]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/ksz884x.c
drivers: net: last_rx elimination
[net-next-2.6.git] / drivers / net / ksz884x.c
CommitLineData
8ca86fd8
TH
1/**
2 * drivers/net/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
3 *
4 * Copyright (c) 2009-2010 Micrel, Inc.
5 * Tristram Ha <Tristram.Ha@micrel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
0dc7d2b3
JP
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
8ca86fd8
TH
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
8ca86fd8
TH
22#include <linux/ioport.h>
23#include <linux/pci.h>
24#include <linux/proc_fs.h>
25#include <linux/mii.h>
26#include <linux/platform_device.h>
27#include <linux/ethtool.h>
28#include <linux/etherdevice.h>
29#include <linux/in.h>
30#include <linux/ip.h>
31#include <linux/if_vlan.h>
32#include <linux/crc32.h>
33#include <linux/sched.h>
5a0e3ad6 34#include <linux/slab.h>
8ca86fd8
TH
35
36
37/* DMA Registers */
38
39#define KS_DMA_TX_CTRL 0x0000
40#define DMA_TX_ENABLE 0x00000001
41#define DMA_TX_CRC_ENABLE 0x00000002
42#define DMA_TX_PAD_ENABLE 0x00000004
43#define DMA_TX_LOOPBACK 0x00000100
44#define DMA_TX_FLOW_ENABLE 0x00000200
45#define DMA_TX_CSUM_IP 0x00010000
46#define DMA_TX_CSUM_TCP 0x00020000
47#define DMA_TX_CSUM_UDP 0x00040000
48#define DMA_TX_BURST_SIZE 0x3F000000
49
50#define KS_DMA_RX_CTRL 0x0004
51#define DMA_RX_ENABLE 0x00000001
52#define KS884X_DMA_RX_MULTICAST 0x00000002
53#define DMA_RX_PROMISCUOUS 0x00000004
54#define DMA_RX_ERROR 0x00000008
55#define DMA_RX_UNICAST 0x00000010
56#define DMA_RX_ALL_MULTICAST 0x00000020
57#define DMA_RX_BROADCAST 0x00000040
58#define DMA_RX_FLOW_ENABLE 0x00000200
59#define DMA_RX_CSUM_IP 0x00010000
60#define DMA_RX_CSUM_TCP 0x00020000
61#define DMA_RX_CSUM_UDP 0x00040000
62#define DMA_RX_BURST_SIZE 0x3F000000
63
64#define DMA_BURST_SHIFT 24
65#define DMA_BURST_DEFAULT 8
66
67#define KS_DMA_TX_START 0x0008
68#define KS_DMA_RX_START 0x000C
69#define DMA_START 0x00000001
70
71#define KS_DMA_TX_ADDR 0x0010
72#define KS_DMA_RX_ADDR 0x0014
73
74#define DMA_ADDR_LIST_MASK 0xFFFFFFFC
75#define DMA_ADDR_LIST_SHIFT 2
76
77/* MTR0 */
78#define KS884X_MULTICAST_0_OFFSET 0x0020
79#define KS884X_MULTICAST_1_OFFSET 0x0021
80#define KS884X_MULTICAST_2_OFFSET 0x0022
81#define KS884x_MULTICAST_3_OFFSET 0x0023
82/* MTR1 */
83#define KS884X_MULTICAST_4_OFFSET 0x0024
84#define KS884X_MULTICAST_5_OFFSET 0x0025
85#define KS884X_MULTICAST_6_OFFSET 0x0026
86#define KS884X_MULTICAST_7_OFFSET 0x0027
87
88/* Interrupt Registers */
89
90/* INTEN */
91#define KS884X_INTERRUPTS_ENABLE 0x0028
92/* INTST */
93#define KS884X_INTERRUPTS_STATUS 0x002C
94
95#define KS884X_INT_RX_STOPPED 0x02000000
96#define KS884X_INT_TX_STOPPED 0x04000000
97#define KS884X_INT_RX_OVERRUN 0x08000000
98#define KS884X_INT_TX_EMPTY 0x10000000
99#define KS884X_INT_RX 0x20000000
100#define KS884X_INT_TX 0x40000000
101#define KS884X_INT_PHY 0x80000000
102
103#define KS884X_INT_RX_MASK \
104 (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
105#define KS884X_INT_TX_MASK \
106 (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
107#define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
108
109/* MAC Additional Station Address */
110
111/* MAAL0 */
112#define KS_ADD_ADDR_0_LO 0x0080
113/* MAAH0 */
114#define KS_ADD_ADDR_0_HI 0x0084
115/* MAAL1 */
116#define KS_ADD_ADDR_1_LO 0x0088
117/* MAAH1 */
118#define KS_ADD_ADDR_1_HI 0x008C
119/* MAAL2 */
120#define KS_ADD_ADDR_2_LO 0x0090
121/* MAAH2 */
122#define KS_ADD_ADDR_2_HI 0x0094
123/* MAAL3 */
124#define KS_ADD_ADDR_3_LO 0x0098
125/* MAAH3 */
126#define KS_ADD_ADDR_3_HI 0x009C
127/* MAAL4 */
128#define KS_ADD_ADDR_4_LO 0x00A0
129/* MAAH4 */
130#define KS_ADD_ADDR_4_HI 0x00A4
131/* MAAL5 */
132#define KS_ADD_ADDR_5_LO 0x00A8
133/* MAAH5 */
134#define KS_ADD_ADDR_5_HI 0x00AC
135/* MAAL6 */
136#define KS_ADD_ADDR_6_LO 0x00B0
137/* MAAH6 */
138#define KS_ADD_ADDR_6_HI 0x00B4
139/* MAAL7 */
140#define KS_ADD_ADDR_7_LO 0x00B8
141/* MAAH7 */
142#define KS_ADD_ADDR_7_HI 0x00BC
143/* MAAL8 */
144#define KS_ADD_ADDR_8_LO 0x00C0
145/* MAAH8 */
146#define KS_ADD_ADDR_8_HI 0x00C4
147/* MAAL9 */
148#define KS_ADD_ADDR_9_LO 0x00C8
149/* MAAH9 */
150#define KS_ADD_ADDR_9_HI 0x00CC
151/* MAAL10 */
152#define KS_ADD_ADDR_A_LO 0x00D0
153/* MAAH10 */
154#define KS_ADD_ADDR_A_HI 0x00D4
155/* MAAL11 */
156#define KS_ADD_ADDR_B_LO 0x00D8
157/* MAAH11 */
158#define KS_ADD_ADDR_B_HI 0x00DC
159/* MAAL12 */
160#define KS_ADD_ADDR_C_LO 0x00E0
161/* MAAH12 */
162#define KS_ADD_ADDR_C_HI 0x00E4
163/* MAAL13 */
164#define KS_ADD_ADDR_D_LO 0x00E8
165/* MAAH13 */
166#define KS_ADD_ADDR_D_HI 0x00EC
167/* MAAL14 */
168#define KS_ADD_ADDR_E_LO 0x00F0
169/* MAAH14 */
170#define KS_ADD_ADDR_E_HI 0x00F4
171/* MAAL15 */
172#define KS_ADD_ADDR_F_LO 0x00F8
173/* MAAH15 */
174#define KS_ADD_ADDR_F_HI 0x00FC
175
176#define ADD_ADDR_HI_MASK 0x0000FFFF
177#define ADD_ADDR_ENABLE 0x80000000
178#define ADD_ADDR_INCR 8
179
180/* Miscellaneous Registers */
181
182/* MARL */
183#define KS884X_ADDR_0_OFFSET 0x0200
184#define KS884X_ADDR_1_OFFSET 0x0201
185/* MARM */
186#define KS884X_ADDR_2_OFFSET 0x0202
187#define KS884X_ADDR_3_OFFSET 0x0203
188/* MARH */
189#define KS884X_ADDR_4_OFFSET 0x0204
190#define KS884X_ADDR_5_OFFSET 0x0205
191
192/* OBCR */
193#define KS884X_BUS_CTRL_OFFSET 0x0210
194
195#define BUS_SPEED_125_MHZ 0x0000
196#define BUS_SPEED_62_5_MHZ 0x0001
197#define BUS_SPEED_41_66_MHZ 0x0002
198#define BUS_SPEED_25_MHZ 0x0003
199
200/* EEPCR */
201#define KS884X_EEPROM_CTRL_OFFSET 0x0212
202
203#define EEPROM_CHIP_SELECT 0x0001
204#define EEPROM_SERIAL_CLOCK 0x0002
205#define EEPROM_DATA_OUT 0x0004
206#define EEPROM_DATA_IN 0x0008
207#define EEPROM_ACCESS_ENABLE 0x0010
208
209/* MBIR */
210#define KS884X_MEM_INFO_OFFSET 0x0214
211
212#define RX_MEM_TEST_FAILED 0x0008
213#define RX_MEM_TEST_FINISHED 0x0010
214#define TX_MEM_TEST_FAILED 0x0800
215#define TX_MEM_TEST_FINISHED 0x1000
216
217/* GCR */
218#define KS884X_GLOBAL_CTRL_OFFSET 0x0216
219#define GLOBAL_SOFTWARE_RESET 0x0001
220
221#define KS8841_POWER_MANAGE_OFFSET 0x0218
222
223/* WFCR */
224#define KS8841_WOL_CTRL_OFFSET 0x021A
225#define KS8841_WOL_MAGIC_ENABLE 0x0080
226#define KS8841_WOL_FRAME3_ENABLE 0x0008
227#define KS8841_WOL_FRAME2_ENABLE 0x0004
228#define KS8841_WOL_FRAME1_ENABLE 0x0002
229#define KS8841_WOL_FRAME0_ENABLE 0x0001
230
231/* WF0 */
232#define KS8841_WOL_FRAME_CRC_OFFSET 0x0220
233#define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224
234#define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228
235
236/* IACR */
237#define KS884X_IACR_P 0x04A0
238#define KS884X_IACR_OFFSET KS884X_IACR_P
239
240/* IADR1 */
241#define KS884X_IADR1_P 0x04A2
242#define KS884X_IADR2_P 0x04A4
243#define KS884X_IADR3_P 0x04A6
244#define KS884X_IADR4_P 0x04A8
245#define KS884X_IADR5_P 0x04AA
246
247#define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P
248#define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1)
249
250#define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P
251#define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1)
252#define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P
253#define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1)
254#define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P
255#define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1)
256#define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P
257#define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1)
258#define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P
259
260/* P1MBCR */
261#define KS884X_P1MBCR_P 0x04D0
262#define KS884X_P1MBSR_P 0x04D2
263#define KS884X_PHY1ILR_P 0x04D4
264#define KS884X_PHY1IHR_P 0x04D6
265#define KS884X_P1ANAR_P 0x04D8
266#define KS884X_P1ANLPR_P 0x04DA
267
268/* P2MBCR */
269#define KS884X_P2MBCR_P 0x04E0
270#define KS884X_P2MBSR_P 0x04E2
271#define KS884X_PHY2ILR_P 0x04E4
272#define KS884X_PHY2IHR_P 0x04E6
273#define KS884X_P2ANAR_P 0x04E8
274#define KS884X_P2ANLPR_P 0x04EA
275
276#define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P
277#define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
278
279#define KS884X_PHY_CTRL_OFFSET 0x00
280
281/* Mode Control Register */
282#define PHY_REG_CTRL 0
283
284#define PHY_RESET 0x8000
285#define PHY_LOOPBACK 0x4000
286#define PHY_SPEED_100MBIT 0x2000
287#define PHY_AUTO_NEG_ENABLE 0x1000
288#define PHY_POWER_DOWN 0x0800
289#define PHY_MII_DISABLE 0x0400
290#define PHY_AUTO_NEG_RESTART 0x0200
291#define PHY_FULL_DUPLEX 0x0100
292#define PHY_COLLISION_TEST 0x0080
293#define PHY_HP_MDIX 0x0020
294#define PHY_FORCE_MDIX 0x0010
295#define PHY_AUTO_MDIX_DISABLE 0x0008
296#define PHY_REMOTE_FAULT_DISABLE 0x0004
297#define PHY_TRANSMIT_DISABLE 0x0002
298#define PHY_LED_DISABLE 0x0001
299
300#define KS884X_PHY_STATUS_OFFSET 0x02
301
302/* Mode Status Register */
303#define PHY_REG_STATUS 1
304
305#define PHY_100BT4_CAPABLE 0x8000
306#define PHY_100BTX_FD_CAPABLE 0x4000
307#define PHY_100BTX_CAPABLE 0x2000
308#define PHY_10BT_FD_CAPABLE 0x1000
309#define PHY_10BT_CAPABLE 0x0800
310#define PHY_MII_SUPPRESS_CAPABLE 0x0040
311#define PHY_AUTO_NEG_ACKNOWLEDGE 0x0020
312#define PHY_REMOTE_FAULT 0x0010
313#define PHY_AUTO_NEG_CAPABLE 0x0008
314#define PHY_LINK_STATUS 0x0004
315#define PHY_JABBER_DETECT 0x0002
316#define PHY_EXTENDED_CAPABILITY 0x0001
317
318#define KS884X_PHY_ID_1_OFFSET 0x04
319#define KS884X_PHY_ID_2_OFFSET 0x06
320
321/* PHY Identifier Registers */
322#define PHY_REG_ID_1 2
323#define PHY_REG_ID_2 3
324
325#define KS884X_PHY_AUTO_NEG_OFFSET 0x08
326
327/* Auto-Negotiation Advertisement Register */
328#define PHY_REG_AUTO_NEGOTIATION 4
329
330#define PHY_AUTO_NEG_NEXT_PAGE 0x8000
331#define PHY_AUTO_NEG_REMOTE_FAULT 0x2000
332/* Not supported. */
333#define PHY_AUTO_NEG_ASYM_PAUSE 0x0800
334#define PHY_AUTO_NEG_SYM_PAUSE 0x0400
335#define PHY_AUTO_NEG_100BT4 0x0200
336#define PHY_AUTO_NEG_100BTX_FD 0x0100
337#define PHY_AUTO_NEG_100BTX 0x0080
338#define PHY_AUTO_NEG_10BT_FD 0x0040
339#define PHY_AUTO_NEG_10BT 0x0020
340#define PHY_AUTO_NEG_SELECTOR 0x001F
341#define PHY_AUTO_NEG_802_3 0x0001
342
343#define PHY_AUTO_NEG_PAUSE (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
344
345#define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A
346
347/* Auto-Negotiation Link Partner Ability Register */
348#define PHY_REG_REMOTE_CAPABILITY 5
349
350#define PHY_REMOTE_NEXT_PAGE 0x8000
351#define PHY_REMOTE_ACKNOWLEDGE 0x4000
352#define PHY_REMOTE_REMOTE_FAULT 0x2000
353#define PHY_REMOTE_SYM_PAUSE 0x0400
354#define PHY_REMOTE_100BTX_FD 0x0100
355#define PHY_REMOTE_100BTX 0x0080
356#define PHY_REMOTE_10BT_FD 0x0040
357#define PHY_REMOTE_10BT 0x0020
358
359/* P1VCT */
360#define KS884X_P1VCT_P 0x04F0
361#define KS884X_P1PHYCTRL_P 0x04F2
362
363/* P2VCT */
364#define KS884X_P2VCT_P 0x04F4
365#define KS884X_P2PHYCTRL_P 0x04F6
366
367#define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P
368#define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P)
369
370#define KS884X_PHY_LINK_MD_OFFSET 0x00
371
372#define PHY_START_CABLE_DIAG 0x8000
373#define PHY_CABLE_DIAG_RESULT 0x6000
374#define PHY_CABLE_STAT_NORMAL 0x0000
375#define PHY_CABLE_STAT_OPEN 0x2000
376#define PHY_CABLE_STAT_SHORT 0x4000
377#define PHY_CABLE_STAT_FAILED 0x6000
378#define PHY_CABLE_10M_SHORT 0x1000
379#define PHY_CABLE_FAULT_COUNTER 0x01FF
380
381#define KS884X_PHY_PHY_CTRL_OFFSET 0x02
382
383#define PHY_STAT_REVERSED_POLARITY 0x0020
384#define PHY_STAT_MDIX 0x0010
385#define PHY_FORCE_LINK 0x0008
386#define PHY_POWER_SAVING_DISABLE 0x0004
387#define PHY_REMOTE_LOOPBACK 0x0002
388
389/* SIDER */
390#define KS884X_SIDER_P 0x0400
391#define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P
392#define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1)
393
394#define REG_FAMILY_ID 0x88
395
396#define REG_CHIP_ID_41 0x8810
397#define REG_CHIP_ID_42 0x8800
398
399#define KS884X_CHIP_ID_MASK_41 0xFF10
400#define KS884X_CHIP_ID_MASK 0xFFF0
401#define KS884X_CHIP_ID_SHIFT 4
402#define KS884X_REVISION_MASK 0x000E
403#define KS884X_REVISION_SHIFT 1
404#define KS8842_START 0x0001
405
406#define CHIP_IP_41_M 0x8810
407#define CHIP_IP_42_M 0x8800
408#define CHIP_IP_61_M 0x8890
409#define CHIP_IP_62_M 0x8880
410
411#define CHIP_IP_41_P 0x8850
412#define CHIP_IP_42_P 0x8840
413#define CHIP_IP_61_P 0x88D0
414#define CHIP_IP_62_P 0x88C0
415
416/* SGCR1 */
417#define KS8842_SGCR1_P 0x0402
418#define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P
419
420#define SWITCH_PASS_ALL 0x8000
421#define SWITCH_TX_FLOW_CTRL 0x2000
422#define SWITCH_RX_FLOW_CTRL 0x1000
423#define SWITCH_CHECK_LENGTH 0x0800
424#define SWITCH_AGING_ENABLE 0x0400
425#define SWITCH_FAST_AGING 0x0200
426#define SWITCH_AGGR_BACKOFF 0x0100
427#define SWITCH_PASS_PAUSE 0x0008
428#define SWITCH_LINK_AUTO_AGING 0x0001
429
430/* SGCR2 */
431#define KS8842_SGCR2_P 0x0404
432#define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P
433
434#define SWITCH_VLAN_ENABLE 0x8000
435#define SWITCH_IGMP_SNOOP 0x4000
436#define IPV6_MLD_SNOOP_ENABLE 0x2000
437#define IPV6_MLD_SNOOP_OPTION 0x1000
438#define PRIORITY_SCHEME_SELECT 0x0800
439#define SWITCH_MIRROR_RX_TX 0x0100
440#define UNICAST_VLAN_BOUNDARY 0x0080
441#define MULTICAST_STORM_DISABLE 0x0040
442#define SWITCH_BACK_PRESSURE 0x0020
443#define FAIR_FLOW_CTRL 0x0010
444#define NO_EXC_COLLISION_DROP 0x0008
445#define SWITCH_HUGE_PACKET 0x0004
446#define SWITCH_LEGAL_PACKET 0x0002
447#define SWITCH_BUF_RESERVE 0x0001
448
449/* SGCR3 */
450#define KS8842_SGCR3_P 0x0406
451#define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P
452
453#define BROADCAST_STORM_RATE_LO 0xFF00
454#define SWITCH_REPEATER 0x0080
455#define SWITCH_HALF_DUPLEX 0x0040
456#define SWITCH_FLOW_CTRL 0x0020
457#define SWITCH_10_MBIT 0x0010
458#define SWITCH_REPLACE_NULL_VID 0x0008
459#define BROADCAST_STORM_RATE_HI 0x0007
460
461#define BROADCAST_STORM_RATE 0x07FF
462
463/* SGCR4 */
464#define KS8842_SGCR4_P 0x0408
465
466/* SGCR5 */
467#define KS8842_SGCR5_P 0x040A
468#define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P
469
470#define LED_MODE 0x8200
471#define LED_SPEED_DUPLEX_ACT 0x0000
472#define LED_SPEED_DUPLEX_LINK_ACT 0x8000
473#define LED_DUPLEX_10_100 0x0200
474
475/* SGCR6 */
476#define KS8842_SGCR6_P 0x0410
477#define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P
478
479#define KS8842_PRIORITY_MASK 3
480#define KS8842_PRIORITY_SHIFT 2
481
482/* SGCR7 */
483#define KS8842_SGCR7_P 0x0412
484#define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P
485
486#define SWITCH_UNK_DEF_PORT_ENABLE 0x0008
487#define SWITCH_UNK_DEF_PORT_3 0x0004
488#define SWITCH_UNK_DEF_PORT_2 0x0002
489#define SWITCH_UNK_DEF_PORT_1 0x0001
490
491/* MACAR1 */
492#define KS8842_MACAR1_P 0x0470
493#define KS8842_MACAR2_P 0x0472
494#define KS8842_MACAR3_P 0x0474
495#define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P
496#define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1)
497#define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P
498#define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1)
499#define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P
500#define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1)
501
502/* TOSR1 */
503#define KS8842_TOSR1_P 0x0480
504#define KS8842_TOSR2_P 0x0482
505#define KS8842_TOSR3_P 0x0484
506#define KS8842_TOSR4_P 0x0486
507#define KS8842_TOSR5_P 0x0488
508#define KS8842_TOSR6_P 0x048A
509#define KS8842_TOSR7_P 0x0490
510#define KS8842_TOSR8_P 0x0492
511#define KS8842_TOS_1_OFFSET KS8842_TOSR1_P
512#define KS8842_TOS_2_OFFSET KS8842_TOSR2_P
513#define KS8842_TOS_3_OFFSET KS8842_TOSR3_P
514#define KS8842_TOS_4_OFFSET KS8842_TOSR4_P
515#define KS8842_TOS_5_OFFSET KS8842_TOSR5_P
516#define KS8842_TOS_6_OFFSET KS8842_TOSR6_P
517
518#define KS8842_TOS_7_OFFSET KS8842_TOSR7_P
519#define KS8842_TOS_8_OFFSET KS8842_TOSR8_P
520
521/* P1CR1 */
522#define KS8842_P1CR1_P 0x0500
523#define KS8842_P1CR2_P 0x0502
524#define KS8842_P1VIDR_P 0x0504
525#define KS8842_P1CR3_P 0x0506
526#define KS8842_P1IRCR_P 0x0508
527#define KS8842_P1ERCR_P 0x050A
528#define KS884X_P1SCSLMD_P 0x0510
529#define KS884X_P1CR4_P 0x0512
530#define KS884X_P1SR_P 0x0514
531
532/* P2CR1 */
533#define KS8842_P2CR1_P 0x0520
534#define KS8842_P2CR2_P 0x0522
535#define KS8842_P2VIDR_P 0x0524
536#define KS8842_P2CR3_P 0x0526
537#define KS8842_P2IRCR_P 0x0528
538#define KS8842_P2ERCR_P 0x052A
539#define KS884X_P2SCSLMD_P 0x0530
540#define KS884X_P2CR4_P 0x0532
541#define KS884X_P2SR_P 0x0534
542
543/* P3CR1 */
544#define KS8842_P3CR1_P 0x0540
545#define KS8842_P3CR2_P 0x0542
546#define KS8842_P3VIDR_P 0x0544
547#define KS8842_P3CR3_P 0x0546
548#define KS8842_P3IRCR_P 0x0548
549#define KS8842_P3ERCR_P 0x054A
550
551#define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P
552#define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P
553#define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P
554
555#define PORT_CTRL_ADDR(port, addr) \
556 (addr = KS8842_PORT_1_CTRL_1 + (port) * \
557 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
558
559#define KS8842_PORT_CTRL_1_OFFSET 0x00
560
561#define PORT_BROADCAST_STORM 0x0080
562#define PORT_DIFFSERV_ENABLE 0x0040
563#define PORT_802_1P_ENABLE 0x0020
564#define PORT_BASED_PRIORITY_MASK 0x0018
565#define PORT_BASED_PRIORITY_BASE 0x0003
566#define PORT_BASED_PRIORITY_SHIFT 3
567#define PORT_BASED_PRIORITY_0 0x0000
568#define PORT_BASED_PRIORITY_1 0x0008
569#define PORT_BASED_PRIORITY_2 0x0010
570#define PORT_BASED_PRIORITY_3 0x0018
571#define PORT_INSERT_TAG 0x0004
572#define PORT_REMOVE_TAG 0x0002
573#define PORT_PRIO_QUEUE_ENABLE 0x0001
574
575#define KS8842_PORT_CTRL_2_OFFSET 0x02
576
577#define PORT_INGRESS_VLAN_FILTER 0x4000
578#define PORT_DISCARD_NON_VID 0x2000
579#define PORT_FORCE_FLOW_CTRL 0x1000
580#define PORT_BACK_PRESSURE 0x0800
581#define PORT_TX_ENABLE 0x0400
582#define PORT_RX_ENABLE 0x0200
583#define PORT_LEARN_DISABLE 0x0100
584#define PORT_MIRROR_SNIFFER 0x0080
585#define PORT_MIRROR_RX 0x0040
586#define PORT_MIRROR_TX 0x0020
587#define PORT_USER_PRIORITY_CEILING 0x0008
588#define PORT_VLAN_MEMBERSHIP 0x0007
589
590#define KS8842_PORT_CTRL_VID_OFFSET 0x04
591
592#define PORT_DEFAULT_VID 0x0001
593
594#define KS8842_PORT_CTRL_3_OFFSET 0x06
595
596#define PORT_INGRESS_LIMIT_MODE 0x000C
597#define PORT_INGRESS_ALL 0x0000
598#define PORT_INGRESS_UNICAST 0x0004
599#define PORT_INGRESS_MULTICAST 0x0008
600#define PORT_INGRESS_BROADCAST 0x000C
601#define PORT_COUNT_IFG 0x0002
602#define PORT_COUNT_PREAMBLE 0x0001
603
604#define KS8842_PORT_IN_RATE_OFFSET 0x08
605#define KS8842_PORT_OUT_RATE_OFFSET 0x0A
606
607#define PORT_PRIORITY_RATE 0x0F
608#define PORT_PRIORITY_RATE_SHIFT 4
609
610#define KS884X_PORT_LINK_MD 0x10
611
612#define PORT_CABLE_10M_SHORT 0x8000
613#define PORT_CABLE_DIAG_RESULT 0x6000
614#define PORT_CABLE_STAT_NORMAL 0x0000
615#define PORT_CABLE_STAT_OPEN 0x2000
616#define PORT_CABLE_STAT_SHORT 0x4000
617#define PORT_CABLE_STAT_FAILED 0x6000
618#define PORT_START_CABLE_DIAG 0x1000
619#define PORT_FORCE_LINK 0x0800
620#define PORT_POWER_SAVING_DISABLE 0x0400
621#define PORT_PHY_REMOTE_LOOPBACK 0x0200
622#define PORT_CABLE_FAULT_COUNTER 0x01FF
623
624#define KS884X_PORT_CTRL_4_OFFSET 0x12
625
626#define PORT_LED_OFF 0x8000
627#define PORT_TX_DISABLE 0x4000
628#define PORT_AUTO_NEG_RESTART 0x2000
629#define PORT_REMOTE_FAULT_DISABLE 0x1000
630#define PORT_POWER_DOWN 0x0800
631#define PORT_AUTO_MDIX_DISABLE 0x0400
632#define PORT_FORCE_MDIX 0x0200
633#define PORT_LOOPBACK 0x0100
634#define PORT_AUTO_NEG_ENABLE 0x0080
635#define PORT_FORCE_100_MBIT 0x0040
636#define PORT_FORCE_FULL_DUPLEX 0x0020
637#define PORT_AUTO_NEG_SYM_PAUSE 0x0010
638#define PORT_AUTO_NEG_100BTX_FD 0x0008
639#define PORT_AUTO_NEG_100BTX 0x0004
640#define PORT_AUTO_NEG_10BT_FD 0x0002
641#define PORT_AUTO_NEG_10BT 0x0001
642
643#define KS884X_PORT_STATUS_OFFSET 0x14
644
645#define PORT_HP_MDIX 0x8000
646#define PORT_REVERSED_POLARITY 0x2000
647#define PORT_RX_FLOW_CTRL 0x0800
648#define PORT_TX_FLOW_CTRL 0x1000
649#define PORT_STATUS_SPEED_100MBIT 0x0400
650#define PORT_STATUS_FULL_DUPLEX 0x0200
651#define PORT_REMOTE_FAULT 0x0100
652#define PORT_MDIX_STATUS 0x0080
653#define PORT_AUTO_NEG_COMPLETE 0x0040
654#define PORT_STATUS_LINK_GOOD 0x0020
655#define PORT_REMOTE_SYM_PAUSE 0x0010
656#define PORT_REMOTE_100BTX_FD 0x0008
657#define PORT_REMOTE_100BTX 0x0004
658#define PORT_REMOTE_10BT_FD 0x0002
659#define PORT_REMOTE_10BT 0x0001
660
661/*
662#define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
663#define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000
664#define STATIC_MAC_TABLE_VALID 00-00080000-00000000
665#define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000
666#define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000
667#define STATIC_MAC_TABLE_FID 00-03C00000-00000000
668*/
669
670#define STATIC_MAC_TABLE_ADDR 0x0000FFFF
671#define STATIC_MAC_TABLE_FWD_PORTS 0x00070000
672#define STATIC_MAC_TABLE_VALID 0x00080000
673#define STATIC_MAC_TABLE_OVERRIDE 0x00100000
674#define STATIC_MAC_TABLE_USE_FID 0x00200000
675#define STATIC_MAC_TABLE_FID 0x03C00000
676
677#define STATIC_MAC_FWD_PORTS_SHIFT 16
678#define STATIC_MAC_FID_SHIFT 22
679
680/*
681#define VLAN_TABLE_VID 00-00000000-00000FFF
682#define VLAN_TABLE_FID 00-00000000-0000F000
683#define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000
684#define VLAN_TABLE_VALID 00-00000000-00080000
685*/
686
687#define VLAN_TABLE_VID 0x00000FFF
688#define VLAN_TABLE_FID 0x0000F000
689#define VLAN_TABLE_MEMBERSHIP 0x00070000
690#define VLAN_TABLE_VALID 0x00080000
691
692#define VLAN_TABLE_FID_SHIFT 12
693#define VLAN_TABLE_MEMBERSHIP_SHIFT 16
694
695/*
696#define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
697#define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000
698#define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000
699#define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000
700#define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000
701#define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000
702#define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000
703#define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000
704*/
705
706#define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF
707#define DYNAMIC_MAC_TABLE_FID 0x000F0000
708#define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000
709#define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000
710#define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000
711
712#define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03
713#define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04
