460 * @proc_sem: Semaphore for proc accessing.
1461 * @id: Device ID.
1462 * @mii_if: MII interface information.
1463 * @advertising: Temporary variable to store advertised settings.
1464 * @msg_enable: The message flags controlling driver output.
1465 * @media_state: The connection status of the device.
1466 * @multicast: The all multicast state of the device.
1467 * @promiscuous: The promiscuous state of the device.
1468 */
1469struct dev_priv {
1470 struct dev_info *adapter;
1471 struct ksz_port port;
1472 struct ksz_timer_info monitor_timer_info;
1473 struct net_device_stats stats;
1474
1475 struct semaphore proc_sem;
1476 int id;
1477
1478 struct mii_if_info mii_if;
1479 u32 advertising;
1480
1481 u32 msg_enable;
1482 int media_state;
1483 int multicast;
1484 int promiscuous;
1485};
1486
8ca86fd8
TH
1487#define DRV_NAME "KSZ884X PCI"
1488#define DEVICE_NAME "KSZ884x PCI"
1489#define DRV_VERSION "1.0.0"
1490#define DRV_RELDATE "Feb 8, 2010"
1491
1492static char version[] __devinitdata =
1493 "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1494
1495static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1496
1497/*
1498 * Interrupt processing primary routines
1499 */
1500
1501static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1502{
1503 writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1504}
1505
1506static inline void hw_dis_intr(struct ksz_hw *hw)
1507{
1508 hw->intr_blocked = hw->intr_mask;
1509 writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1510 hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1511}
1512
1513static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1514{
1515 hw->intr_set = interrupt;
1516 writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1517}
1518
1519static inline void hw_ena_intr(struct ksz_hw *hw)
1520{
1521 hw->intr_blocked = 0;
1522 hw_set_intr(hw, hw->intr_mask);
1523}
1524
1525static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1526{
1527 hw->intr_mask &= ~(bit);
1528}
1529
1530static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1531{
1532 u32 read_intr;
1533
1534 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1535 hw->intr_set = read_intr & ~interrupt;
1536 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1537 hw_dis_intr_bit(hw, interrupt);
1538}
1539
1540/**
1541 * hw_turn_on_intr - turn on specified interrupts
1542 * @hw: The hardware instance.
1543 * @bit: The interrupt bits to be on.
1544 *
1545 * This routine turns on the specified interrupts in the interrupt mask so that
1546 * those interrupts will be enabled.
1547 */
1548static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1549{
1550 hw->intr_mask |= bit;
1551
1552 if (!hw->intr_blocked)
1553 hw_set_intr(hw, hw->intr_mask);
1554}
1555
1556static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1557{
1558 u32 read_intr;
1559
1560 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1561 hw->intr_set = read_intr | interrupt;
1562 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1563}
1564
1565static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1566{
1567 *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1568 *status = *status & hw->intr_set;
1569}
1570
1571static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1572{
1573 if (interrupt)
1574 hw_ena_intr(hw);
1575}
1576
1577/**
1578 * hw_block_intr - block hardware interrupts
1579 *
1580 * This function blocks all interrupts of the hardware and returns the current
1581 * interrupt enable mask so that interrupts can be restored later.
1582 *
1583 * Return the current interrupt enable mask.
1584 */
1585static uint hw_block_intr(struct ksz_hw *hw)
1586{
1587 uint interrupt = 0;
1588
1589 if (!hw->intr_blocked) {
1590 hw_dis_intr(hw);
1591 interrupt = hw->intr_blocked;
1592 }
1593 return interrupt;
1594}
1595
1596/*
1597 * Hardware descriptor routines
1598 */
1599
1600static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1601{
1602 status.rx.hw_owned = 0;
1603 desc->phw->ctrl.data = cpu_to_le32(status.data);
1604}
1605
1606static inline void release_desc(struct ksz_desc *desc)
1607{
1608 desc->sw.ctrl.tx.hw_owned = 1;
1609 if (desc->sw.buf_size != desc->sw.buf.data) {
1610 desc->sw.buf_size = desc->sw.buf.data;
1611 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1612 }
1613 desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1614}
1615
1616static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1617{
1618 *desc = &info->ring[info->last];
1619 info->last++;
1620 info->last &= info->mask;
1621 info->avail--;
1622 (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1623}
1624
1625static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1626{
1627 desc->phw->addr = cpu_to_le32(addr);
1628}
1629
1630static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1631{
1632 desc->sw.buf.rx.buf_size = len;
1633}
1634
1635static inline void get_tx_pkt(struct ksz_desc_info *info,
1636 struct ksz_desc **desc)
1637{
1638 *desc = &info->ring[info->next];
1639 info->next++;
1640 info->next &= info->mask;
1641 info->avail--;
1642 (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1643}
1644
1645static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1646{
1647 desc->phw->addr = cpu_to_le32(addr);
1648}
1649
1650static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1651{
1652 desc->sw.buf.tx.buf_size = len;
1653}
1654
1655/* Switch functions */
1656
1657#define TABLE_READ 0x10
1658#define TABLE_SEL_SHIFT 2
1659
1660#define HW_DELAY(hw, reg) \
1661 do { \
1662 u16 dummy; \
1663 dummy = readw(hw->io + reg); \
1664 } while (0)
1665
1666/**
1667 * sw_r_table - read 4 bytes of data from switch table
1668 * @hw: The hardware instance.
1669 * @table: The table selector.
1670 * @addr: The address of the table entry.
1671 * @data: Buffer to store the read data.
1672 *
1673 * This routine reads 4 bytes of data from the table of the switch.
1674 * Hardware interrupts are disabled to minimize corruption of read data.
1675 */
1676static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1677{
1678 u16 ctrl_addr;
1679 uint interrupt;
1680
1681 ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1682
1683 interrupt = hw_block_intr(hw);
1684
1685 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1686 HW_DELAY(hw, KS884X_IACR_OFFSET);
1687 *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1688
1689 hw_restore_intr(hw, interrupt);
1690}
1691
1692/**
1693 * sw_w_table_64 - write 8 bytes of data to the switch table
1694 * @hw: The hardware instance.
1695 * @table: The table selector.
1696 * @addr: The address of the table entry.
1697 * @data_hi: The high part of data to be written (bit63 ~ bit32).
1698 * @data_lo: The low part of data to be written (bit31 ~ bit0).
1699 *
1700 * This routine writes 8 bytes of data to the table of the switch.
1701 * Hardware interrupts are disabled to minimize corruption of written data.
1702 */
1703static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1704 u32 data_lo)
1705{
1706 u16 ctrl_addr;
1707 uint interrupt;
1708
1709 ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1710
1711 interrupt = hw_block_intr(hw);
1712
1713 writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1714 writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1715
1716 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1717 HW_DELAY(hw, KS884X_IACR_OFFSET);
1718
1719 hw_restore_intr(hw, interrupt);
1720}
1721
1722/**
1723 * sw_w_sta_mac_table - write to the static MAC table
1724 * @hw: The hardware instance.
1725 * @addr: The address of the table entry.
1726 * @mac_addr: The MAC address.
1727 * @ports: The port members.
1728 * @override: The flag to override the port receive/transmit settings.
1729 * @valid: The flag to indicate entry is valid.
1730 * @use_fid: The flag to indicate the FID is valid.
1731 * @fid: The FID value.
1732 *
1733 * This routine writes an entry of the static MAC table of the switch. It
1734 * calls sw_w_table_64() to write the data.
1735 */
1736static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1737 u8 ports, int override, int valid, int use_fid, u8 fid)
1738{
1739 u32 data_hi;
1740 u32 data_lo;
1741
1742 data_lo = ((u32) mac_addr[2] << 24) |
1743 ((u32) mac_addr[3] << 16) |
1744 ((u32) mac_addr[4] << 8) | mac_addr[5];
1745 data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1746 data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1747
1748 if (override)
1749 data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1750 if (use_fid) {
1751 data_hi |= STATIC_MAC_TABLE_USE_FID;
1752 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1753 }
1754 if (valid)
1755 data_hi |= STATIC_MAC_TABLE_VALID;
1756
1757 sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1758}
1759
1760/**
1761 * sw_r_vlan_table - read from the VLAN table
1762 * @hw: The hardware instance.
1763 * @addr: The address of the table entry.
1764 * @vid: Buffer to store the VID.
1765 * @fid: Buffer to store the VID.
1766 * @member: Buffer to store the port membership.
1767 *
1768 * This function reads an entry of the VLAN table of the switch. It calls
1769 * sw_r_table() to get the data.
1770 *
1771 * Return 0 if the entry is valid; otherwise -1.
1772 */
1773static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1774 u8 *member)
1775{
1776 u32 data;
1777
1778 sw_r_table(hw, TABLE_VLAN, addr, &data);
1779 if (data & VLAN_TABLE_VALID) {
1780 *vid = (u16)(data & VLAN_TABLE_VID);
1781 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1782 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1783 VLAN_TABLE_MEMBERSHIP_SHIFT);
1784 return 0;
1785 }
1786 return -1;
1787}
1788
1789/**
1790 * port_r_mib_cnt - read MIB counter
1791 * @hw: The hardware instance.
1792 * @port: The port index.
1793 * @addr: The address of the counter.
1794 * @cnt: Buffer to store the counter.
1795 *
1796 * This routine reads a MIB counter of the port.
1797 * Hardware interrupts are disabled to minimize corruption of read data.
1798 */
1799static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1800{
1801 u32 data;
1802 u16 ctrl_addr;
1803 uint interrupt;
1804 int timeout;
1805
1806 ctrl_addr = addr + PORT_COUNTER_NUM * port;
1807
1808 interrupt = hw_block_intr(hw);
1809
1810 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1811 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1812 HW_DELAY(hw, KS884X_IACR_OFFSET);
1813
1814 for (timeout = 100; timeout > 0; timeout--) {
1815 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1816
1817 if (data & MIB_COUNTER_VALID) {
1818 if (data & MIB_COUNTER_OVERFLOW)
1819 *cnt += MIB_COUNTER_VALUE + 1;
1820 *cnt += data & MIB_COUNTER_VALUE;
1821 break;
1822 }
1823 }
1824
1825 hw_restore_intr(hw, interrupt);
1826}
1827
1828/**
1829 * port_r_mib_pkt - read dropped packet counts
1830 * @hw: The hardware instance.
1831 * @port: The port index.
1832 * @cnt: Buffer to store the receive and transmit dropped packet counts.
1833 *
1834 * This routine reads the dropped packet counts of the port.
1835 * Hardware interrupts are disabled to minimize corruption of read data.
1836 */
1837static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1838{
1839 u32 cur;
1840 u32 data;
1841 u16 ctrl_addr;
1842 uint interrupt;
1843 int index;
1844
1845 index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1846 do {
1847 interrupt = hw_block_intr(hw);
1848
1849 ctrl_addr = (u16) index;
1850 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1851 << 8);
1852 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1853 HW_DELAY(hw, KS884X_IACR_OFFSET);
1854 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1855
1856 hw_restore_intr(hw, interrupt);
1857
1858 data &= MIB_PACKET_DROPPED;
1859 cur = *last;
1860 if (data != cur) {
1861 *last = data;
1862 if (data < cur)
1863 data += MIB_PACKET_DROPPED + 1;
1864 data -= cur;
1865 *cnt += data;
1866 }
1867 ++last;
1868 ++cnt;
1869 index -= KS_MIB_PACKET_DROPPED_TX -
1870 KS_MIB_PACKET_DROPPED_TX_0 + 1;
1871 } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1872}
1873
1874/**
1875 * port_r_cnt - read MIB counters periodically
1876 * @hw: The hardware instance.
1877 * @port: The port index.
1878 *
1879 * This routine is used to read the counters of the port periodically to avoid
1880 * counter overflow. The hardware should be acquired first before calling this
1881 * routine.
1882 *
1883 * Return non-zero when not all counters not read.
1884 */
1885static int port_r_cnt(struct ksz_hw *hw, int port)
1886{
1887 struct ksz_port_mib *mib = &hw->port_mib[port];
1888
1889 if (mib->mib_start < PORT_COUNTER_NUM)
1890 while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1891 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1892 &mib->counter[mib->cnt_ptr]);
1893 ++mib->cnt_ptr;
1894 }
1895 if (hw->mib_cnt > PORT_COUNTER_NUM)
1896 port_r_mib_pkt(hw, port, mib->dropped,
1897 &mib->counter[PORT_COUNTER_NUM]);
1898 mib->cnt_ptr = 0;
1899 return 0;
1900}
1901
1902/**
1903 * port_init_cnt - initialize MIB counter values
1904 * @hw: The hardware instance.
1905 * @port: The port index.
1906 *
1907 * This routine is used to initialize all counters to zero if the hardware
1908 * cannot do it after reset.
1909 */
1910static void port_init_cnt(struct ksz_hw *hw, int port)
1911{
1912 struct ksz_port_mib *mib = &hw->port_mib[port];
1913
1914 mib->cnt_ptr = 0;
1915 if (mib->mib_start < PORT_COUNTER_NUM)
1916 do {
1917 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1918 &mib->counter[mib->cnt_ptr]);
1919 ++mib->cnt_ptr;
1920 } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1921 if (hw->mib_cnt > PORT_COUNTER_NUM)
1922 port_r_mib_pkt(hw, port, mib->dropped,
1923 &mib->counter[PORT_COUNTER_NUM]);
1924 memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1925 mib->cnt_ptr = 0;
1926}
1927
1928/*
1929 * Port functions
1930 */
1931
1932/**
1933 * port_chk - check port register bits
1934 * @hw: The hardware instance.
1935 * @port: The port index.
1936 * @offset: The offset of the port register.
1937 * @bits: The data bits to check.
1938 *
1939 * This function checks whether the specified bits of the port register are set
1940 * or not.
1941 *
1942 * Return 0 if the bits are not set.
1943 */
1944static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1945{
1946 u32 addr;
1947 u16 data;
1948
1949 PORT_CTRL_ADDR(port, addr);
1950 addr += offset;
1951 data = readw(hw->io + addr);
1952 return (data & bits) == bits;
1953}
1954
1955/**
1956 * port_cfg - set port register bits
1957 * @hw: The hardware instance.
1958 * @port: The port index.
1959 * @offset: The offset of the port register.
1960 * @bits: The data bits to set.
1961 * @set: The flag indicating whether the bits are to be set or not.
1962 *
1963 * This routine sets or resets the specified bits of the port register.
1964 */
1965static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1966 int set)
1967{
1968 u32 addr;
1969 u16 data;
1970
1971 PORT_CTRL_ADDR(port, addr);
1972 addr += offset;
1973 data = readw(hw->io + addr);
1974 if (set)
1975 data |= bits;
1976 else
1977 data &= ~bits;
1978 writew(data, hw->io + addr);
1979}
1980
1981/**
1982 * port_chk_shift - check port bit
1983 * @hw: The hardware instance.
1984 * @port: The port index.
1985 * @offset: The offset of the register.
1986 * @shift: Number of bits to shift.
1987 *
1988 * This function checks whether the specified port is set in the register or
1989 * not.
1990 *
1991 * Return 0 if the port is not set.
1992 */
1993static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1994{
1995 u16 data;
1996 u16 bit = 1 << port;
1997
1998 data = readw(hw->io + addr);
1999 data >>= shift;
2000 return (data & bit) == bit;
2001}
2002
2003/**
2004 * port_cfg_shift - set port bit
2005 * @hw: The hardware instance.
2006 * @port: The port index.
2007 * @offset: The offset of the register.
2008 * @shift: Number of bits to shift.
2009 * @set: The flag indicating whether the port is to be set or not.
2010 *
2011 * This routine sets or resets the specified port in the register.
2012 */
2013static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2014 int set)
2015{
2016 u16 data;
2017 u16 bits = 1 << port;
2018
2019 data = readw(hw->io + addr);
2020 bits <<= shift;
2021 if (set)
2022 data |= bits;
2023 else
2024 data &= ~bits;
2025 writew(data, hw->io + addr);
2026}
2027
2028/**
2029 * port_r8 - read byte from port register
2030 * @hw: The hardware instance.
2031 * @port: The port index.
2032 * @offset: The offset of the port register.
2033 * @data: Buffer to store the data.
2034 *
2035 * This routine reads a byte from the port register.
2036 */
2037static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2038{
2039 u32 addr;
2040
2041 PORT_CTRL_ADDR(port, addr);
2042 addr += offset;
2043 *data = readb(hw->io + addr);
2044}
2045
2046/**
2047 * port_r16 - read word from port register.
2048 * @hw: The hardware instance.
2049 * @port: The port index.
2050 * @offset: The offset of the port register.
2051 * @data: Buffer to store the data.
2052 *
2053 * This routine reads a word from the port register.
2054 */
2055static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2056{
2057 u32 addr;
2058
2059 PORT_CTRL_ADDR(port, addr);
2060 addr += offset;
2061 *data = readw(hw->io + addr);
2062}
2063
2064/**
2065 * port_w16 - write word to port register.
2066 * @hw: The hardware instance.
2067 * @port: The port index.
2068 * @offset: The offset of the port register.
2069 * @data: Data to write.
2070 *
2071 * This routine writes a word to the port register.
2072 */
2073static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2074{
2075 u32 addr;
2076
2077 PORT_CTRL_ADDR(port, addr);
2078 addr += offset;
2079 writew(data, hw->io + addr);
2080}
2081
2082/**
2083 * sw_chk - check switch register bits
2084 * @hw: The hardware instance.
2085 * @addr: The address of the switch register.
2086 * @bits: The data bits to check.
2087 *
2088 * This function checks whether the specified bits of the switch register are
2089 * set or not.
2090 *
2091 * Return 0 if the bits are not set.
2092 */
2093static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2094{
2095 u16 data;
2096
2097 data = readw(hw->io + addr);
2098 return (data & bits) == bits;
2099}
2100
2101/**
2102 * sw_cfg - set switch register bits
2103 * @hw: The hardware instance.
2104 * @addr: The address of the switch register.
2105 * @bits: The data bits to set.
2106 * @set: The flag indicating whether the bits are to be set or not.
2107 *
2108 * This function sets or resets the specified bits of the switch register.
2109 */
2110static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2111{
2112 u16 data;
2113
2114 data = readw(hw->io + addr);
2115 if (set)
2116 data |= bits;
2117 else
2118 data &= ~bits;
2119 writew(data, hw->io + addr);
2120}
2121
2122/* Bandwidth */
2123
2124static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2125{
2126 port_cfg(hw, p,
2127 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2128}
2129
2130static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2131{
2132 return port_chk(hw, p,
2133 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2134}
2135
2136/* Driver set switch broadcast storm protection at 10% rate. */
2137#define BROADCAST_STORM_PROTECTION_RATE 10
2138
2139/* 148,800 frames * 67 ms / 100 */
2140#define BROADCAST_STORM_VALUE 9969
2141
2142/**
2143 * sw_cfg_broad_storm - configure broadcast storm threshold
2144 * @hw: The hardware instance.
2145 * @percent: Broadcast storm threshold in percent of transmit rate.
2146 *
2147 * This routine configures the broadcast storm threshold of the switch.
2148 */
2149static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2150{
2151 u16 data;
2152 u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2153
2154 if (value > BROADCAST_STORM_RATE)
2155 value = BROADCAST_STORM_RATE;
2156
2157 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2158 data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2159 data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2160 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2161}
2162
2163/**
2164 * sw_get_board_storm - get broadcast storm threshold
2165 * @hw: The hardware instance.
2166 * @percent: Buffer to store the broadcast storm threshold percentage.
2167 *
2168 * This routine retrieves the broadcast storm threshold of the switch.
2169 */
2170static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2171{
2172 int num;
2173 u16 data;
2174
2175 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2176 num = (data & BROADCAST_STORM_RATE_HI);
2177 num <<= 8;
2178 num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2179 num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2180 *percent = (u8) num;
2181}
2182
2183/**
2184 * sw_dis_broad_storm - disable broadstorm
2185 * @hw: The hardware instance.
2186 * @port: The port index.
2187 *
2188 * This routine disables the broadcast storm limit function of the switch.
2189 */
2190static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2191{
2192 port_cfg_broad_storm(hw, port, 0);
2193}
2194
2195/**
2196 * sw_ena_broad_storm - enable broadcast storm
2197 * @hw: The hardware instance.
2198 * @port: The port index.
2199 *
2200 * This routine enables the broadcast storm limit function of the switch.
2201 */
2202static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2203{
2204 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2205 port_cfg_broad_storm(hw, port, 1);
2206}
2207
2208/**
2209 * sw_init_broad_storm - initialize broadcast storm
2210 * @hw: The hardware instance.
2211 *
2212 * This routine initializes the broadcast storm limit function of the switch.
2213 */
2214static void sw_init_broad_storm(struct ksz_hw *hw)
2215{
2216 int port;
2217
2218 hw->ksz_switch->broad_per = 1;
2219 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2220 for (port = 0; port < TOTAL_PORT_NUM; port++)
2221 sw_dis_broad_storm(hw, port);
2222 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2223}
2224
2225/**
2226 * hw_cfg_broad_storm - configure broadcast storm
2227 * @hw: The hardware instance.
2228 * @percent: Broadcast storm threshold in percent of transmit rate.
2229 *
2230 * This routine configures the broadcast storm threshold of the switch.
2231 * It is called by user functions. The hardware should be acquired first.
2232 */
2233static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2234{
2235 if (percent > 100)
2236 percent = 100;
2237
2238 sw_cfg_broad_storm(hw, percent);
2239 sw_get_broad_storm(hw, &percent);
2240 hw->ksz_switch->broad_per = percent;
2241}
2242
2243/**
2244 * sw_dis_prio_rate - disable switch priority rate
2245 * @hw: The hardware instance.
2246 * @port: The port index.
2247 *
2248 * This routine disables the priority rate function of the switch.
2249 */
2250static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2251{
2252 u32 addr;
2253
2254 PORT_CTRL_ADDR(port, addr);
2255 addr += KS8842_PORT_IN_RATE_OFFSET;
2256 writel(0, hw->io + addr);
2257}
2258
2259/**
2260 * sw_init_prio_rate - initialize switch prioirty rate
2261 * @hw: The hardware instance.
