]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/ksz884x.c
stmmac: update the driver version
[net-next-2.6.git] / drivers / net / ksz884x.c
CommitLineData
8ca86fd8
TH
1/**
2 * drivers/net/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
3 *
4 * Copyright (c) 2009-2010 Micrel, Inc.
5 * Tristram Ha <Tristram.Ha@micrel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
0dc7d2b3
JP
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
8ca86fd8
TH
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
8ca86fd8
TH
22#include <linux/ioport.h>
23#include <linux/pci.h>
24#include <linux/proc_fs.h>
25#include <linux/mii.h>
26#include <linux/platform_device.h>
27#include <linux/ethtool.h>
28#include <linux/etherdevice.h>
29#include <linux/in.h>
30#include <linux/ip.h>
31#include <linux/if_vlan.h>
32#include <linux/crc32.h>
33#include <linux/sched.h>
5a0e3ad6 34#include <linux/slab.h>
8ca86fd8
TH
35
36
37/* DMA Registers */
38
39#define KS_DMA_TX_CTRL 0x0000
40#define DMA_TX_ENABLE 0x00000001
41#define DMA_TX_CRC_ENABLE 0x00000002
42#define DMA_TX_PAD_ENABLE 0x00000004
43#define DMA_TX_LOOPBACK 0x00000100
44#define DMA_TX_FLOW_ENABLE 0x00000200
45#define DMA_TX_CSUM_IP 0x00010000
46#define DMA_TX_CSUM_TCP 0x00020000
47#define DMA_TX_CSUM_UDP 0x00040000
48#define DMA_TX_BURST_SIZE 0x3F000000
49
50#define KS_DMA_RX_CTRL 0x0004
51#define DMA_RX_ENABLE 0x00000001
52#define KS884X_DMA_RX_MULTICAST 0x00000002
53#define DMA_RX_PROMISCUOUS 0x00000004
54#define DMA_RX_ERROR 0x00000008
55#define DMA_RX_UNICAST 0x00000010
56#define DMA_RX_ALL_MULTICAST 0x00000020
57#define DMA_RX_BROADCAST 0x00000040
58#define DMA_RX_FLOW_ENABLE 0x00000200
59#define DMA_RX_CSUM_IP 0x00010000
60#define DMA_RX_CSUM_TCP 0x00020000
61#define DMA_RX_CSUM_UDP 0x00040000
62#define DMA_RX_BURST_SIZE 0x3F000000
63
64#define DMA_BURST_SHIFT 24
65#define DMA_BURST_DEFAULT 8
66
67#define KS_DMA_TX_START 0x0008
68#define KS_DMA_RX_START 0x000C
69#define DMA_START 0x00000001
70
71#define KS_DMA_TX_ADDR 0x0010
72#define KS_DMA_RX_ADDR 0x0014
73
74#define DMA_ADDR_LIST_MASK 0xFFFFFFFC
75#define DMA_ADDR_LIST_SHIFT 2
76
77/* MTR0 */
78#define KS884X_MULTICAST_0_OFFSET 0x0020
79#define KS884X_MULTICAST_1_OFFSET 0x0021
80#define KS884X_MULTICAST_2_OFFSET 0x0022
81#define KS884x_MULTICAST_3_OFFSET 0x0023
82/* MTR1 */
83#define KS884X_MULTICAST_4_OFFSET 0x0024
84#define KS884X_MULTICAST_5_OFFSET 0x0025
85#define KS884X_MULTICAST_6_OFFSET 0x0026
86#define KS884X_MULTICAST_7_OFFSET 0x0027
87
88/* Interrupt Registers */
89
90/* INTEN */
91#define KS884X_INTERRUPTS_ENABLE 0x0028
92/* INTST */
93#define KS884X_INTERRUPTS_STATUS 0x002C
94
95#define KS884X_INT_RX_STOPPED 0x02000000
96#define KS884X_INT_TX_STOPPED 0x04000000
97#define KS884X_INT_RX_OVERRUN 0x08000000
98#define KS884X_INT_TX_EMPTY 0x10000000
99#define KS884X_INT_RX 0x20000000
100#define KS884X_INT_TX 0x40000000
101#define KS884X_INT_PHY 0x80000000
102
103#define KS884X_INT_RX_MASK \
104 (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
105#define KS884X_INT_TX_MASK \
106 (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
107#define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
108
109/* MAC Additional Station Address */
110
111/* MAAL0 */
112#define KS_ADD_ADDR_0_LO 0x0080
113/* MAAH0 */
114#define KS_ADD_ADDR_0_HI 0x0084
115/* MAAL1 */
116#define KS_ADD_ADDR_1_LO 0x0088
117/* MAAH1 */
118#define KS_ADD_ADDR_1_HI 0x008C
119/* MAAL2 */
120#define KS_ADD_ADDR_2_LO 0x0090
121/* MAAH2 */
122#define KS_ADD_ADDR_2_HI 0x0094
123/* MAAL3 */
124#define KS_ADD_ADDR_3_LO 0x0098
125/* MAAH3 */
126#define KS_ADD_ADDR_3_HI 0x009C
127/* MAAL4 */
128#define KS_ADD_ADDR_4_LO 0x00A0
129/* MAAH4 */
130#define KS_ADD_ADDR_4_HI 0x00A4
131/* MAAL5 */
132#define KS_ADD_ADDR_5_LO 0x00A8
133/* MAAH5 */
134#define KS_ADD_ADDR_5_HI 0x00AC
135/* MAAL6 */
136#define KS_ADD_ADDR_6_LO 0x00B0
137/* MAAH6 */
138#define KS_ADD_ADDR_6_HI 0x00B4
139/* MAAL7 */
140#define KS_ADD_ADDR_7_LO 0x00B8
141/* MAAH7 */
142#define KS_ADD_ADDR_7_HI 0x00BC
143/* MAAL8 */
144#define KS_ADD_ADDR_8_LO 0x00C0
145/* MAAH8 */
146#define KS_ADD_ADDR_8_HI 0x00C4
147/* MAAL9 */
148#define KS_ADD_ADDR_9_LO 0x00C8
149/* MAAH9 */
150#define KS_ADD_ADDR_9_HI 0x00CC
151/* MAAL10 */
152#define KS_ADD_ADDR_A_LO 0x00D0
153/* MAAH10 */
154#define KS_ADD_ADDR_A_HI 0x00D4
155/* MAAL11 */
156#define KS_ADD_ADDR_B_LO 0x00D8
157/* MAAH11 */
158#define KS_ADD_ADDR_B_HI 0x00DC
159/* MAAL12 */
160#define KS_ADD_ADDR_C_LO 0x00E0
161/* MAAH12 */
162#define KS_ADD_ADDR_C_HI 0x00E4
163/* MAAL13 */
164#define KS_ADD_ADDR_D_LO 0x00E8
165/* MAAH13 */
166#define KS_ADD_ADDR_D_HI 0x00EC
167/* MAAL14 */
168#define KS_ADD_ADDR_E_LO 0x00F0
169/* MAAH14 */
170#define KS_ADD_ADDR_E_HI 0x00F4
171/* MAAL15 */
172#define KS_ADD_ADDR_F_LO 0x00F8
173/* MAAH15 */
174#define KS_ADD_ADDR_F_HI 0x00FC
175
176#define ADD_ADDR_HI_MASK 0x0000FFFF
177#define ADD_ADDR_ENABLE 0x80000000
178#define ADD_ADDR_INCR 8
179
180/* Miscellaneous Registers */
181
182/* MARL */
183#define KS884X_ADDR_0_OFFSET 0x0200
184#define KS884X_ADDR_1_OFFSET 0x0201
185/* MARM */
186#define KS884X_ADDR_2_OFFSET 0x0202
187#define KS884X_ADDR_3_OFFSET 0x0203
188/* MARH */
189#define KS884X_ADDR_4_OFFSET 0x0204
190#define KS884X_ADDR_5_OFFSET 0x0205
191
192/* OBCR */
193#define KS884X_BUS_CTRL_OFFSET 0x0210
194
195#define BUS_SPEED_125_MHZ 0x0000
196#define BUS_SPEED_62_5_MHZ 0x0001
197#define BUS_SPEED_41_66_MHZ 0x0002
198#define BUS_SPEED_25_MHZ 0x0003
199
200/* EEPCR */
201#define KS884X_EEPROM_CTRL_OFFSET 0x0212
202
203#define EEPROM_CHIP_SELECT 0x0001
204#define EEPROM_SERIAL_CLOCK 0x0002
205#define EEPROM_DATA_OUT 0x0004
206#define EEPROM_DATA_IN 0x0008
207#define EEPROM_ACCESS_ENABLE 0x0010
208
209/* MBIR */
210#define KS884X_MEM_INFO_OFFSET 0x0214
211
212#define RX_MEM_TEST_FAILED 0x0008
213#define RX_MEM_TEST_FINISHED 0x0010
214#define TX_MEM_TEST_FAILED 0x0800
215#define TX_MEM_TEST_FINISHED 0x1000