714#define DYNAMIC_MAC_TABLE_RESERVED 0x78
715#define DYNAMIC_MAC_TABLE_NOT_READY 0x80
716
717#define DYNAMIC_MAC_FID_SHIFT 16
718#define DYNAMIC_MAC_SRC_PORT_SHIFT 20
719#define DYNAMIC_MAC_TIMESTAMP_SHIFT 22
720#define DYNAMIC_MAC_ENTRIES_SHIFT 24
721#define DYNAMIC_MAC_ENTRIES_H_SHIFT 8
722
723/*
724#define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF
725#define MIB_COUNTER_VALID 00-00000000-40000000
726#define MIB_COUNTER_OVERFLOW 00-00000000-80000000
727*/
728
729#define MIB_COUNTER_VALUE 0x3FFFFFFF
730#define MIB_COUNTER_VALID 0x40000000
731#define MIB_COUNTER_OVERFLOW 0x80000000
732
733#define MIB_PACKET_DROPPED 0x0000FFFF
734
735#define KS_MIB_PACKET_DROPPED_TX_0 0x100
736#define KS_MIB_PACKET_DROPPED_TX_1 0x101
737#define KS_MIB_PACKET_DROPPED_TX 0x102
738#define KS_MIB_PACKET_DROPPED_RX_0 0x103
739#define KS_MIB_PACKET_DROPPED_RX_1 0x104
740#define KS_MIB_PACKET_DROPPED_RX 0x105
741
742/* Change default LED mode. */
743#define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT
744
745#define MAC_ADDR_LEN 6
746#define MAC_ADDR_ORDER(i) (MAC_ADDR_LEN - 1 - (i))
747
748#define MAX_ETHERNET_BODY_SIZE 1500
749#define ETHERNET_HEADER_SIZE 14
750
751#define MAX_ETHERNET_PACKET_SIZE \
752 (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
753
754#define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4)
755#define MAX_RX_BUF_SIZE (1912 + 4)
756
757#define ADDITIONAL_ENTRIES 16
758#define MAX_MULTICAST_LIST 32
759
760#define HW_MULTICAST_SIZE 8
761
762#define HW_TO_DEV_PORT(port) (port - 1)
763
764enum {
765 media_connected,
766 media_disconnected
767};
768
769enum {
770 OID_COUNTER_UNKOWN,
771
772 OID_COUNTER_FIRST,
773
774 /* total transmit errors */
775 OID_COUNTER_XMIT_ERROR,
776
777 /* total receive errors */
778 OID_COUNTER_RCV_ERROR,
779
780 OID_COUNTER_LAST
781};
782
783/*
784 * Hardware descriptor definitions
785 */
786
787#define DESC_ALIGNMENT 16
788#define BUFFER_ALIGNMENT 8
789
790#define NUM_OF_RX_DESC 64
791#define NUM_OF_TX_DESC 64
792
793#define KS_DESC_RX_FRAME_LEN 0x000007FF
794#define KS_DESC_RX_FRAME_TYPE 0x00008000
795#define KS_DESC_RX_ERROR_CRC 0x00010000
796#define KS_DESC_RX_ERROR_RUNT 0x00020000
797#define KS_DESC_RX_ERROR_TOO_LONG 0x00040000
798#define KS_DESC_RX_ERROR_PHY 0x00080000
799#define KS884X_DESC_RX_PORT_MASK 0x00300000
800#define KS_DESC_RX_MULTICAST 0x01000000
801#define KS_DESC_RX_ERROR 0x02000000
802#define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000
803#define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000
804#define KS_DESC_RX_ERROR_CSUM_IP 0x10000000
805#define KS_DESC_RX_LAST 0x20000000
806#define KS_DESC_RX_FIRST 0x40000000
807#define KS_DESC_RX_ERROR_COND \
808 (KS_DESC_RX_ERROR_CRC | \
809 KS_DESC_RX_ERROR_RUNT | \
810 KS_DESC_RX_ERROR_PHY | \
811 KS_DESC_RX_ERROR_TOO_LONG)
812
813#define KS_DESC_HW_OWNED 0x80000000
814
815#define KS_DESC_BUF_SIZE 0x000007FF
816#define KS884X_DESC_TX_PORT_MASK 0x00300000
817#define KS_DESC_END_OF_RING 0x02000000
818#define KS_DESC_TX_CSUM_GEN_UDP 0x04000000
819#define KS_DESC_TX_CSUM_GEN_TCP 0x08000000
820#define KS_DESC_TX_CSUM_GEN_IP 0x10000000
821#define KS_DESC_TX_LAST 0x20000000
822#define KS_DESC_TX_FIRST 0x40000000
823#define KS_DESC_TX_INTERRUPT 0x80000000
824
825#define KS_DESC_PORT_SHIFT 20
826
827#define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE)
828
829#define KS_DESC_TX_MASK \
830 (KS_DESC_TX_INTERRUPT | \
831 KS_DESC_TX_FIRST | \
832 KS_DESC_TX_LAST | \
833 KS_DESC_TX_CSUM_GEN_IP | \
834 KS_DESC_TX_CSUM_GEN_TCP | \
835 KS_DESC_TX_CSUM_GEN_UDP | \
836 KS_DESC_BUF_SIZE)
837
838struct ksz_desc_rx_stat {
839#ifdef __BIG_ENDIAN_BITFIELD
840 u32 hw_owned:1;
841 u32 first_desc:1;
842 u32 last_desc:1;
843 u32 csum_err_ip:1;
844 u32 csum_err_tcp:1;
845 u32 csum_err_udp:1;
846 u32 error:1;
847 u32 multicast:1;
848 u32 src_port:4;
849 u32 err_phy:1;
850 u32 err_too_long:1;
851 u32 err_runt:1;
852 u32 err_crc:1;
853 u32 frame_type:1;
854 u32 reserved1:4;
855 u32 frame_len:11;
856#else
857 u32 frame_len:11;
858 u32 reserved1:4;
859 u32 frame_type:1;
860 u32 err_crc:1;
861 u32 err_runt:1;
862 u32 err_too_long:1;
863 u32 err_phy:1;
864 u32 src_port:4;
865 u32 multicast:1;
866 u32 error:1;
867 u32 csum_err_udp:1;
868 u32 csum_err_tcp:1;
869 u32 csum_err_ip:1;
870 u32 last_desc:1;
871 u32 first_desc:1;
872 u32 hw_owned:1;
873#endif
874};
875
876struct ksz_desc_tx_stat {
877#ifdef __BIG_ENDIAN_BITFIELD
878 u32 hw_owned:1;
879 u32 reserved1:31;
880#else
881 u32 reserved1:31;
882 u32 hw_owned:1;
883#endif
884};
885
886struct ksz_desc_rx_buf {
887#ifdef __BIG_ENDIAN_BITFIELD
888 u32 reserved4:6;
889 u32 end_of_ring:1;
890 u32 reserved3:14;
891 u32 buf_size:11;
892#else
893 u32 buf_size:11;
894 u32 reserved3:14;
895 u32 end_of_ring:1;
896 u32 reserved4:6;
897#endif
898};
899
900struct ksz_desc_tx_buf {
901#ifdef __BIG_ENDIAN_BITFIELD
902 u32 intr:1;
903 u32 first_seg:1;
904 u32 last_seg:1;
905 u32 csum_gen_ip:1;
906 u32 csum_gen_tcp:1;
907 u32 csum_gen_udp:1;
908 u32 end_of_ring:1;
909 u32 reserved4:1;
910 u32 dest_port:4;
911 u32 reserved3:9;
912 u32 buf_size:11;
913#else
914 u32 buf_size:11;
915 u32 reserved3:9;
916 u32 dest_port:4;
917 u32 reserved4:1;
918 u32 end_of_ring:1;
919 u32 csum_gen_udp:1;
920 u32 csum_gen_tcp:1;
921 u32 csum_gen_ip:1;
922 u32 last_seg:1;
923 u32 first_seg:1;
924 u32 intr:1;
925#endif
926};
927
928union desc_stat {
929 struct ksz_desc_rx_stat rx;
930 struct ksz_desc_tx_stat tx;
931 u32 data;
932};
933
934union desc_buf {
935 struct ksz_desc_rx_buf rx;
936 struct ksz_desc_tx_buf tx;
937 u32 data;
938};
939
940/**
941 * struct ksz_hw_desc - Hardware descriptor data structure
942 * @ctrl: Descriptor control value.
943 * @buf: Descriptor buffer value.
944 * @addr: Physical address of memory buffer.
945 * @next: Pointer to next hardware descriptor.
946 */
947struct ksz_hw_desc {
948 union desc_stat ctrl;
949 union desc_buf buf;
950 u32 addr;
951 u32 next;
952};
953
954/**
955 * struct ksz_sw_desc - Software descriptor data structure
956 * @ctrl: Descriptor control value.
957 * @buf: Descriptor buffer value.
958 * @buf_size: Current buffers size value in hardware descriptor.
959 */
960struct ksz_sw_desc {
961 union desc_stat ctrl;
962 union desc_buf buf;
963 u32 buf_size;
964};
965
966/**
967 * struct ksz_dma_buf - OS dependent DMA buffer data structure
968 * @skb: Associated socket buffer.
969 * @dma: Associated physical DMA address.
970 * len: Actual len used.
971 */
972struct ksz_dma_buf {
973 struct sk_buff *skb;
974 dma_addr_t dma;
975 int len;
976};
977
978/**
979 * struct ksz_desc - Descriptor structure
980 * @phw: Hardware descriptor pointer to uncached physical memory.
981 * @sw: Cached memory to hold hardware descriptor values for
982 * manipulation.
983 * @dma_buf: Operating system dependent data structure to hold physical
984 * memory buffer allocation information.
985 */
986struct ksz_desc {
987 struct ksz_hw_desc *phw;
988 struct ksz_sw_desc sw;
989 struct ksz_dma_buf dma_buf;
990};
991
992#define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf))
993
994/**
995 * struct ksz_desc_info - Descriptor information data structure
996 * @ring: First descriptor in the ring.
997 * @cur: Current descriptor being manipulated.
998 * @ring_virt: First hardware descriptor in the ring.
999 * @ring_phys: The physical address of the first descriptor of the ring.
1000 * @size: Size of hardware descriptor.
1001 * @alloc: Number of descriptors allocated.
1002 * @avail: Number of descriptors available for use.
1003 * @last: Index for last descriptor released to hardware.
1004 * @next: Index for next descriptor available for use.
1005 * @mask: Mask for index wrapping.
1006 */
1007struct ksz_desc_info {
1008 struct ksz_desc *ring;
1009 struct ksz_desc *cur;
1010 struct ksz_hw_desc *ring_virt;
1011 u32 ring_phys;
1012 int size;
1013 int alloc;
1014 int avail;
1015 int last;
1016 int next;
1017 int mask;
1018};
1019
1020/*
1021 * KSZ8842 switch definitions
1022 */
1023
1024enum {
1025 TABLE_STATIC_MAC = 0,
1026 TABLE_VLAN,
1027 TABLE_DYNAMIC_MAC,
1028 TABLE_MIB
1029};
1030
1031#define LEARNED_MAC_TABLE_ENTRIES 1024
1032#define STATIC_MAC_TABLE_ENTRIES 8
1033
1034/**
1035 * struct ksz_mac_table - Static MAC table data structure
1036 * @mac_addr: MAC address to filter.
1037 * @vid: VID value.
1038 * @fid: FID value.
1039 * @ports: Port membership.
1040 * @override: Override setting.
1041 * @use_fid: FID use setting.
1042 * @valid: Valid setting indicating the entry is being used.
1043 */
1044struct ksz_mac_table {
1045 u8 mac_addr[MAC_ADDR_LEN];
1046 u16 vid;
1047 u8 fid;
1048 u8 ports;
1049 u8 override:1;
1050 u8 use_fid:1;
1051 u8 valid:1;
1052};
1053
1054#define VLAN_TABLE_ENTRIES 16
1055
1056/**
1057 * struct ksz_vlan_table - VLAN table data structure
1058 * @vid: VID value.
1059 * @fid: FID value.
1060 * @member: Port membership.
1061 */
1062struct ksz_vlan_table {
1063 u16 vid;
1064 u8 fid;
1065 u8 member;
1066};
1067
1068#define DIFFSERV_ENTRIES 64
1069#define PRIO_802_1P_ENTRIES 8
1070#define PRIO_QUEUES 4
1071
1072#define SWITCH_PORT_NUM 2
1073#define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1)
1074#define HOST_MASK (1 << SWITCH_PORT_NUM)
1075#define PORT_MASK 7
1076
1077#define MAIN_PORT 0
1078#define OTHER_PORT 1
1079#define HOST_PORT SWITCH_PORT_NUM
1080
1081#define PORT_COUNTER_NUM 0x20
1082#define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2)
1083
1084#define MIB_COUNTER_RX_LO_PRIORITY 0x00
1085#define MIB_COUNTER_RX_HI_PRIORITY 0x01
1086#define MIB_COUNTER_RX_UNDERSIZE 0x02
1087#define MIB_COUNTER_RX_FRAGMENT 0x03
1088#define MIB_COUNTER_RX_OVERSIZE 0x04
1089#define MIB_COUNTER_RX_JABBER 0x05
1090#define MIB_COUNTER_RX_SYMBOL_ERR 0x06
1091#define MIB_COUNTER_RX_CRC_ERR 0x07
1092#define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08
1093#define MIB_COUNTER_RX_CTRL_8808 0x09
1094#define MIB_COUNTER_RX_PAUSE 0x0A
1095#define MIB_COUNTER_RX_BROADCAST 0x0B
1096#define MIB_COUNTER_RX_MULTICAST 0x0C
1097#define MIB_COUNTER_RX_UNICAST 0x0D
1098#define MIB_COUNTER_RX_OCTET_64 0x0E
1099#define MIB_COUNTER_RX_OCTET_65_127 0x0F
1100#define MIB_COUNTER_RX_OCTET_128_255 0x10
1101#define MIB_COUNTER_RX_OCTET_256_511 0x11
1102#define MIB_COUNTER_RX_OCTET_512_1023 0x12
1103#define MIB_COUNTER_RX_OCTET_1024_1522 0x13
1104#define MIB_COUNTER_TX_LO_PRIORITY 0x14
1105#define MIB_COUNTER_TX_HI_PRIORITY 0x15
1106#define MIB_COUNTER_TX_LATE_COLLISION 0x16
1107#define MIB_COUNTER_TX_PAUSE 0x17
1108#define MIB_COUNTER_TX_BROADCAST 0x18
1109#define MIB_COUNTER_TX_MULTICAST 0x19
1110#define MIB_COUNTER_TX_UNICAST 0x1A
1111#define MIB_COUNTER_TX_DEFERRED 0x1B
1112#define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C
1113#define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1114#define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1115#define MIB_COUNTER_TX_MULTI_COLLISION 0x1F
1116
1117#define MIB_COUNTER_RX_DROPPED_PACKET 0x20
1118#define MIB_COUNTER_TX_DROPPED_PACKET 0x21
1119
1120/**
1121 * struct ksz_port_mib - Port MIB data structure
1122 * @cnt_ptr: Current pointer to MIB counter index.
1123 * @link_down: Indication the link has just gone down.
1124 * @state: Connection status of the port.
1125 * @mib_start: The starting counter index. Some ports do not start at 0.
1126 * @counter: 64-bit MIB counter value.
1127 * @dropped: Temporary buffer to remember last read packet dropped values.
1128 *
1129 * MIB counters needs to be read periodically so that counters do not get
1130 * overflowed and give incorrect values. A right balance is needed to
1131 * satisfy this condition and not waste too much CPU time.
1132 *
1133 * It is pointless to read MIB counters when the port is disconnected. The
1134 * @state provides the connection status so that MIB counters are read only
1135 * when the port is connected. The @link_down indicates the port is just
1136 * disconnected so that all MIB counters are read one last time to update the
1137 * information.
1138 */
1139struct ksz_port_mib {
1140 u8 cnt_ptr;
1141 u8 link_down;
1142 u8 state;
1143 u8 mib_start;
1144
1145 u64 counter[TOTAL_PORT_COUNTER_NUM];
1146 u32 dropped[2];
1147};
1148
1149/**
1150 * struct ksz_port_cfg - Port configuration data structure
1151 * @vid: VID value.
1152 * @member: Port membership.
1153 * @port_prio: Port priority.
1154 * @rx_rate: Receive priority rate.
1155 * @tx_rate: Transmit priority rate.
1156 * @stp_state: Current Spanning Tree Protocol state.
1157 */
1158struct ksz_port_cfg {
1159 u16 vid;
1160 u8 member;
1161 u8 port_prio;
1162 u32 rx_rate[PRIO_QUEUES];
1163 u32 tx_rate[PRIO_QUEUES];
1164 int stp_state;
1165};
1166
1167/**
1168 * struct ksz_switch - KSZ8842 switch data structure
1169 * @mac_table: MAC table entries information.
1170 * @vlan_table: VLAN table entries information.
1171 * @port_cfg: Port configuration information.
1172 * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS
1173 * (bit7 ~ bit2) field.
1174 * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p
1175 * Tag priority field.
1176 * @br_addr: Bridge address. Used for STP.
1177 * @other_addr: Other MAC address. Used for multiple network device mode.
1178 * @broad_per: Broadcast storm percentage.
1179 * @member: Current port membership. Used for STP.
1180 */
1181struct ksz_switch {
1182 struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183 struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184 struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185
1186 u8 diffserv[DIFFSERV_ENTRIES];
1187 u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188
1189 u8 br_addr[MAC_ADDR_LEN];
1190 u8 other_addr[MAC_ADDR_LEN];
1191
1192 u8 broad_per;
1193 u8 member;
1194};
1195
1196#define TX_RATE_UNIT 10000
1197
1198/**
1199 * struct ksz_port_info - Port information data structure
1200 * @state: Connection status of the port.
1201 * @tx_rate: Transmit rate divided by 10000 to get Mbit.
1202 * @duplex: Duplex mode.
1203 * @advertised: Advertised auto-negotiation setting. Used to determine link.
1204 * @partner: Auto-negotiation partner setting. Used to determine link.
1205 * @port_id: Port index to access actual hardware register.
1206 * @pdev: Pointer to OS dependent network device.
1207 */
1208struct ksz_port_info {
1209 uint state;
1210 uint tx_rate;
1211 u8 duplex;
1212 u8 advertised;
1213 u8 partner;
1214 u8 port_id;
1215 void *pdev;
1216};
1217
1218#define MAX_TX_HELD_SIZE 52000
1219
1220/* Hardware features and bug fixes. */
1221#define LINK_INT_WORKING (1 << 0)
1222#define SMALL_PACKET_TX_BUG (1 << 1)
1223#define HALF_DUPLEX_SIGNAL_BUG (1 << 2)
1224#define IPV6_CSUM_GEN_HACK (1 << 3)
1225#define RX_HUGE_FRAME (1 << 4)
1226#define STP_SUPPORT (1 << 8)
1227
1228/* Software overrides. */
1229#define PAUSE_FLOW_CTRL (1 << 0)
1230#define FAST_AGING (1 << 1)
1231
1232/**
1233 * struct ksz_hw - KSZ884X hardware data structure
1234 * @io: Virtual address assigned.
1235 * @ksz_switch: Pointer to KSZ8842 switch.
1236 * @port_info: Port information.
1237 * @port_mib: Port MIB information.
1238 * @dev_count: Number of network devices this hardware supports.
1239 * @dst_ports: Destination ports in switch for transmission.
1240 * @id: Hardware ID. Used for display only.
1241 * @mib_cnt: Number of MIB counters this hardware has.
1242 * @mib_port_cnt: Number of ports with MIB counters.
1243 * @tx_cfg: Cached transmit control settings.
1244 * @rx_cfg: Cached receive control settings.
1245 * @intr_mask: Current interrupt mask.
1246 * @intr_set: Current interrup set.
1247 * @intr_blocked: Interrupt blocked.
1248 * @rx_desc_info: Receive descriptor information.
1249 * @tx_desc_info: Transmit descriptor information.
1250 * @tx_int_cnt: Transmit interrupt count. Used for TX optimization.
1251 * @tx_int_mask: Transmit interrupt mask. Used for TX optimization.
1252 * @tx_size: Transmit data size. Used for TX optimization.
1253 * The maximum is defined by MAX_TX_HELD_SIZE.
1254 * @perm_addr: Permanent MAC address.
1255 * @override_addr: Overrided MAC address.
1256 * @address: Additional MAC address entries.
1257 * @addr_list_size: Additional MAC address list size.
1258 * @mac_override: Indication of MAC address overrided.
1259 * @promiscuous: Counter to keep track of promiscuous mode set.
1260 * @all_multi: Counter to keep track of all multicast mode set.
1261 * @multi_list: Multicast address entries.
1262 * @multi_bits: Cached multicast hash table settings.
1263 * @multi_list_size: Multicast address list size.
1264 * @enabled: Indication of hardware enabled.
1265 * @rx_stop: Indication of receive process stop.
1266 * @features: Hardware features to enable.
1267 * @overrides: Hardware features to override.
1268 * @parent: Pointer to parent, network device private structure.
1269 */
1270struct ksz_hw {
1271 void __iomem *io;
1272
1273 struct ksz_switch *ksz_switch;
1274 struct ksz_port_info port_info[SWITCH_PORT_NUM];
1275 struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1276 int dev_count;
1277 int dst_ports;
1278 int id;
1279 int mib_cnt;
1280 int mib_port_cnt;
1281
1282 u32 tx_cfg;
1283 u32 rx_cfg;
1284 u32 intr_mask;
1285 u32 intr_set;
1286 uint intr_blocked;
1287
1288 struct ksz_desc_info rx_desc_info;
1289 struct ksz_desc_info tx_desc_info;
1290
1291 int tx_int_cnt;
1292 int tx_int_mask;
1293 int tx_size;
1294
1295 u8 perm_addr[MAC_ADDR_LEN];
1296 u8 override_addr[MAC_ADDR_LEN];
1297 u8 address[ADDITIONAL_ENTRIES][MAC_ADDR_LEN];
1298 u8 addr_list_size;
1299 u8 mac_override;
1300 u8 promiscuous;
1301 u8 all_multi;
1302 u8 multi_list[MAX_MULTICAST_LIST][MAC_ADDR_LEN];
1303 u8 multi_bits[HW_MULTICAST_SIZE];
1304 u8 multi_list_size;
1305
1306 u8 enabled;
1307 u8 rx_stop;
1308 u8 reserved2[1];
1309
1310 uint features;
1311 uint overrides;
1312
1313 void *parent;
1314};
1315
1316enum {
1317 PHY_NO_FLOW_CTRL,
1318 PHY_FLOW_CTRL,
1319 PHY_TX_ONLY,
1320 PHY_RX_ONLY
1321};
1322
1323/**
1324 * struct ksz_port - Virtual port data structure
1325 * @duplex: Duplex mode setting. 1 for half duplex, 2 for full
1326 * duplex, and 0 for auto, which normally results in full
1327 * duplex.
1328 * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and
1329 * 0 for auto, which normally results in 100 Mbit.
1330 * @force_link: Force link setting. 0 for auto-negotiation, and 1 for
1331 * force.
1332 * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow
1333 * control, and PHY_FLOW_CTRL for flow control.
1334 * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1335 * Mbit PHY.
1336 * @first_port: Index of first port this port supports.
1337 * @mib_port_cnt: Number of ports with MIB counters.
1338 * @port_cnt: Number of ports this port supports.
1339 * @counter: Port statistics counter.
1340 * @hw: Pointer to hardware structure.
1341 * @linked: Pointer to port information linked to this port.
1342 */
1343struct ksz_port {
1344 u8 duplex;
1345 u8 speed;
1346 u8 force_link;
1347 u8 flow_ctrl;
1348
1349 int first_port;
1350 int mib_port_cnt;
1351 int port_cnt;
1352 u64 counter[OID_COUNTER_LAST];
1353
1354 struct ksz_hw *hw;
1355 struct ksz_port_info *linked;
1356};
1357
1358/**
1359 * struct ksz_timer_info - Timer information data structure
1360 * @timer: Kernel timer.
1361 * @cnt: Running timer counter.
1362 * @max: Number of times to run timer; -1 for infinity.
1363 * @period: Timer period in jiffies.
1364 */
1365struct ksz_timer_info {
1366 struct timer_list timer;
1367 int cnt;
1368 int max;
1369 int period;
1370};
1371
1372/**
1373 * struct ksz_shared_mem - OS dependent shared memory data structure
1374 * @dma_addr: Physical DMA address allocated.
1375 * @alloc_size: Allocation size.
1376 * @phys: Actual physical address used.
1377 * @alloc_virt: Virtual address allocated.
1378 * @virt: Actual virtual address used.
1379 */
1380struct ksz_shared_mem {
1381 dma_addr_t dma_addr;
1382 uint alloc_size;
1383 uint phys;
1384 u8 *alloc_virt;
1385 u8 *virt;
1386};
1387
1388/**
1389 * struct ksz_counter_info - OS dependent counter information data structure
1390 * @counter: Wait queue to wakeup after counters are read.
1391 * @time: Next time in jiffies to read counter.
1392 * @read: Indication of counters read in full or not.
1393 */
1394struct ksz_counter_info {
1395 wait_queue_head_t counter;
1396 unsigned long time;
1397 int read;
1398};
1399
1400/**
1401 * struct dev_info - Network device information data structure
1402 * @dev: Pointer to network device.
1403 * @pdev: Pointer to PCI device.
1404 * @hw: Hardware structure.
1405 * @desc_pool: Physical memory used for descriptor pool.
1406 * @hwlock: Spinlock to prevent hardware from accessing.
1407 * @lock: Mutex lock to prevent device from accessing.
1408 * @dev_rcv: Receive process function used.
1409 * @last_skb: Socket buffer allocated for descriptor rx fragments.
1410 * @skb_index: Buffer index for receiving fragments.
1411 * @skb_len: Buffer length for receiving fragments.
1412 * @mib_read: Workqueue to read MIB counters.
1413 * @mib_timer_info: Timer to read MIB counters.
1414 * @counter: Used for MIB reading.
1415 * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE;
1416 * the maximum is MAX_RX_BUF_SIZE.
1417 * @opened: Counter to keep track of device open.
1418 * @rx_tasklet: Receive processing tasklet.
1419 * @tx_tasklet: Transmit processing tasklet.
1420 * @wol_enable: Wake-on-LAN enable set by ethtool.
1421 * @wol_support: Wake-on-LAN support used by ethtool.
1422 * @pme_wait: Used for KSZ8841 power management.
1423 */
1424struct dev_info {
1425 struct net_device *dev;
1426 struct pci_dev *pdev;
1427
1428 struct ksz_hw hw;
1429 struct ksz_shared_mem desc_pool;
1430
1431 spinlock_t hwlock;
1432 struct mutex lock;
1433
1434 int (*dev_rcv)(struct dev_info *);
1435
1436 struct sk_buff *last_skb;
1437 int skb_index;
1438 int skb_len;
1439
1440 struct work_struct mib_read;
1441 struct ksz_timer_info mib_timer_info;
1442 struct ksz_counter_info counter[TOTAL_PORT_NUM];
1443
1444 int mtu;
1445 int opened;
1446
1447 struct tasklet_struct rx_tasklet;
1448 struct tasklet_struct tx_tasklet;
1449
1450 int wol_enable;
1451 int wol_support;
1452 unsigned long pme_wait;
1453};
1454
1455/**
1456 * struct dev_priv - Network device private data structure
1457 * @adapter: Adapter device information.
1458 * @port: Port information.
1459 * @monitor_time_info: Timer to monitor ports.
1460 * @stats: Network statistics.
1461 * @proc_sem: Semaphore for proc accessing.
1462 * @id: Device ID.
1463 * @mii_if: MII interface information.
1464 * @advertising: Temporary variable to store advertised settings.
1465 * @msg_enable: The message flags controlling driver output.
1466 * @media_state: The connection status of the device.
1467 * @multicast: The all multicast state of the device.
1468 * @promiscuous: The promiscuous state of the device.