2262 *
2263 * This routine initializes the priority rate function of the switch.
2264 */
2265static void sw_init_prio_rate(struct ksz_hw *hw)
2266{
2267 int port;
2268 int prio;
2269 struct ksz_switch *sw = hw->ksz_switch;
2270
2271 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2272 for (prio = 0; prio < PRIO_QUEUES; prio++) {
2273 sw->port_cfg[port].rx_rate[prio] =
2274 sw->port_cfg[port].tx_rate[prio] = 0;
2275 }
2276 sw_dis_prio_rate(hw, port);
2277 }
2278}
2279
2280/* Communication */
2281
2282static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2283{
2284 port_cfg(hw, p,
2285 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2286}
2287
2288static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2289{
2290 port_cfg(hw, p,
2291 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2292}
2293
2294static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2295{
2296 return port_chk(hw, p,
2297 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2298}
2299
2300static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2301{
2302 return port_chk(hw, p,
2303 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2304}
2305
2306/* Spanning Tree */
2307
2308static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set)
2309{
2310 port_cfg(hw, p,
2311 KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set);
2312}
2313
2314static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2315{
2316 port_cfg(hw, p,
2317 KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2318}
2319
2320static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2321{
2322 port_cfg(hw, p,
2323 KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2324}
2325
2326static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2327{
2328 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2329}
2330
2331static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2332{
2333 if (!(hw->overrides & FAST_AGING)) {
2334 sw_cfg_fast_aging(hw, 1);
2335 mdelay(1);
2336 sw_cfg_fast_aging(hw, 0);
2337 }
2338}
2339
2340/* VLAN */
2341
2342static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2343{
2344 port_cfg(hw, p,
2345 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2346}
2347
2348static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2349{
2350 port_cfg(hw, p,
2351 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2352}
2353
2354static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2355{
2356 return port_chk(hw, p,
2357 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2358}
2359
2360static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2361{
2362 return port_chk(hw, p,
2363 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2364}
2365
2366static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2367{
2368 port_cfg(hw, p,
2369 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2370}
2371
2372static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2373{
2374 port_cfg(hw, p,
2375 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2376}
2377
2378static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2379{
2380 return port_chk(hw, p,
2381 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2382}
2383
2384static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2385{
2386 return port_chk(hw, p,
2387 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2388}
2389
2390/* Mirroring */
2391
2392static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2393{
2394 port_cfg(hw, p,
2395 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2396}
2397
2398static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2399{
2400 port_cfg(hw, p,
2401 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2402}
2403
2404static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2405{
2406 port_cfg(hw, p,
2407 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2408}
2409
2410static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2411{
2412 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2413}
2414
2415static void sw_init_mirror(struct ksz_hw *hw)
2416{
2417 int port;
2418
2419 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2420 port_cfg_mirror_sniffer(hw, port, 0);
2421 port_cfg_mirror_rx(hw, port, 0);
2422 port_cfg_mirror_tx(hw, port, 0);
2423 }
2424 sw_cfg_mirror_rx_tx(hw, 0);
2425}
2426
2427static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2428{
2429 sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2430 SWITCH_UNK_DEF_PORT_ENABLE, set);
2431}
2432
2433static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2434{
2435 return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2436 SWITCH_UNK_DEF_PORT_ENABLE);
2437}
2438
2439static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2440{
2441 port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2442}
2443
2444static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2445{
2446 return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2447}
2448
2449/* Priority */
2450
2451static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2452{
2453 port_cfg(hw, p,
2454 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2455}
2456
2457static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2458{
2459 port_cfg(hw, p,
2460 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2461}
2462
2463static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2464{
2465 port_cfg(hw, p,
2466 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2467}
2468
2469static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2470{
2471 port_cfg(hw, p,
2472 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2473}
2474
2475static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2476{
2477 return port_chk(hw, p,
2478 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2479}
2480
2481static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2482{
2483 return port_chk(hw, p,
2484 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2485}
2486
2487static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2488{
2489 return port_chk(hw, p,
2490 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2491}
2492
2493static inline int port_chk_prio(struct ksz_hw *hw, int p)
2494{
2495 return port_chk(hw, p,
2496 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2497}
2498
2499/**
2500 * sw_dis_diffserv - disable switch DiffServ priority
2501 * @hw: The hardware instance.
2502 * @port: The port index.
2503 *
2504 * This routine disables the DiffServ priority function of the switch.
2505 */
2506static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2507{
2508 port_cfg_diffserv(hw, port, 0);
2509}
2510
2511/**
2512 * sw_dis_802_1p - disable switch 802.1p priority
2513 * @hw: The hardware instance.
2514 * @port: The port index.
2515 *
2516 * This routine disables the 802.1p priority function of the switch.
2517 */
2518static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2519{
2520 port_cfg_802_1p(hw, port, 0);
2521}
2522
2523/**
2524 * sw_cfg_replace_null_vid -
2525 * @hw: The hardware instance.
2526 * @set: The flag to disable or enable.
2527 *
2528 */
2529static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2530{
2531 sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2532}
2533
2534/**
2535 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2536 * @hw: The hardware instance.
2537 * @port: The port index.
2538 * @set: The flag to disable or enable.
2539 *
2540 * This routine enables the 802.1p priority re-mapping function of the switch.
2541 * That allows 802.1p priority field to be replaced with the port's default
2542 * tag's priority value if the ingress packet's 802.1p priority has a higher
2543 * priority than port's default tag's priority.
2544 */
2545static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2546{
2547 port_cfg_replace_vid(hw, port, set);
2548}
2549
2550/**
2551 * sw_cfg_port_based - configure switch port based priority
2552 * @hw: The hardware instance.
2553 * @port: The port index.
2554 * @prio: The priority to set.
2555 *
2556 * This routine configures the port based priority of the switch.
2557 */
2558static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2559{
2560 u16 data;
2561
2562 if (prio > PORT_BASED_PRIORITY_BASE)
2563 prio = PORT_BASED_PRIORITY_BASE;
2564
2565 hw->ksz_switch->port_cfg[port].port_prio = prio;
2566
2567 port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2568 data &= ~PORT_BASED_PRIORITY_MASK;
2569 data |= prio << PORT_BASED_PRIORITY_SHIFT;
2570 port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2571}
2572
2573/**
2574 * sw_dis_multi_queue - disable transmit multiple queues
2575 * @hw: The hardware instance.
2576 * @port: The port index.
2577 *
2578 * This routine disables the transmit multiple queues selection of the switch
2579 * port. Only single transmit queue on the port.
2580 */
2581static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2582{
2583 port_cfg_prio(hw, port, 0);
2584}
2585
2586/**
2587 * sw_init_prio - initialize switch priority
2588 * @hw: The hardware instance.
2589 *
2590 * This routine initializes the switch QoS priority functions.
2591 */
2592static void sw_init_prio(struct ksz_hw *hw)
2593{
2594 int port;
2595 int tos;
2596 struct ksz_switch *sw = hw->ksz_switch;
2597
2598 /*
2599 * Init all the 802.1p tag priority value to be assigned to different
2600 * priority queue.
2601 */
2602 sw->p_802_1p[0] = 0;
2603 sw->p_802_1p[1] = 0;
2604 sw->p_802_1p[2] = 1;
2605 sw->p_802_1p[3] = 1;
2606 sw->p_802_1p[4] = 2;
2607 sw->p_802_1p[5] = 2;
2608 sw->p_802_1p[6] = 3;
2609 sw->p_802_1p[7] = 3;
2610
2611 /*
2612 * Init all the DiffServ priority value to be assigned to priority
2613 * queue 0.
2614 */
2615 for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2616 sw->diffserv[tos] = 0;
2617
2618 /* All QoS functions disabled. */
2619 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2620 sw_dis_multi_queue(hw, port);
2621 sw_dis_diffserv(hw, port);
2622 sw_dis_802_1p(hw, port);
2623 sw_cfg_replace_vid(hw, port, 0);
2624
2625 sw->port_cfg[port].port_prio = 0;
2626 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2627 }
2628 sw_cfg_replace_null_vid(hw, 0);
2629}
2630
2631/**
2632 * port_get_def_vid - get port default VID.
2633 * @hw: The hardware instance.
2634 * @port: The port index.
2635 * @vid: Buffer to store the VID.
2636 *
2637 * This routine retrieves the default VID of the port.
2638 */
2639static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2640{
2641 u32 addr;
2642
2643 PORT_CTRL_ADDR(port, addr);
2644 addr += KS8842_PORT_CTRL_VID_OFFSET;
2645 *vid = readw(hw->io + addr);
2646}
2647
2648/**
2649 * sw_init_vlan - initialize switch VLAN
2650 * @hw: The hardware instance.
2651 *
2652 * This routine initializes the VLAN function of the switch.
2653 */
2654static void sw_init_vlan(struct ksz_hw *hw)
2655{
2656 int port;
2657 int entry;
2658 struct ksz_switch *sw = hw->ksz_switch;
2659
2660 /* Read 16 VLAN entries from device's VLAN table. */
2661 for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2662 sw_r_vlan_table(hw, entry,
2663 &sw->vlan_table[entry].vid,
2664 &sw->vlan_table[entry].fid,
2665 &sw->vlan_table[entry].member);
2666 }
2667
2668 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2669 port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2670 sw->port_cfg[port].member = PORT_MASK;
2671 }
2672}
2673
2674/**
2675 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2676 * @hw: The hardware instance.
2677 * @port: The port index.
2678 * @member: The port-based VLAN membership.
2679 *
2680 * This routine configures the port-based VLAN membership of the port.
2681 */
2682static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2683{
2684 u32 addr;
2685 u8 data;
2686
2687 PORT_CTRL_ADDR(port, addr);
2688 addr += KS8842_PORT_CTRL_2_OFFSET;
2689
2690 data = readb(hw->io + addr);
2691 data &= ~PORT_VLAN_MEMBERSHIP;
2692 data |= (member & PORT_MASK);
2693 writeb(data, hw->io + addr);
2694
2695 hw->ksz_switch->port_cfg[port].member = member;
2696}
2697
2698/**
2699 * sw_get_addr - get the switch MAC address.
2700 * @hw: The hardware instance.
2701 * @mac_addr: Buffer to store the MAC address.
2702 *
2703 * This function retrieves the MAC address of the switch.
2704 */
2705static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2706{
2707 int i;
2708
2709 for (i = 0; i < 6; i += 2) {
2710 mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2711 mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2712 }
2713}
2714
2715/**
2716 * sw_set_addr - configure switch MAC address
2717 * @hw: The hardware instance.
2718 * @mac_addr: The MAC address.
2719 *
2720 * This function configures the MAC address of the switch.
2721 */
2722static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2723{
2724 int i;
2725
2726 for (i = 0; i < 6; i += 2) {
2727 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2728 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2729 }
2730}
2731
2732/**
2733 * sw_set_global_ctrl - set switch global control
2734 * @hw: The hardware instance.
2735 *
2736 * This routine sets the global control of the switch function.
2737 */
2738static void sw_set_global_ctrl(struct ksz_hw *hw)
2739{
2740 u16 data;
2741
2742 /* Enable switch MII flow control. */
2743 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2744 data |= SWITCH_FLOW_CTRL;
2745 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2746
2747 data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2748
2749 /* Enable aggressive back off algorithm in half duplex mode. */
2750 data |= SWITCH_AGGR_BACKOFF;
2751
2752 /* Enable automatic fast aging when link changed detected. */
2753 data |= SWITCH_AGING_ENABLE;
2754 data |= SWITCH_LINK_AUTO_AGING;
2755
2756 if (hw->overrides & FAST_AGING)
2757 data |= SWITCH_FAST_AGING;
2758 else
2759 data &= ~SWITCH_FAST_AGING;
2760 writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2761
2762 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2763
2764 /* Enable no excessive collision drop. */
2765 data |= NO_EXC_COLLISION_DROP;
2766 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2767}
2768
2769enum {
2770 STP_STATE_DISABLED = 0,
2771 STP_STATE_LISTENING,
2772 STP_STATE_LEARNING,
2773 STP_STATE_FORWARDING,
2774 STP_STATE_BLOCKED,
2775 STP_STATE_SIMPLE
2776};
2777
2778/**
2779 * port_set_stp_state - configure port spanning tree state
2780 * @hw: The hardware instance.
2781 * @port: The port index.
2782 * @state: The spanning tree state.
2783 *
2784 * This routine configures the spanning tree state of the port.
2785 */
2786static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2787{
2788 u16 data;
2789
2790 port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2791 switch (state) {
2792 case STP_STATE_DISABLED:
2793 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2794 data |= PORT_LEARN_DISABLE;
2795 break;
2796 case STP_STATE_LISTENING:
2797/*
2798 * No need to turn on transmit because of port direct mode.
2799 * Turning on receive is required if static MAC table is not setup.
2800 */
2801 data &= ~PORT_TX_ENABLE;
2802 data |= PORT_RX_ENABLE;
2803 data |= PORT_LEARN_DISABLE;
2804 break;
2805 case STP_STATE_LEARNING:
2806 data &= ~PORT_TX_ENABLE;
2807 data |= PORT_RX_ENABLE;
2808 data &= ~PORT_LEARN_DISABLE;
2809 break;
2810 case STP_STATE_FORWARDING:
2811 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2812 data &= ~PORT_LEARN_DISABLE;
2813 break;
2814 case STP_STATE_BLOCKED:
2815/*
2816 * Need to setup static MAC table with override to keep receiving BPDU
2817 * messages. See sw_init_stp routine.
2818 */
2819 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2820 data |= PORT_LEARN_DISABLE;
2821 break;
2822 case STP_STATE_SIMPLE:
2823 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2824 data |= PORT_LEARN_DISABLE;
2825 break;
2826 }
2827 port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2828 hw->ksz_switch->port_cfg[port].stp_state = state;
2829}
2830
2831#define STP_ENTRY 0
2832#define BROADCAST_ENTRY 1
2833#define BRIDGE_ADDR_ENTRY 2
2834#define IPV6_ADDR_ENTRY 3
2835
2836/**
2837 * sw_clr_sta_mac_table - clear static MAC table
2838 * @hw: The hardware instance.
2839 *
2840 * This routine clears the static MAC table.
2841 */
2842static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2843{
2844 struct ksz_mac_table *entry;
2845 int i;
2846
2847 for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2848 entry = &hw->ksz_switch->mac_table[i];
2849 sw_w_sta_mac_table(hw, i,
2850 entry->mac_addr, entry->ports,
2851 entry->override, 0,
2852 entry->use_fid, entry->fid);
2853 }
2854}
2855
2856/**
2857 * sw_init_stp - initialize switch spanning tree support
2858 * @hw: The hardware instance.
2859 *
2860 * This routine initializes the spanning tree support of the switch.
2861 */
2862static void sw_init_stp(struct ksz_hw *hw)
2863{
2864 struct ksz_mac_table *entry;
2865
2866 entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2867 entry->mac_addr[0] = 0x01;
2868 entry->mac_addr[1] = 0x80;
2869 entry->mac_addr[2] = 0xC2;
2870 entry->mac_addr[3] = 0x00;
2871 entry->mac_addr[4] = 0x00;
2872 entry->mac_addr[5] = 0x00;
2873 entry->ports = HOST_MASK;
2874 entry->override = 1;
2875 entry->valid = 1;
2876 sw_w_sta_mac_table(hw, STP_ENTRY,
2877 entry->mac_addr, entry->ports,
2878 entry->override, entry->valid,
2879 entry->use_fid, entry->fid);
2880}
2881
2882/**
2883 * sw_block_addr - block certain packets from the host port
2884 * @hw: The hardware instance.
2885 *
2886 * This routine blocks certain packets from reaching to the host port.
2887 */
2888static void sw_block_addr(struct ksz_hw *hw)
2889{
2890 struct ksz_mac_table *entry;
2891 int i;
2892
2893 for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2894 entry = &hw->ksz_switch->mac_table[i];
2895 entry->valid = 0;
2896 sw_w_sta_mac_table(hw, i,
2897 entry->mac_addr, entry->ports,
2898 entry->override, entry->valid,
2899 entry->use_fid, entry->fid);
2900 }
2901}
2902
2903#define PHY_LINK_SUPPORT \
2904 (PHY_AUTO_NEG_ASYM_PAUSE | \
2905 PHY_AUTO_NEG_SYM_PAUSE | \
2906 PHY_AUTO_NEG_100BT4 | \
2907 PHY_AUTO_NEG_100BTX_FD | \
2908 PHY_AUTO_NEG_100BTX | \
2909 PHY_AUTO_NEG_10BT_FD | \
2910 PHY_AUTO_NEG_10BT)
2911
2912static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2913{
2914 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2915}
2916
2917static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2918{
2919 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2920}
2921
2922static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2923{
2924 *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2925}
2926
2927static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2928{
2929 *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2930}
2931
2932static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2933{
2934 writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2935}
2936
2937static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2938{
2939 *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2940}
2941
2942static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2943{
2944 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2945}
2946
2947static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2948{
2949 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2950}
2951
2952static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2953{
2954 *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2955}
2956
2957static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2958{
2959 writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2960}
2961
2962static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2963{
2964 *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2965}
2966
2967static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2968{
2969 writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2970}
2971
2972/**
2973 * hw_r_phy - read data from PHY register
2974 * @hw: The hardware instance.
2975 * @port: Port to read.
2976 * @reg: PHY register to read.
2977 * @val: Buffer to store the read data.
2978 *
2979 * This routine reads data from the PHY register.
2980 */
2981static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2982{
2983 int phy;
2984
2985 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2986 *val = readw(hw->io + phy);
2987}
2988
2989/**
2990 * port_w_phy - write data to PHY register
2991 * @hw: The hardware instance.
2992 * @port: Port to write.
2993 * @reg: PHY register to write.
2994 * @val: Word data to write.
2995 *
2996 * This routine writes data to the PHY register.
2997 */
2998static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2999{
3000 int phy;
3001
3002 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
3003 writew(val, hw->io + phy);
3004}
3005
3006/*
3007 * EEPROM access functions
3008 */
3009
3010#define AT93C_CODE 0
3011#define AT93C_WR_OFF 0x00
3012#define AT93C_WR_ALL 0x10
3013#define AT93C_ER_ALL 0x20
3014#define AT93C_WR_ON 0x30
3015
3016#define AT93C_WRITE 1
3017#define AT93C_READ 2
3018#define AT93C_ERASE 3
3019
3020#define EEPROM_DELAY 4
3021
3022static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3023{
3024 u16 data;
3025
3026 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3027 data &= ~gpio;
3028 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3029}
3030
3031static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3032{
3033 u16 data;
3034
3035 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3036 data |= gpio;
3037 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3038}
3039
3040static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3041{
3042 u16 data;
3043
3044 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3045 return (u8)(data & gpio);
3046}
3047
3048static void eeprom_clk(struct ksz_hw *hw)
3049{
3050 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3051 udelay(EEPROM_DELAY);
3052 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3053 udelay(EEPROM_DELAY);
3054}
3055
3056static u16 spi_r(struct ksz_hw *hw)
3057{
3058 int i;
3059 u16 temp = 0;
3060
3061 for (i = 15; i >= 0; i--) {
3062 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3063 udelay(EEPROM_DELAY);
3064
3065 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3066
3067 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3068 udelay(EEPROM_DELAY);
3069 }
3070 return temp;
3071}
3072
3073static void spi_w(struct ksz_hw *hw, u16 data)
3074{
3075 int i;
3076
3077 for (i = 15; i >= 0; i--) {
3078 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3079 drop_gpio(hw, EEPROM_DATA_OUT);
3080 eeprom_clk(hw);
3081 }
3082}
3083
3084static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3085{
3086 int i;
3087
3088 /* Initial start bit */
3089 raise_gpio(hw, EEPROM_DATA_OUT);
3090 eeprom_clk(hw);
3091
3092 /* AT93C operation */
3093 for (i = 1; i >= 0; i--) {
3094 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3095 drop_gpio(hw, EEPROM_DATA_OUT);
3096 eeprom_clk(hw);
3097 }
3098
3099 /* Address location */
3100 for (i = 5; i >= 0; i--) {
3101 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3102 drop_gpio(hw, EEPROM_DATA_OUT);
3103 eeprom_clk(hw);
3104 }
3105}
3106
3107#define EEPROM_DATA_RESERVED 0
3108#define EEPROM_DATA_MAC_ADDR_0 1
3109#define EEPROM_DATA_MAC_ADDR_1 2
3110#define EEPROM_DATA_MAC_ADDR_2 3
3111#define EEPROM_DATA_SUBSYS_ID 4
3112#define EEPROM_DATA_SUBSYS_VEN_ID 5
3113#define EEPROM_DATA_PM_CAP 6
3114
3115/* User defined EEPROM data */
3116#define EEPROM_DATA_OTHER_MAC_ADDR 9
3117
3118/**
3119 * eeprom_read - read from AT93C46 EEPROM
3120 * @hw: The hardware instance.
3121 * @reg: The register offset.
3122 *
3123 * This function reads a word from the AT93C46 EEPROM.
3124 *
3125 * Return the data value.
3126 */
3127static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3128{
3129 u16 data;
3130
3131 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3132
3133 spi_reg(hw, AT93C_READ, reg);
3134 data = spi_r(hw);
3135
3136 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3137
3138 return data;
3139}
3140
3141/**
3142 * eeprom_write - write to AT93C46 EEPROM
3143 * @hw: The hardware instance.
3144 * @reg: The register offset.
3145 * @data: The data value.
3146 *
3147 * This procedure writes a word to the AT93C46 EEPROM.