216
217/* GCR */
218#define KS884X_GLOBAL_CTRL_OFFSET 0x0216
219#define GLOBAL_SOFTWARE_RESET 0x0001
220
221#define KS8841_POWER_MANAGE_OFFSET 0x0218
222
223/* WFCR */
224#define KS8841_WOL_CTRL_OFFSET 0x021A
225#define KS8841_WOL_MAGIC_ENABLE 0x0080
226#define KS8841_WOL_FRAME3_ENABLE 0x0008
227#define KS8841_WOL_FRAME2_ENABLE 0x0004
228#define KS8841_WOL_FRAME1_ENABLE 0x0002
229#define KS8841_WOL_FRAME0_ENABLE 0x0001
230
231/* WF0 */
232#define KS8841_WOL_FRAME_CRC_OFFSET 0x0220
233#define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224
234#define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228
235
236/* IACR */
237#define KS884X_IACR_P 0x04A0
238#define KS884X_IACR_OFFSET KS884X_IACR_P
239
240/* IADR1 */
241#define KS884X_IADR1_P 0x04A2
242#define KS884X_IADR2_P 0x04A4
243#define KS884X_IADR3_P 0x04A6
244#define KS884X_IADR4_P 0x04A8
245#define KS884X_IADR5_P 0x04AA
246
247#define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P
248#define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1)
249
250#define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P
251#define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1)
252#define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P
253#define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1)
254#define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P
255#define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1)
256#define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P
257#define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1)
258#define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P
259
260/* P1MBCR */
261#define KS884X_P1MBCR_P 0x04D0
262#define KS884X_P1MBSR_P 0x04D2
263#define KS884X_PHY1ILR_P 0x04D4
264#define KS884X_PHY1IHR_P 0x04D6
265#define KS884X_P1ANAR_P 0x04D8
266#define KS884X_P1ANLPR_P 0x04DA
267
268/* P2MBCR */
269#define KS884X_P2MBCR_P 0x04E0
270#define KS884X_P2MBSR_P 0x04E2
271#define KS884X_PHY2ILR_P 0x04E4
272#define KS884X_PHY2IHR_P 0x04E6
273#define KS884X_P2ANAR_P 0x04E8
274#define KS884X_P2ANLPR_P 0x04EA
275
276#define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P
277#define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
278
279#define KS884X_PHY_CTRL_OFFSET 0x00
280
281/* Mode Control Register */
282#define PHY_REG_CTRL 0
283
284#define PHY_RESET 0x8000
285#define PHY_LOOPBACK 0x4000
286#define PHY_SPEED_100MBIT 0x2000
287#define PHY_AUTO_NEG_ENABLE 0x1000
288#define PHY_POWER_DOWN 0x0800
289#define PHY_MII_DISABLE 0x0400
290#define PHY_AUTO_NEG_RESTART 0x0200
291#define PHY_FULL_DUPLEX 0x0100
292#define PHY_COLLISION_TEST 0x0080
293#define PHY_HP_MDIX 0x0020
294#define PHY_FORCE_MDIX 0x0010
295#define PHY_AUTO_MDIX_DISABLE 0x0008
296#define PHY_REMOTE_FAULT_DISABLE 0x0004
297#define PHY_TRANSMIT_DISABLE 0x0002
298#define PHY_LED_DISABLE 0x0001
299
300#define KS884X_PHY_STATUS_OFFSET 0x02
301
302/* Mode Status Register */
303#define PHY_REG_STATUS 1
304
305#define PHY_100BT4_CAPABLE 0x8000
306#define PHY_100BTX_FD_CAPABLE 0x4000
307#define PHY_100BTX_CAPABLE 0x2000
308#define PHY_10BT_FD_CAPABLE 0x1000
309#define PHY_10BT_CAPABLE 0x0800
310#define PHY_MII_SUPPRESS_CAPABLE 0x0040
311#define PHY_AUTO_NEG_ACKNOWLEDGE 0x0020
312#define PHY_REMOTE_FAULT 0x0010
313#define PHY_AUTO_NEG_CAPABLE 0x0008
314#define PHY_LINK_STATUS 0x0004
315#define PHY_JABBER_DETECT 0x0002
316#define PHY_EXTENDED_CAPABILITY 0x0001
317
318#define KS884X_PHY_ID_1_OFFSET 0x04
319#define KS884X_PHY_ID_2_OFFSET 0x06
320
321/* PHY Identifier Registers */
322#define PHY_REG_ID_1 2
323#define PHY_REG_ID_2 3
324
325#define KS884X_PHY_AUTO_NEG_OFFSET 0x08
326
327/* Auto-Negotiation Advertisement Register */
328#define PHY_REG_AUTO_NEGOTIATION 4
329
330#define PHY_AUTO_NEG_NEXT_PAGE 0x8000
331#define PHY_AUTO_NEG_REMOTE_FAULT 0x2000
332/* Not supported. */
333#define PHY_AUTO_NEG_ASYM_PAUSE 0x0800
334#define PHY_AUTO_NEG_SYM_PAUSE 0x0400
335#define PHY_AUTO_NEG_100BT4 0x0200
336#define PHY_AUTO_NEG_100BTX_FD 0x0100
337#define PHY_AUTO_NEG_100BTX 0x0080
338#define PHY_AUTO_NEG_10BT_FD 0x0040
339#define PHY_AUTO_NEG_10BT 0x0020
340#define PHY_AUTO_NEG_SELECTOR 0x001F
341#define PHY_AUTO_NEG_802_3 0x0001
342
343#define PHY_AUTO_NEG_PAUSE (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
344
345#define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A
346
347/* Auto-Negotiation Link Partner Ability Register */
348#define PHY_REG_REMOTE_CAPABILITY 5
349
350#define PHY_REMOTE_NEXT_PAGE 0x8000
351#define PHY_REMOTE_ACKNOWLEDGE 0x4000
352#define PHY_REMOTE_REMOTE_FAULT 0x2000
353#define PHY_REMOTE_SYM_PAUSE 0x0400
354#define PHY_REMOTE_100BTX_FD 0x0100
355#define PHY_REMOTE_100BTX 0x0080
356#define PHY_REMOTE_10BT_FD 0x0040
357#define PHY_REMOTE_10BT 0x0020
358
359/* P1VCT */
360#define KS884X_P1VCT_P 0x04F0
361#define KS884X_P1PHYCTRL_P 0x04F2
362
363/* P2VCT */
364#define KS884X_P2VCT_P 0x04F4
365#define KS884X_P2PHYCTRL_P 0x04F6
366
367#define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P
368#define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P)
369
370#define KS884X_PHY_LINK_MD_OFFSET 0x00
371
372#define PHY_START_CABLE_DIAG 0x8000
373#define PHY_CABLE_DIAG_RESULT 0x6000
374#define PHY_CABLE_STAT_NORMAL 0x0000
375#define PHY_CABLE_STAT_OPEN 0x2000
376#define PHY_CABLE_STAT_SHORT 0x4000
377#define PHY_CABLE_STAT_FAILED 0x6000
378#define PHY_CABLE_10M_SHORT 0x1000
379#define PHY_CABLE_FAULT_COUNTER 0x01FF
380
381#define KS884X_PHY_PHY_CTRL_OFFSET 0x02
382
383#define PHY_STAT_REVERSED_POLARITY 0x0020
384#define PHY_STAT_MDIX 0x0010
385#define PHY_FORCE_LINK 0x0008
386#define PHY_POWER_SAVING_DISABLE 0x0004
387#define PHY_REMOTE_LOOPBACK 0x0002
388
389/* SIDER */
390#define KS884X_SIDER_P 0x0400
391#define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P
392#define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1)
393
394#define REG_FAMILY_ID 0x88
395