1469 */
1470struct dev_priv {
1471 struct dev_info *adapter;
1472 struct ksz_port port;
1473 struct ksz_timer_info monitor_timer_info;
1474 struct net_device_stats stats;
1475
1476 struct semaphore proc_sem;
1477 int id;
1478
1479 struct mii_if_info mii_if;
1480 u32 advertising;
1481
1482 u32 msg_enable;
1483 int media_state;
1484 int multicast;
1485 int promiscuous;
1486};
1487
8ca86fd8
TH
1488#define DRV_NAME "KSZ884X PCI"
1489#define DEVICE_NAME "KSZ884x PCI"
1490#define DRV_VERSION "1.0.0"
1491#define DRV_RELDATE "Feb 8, 2010"
1492
1493static char version[] __devinitdata =
1494 "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1495
1496static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1497
1498/*
1499 * Interrupt processing primary routines
1500 */
1501
1502static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1503{
1504 writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1505}
1506
1507static inline void hw_dis_intr(struct ksz_hw *hw)
1508{
1509 hw->intr_blocked = hw->intr_mask;
1510 writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1511 hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1512}
1513
1514static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1515{
1516 hw->intr_set = interrupt;
1517 writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1518}
1519
1520static inline void hw_ena_intr(struct ksz_hw *hw)
1521{
1522 hw->intr_blocked = 0;
1523 hw_set_intr(hw, hw->intr_mask);
1524}
1525
1526static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1527{
1528 hw->intr_mask &= ~(bit);
1529}
1530
1531static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1532{
1533 u32 read_intr;
1534
1535 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1536 hw->intr_set = read_intr & ~interrupt;
1537 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1538 hw_dis_intr_bit(hw, interrupt);
1539}
1540
1541/**
1542 * hw_turn_on_intr - turn on specified interrupts
1543 * @hw: The hardware instance.
1544 * @bit: The interrupt bits to be on.
1545 *
1546 * This routine turns on the specified interrupts in the interrupt mask so that
1547 * those interrupts will be enabled.
1548 */
1549static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1550{
1551 hw->intr_mask |= bit;
1552
1553 if (!hw->intr_blocked)
1554 hw_set_intr(hw, hw->intr_mask);
1555}
1556
1557static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1558{
1559 u32 read_intr;
1560
1561 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1562 hw->intr_set = read_intr | interrupt;
1563 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1564}
1565
1566static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1567{
1568 *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1569 *status = *status & hw->intr_set;
1570}
1571
1572static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1573{
1574 if (interrupt)
1575 hw_ena_intr(hw);
1576}
1577
1578/**
1579 * hw_block_intr - block hardware interrupts
1580 *
1581 * This function blocks all interrupts of the hardware and returns the current
1582 * interrupt enable mask so that interrupts can be restored later.
1583 *
1584 * Return the current interrupt enable mask.
1585 */
1586static uint hw_block_intr(struct ksz_hw *hw)
1587{
1588 uint interrupt = 0;
1589
1590 if (!hw->intr_blocked) {
1591 hw_dis_intr(hw);
1592 interrupt = hw->intr_blocked;
1593 }
1594 return interrupt;
1595}
1596
1597/*
1598 * Hardware descriptor routines
1599 */
1600
1601static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1602{
1603 status.rx.hw_owned = 0;
1604 desc->phw->ctrl.data = cpu_to_le32(status.data);
1605}
1606
1607static inline void release_desc(struct ksz_desc *desc)
1608{
1609 desc->sw.ctrl.tx.hw_owned = 1;
1610 if (desc->sw.buf_size != desc->sw.buf.data) {
1611 desc->sw.buf_size = desc->sw.buf.data;
1612 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1613 }
1614 desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1615}
1616
1617static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1618{
1619 *desc = &info->ring[info->last];
1620 info->last++;
1621 info->last &= info->mask;
1622 info->avail--;
1623 (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1624}
1625
1626static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1627{
1628 desc->phw->addr = cpu_to_le32(addr);
1629}
1630
1631static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1632{
1633 desc->sw.buf.rx.buf_size = len;
1634}
1635
1636static inline void get_tx_pkt(struct ksz_desc_info *info,
1637 struct ksz_desc **desc)
1638{
1639 *desc = &info->ring[info->next];
1640 info->next++;
1641 info->next &= info->mask;
1642 info->avail--;
1643 (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1644}
1645
1646static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1647{
1648 desc->phw->addr = cpu_to_le32(addr);
1649}
1650
1651static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1652{
1653 desc->sw.buf.tx.buf_size = len;
1654}
1655
1656/* Switch functions */
1657
1658#define TABLE_READ 0x10
1659#define TABLE_SEL_SHIFT 2
1660
1661#define HW_DELAY(hw, reg) \
1662 do { \
1663 u16 dummy; \
1664 dummy = readw(hw->io + reg); \
1665 } while (0)
1666
1667/**
1668 * sw_r_table - read 4 bytes of data from switch table
1669 * @hw: The hardware instance.
1670 * @table: The table selector.
1671 * @addr: The address of the table entry.
1672 * @data: Buffer to store the read data.
1673 *
1674 * This routine reads 4 bytes of data from the table of the switch.
1675 * Hardware interrupts are disabled to minimize corruption of read data.
1676 */
1677static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1678{
1679 u16 ctrl_addr;
1680 uint interrupt;
1681
1682 ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1683
1684 interrupt = hw_block_intr(hw);
1685
1686 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1687 HW_DELAY(hw, KS884X_IACR_OFFSET);
1688 *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1689
1690 hw_restore_intr(hw, interrupt);
1691}
1692
1693/**
1694 * sw_w_table_64 - write 8 bytes of data to the switch table
1695 * @hw: The hardware instance.
1696 * @table: The table selector.
1697 * @addr: The address of the table entry.
1698 * @data_hi: The high part of data to be written (bit63 ~ bit32).
1699 * @data_lo: The low part of data to be written (bit31 ~ bit0).
1700 *
1701 * This routine writes 8 bytes of data to the table of the switch.
1702 * Hardware interrupts are disabled to minimize corruption of written data.
1703 */
1704static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1705 u32 data_lo)
1706{
1707 u16 ctrl_addr;
1708 uint interrupt;
1709
1710 ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1711
1712 interrupt = hw_block_intr(hw);
1713
1714 writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1715 writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1716
1717 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1718 HW_DELAY(hw, KS884X_IACR_OFFSET);
1719
1720 hw_restore_intr(hw, interrupt);
1721}
1722
1723/**
1724 * sw_w_sta_mac_table - write to the static MAC table
1725 * @hw: The hardware instance.
1726 * @addr: The address of the table entry.
1727 * @mac_addr: The MAC address.
1728 * @ports: The port members.
1729 * @override: The flag to override the port receive/transmit settings.
1730 * @valid: The flag to indicate entry is valid.
1731 * @use_fid: The flag to indicate the FID is valid.
1732 * @fid: The FID value.
1733 *
1734 * This routine writes an entry of the static MAC table of the switch. It
1735 * calls sw_w_table_64() to write the data.
1736 */
1737static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1738 u8 ports, int override, int valid, int use_fid, u8 fid)
1739{
1740 u32 data_hi;
1741 u32 data_lo;
1742
1743 data_lo = ((u32) mac_addr[2] << 24) |
1744 ((u32) mac_addr[3] << 16) |
1745 ((u32) mac_addr[4] << 8) | mac_addr[5];
1746 data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1747 data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1748
1749 if (override)
1750 data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1751 if (use_fid) {
1752 data_hi |= STATIC_MAC_TABLE_USE_FID;
1753 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1754 }
1755 if (valid)
1756 data_hi |= STATIC_MAC_TABLE_VALID;
1757
1758 sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1759}
1760
1761/**
1762 * sw_r_vlan_table - read from the VLAN table
1763 * @hw: The hardware instance.
1764 * @addr: The address of the table entry.
1765 * @vid: Buffer to store the VID.
1766 * @fid: Buffer to store the VID.
1767 * @member: Buffer to store the port membership.
1768 *
1769 * This function reads an entry of the VLAN table of the switch. It calls
1770 * sw_r_table() to get the data.
1771 *
1772 * Return 0 if the entry is valid; otherwise -1.
1773 */
1774static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1775 u8 *member)
1776{
1777 u32 data;
1778
1779 sw_r_table(hw, TABLE_VLAN, addr, &data);
1780 if (data & VLAN_TABLE_VALID) {
1781 *vid = (u16)(data & VLAN_TABLE_VID);
1782 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1783 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1784 VLAN_TABLE_MEMBERSHIP_SHIFT);
1785 return 0;
1786 }
1787 return -1;
1788}
1789
1790/**
1791 * port_r_mib_cnt - read MIB counter
1792 * @hw: The hardware instance.
1793 * @port: The port index.
1794 * @addr: The address of the counter.
1795 * @cnt: Buffer to store the counter.
1796 *
1797 * This routine reads a MIB counter of the port.
1798 * Hardware interrupts are disabled to minimize corruption of read data.
1799 */
1800static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1801{
1802 u32 data;
1803 u16 ctrl_addr;
1804 uint interrupt;
1805 int timeout;
1806
1807 ctrl_addr = addr + PORT_COUNTER_NUM * port;
1808
1809 interrupt = hw_block_intr(hw);
1810
1811 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1812 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1813 HW_DELAY(hw, KS884X_IACR_OFFSET);
1814
1815 for (timeout = 100; timeout > 0; timeout--) {
1816 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1817
1818 if (data & MIB_COUNTER_VALID) {
1819 if (data & MIB_COUNTER_OVERFLOW)
1820 *cnt += MIB_COUNTER_VALUE + 1;
1821 *cnt += data & MIB_COUNTER_VALUE;
1822 break;
1823 }
1824 }
1825
1826 hw_restore_intr(hw, interrupt);
1827}
1828
1829/**
1830 * port_r_mib_pkt - read dropped packet counts
1831 * @hw: The hardware instance.
1832 * @port: The port index.
1833 * @cnt: Buffer to store the receive and transmit dropped packet counts.
1834 *
1835 * This routine reads the dropped packet counts of the port.
1836 * Hardware interrupts are disabled to minimize corruption of read data.
1837 */
1838static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1839{
1840 u32 cur;
1841 u32 data;
1842 u16 ctrl_addr;
1843 uint interrupt;
1844 int index;
1845
1846 index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1847 do {
1848 interrupt = hw_block_intr(hw);
1849
1850 ctrl_addr = (u16) index;
1851 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1852 << 8);
1853 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1854 HW_DELAY(hw, KS884X_IACR_OFFSET);
1855 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1856
1857 hw_restore_intr(hw, interrupt);
1858
1859 data &= MIB_PACKET_DROPPED;
1860 cur = *last;
1861 if (data != cur) {
1862 *last = data;
1863 if (data < cur)
1864 data += MIB_PACKET_DROPPED + 1;
1865 data -= cur;
1866 *cnt += data;
1867 }
1868 ++last;
1869 ++cnt;
1870 index -= KS_MIB_PACKET_DROPPED_TX -
1871 KS_MIB_PACKET_DROPPED_TX_0 + 1;
1872 } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1873}
1874
1875/**
1876 * port_r_cnt - read MIB counters periodically
1877 * @hw: The hardware instance.
1878 * @port: The port index.
1879 *
1880 * This routine is used to read the counters of the port periodically to avoid
1881 * counter overflow. The hardware should be acquired first before calling this
1882 * routine.
1883 *
1884 * Return non-zero when not all counters not read.
1885 */
1886static int port_r_cnt(struct ksz_hw *hw, int port)
1887{
1888 struct ksz_port_mib *mib = &hw->port_mib[port];
1889
1890 if (mib->mib_start < PORT_COUNTER_NUM)
1891 while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1892 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1893 &mib->counter[mib->cnt_ptr]);
1894 ++mib->cnt_ptr;
1895 }
1896 if (hw->mib_cnt > PORT_COUNTER_NUM)
1897 port_r_mib_pkt(hw, port, mib->dropped,
1898 &mib->counter[PORT_COUNTER_NUM]);
1899 mib->cnt_ptr = 0;
1900 return 0;
1901}
1902
1903/**
1904 * port_init_cnt - initialize MIB counter values
1905 * @hw: The hardware instance.
1906 * @port: The port index.
1907 *
1908 * This routine is used to initialize all counters to zero if the hardware
1909 * cannot do it after reset.
1910 */
1911static void port_init_cnt(struct ksz_hw *hw, int port)
1912{
1913 struct ksz_port_mib *mib = &hw->port_mib[port];
1914
1915 mib->cnt_ptr = 0;
1916 if (mib->mib_start < PORT_COUNTER_NUM)
1917 do {
1918 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1919 &mib->counter[mib->cnt_ptr]);
1920 ++mib->cnt_ptr;
1921 } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1922 if (hw->mib_cnt > PORT_COUNTER_NUM)
1923 port_r_mib_pkt(hw, port, mib->dropped,
1924 &mib->counter[PORT_COUNTER_NUM]);
1925 memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1926 mib->cnt_ptr = 0;
1927}
1928
1929/*
1930 * Port functions
1931 */
1932
1933/**
1934 * port_chk - check port register bits
1935 * @hw: The hardware instance.
1936 * @port: The port index.
1937 * @offset: The offset of the port register.
1938 * @bits: The data bits to check.
1939 *
1940 * This function checks whether the specified bits of the port register are set
1941 * or not.
1942 *
1943 * Return 0 if the bits are not set.
1944 */
1945static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1946{
1947 u32 addr;
1948 u16 data;
1949
1950 PORT_CTRL_ADDR(port, addr);
1951 addr += offset;
1952 data = readw(hw->io + addr);
1953 return (data & bits) == bits;
1954}
1955
1956/**
1957 * port_cfg - set port register bits
1958 * @hw: The hardware instance.
1959 * @port: The port index.
1960 * @offset: The offset of the port register.
1961 * @bits: The data bits to set.
1962 * @set: The flag indicating whether the bits are to be set or not.
1963 *
1964 * This routine sets or resets the specified bits of the port register.
1965 */
1966static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1967 int set)
1968{
1969 u32 addr;
1970 u16 data;
1971
1972 PORT_CTRL_ADDR(port, addr);
1973 addr += offset;
1974 data = readw(hw->io + addr);
1975 if (set)
1976 data |= bits;
1977 else
1978 data &= ~bits;
1979 writew(data, hw->io + addr);
1980}
1981
1982/**
1983 * port_chk_shift - check port bit
1984 * @hw: The hardware instance.
1985 * @port: The port index.
1986 * @offset: The offset of the register.
1987 * @shift: Number of bits to shift.
1988 *
1989 * This function checks whether the specified port is set in the register or
1990 * not.
1991 *
1992 * Return 0 if the port is not set.
1993 */
1994static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1995{
1996 u16 data;
1997 u16 bit = 1 << port;
1998
1999 data = readw(hw->io + addr);
2000 data >>= shift;
2001 return (data & bit) == bit;
2002}
2003
2004/**
2005 * port_cfg_shift - set port bit
2006 * @hw: The hardware instance.
2007 * @port: The port index.
2008 * @offset: The offset of the register.
2009 * @shift: Number of bits to shift.
2010 * @set: The flag indicating whether the port is to be set or not.
2011 *
2012 * This routine sets or resets the specified port in the register.
2013 */
2014static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2015 int set)
2016{
2017 u16 data;
2018 u16 bits = 1 << port;
2019
2020 data = readw(hw->io + addr);
2021 bits <<= shift;
2022 if (set)
2023 data |= bits;
2024 else
2025 data &= ~bits;
2026 writew(data, hw->io + addr);
2027}
2028
2029/**
2030 * port_r8 - read byte from port register
2031 * @hw: The hardware instance.
2032 * @port: The port index.
2033 * @offset: The offset of the port register.
2034 * @data: Buffer to store the data.
2035 *
2036 * This routine reads a byte from the port register.
2037 */
2038static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2039{
2040 u32 addr;
2041
2042 PORT_CTRL_ADDR(port, addr);
2043 addr += offset;
2044 *data = readb(hw->io + addr);
2045}
2046
2047/**
2048 * port_r16 - read word from port register.
2049 * @hw: The hardware instance.
2050 * @port: The port index.
2051 * @offset: The offset of the port register.
2052 * @data: Buffer to store the data.
2053 *
2054 * This routine reads a word from the port register.
2055 */
2056static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2057{
2058 u32 addr;
2059
2060 PORT_CTRL_ADDR(port, addr);
2061 addr += offset;
2062 *data = readw(hw->io + addr);
2063}
2064
2065/**
2066 * port_w16 - write word to port register.
2067 * @hw: The hardware instance.
2068 * @port: The port index.
2069 * @offset: The offset of the port register.
2070 * @data: Data to write.
2071 *
2072 * This routine writes a word to the port register.
2073 */
2074static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2075{
2076 u32 addr;
2077
2078 PORT_CTRL_ADDR(port, addr);
2079 addr += offset;
2080 writew(data, hw->io + addr);
2081}
2082
2083/**
2084 * sw_chk - check switch register bits
2085 * @hw: The hardware instance.
2086 * @addr: The address of the switch register.
2087 * @bits: The data bits to check.
2088 *
2089 * This function checks whether the specified bits of the switch register are
2090 * set or not.
2091 *
2092 * Return 0 if the bits are not set.
2093 */
2094static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2095{
2096 u16 data;
2097
2098 data = readw(hw->io + addr);
2099 return (data & bits) == bits;
2100}
2101
2102/**
2103 * sw_cfg - set switch register bits
2104 * @hw: The hardware instance.
2105 * @addr: The address of the switch register.
2106 * @bits: The data bits to set.
2107 * @set: The flag indicating whether the bits are to be set or not.
2108 *
2109 * This function sets or resets the specified bits of the switch register.
2110 */
2111static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2112{
2113 u16 data;
2114
2115 data = readw(hw->io + addr);
2116 if (set)
2117 data |= bits;
2118 else
2119 data &= ~bits;
2120 writew(data, hw->io + addr);
2121}
2122
2123/* Bandwidth */
2124
2125static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2126{
2127 port_cfg(hw, p,
2128 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2129}
2130
2131static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2132{
2133 return port_chk(hw, p,
2134 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2135}
2136
2137/* Driver set switch broadcast storm protection at 10% rate. */
2138#define BROADCAST_STORM_PROTECTION_RATE 10
2139
2140/* 148,800 frames * 67 ms / 100 */
2141#define BROADCAST_STORM_VALUE 9969
2142
2143/**
2144 * sw_cfg_broad_storm - configure broadcast storm threshold
2145 * @hw: The hardware instance.
2146 * @percent: Broadcast storm threshold in percent of transmit rate.
2147 *
2148 * This routine configures the broadcast storm threshold of the switch.
2149 */
2150static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2151{
2152 u16 data;
2153 u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2154
2155 if (value > BROADCAST_STORM_RATE)
2156 value = BROADCAST_STORM_RATE;
2157
2158 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2159 data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2160 data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2161 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2162}
2163
2164/**
2165 * sw_get_board_storm - get broadcast storm threshold
2166 * @hw: The hardware instance.
2167 * @percent: Buffer to store the broadcast storm threshold percentage.
2168 *
2169 * This routine retrieves the broadcast storm threshold of the switch.
2170 */
2171static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2172{
2173 int num;
2174 u16 data;
2175
2176 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2177 num = (data & BROADCAST_STORM_RATE_HI);
2178 num <<= 8;
2179 num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2180 num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2181 *percent = (u8) num;
2182}
2183
2184/**
2185 * sw_dis_broad_storm - disable broadstorm
2186 * @hw: The hardware instance.
2187 * @port: The port index.
2188 *
2189 * This routine disables the broadcast storm limit function of the switch.
2190 */
2191static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2192{
2193 port_cfg_broad_storm(hw, port, 0);
2194}
2195
2196/**
2197 * sw_ena_broad_storm - enable broadcast storm
2198 * @hw: The hardware instance.
2199 * @port: The port index.
2200 *
2201 * This routine enables the broadcast storm limit function of the switch.
2202 */
2203static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2204{
2205 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2206 port_cfg_broad_storm(hw, port, 1);
2207}
2208
2209/**
2210 * sw_init_broad_storm - initialize broadcast storm
2211 * @hw: The hardware instance.
2212 *
2213 * This routine initializes the broadcast storm limit function of the switch.
2214 */
2215static void sw_init_broad_storm(struct ksz_hw *hw)
2216{
2217 int port;
2218
2219 hw->ksz_switch->broad_per = 1;
2220 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2221 for (port = 0; port < TOTAL_PORT_NUM; port++)
2222 sw_dis_broad_storm(hw, port);
2223 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2224}
2225
2226/**
2227 * hw_cfg_broad_storm - configure broadcast storm
2228 * @hw: The hardware instance.
2229 * @percent: Broadcast storm threshold in percent of transmit rate.
2230 *
2231 * This routine configures the broadcast storm threshold of the switch.
2232 * It is called by user functions. The hardware should be acquired first.
2233 */
2234static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2235{
2236 if (percent > 100)
2237 percent = 100;
2238
2239 sw_cfg_broad_storm(hw, percent);
2240 sw_get_broad_storm(hw, &percent);
2241 hw->ksz_switch->broad_per = percent;
2242}
2243
2244/**
2245 * sw_dis_prio_rate - disable switch priority rate
2246 * @hw: The hardware instance.
2247 * @port: The port index.
2248 *
2249 * This routine disables the priority rate function of the switch.
2250 */
2251static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2252{
2253 u32 addr;
2254
2255 PORT_CTRL_ADDR(port, addr);
2256 addr += KS8842_PORT_IN_RATE_OFFSET;
2257 writel(0, hw->io + addr);
2258}
2259
2260/**
2261 * sw_init_prio_rate - initialize switch prioirty rate
2262 * @hw: The hardware instance.
2263 *
2264 * This routine initializes the priority rate function of the switch.
2265 */
2266static void sw_init_prio_rate(struct ksz_hw *hw)
2267{
2268 int port;
2269 int prio;
2270 struct ksz_switch *sw = hw->ksz_switch;
2271
2272 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2273 for (prio = 0; prio < PRIO_QUEUES; prio++) {
2274 sw->port_cfg[port].rx_rate[prio] =
2275 sw->port_cfg[port].tx_rate[prio] = 0;
2276 }
2277 sw_dis_prio_rate(hw, port);
2278 }
2279}
2280
2281/* Communication */
2282
2283static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2284{
2285 port_cfg(hw, p,
2286 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2287}
2288
2289static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2290{
2291 port_cfg(hw, p,
2292 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2293}
2294
2295static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2296{
2297 return port_chk(hw, p,
2298 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2299}
2300
2301static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2302{
2303 return port_chk(hw, p,
2304 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2305}
2306
2307/* Spanning Tree */
2308
2309static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set)
2310{
2311 port_cfg(hw, p,
2312 KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set);
2313}
2314
2315static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2316{
2317 port_cfg(hw, p,
2318 KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2319}
2320
2321static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2322{
2323 port_cfg(hw, p,
2324 KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2325}
2326
2327static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2328{
2329 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2330}
2331
2332static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2333{
2334 if (!(hw->overrides & FAST_AGING)) {
2335 sw_cfg_fast_aging(hw, 1);
2336 mdelay(1);
2337 sw_cfg_fast_aging(hw, 0);
2338 }
2339}
2340
2341/* VLAN */
2342
2343static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2344{
2345 port_cfg(hw, p,
2346 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2347}
2348
2349static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2350{
2351 port_cfg(hw, p,
2352 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2353}
2354
2355static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2356{
2357 return port_chk(hw, p,
2358 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2359}
2360
2361static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2362{
2363 return port_chk(hw, p,
2364 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2365}
2366
2367static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2368{
2369 port_cfg(hw, p,
2370 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2371}
2372
2373static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2374{
2375 port_cfg(hw, p,
2376 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2377}
2378
2379static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2380{
2381 return port_chk(hw, p,
2382 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2383}
2384
2385static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2386{
2387 return port_chk(hw, p,
2388 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2389}
2390
2391/* Mirroring */
2392
2393static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2394{
2395 port_cfg(hw, p,
2396 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2397}
2398
2399static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2400{
2401 port_cfg(hw, p,
2402 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2403}
2404
2405static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2406{
2407 port_cfg(hw, p,
2408 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2409}
2410
2411static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2412{
2413 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2414}
2415
2416static void sw_init_mirror(struct ksz_hw *hw)
2417{
2418 int port;
2419
2420 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2421 port_cfg_mirror_sniffer(hw, port, 0);
2422 port_cfg_mirror_rx(hw, port, 0);
2423 port_cfg_mirror_tx(hw, port, 0);
2424 }
2425 sw_cfg_mirror_rx_tx(hw, 0);
2426}
2427
2428static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2429{
2430 sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2431 SWITCH_UNK_DEF_PORT_ENABLE, set);
2432}
2433
2434static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2435{
2436 return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2437 SWITCH_UNK_DEF_PORT_ENABLE);
2438}
2439
2440static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2441{
2442 port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2443}
2444
2445static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2446{
2447 return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2448}
2449
2450/* Priority */
2451
2452static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2453{
2454 port_cfg(hw, p,
2455 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2456}
2457
2458static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2459{
2460 port_cfg(hw, p,
2461 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2462}
2463
2464static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2465{
2466 port_cfg(hw, p,
2467 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2468}
2469
2470static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2471{
2472 port_cfg(hw, p,
2473 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2474}
2475
2476static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2477{
2478 return port_chk(hw, p,
2479 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2480}
2481
2482static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2483{
2484 return port_chk(hw, p,
2485 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2486}
2487
2488static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2489{
2490 return port_chk(hw, p,
2491 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2492}
2493
2494static inline int port_chk_prio(struct ksz_hw *hw, int p)
2495{
2496 return port_chk(hw, p,
2497 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2498}
2499
2500/**
2501 * sw_dis_diffserv - disable switch DiffServ priority
2502 * @hw: The hardware instance.
2503 * @port: The port index.
2504 *
2505 * This routine disables the DiffServ priority function of the switch.
2506 */
2507static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2508{
2509 port_cfg_diffserv(hw, port, 0);
2510}
2511
2512/**
2513 * sw_dis_802_1p - disable switch 802.1p priority
2514 * @hw: The hardware instance.
2515 * @port: The port index.
2516 *
2517 * This routine disables the 802.1p priority function of the switch.
2518 */
2519static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2520{
2521 port_cfg_802_1p(hw, port, 0);
2522}
2523
2524/**
2525 * sw_cfg_replace_null_vid -
2526 * @hw: The hardware instance.
2527 * @set: The flag to disable or enable.
2528 *
2529 */
2530static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2531{
2532 sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2533}
2534
2535/**
2536 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2537 * @hw: The hardware instance.
2538 * @port: The port index.
2539 * @set: The flag to disable or enable.
2540 *
2541 * This routine enables the 802.1p priority re-mapping function of the switch.
2542 * That allows 802.1p priority field to be replaced with the port's default
2543 * tag's priority value if the ingress packet's 802.1p priority has a higher
2544 * priority than port's default tag's priority.
2545 */
2546static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2547{
2548 port_cfg_replace_vid(hw, port, set);
2549}
2550
2551/**
2552 * sw_cfg_port_based - configure switch port based priority
2553 * @hw: The hardware instance.
2554 * @port: The port index.
2555 * @prio: The priority to set.
2556 *
2557 * This routine configures the port based priority of the switch.
2558 */
2559static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2560{
2561 u16 data;
2562
2563 if (prio > PORT_BASED_PRIORITY_BASE)
2564 prio = PORT_BASED_PRIORITY_BASE;
2565
2566 hw->ksz_switch->port_cfg[port].port_prio = prio;
2567
2568 port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2569 data &= ~PORT_BASED_PRIORITY_MASK;
2570 data |= prio << PORT_BASED_PRIORITY_SHIFT;
2571 port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2572}
2573
2574/**
2575 * sw_dis_multi_queue - disable transmit multiple queues
2576 * @hw: The hardware instance.
2577 * @port: The port index.
2578 *
2579 * This routine disables the transmit multiple queues selection of the switch
2580 * port. Only single transmit queue on the port.
2581 */
2582static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2583{
2584 port_cfg_prio(hw, port, 0);
2585}
2586
2587/**
2588 * sw_init_prio - initialize switch priority
2589 * @hw: The hardware instance.
2590 *
2591 * This routine initializes the switch QoS priority functions.
2592 */
2593static void sw_init_prio(struct ksz_hw *hw)
2594{
2595 int port;
2596 int tos;
2597 struct ksz_switch *sw = hw->ksz_switch;
2598
2599 /*
2600 * Init all the 802.1p tag priority value to be assigned to different
2601 * priority queue.
2602 */
2603 sw->p_802_1p[0] = 0;
2604 sw->p_802_1p[1] = 0;
2605 sw->p_802_1p[2] = 1;
2606 sw->p_802_1p[3] = 1;
2607 sw->p_802_1p[4] = 2;
2608 sw->p_802_1p[5] = 2;
2609 sw->p_802_1p[6] = 3;
2610 sw->p_802_1p[7] = 3;
2611
2612 /*
2613 * Init all the DiffServ priority value to be assigned to priority
2614 * queue 0.
2615 */
2616 for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2617 sw->diffserv[tos] = 0;
2618
2619 /* All QoS functions disabled. */
2620 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2621 sw_dis_multi_queue(hw, port);
2622 sw_dis_diffserv(hw, port);
2623 sw_dis_802_1p(hw, port);
2624 sw_cfg_replace_vid(hw, port, 0);
2625
2626 sw->port_cfg[port].port_prio = 0;
2627 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2628 }
2629 sw_cfg_replace_null_vid(hw, 0);
2630}
2631
2632/**
2633 * port_get_def_vid - get port default VID.