3148 */
3149static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3150{
3151 int timeout;
3152
3153 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3154
3155 /* Enable write. */
3156 spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3157 drop_gpio(hw, EEPROM_CHIP_SELECT);
3158 udelay(1);
3159
3160 /* Erase the register. */
3161 raise_gpio(hw, EEPROM_CHIP_SELECT);
3162 spi_reg(hw, AT93C_ERASE, reg);
3163 drop_gpio(hw, EEPROM_CHIP_SELECT);
3164 udelay(1);
3165
3166 /* Check operation complete. */
3167 raise_gpio(hw, EEPROM_CHIP_SELECT);
3168 timeout = 8;
3169 mdelay(2);
3170 do {
3171 mdelay(1);
3172 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3173 drop_gpio(hw, EEPROM_CHIP_SELECT);
3174 udelay(1);
3175
3176 /* Write the register. */
3177 raise_gpio(hw, EEPROM_CHIP_SELECT);
3178 spi_reg(hw, AT93C_WRITE, reg);
3179 spi_w(hw, data);
3180 drop_gpio(hw, EEPROM_CHIP_SELECT);
3181 udelay(1);
3182
3183 /* Check operation complete. */
3184 raise_gpio(hw, EEPROM_CHIP_SELECT);
3185 timeout = 8;
3186 mdelay(2);
3187 do {
3188 mdelay(1);
3189 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3190 drop_gpio(hw, EEPROM_CHIP_SELECT);
3191 udelay(1);
3192
3193 /* Disable write. */
3194 raise_gpio(hw, EEPROM_CHIP_SELECT);
3195 spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3196
3197 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3198}
3199
3200/*
3201 * Link detection routines
3202 */
3203
3204static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3205{
3206 ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3207 switch (port->flow_ctrl) {
3208 case PHY_FLOW_CTRL:
3209 ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3210 break;
3211 /* Not supported. */
3212 case PHY_TX_ONLY:
3213 case PHY_RX_ONLY:
3214 default:
3215 break;
3216 }
3217 return ctrl;
3218}
3219
3220static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3221{
3222 u32 rx_cfg;
3223 u32 tx_cfg;
3224
3225 rx_cfg = hw->rx_cfg;
3226 tx_cfg = hw->tx_cfg;
3227 if (rx)
3228 hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3229 else
3230 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3231 if (tx)
3232 hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3233 else
3234 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3235 if (hw->enabled) {
3236 if (rx_cfg != hw->rx_cfg)
3237 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3238 if (tx_cfg != hw->tx_cfg)
3239 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3240 }
3241}
3242
3243static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3244 u16 local, u16 remote)
3245{
3246 int rx;
3247 int tx;
3248
3249 if (hw->overrides & PAUSE_FLOW_CTRL)
3250 return;
3251
3252 rx = tx = 0;
3253 if (port->force_link)
3254 rx = tx = 1;
3255 if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3256 if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3257 rx = tx = 1;
3258 } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3259 (local & PHY_AUTO_NEG_PAUSE) ==
3260 PHY_AUTO_NEG_ASYM_PAUSE) {
3261 tx = 1;
3262 }
3263 } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3264 if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3265 rx = 1;
3266 }
3267 if (!hw->ksz_switch)
3268 set_flow_ctrl(hw, rx, tx);
3269}
3270
3271static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3272 struct ksz_port_info *info, u16 link_status)
3273{
3274 if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3275 !(hw->overrides & PAUSE_FLOW_CTRL)) {
3276 u32 cfg = hw->tx_cfg;
3277
3278 /* Disable flow control in the half duplex mode. */
3279 if (1 == info->duplex)
3280 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3281 if (hw->enabled && cfg != hw->tx_cfg)
3282 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3283 }
3284}
3285
3286/**
3287 * port_get_link_speed - get current link status
3288 * @port: The port instance.
3289 *
3290 * This routine reads PHY registers to determine the current link status of the
3291 * switch ports.
3292 */
3293static void port_get_link_speed(struct ksz_port *port)
3294{
3295 uint interrupt;
3296 struct ksz_port_info *info;
3297 struct ksz_port_info *linked = NULL;
3298 struct ksz_hw *hw = port->hw;
3299 u16 data;
3300 u16 status;
3301 u8 local;
3302 u8 remote;
3303 int i;
3304 int p;
3305 int change = 0;
3306
3307 interrupt = hw_block_intr(hw);
3308
3309 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3310 info = &hw->port_info[p];
3311 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3312 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3313
3314 /*
3315 * Link status is changing all the time even when there is no
3316 * cable connection!
3317 */
3318 remote = status & (PORT_AUTO_NEG_COMPLETE |
3319 PORT_STATUS_LINK_GOOD);
3320 local = (u8) data;
3321
3322 /* No change to status. */
3323 if (local == info->advertised && remote == info->partner)
3324 continue;
3325
3326 info->advertised = local;
3327 info->partner = remote;
3328 if (status & PORT_STATUS_LINK_GOOD) {
3329
3330 /* Remember the first linked port. */
3331 if (!linked)
3332 linked = info;
3333
3334 info->tx_rate = 10 * TX_RATE_UNIT;
3335 if (status & PORT_STATUS_SPEED_100MBIT)
3336 info->tx_rate = 100 * TX_RATE_UNIT;
3337
3338 info->duplex = 1;
3339 if (status & PORT_STATUS_FULL_DUPLEX)
3340 info->duplex = 2;
3341
3342 if (media_connected != info->state) {
3343 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3344 &data);
3345 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3346 &status);
3347 determine_flow_ctrl(hw, port, data, status);
3348 if (hw->ksz_switch) {
3349 port_cfg_back_pressure(hw, p,
3350 (1 == info->duplex));
3351 }
3352 change |= 1 << i;
3353 port_cfg_change(hw, port, info, status);
3354 }
3355 info->state = media_connected;
3356 } else {
3357 if (media_disconnected != info->state) {
3358 change |= 1 << i;
3359
3360 /* Indicate the link just goes down. */
3361 hw->port_mib[p].link_down = 1;
3362 }
3363 info->state = media_disconnected;
3364 }
3365 hw->port_mib[p].state = (u8) info->state;
3366 }
3367
3368 if (linked && media_disconnected == port->linked->state)
3369 port->linked = linked;
3370
3371 hw_restore_intr(hw, interrupt);
3372}
3373
3374#define PHY_RESET_TIMEOUT 10
3375
3376/**
3377 * port_set_link_speed - set port speed
3378 * @port: The port instance.
3379 *
3380 * This routine sets the link speed of the switch ports.
3381 */
3382static void port_set_link_speed(struct ksz_port *port)
3383{
3384 struct ksz_port_info *info;
3385 struct ksz_hw *hw = port->hw;
3386 u16 data;
3387 u16 cfg;
3388 u8 status;
3389 int i;
3390 int p;
3391
3392 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3393 info = &hw->port_info[p];
3394
3395 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3396 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3397
3398 cfg = 0;
3399 if (status & PORT_STATUS_LINK_GOOD)
3400 cfg = data;
3401
3402 data |= PORT_AUTO_NEG_ENABLE;
3403 data = advertised_flow_ctrl(port, data);
3404
3405 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3406 PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3407
3408 /* Check if manual configuration is specified by the user. */
3409 if (port->speed || port->duplex) {
3410 if (10 == port->speed)
3411 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3412 PORT_AUTO_NEG_100BTX);
3413 else if (100 == port->speed)
3414 data &= ~(PORT_AUTO_NEG_10BT_FD |
3415 PORT_AUTO_NEG_10BT);
3416 if (1 == port->duplex)
3417 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3418 PORT_AUTO_NEG_10BT_FD);
3419 else if (2 == port->duplex)
3420 data &= ~(PORT_AUTO_NEG_100BTX |
3421 PORT_AUTO_NEG_10BT);
3422 }
3423 if (data != cfg) {
3424 data |= PORT_AUTO_NEG_RESTART;
3425 port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3426 }
3427 }
3428}
3429
3430/**
3431 * port_force_link_speed - force port speed
3432 * @port: The port instance.
3433 *
3434 * This routine forces the link speed of the switch ports.
3435 */
3436static void port_force_link_speed(struct ksz_port *port)
3437{
3438 struct ksz_hw *hw = port->hw;
3439 u16 data;
3440 int i;
3441 int phy;
3442 int p;
3443
3444 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3445 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3446 hw_r_phy_ctrl(hw, phy, &data);
3447
3448 data &= ~PHY_AUTO_NEG_ENABLE;
3449
3450 if (10 == port->speed)
3451 data &= ~PHY_SPEED_100MBIT;
3452 else if (100 == port->speed)
3453 data |= PHY_SPEED_100MBIT;
3454 if (1 == port->duplex)
3455 data &= ~PHY_FULL_DUPLEX;
3456 else if (2 == port->duplex)
3457 data |= PHY_FULL_DUPLEX;
3458 hw_w_phy_ctrl(hw, phy, data);
3459 }
3460}
3461
3462static void port_set_power_saving(struct ksz_port *port, int enable)
3463{
3464 struct ksz_hw *hw = port->hw;
3465 int i;
3466 int p;
3467
3468 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3469 port_cfg(hw, p,
3470 KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3471}
3472
3473/*
3474 * KSZ8841 power management functions
3475 */
3476
3477/**
3478 * hw_chk_wol_pme_status - check PMEN pin
3479 * @hw: The hardware instance.
3480 *
3481 * This function is used to check PMEN pin is asserted.
3482 *
3483 * Return 1 if PMEN pin is asserted; otherwise, 0.
3484 */
3485static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3486{
3487 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3488 struct pci_dev *pdev = hw_priv->pdev;
3489 u16 data;
3490
3491 if (!pdev->pm_cap)
3492 return 0;
3493 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3494 return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3495}
3496
3497/**
3498 * hw_clr_wol_pme_status - clear PMEN pin
3499 * @hw: The hardware instance.
3500 *
3501 * This routine is used to clear PME_Status to deassert PMEN pin.
3502 */
3503static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3504{
3505 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3506 struct pci_dev *pdev = hw_priv->pdev;
3507 u16 data;
3508
3509 if (!pdev->pm_cap)
3510 return;
3511
3512 /* Clear PME_Status to deassert PMEN pin. */
3513 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3514 data |= PCI_PM_CTRL_PME_STATUS;
3515 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3516}
3517
3518/**
3519 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3520 * @hw: The hardware instance.
3521 * @set: The flag indicating whether to enable or disable.
3522 *
3523 * This routine is used to enable or disable Wake-on-LAN.
3524 */
3525static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3526{
3527 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3528 struct pci_dev *pdev = hw_priv->pdev;
3529 u16 data;
3530
3531 if (!pdev->pm_cap)
3532 return;
3533 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3534 data &= ~PCI_PM_CTRL_STATE_MASK;
3535 if (set)
3536 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3537 else
3538 data &= ~PCI_PM_CTRL_PME_ENABLE;
3539 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3540}
3541
3542/**
3543 * hw_cfg_wol - configure Wake-on-LAN features
3544 * @hw: The hardware instance.
3545 * @frame: The pattern frame bit.
3546 * @set: The flag indicating whether to enable or disable.
3547 *
3548 * This routine is used to enable or disable certain Wake-on-LAN features.
3549 */
3550static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3551{
3552 u16 data;
3553
3554 data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3555 if (set)
3556 data |= frame;
3557 else
3558 data &= ~frame;
3559 writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3560}
3561
3562/**
3563 * hw_set_wol_frame - program Wake-on-LAN pattern
3564 * @hw: The hardware instance.
3565 * @i: The frame index.
3566 * @mask_size: The size of the mask.
3567 * @mask: Mask to ignore certain bytes in the pattern.
3568 * @frame_size: The size of the frame.
3569 * @pattern: The frame data.
3570 *
3571 * This routine is used to program Wake-on-LAN pattern.
3572 */
3573static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3574 u8 *mask, uint frame_size, u8 *pattern)
3575{
3576 int bits;
3577 int from;
3578 int len;
3579 int to;
3580 u32 crc;
3581 u8 data[64];
3582 u8 val = 0;
3583
3584 if (frame_size > mask_size * 8)
3585 frame_size = mask_size * 8;
3586 if (frame_size > 64)
3587 frame_size = 64;
3588
3589 i *= 0x10;
3590 writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3591 writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3592
3593 bits = len = from = to = 0;
3594 do {
3595 if (bits) {
3596 if ((val & 1))
3597 data[to++] = pattern[from];
3598 val >>= 1;
3599 ++from;
3600 --bits;
3601 } else {
3602 val = mask[len];
3603 writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3604 + len);
3605 ++len;
3606 if (val)
3607 bits = 8;
3608 else
3609 from += 8;
3610 }
3611 } while (from < (int) frame_size);
3612 if (val) {
3613 bits = mask[len - 1];
3614 val <<= (from % 8);
3615 bits &= ~val;
3616 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3617 1);
3618 }
3619 crc = ether_crc(to, data);
3620 writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3621}
3622
3623/**
3624 * hw_add_wol_arp - add ARP pattern
3625 * @hw: The hardware instance.
3626 * @ip_addr: The IPv4 address assigned to the device.
3627 *
3628 * This routine is used to add ARP pattern for waking up the host.
3629 */
3630static void hw_add_wol_arp(struct ksz_hw *hw, u8 *ip_addr)
3631{
3632 u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3633 u8 pattern[42] = {
3634 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3635 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3636 0x08, 0x06,
3637 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3638 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3639 0x00, 0x00, 0x00, 0x00,
3640 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3641 0x00, 0x00, 0x00, 0x00 };
3642
3643 memcpy(&pattern[38], ip_addr, 4);
3644 hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3645}
3646
3647/**
3648 * hw_add_wol_bcast - add broadcast pattern
3649 * @hw: The hardware instance.
3650 *
3651 * This routine is used to add broadcast pattern for waking up the host.
3652 */
3653static void hw_add_wol_bcast(struct ksz_hw *hw)
3654{
3655 u8 mask[] = { 0x3F };
3656 u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3657
3658 hw_set_wol_frame(hw, 2, 1, mask, MAC_ADDR_LEN, pattern);
3659}
3660
3661/**
3662 * hw_add_wol_mcast - add multicast pattern
3663 * @hw: The hardware instance.
3664 *
3665 * This routine is used to add multicast pattern for waking up the host.
3666 *
3667 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3668 * by IPv6 ping command. Note that multicast packets are filtred through the
3669 * multicast hash table, so not all multicast packets can wake up the host.
3670 */
3671static void hw_add_wol_mcast(struct ksz_hw *hw)
3672{
3673 u8 mask[] = { 0x3F };
3674 u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3675
3676 memcpy(&pattern[3], &hw->override_addr[3], 3);
3677 hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3678}
3679
3680/**
3681 * hw_add_wol_ucast - add unicast pattern
3682 * @hw: The hardware instance.
3683 *
3684 * This routine is used to add unicast pattern to wakeup the host.
3685 *
3686 * It is assumed the unicast packet is directed to the device, as the hardware
3687 * can only receive them in normal case.
3688 */
3689static void hw_add_wol_ucast(struct ksz_hw *hw)
3690{
3691 u8 mask[] = { 0x3F };
3692
3693 hw_set_wol_frame(hw, 0, 1, mask, MAC_ADDR_LEN, hw->override_addr);
3694}
3695
3696/**
3697 * hw_enable_wol - enable Wake-on-LAN
3698 * @hw: The hardware instance.
3699 * @wol_enable: The Wake-on-LAN settings.
3700 * @net_addr: The IPv4 address assigned to the device.
3701 *
3702 * This routine is used to enable Wake-on-LAN depending on driver settings.
3703 */
3704static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, u8 *net_addr)
3705{
3706 hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3707 hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3708 hw_add_wol_ucast(hw);
3709 hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3710 hw_add_wol_mcast(hw);
3711 hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3712 hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3713 hw_add_wol_arp(hw, net_addr);
3714}
3715
3716/**
3717 * hw_init - check driver is correct for the hardware
3718 * @hw: The hardware instance.
3719 *
3720 * This function checks the hardware is correct for this driver and sets the
3721 * hardware up for proper initialization.
3722 *
3723 * Return number of ports or 0 if not right.
3724 */
3725static int hw_init(struct ksz_hw *hw)
3726{
3727 int rc = 0;
3728 u16 data;
3729 u16 revision;
3730
3731 /* Set bus speed to 125MHz. */
3732 writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3733
3734 /* Check KSZ884x chip ID. */
3735 data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3736
3737 revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3738 data &= KS884X_CHIP_ID_MASK_41;
3739 if (REG_CHIP_ID_41 == data)
3740 rc = 1;
3741 else if (REG_CHIP_ID_42 == data)
3742 rc = 2;
3743 else
3744 return 0;
3745
3746 /* Setup hardware features or bug workarounds. */
3747 if (revision <= 1) {
3748 hw->features |= SMALL_PACKET_TX_BUG;
3749 if (1 == rc)
3750 hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3751 }
3752 hw->features |= IPV6_CSUM_GEN_HACK;
3753 return rc;
3754}
3755
3756/**
3757 * hw_reset - reset the hardware
3758 * @hw: The hardware instance.
3759 *
3760 * This routine resets the hardware.
3761 */
3762static void hw_reset(struct ksz_hw *hw)
3763{
3764 writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3765
3766 /* Wait for device to reset. */
3767 mdelay(10);
3768
3769 /* Write 0 to clear device reset. */
3770 writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3771}
3772
3773/**
3774 * hw_setup - setup the hardware
3775 * @hw: The hardware instance.
3776 *
3777 * This routine setup the hardware for proper operation.
3778 */
3779static void hw_setup(struct ksz_hw *hw)
3780{
3781#if SET_DEFAULT_LED
3782 u16 data;
3783
3784 /* Change default LED mode. */
3785 data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3786 data &= ~LED_MODE;
3787 data |= SET_DEFAULT_LED;
3788 writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3789#endif
3790
3791 /* Setup transmit control. */
3792 hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3793 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3794
3795 /* Setup receive control. */
3796 hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3797 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3798 hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3799
3800 /* Hardware cannot handle UDP packet in IP fragments. */
3801 hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3802
3803 if (hw->all_multi)
3804 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3805 if (hw->promiscuous)
3806 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3807}
3808
3809/**
3810 * hw_setup_intr - setup interrupt mask
3811 * @hw: The hardware instance.
3812 *
3813 * This routine setup the interrupt mask for proper operation.
3814 */
3815static void hw_setup_intr(struct ksz_hw *hw)
3816{
3817 hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3818}
3819
3820static void ksz_check_desc_num(struct ksz_desc_info *info)
3821{
3822#define MIN_DESC_SHIFT 2
3823
3824 int alloc = info->alloc;
3825 int shift;
3826
3827 shift = 0;
3828 while (!(alloc & 1)) {
3829 shift++;
3830 alloc >>= 1;
3831 }
3832 if (alloc != 1 || shift < MIN_DESC_SHIFT) {
0dc7d2b3 3833 pr_alert("Hardware descriptor numbers not right!\n");
8ca86fd8
TH
3834 while (alloc) {
3835 shift++;
3836 alloc >>= 1;
3837 }
3838 if (shift < MIN_DESC_SHIFT)
3839 shift = MIN_DESC_SHIFT;
3840 alloc = 1 << shift;
3841 info->alloc = alloc;
3842 }
3843 info->mask = info->alloc - 1;
3844}
3845
3846static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3847{
3848 int i;
3849 u32 phys = desc_info->ring_phys;
3850 struct ksz_hw_desc *desc = desc_info->ring_virt;
3851 struct ksz_desc *cur = desc_info->ring;
3852 struct ksz_desc *previous = NULL;
3853
3854 for (i = 0; i < desc_info->alloc; i++) {
3855 cur->phw = desc++;
3856 phys += desc_info->size;
3857 previous = cur++;
3858 previous->phw->next = cpu_to_le32(phys);
3859 }
3860 previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3861 previous->sw.buf.rx.end_of_ring = 1;
3862 previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3863
3864 desc_info->avail = desc_info->alloc;
3865 desc_info->last = desc_info->next = 0;
3866
3867 desc_info->cur = desc_info->ring;
3868}
3869
3870/**
3871 * hw_set_desc_base - set descriptor base addresses
3872 * @hw: The hardware instance.
3873 * @tx_addr: The transmit descriptor base.
3874 * @rx_addr: The receive descriptor base.
3875 *
3876 * This routine programs the descriptor base addresses after reset.
3877 */
3878static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3879{
3880 /* Set base address of Tx/Rx descriptors. */
3881 writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3882 writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3883}
3884
3885static void hw_reset_pkts(struct ksz_desc_info *info)
3886{
3887 info->cur = info->ring;
3888 info->avail = info->alloc;
3889 info->last = info->next = 0;
3890}
3891
3892static inline void hw_resume_rx(struct ksz_hw *hw)
3893{
3894 writel(DMA_START, hw->io + KS_DMA_RX_START);
3895}
3896
3897/**
3898 * hw_start_rx - start receiving
3899 * @hw: The hardware instance.
3900 *
3901 * This routine starts the receive function of the hardware.
3902 */
3903static void hw_start_rx(struct ksz_hw *hw)
3904{
3905 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3906
3907 /* Notify when the receive stops. */
3908 hw->intr_mask |= KS884X_INT_RX_STOPPED;
3909
3910 writel(DMA_START, hw->io + KS_DMA_RX_START);
3911 hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3912 hw->rx_stop++;
3913
3914 /* Variable overflows. */
3915 if (0 == hw->rx_stop)
3916 hw->rx_stop = 2;
3917}
3918
3919/*
3920 * hw_stop_rx - stop receiving
3921 * @hw: The hardware instance.
3922 *
3923 * This routine stops the receive function of the hardware.
3924 */
3925static void hw_stop_rx(struct ksz_hw *hw)
3926{
3927 hw->rx_stop = 0;
3928 hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3929 writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3930}
3931
3932/**
3933 * hw_start_tx - start transmitting
3934 * @hw: The hardware instance.
3935 *
3936 * This routine starts the transmit function of the hardware.
3937 */
3938static void hw_start_tx(struct ksz_hw *hw)
3939{
3940 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3941}
3942
3943/**
3944 * hw_stop_tx - stop transmitting
3945 * @hw: The hardware instance.
3946 *
3947 * This routine stops the transmit function of the hardware.
3948 */
3949static void hw_stop_tx(struct ksz_hw *hw)
3950{
3951 writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3952}
3953
3954/**
3955 * hw_disable - disable hardware
3956 * @hw: The hardware instance.
3957 *
3958 * This routine disables the hardware.
3959 */
3960static void hw_disable(struct ksz_hw *hw)
3961{
3962 hw_stop_rx(hw);
3963 hw_stop_tx(hw);
3964 hw->enabled = 0;
3965}
3966
3967/**
3968 * hw_enable - enable hardware
3969 * @hw: The hardware instance.