396#define REG_CHIP_ID_41 0x8810
397#define REG_CHIP_ID_42 0x8800
398
399#define KS884X_CHIP_ID_MASK_41 0xFF10
400#define KS884X_CHIP_ID_MASK 0xFFF0
401#define KS884X_CHIP_ID_SHIFT 4
402#define KS884X_REVISION_MASK 0x000E
403#define KS884X_REVISION_SHIFT 1
404#define KS8842_START 0x0001
405
406#define CHIP_IP_41_M 0x8810
407#define CHIP_IP_42_M 0x8800
408#define CHIP_IP_61_M 0x8890
409#define CHIP_IP_62_M 0x8880
410
411#define CHIP_IP_41_P 0x8850
412#define CHIP_IP_42_P 0x8840
413#define CHIP_IP_61_P 0x88D0
414#define CHIP_IP_62_P 0x88C0
415
416/* SGCR1 */
417#define KS8842_SGCR1_P 0x0402
418#define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P
419
420#define SWITCH_PASS_ALL 0x8000
421#define SWITCH_TX_FLOW_CTRL 0x2000
422#define SWITCH_RX_FLOW_CTRL 0x1000
423#define SWITCH_CHECK_LENGTH 0x0800
424#define SWITCH_AGING_ENABLE 0x0400
425#define SWITCH_FAST_AGING 0x0200
426#define SWITCH_AGGR_BACKOFF 0x0100
427#define SWITCH_PASS_PAUSE 0x0008
428#define SWITCH_LINK_AUTO_AGING 0x0001
429
430/* SGCR2 */
431#define KS8842_SGCR2_P 0x0404
432#define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P
433
434#define SWITCH_VLAN_ENABLE 0x8000
435#define SWITCH_IGMP_SNOOP 0x4000
436#define IPV6_MLD_SNOOP_ENABLE 0x2000
437#define IPV6_MLD_SNOOP_OPTION 0x1000
438#define PRIORITY_SCHEME_SELECT 0x0800
439#define SWITCH_MIRROR_RX_TX 0x0100
440#define UNICAST_VLAN_BOUNDARY 0x0080
441#define MULTICAST_STORM_DISABLE 0x0040
442#define SWITCH_BACK_PRESSURE 0x0020
443#define FAIR_FLOW_CTRL 0x0010
444#define NO_EXC_COLLISION_DROP 0x0008
445#define SWITCH_HUGE_PACKET 0x0004
446#define SWITCH_LEGAL_PACKET 0x0002
447#define SWITCH_BUF_RESERVE 0x0001
448
449/* SGCR3 */
450#define KS8842_SGCR3_P 0x0406
451#define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P
452
453#define BROADCAST_STORM_RATE_LO 0xFF00
454#define SWITCH_REPEATER 0x0080
455#define SWITCH_HALF_DUPLEX 0x0040
456#define SWITCH_FLOW_CTRL 0x0020
457#define SWITCH_10_MBIT 0x0010
458#define SWITCH_REPLACE_NULL_VID 0x0008
459#define BROADCAST_STORM_RATE_HI 0x0007
460
461#define BROADCAST_STORM_RATE 0x07FF
462
463/* SGCR4 */
464#define KS8842_SGCR4_P 0x0408
465
466/* SGCR5 */
467#define KS8842_SGCR5_P 0x040A
468#define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P
469
470#define LED_MODE 0x8200
471#define LED_SPEED_DUPLEX_ACT 0x0000
472#define LED_SPEED_DUPLEX_LINK_ACT 0x8000
473#define LED_DUPLEX_10_100 0x0200
474
475/* SGCR6 */
476#define KS8842_SGCR6_P 0x0410
477#define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P
478
479#define KS8842_PRIORITY_MASK 3
480#define KS8842_PRIORITY_SHIFT 2
481
482/* SGCR7 */
483#define KS8842_SGCR7_P 0x0412
484#define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P
485
486#define SWITCH_UNK_DEF_PORT_ENABLE 0x0008
487#define SWITCH_UNK_DEF_PORT_3 0x0004
488#define SWITCH_UNK_DEF_PORT_2 0x0002
489#define SWITCH_UNK_DEF_PORT_1 0x0001
490
491/* MACAR1 */
492#define KS8842_MACAR1_P 0x0470
493#define KS8842_MACAR2_P 0x0472
494#define KS8842_MACAR3_P 0x0474
495#define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P
496#define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1)
497#define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P
498#define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1)
499#define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P
500#define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1)
501
502/* TOSR1 */
503#define KS8842_TOSR1_P 0x0480
504#define KS8842_TOSR2_P 0x0482
505#define KS8842_TOSR3_P 0x0484
506#define KS8842_TOSR4_P 0x0486
507#define KS8842_TOSR5_P 0x0488
508#define KS8842_TOSR6_P 0x048A
509#define KS8842_TOSR7_P 0x0490
510#define KS8842_TOSR8_P 0x0492
511#define KS8842_TOS_1_OFFSET KS8842_TOSR1_P
512#define KS8842_TOS_2_OFFSET KS8842_TOSR2_P
513#define KS8842_TOS_3_OFFSET KS8842_TOSR3_P
514#define KS8842_TOS_4_OFFSET KS8842_TOSR4_P
515#define KS8842_TOS_5_OFFSET KS8842_TOSR5_P
516#define KS8842_TOS_6_OFFSET KS8842_TOSR6_P
517
518#define KS8842_TOS_7_OFFSET KS8842_TOSR7_P
519#define KS8842_TOS_8_OFFSET KS8842_TOSR8_P
520
521/* P1CR1 */
522#define KS8842_P1CR1_P 0x0500
523#define KS8842_P1CR2_P 0x0502
524#define KS8842_P1VIDR_P 0x0504
525#define KS8842_P1CR3_P 0x0506
526#define KS8842_P1IRCR_P 0x0508
527#define KS8842_P1ERCR_P 0x050A
528#define KS884X_P1SCSLMD_P 0x0510
529#define KS884X_P1CR4_P 0x0512
530#define KS884X_P1SR_P 0x0514
531
532/* P2CR1 */
533#define KS8842_P2CR1_P 0x0520
534#define KS8842_P2CR2_P 0x0522
535#define KS8842_P2VIDR_P 0x0524
536#define KS8842_P2CR3_P 0x0526
537#define KS8842_P2IRCR_P 0x0528
538#define KS8842_P2ERCR_P 0x052A
539#define KS884X_P2SCSLMD_P 0x0530
540#define KS884X_P2CR4_P 0x0532
541#define KS884X_P2SR_P 0x0534
542
543/* P3CR1 */
544#define KS8842_P3CR1_P 0x0540
545#define KS8842_P3CR2_P 0x0542
546#define KS8842_P3VIDR_P 0x0544
547#define KS8842_P3CR3_P 0x0546
548#define KS8842_P3IRCR_P 0x0548
549#define KS8842_P3ERCR_P 0x054A
550
551#define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P
552#define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P
553#define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P
554
555#define PORT_CTRL_ADDR(port, addr) \
556 (addr = KS8842_PORT_1_CTRL_1 + (port) * \
557 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
558
559#define KS8842_PORT_CTRL_1_OFFSET 0x00
560
561#define PORT_BROADCAST_STORM 0x0080
562#define PORT_DIFFSERV_ENABLE 0x0040
563#define PORT_802_1P_ENABLE 0x0020
564#define PORT_BASED_PRIORITY_MASK 0x0018
565#define PORT_BASED_PRIORITY_BASE 0x0003
566#define PORT_BASED_PRIORITY_SHIFT 3
567#define PORT_BASED_PRIORITY_0 0x0000
568#define PORT_BASED_PRIORITY_1 0x0008
569#define PORT_BASED_PRIORITY_2 0x0010
570#define PORT_BASED_PRIORITY_3 0x0018
571#define PORT_INSERT_TAG 0x0004
572#define PORT_REMOVE_TAG 0x0002
573#define PORT_PRIO_QUEUE_ENABLE 0x0001
574
575#define KS8842_PORT_CTRL_2_OFFSET 0x02
576
577#define PORT_INGRESS_VLAN_FILTER 0x4000