2634 * @hw: The hardware instance.
2635 * @port: The port index.
2636 * @vid: Buffer to store the VID.
2637 *
2638 * This routine retrieves the default VID of the port.
2639 */
2640static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2641{
2642 u32 addr;
2643
2644 PORT_CTRL_ADDR(port, addr);
2645 addr += KS8842_PORT_CTRL_VID_OFFSET;
2646 *vid = readw(hw->io + addr);
2647}
2648
2649/**
2650 * sw_init_vlan - initialize switch VLAN
2651 * @hw: The hardware instance.
2652 *
2653 * This routine initializes the VLAN function of the switch.
2654 */
2655static void sw_init_vlan(struct ksz_hw *hw)
2656{
2657 int port;
2658 int entry;
2659 struct ksz_switch *sw = hw->ksz_switch;
2660
2661 /* Read 16 VLAN entries from device's VLAN table. */
2662 for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2663 sw_r_vlan_table(hw, entry,
2664 &sw->vlan_table[entry].vid,
2665 &sw->vlan_table[entry].fid,
2666 &sw->vlan_table[entry].member);
2667 }
2668
2669 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2670 port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2671 sw->port_cfg[port].member = PORT_MASK;
2672 }
2673}
2674
2675/**
2676 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2677 * @hw: The hardware instance.
2678 * @port: The port index.
2679 * @member: The port-based VLAN membership.
2680 *
2681 * This routine configures the port-based VLAN membership of the port.
2682 */
2683static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2684{
2685 u32 addr;
2686 u8 data;
2687
2688 PORT_CTRL_ADDR(port, addr);
2689 addr += KS8842_PORT_CTRL_2_OFFSET;
2690
2691 data = readb(hw->io + addr);
2692 data &= ~PORT_VLAN_MEMBERSHIP;
2693 data |= (member & PORT_MASK);
2694 writeb(data, hw->io + addr);
2695
2696 hw->ksz_switch->port_cfg[port].member = member;
2697}
2698
2699/**
2700 * sw_get_addr - get the switch MAC address.
2701 * @hw: The hardware instance.
2702 * @mac_addr: Buffer to store the MAC address.
2703 *
2704 * This function retrieves the MAC address of the switch.
2705 */
2706static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2707{
2708 int i;
2709
2710 for (i = 0; i < 6; i += 2) {
2711 mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2712 mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2713 }
2714}
2715
2716/**
2717 * sw_set_addr - configure switch MAC address
2718 * @hw: The hardware instance.
2719 * @mac_addr: The MAC address.
2720 *
2721 * This function configures the MAC address of the switch.
2722 */
2723static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2724{
2725 int i;
2726
2727 for (i = 0; i < 6; i += 2) {
2728 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2729 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2730 }
2731}
2732
2733/**
2734 * sw_set_global_ctrl - set switch global control
2735 * @hw: The hardware instance.
2736 *
2737 * This routine sets the global control of the switch function.
2738 */
2739static void sw_set_global_ctrl(struct ksz_hw *hw)
2740{
2741 u16 data;
2742
2743 /* Enable switch MII flow control. */
2744 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2745 data |= SWITCH_FLOW_CTRL;
2746 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2747
2748 data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2749
2750 /* Enable aggressive back off algorithm in half duplex mode. */
2751 data |= SWITCH_AGGR_BACKOFF;
2752
2753 /* Enable automatic fast aging when link changed detected. */
2754 data |= SWITCH_AGING_ENABLE;
2755 data |= SWITCH_LINK_AUTO_AGING;
2756
2757 if (hw->overrides & FAST_AGING)
2758 data |= SWITCH_FAST_AGING;
2759 else
2760 data &= ~SWITCH_FAST_AGING;
2761 writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2762
2763 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2764
2765 /* Enable no excessive collision drop. */
2766 data |= NO_EXC_COLLISION_DROP;
2767 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2768}
2769
2770enum {
2771 STP_STATE_DISABLED = 0,
2772 STP_STATE_LISTENING,
2773 STP_STATE_LEARNING,
2774 STP_STATE_FORWARDING,
2775 STP_STATE_BLOCKED,
2776 STP_STATE_SIMPLE
2777};
2778
2779/**
2780 * port_set_stp_state - configure port spanning tree state
2781 * @hw: The hardware instance.
2782 * @port: The port index.
2783 * @state: The spanning tree state.
2784 *
2785 * This routine configures the spanning tree state of the port.
2786 */
2787static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2788{
2789 u16 data;
2790
2791 port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2792 switch (state) {
2793 case STP_STATE_DISABLED:
2794 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2795 data |= PORT_LEARN_DISABLE;
2796 break;
2797 case STP_STATE_LISTENING:
2798/*
2799 * No need to turn on transmit because of port direct mode.
2800 * Turning on receive is required if static MAC table is not setup.
2801 */
2802 data &= ~PORT_TX_ENABLE;
2803 data |= PORT_RX_ENABLE;
2804 data |= PORT_LEARN_DISABLE;
2805 break;
2806 case STP_STATE_LEARNING:
2807 data &= ~PORT_TX_ENABLE;
2808 data |= PORT_RX_ENABLE;
2809 data &= ~PORT_LEARN_DISABLE;
2810 break;
2811 case STP_STATE_FORWARDING:
2812 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2813 data &= ~PORT_LEARN_DISABLE;
2814 break;
2815 case STP_STATE_BLOCKED:
2816/*
2817 * Need to setup static MAC table with override to keep receiving BPDU
2818 * messages. See sw_init_stp routine.
2819 */
2820 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2821 data |= PORT_LEARN_DISABLE;
2822 break;
2823 case STP_STATE_SIMPLE:
2824 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2825 data |= PORT_LEARN_DISABLE;
2826 break;
2827 }
2828 port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2829 hw->ksz_switch->port_cfg[port].stp_state = state;
2830}
2831
2832#define STP_ENTRY 0
2833#define BROADCAST_ENTRY 1
2834#define BRIDGE_ADDR_ENTRY 2
2835#define IPV6_ADDR_ENTRY 3
2836
2837/**
2838 * sw_clr_sta_mac_table - clear static MAC table
2839 * @hw: The hardware instance.
2840 *
2841 * This routine clears the static MAC table.
2842 */
2843static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2844{
2845 struct ksz_mac_table *entry;
2846 int i;
2847
2848 for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2849 entry = &hw->ksz_switch->mac_table[i];
2850 sw_w_sta_mac_table(hw, i,
2851 entry->mac_addr, entry->ports,
2852 entry->override, 0,
2853 entry->use_fid, entry->fid);
2854 }
2855}
2856
2857/**
2858 * sw_init_stp - initialize switch spanning tree support
2859 * @hw: The hardware instance.
2860 *
2861 * This routine initializes the spanning tree support of the switch.
2862 */
2863static void sw_init_stp(struct ksz_hw *hw)
2864{
2865 struct ksz_mac_table *entry;
2866
2867 entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2868 entry->mac_addr[0] = 0x01;
2869 entry->mac_addr[1] = 0x80;
2870 entry->mac_addr[2] = 0xC2;
2871 entry->mac_addr[3] = 0x00;
2872 entry->mac_addr[4] = 0x00;
2873 entry->mac_addr[5] = 0x00;
2874 entry->ports = HOST_MASK;
2875 entry->override = 1;
2876 entry->valid = 1;
2877 sw_w_sta_mac_table(hw, STP_ENTRY,
2878 entry->mac_addr, entry->ports,
2879 entry->override, entry->valid,
2880 entry->use_fid, entry->fid);
2881}
2882
2883/**
2884 * sw_block_addr - block certain packets from the host port
2885 * @hw: The hardware instance.
2886 *
2887 * This routine blocks certain packets from reaching to the host port.
2888 */
2889static void sw_block_addr(struct ksz_hw *hw)
2890{
2891 struct ksz_mac_table *entry;
2892 int i;
2893
2894 for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2895 entry = &hw->ksz_switch->mac_table[i];
2896 entry->valid = 0;
2897 sw_w_sta_mac_table(hw, i,
2898 entry->mac_addr, entry->ports,
2899 entry->override, entry->valid,
2900 entry->use_fid, entry->fid);
2901 }
2902}
2903
2904#define PHY_LINK_SUPPORT \
2905 (PHY_AUTO_NEG_ASYM_PAUSE | \
2906 PHY_AUTO_NEG_SYM_PAUSE | \
2907 PHY_AUTO_NEG_100BT4 | \
2908 PHY_AUTO_NEG_100BTX_FD | \
2909 PHY_AUTO_NEG_100BTX | \
2910 PHY_AUTO_NEG_10BT_FD | \
2911 PHY_AUTO_NEG_10BT)
2912
2913static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2914{
2915 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2916}
2917
2918static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2919{
2920 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2921}
2922
2923static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2924{
2925 *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2926}
2927
2928static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2929{
2930 *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2931}
2932
2933static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2934{
2935 writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2936}
2937
2938static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2939{
2940 *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2941}
2942
2943static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2944{
2945 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2946}
2947
2948static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2949{
2950 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2951}
2952
2953static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2954{
2955 *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2956}
2957
2958static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2959{
2960 writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2961}
2962
2963static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2964{
2965 *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2966}
2967
2968static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2969{
2970 writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2971}
2972
2973/**
2974 * hw_r_phy - read data from PHY register
2975 * @hw: The hardware instance.
2976 * @port: Port to read.
2977 * @reg: PHY register to read.
2978 * @val: Buffer to store the read data.
2979 *
2980 * This routine reads data from the PHY register.
2981 */
2982static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2983{
2984 int phy;
2985
2986 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2987 *val = readw(hw->io + phy);
2988}
2989
2990/**
2991 * port_w_phy - write data to PHY register
2992 * @hw: The hardware instance.
2993 * @port: Port to write.
2994 * @reg: PHY register to write.
2995 * @val: Word data to write.
2996 *
2997 * This routine writes data to the PHY register.
2998 */
2999static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
3000{
3001 int phy;
3002
3003 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
3004 writew(val, hw->io + phy);
3005}
3006
3007/*
3008 * EEPROM access functions
3009 */
3010
3011#define AT93C_CODE 0
3012#define AT93C_WR_OFF 0x00
3013#define AT93C_WR_ALL 0x10
3014#define AT93C_ER_ALL 0x20
3015#define AT93C_WR_ON 0x30
3016
3017#define AT93C_WRITE 1
3018#define AT93C_READ 2
3019#define AT93C_ERASE 3
3020
3021#define EEPROM_DELAY 4
3022
3023static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3024{
3025 u16 data;
3026
3027 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3028 data &= ~gpio;
3029 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3030}
3031
3032static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3033{
3034 u16 data;
3035
3036 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3037 data |= gpio;
3038 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3039}
3040
3041static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3042{
3043 u16 data;
3044
3045 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3046 return (u8)(data & gpio);
3047}
3048
3049static void eeprom_clk(struct ksz_hw *hw)
3050{
3051 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3052 udelay(EEPROM_DELAY);
3053 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3054 udelay(EEPROM_DELAY);
3055}
3056
3057static u16 spi_r(struct ksz_hw *hw)
3058{
3059 int i;
3060 u16 temp = 0;
3061
3062 for (i = 15; i >= 0; i--) {
3063 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3064 udelay(EEPROM_DELAY);
3065
3066 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3067
3068 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3069 udelay(EEPROM_DELAY);
3070 }
3071 return temp;
3072}
3073
3074static void spi_w(struct ksz_hw *hw, u16 data)
3075{
3076 int i;
3077
3078 for (i = 15; i >= 0; i--) {
3079 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3080 drop_gpio(hw, EEPROM_DATA_OUT);
3081 eeprom_clk(hw);
3082 }
3083}
3084
3085static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3086{
3087 int i;
3088
3089 /* Initial start bit */
3090 raise_gpio(hw, EEPROM_DATA_OUT);
3091 eeprom_clk(hw);
3092
3093 /* AT93C operation */
3094 for (i = 1; i >= 0; i--) {
3095 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3096 drop_gpio(hw, EEPROM_DATA_OUT);
3097 eeprom_clk(hw);
3098 }
3099
3100 /* Address location */
3101 for (i = 5; i >= 0; i--) {
3102 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3103 drop_gpio(hw, EEPROM_DATA_OUT);
3104 eeprom_clk(hw);
3105 }
3106}
3107
3108#define EEPROM_DATA_RESERVED 0
3109#define EEPROM_DATA_MAC_ADDR_0 1
3110#define EEPROM_DATA_MAC_ADDR_1 2
3111#define EEPROM_DATA_MAC_ADDR_2 3
3112#define EEPROM_DATA_SUBSYS_ID 4
3113#define EEPROM_DATA_SUBSYS_VEN_ID 5
3114#define EEPROM_DATA_PM_CAP 6
3115
3116/* User defined EEPROM data */
3117#define EEPROM_DATA_OTHER_MAC_ADDR 9
3118
3119/**
3120 * eeprom_read - read from AT93C46 EEPROM
3121 * @hw: The hardware instance.
3122 * @reg: The register offset.
3123 *
3124 * This function reads a word from the AT93C46 EEPROM.
3125 *
3126 * Return the data value.
3127 */
3128static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3129{
3130 u16 data;
3131
3132 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3133
3134 spi_reg(hw, AT93C_READ, reg);
3135 data = spi_r(hw);
3136
3137 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3138
3139 return data;
3140}
3141
3142/**
3143 * eeprom_write - write to AT93C46 EEPROM
3144 * @hw: The hardware instance.
3145 * @reg: The register offset.
3146 * @data: The data value.
3147 *
3148 * This procedure writes a word to the AT93C46 EEPROM.
3149 */
3150static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3151{
3152 int timeout;
3153
3154 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3155
3156 /* Enable write. */
3157 spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3158 drop_gpio(hw, EEPROM_CHIP_SELECT);
3159 udelay(1);
3160
3161 /* Erase the register. */
3162 raise_gpio(hw, EEPROM_CHIP_SELECT);
3163 spi_reg(hw, AT93C_ERASE, reg);
3164 drop_gpio(hw, EEPROM_CHIP_SELECT);
3165 udelay(1);
3166
3167 /* Check operation complete. */
3168 raise_gpio(hw, EEPROM_CHIP_SELECT);
3169 timeout = 8;
3170 mdelay(2);
3171 do {
3172 mdelay(1);
3173 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3174 drop_gpio(hw, EEPROM_CHIP_SELECT);
3175 udelay(1);
3176
3177 /* Write the register. */
3178 raise_gpio(hw, EEPROM_CHIP_SELECT);
3179 spi_reg(hw, AT93C_WRITE, reg);
3180 spi_w(hw, data);
3181 drop_gpio(hw, EEPROM_CHIP_SELECT);
3182 udelay(1);
3183
3184 /* Check operation complete. */
3185 raise_gpio(hw, EEPROM_CHIP_SELECT);
3186 timeout = 8;
3187 mdelay(2);
3188 do {
3189 mdelay(1);
3190 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3191 drop_gpio(hw, EEPROM_CHIP_SELECT);
3192 udelay(1);
3193
3194 /* Disable write. */
3195 raise_gpio(hw, EEPROM_CHIP_SELECT);
3196 spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3197
3198 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3199}
3200
3201/*
3202 * Link detection routines
3203 */
3204
3205static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3206{
3207 ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3208 switch (port->flow_ctrl) {
3209 case PHY_FLOW_CTRL:
3210 ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3211 break;
3212 /* Not supported. */
3213 case PHY_TX_ONLY:
3214 case PHY_RX_ONLY:
3215 default:
3216 break;
3217 }
3218 return ctrl;
3219}
3220
3221static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3222{
3223 u32 rx_cfg;
3224 u32 tx_cfg;
3225
3226 rx_cfg = hw->rx_cfg;
3227 tx_cfg = hw->tx_cfg;
3228 if (rx)
3229 hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3230 else
3231 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3232 if (tx)
3233 hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3234 else
3235 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3236 if (hw->enabled) {
3237 if (rx_cfg != hw->rx_cfg)
3238 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3239 if (tx_cfg != hw->tx_cfg)
3240 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3241 }
3242}
3243
3244static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3245 u16 local, u16 remote)
3246{
3247 int rx;
3248 int tx;
3249
3250 if (hw->overrides & PAUSE_FLOW_CTRL)
3251 return;
3252
3253 rx = tx = 0;
3254 if (port->force_link)
3255 rx = tx = 1;
3256 if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3257 if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3258 rx = tx = 1;
3259 } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3260 (local & PHY_AUTO_NEG_PAUSE) ==
3261 PHY_AUTO_NEG_ASYM_PAUSE) {
3262 tx = 1;
3263 }
3264 } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3265 if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3266 rx = 1;
3267 }
3268 if (!hw->ksz_switch)
3269 set_flow_ctrl(hw, rx, tx);
3270}
3271
3272static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3273 struct ksz_port_info *info, u16 link_status)
3274{
3275 if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3276 !(hw->overrides & PAUSE_FLOW_CTRL)) {
3277 u32 cfg = hw->tx_cfg;
3278
3279 /* Disable flow control in the half duplex mode. */
3280 if (1 == info->duplex)
3281 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3282 if (hw->enabled && cfg != hw->tx_cfg)
3283 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3284 }
3285}
3286
3287/**
3288 * port_get_link_speed - get current link status
3289 * @port: The port instance.
3290 *
3291 * This routine reads PHY registers to determine the current link status of the
3292 * switch ports.
3293 */
3294static void port_get_link_speed(struct ksz_port *port)
3295{
3296 uint interrupt;
3297 struct ksz_port_info *info;
3298 struct ksz_port_info *linked = NULL;
3299 struct ksz_hw *hw = port->hw;
3300 u16 data;
3301 u16 status;
3302 u8 local;
3303 u8 remote;
3304 int i;
3305 int p;
3306 int change = 0;
3307
3308 interrupt = hw_block_intr(hw);
3309
3310 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3311 info = &hw->port_info[p];
3312 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3313 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3314
3315 /*
3316 * Link status is changing all the time even when there is no
3317 * cable connection!
3318 */
3319 remote = status & (PORT_AUTO_NEG_COMPLETE |
3320 PORT_STATUS_LINK_GOOD);
3321 local = (u8) data;
3322
3323 /* No change to status. */
3324 if (local == info->advertised && remote == info->partner)
3325 continue;
3326
3327 info->advertised = local;
3328 info->partner = remote;
3329 if (status & PORT_STATUS_LINK_GOOD) {
3330
3331 /* Remember the first linked port. */
3332 if (!linked)
3333 linked = info;
3334
3335 info->tx_rate = 10 * TX_RATE_UNIT;
3336 if (status & PORT_STATUS_SPEED_100MBIT)
3337 info->tx_rate = 100 * TX_RATE_UNIT;
3338
3339 info->duplex = 1;
3340 if (status & PORT_STATUS_FULL_DUPLEX)
3341 info->duplex = 2;
3342
3343 if (media_connected != info->state) {
3344 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3345 &data);
3346 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3347 &status);
3348 determine_flow_ctrl(hw, port, data, status);
3349 if (hw->ksz_switch) {
3350 port_cfg_back_pressure(hw, p,
3351 (1 == info->duplex));
3352 }
3353 change |= 1 << i;
3354 port_cfg_change(hw, port, info, status);
3355 }
3356 info->state = media_connected;
3357 } else {
3358 if (media_disconnected != info->state) {
3359 change |= 1 << i;
3360
3361 /* Indicate the link just goes down. */
3362 hw->port_mib[p].link_down = 1;
3363 }
3364 info->state = media_disconnected;
3365 }
3366 hw->port_mib[p].state = (u8) info->state;
3367 }
3368
3369 if (linked && media_disconnected == port->linked->state)
3370 port->linked = linked;
3371
3372 hw_restore_intr(hw, interrupt);
3373}
3374
3375#define PHY_RESET_TIMEOUT 10
3376
3377/**
3378 * port_set_link_speed - set port speed
3379 * @port: The port instance.
3380 *
3381 * This routine sets the link speed of the switch ports.
3382 */
3383static void port_set_link_speed(struct ksz_port *port)
3384{
3385 struct ksz_port_info *info;
3386 struct ksz_hw *hw = port->hw;
3387 u16 data;
3388 u16 cfg;
3389 u8 status;
3390 int i;
3391 int p;
3392
3393 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3394 info = &hw->port_info[p];
3395
3396 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3397 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3398
3399 cfg = 0;
3400 if (status & PORT_STATUS_LINK_GOOD)
3401 cfg = data;
3402
3403 data |= PORT_AUTO_NEG_ENABLE;
3404 data = advertised_flow_ctrl(port, data);
3405
3406 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3407 PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3408
3409 /* Check if manual configuration is specified by the user. */
3410 if (port->speed || port->duplex) {
3411 if (10 == port->speed)
3412 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3413 PORT_AUTO_NEG_100BTX);
3414 else if (100 == port->speed)
3415 data &= ~(PORT_AUTO_NEG_10BT_FD |
3416 PORT_AUTO_NEG_10BT);
3417 if (1 == port->duplex)
3418 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3419 PORT_AUTO_NEG_10BT_FD);
3420 else if (2 == port->duplex)
3421 data &= ~(PORT_AUTO_NEG_100BTX |
3422 PORT_AUTO_NEG_10BT);
3423 }
3424 if (data != cfg) {
3425 data |= PORT_AUTO_NEG_RESTART;
3426 port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3427 }
3428 }
3429}
3430
3431/**
3432 * port_force_link_speed - force port speed
3433 * @port: The port instance.
3434 *
3435 * This routine forces the link speed of the switch ports.
3436 */
3437static void port_force_link_speed(struct ksz_port *port)
3438{
3439 struct ksz_hw *hw = port->hw;
3440 u16 data;
3441 int i;
3442 int phy;
3443 int p;
3444
3445 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3446 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3447 hw_r_phy_ctrl(hw, phy, &data);
3448
3449 data &= ~PHY_AUTO_NEG_ENABLE;
3450
3451 if (10 == port->speed)
3452 data &= ~PHY_SPEED_100MBIT;
3453 else if (100 == port->speed)
3454 data |= PHY_SPEED_100MBIT;
3455 if (1 == port->duplex)
3456 data &= ~PHY_FULL_DUPLEX;
3457 else if (2 == port->duplex)
3458 data |= PHY_FULL_DUPLEX;
3459 hw_w_phy_ctrl(hw, phy, data);
3460 }
3461}
3462
3463static void port_set_power_saving(struct ksz_port *port, int enable)
3464{
3465 struct ksz_hw *hw = port->hw;
3466 int i;
3467 int p;
3468
3469 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3470 port_cfg(hw, p,
3471 KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3472}
3473
3474/*
3475 * KSZ8841 power management functions
3476 */
3477
3478/**
3479 * hw_chk_wol_pme_status - check PMEN pin
3480 * @hw: The hardware instance.
3481 *
3482 * This function is used to check PMEN pin is asserted.
3483 *
3484 * Return 1 if PMEN pin is asserted; otherwise, 0.
3485 */
3486static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3487{
3488 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3489 struct pci_dev *pdev = hw_priv->pdev;
3490 u16 data;
3491
3492 if (!pdev->pm_cap)
3493 return 0;
3494 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3495 return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3496}
3497
3498/**
3499 * hw_clr_wol_pme_status - clear PMEN pin
3500 * @hw: The hardware instance.
3501 *
3502 * This routine is used to clear PME_Status to deassert PMEN pin.
3503 */
3504static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3505{
3506 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3507 struct pci_dev *pdev = hw_priv->pdev;
3508 u16 data;
3509
3510 if (!pdev->pm_cap)
3511 return;
3512
3513 /* Clear PME_Status to deassert PMEN pin. */
3514 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3515 data |= PCI_PM_CTRL_PME_STATUS;
3516 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3517}
3518
3519/**
3520 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3521 * @hw: The hardware instance.
3522 * @set: The flag indicating whether to enable or disable.
3523 *
3524 * This routine is used to enable or disable Wake-on-LAN.
3525 */
3526static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3527{
3528 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3529 struct pci_dev *pdev = hw_priv->pdev;
3530 u16 data;
3531
3532 if (!pdev->pm_cap)
3533 return;
3534 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3535 data &= ~PCI_PM_CTRL_STATE_MASK;
3536 if (set)
3537 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3538 else
3539 data &= ~PCI_PM_CTRL_PME_ENABLE;
3540 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3541}
3542
3543/**
3544 * hw_cfg_wol - configure Wake-on-LAN features
3545 * @hw: The hardware instance.
3546 * @frame: The pattern frame bit.
3547 * @set: The flag indicating whether to enable or disable.
3548 *
3549 * This routine is used to enable or disable certain Wake-on-LAN features.
3550 */
3551static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3552{
3553 u16 data;
3554
3555 data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3556 if (set)
3557 data |= frame;
3558 else
3559 data &= ~frame;
3560 writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3561}
3562
3563/**
3564 * hw_set_wol_frame - program Wake-on-LAN pattern
3565 * @hw: The hardware instance.
3566 * @i: The frame index.
3567 * @mask_size: The size of the mask.
3568 * @mask: Mask to ignore certain bytes in the pattern.
3569 * @frame_size: The size of the frame.
3570 * @pattern: The frame data.
3571 *
3572 * This routine is used to program Wake-on-LAN pattern.
3573 */
3574static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3575 u8 *mask, uint frame_size, u8 *pattern)
3576{
3577 int bits;
3578 int from;
3579 int len;
3580 int to;
3581 u32 crc;
3582 u8 data[64];
3583 u8 val = 0;
3584
3585 if (frame_size > mask_size * 8)
3586 frame_size = mask_size * 8;
3587 if (frame_size > 64)
3588 frame_size = 64;
3589
3590 i *= 0x10;
3591 writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3592 writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3593
3594 bits = len = from = to = 0;
3595 do {
3596 if (bits) {
3597 if ((val & 1))
3598 data[to++] = pattern[from];
3599 val >>= 1;
3600 ++from;
3601 --bits;
3602 } else {
3603 val = mask[len];
3604 writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3605 + len);
3606 ++len;
3607 if (val)
3608 bits = 8;
3609 else
3610 from += 8;
3611 }
3612 } while (from < (int) frame_size);
3613 if (val) {
3614 bits = mask[len - 1];
3615 val <<= (from % 8);
3616 bits &= ~val;
3617 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3618 1);
3619 }
3620 crc = ether_crc(to, data);
3621 writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3622}
3623
3624/**
3625 * hw_add_wol_arp - add ARP pattern
3626 * @hw: The hardware instance.
3627 * @ip_addr: The IPv4 address assigned to the device.
3628 *
3629 * This routine is used to add ARP pattern for waking up the host.
3630 */
3631static void hw_add_wol_arp(struct ksz_hw *hw, u8 *ip_addr)
3632{
3633 u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3634 u8 pattern[42] = {
3635 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3636 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3637 0x08, 0x06,
3638 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3639 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3640 0x00, 0x00, 0x00, 0x00,
3641 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3642 0x00, 0x00, 0x00, 0x00 };
3643
3644 memcpy(&pattern[38], ip_addr, 4);
3645 hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3646}
3647
3648/**
3649 * hw_add_wol_bcast - add broadcast pattern
3650 * @hw: The hardware instance.
3651 *
3652 * This routine is used to add broadcast pattern for waking up the host.
3653 */
3654static void hw_add_wol_bcast(struct ksz_hw *hw)
3655{
3656 u8 mask[] = { 0x3F };
3657 u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3658
3659 hw_set_wol_frame(hw, 2, 1, mask, MAC_ADDR_LEN, pattern);
3660}
3661
3662/**
3663 * hw_add_wol_mcast - add multicast pattern
3664 * @hw: The hardware instance.
3665 *
3666 * This routine is used to add multicast pattern for waking up the host.
3667 *
3668 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3669 * by IPv6 ping command. Note that multicast packets are filtred through the
3670 * multicast hash table, so not all multicast packets can wake up the host.
3671 */
3672static void hw_add_wol_mcast(struct ksz_hw *hw)
3673{
3674 u8 mask[] = { 0x3F };
3675 u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3676
3677 memcpy(&pattern[3], &hw->override_addr[3], 3);
3678 hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3679}
3680
3681/**
3682 * hw_add_wol_ucast - add unicast pattern
3683 * @hw: The hardware instance.
3684 *
3685 * This routine is used to add unicast pattern to wakeup the host.
3686 *
3687 * It is assumed the unicast packet is directed to the device, as the hardware
3688 * can only receive them in normal case.
3689 */
3690static void hw_add_wol_ucast(struct ksz_hw *hw)
3691{
3692 u8 mask[] = { 0x3F };
3693
3694 hw_set_wol_frame(hw, 0, 1, mask, MAC_ADDR_LEN, hw->override_addr);
3695}
3696
3697/**
3698 * hw_enable_wol - enable Wake-on-LAN
3699 * @hw: The hardware instance.
3700 * @wol_enable: The Wake-on-LAN settings.
3701 * @net_addr: The IPv4 address assigned to the device.
3702 *
3703 * This routine is used to enable Wake-on-LAN depending on driver settings.
3704 */
3705static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, u8 *net_addr)
3706{
3707 hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3708 hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3709 hw_add_wol_ucast(hw);
3710 hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3711 hw_add_wol_mcast(hw);
3712 hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3713 hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3714 hw_add_wol_arp(hw, net_addr);
3715}
3716
3717/**
3718 * hw_init - check driver is correct for the hardware
3719 * @hw: The hardware instance.