3970 *
3971 * This routine enables the hardware.
3972 */
3973static void hw_enable(struct ksz_hw *hw)
3974{
3975 hw_start_tx(hw);
3976 hw_start_rx(hw);
3977 hw->enabled = 1;
3978}
3979
3980/**
3981 * hw_alloc_pkt - allocate enough descriptors for transmission
3982 * @hw: The hardware instance.
3983 * @length: The length of the packet.
3984 * @physical: Number of descriptors required.
3985 *
3986 * This function allocates descriptors for transmission.
3987 *
3988 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3989 */
3990static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3991{
3992 /* Always leave one descriptor free. */
3993 if (hw->tx_desc_info.avail <= 1)
3994 return 0;
3995
3996 /* Allocate a descriptor for transmission and mark it current. */
3997 get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3998 hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3999
4000 /* Keep track of number of transmit descriptors used so far. */
4001 ++hw->tx_int_cnt;
4002 hw->tx_size += length;
4003
4004 /* Cannot hold on too much data. */
4005 if (hw->tx_size >= MAX_TX_HELD_SIZE)
4006 hw->tx_int_cnt = hw->tx_int_mask + 1;
4007
4008 if (physical > hw->tx_desc_info.avail)
4009 return 1;
4010
4011 return hw->tx_desc_info.avail;
4012}
4013
4014/**
4015 * hw_send_pkt - mark packet for transmission
4016 * @hw: The hardware instance.
4017 *
4018 * This routine marks the packet for transmission in PCI version.
4019 */
4020static void hw_send_pkt(struct ksz_hw *hw)
4021{
4022 struct ksz_desc *cur = hw->tx_desc_info.cur;
4023
4024 cur->sw.buf.tx.last_seg = 1;
4025
4026 /* Interrupt only after specified number of descriptors used. */
4027 if (hw->tx_int_cnt > hw->tx_int_mask) {
4028 cur->sw.buf.tx.intr = 1;
4029 hw->tx_int_cnt = 0;
4030 hw->tx_size = 0;
4031 }
4032
4033 /* KSZ8842 supports port directed transmission. */
4034 cur->sw.buf.tx.dest_port = hw->dst_ports;
4035
4036 release_desc(cur);
4037
4038 writel(0, hw->io + KS_DMA_TX_START);
4039}
4040
4041static int empty_addr(u8 *addr)
4042{
4043 u32 *addr1 = (u32 *) addr;
4044 u16 *addr2 = (u16 *) &addr[4];
4045
4046 return 0 == *addr1 && 0 == *addr2;
4047}
4048
4049/**
4050 * hw_set_addr - set MAC address
4051 * @hw: The hardware instance.
4052 *
4053 * This routine programs the MAC address of the hardware when the address is
4054 * overrided.
4055 */
4056static void hw_set_addr(struct ksz_hw *hw)
4057{
4058 int i;
4059
4060 for (i = 0; i < MAC_ADDR_LEN; i++)
4061 writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4062 hw->io + KS884X_ADDR_0_OFFSET + i);
4063
4064 sw_set_addr(hw, hw->override_addr);
4065}
4066
4067/**
4068 * hw_read_addr - read MAC address
4069 * @hw: The hardware instance.
4070 *
4071 * This routine retrieves the MAC address of the hardware.
4072 */
4073static void hw_read_addr(struct ksz_hw *hw)
4074{
4075 int i;
4076
4077 for (i = 0; i < MAC_ADDR_LEN; i++)
4078 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4079 KS884X_ADDR_0_OFFSET + i);
4080
4081 if (!hw->mac_override) {
4082 memcpy(hw->override_addr, hw->perm_addr, MAC_ADDR_LEN);
4083 if (empty_addr(hw->override_addr)) {
4084 memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS,
4085 MAC_ADDR_LEN);
4086 memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4087 MAC_ADDR_LEN);
4088 hw->override_addr[5] += hw->id;
4089 hw_set_addr(hw);
4090 }
4091 }
4092}
4093
4094static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4095{
4096 int i;
4097 u32 mac_addr_lo;
4098 u32 mac_addr_hi;
4099
4100 mac_addr_hi = 0;
4101 for (i = 0; i < 2; i++) {
4102 mac_addr_hi <<= 8;
4103 mac_addr_hi |= mac_addr[i];
4104 }
4105 mac_addr_hi |= ADD_ADDR_ENABLE;
4106 mac_addr_lo = 0;
4107 for (i = 2; i < 6; i++) {
4108 mac_addr_lo <<= 8;
4109 mac_addr_lo |= mac_addr[i];
4110 }
4111 index *= ADD_ADDR_INCR;
4112
4113 writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4114 writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4115}
4116
4117static void hw_set_add_addr(struct ksz_hw *hw)
4118{
4119 int i;
4120
4121 for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4122 if (empty_addr(hw->address[i]))
4123 writel(0, hw->io + ADD_ADDR_INCR * i +
4124 KS_ADD_ADDR_0_HI);
4125 else
4126 hw_ena_add_addr(hw, i, hw->address[i]);
4127 }
4128}
4129
4130static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4131{
4132 int i;
4133 int j = ADDITIONAL_ENTRIES;
4134
4135 if (!memcmp(hw->override_addr, mac_addr, MAC_ADDR_LEN))
4136 return 0;
4137 for (i = 0; i < hw->addr_list_size; i++) {
4138 if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN))
4139 return 0;
4140 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4141 j = i;
4142 }
4143 if (j < ADDITIONAL_ENTRIES) {
4144 memcpy(hw->address[j], mac_addr, MAC_ADDR_LEN);
4145 hw_ena_add_addr(hw, j, hw->address[j]);
4146 return 0;
4147 }
4148 return -1;
4149}
4150
4151static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4152{
4153 int i;
4154
4155 for (i = 0; i < hw->addr_list_size; i++) {
4156 if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN)) {
4157 memset(hw->address[i], 0, MAC_ADDR_LEN);
4158 writel(0, hw->io + ADD_ADDR_INCR * i +
4159 KS_ADD_ADDR_0_HI);
4160 return 0;
4161 }
4162 }
4163 return -1;
4164}
4165
4166/**
4167 * hw_clr_multicast - clear multicast addresses
4168 * @hw: The hardware instance.
4169 *
4170 * This routine removes all multicast addresses set in the hardware.
4171 */
4172static void hw_clr_multicast(struct ksz_hw *hw)
4173{
4174 int i;
4175
4176 for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4177 hw->multi_bits[i] = 0;
4178
4179 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4180 }
4181}
4182
4183/**
4184 * hw_set_grp_addr - set multicast addresses
4185 * @hw: The hardware instance.
4186 *
4187 * This routine programs multicast addresses for the hardware to accept those
4188 * addresses.
4189 */
4190static void hw_set_grp_addr(struct ksz_hw *hw)
4191{
4192 int i;
4193 int index;
4194 int position;
4195 int value;
4196
4197 memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4198
4199 for (i = 0; i < hw->multi_list_size; i++) {
4200 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4201 index = position >> 3;
4202 value = 1 << (position & 7);
4203 hw->multi_bits[index] |= (u8) value;
4204 }
4205
4206 for (i = 0; i < HW_MULTICAST_SIZE; i++)
4207 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4208 i);
4209}
4210
4211/**
4212 * hw_set_multicast - enable or disable all multicast receiving
4213 * @hw: The hardware instance.
4214 * @multicast: To turn on or off the all multicast feature.
4215 *
4216 * This routine enables/disables the hardware to accept all multicast packets.
4217 */
4218static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4219{
4220 /* Stop receiving for reconfiguration. */
4221 hw_stop_rx(hw);
4222
4223 if (multicast)
4224 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4225 else
4226 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4227
4228 if (hw->enabled)
4229 hw_start_rx(hw);
4230}
4231
4232/**
4233 * hw_set_promiscuous - enable or disable promiscuous receiving
4234 * @hw: The hardware instance.
4235 * @prom: To turn on or off the promiscuous feature.
4236 *
4237 * This routine enables/disables the hardware to accept all packets.
4238 */
4239static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4240{
4241 /* Stop receiving for reconfiguration. */
4242 hw_stop_rx(hw);
4243
4244 if (prom)
4245 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4246 else
4247 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4248
4249 if (hw->enabled)
4250 hw_start_rx(hw);
4251}
4252
4253/**
4254 * sw_enable - enable the switch
4255 * @hw: The hardware instance.
4256 * @enable: The flag to enable or disable the switch
4257 *
4258 * This routine is used to enable/disable the switch in KSZ8842.
4259 */
4260static void sw_enable(struct ksz_hw *hw, int enable)
4261{
4262 int port;
4263
4264 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4265 if (hw->dev_count > 1) {
4266 /* Set port-base vlan membership with host port. */
4267 sw_cfg_port_base_vlan(hw, port,
4268 HOST_MASK | (1 << port));
4269 port_set_stp_state(hw, port, STP_STATE_DISABLED);
4270 } else {
4271 sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4272 port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4273 }
4274 }
4275 if (hw->dev_count > 1)
4276 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4277 else
4278 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4279
4280 if (enable)
4281 enable = KS8842_START;
4282 writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4283}
4284
4285/**
4286 * sw_setup - setup the switch
4287 * @hw: The hardware instance.
4288 *
4289 * This routine setup the hardware switch engine for default operation.
4290 */
4291static void sw_setup(struct ksz_hw *hw)
4292{
4293 int port;
4294
4295 sw_set_global_ctrl(hw);
4296
4297 /* Enable switch broadcast storm protection at 10% percent rate. */
4298 sw_init_broad_storm(hw);
4299 hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4300 for (port = 0; port < SWITCH_PORT_NUM; port++)
4301 sw_ena_broad_storm(hw, port);
4302
4303 sw_init_prio(hw);
4304
4305 sw_init_mirror(hw);
4306
4307 sw_init_prio_rate(hw);
4308
4309 sw_init_vlan(hw);
4310
4311 if (hw->features & STP_SUPPORT)
4312 sw_init_stp(hw);
4313 if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4314 SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4315 hw->overrides |= PAUSE_FLOW_CTRL;
4316 sw_enable(hw, 1);
4317}
4318
4319/**
4320 * ksz_start_timer - start kernel timer
4321 * @info: Kernel timer information.
4322 * @time: The time tick.
4323 *
4324 * This routine starts the kernel timer after the specified time tick.
4325 */
4326static void ksz_start_timer(struct ksz_timer_info *info, int time)
4327{
4328 info->cnt = 0;
4329 info->timer.expires = jiffies + time;
4330 add_timer(&info->timer);
4331
4332 /* infinity */
4333 info->max = -1;
4334}
4335
4336/**
4337 * ksz_stop_timer - stop kernel timer
4338 * @info: Kernel timer information.
4339 *
4340 * This routine stops the kernel timer.
4341 */
4342static void ksz_stop_timer(struct ksz_timer_info *info)
4343{
4344 if (info->max) {
4345 info->max = 0;
4346 del_timer_sync(&info->timer);
4347 }
4348}
4349
4350static void ksz_init_timer(struct ksz_timer_info *info, int period,
4351 void (*function)(unsigned long), void *data)
4352{
4353 info->max = 0;
4354 info->period = period;
4355 init_timer(&info->timer);
4356 info->timer.function = function;
4357 info->timer.data = (unsigned long) data;
4358}
4359
4360static void ksz_update_timer(struct ksz_timer_info *info)
4361{
4362 ++info->cnt;
4363 if (info->max > 0) {
4364 if (info->cnt < info->max) {
4365 info->timer.expires = jiffies + info->period;
4366 add_timer(&info->timer);
4367 } else
4368 info->max = 0;
4369 } else if (info->max < 0) {
4370 info->timer.expires = jiffies + info->period;
4371 add_timer(&info->timer);
4372 }
4373}
4374
4375/**
4376 * ksz_alloc_soft_desc - allocate software descriptors
4377 * @desc_info: Descriptor information structure.
4378 * @transmit: Indication that descriptors are for transmit.
4379 *
4380 * This local function allocates software descriptors for manipulation in
4381 * memory.
4382 *
4383 * Return 0 if successful.
4384 */
4385static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4386{
4387 desc_info->ring = kmalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4388 GFP_KERNEL);
4389 if (!desc_info->ring)
4390 return 1;
4391 memset((void *) desc_info->ring, 0,
4392 sizeof(struct ksz_desc) * desc_info->alloc);
4393 hw_init_desc(desc_info, transmit);
4394 return 0;
4395}
4396
4397/**
4398 * ksz_alloc_desc - allocate hardware descriptors
4399 * @adapter: Adapter information structure.
4400 *
4401 * This local function allocates hardware descriptors for receiving and
4402 * transmitting.
4403 *
4404 * Return 0 if successful.
4405 */
4406static int ksz_alloc_desc(struct dev_info *adapter)
4407{
4408 struct ksz_hw *hw = &adapter->hw;
4409 int offset;
4410
4411 /* Allocate memory for RX & TX descriptors. */
4412 adapter->desc_pool.alloc_size =
4413 hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4414 hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4415 DESC_ALIGNMENT;
4416
4417 adapter->desc_pool.alloc_virt =
4418 pci_alloc_consistent(
4419 adapter->pdev, adapter->desc_pool.alloc_size,
4420 &adapter->desc_pool.dma_addr);
4421 if (adapter->desc_pool.alloc_virt == NULL) {
4422 adapter->desc_pool.alloc_size = 0;
4423 return 1;
4424 }
4425 memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size);
4426
4427 /* Align to the next cache line boundary. */
4428 offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4429 (DESC_ALIGNMENT -
4430 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4431 adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4432 adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4433
4434 /* Allocate receive/transmit descriptors. */
4435 hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4436 adapter->desc_pool.virt;
4437 hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4438 offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4439 hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4440 (adapter->desc_pool.virt + offset);
4441 hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4442
4443 if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4444 return 1;
4445 if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4446 return 1;
4447
4448 return 0;
4449}
4450
4451/**
4452 * free_dma_buf - release DMA buffer resources
4453 * @adapter: Adapter information structure.
4454 *
4455 * This routine is just a helper function to release the DMA buffer resources.
4456 */
4457static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4458 int direction)
4459{
4460 pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4461 dev_kfree_skb(dma_buf->skb);
4462 dma_buf->skb = NULL;
4463 dma_buf->dma = 0;
4464}
4465
4466/**
4467 * ksz_init_rx_buffers - initialize receive descriptors
4468 * @adapter: Adapter information structure.
4469 *
4470 * This routine initializes DMA buffers for receiving.
4471 */
4472static void ksz_init_rx_buffers(struct dev_info *adapter)
4473{
4474 int i;
4475 struct ksz_desc *desc;
4476 struct ksz_dma_buf *dma_buf;
4477 struct ksz_hw *hw = &adapter->hw;
4478 struct ksz_desc_info *info = &hw->rx_desc_info;
4479
4480 for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4481 get_rx_pkt(info, &desc);
4482
4483 dma_buf = DMA_BUFFER(desc);
4484 if (dma_buf->skb && dma_buf->len != adapter->mtu)
4485 free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4486 dma_buf->len = adapter->mtu;
4487 if (!dma_buf->skb)
4488 dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4489 if (dma_buf->skb && !dma_buf->dma) {
4490 dma_buf->skb->dev = adapter->dev;
4491 dma_buf->dma = pci_map_single(
4492 adapter->pdev,
4493 skb_tail_pointer(dma_buf->skb),
4494 dma_buf->len,
4495 PCI_DMA_FROMDEVICE);
4496 }
4497
4498 /* Set descriptor. */
4499 set_rx_buf(desc, dma_buf->dma);
4500 set_rx_len(desc, dma_buf->len);
4501 release_desc(desc);
4502 }
4503}
4504
4505/**
4506 * ksz_alloc_mem - allocate memory for hardware descriptors
4507 * @adapter: Adapter information structure.
4508 *
4509 * This function allocates memory for use by hardware descriptors for receiving
4510 * and transmitting.
4511 *
4512 * Return 0 if successful.
4513 */
4514static int ksz_alloc_mem(struct dev_info *adapter)
4515{
4516 struct ksz_hw *hw = &adapter->hw;
4517
4518 /* Determine the number of receive and transmit descriptors. */
4519 hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4520 hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4521
4522 /* Determine how many descriptors to skip transmit interrupt. */
4523 hw->tx_int_cnt = 0;
4524 hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4525 if (hw->tx_int_mask > 8)
4526 hw->tx_int_mask = 8;
4527 while (hw->tx_int_mask) {
4528 hw->tx_int_cnt++;
4529 hw->tx_int_mask >>= 1;
4530 }
4531 if (hw->tx_int_cnt) {
4532 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4533 hw->tx_int_cnt = 0;
4534 }
4535
4536 /* Determine the descriptor size. */
4537 hw->rx_desc_info.size =
4538 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4539 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4540 hw->tx_desc_info.size =
4541 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4542 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4543 if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
0dc7d2b3 4544 pr_alert("Hardware descriptor size not right!\n");
8ca86fd8
TH
4545 ksz_check_desc_num(&hw->rx_desc_info);
4546 ksz_check_desc_num(&hw->tx_desc_info);
4547
4548 /* Allocate descriptors. */
4549 if (ksz_alloc_desc(adapter))
4550 return 1;
4551
4552 return 0;
4553}
4554
4555/**
4556 * ksz_free_desc - free software and hardware descriptors
4557 * @adapter: Adapter information structure.
4558 *
4559 * This local routine frees the software and hardware descriptors allocated by
4560 * ksz_alloc_desc().
4561 */
4562static void ksz_free_desc(struct dev_info *adapter)
4563{
4564 struct ksz_hw *hw = &adapter->hw;
4565
4566 /* Reset descriptor. */
4567 hw->rx_desc_info.ring_virt = NULL;
4568 hw->tx_desc_info.ring_virt = NULL;
4569 hw->rx_desc_info.ring_phys = 0;
4570 hw->tx_desc_info.ring_phys = 0;
4571
4572 /* Free memory. */
4573 if (adapter->desc_pool.alloc_virt)
4574 pci_free_consistent(
4575 adapter->pdev,
4576 adapter->desc_pool.alloc_size,
4577 adapter->desc_pool.alloc_virt,
4578 adapter->desc_pool.dma_addr);
4579
4580 /* Reset resource pool. */
4581 adapter->desc_pool.alloc_size = 0;
4582 adapter->desc_pool.alloc_virt = NULL;
4583
4584 kfree(hw->rx_desc_info.ring);
4585 hw->rx_desc_info.ring = NULL;
4586 kfree(hw->tx_desc_info.ring);
4587 hw->tx_desc_info.ring = NULL;
4588}
4589
4590/**
4591 * ksz_free_buffers - free buffers used in the descriptors
4592 * @adapter: Adapter information structure.
4593 * @desc_info: Descriptor information structure.
4594 *
4595 * This local routine frees buffers used in the DMA buffers.
4596 */
4597static void ksz_free_buffers(struct dev_info *adapter,
4598 struct ksz_desc_info *desc_info, int direction)
4599{
4600 int i;
4601 struct ksz_dma_buf *dma_buf;
4602 struct ksz_desc *desc = desc_info->ring;
4603
4604 for (i = 0; i < desc_info->alloc; i++) {
4605 dma_buf = DMA_BUFFER(desc);
4606 if (dma_buf->skb)
4607 free_dma_buf(adapter, dma_buf, direction);
4608 desc++;
4609 }
4610}
4611
4612/**
4613 * ksz_free_mem - free all resources used by descriptors
4614 * @adapter: Adapter information structure.
4615 *
4616 * This local routine frees all the resources allocated by ksz_alloc_mem().
4617 */
4618static void ksz_free_mem(struct dev_info *adapter)
4619{
4620 /* Free transmit buffers. */
4621 ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4622 PCI_DMA_TODEVICE);
4623
4624 /* Free receive buffers. */
4625 ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4626 PCI_DMA_FROMDEVICE);
4627
4628 /* Free descriptors. */
4629 ksz_free_desc(adapter);
4630}
4631
4632static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4633 u64 *counter)
4634{
4635 int i;
4636 int mib;
4637 int port;
4638 struct ksz_port_mib *port_mib;
4639
4640 memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4641 for (i = 0, port = first; i < cnt; i++, port++) {
4642 port_mib = &hw->port_mib[port];
4643 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4644 counter[mib] += port_mib->counter[mib];
4645 }
4646}
4647
4648/**
4649 * send_packet - send packet
4650 * @skb: Socket buffer.
4651 * @dev: Network device.
4652 *
4653 * This routine is used to send a packet out to the network.
4654 */
4655static void send_packet(struct sk_buff *skb, struct net_device *dev)
4656{
4657 struct ksz_desc *desc;
4658 struct ksz_desc *first;
4659 struct dev_priv *priv = netdev_priv(dev);
4660 struct dev_info *hw_priv = priv->adapter;
4661 struct ksz_hw *hw = &hw_priv->hw;
4662 struct ksz_desc_info *info = &hw->tx_desc_info;
4663 struct ksz_dma_buf *dma_buf;
4664 int len;
4665 int last_frag = skb_shinfo(skb)->nr_frags;
4666
4667 /*
4668 * KSZ8842 with multiple device interfaces needs to be told which port
4669 * to send.