578#define PORT_DISCARD_NON_VID 0x2000
579#define PORT_FORCE_FLOW_CTRL 0x1000
580#define PORT_BACK_PRESSURE 0x0800
581#define PORT_TX_ENABLE 0x0400
582#define PORT_RX_ENABLE 0x0200
583#define PORT_LEARN_DISABLE 0x0100
584#define PORT_MIRROR_SNIFFER 0x0080
585#define PORT_MIRROR_RX 0x0040
586#define PORT_MIRROR_TX 0x0020
587#define PORT_USER_PRIORITY_CEILING 0x0008
588#define PORT_VLAN_MEMBERSHIP 0x0007
589
590#define KS8842_PORT_CTRL_VID_OFFSET 0x04
591
592#define PORT_DEFAULT_VID 0x0001
593
594#define KS8842_PORT_CTRL_3_OFFSET 0x06
595
596#define PORT_INGRESS_LIMIT_MODE 0x000C
597#define PORT_INGRESS_ALL 0x0000
598#define PORT_INGRESS_UNICAST 0x0004
599#define PORT_INGRESS_MULTICAST 0x0008
600#define PORT_INGRESS_BROADCAST 0x000C
601#define PORT_COUNT_IFG 0x0002
602#define PORT_COUNT_PREAMBLE 0x0001
603
604#define KS8842_PORT_IN_RATE_OFFSET 0x08
605#define KS8842_PORT_OUT_RATE_OFFSET 0x0A
606
607#define PORT_PRIORITY_RATE 0x0F
608#define PORT_PRIORITY_RATE_SHIFT 4
609
610#define KS884X_PORT_LINK_MD 0x10
611
612#define PORT_CABLE_10M_SHORT 0x8000
613#define PORT_CABLE_DIAG_RESULT 0x6000
614#define PORT_CABLE_STAT_NORMAL 0x0000
615#define PORT_CABLE_STAT_OPEN 0x2000
616#define PORT_CABLE_STAT_SHORT 0x4000
617#define PORT_CABLE_STAT_FAILED 0x6000
618#define PORT_START_CABLE_DIAG 0x1000
619#define PORT_FORCE_LINK 0x0800
620#define PORT_POWER_SAVING_DISABLE 0x0400
621#define PORT_PHY_REMOTE_LOOPBACK 0x0200
622#define PORT_CABLE_FAULT_COUNTER 0x01FF
623
624#define KS884X_PORT_CTRL_4_OFFSET 0x12
625
626#define PORT_LED_OFF 0x8000
627#define PORT_TX_DISABLE 0x4000
628#define PORT_AUTO_NEG_RESTART 0x2000
629#define PORT_REMOTE_FAULT_DISABLE 0x1000
630#define PORT_POWER_DOWN 0x0800
631#define PORT_AUTO_MDIX_DISABLE 0x0400
632#define PORT_FORCE_MDIX 0x0200
633#define PORT_LOOPBACK 0x0100
634#define PORT_AUTO_NEG_ENABLE 0x0080
635#define PORT_FORCE_100_MBIT 0x0040
636#define PORT_FORCE_FULL_DUPLEX 0x0020
637#define PORT_AUTO_NEG_SYM_PAUSE 0x0010
638#define PORT_AUTO_NEG_100BTX_FD 0x0008
639#define PORT_AUTO_NEG_100BTX 0x0004
640#define PORT_AUTO_NEG_10BT_FD 0x0002
641#define PORT_AUTO_NEG_10BT 0x0001
642
643#define KS884X_PORT_STATUS_OFFSET 0x14
644
645#define PORT_HP_MDIX 0x8000
646#define PORT_REVERSED_POLARITY 0x2000
647#define PORT_RX_FLOW_CTRL 0x0800
648#define PORT_TX_FLOW_CTRL 0x1000
649#define PORT_STATUS_SPEED_100MBIT 0x0400
650#define PORT_STATUS_FULL_DUPLEX 0x0200
651#define PORT_REMOTE_FAULT 0x0100
652#define PORT_MDIX_STATUS 0x0080
653#define PORT_AUTO_NEG_COMPLETE 0x0040
654#define PORT_STATUS_LINK_GOOD 0x0020
655#define PORT_REMOTE_SYM_PAUSE 0x0010
656#define PORT_REMOTE_100BTX_FD 0x0008
657#define PORT_REMOTE_100BTX 0x0004
658#define PORT_REMOTE_10BT_FD 0x0002
659#define PORT_REMOTE_10BT 0x0001
660
661/*
662#define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
663#define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000
664#define STATIC_MAC_TABLE_VALID 00-00080000-00000000
665#define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000
666#define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000
667#define STATIC_MAC_TABLE_FID 00-03C00000-00000000
668*/
669
670#define STATIC_MAC_TABLE_ADDR 0x0000FFFF
671#define STATIC_MAC_TABLE_FWD_PORTS 0x00070000
672#define STATIC_MAC_TABLE_VALID 0x00080000
673#define STATIC_MAC_TABLE_OVERRIDE 0x00100000
674#define STATIC_MAC_TABLE_USE_FID 0x00200000
675#define STATIC_MAC_TABLE_FID 0x03C00000
676
677#define STATIC_MAC_FWD_PORTS_SHIFT 16
678#define STATIC_MAC_FID_SHIFT 22
679
680/*
681#define VLAN_TABLE_VID 00-00000000-00000FFF
682#define VLAN_TABLE_FID 00-00000000-0000F000
683#define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000
684#define VLAN_TABLE_VALID 00-00000000-00080000
685*/
686
687#define VLAN_TABLE_VID 0x00000FFF
688#define VLAN_TABLE_FID 0x0000F000
689#define VLAN_TABLE_MEMBERSHIP 0x00070000
690#define VLAN_TABLE_VALID 0x00080000
691
692#define VLAN_TABLE_FID_SHIFT 12
693#define VLAN_TABLE_MEMBERSHIP_SHIFT 16
694
695/*
696#define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
697#define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000
698#define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000
699#define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000
700#define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000
701#define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000
702#define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000
703#define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000
704*/
705
706#define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF
707#define DYNAMIC_MAC_TABLE_FID 0x000F0000
708#define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000
709#define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000
710#define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000
711
712#define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03
713#define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04
714#define DYNAMIC_MAC_TABLE_RESERVED 0x78
715#define DYNAMIC_MAC_TABLE_NOT_READY 0x80
716
717#define DYNAMIC_MAC_FID_SHIFT 16
718#define DYNAMIC_MAC_SRC_PORT_SHIFT 20
719#define DYNAMIC_MAC_TIMESTAMP_SHIFT 22
720#define DYNAMIC_MAC_ENTRIES_SHIFT 24
721#define DYNAMIC_MAC_ENTRIES_H_SHIFT 8
722
723/*
724#define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF
725#define MIB_COUNTER_VALID 00-00000000-40000000
726#define MIB_COUNTER_OVERFLOW 00-00000000-80000000
727*/
728
729#define MIB_COUNTER_VALUE 0x3FFFFFFF
730#define MIB_COUNTER_VALID 0x40000000
731#define MIB_COUNTER_OVERFLOW 0x80000000
732
733#define MIB_PACKET_DROPPED 0x0000FFFF
734
735#define KS_MIB_PACKET_DROPPED_TX_0 0x100
736#define KS_MIB_PACKET_DROPPED_TX_1 0x101
737#define KS_MIB_PACKET_DROPPED_TX 0x102
738#define KS_MIB_PACKET_DROPPED_RX_0 0x103
739#define KS_MIB_PACKET_DROPPED_RX_1 0x104
740#define KS_MIB_PACKET_DROPPED_RX 0x105
741
742/* Change default LED mode. */