3720 *
3721 * This function checks the hardware is correct for this driver and sets the
3722 * hardware up for proper initialization.
3723 *
3724 * Return number of ports or 0 if not right.
3725 */
3726static int hw_init(struct ksz_hw *hw)
3727{
3728 int rc = 0;
3729 u16 data;
3730 u16 revision;
3731
3732 /* Set bus speed to 125MHz. */
3733 writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3734
3735 /* Check KSZ884x chip ID. */
3736 data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3737
3738 revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3739 data &= KS884X_CHIP_ID_MASK_41;
3740 if (REG_CHIP_ID_41 == data)
3741 rc = 1;
3742 else if (REG_CHIP_ID_42 == data)
3743 rc = 2;
3744 else
3745 return 0;
3746
3747 /* Setup hardware features or bug workarounds. */
3748 if (revision <= 1) {
3749 hw->features |= SMALL_PACKET_TX_BUG;
3750 if (1 == rc)
3751 hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3752 }
3753 hw->features |= IPV6_CSUM_GEN_HACK;
3754 return rc;
3755}
3756
3757/**
3758 * hw_reset - reset the hardware
3759 * @hw: The hardware instance.
3760 *
3761 * This routine resets the hardware.
3762 */
3763static void hw_reset(struct ksz_hw *hw)
3764{
3765 writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3766
3767 /* Wait for device to reset. */
3768 mdelay(10);
3769
3770 /* Write 0 to clear device reset. */
3771 writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3772}
3773
3774/**
3775 * hw_setup - setup the hardware
3776 * @hw: The hardware instance.
3777 *
3778 * This routine setup the hardware for proper operation.
3779 */
3780static void hw_setup(struct ksz_hw *hw)
3781{
3782#if SET_DEFAULT_LED
3783 u16 data;
3784
3785 /* Change default LED mode. */
3786 data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3787 data &= ~LED_MODE;
3788 data |= SET_DEFAULT_LED;
3789 writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3790#endif
3791
3792 /* Setup transmit control. */
3793 hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3794 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3795
3796 /* Setup receive control. */
3797 hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3798 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3799 hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3800
3801 /* Hardware cannot handle UDP packet in IP fragments. */
3802 hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3803
3804 if (hw->all_multi)
3805 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3806 if (hw->promiscuous)
3807 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3808}
3809
3810/**
3811 * hw_setup_intr - setup interrupt mask
3812 * @hw: The hardware instance.
3813 *
3814 * This routine setup the interrupt mask for proper operation.
3815 */
3816static void hw_setup_intr(struct ksz_hw *hw)
3817{
3818 hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3819}
3820
3821static void ksz_check_desc_num(struct ksz_desc_info *info)
3822{
3823#define MIN_DESC_SHIFT 2
3824
3825 int alloc = info->alloc;
3826 int shift;
3827
3828 shift = 0;
3829 while (!(alloc & 1)) {
3830 shift++;
3831 alloc >>= 1;
3832 }
3833 if (alloc != 1 || shift < MIN_DESC_SHIFT) {
0dc7d2b3 3834 pr_alert("Hardware descriptor numbers not right!\n");
8ca86fd8
TH
3835 while (alloc) {
3836 shift++;
3837 alloc >>= 1;
3838 }
3839 if (shift < MIN_DESC_SHIFT)
3840 shift = MIN_DESC_SHIFT;
3841 alloc = 1 << shift;
3842 info->alloc = alloc;
3843 }
3844 info->mask = info->alloc - 1;
3845}
3846
3847static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3848{
3849 int i;
3850 u32 phys = desc_info->ring_phys;
3851 struct ksz_hw_desc *desc = desc_info->ring_virt;
3852 struct ksz_desc *cur = desc_info->ring;
3853 struct ksz_desc *previous = NULL;
3854
3855 for (i = 0; i < desc_info->alloc; i++) {
3856 cur->phw = desc++;
3857 phys += desc_info->size;
3858 previous = cur++;
3859 previous->phw->next = cpu_to_le32(phys);
3860 }
3861 previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3862 previous->sw.buf.rx.end_of_ring = 1;
3863 previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3864
3865 desc_info->avail = desc_info->alloc;
3866 desc_info->last = desc_info->next = 0;
3867
3868 desc_info->cur = desc_info->ring;
3869}
3870
3871/**
3872 * hw_set_desc_base - set descriptor base addresses
3873 * @hw: The hardware instance.
3874 * @tx_addr: The transmit descriptor base.
3875 * @rx_addr: The receive descriptor base.
3876 *
3877 * This routine programs the descriptor base addresses after reset.
3878 */
3879static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3880{
3881 /* Set base address of Tx/Rx descriptors. */
3882 writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3883 writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3884}
3885
3886static void hw_reset_pkts(struct ksz_desc_info *info)
3887{
3888 info->cur = info->ring;
3889 info->avail = info->alloc;
3890 info->last = info->next = 0;
3891}
3892
3893static inline void hw_resume_rx(struct ksz_hw *hw)
3894{
3895 writel(DMA_START, hw->io + KS_DMA_RX_START);
3896}
3897
3898/**
3899 * hw_start_rx - start receiving
3900 * @hw: The hardware instance.
3901 *
3902 * This routine starts the receive function of the hardware.
3903 */
3904static void hw_start_rx(struct ksz_hw *hw)
3905{
3906 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3907
3908 /* Notify when the receive stops. */
3909 hw->intr_mask |= KS884X_INT_RX_STOPPED;
3910
3911 writel(DMA_START, hw->io + KS_DMA_RX_START);
3912 hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3913 hw->rx_stop++;
3914
3915 /* Variable overflows. */
3916 if (0 == hw->rx_stop)
3917 hw->rx_stop = 2;
3918}
3919
3920/*
3921 * hw_stop_rx - stop receiving
3922 * @hw: The hardware instance.
3923 *
3924 * This routine stops the receive function of the hardware.
3925 */
3926static void hw_stop_rx(struct ksz_hw *hw)
3927{
3928 hw->rx_stop = 0;
3929 hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3930 writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3931}
3932
3933/**
3934 * hw_start_tx - start transmitting
3935 * @hw: The hardware instance.
3936 *
3937 * This routine starts the transmit function of the hardware.
3938 */
3939static void hw_start_tx(struct ksz_hw *hw)
3940{
3941 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3942}
3943
3944/**
3945 * hw_stop_tx - stop transmitting
3946 * @hw: The hardware instance.
3947 *
3948 * This routine stops the transmit function of the hardware.
3949 */
3950static void hw_stop_tx(struct ksz_hw *hw)
3951{
3952 writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3953}
3954
3955/**
3956 * hw_disable - disable hardware
3957 * @hw: The hardware instance.
3958 *
3959 * This routine disables the hardware.
3960 */
3961static void hw_disable(struct ksz_hw *hw)
3962{
3963 hw_stop_rx(hw);
3964 hw_stop_tx(hw);
3965 hw->enabled = 0;
3966}
3967
3968/**
3969 * hw_enable - enable hardware
3970 * @hw: The hardware instance.
3971 *
3972 * This routine enables the hardware.
3973 */
3974static void hw_enable(struct ksz_hw *hw)
3975{
3976 hw_start_tx(hw);
3977 hw_start_rx(hw);
3978 hw->enabled = 1;
3979}
3980
3981/**
3982 * hw_alloc_pkt - allocate enough descriptors for transmission
3983 * @hw: The hardware instance.
3984 * @length: The length of the packet.
3985 * @physical: Number of descriptors required.
3986 *
3987 * This function allocates descriptors for transmission.
3988 *
3989 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3990 */
3991static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3992{
3993 /* Always leave one descriptor free. */
3994 if (hw->tx_desc_info.avail <= 1)
3995 return 0;
3996
3997 /* Allocate a descriptor for transmission and mark it current. */
3998 get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3999 hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
4000
4001 /* Keep track of number of transmit descriptors used so far. */
4002 ++hw->tx_int_cnt;
4003 hw->tx_size += length;
4004
4005 /* Cannot hold on too much data. */
4006 if (hw->tx_size >= MAX_TX_HELD_SIZE)
4007 hw->tx_int_cnt = hw->tx_int_mask + 1;
4008
4009 if (physical > hw->tx_desc_info.avail)
4010 return 1;
4011
4012 return hw->tx_desc_info.avail;
4013}
4014
4015/**
4016 * hw_send_pkt - mark packet for transmission
4017 * @hw: The hardware instance.
4018 *
4019 * This routine marks the packet for transmission in PCI version.
4020 */
4021static void hw_send_pkt(struct ksz_hw *hw)
4022{
4023 struct ksz_desc *cur = hw->tx_desc_info.cur;
4024
4025 cur->sw.buf.tx.last_seg = 1;
4026
4027 /* Interrupt only after specified number of descriptors used. */
4028 if (hw->tx_int_cnt > hw->tx_int_mask) {
4029 cur->sw.buf.tx.intr = 1;
4030 hw->tx_int_cnt = 0;
4031 hw->tx_size = 0;
4032 }
4033
4034 /* KSZ8842 supports port directed transmission. */
4035 cur->sw.buf.tx.dest_port = hw->dst_ports;
4036
4037 release_desc(cur);
4038
4039 writel(0, hw->io + KS_DMA_TX_START);
4040}
4041
4042static int empty_addr(u8 *addr)
4043{
4044 u32 *addr1 = (u32 *) addr;
4045 u16 *addr2 = (u16 *) &addr[4];
4046
4047 return 0 == *addr1 && 0 == *addr2;
4048}
4049
4050/**
4051 * hw_set_addr - set MAC address
4052 * @hw: The hardware instance.
4053 *
4054 * This routine programs the MAC address of the hardware when the address is
4055 * overrided.
4056 */
4057static void hw_set_addr(struct ksz_hw *hw)
4058{
4059 int i;
4060
4061 for (i = 0; i < MAC_ADDR_LEN; i++)
4062 writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4063 hw->io + KS884X_ADDR_0_OFFSET + i);
4064
4065 sw_set_addr(hw, hw->override_addr);
4066}
4067
4068/**
4069 * hw_read_addr - read MAC address
4070 * @hw: The hardware instance.
4071 *
4072 * This routine retrieves the MAC address of the hardware.
4073 */
4074static void hw_read_addr(struct ksz_hw *hw)
4075{
4076 int i;
4077
4078 for (i = 0; i < MAC_ADDR_LEN; i++)
4079 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4080 KS884X_ADDR_0_OFFSET + i);
4081
4082 if (!hw->mac_override) {
4083 memcpy(hw->override_addr, hw->perm_addr, MAC_ADDR_LEN);
4084 if (empty_addr(hw->override_addr)) {
4085 memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS,
4086 MAC_ADDR_LEN);
4087 memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4088 MAC_ADDR_LEN);
4089 hw->override_addr[5] += hw->id;
4090 hw_set_addr(hw);
4091 }
4092 }
4093}
4094
4095static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4096{
4097 int i;
4098 u32 mac_addr_lo;
4099 u32 mac_addr_hi;
4100
4101 mac_addr_hi = 0;
4102 for (i = 0; i < 2; i++) {
4103 mac_addr_hi <<= 8;
4104 mac_addr_hi |= mac_addr[i];
4105 }
4106 mac_addr_hi |= ADD_ADDR_ENABLE;
4107 mac_addr_lo = 0;
4108 for (i = 2; i < 6; i++) {
4109 mac_addr_lo <<= 8;
4110 mac_addr_lo |= mac_addr[i];
4111 }
4112 index *= ADD_ADDR_INCR;
4113
4114 writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4115 writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4116}
4117
4118static void hw_set_add_addr(struct ksz_hw *hw)
4119{
4120 int i;
4121
4122 for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4123 if (empty_addr(hw->address[i]))
4124 writel(0, hw->io + ADD_ADDR_INCR * i +
4125 KS_ADD_ADDR_0_HI);
4126 else
4127 hw_ena_add_addr(hw, i, hw->address[i]);
4128 }
4129}
4130
4131static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4132{
4133 int i;
4134 int j = ADDITIONAL_ENTRIES;
4135
4136 if (!memcmp(hw->override_addr, mac_addr, MAC_ADDR_LEN))
4137 return 0;
4138 for (i = 0; i < hw->addr_list_size; i++) {
4139 if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN))
4140 return 0;
4141 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4142 j = i;
4143 }
4144 if (j < ADDITIONAL_ENTRIES) {
4145 memcpy(hw->address[j], mac_addr, MAC_ADDR_LEN);
4146 hw_ena_add_addr(hw, j, hw->address[j]);
4147 return 0;
4148 }
4149 return -1;
4150}
4151
4152static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4153{
4154 int i;
4155
4156 for (i = 0; i < hw->addr_list_size; i++) {
4157 if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN)) {
4158 memset(hw->address[i], 0, MAC_ADDR_LEN);
4159 writel(0, hw->io + ADD_ADDR_INCR * i +
4160 KS_ADD_ADDR_0_HI);
4161 return 0;
4162 }
4163 }
4164 return -1;
4165}
4166
4167/**
4168 * hw_clr_multicast - clear multicast addresses
4169 * @hw: The hardware instance.
4170 *
4171 * This routine removes all multicast addresses set in the hardware.
4172 */
4173static void hw_clr_multicast(struct ksz_hw *hw)
4174{
4175 int i;
4176
4177 for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4178 hw->multi_bits[i] = 0;
4179
4180 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4181 }
4182}
4183
4184/**
4185 * hw_set_grp_addr - set multicast addresses
4186 * @hw: The hardware instance.
4187 *
4188 * This routine programs multicast addresses for the hardware to accept those
4189 * addresses.
4190 */
4191static void hw_set_grp_addr(struct ksz_hw *hw)
4192{
4193 int i;
4194 int index;
4195 int position;
4196 int value;
4197
4198 memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4199
4200 for (i = 0; i < hw->multi_list_size; i++) {
4201 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4202 index = position >> 3;
4203 value = 1 << (position & 7);
4204 hw->multi_bits[index] |= (u8) value;
4205 }
4206
4207 for (i = 0; i < HW_MULTICAST_SIZE; i++)
4208 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4209 i);
4210}
4211
4212/**
4213 * hw_set_multicast - enable or disable all multicast receiving
4214 * @hw: The hardware instance.
4215 * @multicast: To turn on or off the all multicast feature.
4216 *
4217 * This routine enables/disables the hardware to accept all multicast packets.
4218 */
4219static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4220{
4221 /* Stop receiving for reconfiguration. */
4222 hw_stop_rx(hw);
4223
4224 if (multicast)
4225 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4226 else
4227 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4228
4229 if (hw->enabled)
4230 hw_start_rx(hw);
4231}
4232
4233/**
4234 * hw_set_promiscuous - enable or disable promiscuous receiving
4235 * @hw: The hardware instance.
4236 * @prom: To turn on or off the promiscuous feature.
4237 *
4238 * This routine enables/disables the hardware to accept all packets.
4239 */
4240static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4241{
4242 /* Stop receiving for reconfiguration. */
4243 hw_stop_rx(hw);
4244
4245 if (prom)
4246 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4247 else
4248 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4249
4250 if (hw->enabled)
4251 hw_start_rx(hw);
4252}
4253
4254/**
4255 * sw_enable - enable the switch
4256 * @hw: The hardware instance.
4257 * @enable: The flag to enable or disable the switch
4258 *
4259 * This routine is used to enable/disable the switch in KSZ8842.
4260 */
4261static void sw_enable(struct ksz_hw *hw, int enable)
4262{
4263 int port;
4264
4265 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4266 if (hw->dev_count > 1) {
4267 /* Set port-base vlan membership with host port. */
4268 sw_cfg_port_base_vlan(hw, port,
4269 HOST_MASK | (1 << port));
4270 port_set_stp_state(hw, port, STP_STATE_DISABLED);
4271 } else {
4272 sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4273 port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4274 }
4275 }
4276 if (hw->dev_count > 1)
4277 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4278 else
4279 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4280
4281 if (enable)
4282 enable = KS8842_START;
4283 writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4284}
4285
4286/**
4287 * sw_setup - setup the switch
4288 * @hw: The hardware instance.
4289 *
4290 * This routine setup the hardware switch engine for default operation.
4291 */
4292static void sw_setup(struct ksz_hw *hw)
4293{
4294 int port;
4295
4296 sw_set_global_ctrl(hw);
4297
4298 /* Enable switch broadcast storm protection at 10% percent rate. */
4299 sw_init_broad_storm(hw);
4300 hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4301 for (port = 0; port < SWITCH_PORT_NUM; port++)
4302 sw_ena_broad_storm(hw, port);
4303
4304 sw_init_prio(hw);
4305
4306 sw_init_mirror(hw);
4307
4308 sw_init_prio_rate(hw);
4309
4310 sw_init_vlan(hw);
4311
4312 if (hw->features & STP_SUPPORT)
4313 sw_init_stp(hw);
4314 if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4315 SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4316 hw->overrides |= PAUSE_FLOW_CTRL;
4317 sw_enable(hw, 1);
4318}
4319
4320/**
4321 * ksz_start_timer - start kernel timer
4322 * @info: Kernel timer information.
4323 * @time: The time tick.
4324 *
4325 * This routine starts the kernel timer after the specified time tick.
4326 */
4327static void ksz_start_timer(struct ksz_timer_info *info, int time)
4328{
4329 info->cnt = 0;
4330 info->timer.expires = jiffies + time;
4331 add_timer(&info->timer);
4332
4333 /* infinity */
4334 info->max = -1;
4335}
4336
4337/**
4338 * ksz_stop_timer - stop kernel timer
4339 * @info: Kernel timer information.
4340 *
4341 * This routine stops the kernel timer.
4342 */
4343static void ksz_stop_timer(struct ksz_timer_info *info)
4344{
4345 if (info->max) {
4346 info->max = 0;
4347 del_timer_sync(&info->timer);
4348 }
4349}
4350
4351static void ksz_init_timer(struct ksz_timer_info *info, int period,
4352 void (*function)(unsigned long), void *data)
4353{
4354 info->max = 0;
4355 info->period = period;
4356 init_timer(&info->timer);
4357 info->timer.function = function;
4358 info->timer.data = (unsigned long) data;
4359}
4360
4361static void ksz_update_timer(struct ksz_timer_info *info)
4362{
4363 ++info->cnt;
4364 if (info->max > 0) {
4365 if (info->cnt < info->max) {
4366 info->timer.expires = jiffies + info->period;
4367 add_timer(&info->timer);
4368 } else
4369 info->max = 0;
4370 } else if (info->max < 0) {
4371 info->timer.expires = jiffies + info->period;
4372 add_timer(&info->timer);
4373 }
4374}
4375
4376/**
4377 * ksz_alloc_soft_desc - allocate software descriptors
4378 * @desc_info: Descriptor information structure.
4379 * @transmit: Indication that descriptors are for transmit.
4380 *
4381 * This local function allocates software descriptors for manipulation in
4382 * memory.
4383 *
4384 * Return 0 if successful.
4385 */
4386static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4387{
4388 desc_info->ring = kmalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4389 GFP_KERNEL);
4390 if (!desc_info->ring)
4391 return 1;
4392 memset((void *) desc_info->ring, 0,
4393 sizeof(struct ksz_desc) * desc_info->alloc);
4394 hw_init_desc(desc_info, transmit);
4395 return 0;
4396}
4397
4398/**
4399 * ksz_alloc_desc - allocate hardware descriptors
4400 * @adapter: Adapter information structure.
4401 *
4402 * This local function allocates hardware descriptors for receiving and
4403 * transmitting.
4404 *
4405 * Return 0 if successful.
4406 */
4407static int ksz_alloc_desc(struct dev_info *adapter)
4408{
4409 struct ksz_hw *hw = &adapter->hw;
4410 int offset;
4411
4412 /* Allocate memory for RX & TX descriptors. */
4413 adapter->desc_pool.alloc_size =
4414 hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4415 hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4416 DESC_ALIGNMENT;
4417
4418 adapter->desc_pool.alloc_virt =
4419 pci_alloc_consistent(
4420 adapter->pdev, adapter->desc_pool.alloc_size,
4421 &adapter->desc_pool.dma_addr);
4422 if (adapter->desc_pool.alloc_virt == NULL) {
4423 adapter->desc_pool.alloc_size = 0;
4424 return 1;
4425 }
4426 memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size);
4427
4428 /* Align to the next cache line boundary. */
4429 offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4430 (DESC_ALIGNMENT -
4431 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4432 adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4433 adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4434
4435 /* Allocate receive/transmit descriptors. */
4436 hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4437 adapter->desc_pool.virt;
4438 hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4439 offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4440 hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4441 (adapter->desc_pool.virt + offset);
4442 hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4443
4444 if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4445 return 1;
4446 if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4447 return 1;
4448
4449 return 0;
4450}
4451
4452/**
4453 * free_dma_buf - release DMA buffer resources
4454 * @adapter: Adapter information structure.
4455 *
4456 * This routine is just a helper function to release the DMA buffer resources.
4457 */
4458static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4459 int direction)
4460{
4461 pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4462 dev_kfree_skb(dma_buf->skb);
4463 dma_buf->skb = NULL;
4464 dma_buf->dma = 0;
4465}
4466
4467/**
4468 * ksz_init_rx_buffers - initialize receive descriptors
4469 * @adapter: Adapter information structure.
4470 *
4471 * This routine initializes DMA buffers for receiving.
4472 */
4473static void ksz_init_rx_buffers(struct dev_info *adapter)
4474{
4475 int i;
4476 struct ksz_desc *desc;
4477 struct ksz_dma_buf *dma_buf;
4478 struct ksz_hw *hw = &adapter->hw;
4479 struct ksz_desc_info *info = &hw->rx_desc_info;
4480
4481 for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4482 get_rx_pkt(info, &desc);
4483
4484 dma_buf = DMA_BUFFER(desc);
4485 if (dma_buf->skb && dma_buf->len != adapter->mtu)
4486 free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4487 dma_buf->len = adapter->mtu;
4488 if (!dma_buf->skb)
4489 dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4490 if (dma_buf->skb && !dma_buf->dma) {
4491 dma_buf->skb->dev = adapter->dev;
4492 dma_buf->dma = pci_map_single(
4493 adapter->pdev,
4494 skb_tail_pointer(dma_buf->skb),
4495 dma_buf->len,
4496 PCI_DMA_FROMDEVICE);
4497 }
4498
4499 /* Set descriptor. */
4500 set_rx_buf(desc, dma_buf->dma);
4501 set_rx_len(desc, dma_buf->len);
4502 release_desc(desc);
4503 }
4504}
4505
4506/**
4507 * ksz_alloc_mem - allocate memory for hardware descriptors
4508 * @adapter: Adapter information structure.
4509 *
4510 * This function allocates memory for use by hardware descriptors for receiving
4511 * and transmitting.
4512 *
4513 * Return 0 if successful.
4514 */
4515static int ksz_alloc_mem(struct dev_info *adapter)
4516{
4517 struct ksz_hw *hw = &adapter->hw;
4518
4519 /* Determine the number of receive and transmit descriptors. */
4520 hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4521 hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4522
4523 /* Determine how many descriptors to skip transmit interrupt. */
4524 hw->tx_int_cnt = 0;
4525 hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4526 if (hw->tx_int_mask > 8)
4527 hw->tx_int_mask = 8;
4528 while (hw->tx_int_mask) {
4529 hw->tx_int_cnt++;
4530 hw->tx_int_mask >>= 1;
4531 }
4532 if (hw->tx_int_cnt) {
4533 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4534 hw->tx_int_cnt = 0;
4535 }
4536
4537 /* Determine the descriptor size. */
4538 hw->rx_desc_info.size =
4539 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4540 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4541 hw->tx_desc_info.size =
4542 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4543 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4544 if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
0dc7d2b3 4545 pr_alert("Hardware descriptor size not right!\n");
8ca86fd8
TH
4546 ksz_check_desc_num(&hw->rx_desc_info);
4547 ksz_check_desc_num(&hw->tx_desc_info);
4548
4549 /* Allocate descriptors. */
4550 if (ksz_alloc_desc(adapter))
4551 return 1;
4552
4553 return 0;
4554}
4555
4556/**
4557 * ksz_free_desc - free software and hardware descriptors
4558 * @adapter: Adapter information structure.
4559 *
4560 * This local routine frees the software and hardware descriptors allocated by
4561 * ksz_alloc_desc().
4562 */
4563static void ksz_free_desc(struct dev_info *adapter)
4564{
4565 struct ksz_hw *hw = &adapter->hw;
4566
4567 /* Reset descriptor. */
4568 hw->rx_desc_info.ring_virt = NULL;
4569 hw->tx_desc_info.ring_virt = NULL;
4570 hw->rx_desc_info.ring_phys = 0;
4571 hw->tx_desc_info.ring_phys = 0;
4572
4573 /* Free memory. */
4574 if (adapter->desc_pool.alloc_virt)
4575 pci_free_consistent(
4576 adapter->pdev,
4577 adapter->desc_pool.alloc_size,
4578 adapter->desc_pool.alloc_virt,
4579 adapter->desc_pool.dma_addr);
4580
4581 /* Reset resource pool. */
4582 adapter->desc_pool.alloc_size = 0;
4583 adapter->desc_pool.alloc_virt = NULL;
4584
4585 kfree(hw->rx_desc_info.ring);
4586 hw->rx_desc_info.ring = NULL;
4587 kfree(hw->tx_desc_info.ring);
4588 hw->tx_desc_info.ring = NULL;
4589}
4590
4591/**
4592 * ksz_free_buffers - free buffers used in the descriptors
4593 * @adapter: Adapter information structure.
4594 * @desc_info: Descriptor information structure.
4595 *
4596 * This local routine frees buffers used in the DMA buffers.
4597 */
4598static void ksz_free_buffers(struct dev_info *adapter,
4599 struct ksz_desc_info *desc_info, int direction)
4600{
4601 int i;
4602 struct ksz_dma_buf *dma_buf;
4603 struct ksz_desc *desc = desc_info->ring;
4604
4605 for (i = 0; i < desc_info->alloc; i++) {
4606 dma_buf = DMA_BUFFER(desc);
4607 if (dma_buf->skb)
4608 free_dma_buf(adapter, dma_buf, direction);
4609 desc++;
4610 }
4611}
4612
4613/**
4614 * ksz_free_mem - free all resources used by descriptors
4615 * @adapter: Adapter information structure.
4616 *
4617 * This local routine frees all the resources allocated by ksz_alloc_mem().
4618 */
4619static void ksz_free_mem(struct dev_info *adapter)
4620{
4621 /* Free transmit buffers. */
4622 ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4623 PCI_DMA_TODEVICE);
4624
4625 /* Free receive buffers. */
4626 ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4627 PCI_DMA_FROMDEVICE);
4628
4629 /* Free descriptors. */
4630 ksz_free_desc(adapter);
4631}
4632
4633static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4634 u64 *counter)
4635{
4636 int i;
4637 int mib;
4638 int port;
4639 struct ksz_port_mib *port_mib;
4640
4641 memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4642 for (i = 0, port = first; i < cnt; i++, port++) {
4643 port_mib = &hw->port_mib[port];
4644 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4645 counter[mib] += port_mib->counter[mib];
4646 }
4647}
4648
4649/**
4650 * send_packet - send packet
4651 * @skb: Socket buffer.
4652 * @dev: Network device.
4653 *
4654 * This routine is used to send a packet out to the network.
4655 */
4656static void send_packet(struct sk_buff *skb, struct net_device *dev)
4657{
4658 struct ksz_desc *desc;
4659 struct ksz_desc *first;
4660 struct dev_priv *priv = netdev_priv(dev);
4661 struct dev_info *hw_priv = priv->adapter;
4662 struct ksz_hw *hw = &hw_priv->hw;
4663 struct ksz_desc_info *info = &hw->tx_desc_info;
4664 struct ksz_dma_buf *dma_buf;
4665 int len;
4666 int last_frag = skb_shinfo(skb)->nr_frags;
4667
4668 /*
4669 * KSZ8842 with multiple device interfaces needs to be told which port
4670 * to send.