4670 */
4671 if (hw->dev_count > 1)
4672 hw->dst_ports = 1 << priv->port.first_port;
4673
4674 /* Hardware will pad the length to 60. */
4675 len = skb->len;
4676
4677 /* Remember the very first descriptor. */
4678 first = info->cur;
4679 desc = first;
4680
4681 dma_buf = DMA_BUFFER(desc);
4682 if (last_frag) {
4683 int frag;
4684 skb_frag_t *this_frag;
4685
4686 dma_buf->len = skb->len - skb->data_len;
4687
4688 dma_buf->dma = pci_map_single(
4689 hw_priv->pdev, skb->data, dma_buf->len,
4690 PCI_DMA_TODEVICE);
4691 set_tx_buf(desc, dma_buf->dma);
4692 set_tx_len(desc, dma_buf->len);
4693
4694 frag = 0;
4695 do {
4696 this_frag = &skb_shinfo(skb)->frags[frag];
4697
4698 /* Get a new descriptor. */
4699 get_tx_pkt(info, &desc);
4700
4701 /* Keep track of descriptors used so far. */
4702 ++hw->tx_int_cnt;
4703
4704 dma_buf = DMA_BUFFER(desc);
4705 dma_buf->len = this_frag->size;
4706
4707 dma_buf->dma = pci_map_single(
4708 hw_priv->pdev,
4709 page_address(this_frag->page) +
4710 this_frag->page_offset,
4711 dma_buf->len,
4712 PCI_DMA_TODEVICE);
4713 set_tx_buf(desc, dma_buf->dma);
4714 set_tx_len(desc, dma_buf->len);
4715
4716 frag++;
4717 if (frag == last_frag)
4718 break;
4719
4720 /* Do not release the last descriptor here. */
4721 release_desc(desc);
4722 } while (1);
4723
4724 /* current points to the last descriptor. */
4725 info->cur = desc;
4726
4727 /* Release the first descriptor. */
4728 release_desc(first);
4729 } else {
4730 dma_buf->len = len;
4731
4732 dma_buf->dma = pci_map_single(
4733 hw_priv->pdev, skb->data, dma_buf->len,
4734 PCI_DMA_TODEVICE);
4735 set_tx_buf(desc, dma_buf->dma);
4736 set_tx_len(desc, dma_buf->len);
4737 }
4738
4739 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4740 (desc)->sw.buf.tx.csum_gen_tcp = 1;
4741 (desc)->sw.buf.tx.csum_gen_udp = 1;
4742 }
4743
4744 /*
4745 * The last descriptor holds the packet so that it can be returned to
4746 * network subsystem after all descriptors are transmitted.
4747 */
4748 dma_buf->skb = skb;
4749
4750 hw_send_pkt(hw);
4751
4752 /* Update transmit statistics. */
4753 priv->stats.tx_packets++;
4754 priv->stats.tx_bytes += len;
4755}
4756
4757/**
4758 * transmit_cleanup - clean up transmit descriptors
4759 * @dev: Network device.
4760 *
4761 * This routine is called to clean up the transmitted buffers.
4762 */
4763static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4764{
4765 int last;
4766 union desc_stat status;
4767 struct ksz_hw *hw = &hw_priv->hw;
4768 struct ksz_desc_info *info = &hw->tx_desc_info;
4769 struct ksz_desc *desc;
4770 struct ksz_dma_buf *dma_buf;
4771 struct net_device *dev = NULL;
4772
4773 spin_lock(&hw_priv->hwlock);
4774 last = info->last;
4775
4776 while (info->avail < info->alloc) {
4777 /* Get next descriptor which is not hardware owned. */
4778 desc = &info->ring[last];
4779 status.data = le32_to_cpu(desc->phw->ctrl.data);
4780 if (status.tx.hw_owned) {
4781 if (normal)
4782 break;
4783 else
4784 reset_desc(desc, status);
4785 }
4786
4787 dma_buf = DMA_BUFFER(desc);
4788 pci_unmap_single(
4789 hw_priv->pdev, dma_buf->dma, dma_buf->len,
4790 PCI_DMA_TODEVICE);
4791
4792 /* This descriptor contains the last buffer in the packet. */
4793 if (dma_buf->skb) {
4794 dev = dma_buf->skb->dev;
4795
4796 /* Release the packet back to network subsystem. */
4797 dev_kfree_skb_irq(dma_buf->skb);
4798 dma_buf->skb = NULL;
4799 }
4800
4801 /* Free the transmitted descriptor. */
4802 last++;
4803 last &= info->mask;
4804 info->avail++;
4805 }
4806 info->last = last;
4807 spin_unlock(&hw_priv->hwlock);
4808
4809 /* Notify the network subsystem that the packet has been sent. */
4810 if (dev)
4811 dev->trans_start = jiffies;
4812}
4813
4814/**
4815 * transmit_done - transmit done processing
4816 * @dev: Network device.
4817 *
4818 * This routine is called when the transmit interrupt is triggered, indicating
4819 * either a packet is sent successfully or there are transmit errors.
4820 */
4821static void tx_done(struct dev_info *hw_priv)
4822{
4823 struct ksz_hw *hw = &hw_priv->hw;
4824 int port;
4825
4826 transmit_cleanup(hw_priv, 1);
4827
4828 for (port = 0; port < hw->dev_count; port++) {
4829 struct net_device *dev = hw->port_info[port].pdev;
4830
4831 if (netif_running(dev) && netif_queue_stopped(dev))
4832 netif_wake_queue(dev);
4833 }
4834}
4835
4836static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4837{
4838 skb->dev = old->dev;
4839 skb->protocol = old->protocol;
4840 skb->ip_summed = old->ip_summed;
4841 skb->csum = old->csum;
4842 skb_set_network_header(skb, ETH_HLEN);
4843
4844 dev_kfree_skb(old);
4845}
4846
4847/**
4848 * netdev_tx - send out packet
4849 * @skb: Socket buffer.
4850 * @dev: Network device.
4851 *
4852 * This function is used by the upper network layer to send out a packet.
4853 *
4854 * Return 0 if successful; otherwise an error code indicating failure.
4855 */
4856static int netdev_tx(struct sk_buff *skb, struct net_device *dev)
4857{
4858 struct dev_priv *priv = netdev_priv(dev);
4859 struct dev_info *hw_priv = priv->adapter;
4860 struct ksz_hw *hw = &hw_priv->hw;
4861 int left;
4862 int num = 1;
4863 int rc = 0;
4864
4865 if (hw->features & SMALL_PACKET_TX_BUG) {
4866 struct sk_buff *org_skb = skb;
4867
4868 if (skb->len <= 48) {
4869 if (skb_end_pointer(skb) - skb->data >= 50) {
4870 memset(&skb->data[skb->len], 0, 50 - skb->len);
4871 skb->len = 50;
4872 } else {
4873 skb = dev_alloc_skb(50);
4874 if (!skb)
4875 return NETDEV_TX_BUSY;
4876 memcpy(skb->data, org_skb->data, org_skb->len);
4877 memset(&skb->data[org_skb->len], 0,
4878 50 - org_skb->len);
4879 skb->len = 50;
4880 copy_old_skb(org_skb, skb);
4881 }
4882 }
4883 }
4884
4885 spin_lock_irq(&hw_priv->hwlock);
4886
4887 num = skb_shinfo(skb)->nr_frags + 1;
4888 left = hw_alloc_pkt(hw, skb->len, num);
4889 if (left) {
4890 if (left < num ||
4891 ((hw->features & IPV6_CSUM_GEN_HACK) &&
4892 (CHECKSUM_PARTIAL == skb->ip_summed) &&
4893 (ETH_P_IPV6 == htons(skb->protocol)))) {
4894 struct sk_buff *org_skb = skb;
4895
4896 skb = dev_alloc_skb(org_skb->len);
edee3932
JS
4897 if (!skb) {
4898 rc = NETDEV_TX_BUSY;
4899 goto unlock;
4900 }
8ca86fd8
TH
4901 skb_copy_and_csum_dev(org_skb, skb->data);
4902 org_skb->ip_summed = 0;
4903 skb->len = org_skb->len;
4904 copy_old_skb(org_skb, skb);
4905 }
4906 send_packet(skb, dev);
4907 if (left <= num)
4908 netif_stop_queue(dev);
4909 } else {
4910 /* Stop the transmit queue until packet is allocated. */
4911 netif_stop_queue(dev);
4912 rc = NETDEV_TX_BUSY;
4913 }
edee3932 4914unlock:
8ca86fd8
TH
4915 spin_unlock_irq(&hw_priv->hwlock);
4916
4917 return rc;
4918}
4919
4920/**
4921 * netdev_tx_timeout - transmit timeout processing
4922 * @dev: Network device.
4923 *
4924 * This routine is called when the transmit timer expires. That indicates the
4925 * hardware is not running correctly because transmit interrupts are not
4926 * triggered to free up resources so that the transmit routine can continue
4927 * sending out packets. The hardware is reset to correct the problem.
4928 */
4929static void netdev_tx_timeout(struct net_device *dev)
4930{
4931 static unsigned long last_reset;
4932
4933 struct dev_priv *priv = netdev_priv(dev);
4934 struct dev_info *hw_priv = priv->adapter;
4935 struct ksz_hw *hw = &hw_priv->hw;
4936 int port;
4937
4938 if (hw->dev_count > 1) {
4939 /*
4940 * Only reset the hardware if time between calls is long
4941 * enough.
4942 */
4943 if (jiffies - last_reset <= dev->watchdog_timeo)
4944 hw_priv = NULL;
4945 }
4946
4947 last_reset = jiffies;
4948 if (hw_priv) {
4949 hw_dis_intr(hw);
4950 hw_disable(hw);
4951
4952 transmit_cleanup(hw_priv, 0);
4953 hw_reset_pkts(&hw->rx_desc_info);
4954 hw_reset_pkts(&hw->tx_desc_info);
4955 ksz_init_rx_buffers(hw_priv);
4956
4957 hw_reset(hw);
4958
4959 hw_set_desc_base(hw,
4960 hw->tx_desc_info.ring_phys,
4961 hw->rx_desc_info.ring_phys);
4962 hw_set_addr(hw);
4963 if (hw->all_multi)
4964 hw_set_multicast(hw, hw->all_multi);
4965 else if (hw->multi_list_size)
4966 hw_set_grp_addr(hw);
4967
4968 if (hw->dev_count > 1) {
4969 hw_set_add_addr(hw);
4970 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4971 struct net_device *port_dev;
4972
4973 port_set_stp_state(hw, port,
4974 STP_STATE_DISABLED);
4975
4976 port_dev = hw->port_info[port].pdev;
4977 if (netif_running(port_dev))
4978 port_set_stp_state(hw, port,
4979 STP_STATE_SIMPLE);
4980 }
4981 }
4982
4983 hw_enable(hw);
4984 hw_ena_intr(hw);
4985 }
4986
4987 dev->trans_start = jiffies;
4988 netif_wake_queue(dev);
4989}
4990
4991static inline void csum_verified(struct sk_buff *skb)
4992{
4993 unsigned short protocol;
4994 struct iphdr *iph;
4995
4996 protocol = skb->protocol;
4997 skb_reset_network_header(skb);
4998 iph = (struct iphdr *) skb_network_header(skb);
4999 if (protocol == htons(ETH_P_8021Q)) {
5000 protocol = iph->tot_len;
5001 skb_set_network_header(skb, VLAN_HLEN);
5002 iph = (struct iphdr *) skb_network_header(skb);
5003 }
5004 if (protocol == htons(ETH_P_IP)) {
5005 if (iph->protocol == IPPROTO_TCP)
5006 skb->ip_summed = CHECKSUM_UNNECESSARY;
5007 }
5008}
5009
5010static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
5011 struct ksz_desc *desc, union desc_stat status)
5012{
5013 int packet_len;
5014 struct dev_priv *priv = netdev_priv(dev);
5015 struct dev_info *hw_priv = priv->adapter;
5016 struct ksz_dma_buf *dma_buf;
5017 struct sk_buff *skb;
5018 int rx_status;
5019
5020 /* Received length includes 4-byte CRC. */
5021 packet_len = status.rx.frame_len - 4;
5022
5023 dma_buf = DMA_BUFFER(desc);
5024 pci_dma_sync_single_for_cpu(
5025 hw_priv->pdev, dma_buf->dma, packet_len + 4,
5026 PCI_DMA_FROMDEVICE);
5027
5028 do {
5029 /* skb->data != skb->head */
5030 skb = dev_alloc_skb(packet_len + 2);
5031 if (!skb) {
5032 priv->stats.rx_dropped++;
5033 return -ENOMEM;
5034 }
5035
5036 /*
5037 * Align socket buffer in 4-byte boundary for better
5038 * performance.
5039 */
5040 skb_reserve(skb, 2);
5041
5042 memcpy(skb_put(skb, packet_len),
5043 dma_buf->skb->data, packet_len);
5044 } while (0);
5045
8ca86fd8
TH
5046 skb->protocol = eth_type_trans(skb, dev);
5047
5048 if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5049 csum_verified(skb);
5050
5051 /* Update receive statistics. */
5052 priv->stats.rx_packets++;
5053 priv->stats.rx_bytes += packet_len;
5054
5055 /* Notify upper layer for received packet. */
5056 dev->last_rx = jiffies;
5057
5058 rx_status = netif_rx(skb);
5059
5060 return 0;
5061}
5062
5063static int dev_rcv_packets(struct dev_info *hw_priv)
5064{
5065 int next;
5066 union desc_stat status;
5067 struct ksz_hw *hw = &hw_priv->hw;
5068 struct net_device *dev = hw->port_info[0].pdev;
5069 struct ksz_desc_info *info = &hw->rx_desc_info;
5070 int left = info->alloc;
5071 struct ksz_desc *desc;
5072 int received = 0;
5073
5074 next = info->next;
5075 while (left--) {
5076 /* Get next descriptor which is not hardware owned. */
5077 desc = &info->ring[next];
5078 status.data = le32_to_cpu(desc->phw->ctrl.data);
5079 if (status.rx.hw_owned)
5080 break;
5081
5082 /* Status valid only when last descriptor bit is set. */
5083 if (status.rx.last_desc && status.rx.first_desc) {
5084 if (rx_proc(dev, hw, desc, status))
5085 goto release_packet;
5086 received++;
5087 }
5088
5089release_packet:
5090 release_desc(desc);
5091 next++;
5092 next &= info->mask;
5093 }
5094 info->next = next;
5095
5096 return received;
5097}
5098
5099static int port_rcv_packets(struct dev_info *hw_priv)
5100{
5101 int next;
5102 union desc_stat status;
5103 struct ksz_hw *hw = &hw_priv->hw;
5104 struct net_device *dev = hw->port_info[0].pdev;
5105 struct ksz_desc_info *info = &hw->rx_desc_info;
5106 int left = info->alloc;
5107 struct ksz_desc *desc;
5108 int received = 0;
5109
5110 next = info->next;
5111 while (left--) {
5112 /* Get next descriptor which is not hardware owned. */
5113 desc = &info->ring[next];
5114 status.data = le32_to_cpu(desc->phw->ctrl.data);
5115 if (status.rx.hw_owned)
5116 break;
5117
5118 if (hw->dev_count > 1) {
5119 /* Get received port number. */
5120 int p = HW_TO_DEV_PORT(status.rx.src_port);
5121
5122 dev = hw->port_info[p].pdev;
5123 if (!netif_running(dev))
5124 goto release_packet;
5125 }
5126
5127 /* Status valid only when last descriptor bit is set. */
5128 if (status.rx.last_desc && status.rx.first_desc) {
5129 if (rx_proc(dev, hw, desc, status))
5130 goto release_packet;
5131 received++;
5132 }
5133
5134release_packet:
5135 release_desc(desc);
5136 next++;
5137 next &= info->mask;
5138 }
5139 info->next = next;
5140
5141 return received;
5142}
5143
5144static int dev_rcv_special(struct dev_info *hw_priv)
5145{
5146 int next;
5147 union desc_stat status;
5148 struct ksz_hw *hw = &hw_priv->hw;
5149 struct net_device *dev = hw->port_info[0].pdev;
5150 struct ksz_desc_info *info = &hw->rx_desc_info;
5151 int left = info->alloc;
5152 struct ksz_desc *desc;
5153 int received = 0;
5154
5155 next = info->next;
5156 while (left--) {
5157 /* Get next descriptor which is not hardware owned. */
5158 desc = &info->ring[next];
5159 status.data = le32_to_cpu(desc->phw->ctrl.data);
5160 if (status.rx.hw_owned)
5161 break;
5162
5163 if (hw->dev_count > 1) {
5164 /* Get received port number. */
5165 int p = HW_TO_DEV_PORT(status.rx.src_port);
5166
5167 dev = hw->port_info[p].pdev;
5168 if (!netif_running(dev))
5169 goto release_packet;
5170 }
5171
5172 /* Status valid only when last descriptor bit is set. */
5173 if (status.rx.last_desc && status.rx.first_desc) {
5174 /*
5175 * Receive without error. With receive errors
5176 * disabled, packets with receive errors will be
5177 * dropped, so no need to check the error bit.
5178 */
5179 if (!status.rx.error || (status.data &
5180 KS_DESC_RX_ERROR_COND) ==
5181 KS_DESC_RX_ERROR_TOO_LONG) {
5182 if (rx_proc(dev, hw, desc, status))
5183 goto release_packet;
5184 received++;
5185 } else {
5186 struct dev_priv *priv = netdev_priv(dev);
5187
5188 /* Update receive error statistics. */
5189 priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5190 }
5191 }
5192
5193release_packet:
5194 release_desc(desc);
5195 next++;
5196 next &= info->mask;
5197 }
5198 info->next = next;
5199
5200 return received;
5201}
5202
5203static void rx_proc_task(unsigned long data)
5204{
5205 struct dev_info *hw_priv = (struct dev_info *) data;
5206 struct ksz_hw *hw = &hw_priv->hw;
5207
5208 if (!hw->enabled)
5209 return;
5210 if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5211
5212 /* In case receive process is suspended because of overrun. */
5213 hw_resume_rx(hw);
5214
5215 /* tasklets are interruptible. */
5216 spin_lock_irq(&hw_priv->hwlock);
5217 hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5218 spin_unlock_irq(&hw_priv->hwlock);
5219 } else {
5220 hw_ack_intr(hw, KS884X_INT_RX);
5221 tasklet_schedule(&hw_priv->rx_tasklet);
5222 }
5223}
5224
5225static void tx_proc_task(unsigned long data)
5226{
5227 struct dev_info *hw_priv = (struct dev_info *) data;
5228 struct ksz_hw *hw = &hw_priv->hw;
5229
5230 hw_ack_intr(hw, KS884X_INT_TX_MASK);
5231
5232 tx_done(hw_priv);
5233
5234 /* tasklets are interruptible. */
5235 spin_lock_irq(&hw_priv->hwlock);
5236 hw_turn_on_intr(hw, KS884X_INT_TX);
5237 spin_unlock_irq(&hw_priv->hwlock);
5238}
5239
5240static inline void handle_rx_stop(struct ksz_hw *hw)
5241{
5242 /* Receive just has been stopped. */
5243 if (0 == hw->rx_stop)
5244 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5245 else if (hw->rx_stop > 1) {
5246 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5247 hw_start_rx(hw);
5248 } else {
5249 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5250 hw->rx_stop = 0;
5251 }
5252 } else
5253 /* Receive just has been started. */
5254 hw->rx_stop++;
5255}
5256
5257/**
5258 * netdev_intr - interrupt handling
5259 * @irq: Interrupt number.
5260 * @dev_id: Network device.
5261 *
5262 * This function is called by upper network layer to signal interrupt.
5263 *
5264 * Return IRQ_HANDLED if interrupt is handled.
5265 */
5266static irqreturn_t netdev_intr(int irq, void *dev_id)
5267{
5268 uint int_enable = 0;
5269 struct net_device *dev = (struct net_device *) dev_id;
5270 struct dev_priv *priv = netdev_priv(dev);
5271 struct dev_info *hw_priv = priv->adapter;
5272 struct ksz_hw *hw = &hw_priv->hw;
5273
5274 hw_read_intr(hw, &int_enable);
5275
5276 /* Not our interrupt! */
5277 if (!int_enable)
5278 return IRQ_NONE;
5279
5280 do {
5281 hw_ack_intr(hw, int_enable);
5282 int_enable &= hw->intr_mask;
5283
5284 if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5285 hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5286 tasklet_schedule(&hw_priv->tx_tasklet);
5287 }
5288
5289 if (likely(int_enable & KS884X_INT_RX)) {
5290 hw_dis_intr_bit(hw, KS884X_INT_RX);
5291 tasklet_schedule(&hw_priv->rx_tasklet);
5292 }
5293
5294 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5295 priv->stats.rx_fifo_errors++;
5296 hw_resume_rx(hw);
5297 }
5298
5299 if (unlikely(int_enable & KS884X_INT_PHY)) {
5300 struct ksz_port *port = &priv->port;
5301
5302 hw->features |= LINK_INT_WORKING;
5303 port_get_link_speed(port);
5304 }
5305
5306 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5307 handle_rx_stop(hw);
5308 break;
5309 }
5310
5311 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5312 u32 data;
5313
5314 hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
0dc7d2b3 5315 pr_info("Tx stopped\n");
8ca86fd8
TH
5316 data = readl(hw->io + KS_DMA_TX_CTRL);
5317 if (!(data & DMA_TX_ENABLE))
0dc7d2b3 5318 pr_info("Tx disabled\n");
8ca86fd8
TH
5319 break;
5320 }
5321 } while (0);
5322
5323 hw_ena_intr(hw);
5324
5325 return IRQ_HANDLED;
5326}
5327
5328/*
5329 * Linux network device functions
5330 */
5331
5332static unsigned long next_jiffies;
5333
5334#ifdef CONFIG_NET_POLL_CONTROLLER
5335static void netdev_netpoll(struct net_device *dev)
5336{
5337 struct dev_priv *priv = netdev_priv(dev);
5338 struct dev_info *hw_priv = priv->adapter;
5339
5340 hw_dis_intr(&hw_priv->hw);
5341 netdev_intr(dev->irq, dev);
5342}
5343#endif
5344
5345static void bridge_change(struct ksz_hw *hw)
5346{
5347 int port;
5348 u8 member;
5349 struct ksz_switch *sw = hw->ksz_switch;
5350
5351 /* No ports in forwarding state. */
5352 if (!sw->member) {
5353 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5354 sw_block_addr(hw);
5355 }
5356 for (port = 0; port < SWITCH_PORT_NUM; port++) {
5357 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5358 member = HOST_MASK | sw->member;
5359 else
5360 member = HOST_MASK | (1 << port);
5361 if (member != sw->port_cfg[port].member)
5362 sw_cfg_port_base_vlan(hw, port, member);
5363 }
5364}
5365
5366/**
5367 * netdev_close - close network device
5368 * @dev: Network device.
5369 *
5370 * This function process the close operation of network device. This is caused
5371 * by the user command "ifconfig ethX down."