743#define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT
744
745#define MAC_ADDR_LEN 6
746#define MAC_ADDR_ORDER(i) (MAC_ADDR_LEN - 1 - (i))
747
748#define MAX_ETHERNET_BODY_SIZE 1500
749#define ETHERNET_HEADER_SIZE 14
750
751#define MAX_ETHERNET_PACKET_SIZE \
752 (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
753
754#define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4)
755#define MAX_RX_BUF_SIZE (1912 + 4)
756
757#define ADDITIONAL_ENTRIES 16
758#define MAX_MULTICAST_LIST 32
759
760#define HW_MULTICAST_SIZE 8
761
762#define HW_TO_DEV_PORT(port) (port - 1)
763
764enum {
765 media_connected,
766 media_disconnected
767};
768
769enum {
770 OID_COUNTER_UNKOWN,
771
772 OID_COUNTER_FIRST,
773
774 /* total transmit errors */
775 OID_COUNTER_XMIT_ERROR,
776
777 /* total receive errors */
778 OID_COUNTER_RCV_ERROR,
779
780 OID_COUNTER_LAST
781};
782
783/*
784 * Hardware descriptor definitions
785 */
786
787#define DESC_ALIGNMENT 16
788#define BUFFER_ALIGNMENT 8
789
790#define NUM_OF_RX_DESC 64
791#define NUM_OF_TX_DESC 64
792
793#define KS_DESC_RX_FRAME_LEN 0x000007FF
794#define KS_DESC_RX_FRAME_TYPE 0x00008000
795#define KS_DESC_RX_ERROR_CRC 0x00010000
796#define KS_DESC_RX_ERROR_RUNT 0x00020000
797#define KS_DESC_RX_ERROR_TOO_LONG 0x00040000
798#define KS_DESC_RX_ERROR_PHY 0x00080000
799#define KS884X_DESC_RX_PORT_MASK 0x00300000
800#define KS_DESC_RX_MULTICAST 0x01000000
801#define KS_DESC_RX_ERROR 0x02000000
802#define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000
803#define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000
804#define KS_DESC_RX_ERROR_CSUM_IP 0x10000000
805#define KS_DESC_RX_LAST 0x20000000
806#define KS_DESC_RX_FIRST 0x40000000
807#define KS_DESC_RX_ERROR_COND \
808 (KS_DESC_RX_ERROR_CRC | \
809 KS_DESC_RX_ERROR_RUNT | \
810 KS_DESC_RX_ERROR_PHY | \
811 KS_DESC_RX_ERROR_TOO_LONG)
812
813#define KS_DESC_HW_OWNED 0x80000000
814
815#define KS_DESC_BUF_SIZE 0x000007FF
816#define KS884X_DESC_TX_PORT_MASK 0x00300000
817#define KS_DESC_END_OF_RING 0x02000000
818#define KS_DESC_TX_CSUM_GEN_UDP 0x04000000
819#define KS_DESC_TX_CSUM_GEN_TCP 0x08000000
820#define KS_DESC_TX_CSUM_GEN_IP 0x10000000
821#define KS_DESC_TX_LAST 0x20000000
822#define KS_DESC_TX_FIRST 0x40000000
823#define KS_DESC_TX_INTERRUPT 0x80000000
824
825#define KS_DESC_PORT_SHIFT 20
826
827#define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE)
828
829#define KS_DESC_TX_MASK \
830 (KS_DESC_TX_INTERRUPT | \
831 KS_DESC_TX_FIRST | \
832 KS_DESC_TX_LAST | \
833 KS_DESC_TX_CSUM_GEN_IP | \
834 KS_DESC_TX_CSUM_GEN_TCP | \
835 KS_DESC_TX_CSUM_GEN_UDP | \
836 KS_DESC_BUF_SIZE)
837
838struct ksz_desc_rx_stat {
839#ifdef __BIG_ENDIAN_BITFIELD
840 u32 hw_owned:1;
841 u32 first_desc:1;
842 u32 last_desc:1;
843 u32 csum_err_ip:1;
844 u32 csum_err_tcp:1;
845 u32 csum_err_udp:1;
846 u32 error:1;
847 u32 multicast:1;
848 u32 src_port:4;
849 u32 err_phy:1;
850 u32 err_too_long:1;
851 u32 err_runt:1;
852 u32 err_crc:1;
853 u32 frame_type:1;
854 u32 reserved1:4;
855 u32 frame_len:11;
856#else
857 u32 frame_len:11;
858 u32 reserved1:4;
859 u32 frame_type:1;
860 u32 err_crc:1;
861 u32 err_runt:1;
862 u32 err_too_long:1;
863 u32 err_phy:1;
864 u32 src_port:4;
865 u32 multicast:1;
866 u32 error:1;
867 u32 csum_err_udp:1;
868 u32 csum_err_tcp:1;
869 u32 csum_err_ip:1;
870 u32 last_desc:1;
871 u32 first_desc:1;
872 u32 hw_owned:1;
873#endif
874};
875
876struct ksz_desc_tx_stat {
877#ifdef __BIG_ENDIAN_BITFIELD
878 u32 hw_owned:1;
879 u32 reserved1:31;
880#else
881 u32 reserved1:31;
882 u32 hw_owned:1;
883#endif
884};
885
886struct ksz_desc_rx_buf {
887#ifdef __BIG_ENDIAN_BITFIELD
888 u32 reserved4:6;
889 u32 end_of_ring:1;
890 u32 reserved3:14;
891 u32 buf_size:11;
892#else
893 u32 buf_size:11;
894 u32 reserved3:14;
895 u32 end_of_ring:1;
896 u32 reserved4:6;
897#endif
898};
899
900struct ksz_desc_tx_buf {
901#ifdef __BIG_ENDIAN_BITFIELD
902 u32 intr:1;
903 u32 first_seg:1;
904 u32 last_seg:1;
905 u32 csum_gen_ip:1;
906 u32 csum_gen_tcp:1;
907 u32 csum_gen_udp:1;
908 u32 end_of_ring:1;
909 u32 reserved4:1;
910 u32 dest_port:4;
911 u32 reserved3:9;
912 u32 buf_size:11;
913#else
914 u32 buf_size:11;
915 u32 reserved3:9;
916 u32 dest_port:4;
917 u32 reserved4:1;
918 u32 end_of_ring:1;
919 u32 csum_gen_udp:1;
920 u32 csum_gen_tcp:1;
921 u32 csum_gen_ip:1;
922 u32 last_seg:1;
923 u32 first_seg:1;
924 u32 intr:1;
925#endif
926};
927
928union desc_stat {
929 struct ksz_desc_rx_stat rx;
930 struct ksz_desc_tx_stat tx;
931 u32 data;
932};
933
934union desc_buf {
935 struct ksz_desc_rx_buf rx;
936 struct ksz_desc_tx_buf tx;
937 u32 data;
938};
939
940/**
941 * struct ksz_hw_desc - Hardware descriptor data structure
942 * @ctrl: Descriptor control value.
943 * @buf: Descriptor buffer value.
944 * @addr: Physical address of memory buffer.
945 * @next: Pointer to next hardware descriptor.
946 */
947struct ksz_hw_desc {
948 union desc_stat ctrl;
949 union desc_buf buf;
950 u32 addr;
951 u32 next;
952};
953
954/**
955 * struct ksz_sw_desc - Software descriptor data structure
956 * @ctrl: Descriptor control value.
957 * @buf: Descriptor buffer value.
958 * @buf_size: Current buffers size value in hardware descriptor.
959 */
960struct ksz_sw_desc {
961 union desc_stat ctrl;
962 union desc_buf buf;
963 u32 buf_size;
964};
965
966/**
967 * struct ksz_dma_buf - OS dependent DMA buffer data structure
968 * @skb: Associated socket buffer.
969 * @dma: Associated physical DMA address.
970 * len: Actual len used.
971 */
972struct ksz_dma_buf {
973 struct sk_buff *skb;
974 dma_addr_t dma;
975 int len;
976};
977
978/**
979 * struct ksz_desc - Descriptor structure
980 * @phw: Hardware descriptor pointer to uncached physical memory.
981 * @sw: Cached memory to hold hardware descriptor values for
982 * manipulation.
983 * @dma_buf: Operating system dependent data structure to hold physical
984 * memory buffer allocation information.