4671 */
4672 if (hw->dev_count > 1)
4673 hw->dst_ports = 1 << priv->port.first_port;
4674
4675 /* Hardware will pad the length to 60. */
4676 len = skb->len;
4677
4678 /* Remember the very first descriptor. */
4679 first = info->cur;
4680 desc = first;
4681
4682 dma_buf = DMA_BUFFER(desc);
4683 if (last_frag) {
4684 int frag;
4685 skb_frag_t *this_frag;
4686
4687 dma_buf->len = skb->len - skb->data_len;
4688
4689 dma_buf->dma = pci_map_single(
4690 hw_priv->pdev, skb->data, dma_buf->len,
4691 PCI_DMA_TODEVICE);
4692 set_tx_buf(desc, dma_buf->dma);
4693 set_tx_len(desc, dma_buf->len);
4694
4695 frag = 0;
4696 do {
4697 this_frag = &skb_shinfo(skb)->frags[frag];
4698
4699 /* Get a new descriptor. */
4700 get_tx_pkt(info, &desc);
4701
4702 /* Keep track of descriptors used so far. */
4703 ++hw->tx_int_cnt;
4704
4705 dma_buf = DMA_BUFFER(desc);
4706 dma_buf->len = this_frag->size;
4707
4708 dma_buf->dma = pci_map_single(
4709 hw_priv->pdev,
4710 page_address(this_frag->page) +
4711 this_frag->page_offset,
4712 dma_buf->len,
4713 PCI_DMA_TODEVICE);
4714 set_tx_buf(desc, dma_buf->dma);
4715 set_tx_len(desc, dma_buf->len);
4716
4717 frag++;
4718 if (frag == last_frag)
4719 break;
4720
4721 /* Do not release the last descriptor here. */
4722 release_desc(desc);
4723 } while (1);
4724
4725 /* current points to the last descriptor. */
4726 info->cur = desc;
4727
4728 /* Release the first descriptor. */
4729 release_desc(first);
4730 } else {
4731 dma_buf->len = len;
4732
4733 dma_buf->dma = pci_map_single(
4734 hw_priv->pdev, skb->data, dma_buf->len,
4735 PCI_DMA_TODEVICE);
4736 set_tx_buf(desc, dma_buf->dma);
4737 set_tx_len(desc, dma_buf->len);
4738 }
4739
4740 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4741 (desc)->sw.buf.tx.csum_gen_tcp = 1;
4742 (desc)->sw.buf.tx.csum_gen_udp = 1;
4743 }
4744
4745 /*
4746 * The last descriptor holds the packet so that it can be returned to
4747 * network subsystem after all descriptors are transmitted.
4748 */
4749 dma_buf->skb = skb;
4750
4751 hw_send_pkt(hw);
4752
4753 /* Update transmit statistics. */
4754 priv->stats.tx_packets++;
4755 priv->stats.tx_bytes += len;
4756}
4757
4758/**
4759 * transmit_cleanup - clean up transmit descriptors
4760 * @dev: Network device.
4761 *
4762 * This routine is called to clean up the transmitted buffers.
4763 */
4764static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4765{
4766 int last;
4767 union desc_stat status;
4768 struct ksz_hw *hw = &hw_priv->hw;
4769 struct ksz_desc_info *info = &hw->tx_desc_info;
4770 struct ksz_desc *desc;
4771 struct ksz_dma_buf *dma_buf;
4772 struct net_device *dev = NULL;
4773
4774 spin_lock(&hw_priv->hwlock);
4775 last = info->last;
4776
4777 while (info->avail < info->alloc) {
4778 /* Get next descriptor which is not hardware owned. */
4779 desc = &info->ring[last];
4780 status.data = le32_to_cpu(desc->phw->ctrl.data);
4781 if (status.tx.hw_owned) {
4782 if (normal)
4783 break;
4784 else
4785 reset_desc(desc, status);
4786 }
4787
4788 dma_buf = DMA_BUFFER(desc);
4789 pci_unmap_single(
4790 hw_priv->pdev, dma_buf->dma, dma_buf->len,
4791 PCI_DMA_TODEVICE);
4792
4793 /* This descriptor contains the last buffer in the packet. */
4794 if (dma_buf->skb) {
4795 dev = dma_buf->skb->dev;
4796
4797 /* Release the packet back to network subsystem. */
4798 dev_kfree_skb_irq(dma_buf->skb);
4799 dma_buf->skb = NULL;
4800 }
4801
4802 /* Free the transmitted descriptor. */
4803 last++;
4804 last &= info->mask;
4805 info->avail++;
4806 }
4807 info->last = last;
4808 spin_unlock(&hw_priv->hwlock);
4809
4810 /* Notify the network subsystem that the packet has been sent. */
4811 if (dev)
4812 dev->trans_start = jiffies;
4813}
4814
4815/**
4816 * transmit_done - transmit done processing
4817 * @dev: Network device.
4818 *
4819 * This routine is called when the transmit interrupt is triggered, indicating
4820 * either a packet is sent successfully or there are transmit errors.
4821 */
4822static void tx_done(struct dev_info *hw_priv)
4823{
4824 struct ksz_hw *hw = &hw_priv->hw;
4825 int port;
4826
4827 transmit_cleanup(hw_priv, 1);
4828
4829 for (port = 0; port < hw->dev_count; port++) {
4830 struct net_device *dev = hw->port_info[port].pdev;
4831
4832 if (netif_running(dev) && netif_queue_stopped(dev))
4833 netif_wake_queue(dev);
4834 }
4835}
4836
4837static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4838{
4839 skb->dev = old->dev;
4840 skb->protocol = old->protocol;
4841 skb->ip_summed = old->ip_summed;
4842 skb->csum = old->csum;
4843 skb_set_network_header(skb, ETH_HLEN);
4844
4845 dev_kfree_skb(old);
4846}
4847
4848/**
4849 * netdev_tx - send out packet
4850 * @skb: Socket buffer.
4851 * @dev: Network device.
4852 *
4853 * This function is used by the upper network layer to send out a packet.
4854 *
4855 * Return 0 if successful; otherwise an error code indicating failure.
4856 */
4857static int netdev_tx(struct sk_buff *skb, struct net_device *dev)
4858{
4859 struct dev_priv *priv = netdev_priv(dev);
4860 struct dev_info *hw_priv = priv->adapter;
4861 struct ksz_hw *hw = &hw_priv->hw;
4862 int left;
4863 int num = 1;
4864 int rc = 0;
4865
4866 if (hw->features & SMALL_PACKET_TX_BUG) {
4867 struct sk_buff *org_skb = skb;
4868
4869 if (skb->len <= 48) {
4870 if (skb_end_pointer(skb) - skb->data >= 50) {
4871 memset(&skb->data[skb->len], 0, 50 - skb->len);
4872 skb->len = 50;
4873 } else {
4874 skb = dev_alloc_skb(50);
4875 if (!skb)
4876 return NETDEV_TX_BUSY;
4877 memcpy(skb->data, org_skb->data, org_skb->len);
4878 memset(&skb->data[org_skb->len], 0,
4879 50 - org_skb->len);
4880 skb->len = 50;
4881 copy_old_skb(org_skb, skb);
4882 }
4883 }
4884 }
4885
4886 spin_lock_irq(&hw_priv->hwlock);
4887
4888 num = skb_shinfo(skb)->nr_frags + 1;
4889 left = hw_alloc_pkt(hw, skb->len, num);
4890 if (left) {
4891 if (left < num ||
4892 ((hw->features & IPV6_CSUM_GEN_HACK) &&
4893 (CHECKSUM_PARTIAL == skb->ip_summed) &&
4894 (ETH_P_IPV6 == htons(skb->protocol)))) {
4895 struct sk_buff *org_skb = skb;
4896
4897 skb = dev_alloc_skb(org_skb->len);
edee3932
JS
4898 if (!skb) {
4899 rc = NETDEV_TX_BUSY;
4900 goto unlock;
4901 }
8ca86fd8
TH
4902 skb_copy_and_csum_dev(org_skb, skb->data);
4903 org_skb->ip_summed = 0;
4904 skb->len = org_skb->len;
4905 copy_old_skb(org_skb, skb);
4906 }
4907 send_packet(skb, dev);
4908 if (left <= num)
4909 netif_stop_queue(dev);
4910 } else {
4911 /* Stop the transmit queue until packet is allocated. */
4912 netif_stop_queue(dev);
4913 rc = NETDEV_TX_BUSY;
4914 }
edee3932 4915unlock:
8ca86fd8
TH
4916 spin_unlock_irq(&hw_priv->hwlock);
4917
4918 return rc;
4919}
4920
4921/**
4922 * netdev_tx_timeout - transmit timeout processing
4923 * @dev: Network device.
4924 *
4925 * This routine is called when the transmit timer expires. That indicates the
4926 * hardware is not running correctly because transmit interrupts are not
4927 * triggered to free up resources so that the transmit routine can continue
4928 * sending out packets. The hardware is reset to correct the problem.
4929 */
4930static void netdev_tx_timeout(struct net_device *dev)
4931{
4932 static unsigned long last_reset;
4933
4934 struct dev_priv *priv = netdev_priv(dev);
4935 struct dev_info *hw_priv = priv->adapter;
4936 struct ksz_hw *hw = &hw_priv->hw;
4937 int port;
4938
4939 if (hw->dev_count > 1) {
4940 /*
4941 * Only reset the hardware if time between calls is long
4942 * enough.
4943 */
4944 if (jiffies - last_reset <= dev->watchdog_timeo)
4945 hw_priv = NULL;
4946 }
4947
4948 last_reset = jiffies;
4949 if (hw_priv) {
4950 hw_dis_intr(hw);
4951 hw_disable(hw);
4952
4953 transmit_cleanup(hw_priv, 0);
4954 hw_reset_pkts(&hw->rx_desc_info);
4955 hw_reset_pkts(&hw->tx_desc_info);
4956 ksz_init_rx_buffers(hw_priv);
4957
4958 hw_reset(hw);
4959
4960 hw_set_desc_base(hw,
4961 hw->tx_desc_info.ring_phys,
4962 hw->rx_desc_info.ring_phys);
4963 hw_set_addr(hw);
4964 if (hw->all_multi)
4965 hw_set_multicast(hw, hw->all_multi);
4966 else if (hw->multi_list_size)
4967 hw_set_grp_addr(hw);
4968
4969 if (hw->dev_count > 1) {
4970 hw_set_add_addr(hw);
4971 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4972 struct net_device *port_dev;
4973
4974 port_set_stp_state(hw, port,
4975 STP_STATE_DISABLED);
4976
4977 port_dev = hw->port_info[port].pdev;
4978 if (netif_running(port_dev))
4979 port_set_stp_state(hw, port,
4980 STP_STATE_SIMPLE);
4981 }
4982 }
4983
4984 hw_enable(hw);
4985 hw_ena_intr(hw);
4986 }
4987
4988 dev->trans_start = jiffies;
4989 netif_wake_queue(dev);
4990}
4991
4992static inline void csum_verified(struct sk_buff *skb)
4993{
4994 unsigned short protocol;
4995 struct iphdr *iph;
4996
4997 protocol = skb->protocol;
4998 skb_reset_network_header(skb);
4999 iph = (struct iphdr *) skb_network_header(skb);
5000 if (protocol == htons(ETH_P_8021Q)) {
5001 protocol = iph->tot_len;
5002 skb_set_network_header(skb, VLAN_HLEN);
5003 iph = (struct iphdr *) skb_network_header(skb);
5004 }
5005 if (protocol == htons(ETH_P_IP)) {
5006 if (iph->protocol == IPPROTO_TCP)
5007 skb->ip_summed = CHECKSUM_UNNECESSARY;
5008 }
5009}
5010
5011static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
5012 struct ksz_desc *desc, union desc_stat status)
5013{
5014 int packet_len;
5015 struct dev_priv *priv = netdev_priv(dev);
5016 struct dev_info *hw_priv = priv->adapter;
5017 struct ksz_dma_buf *dma_buf;
5018 struct sk_buff *skb;
5019 int rx_status;
5020
5021 /* Received length includes 4-byte CRC. */
5022 packet_len = status.rx.frame_len - 4;
5023
5024 dma_buf = DMA_BUFFER(desc);
5025 pci_dma_sync_single_for_cpu(
5026 hw_priv->pdev, dma_buf->dma, packet_len + 4,
5027 PCI_DMA_FROMDEVICE);
5028
5029 do {
5030 /* skb->data != skb->head */
5031 skb = dev_alloc_skb(packet_len + 2);
5032 if (!skb) {
5033 priv->stats.rx_dropped++;
5034 return -ENOMEM;
5035 }
5036
5037 /*
5038 * Align socket buffer in 4-byte boundary for better
5039 * performance.
5040 */
5041 skb_reserve(skb, 2);
5042
5043 memcpy(skb_put(skb, packet_len),
5044 dma_buf->skb->data, packet_len);
5045 } while (0);
5046
8ca86fd8
TH
5047 skb->protocol = eth_type_trans(skb, dev);
5048
5049 if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5050 csum_verified(skb);
5051
5052 /* Update receive statistics. */
5053 priv->stats.rx_packets++;
5054 priv->stats.rx_bytes += packet_len;
5055
5056 /* Notify upper layer for received packet. */
8ca86fd8
TH
5057 rx_status = netif_rx(skb);
5058
5059 return 0;
5060}
5061
5062static int dev_rcv_packets(struct dev_info *hw_priv)
5063{
5064 int next;
5065 union desc_stat status;
5066 struct ksz_hw *hw = &hw_priv->hw;
5067 struct net_device *dev = hw->port_info[0].pdev;
5068 struct ksz_desc_info *info = &hw->rx_desc_info;
5069 int left = info->alloc;
5070 struct ksz_desc *desc;
5071 int received = 0;
5072
5073 next = info->next;
5074 while (left--) {
5075 /* Get next descriptor which is not hardware owned. */
5076 desc = &info->ring[next];
5077 status.data = le32_to_cpu(desc->phw->ctrl.data);
5078 if (status.rx.hw_owned)
5079 break;
5080
5081 /* Status valid only when last descriptor bit is set. */
5082 if (status.rx.last_desc && status.rx.first_desc) {
5083 if (rx_proc(dev, hw, desc, status))
5084 goto release_packet;
5085 received++;
5086 }
5087
5088release_packet:
5089 release_desc(desc);
5090 next++;
5091 next &= info->mask;
5092 }
5093 info->next = next;
5094
5095 return received;
5096}
5097
5098static int port_rcv_packets(struct dev_info *hw_priv)
5099{
5100 int next;
5101 union desc_stat status;
5102 struct ksz_hw *hw = &hw_priv->hw;
5103 struct net_device *dev = hw->port_info[0].pdev;
5104 struct ksz_desc_info *info = &hw->rx_desc_info;
5105 int left = info->alloc;
5106 struct ksz_desc *desc;
5107 int received = 0;
5108
5109 next = info->next;
5110 while (left--) {
5111 /* Get next descriptor which is not hardware owned. */
5112 desc = &info->ring[next];
5113 status.data = le32_to_cpu(desc->phw->ctrl.data);
5114 if (status.rx.hw_owned)
5115 break;
5116
5117 if (hw->dev_count > 1) {
5118 /* Get received port number. */
5119 int p = HW_TO_DEV_PORT(status.rx.src_port);
5120
5121 dev = hw->port_info[p].pdev;
5122 if (!netif_running(dev))
5123 goto release_packet;
5124 }
5125
5126 /* Status valid only when last descriptor bit is set. */
5127 if (status.rx.last_desc && status.rx.first_desc) {
5128 if (rx_proc(dev, hw, desc, status))
5129 goto release_packet;
5130 received++;
5131 }
5132
5133release_packet:
5134 release_desc(desc);
5135 next++;
5136 next &= info->mask;
5137 }
5138 info->next = next;
5139
5140 return received;
5141}
5142
5143static int dev_rcv_special(struct dev_info *hw_priv)
5144{
5145 int next;
5146 union desc_stat status;
5147 struct ksz_hw *hw = &hw_priv->hw;
5148 struct net_device *dev = hw->port_info[0].pdev;
5149 struct ksz_desc_info *info = &hw->rx_desc_info;
5150 int left = info->alloc;
5151 struct ksz_desc *desc;
5152 int received = 0;
5153
5154 next = info->next;
5155 while (left--) {
5156 /* Get next descriptor which is not hardware owned. */
5157 desc = &info->ring[next];
5158 status.data = le32_to_cpu(desc->phw->ctrl.data);
5159 if (status.rx.hw_owned)
5160 break;
5161
5162 if (hw->dev_count > 1) {
5163 /* Get received port number. */
5164 int p = HW_TO_DEV_PORT(status.rx.src_port);
5165
5166 dev = hw->port_info[p].pdev;
5167 if (!netif_running(dev))
5168 goto release_packet;
5169 }
5170
5171 /* Status valid only when last descriptor bit is set. */
5172 if (status.rx.last_desc && status.rx.first_desc) {
5173 /*
5174 * Receive without error. With receive errors
5175 * disabled, packets with receive errors will be
5176 * dropped, so no need to check the error bit.
5177 */
5178 if (!status.rx.error || (status.data &
5179 KS_DESC_RX_ERROR_COND) ==
5180 KS_DESC_RX_ERROR_TOO_LONG) {
5181 if (rx_proc(dev, hw, desc, status))
5182 goto release_packet;
5183 received++;
5184 } else {
5185 struct dev_priv *priv = netdev_priv(dev);
5186
5187 /* Update receive error statistics. */
5188 priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5189 }
5190 }
5191
5192release_packet:
5193 release_desc(desc);
5194 next++;
5195 next &= info->mask;
5196 }
5197 info->next = next;
5198
5199 return received;
5200}
5201
5202static void rx_proc_task(unsigned long data)
5203{
5204 struct dev_info *hw_priv = (struct dev_info *) data;
5205 struct ksz_hw *hw = &hw_priv->hw;
5206
5207 if (!hw->enabled)
5208 return;
5209 if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5210
5211 /* In case receive process is suspended because of overrun. */
5212 hw_resume_rx(hw);
5213
5214 /* tasklets are interruptible. */
5215 spin_lock_irq(&hw_priv->hwlock);
5216 hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5217 spin_unlock_irq(&hw_priv->hwlock);
5218 } else {
5219 hw_ack_intr(hw, KS884X_INT_RX);
5220 tasklet_schedule(&hw_priv->rx_tasklet);
5221 }
5222}
5223
5224static void tx_proc_task(unsigned long data)
5225{
5226 struct dev_info *hw_priv = (struct dev_info *) data;
5227 struct ksz_hw *hw = &hw_priv->hw;
5228
5229 hw_ack_intr(hw, KS884X_INT_TX_MASK);
5230
5231 tx_done(hw_priv);
5232
5233 /* tasklets are interruptible. */
5234 spin_lock_irq(&hw_priv->hwlock);
5235 hw_turn_on_intr(hw, KS884X_INT_TX);
5236 spin_unlock_irq(&hw_priv->hwlock);
5237}
5238
5239static inline void handle_rx_stop(struct ksz_hw *hw)
5240{
5241 /* Receive just has been stopped. */
5242 if (0 == hw->rx_stop)
5243 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5244 else if (hw->rx_stop > 1) {
5245 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5246 hw_start_rx(hw);
5247 } else {
5248 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5249 hw->rx_stop = 0;
5250 }
5251 } else
5252 /* Receive just has been started. */
5253 hw->rx_stop++;
5254}
5255
5256/**
5257 * netdev_intr - interrupt handling
5258 * @irq: Interrupt number.
5259 * @dev_id: Network device.
5260 *
5261 * This function is called by upper network layer to signal interrupt.
5262 *
5263 * Return IRQ_HANDLED if interrupt is handled.
5264 */
5265static irqreturn_t netdev_intr(int irq, void *dev_id)
5266{
5267 uint int_enable = 0;
5268 struct net_device *dev = (struct net_device *) dev_id;
5269 struct dev_priv *priv = netdev_priv(dev);
5270 struct dev_info *hw_priv = priv->adapter;
5271 struct ksz_hw *hw = &hw_priv->hw;
5272
5273 hw_read_intr(hw, &int_enable);
5274
5275 /* Not our interrupt! */
5276 if (!int_enable)
5277 return IRQ_NONE;
5278
5279 do {
5280 hw_ack_intr(hw, int_enable);
5281 int_enable &= hw->intr_mask;
5282
5283 if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5284 hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5285 tasklet_schedule(&hw_priv->tx_tasklet);
5286 }
5287
5288 if (likely(int_enable & KS884X_INT_RX)) {
5289 hw_dis_intr_bit(hw, KS884X_INT_RX);
5290 tasklet_schedule(&hw_priv->rx_tasklet);
5291 }
5292
5293 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5294 priv->stats.rx_fifo_errors++;
5295 hw_resume_rx(hw);
5296 }
5297
5298 if (unlikely(int_enable & KS884X_INT_PHY)) {
5299 struct ksz_port *port = &priv->port;
5300
5301 hw->features |= LINK_INT_WORKING;
5302 port_get_link_speed(port);
5303 }
5304
5305 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5306 handle_rx_stop(hw);
5307 break;
5308 }
5309
5310 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5311 u32 data;
5312
5313 hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
0dc7d2b3 5314 pr_info("Tx stopped\n");
8ca86fd8
TH
5315 data = readl(hw->io + KS_DMA_TX_CTRL);
5316 if (!(data & DMA_TX_ENABLE))
0dc7d2b3 5317 pr_info("Tx disabled\n");
8ca86fd8
TH
5318 break;
5319 }
5320 } while (0);
5321
5322 hw_ena_intr(hw);
5323
5324 return IRQ_HANDLED;
5325}
5326
5327/*
5328 * Linux network device functions
5329 */
5330
5331static unsigned long next_jiffies;
5332
5333#ifdef CONFIG_NET_POLL_CONTROLLER
5334static void netdev_netpoll(struct net_device *dev)
5335{
5336 struct dev_priv *priv = netdev_priv(dev);
5337 struct dev_info *hw_priv = priv->adapter;
5338
5339 hw_dis_intr(&hw_priv->hw);
5340 netdev_intr(dev->irq, dev);
5341}
5342#endif
5343
5344static void bridge_change(struct ksz_hw *hw)
5345{
5346 int port;
5347 u8 member;
5348 struct ksz_switch *sw = hw->ksz_switch;
5349
5350 /* No ports in forwarding state. */
5351 if (!sw->member) {
5352 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5353 sw_block_addr(hw);
5354 }
5355 for (port = 0; port < SWITCH_PORT_NUM; port++) {
5356 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5357 member = HOST_MASK | sw->member;
5358 else
5359 member = HOST_MASK | (1 << port);
5360 if (member != sw->port_cfg[port].member)
5361 sw_cfg_port_base_vlan(hw, port, member);
5362 }
5363}
5364
5365/**
5366 * netdev_close - close network device
5367 * @dev: Network device.
5368 *
5369 * This function process the close operation of network device. This is caused
5370 * by the user command "ifconfig ethX down."
5371 *
5372 * Return 0 if successful; otherwise an error code indicating failure.
5373 */
5374static int netdev_close(struct net_device *dev)
5375{
5376 struct dev_priv *priv = netdev_priv(dev);
5377 struct dev_info *hw_priv = priv->adapter;
5378 struct ksz_port *port = &priv->port;
5379 struct ksz_hw *hw = &hw_priv->hw;
5380 int pi;
5381
5382 netif_stop_queue(dev);
5383
5384 ksz_stop_timer(&priv->monitor_timer_info);
5385
5386 /* Need to shut the port manually in multiple device interfaces mode. */
5387 if (hw->dev_count > 1) {
5388 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5389
5390 /* Port is closed. Need to change bridge setting. */
5391 if (hw->features & STP_SUPPORT) {
5392 pi = 1 << port->first_port;
5393 if (hw->ksz_switch->member & pi) {
5394 hw->ksz_switch->member &= ~pi;
5395 bridge_change(hw);
5396 }
5397 }
5398 }
5399 if (port->first_port > 0)
5400 hw_del_addr(hw, dev->dev_addr);
5401 if (!hw_priv->wol_enable)
5402 port_set_power_saving(port, true);
5403
5404 if (priv->multicast)
5405 --hw->all_multi;
5406 if (priv->promiscuous)
5407 --hw->promiscuous;
5408
5409 hw_priv->opened--;
5410 if (!(hw_priv->opened)) {
5411 ksz_stop_timer(&hw_priv->mib_timer_info);
5412 flush_work(&hw_priv->mib_read);
5413
5414 hw_dis_intr(hw);
5415 hw_disable(hw);
5416 hw_clr_multicast(hw);
5417
5418 /* Delay for receive task to stop scheduling itself. */
5419 msleep(2000 / HZ);
5420
5421 tasklet_disable(&hw_priv->rx_tasklet);
5422 tasklet_disable(&hw_priv->tx_tasklet);
5423 free_irq(dev->irq, hw_priv->dev);
5424
5425 transmit_cleanup(hw_priv, 0);
5426 hw_reset_pkts(&hw->rx_desc_info);
5427 hw_reset_pkts(&hw->tx_desc_info);
5428
5429 /* Clean out static MAC table when the switch is shutdown. */
5430 if (hw->features & STP_SUPPORT)
5431 sw_clr_sta_mac_table(hw);
5432 }
5433
5434 return 0;
5435}
5436
5437static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5438{
5439 if (hw->ksz_switch) {
5440 u32 data;
5441
5442 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5443 if (hw->features & RX_HUGE_FRAME)
5444 data |= SWITCH_HUGE_PACKET;
5445 else
5446 data &= ~SWITCH_HUGE_PACKET;
5447 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5448 }
5449 if (hw->features & RX_HUGE_FRAME) {
5450 hw->rx_cfg |= DMA_RX_ERROR;
5451 hw_priv->dev_rcv = dev_rcv_special;
5452 } else {
5453 hw->rx_cfg &= ~DMA_RX_ERROR;
5454 if (hw->dev_count > 1)
5455 hw_priv->dev_rcv = port_rcv_packets;
5456 else
5457 hw_priv->dev_rcv = dev_rcv_packets;
5458 }
5459}
5460
5461static int prepare_hardware(struct net_device *dev)
5462{
5463 struct dev_priv *priv = netdev_priv(dev);
5464 struct dev_info *hw_priv = priv->adapter;
5465 struct ksz_hw *hw = &hw_priv->hw;
5466 int rc = 0;
5467
5468 /* Remember the network device that requests interrupts. */
5469 hw_priv->dev = dev;
5470 rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5471 if (rc)
5472 return rc;
5473 tasklet_enable(&hw_priv->rx_tasklet);
5474 tasklet_enable(&hw_priv->tx_tasklet);
5475
5476 hw->promiscuous = 0;
5477 hw->all_multi = 0;
5478 hw->multi_list_size = 0;
5479
5480 hw_reset(hw);
5481
5482 hw_set_desc_base(hw,
5483 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5484 hw_set_addr(hw);
5485 hw_cfg_huge_frame(hw_priv, hw);
5486 ksz_init_rx_buffers(hw_priv);
5487 return 0;
5488}
5489
0dc7d2b3
JP
5490static void set_media_state(struct net_device *dev, int media_state)
5491{
5492 struct dev_priv *priv = netdev_priv(dev);
5493
5494 if (media_state == priv->media_state)
5495 netif_carrier_on(dev);
5496 else
5497 netif_carrier_off(dev);
5498 netif_info(priv, link, dev, "link %s\n",
5499 media_state == priv->media_state ? "on" : "off");
5500}
5501
8ca86fd8
TH
5502/**
5503 * netdev_open - open network device
5504 * @dev: Network device.
5505 *
5506 * This function process the open operation of network device. This is caused
5507 * by the user command "ifconfig ethX up."
5508 *
5509 * Return 0 if successful; otherwise an error code indicating failure.
5510 */
5511static int netdev_open(struct net_device *dev)
5512{
5513 struct dev_priv *priv = netdev_priv(dev);
5514 struct dev_info *hw_priv = priv->adapter;
5515 struct ksz_hw *hw = &hw_priv->hw;
5516 struct ksz_port *port = &priv->port;
5517 int i;
5518 int p;
5519 int rc = 0;
5520
5521 priv->multicast = 0;
5522 priv->promiscuous = 0;
5523
5524 /* Reset device statistics. */
5525 memset(&priv->stats, 0, sizeof(struct net_device_stats));
5526 memset((void *) port->counter, 0,
5527 (sizeof(u64) * OID_COUNTER_LAST));
5528
5529 if (!(hw_priv->opened)) {
5530 rc = prepare_hardware(dev);
5531 if (rc)
5532 return rc;
5533 for (i = 0; i < hw->mib_port_cnt; i++) {
5534 if (next_jiffies < jiffies)
5535 next_jiffies = jiffies + HZ * 2;
5536 else
5537 next_jiffies += HZ * 1;
5538 hw_priv->counter[i].time = next_jiffies;
5539 hw->port_mib[i].state = media_disconnected;
5540 port_init_cnt(hw, i);
5541 }
5542 if (hw->ksz_switch)
5543 hw->port_mib[HOST_PORT].state = media_connected;
5544 else {
5545 hw_add_wol_bcast(hw);
5546 hw_cfg_wol_pme(hw, 0);
5547 hw_clr_wol_pme_status(&hw_priv->hw);
5548 }
5549 }
5550 port_set_power_saving(port, false);
5551
5552 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5553 /*
5554 * Initialize to invalid value so that link detection
5555 * is done.
5556 */
5557 hw->port_info[p].partner = 0xFF;
5558 hw->port_info[p].state = media_disconnected;
5559 }
5560
5561 /* Need to open the port in multiple device interfaces mode. */
5562 if (hw->dev_count > 1) {
5563 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5564 if (port->first_port > 0)
5565 hw_add_addr(hw, dev->dev_addr);
5566 }
5567
5568 port_get_link_speed(port);
5569 if (port->force_link)
5570 port_force_link_speed(port);
5571 else
5572 port_set_link_speed(port);
5573
5574 if (!(hw_priv->opened)) {
5575 hw_setup_intr(hw);
5576 hw_enable(hw);
5577 hw_ena_intr(hw);
5578
5579 if (hw->mib_port_cnt)
5580 ksz_start_timer(&hw_priv->mib_timer_info,
5581 hw_priv->mib_timer_info.period);
5582 }
5583
5584 hw_priv->opened++;
5585
5586 ksz_start_timer(&priv->monitor_timer_info,
5587 priv->monitor_timer_info.period);
5588
5589 priv->media_state = port->linked->state;
5590
0dc7d2b3 5591 set_media_state(dev, media_connected);
8ca86fd8
TH
5592 netif_start_queue(dev);
5593
5594 return 0;
5595}
5596
5597/* RX errors = rx_errors */
5598/* RX dropped = rx_dropped */
5599/* RX overruns = rx_fifo_errors */
5600/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5601/* TX errors = tx_errors */
5602/* TX dropped = tx_dropped */
5603/* TX overruns = tx_fifo_errors */
5604/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5605/* collisions = collisions */
5606
5607/**
5608 * netdev_query_statistics - query network device statistics
5609 * @dev: Network device.