5372 *
5373 * Return 0 if successful; otherwise an error code indicating failure.
5374 */
5375static int netdev_close(struct net_device *dev)
5376{
5377 struct dev_priv *priv = netdev_priv(dev);
5378 struct dev_info *hw_priv = priv->adapter;
5379 struct ksz_port *port = &priv->port;
5380 struct ksz_hw *hw = &hw_priv->hw;
5381 int pi;
5382
5383 netif_stop_queue(dev);
5384
5385 ksz_stop_timer(&priv->monitor_timer_info);
5386
5387 /* Need to shut the port manually in multiple device interfaces mode. */
5388 if (hw->dev_count > 1) {
5389 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5390
5391 /* Port is closed. Need to change bridge setting. */
5392 if (hw->features & STP_SUPPORT) {
5393 pi = 1 << port->first_port;
5394 if (hw->ksz_switch->member & pi) {
5395 hw->ksz_switch->member &= ~pi;
5396 bridge_change(hw);
5397 }
5398 }
5399 }
5400 if (port->first_port > 0)
5401 hw_del_addr(hw, dev->dev_addr);
5402 if (!hw_priv->wol_enable)
5403 port_set_power_saving(port, true);
5404
5405 if (priv->multicast)
5406 --hw->all_multi;
5407 if (priv->promiscuous)
5408 --hw->promiscuous;
5409
5410 hw_priv->opened--;
5411 if (!(hw_priv->opened)) {
5412 ksz_stop_timer(&hw_priv->mib_timer_info);
5413 flush_work(&hw_priv->mib_read);
5414
5415 hw_dis_intr(hw);
5416 hw_disable(hw);
5417 hw_clr_multicast(hw);
5418
5419 /* Delay for receive task to stop scheduling itself. */
5420 msleep(2000 / HZ);
5421
5422 tasklet_disable(&hw_priv->rx_tasklet);
5423 tasklet_disable(&hw_priv->tx_tasklet);
5424 free_irq(dev->irq, hw_priv->dev);
5425
5426 transmit_cleanup(hw_priv, 0);
5427 hw_reset_pkts(&hw->rx_desc_info);
5428 hw_reset_pkts(&hw->tx_desc_info);
5429
5430 /* Clean out static MAC table when the switch is shutdown. */
5431 if (hw->features & STP_SUPPORT)
5432 sw_clr_sta_mac_table(hw);
5433 }
5434
5435 return 0;
5436}
5437
5438static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5439{
5440 if (hw->ksz_switch) {
5441 u32 data;
5442
5443 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5444 if (hw->features & RX_HUGE_FRAME)
5445 data |= SWITCH_HUGE_PACKET;
5446 else
5447 data &= ~SWITCH_HUGE_PACKET;
5448 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5449 }
5450 if (hw->features & RX_HUGE_FRAME) {
5451 hw->rx_cfg |= DMA_RX_ERROR;
5452 hw_priv->dev_rcv = dev_rcv_special;
5453 } else {
5454 hw->rx_cfg &= ~DMA_RX_ERROR;
5455 if (hw->dev_count > 1)
5456 hw_priv->dev_rcv = port_rcv_packets;
5457 else
5458 hw_priv->dev_rcv = dev_rcv_packets;
5459 }
5460}
5461
5462static int prepare_hardware(struct net_device *dev)
5463{
5464 struct dev_priv *priv = netdev_priv(dev);
5465 struct dev_info *hw_priv = priv->adapter;
5466 struct ksz_hw *hw = &hw_priv->hw;
5467 int rc = 0;
5468
5469 /* Remember the network device that requests interrupts. */
5470 hw_priv->dev = dev;
5471 rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5472 if (rc)
5473 return rc;
5474 tasklet_enable(&hw_priv->rx_tasklet);
5475 tasklet_enable(&hw_priv->tx_tasklet);
5476
5477 hw->promiscuous = 0;
5478 hw->all_multi = 0;
5479 hw->multi_list_size = 0;
5480
5481 hw_reset(hw);
5482
5483 hw_set_desc_base(hw,
5484 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5485 hw_set_addr(hw);
5486 hw_cfg_huge_frame(hw_priv, hw);
5487 ksz_init_rx_buffers(hw_priv);
5488 return 0;
5489}
5490
0dc7d2b3
JP
5491static void set_media_state(struct net_device *dev, int media_state)
5492{
5493 struct dev_priv *priv = netdev_priv(dev);
5494
5495 if (media_state == priv->media_state)
5496 netif_carrier_on(dev);
5497 else
5498 netif_carrier_off(dev);
5499 netif_info(priv, link, dev, "link %s\n",
5500 media_state == priv->media_state ? "on" : "off");
5501}
5502
8ca86fd8
TH
5503/**
5504 * netdev_open - open network device
5505 * @dev: Network device.
5506 *
5507 * This function process the open operation of network device. This is caused
5508 * by the user command "ifconfig ethX up."
5509 *
5510 * Return 0 if successful; otherwise an error code indicating failure.
5511 */
5512static int netdev_open(struct net_device *dev)
5513{
5514 struct dev_priv *priv = netdev_priv(dev);
5515 struct dev_info *hw_priv = priv->adapter;
5516 struct ksz_hw *hw = &hw_priv->hw;
5517 struct ksz_port *port = &priv->port;
5518 int i;
5519 int p;
5520 int rc = 0;
5521
5522 priv->multicast = 0;
5523 priv->promiscuous = 0;
5524
5525 /* Reset device statistics. */
5526 memset(&priv->stats, 0, sizeof(struct net_device_stats));
5527 memset((void *) port->counter, 0,
5528 (sizeof(u64) * OID_COUNTER_LAST));
5529
5530 if (!(hw_priv->opened)) {
5531 rc = prepare_hardware(dev);
5532 if (rc)
5533 return rc;
5534 for (i = 0; i < hw->mib_port_cnt; i++) {
5535 if (next_jiffies < jiffies)
5536 next_jiffies = jiffies + HZ * 2;
5537 else
5538 next_jiffies += HZ * 1;
5539 hw_priv->counter[i].time = next_jiffies;
5540 hw->port_mib[i].state = media_disconnected;
5541 port_init_cnt(hw, i);
5542 }
5543 if (hw->ksz_switch)
5544 hw->port_mib[HOST_PORT].state = media_connected;
5545 else {
5546 hw_add_wol_bcast(hw);
5547 hw_cfg_wol_pme(hw, 0);
5548 hw_clr_wol_pme_status(&hw_priv->hw);
5549 }
5550 }
5551 port_set_power_saving(port, false);
5552
5553 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5554 /*
5555 * Initialize to invalid value so that link detection
5556 * is done.
5557 */
5558 hw->port_info[p].partner = 0xFF;
5559 hw->port_info[p].state = media_disconnected;
5560 }
5561
5562 /* Need to open the port in multiple device interfaces mode. */
5563 if (hw->dev_count > 1) {
5564 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5565 if (port->first_port > 0)
5566 hw_add_addr(hw, dev->dev_addr);
5567 }
5568
5569 port_get_link_speed(port);
5570 if (port->force_link)
5571 port_force_link_speed(port);
5572 else
5573 port_set_link_speed(port);
5574
5575 if (!(hw_priv->opened)) {
5576 hw_setup_intr(hw);
5577 hw_enable(hw);
5578 hw_ena_intr(hw);
5579
5580 if (hw->mib_port_cnt)
5581 ksz_start_timer(&hw_priv->mib_timer_info,
5582 hw_priv->mib_timer_info.period);
5583 }
5584
5585 hw_priv->opened++;
5586
5587 ksz_start_timer(&priv->monitor_timer_info,
5588 priv->monitor_timer_info.period);
5589
5590 priv->media_state = port->linked->state;
5591
0dc7d2b3 5592 set_media_state(dev, media_connected);
8ca86fd8
TH
5593 netif_start_queue(dev);
5594
5595 return 0;
5596}
5597
5598/* RX errors = rx_errors */
5599/* RX dropped = rx_dropped */
5600/* RX overruns = rx_fifo_errors */
5601/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5602/* TX errors = tx_errors */
5603/* TX dropped = tx_dropped */
5604/* TX overruns = tx_fifo_errors */
5605/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5606/* collisions = collisions */
5607
5608/**
5609 * netdev_query_statistics - query network device statistics
5610 * @dev: Network device.
5611 *
5612 * This function returns the statistics of the network device. The device
5613 * needs not be opened.
5614 *
5615 * Return network device statistics.
5616 */
5617static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5618{
5619 struct dev_priv *priv = netdev_priv(dev);
5620 struct ksz_port *port = &priv->port;
5621 struct ksz_hw *hw = &priv->adapter->hw;
5622 struct ksz_port_mib *mib;
5623 int i;
5624 int p;
5625
5626 priv->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5627 priv->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5628
5629 /* Reset to zero to add count later. */
5630 priv->stats.multicast = 0;
5631 priv->stats.collisions = 0;
5632 priv->stats.rx_length_errors = 0;
5633 priv->stats.rx_crc_errors = 0;
5634 priv->stats.rx_frame_errors = 0;
5635 priv->stats.tx_window_errors = 0;
5636
5637 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5638 mib = &hw->port_mib[p];
5639
5640 priv->stats.multicast += (unsigned long)
5641 mib->counter[MIB_COUNTER_RX_MULTICAST];
5642
5643 priv->stats.collisions += (unsigned long)
5644 mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5645
5646 priv->stats.rx_length_errors += (unsigned long)(
5647 mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5648 mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5649 mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5650 mib->counter[MIB_COUNTER_RX_JABBER]);
5651 priv->stats.rx_crc_errors += (unsigned long)
5652 mib->counter[MIB_COUNTER_RX_CRC_ERR];
5653 priv->stats.rx_frame_errors += (unsigned long)(
5654 mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5655 mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5656
5657 priv->stats.tx_window_errors += (unsigned long)
5658 mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5659 }
5660
5661 return &priv->stats;
5662}
5663
5664/**
5665 * netdev_set_mac_address - set network device MAC address
5666 * @dev: Network device.
5667 * @addr: Buffer of MAC address.
5668 *
5669 * This function is used to set the MAC address of the network device.
5670 *
5671 * Return 0 to indicate success.
5672 */
5673static int netdev_set_mac_address(struct net_device *dev, void *addr)
5674{
5675 struct dev_priv *priv = netdev_priv(dev);
5676 struct dev_info *hw_priv = priv->adapter;
5677 struct ksz_hw *hw = &hw_priv->hw;
5678 struct sockaddr *mac = addr;
5679 uint interrupt;
5680
5681 if (priv->port.first_port > 0)
5682 hw_del_addr(hw, dev->dev_addr);
5683 else {
5684 hw->mac_override = 1;
5685 memcpy(hw->override_addr, mac->sa_data, MAC_ADDR_LEN);
5686 }
5687
5688 memcpy(dev->dev_addr, mac->sa_data, MAX_ADDR_LEN);
5689
5690 interrupt = hw_block_intr(hw);
5691
5692 if (priv->port.first_port > 0)
5693 hw_add_addr(hw, dev->dev_addr);
5694 else
5695 hw_set_addr(hw);
5696 hw_restore_intr(hw, interrupt);
5697
5698 return 0;
5699}
5700
5701static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5702 struct ksz_hw *hw, int promiscuous)
5703{
5704 if (promiscuous != priv->promiscuous) {
5705 u8 prev_state = hw->promiscuous;
5706
5707 if (promiscuous)
5708 ++hw->promiscuous;
5709 else
5710 --hw->promiscuous;
5711 priv->promiscuous = promiscuous;
5712
5713 /* Turn on/off promiscuous mode. */
5714 if (hw->promiscuous <= 1 && prev_state <= 1)
5715 hw_set_promiscuous(hw, hw->promiscuous);
5716
5717 /*
5718 * Port is not in promiscuous mode, meaning it is released
5719 * from the bridge.
5720 */
5721 if ((hw->features & STP_SUPPORT) && !promiscuous &&
5722 dev->br_port) {
5723 struct ksz_switch *sw = hw->ksz_switch;
5724 int port = priv->port.first_port;
5725
5726 port_set_stp_state(hw, port, STP_STATE_DISABLED);
5727 port = 1 << port;
5728 if (sw->member & port) {
5729 sw->member &= ~port;
5730 bridge_change(hw);
5731 }
5732 }
5733 }
5734}
5735
5736static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5737 int multicast)
5738{
5739 if (multicast != priv->multicast) {
5740 u8 all_multi = hw->all_multi;
5741
5742 if (multicast)
5743 ++hw->all_multi;
5744 else
5745 --hw->all_multi;
5746 priv->multicast = multicast;
5747
5748 /* Turn on/off all multicast mode. */
5749 if (hw->all_multi <= 1 && all_multi <= 1)
5750 hw_set_multicast(hw, hw->all_multi);
5751 }
5752}
5753
5754/**
5755 * netdev_set_rx_mode
5756 * @dev: Network device.
5757 *
5758 * This routine is used to set multicast addresses or put the network device
5759 * into promiscuous mode.
5760 */
5761static void netdev_set_rx_mode(struct net_device *dev)
5762{
5763 struct dev_priv *priv = netdev_priv(dev);
5764 struct dev_info *hw_priv = priv->adapter;
5765 struct ksz_hw *hw = &hw_priv->hw;
5766 struct dev_mc_list *mc_ptr;
5767 int multicast = (dev->flags & IFF_ALLMULTI);
5768
5769 dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5770
5771 if (hw_priv->hw.dev_count > 1)
5772 multicast |= (dev->flags & IFF_MULTICAST);
5773 dev_set_multicast(priv, hw, multicast);
5774
5775 /* Cannot use different hashes in multiple device interfaces mode. */
5776 if (hw_priv->hw.dev_count > 1)
5777 return;
5778
f9dcbcc9 5779 if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
8ca86fd8
TH
5780 int i = 0;
5781
5782 /* List too big to support so turn on all multicast mode. */
5783 if (dev->mc_count > MAX_MULTICAST_LIST) {
5784 if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5785 hw->multi_list_size = MAX_MULTICAST_LIST;
5786 ++hw->all_multi;
5787 hw_set_multicast(hw, hw->all_multi);
5788 }
5789 return;
5790 }
5791
f9dcbcc9 5792 netdev_for_each_mc_addr(mc_ptr, dev) {
8ca86fd8
TH
5793 if (!(*mc_ptr->dmi_addr & 1))
5794 continue;
5795 if (i >= MAX_MULTICAST_LIST)
5796 break;
5797 memcpy(hw->multi_list[i++], mc_ptr->dmi_addr,
5798 MAC_ADDR_LEN);
5799 }
5800 hw->multi_list_size = (u8) i;
5801 hw_set_grp_addr(hw);
5802 } else {
5803 if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5804 --hw->all_multi;
5805 hw_set_multicast(hw, hw->all_multi);
5806 }
5807 hw->multi_list_size = 0;
5808 hw_clr_multicast(hw);
5809 }
5810}
5811
5812static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5813{
5814 struct dev_priv *priv = netdev_priv(dev);
5815 struct dev_info *hw_priv = priv->adapter;
5816 struct ksz_hw *hw = &hw_priv->hw;
5817 int hw_mtu;
5818
5819 if (netif_running(dev))
5820 return -EBUSY;
5821
5822 /* Cannot use different MTU in multiple device interfaces mode. */
5823 if (hw->dev_count > 1)
5824 if (dev != hw_priv->dev)
5825 return 0;
5826 if (new_mtu < 60)
5827 return -EINVAL;
5828
5829 if (dev->mtu != new_mtu) {
5830 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5831 if (hw_mtu > MAX_RX_BUF_SIZE)
5832 return -EINVAL;
5833 if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5834 hw->features |= RX_HUGE_FRAME;
5835 hw_mtu = MAX_RX_BUF_SIZE;
5836 } else {
5837 hw->features &= ~RX_HUGE_FRAME;
5838 hw_mtu = REGULAR_RX_BUF_SIZE;
5839 }
5840 hw_mtu = (hw_mtu + 3) & ~3;
5841 hw_priv->mtu = hw_mtu;
5842 dev->mtu = new_mtu;
5843 }
5844 return 0;
5845}
5846
5847/**
5848 * netdev_ioctl - I/O control processing
5849 * @dev: Network device.
5850 * @ifr: Interface request structure.
5851 * @cmd: I/O control code.
5852 *
5853 * This function is used to process I/O control calls.
5854 *
5855 * Return 0 to indicate success.
5856 */
5857static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5858{
5859 struct dev_priv *priv = netdev_priv(dev);
5860 struct dev_info *hw_priv = priv->adapter;
5861 struct ksz_hw *hw = &hw_priv->hw;
5862 struct ksz_port *port = &priv->port;
5863 int rc;
5864 int result = 0;
5865 struct mii_ioctl_data *data = if_mii(ifr);
5866
5867 if (down_interruptible(&priv->proc_sem))
5868 return -ERESTARTSYS;
5869
5870 /* assume success */
5871 rc = 0;
5872 switch (cmd) {
5873 /* Get address of MII PHY in use. */
5874 case SIOCGMIIPHY:
5875 data->phy_id = priv->id;
5876
5877 /* Fallthrough... */
5878
5879 /* Read MII PHY register. */
5880 case SIOCGMIIREG:
5881 if (data->phy_id != priv->id || data->reg_num >= 6)
5882 result = -EIO;
5883 else
5884 hw_r_phy(hw, port->linked->port_id, data->reg_num,
5885 &data->val_out);
5886 break;
5887
5888 /* Write MII PHY register. */
5889 case SIOCSMIIREG:
5890 if (!capable(CAP_NET_ADMIN))
5891 result = -EPERM;
5892 else if (data->phy_id != priv->id || data->reg_num >= 6)
5893 result = -EIO;
5894 else
5895 hw_w_phy(hw, port->linked->port_id, data->reg_num,
5896 data->val_in);
5897 break;
5898
5899 default:
5900 result = -EOPNOTSUPP;
5901 }
5902
5903 up(&priv->proc_sem);
5904
5905 return result;
5906}
5907
5908/*
5909 * MII support
5910 */
5911
5912/**
5913 * mdio_read - read PHY register
5914 * @dev: Network device.
5915 * @phy_id: The PHY id.
5916 * @reg_num: The register number.
5917 *
5918 * This function returns the PHY register value.
5919 *
5920 * Return the register value.
5921 */
5922static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5923{
5924 struct dev_priv *priv = netdev_priv(dev);
5925 struct ksz_port *port = &priv->port;
5926 struct ksz_hw *hw = port->hw;
5927 u16 val_out;
5928
5929 hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5930 return val_out;
5931}
5932
5933/**
5934 * mdio_write - set PHY register
5935 * @dev: Network device.
5936 * @phy_id: The PHY id.
5937 * @reg_num: The register number.
5938 * @val: The register value.
5939 *
5940 * This procedure sets the PHY register value.
5941 */
5942static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5943{
5944 struct dev_priv *priv = netdev_priv(dev);
5945 struct ksz_port *port = &priv->port;
5946 struct ksz_hw *hw = port->hw;
5947 int i;
5948 int pi;
5949
5950 for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5951 hw_w_phy(hw, pi, reg_num << 1, val);
5952}
5953
5954/*
5955 * ethtool support
5956 */
5957
5958#define EEPROM_SIZE 0x40
5959
5960static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5961
5962#define ADVERTISED_ALL \
5963 (ADVERTISED_10baseT_Half | \
5964 ADVERTISED_10baseT_Full | \
5965 ADVERTISED_100baseT_Half | \
5966 ADVERTISED_100baseT_Full)
5967
5968/* These functions use the MII functions in mii.c. */
5969
5970/**
5971 * netdev_get_settings - get network device settings
5972 * @dev: Network device.
5973 * @cmd: Ethtool command.
5974 *
5975 * This function queries the PHY and returns its state in the ethtool command.
5976 *
5977 * Return 0 if successful; otherwise an error code.
5978 */
5979static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5980{
5981 struct dev_priv *priv = netdev_priv(dev);
5982 struct dev_info *hw_priv = priv->adapter;
5983
5984 mutex_lock(&hw_priv->lock);
5985 mii_ethtool_gset(&priv->mii_if, cmd);
5986 cmd->advertising |= SUPPORTED_TP;
5987 mutex_unlock(&hw_priv->lock);
5988
5989 /* Save advertised settings for workaround in next function. */
5990 priv->advertising = cmd->advertising;
5991 return 0;
5992}
5993
5994/**
5995 * netdev_set_settings - set network device settings
5996 * @dev: Network device.
5997 * @cmd: Ethtool command.
5998 *
5999 * This function sets the PHY according to the ethtool command.
6000 *
6001 * Return 0 if successful; otherwise an error code.
6002 */
6003static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6004{
6005 struct dev_priv *priv = netdev_priv(dev);
6006 struct dev_info *hw_priv = priv->adapter;
6007 struct ksz_port *port = &priv->port;
6008 int rc;
6009
6010 /*
6011 * ethtool utility does not change advertised setting if auto
6012 * negotiation is not specified explicitly.
6013 */
6014 if (cmd->autoneg && priv->advertising == cmd->advertising) {
6015 cmd->advertising |= ADVERTISED_ALL;
6016 if (10 == cmd->speed)
6017 cmd->advertising &=
6018 ~(ADVERTISED_100baseT_Full |
6019 ADVERTISED_100baseT_Half);
6020 else if (100 == cmd->speed)
6021 cmd->advertising &=
6022 ~(ADVERTISED_10baseT_Full |
6023 ADVERTISED_10baseT_Half);
6024 if (0 == cmd->duplex)
6025 cmd->advertising &=
6026 ~(ADVERTISED_100baseT_Full |
6027 ADVERTISED_10baseT_Full);
6028 else if (1 == cmd->duplex)
6029 cmd->advertising &=
6030 ~(ADVERTISED_100baseT_Half |
6031 ADVERTISED_10baseT_Half);
6032 }
6033 mutex_lock(&hw_priv->lock);
6034 if (cmd->autoneg &&
6035 (cmd->advertising & ADVERTISED_ALL) ==
6036 ADVERTISED_ALL) {
6037 port->duplex = 0;
6038 port->speed = 0;
6039 port->force_link = 0;
6040 } else {
6041 port->duplex = cmd->duplex + 1;
6042 if (cmd->speed != 1000)
6043 port->speed = cmd->speed;
6044 if (cmd->autoneg)
6045 port->force_link = 0;
6046 else
6047 port->force_link = 1;
6048 }
6049 rc = mii_ethtool_sset(&priv->mii_if, cmd);
6050 mutex_unlock(&hw_priv->lock);
6051 return rc;
6052}
6053
6054/**
6055 * netdev_nway_reset - restart auto-negotiation
6056 * @dev: Network device.