985 */
986struct ksz_desc {
987 struct ksz_hw_desc *phw;
988 struct ksz_sw_desc sw;
989 struct ksz_dma_buf dma_buf;
990};
991
992#define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf))
993
994/**
995 * struct ksz_desc_info - Descriptor information data structure
996 * @ring: First descriptor in the ring.
997 * @cur: Current descriptor being manipulated.
998 * @ring_virt: First hardware descriptor in the ring.
999 * @ring_phys: The physical address of the first descriptor of the ring.
1000 * @size: Size of hardware descriptor.
1001 * @alloc: Number of descriptors allocated.
1002 * @avail: Number of descriptors available for use.
1003 * @last: Index for last descriptor released to hardware.
1004 * @next: Index for next descriptor available for use.
1005 * @mask: Mask for index wrapping.
1006 */
1007struct ksz_desc_info {
1008 struct ksz_desc *ring;
1009 struct ksz_desc *cur;
1010 struct ksz_hw_desc *ring_virt;
1011 u32 ring_phys;
1012 int size;
1013 int alloc;
1014 int avail;
1015 int last;
1016 int next;
1017 int mask;
1018};
1019
1020/*
1021 * KSZ8842 switch definitions
1022 */
1023
1024enum {
1025 TABLE_STATIC_MAC = 0,
1026 TABLE_VLAN,
1027 TABLE_DYNAMIC_MAC,
1028 TABLE_MIB
1029};
1030
1031#define LEARNED_MAC_TABLE_ENTRIES 1024
1032#define STATIC_MAC_TABLE_ENTRIES 8
1033
1034/**
1035 * struct ksz_mac_table - Static MAC table data structure
1036 * @mac_addr: MAC address to filter.
1037 * @vid: VID value.
1038 * @fid: FID value.
1039 * @ports: Port membership.
1040 * @override: Override setting.
1041 * @use_fid: FID use setting.
1042 * @valid: Valid setting indicating the entry is being used.
1043 */
1044struct ksz_mac_table {
1045 u8 mac_addr[MAC_ADDR_LEN];
1046 u16 vid;
1047 u8 fid;
1048 u8 ports;
1049 u8 override:1;
1050 u8 use_fid:1;
1051 u8 valid:1;
1052};
1053
1054#define VLAN_TABLE_ENTRIES 16
1055
1056/**
1057 * struct ksz_vlan_table - VLAN table data structure
1058 * @vid: VID value.
1059 * @fid: FID value.
1060 * @member: Port membership.
1061 */
1062struct ksz_vlan_table {
1063 u16 vid;
1064 u8 fid;
1065 u8 member;
1066};
1067
1068#define DIFFSERV_ENTRIES 64
1069#define PRIO_802_1P_ENTRIES 8
1070#define PRIO_QUEUES 4
1071
1072#define SWITCH_PORT_NUM 2
1073#define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1)
1074#define HOST_MASK (1 << SWITCH_PORT_NUM)
1075#define PORT_MASK 7
1076
1077#define MAIN_PORT 0
1078#define OTHER_PORT 1
1079#define HOST_PORT SWITCH_PORT_NUM
1080
1081#define PORT_COUNTER_NUM 0x20
1082#define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2)
1083
1084#define MIB_COUNTER_RX_LO_PRIORITY 0x00
1085#define MIB_COUNTER_RX_HI_PRIORITY 0x01
1086#define MIB_COUNTER_RX_UNDERSIZE 0x02
1087#define MIB_COUNTER_RX_FRAGMENT 0x03
1088#define MIB_COUNTER_RX_OVERSIZE 0x04
1089#define MIB_COUNTER_RX_JABBER 0x05
1090#define MIB_COUNTER_RX_SYMBOL_ERR 0x06
1091#define MIB_COUNTER_RX_CRC_ERR 0x07
1092#define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08
1093#define MIB_COUNTER_RX_CTRL_8808 0x09
1094#define MIB_COUNTER_RX_PAUSE 0x0A
1095#define MIB_COUNTER_RX_BROADCAST 0x0B
1096#define MIB_COUNTER_RX_MULTICAST 0x0C
1097#define MIB_COUNTER_RX_UNICAST 0x0D
1098#define MIB_COUNTER_RX_OCTET_64 0x0E
1099#define MIB_COUNTER_RX_OCTET_65_127 0x0F
1100#define MIB_COUNTER_RX_OCTET_128_255 0x10
1101#define MIB_COUNTER_RX_OCTET_256_511 0x11
1102#define MIB_COUNTER_RX_OCTET_512_1023 0x12
1103#define MIB_COUNTER_RX_OCTET_1024_1522 0x13
1104#define MIB_COUNTER_TX_LO_PRIORITY 0x14
1105#define MIB_COUNTER_TX_HI_PRIORITY 0x15
1106#define MIB_COUNTER_TX_LATE_COLLISION 0x16
1107#define MIB_COUNTER_TX_PAUSE 0x17
1108#define MIB_COUNTER_TX_BROADCAST 0x18
1109#define MIB_COUNTER_TX_MULTICAST 0x19
1110#define MIB_COUNTER_TX_UNICAST 0x1A
1111#define MIB_COUNTER_TX_DEFERRED 0x1B
1112#define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C
1113#define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1114#define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1115#define MIB_COUNTER_TX_MULTI_COLLISION 0x1F
1116
1117#define MIB_COUNTER_RX_DROPPED_PACKET 0x20
1118#define MIB_COUNTER_TX_DROPPED_PACKET 0x21
1119
1120/**
1121 * struct ksz_port_mib - Port MIB data structure
1122 * @cnt_ptr: Current pointer to MIB counter index.
1123 * @link_down: Indication the link has just gone down.
1124 * @state: Connection status of the port.
1125 * @mib_start: The starting counter index. Some ports do not start at 0.
1126 * @counter: 64-bit MIB counter value.
1127 * @dropped: Temporary buffer to remember last read packet dropped values.
1128 *
1129 * MIB counters needs to be read periodically so that counters do not get
1130 * overflowed and give incorrect values. A right balance is needed to
1131 * satisfy this condition and not waste too much CPU time.
1132 *
1133 * It is pointless to read MIB counters when the port is disconnected. The
1134 * @state provides the connection status so that MIB counters are read only
1135 * when the port is connected. The @link_down indicates the port is just
1136 * disconnected so that all MIB counters are read one last time to update the
1137 * information.
1138 */
1139struct ksz_port_mib {
1140 u8 cnt_ptr;
1141 u8 link_down;
1142 u8 state;
1143 u8 mib_start;
1144
1145 u64 counter[TOTAL_PORT_COUNTER_NUM];
1146 u32 dropped[2];
1147};
1148
1149/**
1150 * struct ksz_port_cfg - Port configuration data structure
1151 * @vid: VID value.
1152 * @member: Port membership.
1153 * @port_prio: Port priority.
1154 * @rx_rate: Receive priority rate.
1155 * @tx_rate: Transmit priority rate.
1156 * @stp_state: Current Spanning Tree Protocol state.
1157 */
1158struct ksz_port_cfg {
1159 u16 vid;
1160 u8 member;
1161 u8 port_prio;
1162 u32 rx_rate[PRIO_QUEUES];
1163 u32 tx_rate[PRIO_QUEUES];
1164 int stp_state;
1165};
1166
1167/**
1168 * struct ksz_switch - KSZ8842 switch data structure
1169 * @mac_table: MAC table entries information.
1170 * @vlan_table: VLAN table entries information.
1171 * @port_cfg: Port configuration information.
1172 * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS
1173 * (bit7 ~ bit2) field.
1174 * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p
1175 * Tag priority field.
1176 * @br_addr: Bridge address. Used for STP.
1177 * @other_addr: Other MAC address. Used for multiple network device mode.
1178 * @broad_per: Broadcast storm percentage.
1179 * @member: Current port membership. Used for STP.
1180 */
1181struct ksz_switch {
1182 struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183 struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184 struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185
1186 u8 diffserv[DIFFSERV_ENTRIES];
1187 u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188
1189 u8 br_addr[MAC_ADDR_LEN];
1190 u8 other_addr[MAC_ADDR_LEN];
1191
1192 u8 broad_per;
1193 u8 member;
1194};
1195
1196#define TX_RATE_UNIT 10000
1197
1198/**
1199 * struct ksz_port_info - Port information data structure
1200 * @state: Connection status of the port.