5610 *
5611 * This function returns the statistics of the network device. The device
5612 * needs not be opened.
5613 *
5614 * Return network device statistics.
5615 */
5616static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5617{
5618 struct dev_priv *priv = netdev_priv(dev);
5619 struct ksz_port *port = &priv->port;
5620 struct ksz_hw *hw = &priv->adapter->hw;
5621 struct ksz_port_mib *mib;
5622 int i;
5623 int p;
5624
5625 priv->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5626 priv->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5627
5628 /* Reset to zero to add count later. */
5629 priv->stats.multicast = 0;
5630 priv->stats.collisions = 0;
5631 priv->stats.rx_length_errors = 0;
5632 priv->stats.rx_crc_errors = 0;
5633 priv->stats.rx_frame_errors = 0;
5634 priv->stats.tx_window_errors = 0;
5635
5636 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5637 mib = &hw->port_mib[p];
5638
5639 priv->stats.multicast += (unsigned long)
5640 mib->counter[MIB_COUNTER_RX_MULTICAST];
5641
5642 priv->stats.collisions += (unsigned long)
5643 mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5644
5645 priv->stats.rx_length_errors += (unsigned long)(
5646 mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5647 mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5648 mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5649 mib->counter[MIB_COUNTER_RX_JABBER]);
5650 priv->stats.rx_crc_errors += (unsigned long)
5651 mib->counter[MIB_COUNTER_RX_CRC_ERR];
5652 priv->stats.rx_frame_errors += (unsigned long)(
5653 mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5654 mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5655
5656 priv->stats.tx_window_errors += (unsigned long)
5657 mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5658 }
5659
5660 return &priv->stats;
5661}
5662
5663/**
5664 * netdev_set_mac_address - set network device MAC address
5665 * @dev: Network device.
5666 * @addr: Buffer of MAC address.
5667 *
5668 * This function is used to set the MAC address of the network device.
5669 *
5670 * Return 0 to indicate success.
5671 */
5672static int netdev_set_mac_address(struct net_device *dev, void *addr)
5673{
5674 struct dev_priv *priv = netdev_priv(dev);
5675 struct dev_info *hw_priv = priv->adapter;
5676 struct ksz_hw *hw = &hw_priv->hw;
5677 struct sockaddr *mac = addr;
5678 uint interrupt;
5679
5680 if (priv->port.first_port > 0)
5681 hw_del_addr(hw, dev->dev_addr);
5682 else {
5683 hw->mac_override = 1;
5684 memcpy(hw->override_addr, mac->sa_data, MAC_ADDR_LEN);
5685 }
5686
5687 memcpy(dev->dev_addr, mac->sa_data, MAX_ADDR_LEN);
5688
5689 interrupt = hw_block_intr(hw);
5690
5691 if (priv->port.first_port > 0)
5692 hw_add_addr(hw, dev->dev_addr);
5693 else
5694 hw_set_addr(hw);
5695 hw_restore_intr(hw, interrupt);
5696
5697 return 0;
5698}
5699
5700static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5701 struct ksz_hw *hw, int promiscuous)
5702{
5703 if (promiscuous != priv->promiscuous) {
5704 u8 prev_state = hw->promiscuous;
5705
5706 if (promiscuous)
5707 ++hw->promiscuous;
5708 else
5709 --hw->promiscuous;
5710 priv->promiscuous = promiscuous;
5711
5712 /* Turn on/off promiscuous mode. */
5713 if (hw->promiscuous <= 1 && prev_state <= 1)
5714 hw_set_promiscuous(hw, hw->promiscuous);
5715
5716 /*
5717 * Port is not in promiscuous mode, meaning it is released
5718 * from the bridge.
5719 */
5720 if ((hw->features & STP_SUPPORT) && !promiscuous &&
5721 dev->br_port) {
5722 struct ksz_switch *sw = hw->ksz_switch;
5723 int port = priv->port.first_port;
5724
5725 port_set_stp_state(hw, port, STP_STATE_DISABLED);
5726 port = 1 << port;
5727 if (sw->member & port) {
5728 sw->member &= ~port;
5729 bridge_change(hw);
5730 }
5731 }
5732 }
5733}
5734
5735static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5736 int multicast)
5737{
5738 if (multicast != priv->multicast) {
5739 u8 all_multi = hw->all_multi;
5740
5741 if (multicast)
5742 ++hw->all_multi;
5743 else
5744 --hw->all_multi;
5745 priv->multicast = multicast;
5746
5747 /* Turn on/off all multicast mode. */
5748 if (hw->all_multi <= 1 && all_multi <= 1)
5749 hw_set_multicast(hw, hw->all_multi);
5750 }
5751}
5752
5753/**
5754 * netdev_set_rx_mode
5755 * @dev: Network device.
5756 *
5757 * This routine is used to set multicast addresses or put the network device
5758 * into promiscuous mode.
5759 */
5760static void netdev_set_rx_mode(struct net_device *dev)
5761{
5762 struct dev_priv *priv = netdev_priv(dev);
5763 struct dev_info *hw_priv = priv->adapter;
5764 struct ksz_hw *hw = &hw_priv->hw;
22bedad3 5765 struct netdev_hw_addr *ha;
8ca86fd8
TH
5766 int multicast = (dev->flags & IFF_ALLMULTI);
5767
5768 dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5769
5770 if (hw_priv->hw.dev_count > 1)
5771 multicast |= (dev->flags & IFF_MULTICAST);
5772 dev_set_multicast(priv, hw, multicast);
5773
5774 /* Cannot use different hashes in multiple device interfaces mode. */
5775 if (hw_priv->hw.dev_count > 1)
5776 return;
5777
f9dcbcc9 5778 if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
8ca86fd8
TH
5779 int i = 0;
5780
5781 /* List too big to support so turn on all multicast mode. */
22bedad3 5782 if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
8ca86fd8
TH
5783 if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5784 hw->multi_list_size = MAX_MULTICAST_LIST;
5785 ++hw->all_multi;
5786 hw_set_multicast(hw, hw->all_multi);
5787 }
5788 return;
5789 }
5790
22bedad3
JP
5791 netdev_for_each_mc_addr(ha, dev) {
5792 if (!(*ha->addr & 1))
8ca86fd8
TH
5793 continue;
5794 if (i >= MAX_MULTICAST_LIST)
5795 break;
22bedad3 5796 memcpy(hw->multi_list[i++], ha->addr, MAC_ADDR_LEN);
8ca86fd8
TH
5797 }
5798 hw->multi_list_size = (u8) i;
5799 hw_set_grp_addr(hw);
5800 } else {
5801 if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5802 --hw->all_multi;
5803 hw_set_multicast(hw, hw->all_multi);
5804 }
5805 hw->multi_list_size = 0;
5806 hw_clr_multicast(hw);
5807 }
5808}
5809
5810static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5811{
5812 struct dev_priv *priv = netdev_priv(dev);
5813 struct dev_info *hw_priv = priv->adapter;
5814 struct ksz_hw *hw = &hw_priv->hw;
5815 int hw_mtu;
5816
5817 if (netif_running(dev))
5818 return -EBUSY;
5819
5820 /* Cannot use different MTU in multiple device interfaces mode. */
5821 if (hw->dev_count > 1)
5822 if (dev != hw_priv->dev)
5823 return 0;
5824 if (new_mtu < 60)
5825 return -EINVAL;
5826
5827 if (dev->mtu != new_mtu) {
5828 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5829 if (hw_mtu > MAX_RX_BUF_SIZE)
5830 return -EINVAL;
5831 if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5832 hw->features |= RX_HUGE_FRAME;
5833 hw_mtu = MAX_RX_BUF_SIZE;
5834 } else {
5835 hw->features &= ~RX_HUGE_FRAME;
5836 hw_mtu = REGULAR_RX_BUF_SIZE;
5837 }
5838 hw_mtu = (hw_mtu + 3) & ~3;
5839 hw_priv->mtu = hw_mtu;
5840 dev->mtu = new_mtu;
5841 }
5842 return 0;
5843}
5844
5845/**
5846 * netdev_ioctl - I/O control processing
5847 * @dev: Network device.
5848 * @ifr: Interface request structure.
5849 * @cmd: I/O control code.
5850 *
5851 * This function is used to process I/O control calls.
5852 *
5853 * Return 0 to indicate success.
5854 */
5855static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5856{
5857 struct dev_priv *priv = netdev_priv(dev);
5858 struct dev_info *hw_priv = priv->adapter;
5859 struct ksz_hw *hw = &hw_priv->hw;
5860 struct ksz_port *port = &priv->port;
5861 int rc;
5862 int result = 0;
5863 struct mii_ioctl_data *data = if_mii(ifr);
5864
5865 if (down_interruptible(&priv->proc_sem))
5866 return -ERESTARTSYS;
5867
5868 /* assume success */
5869 rc = 0;
5870 switch (cmd) {
5871 /* Get address of MII PHY in use. */
5872 case SIOCGMIIPHY:
5873 data->phy_id = priv->id;
5874
5875 /* Fallthrough... */
5876
5877 /* Read MII PHY register. */
5878 case SIOCGMIIREG:
5879 if (data->phy_id != priv->id || data->reg_num >= 6)
5880 result = -EIO;
5881 else
5882 hw_r_phy(hw, port->linked->port_id, data->reg_num,
5883 &data->val_out);
5884 break;
5885
5886 /* Write MII PHY register. */
5887 case SIOCSMIIREG:
5888 if (!capable(CAP_NET_ADMIN))
5889 result = -EPERM;
5890 else if (data->phy_id != priv->id || data->reg_num >= 6)
5891 result = -EIO;
5892 else
5893 hw_w_phy(hw, port->linked->port_id, data->reg_num,
5894 data->val_in);
5895 break;
5896
5897 default:
5898 result = -EOPNOTSUPP;
5899 }
5900
5901 up(&priv->proc_sem);
5902
5903 return result;
5904}
5905
5906/*
5907 * MII support
5908 */
5909
5910/**
5911 * mdio_read - read PHY register
5912 * @dev: Network device.
5913 * @phy_id: The PHY id.
5914 * @reg_num: The register number.
5915 *
5916 * This function returns the PHY register value.
5917 *
5918 * Return the register value.
5919 */
5920static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5921{
5922 struct dev_priv *priv = netdev_priv(dev);
5923 struct ksz_port *port = &priv->port;
5924 struct ksz_hw *hw = port->hw;
5925 u16 val_out;
5926
5927 hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5928 return val_out;
5929}
5930
5931/**
5932 * mdio_write - set PHY register
5933 * @dev: Network device.
5934 * @phy_id: The PHY id.
5935 * @reg_num: The register number.
5936 * @val: The register value.
5937 *
5938 * This procedure sets the PHY register value.
5939 */
5940static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5941{
5942 struct dev_priv *priv = netdev_priv(dev);
5943 struct ksz_port *port = &priv->port;
5944 struct ksz_hw *hw = port->hw;
5945 int i;
5946 int pi;
5947
5948 for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5949 hw_w_phy(hw, pi, reg_num << 1, val);
5950}
5951
5952/*
5953 * ethtool support
5954 */
5955
5956#define EEPROM_SIZE 0x40
5957
5958static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5959
5960#define ADVERTISED_ALL \
5961 (ADVERTISED_10baseT_Half | \
5962 ADVERTISED_10baseT_Full | \
5963 ADVERTISED_100baseT_Half | \
5964 ADVERTISED_100baseT_Full)
5965
5966/* These functions use the MII functions in mii.c. */
5967
5968/**
5969 * netdev_get_settings - get network device settings
5970 * @dev: Network device.
5971 * @cmd: Ethtool command.
5972 *
5973 * This function queries the PHY and returns its state in the ethtool command.
5974 *
5975 * Return 0 if successful; otherwise an error code.
5976 */
5977static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5978{
5979 struct dev_priv *priv = netdev_priv(dev);
5980 struct dev_info *hw_priv = priv->adapter;
5981
5982 mutex_lock(&hw_priv->lock);
5983 mii_ethtool_gset(&priv->mii_if, cmd);
5984 cmd->advertising |= SUPPORTED_TP;
5985 mutex_unlock(&hw_priv->lock);
5986
5987 /* Save advertised settings for workaround in next function. */
5988 priv->advertising = cmd->advertising;
5989 return 0;
5990}
5991
5992/**
5993 * netdev_set_settings - set network device settings
5994 * @dev: Network device.
5995 * @cmd: Ethtool command.
5996 *
5997 * This function sets the PHY according to the ethtool command.
5998 *
5999 * Return 0 if successful; otherwise an error code.
6000 */
6001static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6002{
6003 struct dev_priv *priv = netdev_priv(dev);
6004 struct dev_info *hw_priv = priv->adapter;
6005 struct ksz_port *port = &priv->port;
6006 int rc;
6007
6008 /*
6009 * ethtool utility does not change advertised setting if auto
6010 * negotiation is not specified explicitly.
6011 */
6012 if (cmd->autoneg && priv->advertising == cmd->advertising) {
6013 cmd->advertising |= ADVERTISED_ALL;
6014 if (10 == cmd->speed)
6015 cmd->advertising &=
6016 ~(ADVERTISED_100baseT_Full |
6017 ADVERTISED_100baseT_Half);
6018 else if (100 == cmd->speed)
6019 cmd->advertising &=
6020 ~(ADVERTISED_10baseT_Full |
6021 ADVERTISED_10baseT_Half);
6022 if (0 == cmd->duplex)
6023 cmd->advertising &=
6024 ~(ADVERTISED_100baseT_Full |
6025 ADVERTISED_10baseT_Full);
6026 else if (1 == cmd->duplex)
6027 cmd->advertising &=
6028 ~(ADVERTISED_100baseT_Half |
6029 ADVERTISED_10baseT_Half);
6030 }
6031 mutex_lock(&hw_priv->lock);
6032 if (cmd->autoneg &&
6033 (cmd->advertising & ADVERTISED_ALL) ==
6034 ADVERTISED_ALL) {
6035 port->duplex = 0;
6036 port->speed = 0;
6037 port->force_link = 0;
6038 } else {
6039 port->duplex = cmd->duplex + 1;
6040 if (cmd->speed != 1000)
6041 port->speed = cmd->speed;
6042 if (cmd->autoneg)
6043 port->force_link = 0;
6044 else
6045 port->force_link = 1;
6046 }
6047 rc = mii_ethtool_sset(&priv->mii_if, cmd);
6048 mutex_unlock(&hw_priv->lock);
6049 return rc;
6050}
6051
6052/**
6053 * netdev_nway_reset - restart auto-negotiation
6054 * @dev: Network device.
6055 *
6056 * This function restarts the PHY for auto-negotiation.
6057 *
6058 * Return 0 if successful; otherwise an error code.
6059 */
6060static int netdev_nway_reset(struct net_device *dev)
6061{
6062 struct dev_priv *priv = netdev_priv(dev);
6063 struct dev_info *hw_priv = priv->adapter;
6064 int rc;
6065
6066 mutex_lock(&hw_priv->lock);
6067 rc = mii_nway_restart(&priv->mii_if);
6068 mutex_unlock(&hw_priv->lock);
6069 return rc;
6070}
6071
6072/**
6073 * netdev_get_link - get network device link status
6074 * @dev: Network device.
6075 *
6076 * This function gets the link status from the PHY.
6077 *
6078 * Return true if PHY is linked and false otherwise.
6079 */
6080static u32 netdev_get_link(struct net_device *dev)
6081{
6082 struct dev_priv *priv = netdev_priv(dev);
6083 int rc;
6084
6085 rc = mii_link_ok(&priv->mii_if);
6086 return rc;
6087}
6088
6089/**
6090 * netdev_get_drvinfo - get network driver information
6091 * @dev: Network device.
6092 * @info: Ethtool driver info data structure.
6093 *
6094 * This procedure returns the driver information.
6095 */
6096static void netdev_get_drvinfo(struct net_device *dev,
6097 struct ethtool_drvinfo *info)
6098{
6099 struct dev_priv *priv = netdev_priv(dev);
6100 struct dev_info *hw_priv = priv->adapter;
6101
6102 strcpy(info->driver, DRV_NAME);
6103 strcpy(info->version, DRV_VERSION);
6104 strcpy(info->bus_info, pci_name(hw_priv->pdev));
6105}
6106
6107/**
6108 * netdev_get_regs_len - get length of register dump
6109 * @dev: Network device.
6110 *
6111 * This function returns the length of the register dump.
6112 *
6113 * Return length of the register dump.
6114 */
6115static struct hw_regs {
6116 int start;
6117 int end;
6118} hw_regs_range[] = {
6119 { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS },
6120 { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI },
6121 { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
6122 { KS884X_SIDER_P, KS8842_SGCR7_P },
6123 { KS8842_MACAR1_P, KS8842_TOSR8_P },
6124 { KS884X_P1MBCR_P, KS8842_P3ERCR_P },
6125 { 0, 0 }
6126};
6127
6128static int netdev_get_regs_len(struct net_device *dev)
6129{
6130 struct hw_regs *range = hw_regs_range;
6131 int regs_len = 0x10 * sizeof(u32);
6132
6133 while (range->end > range->start) {
6134 regs_len += (range->end - range->start + 3) / 4 * 4;
6135 range++;
6136 }
6137 return regs_len;
6138}
6139
6140/**
6141 * netdev_get_regs - get register dump
6142 * @dev: Network device.
6143 * @regs: Ethtool registers data structure.
6144 * @ptr: Buffer to store the register values.
6145 *
6146 * This procedure dumps the register values in the provided buffer.
6147 */
6148static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6149 void *ptr)
6150{
6151 struct dev_priv *priv = netdev_priv(dev);
6152 struct dev_info *hw_priv = priv->adapter;
6153 struct ksz_hw *hw = &hw_priv->hw;
6154 int *buf = (int *) ptr;
6155 struct hw_regs *range = hw_regs_range;
6156 int len;
6157
6158 mutex_lock(&hw_priv->lock);
6159 regs->version = 0;
6160 for (len = 0; len < 0x40; len += 4) {
6161 pci_read_config_dword(hw_priv->pdev, len, buf);
6162 buf++;
6163 }
6164 while (range->end > range->start) {
6165 for (len = range->start; len < range->end; len += 4) {
6166 *buf = readl(hw->io + len);
6167 buf++;
6168 }
6169 range++;
6170 }
6171 mutex_unlock(&hw_priv->lock);
6172}
6173
6174#define WOL_SUPPORT \
6175 (WAKE_PHY | WAKE_MAGIC | \
6176 WAKE_UCAST | WAKE_MCAST | \
6177 WAKE_BCAST | WAKE_ARP)
6178
6179/**
6180 * netdev_get_wol - get Wake-on-LAN support
6181 * @dev: Network device.
6182 * @wol: Ethtool Wake-on-LAN data structure.
6183 *
6184 * This procedure returns Wake-on-LAN support.
6185 */
6186static void netdev_get_wol(struct net_device *dev,
6187 struct ethtool_wolinfo *wol)
6188{
6189 struct dev_priv *priv = netdev_priv(dev);
6190 struct dev_info *hw_priv = priv->adapter;
6191
6192 wol->supported = hw_priv->wol_support;
6193 wol->wolopts = hw_priv->wol_enable;
6194 memset(&wol->sopass, 0, sizeof(wol->sopass));
6195}
6196
6197/**
6198 * netdev_set_wol - set Wake-on-LAN support
6199 * @dev: Network device.
6200 * @wol: Ethtool Wake-on-LAN data structure.
6201 *
6202 * This function sets Wake-on-LAN support.
6203 *
6204 * Return 0 if successful; otherwise an error code.
6205 */
6206static int netdev_set_wol(struct net_device *dev,
6207 struct ethtool_wolinfo *wol)
6208{
6209 struct dev_priv *priv = netdev_priv(dev);
6210 struct dev_info *hw_priv = priv->adapter;
6211
6212 /* Need to find a way to retrieve the device IP address. */
6213 u8 net_addr[] = { 192, 168, 1, 1 };
6214
6215 if (wol->wolopts & ~hw_priv->wol_support)
6216 return -EINVAL;
6217
6218 hw_priv->wol_enable = wol->wolopts;
6219
6220 /* Link wakeup cannot really be disabled. */
6221 if (wol->wolopts)
6222 hw_priv->wol_enable |= WAKE_PHY;
6223 hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6224 return 0;
6225}
6226
6227/**
6228 * netdev_get_msglevel - get debug message level
6229 * @dev: Network device.
6230 *
6231 * This function returns current debug message level.
6232 *
6233 * Return current debug message flags.
6234 */
6235static u32 netdev_get_msglevel(struct net_device *dev)
6236{
6237 struct dev_priv *priv = netdev_priv(dev);
6238
6239 return priv->msg_enable;
6240}
6241
6242/**
6243 * netdev_set_msglevel - set debug message level
6244 * @dev: Network device.
6245 * @value: Debug message flags.
6246 *
6247 * This procedure sets debug message level.
6248 */
6249static void netdev_set_msglevel(struct net_device *dev, u32 value)
6250{
6251 struct dev_priv *priv = netdev_priv(dev);
6252
6253 priv->msg_enable = value;
6254}
6255
6256/**
6257 * netdev_get_eeprom_len - get EEPROM length
6258 * @dev: Network device.
6259 *
6260 * This function returns the length of the EEPROM.
6261 *
6262 * Return length of the EEPROM.
6263 */
6264static int netdev_get_eeprom_len(struct net_device *dev)
6265{
6266 return EEPROM_SIZE * 2;
6267}
6268
6269/**
6270 * netdev_get_eeprom - get EEPROM data
6271 * @dev: Network device.
6272 * @eeprom: Ethtool EEPROM data structure.
6273 * @data: Buffer to store the EEPROM data.
6274 *
6275 * This function dumps the EEPROM data in the provided buffer.
6276 *
6277 * Return 0 if successful; otherwise an error code.
6278 */
6279#define EEPROM_MAGIC 0x10A18842
6280
6281static int netdev_get_eeprom(struct net_device *dev,
6282 struct ethtool_eeprom *eeprom, u8 *data)
6283{
6284 struct dev_priv *priv = netdev_priv(dev);
6285 struct dev_info *hw_priv = priv->adapter;
6286 u8 *eeprom_byte = (u8 *) eeprom_data;
6287 int i;
6288 int len;
6289
6290 len = (eeprom->offset + eeprom->len + 1) / 2;
6291 for (i = eeprom->offset / 2; i < len; i++)
6292 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6293 eeprom->magic = EEPROM_MAGIC;
6294 memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6295
6296 return 0;
6297}
6298
6299/**
6300 * netdev_set_eeprom - write EEPROM data
6301 * @dev: Network device.
6302 * @eeprom: Ethtool EEPROM data structure.
6303 * @data: Data buffer.
6304 *
6305 * This function modifies the EEPROM data one byte at a time.
6306 *
6307 * Return 0 if successful; otherwise an error code.
6308 */
6309static int netdev_set_eeprom(struct net_device *dev,
6310 struct ethtool_eeprom *eeprom, u8 *data)
6311{
6312 struct dev_priv *priv = netdev_priv(dev);
6313 struct dev_info *hw_priv = priv->adapter;
6314 u16 eeprom_word[EEPROM_SIZE];
6315 u8 *eeprom_byte = (u8 *) eeprom_word;
6316 int i;
6317 int len;
6318
6319 if (eeprom->magic != EEPROM_MAGIC)
4881a4f8 6320 return -EINVAL;
8ca86fd8
TH
6321
6322 len = (eeprom->offset + eeprom->len + 1) / 2;
6323 for (i = eeprom->offset / 2; i < len; i++)
6324 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6325 memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6326 memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6327 for (i = 0; i < EEPROM_SIZE; i++)
6328 if (eeprom_word[i] != eeprom_data[i]) {
6329 eeprom_data[i] = eeprom_word[i];
6330 eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6331 }
6332
6333 return 0;
6334}
6335
6336/**
6337 * netdev_get_pauseparam - get flow control parameters
6338 * @dev: Network device.
6339 * @pause: Ethtool PAUSE settings data structure.
6340 *
6341 * This procedure returns the PAUSE control flow settings.
6342 */
6343static void netdev_get_pauseparam(struct net_device *dev,
6344 struct ethtool_pauseparam *pause)
6345{
6346 struct dev_priv *priv = netdev_priv(dev);
6347 struct dev_info *hw_priv = priv->adapter;
6348 struct ksz_hw *hw = &hw_priv->hw;
6349
6350 pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6351 if (!hw->ksz_switch) {
6352 pause->rx_pause =
6353 (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6354 pause->tx_pause =
6355 (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6356 } else {
6357 pause->rx_pause =
6358 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6359 SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6360 pause->tx_pause =
6361 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6362 SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6363 }
6364}
6365
6366/**
6367 * netdev_set_pauseparam - set flow control parameters
6368 * @dev: Network device.
6369 * @pause: Ethtool PAUSE settings data structure.
6370 *
6371 * This function sets the PAUSE control flow settings.
6372 * Not implemented yet.
6373 *
6374 * Return 0 if successful; otherwise an error code.
6375 */
6376static int netdev_set_pauseparam(struct net_device *dev,
6377 struct ethtool_pauseparam *pause)
6378{
6379 struct dev_priv *priv = netdev_priv(dev);
6380 struct dev_info *hw_priv = priv->adapter;
6381 struct ksz_hw *hw = &hw_priv->hw;
6382 struct ksz_port *port = &priv->port;
6383
6384 mutex_lock(&hw_priv->lock);
6385 if (pause->autoneg) {
6386 if (!pause->rx_pause && !pause->tx_pause)
6387 port->flow_ctrl = PHY_NO_FLOW_CTRL;
6388 else
6389 port->flow_ctrl = PHY_FLOW_CTRL;
6390 hw->overrides &= ~PAUSE_FLOW_CTRL;
6391 port->force_link = 0;
6392 if (hw->ksz_switch) {
6393 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6394 SWITCH_RX_FLOW_CTRL, 1);
6395 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6396 SWITCH_TX_FLOW_CTRL, 1);
6397 }
6398 port_set_link_speed(port);
6399 } else {
6400 hw->overrides |= PAUSE_FLOW_CTRL;
6401 if (hw->ksz_switch) {
6402 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6403 SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6404 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6405 SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6406 } else
6407 set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6408 }
6409 mutex_unlock(&hw_priv->lock);
6410
6411 return 0;
6412}
6413
6414/**
6415 * netdev_get_ringparam - get tx/rx ring parameters
6416 * @dev: Network device.
6417 * @pause: Ethtool RING settings data structure.
6418 *
6419 * This procedure returns the TX/RX ring settings.
6420 */
6421static void netdev_get_ringparam(struct net_device *dev,
6422 struct ethtool_ringparam *ring)
6423{
6424 struct dev_priv *priv = netdev_priv(dev);
6425 struct dev_info *hw_priv = priv->adapter;
6426 struct ksz_hw *hw = &hw_priv->hw;
6427
6428 ring->tx_max_pending = (1 << 9);
6429 ring->tx_pending = hw->tx_desc_info.alloc;
6430 ring->rx_max_pending = (1 << 9);
6431 ring->rx_pending = hw->rx_desc_info.alloc;
6432}
6433
6434#define STATS_LEN (TOTAL_PORT_COUNTER_NUM)
6435
6436static struct {
6437 char string[ETH_GSTRING_LEN];
6438} ethtool_stats_keys[STATS_LEN] = {
6439 { "rx_lo_priority_octets" },
6440 { "rx_hi_priority_octets" },
6441 { "rx_undersize_packets" },
6442 { "rx_fragments" },
6443 { "rx_oversize_packets" },
6444 { "rx_jabbers" },
6445 { "rx_symbol_errors" },
6446 { "rx_crc_errors" },
6447 { "rx_align_errors" },
6448 { "rx_mac_ctrl_packets" },
6449 { "rx_pause_packets" },
6450 { "rx_bcast_packets" },
6451 { "rx_mcast_packets" },
6452 { "rx_ucast_packets" },
6453 { "rx_64_or_less_octet_packets" },
6454 { "rx_65_to_127_octet_packets" },
6455 { "rx_128_to_255_octet_packets" },
6456 { "rx_256_to_511_octet_packets" },
6457 { "rx_512_to_1023_octet_packets" },
6458 { "rx_1024_to_1522_octet_packets" },
6459
6460 { "tx_lo_priority_octets" },
6461 { "tx_hi_priority_octets" },
6462 { "tx_late_collisions" },
6463 { "tx_pause_packets" },
6464 { "tx_bcast_packets" },
6465 { "tx_mcast_packets" },
6466 { "tx_ucast_packets" },
6467 { "tx_deferred" },
6468 { "tx_total_collisions" },
6469 { "tx_excessive_collisions" },
6470 { "tx_single_collisions" },
6471 { "tx_mult_collisions" },
6472
6473 { "rx_discards" },
6474 { "tx_discards" },
6475};
6476
6477/**
6478 * netdev_get_strings - get statistics identity strings
6479 * @dev: Network device.