6057 *
6058 * This function restarts the PHY for auto-negotiation.
6059 *
6060 * Return 0 if successful; otherwise an error code.
6061 */
6062static int netdev_nway_reset(struct net_device *dev)
6063{
6064 struct dev_priv *priv = netdev_priv(dev);
6065 struct dev_info *hw_priv = priv->adapter;
6066 int rc;
6067
6068 mutex_lock(&hw_priv->lock);
6069 rc = mii_nway_restart(&priv->mii_if);
6070 mutex_unlock(&hw_priv->lock);
6071 return rc;
6072}
6073
6074/**
6075 * netdev_get_link - get network device link status
6076 * @dev: Network device.
6077 *
6078 * This function gets the link status from the PHY.
6079 *
6080 * Return true if PHY is linked and false otherwise.
6081 */
6082static u32 netdev_get_link(struct net_device *dev)
6083{
6084 struct dev_priv *priv = netdev_priv(dev);
6085 int rc;
6086
6087 rc = mii_link_ok(&priv->mii_if);
6088 return rc;
6089}
6090
6091/**
6092 * netdev_get_drvinfo - get network driver information
6093 * @dev: Network device.
6094 * @info: Ethtool driver info data structure.
6095 *
6096 * This procedure returns the driver information.
6097 */
6098static void netdev_get_drvinfo(struct net_device *dev,
6099 struct ethtool_drvinfo *info)
6100{
6101 struct dev_priv *priv = netdev_priv(dev);
6102 struct dev_info *hw_priv = priv->adapter;
6103
6104 strcpy(info->driver, DRV_NAME);
6105 strcpy(info->version, DRV_VERSION);
6106 strcpy(info->bus_info, pci_name(hw_priv->pdev));
6107}
6108
6109/**
6110 * netdev_get_regs_len - get length of register dump
6111 * @dev: Network device.
6112 *
6113 * This function returns the length of the register dump.
6114 *
6115 * Return length of the register dump.
6116 */
6117static struct hw_regs {
6118 int start;
6119 int end;
6120} hw_regs_range[] = {
6121 { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS },
6122 { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI },
6123 { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
6124 { KS884X_SIDER_P, KS8842_SGCR7_P },
6125 { KS8842_MACAR1_P, KS8842_TOSR8_P },
6126 { KS884X_P1MBCR_P, KS8842_P3ERCR_P },
6127 { 0, 0 }
6128};
6129
6130static int netdev_get_regs_len(struct net_device *dev)
6131{
6132 struct hw_regs *range = hw_regs_range;
6133 int regs_len = 0x10 * sizeof(u32);
6134
6135 while (range->end > range->start) {
6136 regs_len += (range->end - range->start + 3) / 4 * 4;
6137 range++;
6138 }
6139 return regs_len;
6140}
6141
6142/**
6143 * netdev_get_regs - get register dump
6144 * @dev: Network device.
6145 * @regs: Ethtool registers data structure.
6146 * @ptr: Buffer to store the register values.
6147 *
6148 * This procedure dumps the register values in the provided buffer.
6149 */
6150static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6151 void *ptr)
6152{
6153 struct dev_priv *priv = netdev_priv(dev);
6154 struct dev_info *hw_priv = priv->adapter;
6155 struct ksz_hw *hw = &hw_priv->hw;
6156 int *buf = (int *) ptr;
6157 struct hw_regs *range = hw_regs_range;
6158 int len;
6159
6160 mutex_lock(&hw_priv->lock);
6161 regs->version = 0;
6162 for (len = 0; len < 0x40; len += 4) {
6163 pci_read_config_dword(hw_priv->pdev, len, buf);
6164 buf++;
6165 }
6166 while (range->end > range->start) {
6167 for (len = range->start; len < range->end; len += 4) {
6168 *buf = readl(hw->io + len);
6169 buf++;
6170 }
6171 range++;
6172 }
6173 mutex_unlock(&hw_priv->lock);
6174}
6175
6176#define WOL_SUPPORT \
6177 (WAKE_PHY | WAKE_MAGIC | \
6178 WAKE_UCAST | WAKE_MCAST | \
6179 WAKE_BCAST | WAKE_ARP)
6180
6181/**
6182 * netdev_get_wol - get Wake-on-LAN support
6183 * @dev: Network device.
6184 * @wol: Ethtool Wake-on-LAN data structure.
6185 *
6186 * This procedure returns Wake-on-LAN support.
6187 */
6188static void netdev_get_wol(struct net_device *dev,
6189 struct ethtool_wolinfo *wol)
6190{
6191 struct dev_priv *priv = netdev_priv(dev);
6192 struct dev_info *hw_priv = priv->adapter;
6193
6194 wol->supported = hw_priv->wol_support;
6195 wol->wolopts = hw_priv->wol_enable;
6196 memset(&wol->sopass, 0, sizeof(wol->sopass));
6197}
6198
6199/**
6200 * netdev_set_wol - set Wake-on-LAN support
6201 * @dev: Network device.
6202 * @wol: Ethtool Wake-on-LAN data structure.
6203 *
6204 * This function sets Wake-on-LAN support.
6205 *
6206 * Return 0 if successful; otherwise an error code.
6207 */
6208static int netdev_set_wol(struct net_device *dev,
6209 struct ethtool_wolinfo *wol)
6210{
6211 struct dev_priv *priv = netdev_priv(dev);
6212 struct dev_info *hw_priv = priv->adapter;
6213
6214 /* Need to find a way to retrieve the device IP address. */
6215 u8 net_addr[] = { 192, 168, 1, 1 };
6216
6217 if (wol->wolopts & ~hw_priv->wol_support)
6218 return -EINVAL;
6219
6220 hw_priv->wol_enable = wol->wolopts;
6221
6222 /* Link wakeup cannot really be disabled. */
6223 if (wol->wolopts)
6224 hw_priv->wol_enable |= WAKE_PHY;
6225 hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6226 return 0;
6227}
6228
6229/**
6230 * netdev_get_msglevel - get debug message level
6231 * @dev: Network device.
6232 *
6233 * This function returns current debug message level.
6234 *
6235 * Return current debug message flags.
6236 */
6237static u32 netdev_get_msglevel(struct net_device *dev)
6238{
6239 struct dev_priv *priv = netdev_priv(dev);
6240
6241 return priv->msg_enable;
6242}
6243
6244/**
6245 * netdev_set_msglevel - set debug message level
6246 * @dev: Network device.
6247 * @value: Debug message flags.
6248 *
6249 * This procedure sets debug message level.
6250 */
6251static void netdev_set_msglevel(struct net_device *dev, u32 value)
6252{
6253 struct dev_priv *priv = netdev_priv(dev);
6254
6255 priv->msg_enable = value;
6256}
6257
6258/**
6259 * netdev_get_eeprom_len - get EEPROM length
6260 * @dev: Network device.
6261 *
6262 * This function returns the length of the EEPROM.
6263 *
6264 * Return length of the EEPROM.
6265 */
6266static int netdev_get_eeprom_len(struct net_device *dev)
6267{
6268 return EEPROM_SIZE * 2;
6269}
6270
6271/**
6272 * netdev_get_eeprom - get EEPROM data
6273 * @dev: Network device.
6274 * @eeprom: Ethtool EEPROM data structure.
6275 * @data: Buffer to store the EEPROM data.
6276 *
6277 * This function dumps the EEPROM data in the provided buffer.
6278 *
6279 * Return 0 if successful; otherwise an error code.
6280 */
6281#define EEPROM_MAGIC 0x10A18842
6282
6283static int netdev_get_eeprom(struct net_device *dev,
6284 struct ethtool_eeprom *eeprom, u8 *data)
6285{
6286 struct dev_priv *priv = netdev_priv(dev);
6287 struct dev_info *hw_priv = priv->adapter;
6288 u8 *eeprom_byte = (u8 *) eeprom_data;
6289 int i;
6290 int len;
6291
6292 len = (eeprom->offset + eeprom->len + 1) / 2;
6293 for (i = eeprom->offset / 2; i < len; i++)
6294 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6295 eeprom->magic = EEPROM_MAGIC;
6296 memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6297
6298 return 0;
6299}
6300
6301/**
6302 * netdev_set_eeprom - write EEPROM data
6303 * @dev: Network device.
6304 * @eeprom: Ethtool EEPROM data structure.
6305 * @data: Data buffer.
6306 *
6307 * This function modifies the EEPROM data one byte at a time.
6308 *
6309 * Return 0 if successful; otherwise an error code.
6310 */
6311static int netdev_set_eeprom(struct net_device *dev,
6312 struct ethtool_eeprom *eeprom, u8 *data)
6313{
6314 struct dev_priv *priv = netdev_priv(dev);
6315 struct dev_info *hw_priv = priv->adapter;
6316 u16 eeprom_word[EEPROM_SIZE];
6317 u8 *eeprom_byte = (u8 *) eeprom_word;
6318 int i;
6319 int len;
6320
6321 if (eeprom->magic != EEPROM_MAGIC)
6322 return 1;
6323
6324 len = (eeprom->offset + eeprom->len + 1) / 2;
6325 for (i = eeprom->offset / 2; i < len; i++)
6326 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6327 memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6328 memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6329 for (i = 0; i < EEPROM_SIZE; i++)
6330 if (eeprom_word[i] != eeprom_data[i]) {
6331 eeprom_data[i] = eeprom_word[i];
6332 eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6333 }
6334
6335 return 0;
6336}
6337
6338/**
6339 * netdev_get_pauseparam - get flow control parameters
6340 * @dev: Network device.
6341 * @pause: Ethtool PAUSE settings data structure.
6342 *
6343 * This procedure returns the PAUSE control flow settings.
6344 */
6345static void netdev_get_pauseparam(struct net_device *dev,
6346 struct ethtool_pauseparam *pause)
6347{
6348 struct dev_priv *priv = netdev_priv(dev);
6349 struct dev_info *hw_priv = priv->adapter;
6350 struct ksz_hw *hw = &hw_priv->hw;
6351
6352 pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6353 if (!hw->ksz_switch) {
6354 pause->rx_pause =
6355 (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6356 pause->tx_pause =
6357 (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6358 } else {
6359 pause->rx_pause =
6360 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6361 SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6362 pause->tx_pause =
6363 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6364 SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6365 }
6366}
6367
6368/**
6369 * netdev_set_pauseparam - set flow control parameters
6370 * @dev: Network device.
6371 * @pause: Ethtool PAUSE settings data structure.
6372 *
6373 * This function sets the PAUSE control flow settings.
6374 * Not implemented yet.
6375 *
6376 * Return 0 if successful; otherwise an error code.
6377 */
6378static int netdev_set_pauseparam(struct net_device *dev,
6379 struct ethtool_pauseparam *pause)
6380{
6381 struct dev_priv *priv = netdev_priv(dev);
6382 struct dev_info *hw_priv = priv->adapter;
6383 struct ksz_hw *hw = &hw_priv->hw;
6384 struct ksz_port *port = &priv->port;
6385
6386 mutex_lock(&hw_priv->lock);
6387 if (pause->autoneg) {
6388 if (!pause->rx_pause && !pause->tx_pause)
6389 port->flow_ctrl = PHY_NO_FLOW_CTRL;
6390 else
6391 port->flow_ctrl = PHY_FLOW_CTRL;
6392 hw->overrides &= ~PAUSE_FLOW_CTRL;
6393 port->force_link = 0;
6394 if (hw->ksz_switch) {
6395 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6396 SWITCH_RX_FLOW_CTRL, 1);
6397 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6398 SWITCH_TX_FLOW_CTRL, 1);
6399 }
6400 port_set_link_speed(port);
6401 } else {
6402 hw->overrides |= PAUSE_FLOW_CTRL;
6403 if (hw->ksz_switch) {
6404 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6405 SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6406 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6407 SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6408 } else
6409 set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6410 }
6411 mutex_unlock(&hw_priv->lock);
6412
6413 return 0;
6414}
6415
6416/**
6417 * netdev_get_ringparam - get tx/rx ring parameters
6418 * @dev: Network device.
6419 * @pause: Ethtool RING settings data structure.
6420 *
6421 * This procedure returns the TX/RX ring settings.
6422 */
6423static void netdev_get_ringparam(struct net_device *dev,
6424 struct ethtool_ringparam *ring)
6425{
6426 struct dev_priv *priv = netdev_priv(dev);
6427 struct dev_info *hw_priv = priv->adapter;
6428 struct ksz_hw *hw = &hw_priv->hw;
6429
6430 ring->tx_max_pending = (1 << 9);
6431 ring->tx_pending = hw->tx_desc_info.alloc;
6432 ring->rx_max_pending = (1 << 9);
6433 ring->rx_pending = hw->rx_desc_info.alloc;
6434}
6435
6436#define STATS_LEN (TOTAL_PORT_COUNTER_NUM)
6437
6438static struct {
6439 char string[ETH_GSTRING_LEN];
6440} ethtool_stats_keys[STATS_LEN] = {
6441 { "rx_lo_priority_octets" },
6442 { "rx_hi_priority_octets" },
6443 { "rx_undersize_packets" },
6444 { "rx_fragments" },
6445 { "rx_oversize_packets" },
6446 { "rx_jabbers" },
6447 { "rx_symbol_errors" },
6448 { "rx_crc_errors" },
6449 { "rx_align_errors" },
6450 { "rx_mac_ctrl_packets" },
6451 { "rx_pause_packets" },
6452 { "rx_bcast_packets" },
6453 { "rx_mcast_packets" },
6454 { "rx_ucast_packets" },
6455 { "rx_64_or_less_octet_packets" },
6456 { "rx_65_to_127_octet_packets" },
6457 { "rx_128_to_255_octet_packets" },
6458 { "rx_256_to_511_octet_packets" },
6459 { "rx_512_to_1023_octet_packets" },
6460 { "rx_1024_to_1522_octet_packets" },
6461
6462 { "tx_lo_priority_octets" },
6463 { "tx_hi_priority_octets" },
6464 { "tx_late_collisions" },
6465 { "tx_pause_packets" },
6466 { "tx_bcast_packets" },
6467 { "tx_mcast_packets" },
6468 { "tx_ucast_packets" },
6469 { "tx_deferred" },
6470 { "tx_total_collisions" },
6471 { "tx_excessive_collisions" },
6472 { "tx_single_collisions" },
6473 { "tx_mult_collisions" },
6474
6475 { "rx_discards" },
6476 { "tx_discards" },
6477};
6478
6479/**
6480 * netdev_get_strings - get statistics identity strings
6481 * @dev: Network device.
6482 * @stringset: String set identifier.
6483 * @buf: Buffer to store the strings.
6484 *
6485 * This procedure returns the strings used to identify the statistics.
6486 */
6487static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6488{
6489 struct dev_priv *priv = netdev_priv(dev);
6490 struct dev_info *hw_priv = priv->adapter;
6491 struct ksz_hw *hw = &hw_priv->hw;
6492
6493 if (ETH_SS_STATS == stringset)
6494 memcpy(buf, &ethtool_stats_keys,
6495 ETH_GSTRING_LEN * hw->mib_cnt);
6496}
6497
6498/**
6499 * netdev_get_sset_count - get statistics size
6500 * @dev: Network device.
6501 * @sset: The statistics set number.
6502 *
6503 * This function returns the size of the statistics to be reported.
6504 *
6505 * Return size of the statistics to be reported.
6506 */
6507static int netdev_get_sset_count(struct net_device *dev, int sset)
6508{
6509 struct dev_priv *priv = netdev_priv(dev);
6510 struct dev_info *hw_priv = priv->adapter;
6511 struct ksz_hw *hw = &hw_priv->hw;
6512
6513 switch (sset) {
6514 case ETH_SS_STATS:
6515 return hw->mib_cnt;
6516 default:
6517 return -EOPNOTSUPP;
6518 }
6519}
6520
6521/**
6522 * netdev_get_ethtool_stats - get network device statistics
6523 * @dev: Network device.
6524 * @stats: Ethtool statistics data structure.
6525 * @data: Buffer to store the statistics.
6526 *
6527 * This procedure returns the statistics.
6528 */
6529static void netdev_get_ethtool_stats(struct net_device *dev,
6530 struct ethtool_stats *stats, u64 *data)
6531{
6532 struct dev_priv *priv = netdev_priv(dev);
6533 struct dev_info *hw_priv = priv->adapter;
6534 struct ksz_hw *hw = &hw_priv->hw;
6535 struct ksz_port *port = &priv->port;
6536 int n_stats = stats->n_stats;
6537 int i;
6538 int n;
6539 int p;
6540 int rc;
6541 u64 counter[TOTAL_PORT_COUNTER_NUM];
6542
6543 mutex_lock(&hw_priv->lock);
6544 n = SWITCH_PORT_NUM;
6545 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6546 if (media_connected == hw->port_mib[p].state) {
6547 hw_priv->counter[p].read = 1;
6548
6549 /* Remember first port that requests read. */
6550 if (n == SWITCH_PORT_NUM)
6551 n = p;
6552 }
6553 }
6554 mutex_unlock(&hw_priv->lock);
6555
6556 if (n < SWITCH_PORT_NUM)
6557 schedule_work(&hw_priv->mib_read);
6558
6559 if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6560 p = n;
6561 rc = wait_event_interruptible_timeout(
6562 hw_priv->counter[p].counter,
6563 2 == hw_priv->counter[p].read,
6564 HZ * 1);
6565 } else
6566 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6567 if (0 == i) {
6568 rc = wait_event_interruptible_timeout(
6569 hw_priv->counter[p].counter,
6570 2 == hw_priv->counter[p].read,
6571 HZ * 2);
6572 } else if (hw->port_mib[p].cnt_ptr) {
6573 rc = wait_event_interruptible_timeout(
6574 hw_priv->counter[p].counter,
6575 2 == hw_priv->counter[p].read,
6576 HZ * 1);
6577 }
6578 }
6579
6580 get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6581 n = hw->mib_cnt;
6582 if (n > n_stats)
6583 n = n_stats;
6584 n_stats -= n;
6585 for (i = 0; i < n; i++)
6586 *data++ = counter[i];
6587}
6588
6589/**
6590 * netdev_get_rx_csum - get receive checksum support
6591 * @dev: Network device.
6592 *
6593 * This function gets receive checksum support setting.
6594 *
6595 * Return true if receive checksum is enabled; false otherwise.
6596 */
6597static u32 netdev_get_rx_csum(struct net_device *dev)
6598{
6599 struct dev_priv *priv = netdev_priv(dev);
6600 struct dev_info *hw_priv = priv->adapter;
6601 struct ksz_hw *hw = &hw_priv->hw;
6602
6603 return hw->rx_cfg &
6604 (DMA_RX_CSUM_UDP |
6605 DMA_RX_CSUM_TCP |
6606 DMA_RX_CSUM_IP);
6607}
6608
6609/**
6610 * netdev_set_rx_csum - set receive checksum support
6611 * @dev: Network device.
6612 * @data: Zero to disable receive checksum support.
6613 *
6614 * This function sets receive checksum support setting.
6615 *
6616 * Return 0 if successful; otherwise an error code.