1201 * @tx_rate: Transmit rate divided by 10000 to get Mbit.
1202 * @duplex: Duplex mode.
1203 * @advertised: Advertised auto-negotiation setting. Used to determine link.
1204 * @partner: Auto-negotiation partner setting. Used to determine link.
1205 * @port_id: Port index to access actual hardware register.
1206 * @pdev: Pointer to OS dependent network device.
1207 */
1208struct ksz_port_info {
1209 uint state;
1210 uint tx_rate;
1211 u8 duplex;
1212 u8 advertised;
1213 u8 partner;
1214 u8 port_id;
1215 void *pdev;
1216};
1217
1218#define MAX_TX_HELD_SIZE 52000
1219
1220/* Hardware features and bug fixes. */
1221#define LINK_INT_WORKING (1 << 0)
1222#define SMALL_PACKET_TX_BUG (1 << 1)
1223#define HALF_DUPLEX_SIGNAL_BUG (1 << 2)
1224#define IPV6_CSUM_GEN_HACK (1 << 3)
1225#define RX_HUGE_FRAME (1 << 4)
1226#define STP_SUPPORT (1 << 8)
1227
1228/* Software overrides. */
1229#define PAUSE_FLOW_CTRL (1 << 0)
1230#define FAST_AGING (1 << 1)
1231
1232/**
1233 * struct ksz_hw - KSZ884X hardware data structure
1234 * @io: Virtual address assigned.
1235 * @ksz_switch: Pointer to KSZ8842 switch.
1236 * @port_info: Port information.
1237 * @port_mib: Port MIB information.
1238 * @dev_count: Number of network devices this hardware supports.
1239 * @dst_ports: Destination ports in switch for transmission.
1240 * @id: Hardware ID. Used for display only.
1241 * @mib_cnt: Number of MIB counters this hardware has.
1242 * @mib_port_cnt: Number of ports with MIB counters.
1243 * @tx_cfg: Cached transmit control settings.
1244 * @rx_cfg: Cached receive control settings.
1245 * @intr_mask: Current interrupt mask.
1246 * @intr_set: Current interrup set.
1247 * @intr_blocked: Interrupt blocked.
1248 * @rx_desc_info: Receive descriptor information.
1249 * @tx_desc_info: Transmit descriptor information.
1250 * @tx_int_cnt: Transmit interrupt count. Used for TX optimization.
1251 * @tx_int_mask: Transmit interrupt mask. Used for TX optimization.
1252 * @tx_size: Transmit data size. Used for TX optimization.
1253 * The maximum is defined by MAX_TX_HELD_SIZE.
1254 * @perm_addr: Permanent MAC address.
1255 * @override_addr: Overrided MAC address.
1256 * @address: Additional MAC address entries.
1257 * @addr_list_size: Additional MAC address list size.
1258 * @mac_override: Indication of MAC address overrided.
1259 * @promiscuous: Counter to keep track of promiscuous mode set.
1260 * @all_multi: Counter to keep track of all multicast mode set.
1261 * @multi_list: Multicast address entries.
1262 * @multi_bits: Cached multicast hash table settings.
1263 * @multi_list_size: Multicast address list size.
1264 * @enabled: Indication of hardware enabled.
1265 * @rx_stop: Indication of receive process stop.
1266 * @features: Hardware features to enable.
1267 * @overrides: Hardware features to override.
1268 * @parent: Pointer to parent, network device private structure.
1269 */
1270struct ksz_hw {
1271 void __iomem *io;
1272
1273 struct ksz_switch *ksz_switch;
1274 struct ksz_port_info port_info[SWITCH_PORT_NUM];
1275 struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1276 int dev_count;
1277 int dst_ports;
1278 int id;
1279 int mib_cnt;
1280 int mib_port_cnt;
1281
1282 u32 tx_cfg;
1283 u32 rx_cfg;
1284 u32 intr_mask;
1285 u32 intr_set;
1286 uint intr_blocked;
1287
1288 struct ksz_desc_info rx_desc_info;
1289 struct ksz_desc_info tx_desc_info;
1290
1291 int tx_int_cnt;
1292 int tx_int_mask;
1293 int tx_size;
1294
1295 u8 perm_addr[MAC_ADDR_LEN];
1296 u8 override_addr[MAC_ADDR_LEN];
1297 u8 address[ADDITIONAL_ENTRIES][MAC_ADDR_LEN];
1298 u8 addr_list_size;
1299 u8 mac_override;
1300 u8 promiscuous;
1301 u8 all_multi;
1302 u8 multi_list[MAX_MULTICAST_LIST][MAC_ADDR_LEN];
1303 u8 multi_bits[HW_MULTICAST_SIZE];
1304 u8 multi_list_size;
1305
1306 u8 enabled;
1307 u8 rx_stop;
1308 u8 reserved2[1];
1309
1310 uint features;
1311 uint overrides;
1312
1313 void *parent;
1314};
1315
1316enum {
1317 PHY_NO_FLOW_CTRL,
1318 PHY_FLOW_CTRL,
1319 PHY_TX_ONLY,
1320 PHY_RX_ONLY
1321};
1322
1323/**
1324 * struct ksz_port - Virtual port data structure
1325 * @duplex: Duplex mode setting. 1 for half duplex, 2 for full
1326 * duplex, and 0 for auto, which normally results in full
1327 * duplex.
1328 * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and
1329 * 0 for auto, which normally results in 100 Mbit.
1330 * @force_link: Force link setting. 0 for auto-negotiation, and 1 for
1331 * force.
1332 * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow
1333 * control, and PHY_FLOW_CTRL for flow control.
1334 * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1335 * Mbit PHY.
1336 * @first_port: Index of first port this port supports.
1337 * @mib_port_cnt: Number of ports with MIB counters.
1338 * @port_cnt: Number of ports this port supports.
1339 * @counter: Port statistics counter.
1340 * @hw: Pointer to hardware structure.
1341 * @linked: Pointer to port information linked to this port.
1342 */
1343struct ksz_port {
1344 u8 duplex;
1345 u8 speed;
1346 u8 force_link;
1347 u8 flow_ctrl;
1348
1349 int first_port;
1350 int mib_port_cnt;
1351 int port_cnt;
1352 u64 counter[OID_COUNTER_LAST];
1353
1354 struct ksz_hw *hw;
1355 struct ksz_port_info *linked;
1356};
1357
1358/**
1359 * struct ksz_timer_info - Timer information data structure
1360 * @timer: Kernel timer.
1361 * @cnt: Running timer counter.
1362 * @max: Number of times to run timer; -1 for infinity.
1363 * @period: Timer period in jiffies.
1364 */
1365struct ksz_timer_info {
1366 struct timer_list timer;
1367 int cnt;
1368 int max;
1369 int period;
1370};
1371
1372/**
1373 * struct ksz_shared_mem - OS dependent shared memory data structure
1374 * @dma_addr: Physical DMA address allocated.
1375 * @alloc_size: Allocation size.
1376 * @phys: Actual physical address used.
1377 * @alloc_virt: Virtual address allocated.
1378 * @virt: Actual virtual address used.
1379 */
1380struct ksz_shared_mem {
1381 dma_addr_t dma_addr;
1382 uint alloc_size;
1383 uint phys;
1384 u8 *alloc_virt;
1385 u8 *virt;
1386};
1387
1388/**
1389 * struct ksz_counter_info - OS dependent counter information data structure
1390 * @counter: Wait queue to wakeup after counters are read.
1391 * @time: Next time in jiffies to read counter.
1392 * @read: Indication of counters read in full or not.
1393 */
1394struct ksz_counter_info {
1395 wait_queue_head_t counter;
1396 unsigned long time;
1397 int read;
1398};
1399
1400/**
1401 * struct dev_info - Network device information data structure
1402 * @dev: Pointer to network device.
1403 * @pdev: Pointer to PCI device.
1404 * @hw: Hardware structure.
1405 * @desc_pool: Physical memory used for descriptor pool.
1406 * @hwlock: Spinlock to prevent hardware from accessing.
1407 * @lock: Mutex lock to prevent device from accessing.
1408 * @dev_rcv: Receive process function used.