6480 * @stringset: String set identifier.
6481 * @buf: Buffer to store the strings.
6482 *
6483 * This procedure returns the strings used to identify the statistics.
6484 */
6485static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6486{
6487 struct dev_priv *priv = netdev_priv(dev);
6488 struct dev_info *hw_priv = priv->adapter;
6489 struct ksz_hw *hw = &hw_priv->hw;
6490
6491 if (ETH_SS_STATS == stringset)
6492 memcpy(buf, &ethtool_stats_keys,
6493 ETH_GSTRING_LEN * hw->mib_cnt);
6494}
6495
6496/**
6497 * netdev_get_sset_count - get statistics size
6498 * @dev: Network device.
6499 * @sset: The statistics set number.
6500 *
6501 * This function returns the size of the statistics to be reported.
6502 *
6503 * Return size of the statistics to be reported.
6504 */
6505static int netdev_get_sset_count(struct net_device *dev, int sset)
6506{
6507 struct dev_priv *priv = netdev_priv(dev);
6508 struct dev_info *hw_priv = priv->adapter;
6509 struct ksz_hw *hw = &hw_priv->hw;
6510
6511 switch (sset) {
6512 case ETH_SS_STATS:
6513 return hw->mib_cnt;
6514 default:
6515 return -EOPNOTSUPP;
6516 }
6517}
6518
6519/**
6520 * netdev_get_ethtool_stats - get network device statistics
6521 * @dev: Network device.
6522 * @stats: Ethtool statistics data structure.
6523 * @data: Buffer to store the statistics.
6524 *
6525 * This procedure returns the statistics.
6526 */
6527static void netdev_get_ethtool_stats(struct net_device *dev,
6528 struct ethtool_stats *stats, u64 *data)
6529{
6530 struct dev_priv *priv = netdev_priv(dev);
6531 struct dev_info *hw_priv = priv->adapter;
6532 struct ksz_hw *hw = &hw_priv->hw;
6533 struct ksz_port *port = &priv->port;
6534 int n_stats = stats->n_stats;
6535 int i;
6536 int n;
6537 int p;
6538 int rc;
6539 u64 counter[TOTAL_PORT_COUNTER_NUM];
6540
6541 mutex_lock(&hw_priv->lock);
6542 n = SWITCH_PORT_NUM;
6543 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6544 if (media_connected == hw->port_mib[p].state) {
6545 hw_priv->counter[p].read = 1;
6546
6547 /* Remember first port that requests read. */
6548 if (n == SWITCH_PORT_NUM)
6549 n = p;
6550 }
6551 }
6552 mutex_unlock(&hw_priv->lock);
6553
6554 if (n < SWITCH_PORT_NUM)
6555 schedule_work(&hw_priv->mib_read);
6556
6557 if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6558 p = n;
6559 rc = wait_event_interruptible_timeout(
6560 hw_priv->counter[p].counter,
6561 2 == hw_priv->counter[p].read,
6562 HZ * 1);
6563 } else
6564 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6565 if (0 == i) {
6566 rc = wait_event_interruptible_timeout(
6567 hw_priv->counter[p].counter,
6568 2 == hw_priv->counter[p].read,
6569 HZ * 2);
6570 } else if (hw->port_mib[p].cnt_ptr) {
6571 rc = wait_event_interruptible_timeout(
6572 hw_priv->counter[p].counter,
6573 2 == hw_priv->counter[p].read,
6574 HZ * 1);
6575 }
6576 }
6577
6578 get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6579 n = hw->mib_cnt;
6580 if (n > n_stats)
6581 n = n_stats;
6582 n_stats -= n;
6583 for (i = 0; i < n; i++)
6584 *data++ = counter[i];
6585}
6586
6587/**
6588 * netdev_get_rx_csum - get receive checksum support
6589 * @dev: Network device.
6590 *
6591 * This function gets receive checksum support setting.
6592 *
6593 * Return true if receive checksum is enabled; false otherwise.
6594 */
6595static u32 netdev_get_rx_csum(struct net_device *dev)
6596{
6597 struct dev_priv *priv = netdev_priv(dev);
6598 struct dev_info *hw_priv = priv->adapter;
6599 struct ksz_hw *hw = &hw_priv->hw;
6600
6601 return hw->rx_cfg &
6602 (DMA_RX_CSUM_UDP |
6603 DMA_RX_CSUM_TCP |
6604 DMA_RX_CSUM_IP);
6605}
6606
6607/**
6608 * netdev_set_rx_csum - set receive checksum support
6609 * @dev: Network device.
6610 * @data: Zero to disable receive checksum support.
6611 *
6612 * This function sets receive checksum support setting.
6613 *
6614 * Return 0 if successful; otherwise an error code.
6615 */
6616static int netdev_set_rx_csum(struct net_device *dev, u32 data)
6617{
6618 struct dev_priv *priv = netdev_priv(dev);
6619 struct dev_info *hw_priv = priv->adapter;
6620 struct ksz_hw *hw = &hw_priv->hw;
6621 u32 new_setting = hw->rx_cfg;
6622
6623 if (data)
6624 new_setting |=
6625 (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP |
6626 DMA_RX_CSUM_IP);
6627 else
6628 new_setting &=
6629 ~(DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP |
6630 DMA_RX_CSUM_IP);
6631 new_setting &= ~DMA_RX_CSUM_UDP;
6632 mutex_lock(&hw_priv->lock);
6633 if (new_setting != hw->rx_cfg) {
6634 hw->rx_cfg = new_setting;
6635 if (hw->enabled)
6636 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6637 }
6638 mutex_unlock(&hw_priv->lock);
6639 return 0;
6640}
6641
6642static struct ethtool_ops netdev_ethtool_ops = {
6643 .get_settings = netdev_get_settings,
6644 .set_settings = netdev_set_settings,
6645 .nway_reset = netdev_nway_reset,
6646 .get_link = netdev_get_link,
6647 .get_drvinfo = netdev_get_drvinfo,
6648 .get_regs_len = netdev_get_regs_len,
6649 .get_regs = netdev_get_regs,
6650 .get_wol = netdev_get_wol,
6651 .set_wol = netdev_set_wol,
6652 .get_msglevel = netdev_get_msglevel,
6653 .set_msglevel = netdev_set_msglevel,
6654 .get_eeprom_len = netdev_get_eeprom_len,
6655 .get_eeprom = netdev_get_eeprom,
6656 .set_eeprom = netdev_set_eeprom,
6657 .get_pauseparam = netdev_get_pauseparam,
6658 .set_pauseparam = netdev_set_pauseparam,
6659 .get_ringparam = netdev_get_ringparam,
6660 .get_strings = netdev_get_strings,
6661 .get_sset_count = netdev_get_sset_count,
6662 .get_ethtool_stats = netdev_get_ethtool_stats,
6663 .get_rx_csum = netdev_get_rx_csum,
6664 .set_rx_csum = netdev_set_rx_csum,
6665 .get_tx_csum = ethtool_op_get_tx_csum,
6666 .set_tx_csum = ethtool_op_set_tx_csum,
6667 .get_sg = ethtool_op_get_sg,
6668 .set_sg = ethtool_op_set_sg,
6669};
6670
6671/*
6672 * Hardware monitoring
6673 */
6674
6675static void update_link(struct net_device *dev, struct dev_priv *priv,
6676 struct ksz_port *port)
6677{
6678 if (priv->media_state != port->linked->state) {
6679 priv->media_state = port->linked->state;
0dc7d2b3
JP
6680 if (netif_running(dev))
6681 set_media_state(dev, media_connected);
8ca86fd8
TH
6682 }
6683}
6684
6685static void mib_read_work(struct work_struct *work)
6686{
6687 struct dev_info *hw_priv =
6688 container_of(work, struct dev_info, mib_read);
6689 struct ksz_hw *hw = &hw_priv->hw;
6690 struct ksz_port_mib *mib;
6691 int i;
6692
6693 next_jiffies = jiffies;
6694 for (i = 0; i < hw->mib_port_cnt; i++) {
6695 mib = &hw->port_mib[i];
6696
6697 /* Reading MIB counters or requested to read. */
6698 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6699
6700 /* Need to process receive interrupt. */
6701 if (port_r_cnt(hw, i))
6702 break;
6703 hw_priv->counter[i].read = 0;
6704
6705 /* Finish reading counters. */
6706 if (0 == mib->cnt_ptr) {
6707 hw_priv->counter[i].read = 2;
6708 wake_up_interruptible(
6709 &hw_priv->counter[i].counter);
6710 }
6711 } else if (jiffies >= hw_priv->counter[i].time) {
6712 /* Only read MIB counters when the port is connected. */
6713 if (media_connected == mib->state)
6714 hw_priv->counter[i].read = 1;
6715 next_jiffies += HZ * 1 * hw->mib_port_cnt;
6716 hw_priv->counter[i].time = next_jiffies;
6717
6718 /* Port is just disconnected. */
6719 } else if (mib->link_down) {
6720 mib->link_down = 0;
6721
6722 /* Read counters one last time after link is lost. */
6723 hw_priv->counter[i].read = 1;
6724 }
6725 }
6726}
6727
6728static void mib_monitor(unsigned long ptr)
6729{
6730 struct dev_info *hw_priv = (struct dev_info *) ptr;
6731
6732 mib_read_work(&hw_priv->mib_read);
6733
6734 /* This is used to verify Wake-on-LAN is working. */
6735 if (hw_priv->pme_wait) {
6736 if (hw_priv->pme_wait <= jiffies) {
6737 hw_clr_wol_pme_status(&hw_priv->hw);
6738 hw_priv->pme_wait = 0;
6739 }
6740 } else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6741
6742 /* PME is asserted. Wait 2 seconds to clear it. */
6743 hw_priv->pme_wait = jiffies + HZ * 2;
6744 }
6745
6746 ksz_update_timer(&hw_priv->mib_timer_info);
6747}
6748
6749/**
6750 * dev_monitor - periodic monitoring
6751 * @ptr: Network device pointer.
6752 *
6753 * This routine is run in a kernel timer to monitor the network device.
6754 */
6755static void dev_monitor(unsigned long ptr)
6756{
6757 struct net_device *dev = (struct net_device *) ptr;
6758 struct dev_priv *priv = netdev_priv(dev);
6759 struct dev_info *hw_priv = priv->adapter;
6760 struct ksz_hw *hw = &hw_priv->hw;
6761 struct ksz_port *port = &priv->port;
6762
6763 if (!(hw->features & LINK_INT_WORKING))
6764 port_get_link_speed(port);
6765 update_link(dev, priv, port);
6766
6767 ksz_update_timer(&priv->monitor_timer_info);
6768}
6769
6770/*
6771 * Linux network device interface functions
6772 */
6773
6774/* Driver exported variables */
6775
6776static int msg_enable;
6777
6778static char *macaddr = ":";
6779static char *mac1addr = ":";
6780
6781/*
6782 * This enables multiple network device mode for KSZ8842, which contains a
6783 * switch with two physical ports. Some users like to take control of the
6784 * ports for running Spanning Tree Protocol. The driver will create an
6785 * additional eth? device for the other port.
6786 *
6787 * Some limitations are the network devices cannot have different MTU and
6788 * multicast hash tables.
6789 */
6790static int multi_dev;
6791
6792/*
6793 * As most users select multiple network device mode to use Spanning Tree
6794 * Protocol, this enables a feature in which most unicast and multicast packets
6795 * are forwarded inside the switch and not passed to the host. Only packets
6796 * that need the host's attention are passed to it. This prevents the host
6797 * wasting CPU time to examine each and every incoming packets and do the
6798 * forwarding itself.
6799 *
6800 * As the hack requires the private bridge header, the driver cannot compile
6801 * with just the kernel headers.
6802 *
6803 * Enabling STP support also turns on multiple network device mode.
6804 */
6805static int stp;
6806
6807/*
6808 * This enables fast aging in the KSZ8842 switch. Not sure what situation
6809 * needs that. However, fast aging is used to flush the dynamic MAC table when
6810 * STP suport is enabled.
6811 */
6812static int fast_aging;
6813
6814/**
6815 * netdev_init - initalize network device.
6816 * @dev: Network device.
6817 *
6818 * This function initializes the network device.
6819 *
6820 * Return 0 if successful; otherwise an error code indicating failure.
6821 */
6822static int __init netdev_init(struct net_device *dev)
6823{
6824 struct dev_priv *priv = netdev_priv(dev);
6825
6826 /* 500 ms timeout */
6827 ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6828 dev_monitor, dev);
6829
6830 /* 500 ms timeout */
6831 dev->watchdog_timeo = HZ / 2;
6832
6833 dev->features |= NETIF_F_IP_CSUM;
6834
6835 /*
6836 * Hardware does not really support IPv6 checksum generation, but
6837 * driver actually runs faster with this on. Refer IPV6_CSUM_GEN_HACK.
6838 */
6839 dev->features |= NETIF_F_IPV6_CSUM;
6840 dev->features |= NETIF_F_SG;
6841
6842 sema_init(&priv->proc_sem, 1);
6843
6844 priv->mii_if.phy_id_mask = 0x1;
6845 priv->mii_if.reg_num_mask = 0x7;
6846 priv->mii_if.dev = dev;
6847 priv->mii_if.mdio_read = mdio_read;
6848 priv->mii_if.mdio_write = mdio_write;
6849 priv->mii_if.phy_id = priv->port.first_port + 1;
6850
6851 priv->msg_enable = netif_msg_init(msg_enable,
6852 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6853
6854 return 0;
6855}
6856
6857static const struct net_device_ops netdev_ops = {
6858 .ndo_init = netdev_init,
6859 .ndo_open = netdev_open,
6860 .ndo_stop = netdev_close,
6861 .ndo_get_stats = netdev_query_statistics,
6862 .ndo_start_xmit = netdev_tx,
6863 .ndo_tx_timeout = netdev_tx_timeout,
6864 .ndo_change_mtu = netdev_change_mtu,
6865 .ndo_set_mac_address = netdev_set_mac_address,
6866 .ndo_do_ioctl = netdev_ioctl,
6867 .ndo_set_rx_mode = netdev_set_rx_mode,
6868#ifdef CONFIG_NET_POLL_CONTROLLER
6869 .ndo_poll_controller = netdev_netpoll,
6870#endif
6871};
6872
6873static void netdev_free(struct net_device *dev)
6874{
6875 if (dev->watchdog_timeo)
6876 unregister_netdev(dev);
6877
6878 free_netdev(dev);
6879}
6880
6881struct platform_info {
6882 struct dev_info dev_info;
6883 struct net_device *netdev[SWITCH_PORT_NUM];
6884};
6885
6886static int net_device_present;
6887
6888static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6889{
6890 int i;
6891 int j;
6892 int got_num;
6893 int num;
6894
6895 i = j = num = got_num = 0;
6896 while (j < MAC_ADDR_LEN) {
6897 if (macaddr[i]) {
6898 got_num = 1;
6899 if ('0' <= macaddr[i] && macaddr[i] <= '9')
6900 num = num * 16 + macaddr[i] - '0';
6901 else if ('A' <= macaddr[i] && macaddr[i] <= 'F')
6902 num = num * 16 + 10 + macaddr[i] - 'A';
6903 else if ('a' <= macaddr[i] && macaddr[i] <= 'f')
6904 num = num * 16 + 10 + macaddr[i] - 'a';
6905 else if (':' == macaddr[i])
6906 got_num = 2;
6907 else
6908 break;
6909 } else if (got_num)
6910 got_num = 2;
6911 else
6912 break;
6913 if (2 == got_num) {
6914 if (MAIN_PORT == port) {
6915 hw_priv->hw.override_addr[j++] = (u8) num;
6916 hw_priv->hw.override_addr[5] +=
6917 hw_priv->hw.id;
6918 } else {
6919 hw_priv->hw.ksz_switch->other_addr[j++] =
6920 (u8) num;
6921 hw_priv->hw.ksz_switch->other_addr[5] +=
6922 hw_priv->hw.id;
6923 }
6924 num = got_num = 0;
6925 }
6926 i++;
6927 }
6928 if (MAC_ADDR_LEN == j) {
6929 if (MAIN_PORT == port)
6930 hw_priv->hw.mac_override = 1;
6931 }
6932}
6933
6934#define KS884X_DMA_MASK (~0x0UL)
6935
6936static void read_other_addr(struct ksz_hw *hw)
6937{
6938 int i;
6939 u16 data[3];
6940 struct ksz_switch *sw = hw->ksz_switch;
6941
6942 for (i = 0; i < 3; i++)
6943 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6944 if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6945 sw->other_addr[5] = (u8) data[0];
6946 sw->other_addr[4] = (u8)(data[0] >> 8);
6947 sw->other_addr[3] = (u8) data[1];
6948 sw->other_addr[2] = (u8)(data[1] >> 8);
6949 sw->other_addr[1] = (u8) data[2];
6950 sw->other_addr[0] = (u8)(data[2] >> 8);
6951 }
6952}
6953
6954#ifndef PCI_VENDOR_ID_MICREL_KS
6955#define PCI_VENDOR_ID_MICREL_KS 0x16c6
6956#endif
6957
6958static int __init pcidev_init(struct pci_dev *pdev,
6959 const struct pci_device_id *id)
6960{
6961 struct net_device *dev;
6962 struct dev_priv *priv;
6963 struct dev_info *hw_priv;
6964 struct ksz_hw *hw;
6965 struct platform_info *info;
6966 struct ksz_port *port;
6967 unsigned long reg_base;
6968 unsigned long reg_len;
6969 int cnt;
6970 int i;
6971 int mib_port_count;
6972 int pi;
6973 int port_count;
6974 int result;
0dc7d2b3 6975 char banner[sizeof(version)];
8ca86fd8
TH
6976 struct ksz_switch *sw = NULL;
6977
6978 result = pci_enable_device(pdev);
6979 if (result)
6980 return result;
6981
6982 result = -ENODEV;
6983
6984 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6985 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6986 return result;
6987
6988 reg_base = pci_resource_start(pdev, 0);
6989 reg_len = pci_resource_len(pdev, 0);
6990 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6991 return result;
6992
6993 if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6994 return result;
6995 pci_set_master(pdev);
6996
6997 result = -ENOMEM;
6998
0dc7d2b3 6999 info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
8ca86fd8
TH
7000 if (!info)
7001 goto pcidev_init_dev_err;
8ca86fd8
TH
7002
7003 hw_priv = &info->dev_info;
7004 hw_priv->pdev = pdev;
7005
7006 hw = &hw_priv->hw;
7007
7008 hw->io = ioremap(reg_base, reg_len);
7009 if (!hw->io)
7010 goto pcidev_init_io_err;
7011
7012 cnt = hw_init(hw);
7013 if (!cnt) {
7014 if (msg_enable & NETIF_MSG_PROBE)
0dc7d2b3 7015 pr_alert("chip not detected\n");
8ca86fd8
TH
7016 result = -ENODEV;
7017 goto pcidev_init_alloc_err;
7018 }
7019
0dc7d2b3
JP
7020 snprintf(banner, sizeof(banner), "%s", version);
7021 banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */
7022 dev_info(&hw_priv->pdev->dev, "%s\n", banner);
7023 dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
8ca86fd8
TH
7024
7025 /* Assume device is KSZ8841. */
7026 hw->dev_count = 1;
7027 port_count = 1;
7028 mib_port_count = 1;
7029 hw->addr_list_size = 0;
7030 hw->mib_cnt = PORT_COUNTER_NUM;
7031 hw->mib_port_cnt = 1;
7032
7033 /* KSZ8842 has a switch with multiple ports. */
7034 if (2 == cnt) {
7035 if (fast_aging)
7036 hw->overrides |= FAST_AGING;
7037
7038 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7039
7040 /* Multiple network device interfaces are required. */
7041 if (multi_dev) {
7042 hw->dev_count = SWITCH_PORT_NUM;
7043 hw->addr_list_size = SWITCH_PORT_NUM - 1;
7044 }
7045
7046 /* Single network device has multiple ports. */
7047 if (1 == hw->dev_count) {
7048 port_count = SWITCH_PORT_NUM;
7049 mib_port_count = SWITCH_PORT_NUM;
7050 }
7051 hw->mib_port_cnt = TOTAL_PORT_NUM;
7052 hw->ksz_switch = kmalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7053 if (!hw->ksz_switch)
7054 goto pcidev_init_alloc_err;
7055 memset(hw->ksz_switch, 0, sizeof(struct ksz_switch));
7056
7057 sw = hw->ksz_switch;
7058 }
7059 for (i = 0; i < hw->mib_port_cnt; i++)
7060 hw->port_mib[i].mib_start = 0;
7061
7062 hw->parent = hw_priv;
7063
7064 /* Default MTU is 1500. */
7065 hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7066
7067 if (ksz_alloc_mem(hw_priv))
7068 goto pcidev_init_mem_err;
7069
7070 hw_priv->hw.id = net_device_present;
7071
7072 spin_lock_init(&hw_priv->hwlock);
7073 mutex_init(&hw_priv->lock);
7074
7075 /* tasklet is enabled. */
7076 tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
7077 (unsigned long) hw_priv);
7078 tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
7079 (unsigned long) hw_priv);
7080
7081 /* tasklet_enable will decrement the atomic counter. */
7082 tasklet_disable(&hw_priv->rx_tasklet);
7083 tasklet_disable(&hw_priv->tx_tasklet);
7084
7085 for (i = 0; i < TOTAL_PORT_NUM; i++)
7086 init_waitqueue_head(&hw_priv->counter[i].counter);
7087
7088 if (macaddr[0] != ':')
7089 get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7090
7091 /* Read MAC address and initialize override address if not overrided. */
7092 hw_read_addr(hw);
7093
7094 /* Multiple device interfaces mode requires a second MAC address. */
7095 if (hw->dev_count > 1) {
7096 memcpy(sw->other_addr, hw->override_addr, MAC_ADDR_LEN);
7097 read_other_addr(hw);
7098 if (mac1addr[0] != ':')
7099 get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7100 }
7101
7102 hw_setup(hw);
7103 if (hw->ksz_switch)
7104 sw_setup(hw);
7105 else {
7106 hw_priv->wol_support = WOL_SUPPORT;
7107 hw_priv->wol_enable = 0;
7108 }
7109
7110 INIT_WORK(&hw_priv->mib_read, mib_read_work);
7111
7112 /* 500 ms timeout */
7113 ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7114 mib_monitor, hw_priv);
7115
7116 for (i = 0; i < hw->dev_count; i++) {
7117 dev = alloc_etherdev(sizeof(struct dev_priv));
7118 if (!dev)
7119 goto pcidev_init_reg_err;
7120 info->netdev[i] = dev;
7121
7122 priv = netdev_priv(dev);
7123 priv->adapter = hw_priv;
7124 priv->id = net_device_present++;
7125
7126 port = &priv->port;
7127 port->port_cnt = port_count;
7128 port->mib_port_cnt = mib_port_count;
7129 port->first_port = i;
7130 port->flow_ctrl = PHY_FLOW_CTRL;
7131
7132 port->hw = hw;
7133 port->linked = &hw->port_info[port->first_port];
7134
7135 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7136 hw->port_info[pi].port_id = pi;
7137 hw->port_info[pi].pdev = dev;
7138 hw->port_info[pi].state = media_disconnected;
7139 }
7140
7141 dev->mem_start = (unsigned long) hw->io;
7142 dev->mem_end = dev->mem_start + reg_len - 1;
7143 dev->irq = pdev->irq;
7144 if (MAIN_PORT == i)
7145 memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7146 MAC_ADDR_LEN);
7147 else {
7148 memcpy(dev->dev_addr, sw->other_addr,
7149 MAC_ADDR_LEN);
7150 if (!memcmp(sw->other_addr, hw->override_addr,
7151 MAC_ADDR_LEN))
7152 dev->dev_addr[5] += port->first_port;
7153 }
7154
7155 dev->netdev_ops = &netdev_ops;
7156 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7157 if (register_netdev(dev))
7158 goto pcidev_init_reg_err;
7159 port_set_power_saving(port, true);
7160 }
7161
7162 pci_dev_get(hw_priv->pdev);
7163 pci_set_drvdata(pdev, info);
7164 return 0;
7165
7166pcidev_init_reg_err:
7167 for (i = 0; i < hw->dev_count; i++) {
7168 if (info->netdev[i]) {
7169 netdev_free(info->netdev[i]);
7170 info->netdev[i] = NULL;
7171 }
7172 }
7173
7174pcidev_init_mem_err:
7175 ksz_free_mem(hw_priv);
7176 kfree(hw->ksz_switch);
7177
7178pcidev_init_alloc_err:
7179 iounmap(hw->io);
7180
7181pcidev_init_io_err:
7182 kfree(info);
7183
7184pcidev_init_dev_err:
7185 release_mem_region(reg_base, reg_len);
7186
7187 return result;
7188}
7189
7190static void pcidev_exit(struct pci_dev *pdev)
7191{
7192 int i;
7193 struct platform_info *info = pci_get_drvdata(pdev);
7194 struct dev_info *hw_priv = &info->dev_info;
7195
7196 pci_set_drvdata(pdev, NULL);
7197
7198 release_mem_region(pci_resource_start(pdev, 0),
7199 pci_resource_len(pdev, 0));
7200 for (i = 0; i < hw_priv->hw.dev_count; i++) {
7201 if (info->netdev[i])
7202 netdev_free(info->netdev[i]);
7203 }
7204 if (hw_priv->hw.io)
7205 iounmap(hw_priv->hw.io);
7206 ksz_free_mem(hw_priv);
7207 kfree(hw_priv->hw.ksz_switch);
7208 pci_dev_put(hw_priv->pdev);
7209 kfree(info);
7210}
7211
7212#ifdef CONFIG_PM
7213static int pcidev_resume(struct pci_dev *pdev)
7214{
7215 int i;
7216 struct platform_info *info = pci_get_drvdata(pdev);
7217 struct dev_info *hw_priv = &info->dev_info;
7218 struct ksz_hw *hw = &hw_priv->hw;
7219
7220 pci_set_power_state(pdev, PCI_D0);
7221 pci_restore_state(pdev);
7222 pci_enable_wake(pdev, PCI_D0, 0);
7223
7224 if (hw_priv->wol_enable)
7225 hw_cfg_wol_pme(hw, 0);
7226 for (i = 0; i < hw->dev_count; i++) {
7227 if (info->netdev[i]) {
7228 struct net_device *dev = info->netdev[i];
7229
7230 if (netif_running(dev)) {
7231 netdev_open(dev);
7232 netif_device_attach(dev);
7233 }
7234 }
7235 }
7236 return 0;
7237}
7238
7239static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7240{
7241 int i;
7242 struct platform_info *info = pci_get_drvdata(pdev);
7243 struct dev_info *hw_priv = &info->dev_info;
7244 struct ksz_hw *hw = &hw_priv->hw;
7245
7246 /* Need to find a way to retrieve the device IP address. */
7247 u8 net_addr[] = { 192, 168, 1, 1 };
7248
7249 for (i = 0; i < hw->dev_count; i++) {
7250 if (info->netdev[i]) {
7251 struct net_device *dev = info->netdev[i];
7252
7253 if (netif_running(dev)) {
7254 netif_device_detach(dev);
7255 netdev_close(dev);
7256 }
7257 }
7258 }
7259 if (hw_priv->wol_enable) {
7260 hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7261 hw_cfg_wol_pme(hw, 1);
7262 }
7263
7264 pci_save_state(pdev);
7265 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7266 pci_set_power_state(pdev, pci_choose_state(pdev, state));
7267 return 0;
7268}
7269#endif
7270
7271static char pcidev_name[] = "ksz884xp";
7272
7273static struct pci_device_id pcidev_table[] = {
7274 { PCI_VENDOR_ID_MICREL_KS, 0x8841,
7275 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7276 { PCI_VENDOR_ID_MICREL_KS, 0x8842,
7277 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7278 { 0 }
7279};
7280
7281MODULE_DEVICE_TABLE(pci, pcidev_table);
7282
7283static struct pci_driver pci_device_driver = {
7284#ifdef CONFIG_PM
7285 .suspend = pcidev_suspend,
7286 .resume = pcidev_resume,
7287#endif
7288 .name = pcidev_name,
7289 .id_table = pcidev_table,
7290 .probe = pcidev_init,
7291 .remove = pcidev_exit
7292};
7293
7294static int __init ksz884x_init_module(void)
7295{
7296 return pci_register_driver(&pci_device_driver);
7297}
7298
7299static void __exit ksz884x_cleanup_module(void)
7300{
7301 pci_unregister_driver(&pci_device_driver);
7302}
7303
7304module_init(ksz884x_init_module);
7305module_exit(ksz884x_cleanup_module);
7306
7307MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7308MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7309MODULE_LICENSE("GPL");
7310
7311module_param_named(message, msg_enable, int, 0);
7312MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7313
7314module_param(macaddr, charp, 0);
7315module_param(mac1addr, charp, 0);
7316module_param(fast_aging, int, 0);
7317module_param(multi_dev, int, 0);
7318module_param(stp, int, 0);
7319MODULE_PARM_DESC(macaddr, "MAC address");
7320MODULE_PARM_DESC(mac1addr, "Second MAC address");
7321MODULE_PARM_DESC(fast_aging, "Fast aging");
7322MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7323MODULE_PARM_DESC(stp, "STP support");