6617 */
6618static int netdev_set_rx_csum(struct net_device *dev, u32 data)
6619{
6620 struct dev_priv *priv = netdev_priv(dev);
6621 struct dev_info *hw_priv = priv->adapter;
6622 struct ksz_hw *hw = &hw_priv->hw;
6623 u32 new_setting = hw->rx_cfg;
6624
6625 if (data)
6626 new_setting |=
6627 (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP |
6628 DMA_RX_CSUM_IP);
6629 else
6630 new_setting &=
6631 ~(DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP |
6632 DMA_RX_CSUM_IP);
6633 new_setting &= ~DMA_RX_CSUM_UDP;
6634 mutex_lock(&hw_priv->lock);
6635 if (new_setting != hw->rx_cfg) {
6636 hw->rx_cfg = new_setting;
6637 if (hw->enabled)
6638 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6639 }
6640 mutex_unlock(&hw_priv->lock);
6641 return 0;
6642}
6643
6644static struct ethtool_ops netdev_ethtool_ops = {
6645 .get_settings = netdev_get_settings,
6646 .set_settings = netdev_set_settings,
6647 .nway_reset = netdev_nway_reset,
6648 .get_link = netdev_get_link,
6649 .get_drvinfo = netdev_get_drvinfo,
6650 .get_regs_len = netdev_get_regs_len,
6651 .get_regs = netdev_get_regs,
6652 .get_wol = netdev_get_wol,
6653 .set_wol = netdev_set_wol,
6654 .get_msglevel = netdev_get_msglevel,
6655 .set_msglevel = netdev_set_msglevel,
6656 .get_eeprom_len = netdev_get_eeprom_len,
6657 .get_eeprom = netdev_get_eeprom,
6658 .set_eeprom = netdev_set_eeprom,
6659 .get_pauseparam = netdev_get_pauseparam,
6660 .set_pauseparam = netdev_set_pauseparam,
6661 .get_ringparam = netdev_get_ringparam,
6662 .get_strings = netdev_get_strings,
6663 .get_sset_count = netdev_get_sset_count,
6664 .get_ethtool_stats = netdev_get_ethtool_stats,
6665 .get_rx_csum = netdev_get_rx_csum,
6666 .set_rx_csum = netdev_set_rx_csum,
6667 .get_tx_csum = ethtool_op_get_tx_csum,
6668 .set_tx_csum = ethtool_op_set_tx_csum,
6669 .get_sg = ethtool_op_get_sg,
6670 .set_sg = ethtool_op_set_sg,
6671};
6672
6673/*
6674 * Hardware monitoring
6675 */
6676
6677static void update_link(struct net_device *dev, struct dev_priv *priv,
6678 struct ksz_port *port)
6679{
6680 if (priv->media_state != port->linked->state) {
6681 priv->media_state = port->linked->state;
0dc7d2b3
JP
6682 if (netif_running(dev))
6683 set_media_state(dev, media_connected);
8ca86fd8
TH
6684 }
6685}
6686
6687static void mib_read_work(struct work_struct *work)
6688{
6689 struct dev_info *hw_priv =
6690 container_of(work, struct dev_info, mib_read);
6691 struct ksz_hw *hw = &hw_priv->hw;
6692 struct ksz_port_mib *mib;
6693 int i;
6694
6695 next_jiffies = jiffies;
6696 for (i = 0; i < hw->mib_port_cnt; i++) {
6697 mib = &hw->port_mib[i];
6698
6699 /* Reading MIB counters or requested to read. */
6700 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6701
6702 /* Need to process receive interrupt. */
6703 if (port_r_cnt(hw, i))
6704 break;
6705 hw_priv->counter[i].read = 0;
6706
6707 /* Finish reading counters. */
6708 if (0 == mib->cnt_ptr) {
6709 hw_priv->counter[i].read = 2;
6710 wake_up_interruptible(
6711 &hw_priv->counter[i].counter);
6712 }
6713 } else if (jiffies >= hw_priv->counter[i].time) {
6714 /* Only read MIB counters when the port is connected. */
6715 if (media_connected == mib->state)
6716 hw_priv->counter[i].read = 1;
6717 next_jiffies += HZ * 1 * hw->mib_port_cnt;
6718 hw_priv->counter[i].time = next_jiffies;
6719
6720 /* Port is just disconnected. */
6721 } else if (mib->link_down) {
6722 mib->link_down = 0;
6723
6724 /* Read counters one last time after link is lost. */
6725 hw_priv->counter[i].read = 1;
6726 }
6727 }
6728}
6729
6730static void mib_monitor(unsigned long ptr)
6731{
6732 struct dev_info *hw_priv = (struct dev_info *) ptr;
6733
6734 mib_read_work(&hw_priv->mib_read);
6735
6736 /* This is used to verify Wake-on-LAN is working. */
6737 if (hw_priv->pme_wait) {
6738 if (hw_priv->pme_wait <= jiffies) {
6739 hw_clr_wol_pme_status(&hw_priv->hw);
6740 hw_priv->pme_wait = 0;
6741 }
6742 } else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6743
6744 /* PME is asserted. Wait 2 seconds to clear it. */
6745 hw_priv->pme_wait = jiffies + HZ * 2;
6746 }
6747
6748 ksz_update_timer(&hw_priv->mib_timer_info);
6749}
6750
6751/**
6752 * dev_monitor - periodic monitoring
6753 * @ptr: Network device pointer.
6754 *
6755 * This routine is run in a kernel timer to monitor the network device.
6756 */
6757static void dev_monitor(unsigned long ptr)
6758{
6759 struct net_device *dev = (struct net_device *) ptr;
6760 struct dev_priv *priv = netdev_priv(dev);
6761 struct dev_info *hw_priv = priv->adapter;
6762 struct ksz_hw *hw = &hw_priv->hw;
6763 struct ksz_port *port = &priv->port;
6764
6765 if (!(hw->features & LINK_INT_WORKING))
6766 port_get_link_speed(port);
6767 update_link(dev, priv, port);
6768
6769 ksz_update_timer(&priv->monitor_timer_info);
6770}
6771
6772/*
6773 * Linux network device interface functions
6774 */
6775
6776/* Driver exported variables */
6777
6778static int msg_enable;
6779
6780static char *macaddr = ":";
6781static char *mac1addr = ":";
6782
6783/*
6784 * This enables multiple network device mode for KSZ8842, which contains a
6785 * switch with two physical ports. Some users like to take control of the
6786 * ports for running Spanning Tree Protocol. The driver will create an
6787 * additional eth? device for the other port.
6788 *
6789 * Some limitations are the network devices cannot have different MTU and
6790 * multicast hash tables.
6791 */
6792static int multi_dev;
6793
6794/*
6795 * As most users select multiple network device mode to use Spanning Tree
6796 * Protocol, this enables a feature in which most unicast and multicast packets
6797 * are forwarded inside the switch and not passed to the host. Only packets
6798 * that need the host's attention are passed to it. This prevents the host
6799 * wasting CPU time to examine each and every incoming packets and do the
6800 * forwarding itself.
6801 *
6802 * As the hack requires the private bridge header, the driver cannot compile
6803 * with just the kernel headers.
6804 *
6805 * Enabling STP support also turns on multiple network device mode.
6806 */
6807static int stp;
6808
6809/*
6810 * This enables fast aging in the KSZ8842 switch. Not sure what situation
6811 * needs that. However, fast aging is used to flush the dynamic MAC table when
6812 * STP suport is enabled.
6813 */
6814static int fast_aging;
6815
6816/**
6817 * netdev_init - initalize network device.
6818 * @dev: Network device.
6819 *
6820 * This function initializes the network device.
6821 *
6822 * Return 0 if successful; otherwise an error code indicating failure.
6823 */
6824static int __init netdev_init(struct net_device *dev)
6825{
6826 struct dev_priv *priv = netdev_priv(dev);
6827
6828 /* 500 ms timeout */
6829 ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6830 dev_monitor, dev);
6831
6832 /* 500 ms timeout */
6833 dev->watchdog_timeo = HZ / 2;
6834
6835 dev->features |= NETIF_F_IP_CSUM;
6836
6837 /*
6838 * Hardware does not really support IPv6 checksum generation, but
6839 * driver actually runs faster with this on. Refer IPV6_CSUM_GEN_HACK.
6840 */
6841 dev->features |= NETIF_F_IPV6_CSUM;
6842 dev->features |= NETIF_F_SG;
6843
6844 sema_init(&priv->proc_sem, 1);
6845
6846 priv->mii_if.phy_id_mask = 0x1;
6847 priv->mii_if.reg_num_mask = 0x7;
6848 priv->mii_if.dev = dev;
6849 priv->mii_if.mdio_read = mdio_read;
6850 priv->mii_if.mdio_write = mdio_write;
6851 priv->mii_if.phy_id = priv->port.first_port + 1;
6852
6853 priv->msg_enable = netif_msg_init(msg_enable,
6854 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6855
6856 return 0;
6857}
6858
6859static const struct net_device_ops netdev_ops = {
6860 .ndo_init = netdev_init,
6861 .ndo_open = netdev_open,
6862 .ndo_stop = netdev_close,
6863 .ndo_get_stats = netdev_query_statistics,
6864 .ndo_start_xmit = netdev_tx,
6865 .ndo_tx_timeout = netdev_tx_timeout,
6866 .ndo_change_mtu = netdev_change_mtu,
6867 .ndo_set_mac_address = netdev_set_mac_address,
6868 .ndo_do_ioctl = netdev_ioctl,
6869 .ndo_set_rx_mode = netdev_set_rx_mode,
6870#ifdef CONFIG_NET_POLL_CONTROLLER
6871 .ndo_poll_controller = netdev_netpoll,
6872#endif
6873};
6874
6875static void netdev_free(struct net_device *dev)
6876{
6877 if (dev->watchdog_timeo)
6878 unregister_netdev(dev);
6879
6880 free_netdev(dev);
6881}
6882
6883struct platform_info {
6884 struct dev_info dev_info;
6885 struct net_device *netdev[SWITCH_PORT_NUM];
6886};
6887
6888static int net_device_present;
6889
6890static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6891{
6892 int i;
6893 int j;
6894 int got_num;
6895 int num;
6896
6897 i = j = num = got_num = 0;
6898 while (j < MAC_ADDR_LEN) {
6899 if (macaddr[i]) {
6900 got_num = 1;
6901 if ('0' <= macaddr[i] && macaddr[i] <= '9')
6902 num = num * 16 + macaddr[i] - '0';
6903 else if ('A' <= macaddr[i] && macaddr[i] <= 'F')
6904 num = num * 16 + 10 + macaddr[i] - 'A';
6905 else if ('a' <= macaddr[i] && macaddr[i] <= 'f')
6906 num = num * 16 + 10 + macaddr[i] - 'a';
6907 else if (':' == macaddr[i])
6908 got_num = 2;
6909 else
6910 break;
6911 } else if (got_num)
6912 got_num = 2;
6913 else
6914 break;
6915 if (2 == got_num) {
6916 if (MAIN_PORT == port) {
6917 hw_priv->hw.override_addr[j++] = (u8) num;
6918 hw_priv->hw.override_addr[5] +=
6919 hw_priv->hw.id;
6920 } else {
6921 hw_priv->hw.ksz_switch->other_addr[j++] =
6922 (u8) num;
6923 hw_priv->hw.ksz_switch->other_addr[5] +=
6924 hw_priv->hw.id;
6925 }
6926 num = got_num = 0;
6927 }
6928 i++;
6929 }
6930 if (MAC_ADDR_LEN == j) {
6931 if (MAIN_PORT == port)
6932 hw_priv->hw.mac_override = 1;
6933 }
6934}
6935
6936#define KS884X_DMA_MASK (~0x0UL)
6937
6938static void read_other_addr(struct ksz_hw *hw)
6939{
6940 int i;
6941 u16 data[3];
6942 struct ksz_switch *sw = hw->ksz_switch;
6943
6944 for (i = 0; i < 3; i++)
6945 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6946 if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6947 sw->other_addr[5] = (u8) data[0];
6948 sw->other_addr[4] = (u8)(data[0] >> 8);
6949 sw->other_addr[3] = (u8) data[1];
6950 sw->other_addr[2] = (u8)(data[1] >> 8);
6951 sw->other_addr[1] = (u8) data[2];
6952 sw->other_addr[0] = (u8)(data[2] >> 8);
6953 }
6954}
6955
6956#ifndef PCI_VENDOR_ID_MICREL_KS
6957#define PCI_VENDOR_ID_MICREL_KS 0x16c6
6958#endif
6959
6960static int __init pcidev_init(struct pci_dev *pdev,
6961 const struct pci_device_id *id)
6962{
6963 struct net_device *dev;
6964 struct dev_priv *priv;
6965 struct dev_info *hw_priv;
6966 struct ksz_hw *hw;
6967 struct platform_info *info;
6968 struct ksz_port *port;
6969 unsigned long reg_base;
6970 unsigned long reg_len;
6971 int cnt;
6972 int i;
6973 int mib_port_count;
6974 int pi;
6975 int port_count;
6976 int result;
0dc7d2b3 6977 char banner[sizeof(version)];
8ca86fd8
TH
6978 struct ksz_switch *sw = NULL;
6979
6980 result = pci_enable_device(pdev);
6981 if (result)
6982 return result;
6983
6984 result = -ENODEV;
6985
6986 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6987 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6988 return result;
6989
6990 reg_base = pci_resource_start(pdev, 0);
6991 reg_len = pci_resource_len(pdev, 0);
6992 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6993 return result;
6994
6995 if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6996 return result;
6997 pci_set_master(pdev);
6998
6999 result = -ENOMEM;
7000
0dc7d2b3 7001 info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
8ca86fd8
TH
7002 if (!info)
7003 goto pcidev_init_dev_err;
8ca86fd8
TH
7004
7005 hw_priv = &info->dev_info;
7006 hw_priv->pdev = pdev;
7007
7008 hw = &hw_priv->hw;
7009
7010 hw->io = ioremap(reg_base, reg_len);
7011 if (!hw->io)
7012 goto pcidev_init_io_err;
7013
7014 cnt = hw_init(hw);
7015 if (!cnt) {
7016 if (msg_enable & NETIF_MSG_PROBE)
0dc7d2b3 7017 pr_alert("chip not detected\n");
8ca86fd8
TH
7018 result = -ENODEV;
7019 goto pcidev_init_alloc_err;
7020 }
7021
0dc7d2b3
JP
7022 snprintf(banner, sizeof(banner), "%s", version);
7023 banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */
7024 dev_info(&hw_priv->pdev->dev, "%s\n", banner);
7025 dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
8ca86fd8
TH
7026
7027 /* Assume device is KSZ8841. */
7028 hw->dev_count = 1;
7029 port_count = 1;
7030 mib_port_count = 1;
7031 hw->addr_list_size = 0;
7032 hw->mib_cnt = PORT_COUNTER_NUM;
7033 hw->mib_port_cnt = 1;
7034
7035 /* KSZ8842 has a switch with multiple ports. */
7036 if (2 == cnt) {
7037 if (fast_aging)
7038 hw->overrides |= FAST_AGING;
7039
7040 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7041
7042 /* Multiple network device interfaces are required. */
7043 if (multi_dev) {
7044 hw->dev_count = SWITCH_PORT_NUM;
7045 hw->addr_list_size = SWITCH_PORT_NUM - 1;
7046 }
7047
7048 /* Single network device has multiple ports. */
7049 if (1 == hw->dev_count) {
7050 port_count = SWITCH_PORT_NUM;
7051 mib_port_count = SWITCH_PORT_NUM;
7052 }
7053 hw->mib_port_cnt = TOTAL_PORT_NUM;
7054 hw->ksz_switch = kmalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7055 if (!hw->ksz_switch)
7056 goto pcidev_init_alloc_err;
7057 memset(hw->ksz_switch, 0, sizeof(struct ksz_switch));
7058
7059 sw = hw->ksz_switch;
7060 }
7061 for (i = 0; i < hw->mib_port_cnt; i++)
7062 hw->port_mib[i].mib_start = 0;
7063
7064 hw->parent = hw_priv;
7065
7066 /* Default MTU is 1500. */
7067 hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7068
7069 if (ksz_alloc_mem(hw_priv))
7070 goto pcidev_init_mem_err;
7071
7072 hw_priv->hw.id = net_device_present;
7073
7074 spin_lock_init(&hw_priv->hwlock);
7075 mutex_init(&hw_priv->lock);
7076
7077 /* tasklet is enabled. */
7078 tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
7079 (unsigned long) hw_priv);
7080 tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
7081 (unsigned long) hw_priv);
7082
7083 /* tasklet_enable will decrement the atomic counter. */
7084 tasklet_disable(&hw_priv->rx_tasklet);
7085 tasklet_disable(&hw_priv->tx_tasklet);
7086
7087 for (i = 0; i < TOTAL_PORT_NUM; i++)
7088 init_waitqueue_head(&hw_priv->counter[i].counter);
7089
7090 if (macaddr[0] != ':')
7091 get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7092
7093 /* Read MAC address and initialize override address if not overrided. */
7094 hw_read_addr(hw);
7095
7096 /* Multiple device interfaces mode requires a second MAC address. */
7097 if (hw->dev_count > 1) {
7098 memcpy(sw->other_addr, hw->override_addr, MAC_ADDR_LEN);
7099 read_other_addr(hw);
7100 if (mac1addr[0] != ':')
7101 get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7102 }
7103
7104 hw_setup(hw);
7105 if (hw->ksz_switch)
7106 sw_setup(hw);
7107 else {
7108 hw_priv->wol_support = WOL_SUPPORT;
7109 hw_priv->wol_enable = 0;
7110 }
7111
7112 INIT_WORK(&hw_priv->mib_read, mib_read_work);
7113
7114 /* 500 ms timeout */
7115 ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7116 mib_monitor, hw_priv);
7117
7118 for (i = 0; i < hw->dev_count; i++) {
7119 dev = alloc_etherdev(sizeof(struct dev_priv));
7120 if (!dev)
7121 goto pcidev_init_reg_err;
7122 info->netdev[i] = dev;
7123
7124 priv = netdev_priv(dev);
7125 priv->adapter = hw_priv;
7126 priv->id = net_device_present++;
7127
7128 port = &priv->port;
7129 port->port_cnt = port_count;
7130 port->mib_port_cnt = mib_port_count;
7131 port->first_port = i;
7132 port->flow_ctrl = PHY_FLOW_CTRL;
7133
7134 port->hw = hw;
7135 port->linked = &hw->port_info[port->first_port];
7136
7137 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7138 hw->port_info[pi].port_id = pi;
7139 hw->port_info[pi].pdev = dev;
7140 hw->port_info[pi].state = media_disconnected;
7141 }
7142
7143 dev->mem_start = (unsigned long) hw->io;
7144 dev->mem_end = dev->mem_start + reg_len - 1;
7145 dev->irq = pdev->irq;
7146 if (MAIN_PORT == i)
7147 memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7148 MAC_ADDR_LEN);
7149 else {
7150 memcpy(dev->dev_addr, sw->other_addr,
7151 MAC_ADDR_LEN);
7152 if (!memcmp(sw->other_addr, hw->override_addr,
7153 MAC_ADDR_LEN))
7154 dev->dev_addr[5] += port->first_port;
7155 }
7156
7157 dev->netdev_ops = &netdev_ops;
7158 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7159 if (register_netdev(dev))
7160 goto pcidev_init_reg_err;
7161 port_set_power_saving(port, true);
7162 }
7163
7164 pci_dev_get(hw_priv->pdev);
7165 pci_set_drvdata(pdev, info);
7166 return 0;
7167
7168pcidev_init_reg_err:
7169 for (i = 0; i < hw->dev_count; i++) {
7170 if (info->netdev[i]) {
7171 netdev_free(info->netdev[i]);
7172 info->netdev[i] = NULL;
7173 }
7174 }
7175
7176pcidev_init_mem_err:
7177 ksz_free_mem(hw_priv);
7178 kfree(hw->ksz_switch);
7179
7180pcidev_init_alloc_err:
7181 iounmap(hw->io);
7182
7183pcidev_init_io_err:
7184 kfree(info);
7185
7186pcidev_init_dev_err:
7187 release_mem_region(reg_base, reg_len);
7188
7189 return result;
7190}
7191
7192static void pcidev_exit(struct pci_dev *pdev)
7193{
7194 int i;
7195 struct platform_info *info = pci_get_drvdata(pdev);
7196 struct dev_info *hw_priv = &info->dev_info;
7197
7198 pci_set_drvdata(pdev, NULL);
7199
7200 release_mem_region(pci_resource_start(pdev, 0),
7201 pci_resource_len(pdev, 0));
7202 for (i = 0; i < hw_priv->hw.dev_count; i++) {
7203 if (info->netdev[i])
7204 netdev_free(info->netdev[i]);
7205 }
7206 if (hw_priv->hw.io)
7207 iounmap(hw_priv->hw.io);
7208 ksz_free_mem(hw_priv);
7209 kfree(hw_priv->hw.ksz_switch);
7210 pci_dev_put(hw_priv->pdev);
7211 kfree(info);
7212}
7213
7214#ifdef CONFIG_PM
7215static int pcidev_resume(struct pci_dev *pdev)
7216{
7217 int i;
7218 struct platform_info *info = pci_get_drvdata(pdev);
7219 struct dev_info *hw_priv = &info->dev_info;
7220 struct ksz_hw *hw = &hw_priv->hw;
7221
7222 pci_set_power_state(pdev, PCI_D0);
7223 pci_restore_state(pdev);
7224 pci_enable_wake(pdev, PCI_D0, 0);
7225
7226 if (hw_priv->wol_enable)
7227 hw_cfg_wol_pme(hw, 0);
7228 for (i = 0; i < hw->dev_count; i++) {
7229 if (info->netdev[i]) {
7230 struct net_device *dev = info->netdev[i];
7231
7232 if (netif_running(dev)) {
7233 netdev_open(dev);
7234 netif_device_attach(dev);
7235 }
7236 }
7237 }
7238 return 0;
7239}
7240
7241static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7242{
7243 int i;
7244 struct platform_info *info = pci_get_drvdata(pdev);
7245 struct dev_info *hw_priv = &info->dev_info;
7246 struct ksz_hw *hw = &hw_priv->hw;
7247
7248 /* Need to find a way to retrieve the device IP address. */
7249 u8 net_addr[] = { 192, 168, 1, 1 };
7250
7251 for (i = 0; i < hw->dev_count; i++) {
7252 if (info->netdev[i]) {
7253 struct net_device *dev = info->netdev[i];
7254
7255 if (netif_running(dev)) {
7256 netif_device_detach(dev);
7257 netdev_close(dev);
7258 }
7259 }
7260 }
7261 if (hw_priv->wol_enable) {
7262 hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7263 hw_cfg_wol_pme(hw, 1);
7264 }
7265
7266 pci_save_state(pdev);
7267 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7268 pci_set_power_state(pdev, pci_choose_state(pdev, state));
7269 return 0;
7270}
7271#endif
7272
7273static char pcidev_name[] = "ksz884xp";
7274
7275static struct pci_device_id pcidev_table[] = {
7276 { PCI_VENDOR_ID_MICREL_KS, 0x8841,
7277 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7278 { PCI_VENDOR_ID_MICREL_KS, 0x8842,
7279 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7280 { 0 }
7281};
7282
7283MODULE_DEVICE_TABLE(pci, pcidev_table);
7284
7285static struct pci_driver pci_device_driver = {
7286#ifdef CONFIG_PM
7287 .suspend = pcidev_suspend,
7288 .resume = pcidev_resume,
7289#endif
7290 .name = pcidev_name,
7291 .id_table = pcidev_table,
7292 .probe = pcidev_init,
7293 .remove = pcidev_exit
7294};
7295
7296static int __init ksz884x_init_module(void)
7297{
7298 return pci_register_driver(&pci_device_driver);
7299}
7300
7301static void __exit ksz884x_cleanup_module(void)
7302{
7303 pci_unregister_driver(&pci_device_driver);
7304}
7305
7306module_init(ksz884x_init_module);
7307module_exit(ksz884x_cleanup_module);
7308
7309MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7310MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7311MODULE_LICENSE("GPL");
7312
7313module_param_named(message, msg_enable, int, 0);
7314MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7315
7316module_param(macaddr, charp, 0);
7317module_param(mac1addr, charp, 0);
7318module_param(fast_aging, int, 0);
7319module_param(multi_dev, int, 0);
7320module_param(stp, int, 0);
7321MODULE_PARM_DESC(macaddr, "MAC address");
7322MODULE_PARM_DESC(mac1addr, "Second MAC address");
7323MODULE_PARM_DESC(fast_aging, "Fast aging");
7324MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7325MODULE_PARM_DESC(stp, "STP support");