1409 * @last_skb: Socket buffer allocated for descriptor rx fragments.
1410 * @skb_index: Buffer index for receiving fragments.
1411 * @skb_len: Buffer length for receiving fragments.
1412 * @mib_read: Workqueue to read MIB counters.
1413 * @mib_timer_info: Timer to read MIB counters.
1414 * @counter: Used for MIB reading.
1415 * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE;
1416 * the maximum is MAX_RX_BUF_SIZE.
1417 * @opened: Counter to keep track of device open.
1418 * @rx_tasklet: Receive processing tasklet.
1419 * @tx_tasklet: Transmit processing tasklet.
1420 * @wol_enable: Wake-on-LAN enable set by ethtool.
1421 * @wol_support: Wake-on-LAN support used by ethtool.
1422 * @pme_wait: Used for KSZ8841 power management.
1423 */
1424struct dev_info {
1425 struct net_device *dev;
1426 struct pci_dev *pdev;
1427
1428 struct ksz_hw hw;
1429 struct ksz_shared_mem desc_pool;
1430
1431 spinlock_t hwlock;
1432 struct mutex lock;
1433
1434 int (*dev_rcv)(struct dev_info *);
1435
1436 struct sk_buff *last_skb;
1437 int skb_index;
1438 int skb_len;
1439
1440 struct work_struct mib_read;
1441 struct ksz_timer_info mib_timer_info;
1442 struct ksz_counter_info counter[TOTAL_PORT_NUM];
1443
1444 int mtu;
1445 int opened;
1446
1447 struct tasklet_struct rx_tasklet;
1448 struct tasklet_struct tx_tasklet;
1449
1450 int wol_enable;
1451 int wol_support;
1452 unsigned long pme_wait;
1453};
1454
1455/**
1456 * struct dev_priv - Network device private data structure
1457 * @adapter: Adapter device information.
1458 * @port: Port information.
1459 * @monitor_time_info: Timer to monitor ports.
8ca86fd8
TH
1460 * @proc_sem: Semaphore for proc accessing.
1461 * @id: Device ID.
1462 * @mii_if: MII interface information.
1463 * @advertising: Temporary variable to store advertised settings.
1464 * @msg_enable: The message flags controlling driver output.
1465 * @media_state: The connection status of the device.
1466 * @multicast: The all multicast state of the device.
1467 * @promiscuous: The promiscuous state of the device.
1468 */
1469struct dev_priv {
1470 struct dev_info *adapter;
1471 struct ksz_port port;
1472 struct ksz_timer_info monitor_timer_info;
8ca86fd8
TH
1473
1474 struct semaphore proc_sem;
1475 int id;
1476
1477 struct mii_if_info mii_if;
1478 u32 advertising;
1479
1480 u32 msg_enable;
1481 int media_state;
1482 int multicast;
1483 int promiscuous;
1484};
1485
8ca86fd8
TH
1486#define DRV_NAME "KSZ884X PCI"
1487#define DEVICE_NAME "KSZ884x PCI"
1488#define DRV_VERSION "1.0.0"
1489#define DRV_RELDATE "Feb 8, 2010"
1490
1491static char version[] __devinitdata =
1492 "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1493
1494static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1495
1496/*
1497 * Interrupt processing primary routines
1498 */
1499
1500static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1501{
1502 writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1503}
1504
1505static inline void hw_dis_intr(struct ksz_hw *hw)
1506{
1507 hw->intr_blocked = hw->intr_mask;
1508 writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1509 hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1510}
1511
1512static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1513{
1514 hw->intr_set = interrupt;
1515 writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1516}
1517
1518static inline void hw_ena_intr(struct ksz_hw *hw)
1519{
1520 hw->intr_blocked = 0;
1521 hw_set_intr(hw, hw->intr_mask);
1522}
1523
1524static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1525{
1526 hw->intr_mask &= ~(bit);
1527}
1528
1529static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1530{
1531 u32 read_intr;
1532
1533 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1534 hw->intr_set = read_intr & ~interrupt;
1535 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1536 hw_dis_intr_bit(hw, interrupt);
1537}
1538
1539/**
1540 * hw_turn_on_intr - turn on specified interrupts
1541 * @hw: The hardware instance.
1542 * @bit: The interrupt bits to be on.
1543 *
1544 * This routine turns on the specified interrupts in the interrupt mask so that
1545 * those interrupts will be enabled.
1546 */
1547static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1548{
1549 hw->intr_mask |= bit;
1550
1551 if (!hw->intr_blocked)
1552 hw_set_intr(hw, hw->intr_mask);
1553}
1554
1555static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1556{
1557 u32 read_intr;
1558
1559 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1560 hw->intr_set = read_intr | interrupt;
1561 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1562}
1563
1564static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1565{
1566 *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1567 *status = *status & hw->intr_set;
1568}
1569
1570static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1571{
1572 if (interrupt)
1573 hw_ena_intr(hw);
1574}
1575
1576/**
1577 * hw_block_intr - block hardware interrupts
1578 *
1579 * This function blocks all interrupts of the hardware and returns the current
1580 * interrupt enable mask so that interrupts can be restored later.
1581 *
1582 * Return the current interrupt enable mask.
1583 */
1584static uint hw_block_intr(struct ksz_hw *hw)
1585{
1586 uint interrupt = 0;
1587
1588 if (!hw->intr_blocked) {
1589 hw_dis_intr(hw);
1590 interrupt = hw->intr_blocked;
1591 }
1592 return interrupt;
1593}
1594
1595/*
1596 * Hardware descriptor routines
1597 */
1598
1599static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1600{
1601 status.rx.hw_owned = 0;
1602 desc->phw->ctrl.data = cpu_to_le32(status.data);
1603}
1604
1605static inline void release_desc(struct ksz_desc *desc)
1606{
1607 desc->sw.ctrl.tx.hw_owned = 1;
1608 if (desc->sw.buf_size != desc->sw.buf.data) {
1609 desc->sw.buf_size = desc->sw.buf.data;
1610 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1611 }
1612 desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1613}
1614
1615static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1616{
1617 *desc = &info->ring[info->last];
1618 info->last++;
1619 info->last &= info->mask;
1620 info->avail--;
1621 (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1622}
1623
1624static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1625{
1626 desc->phw->addr = cpu_to_le32(addr);
1627}
1628
1629static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1630{
1631 desc->sw.buf.rx.buf_size = len;
1632}
1633
1634static inline void get_tx_pkt(struct ksz_desc_info *info,
1635 struct ksz_desc **desc)
1636{
1637 *desc = &info->ring[info->next];
1638 info->next++;
1639 info->next &= info->mask;
1640 info->avail--;
1641 (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1642}
1643
1644static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1645{
1646 desc->phw->addr = cpu_to_le32(addr);
1647}
1648
1649static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1650{
1651 desc->sw.buf.tx.buf_size = len;
1652}
1653
1654/* Switch functions */
1655
1656#define TABLE_READ 0x10
1657#define TABLE_SEL_SHIFT 2
1658
1659#define HW_DELAY(hw, reg) \
1660 do { \
1661 u16 dummy; \
1662 dummy = readw(hw->io + reg); \
1663 } while (0)
1664
1665/**
1666 * sw_r_table - read 4 bytes of data from switch table
1667 * @hw: The hardware instance.
1668 * @table: The table selector.
1669 * @addr: The address of the table entry.
1670 * @data: Buffer to store the read data.
1671 *
1672 * This routine reads 4 bytes of data from the table of the switch.
1673 * Hardware interrupts are disabled to minimize corruption of read data.
1674 */
1675static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1676{
1677 u16 ctrl_addr;
1678 uint interrupt;
1679
1680 ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1681
1682 interrupt = hw_block_intr(hw);
1683
1684 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1685 HW_DELAY(hw, KS884X_IACR_OFFSET);
1686 *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1687
1688 hw_restore_intr(hw, interrupt);
1689}
1690
1691/**
1692 * sw_w_table_64 - write 8 bytes of data to the switch table
1693 * @hw: The hardware instance.
1694 * @table: The table selector.
1695 * @addr: The address of the table entry.
1696 * @data_hi: The high part of data to be written (bit63 ~ bit32).
1697 * @data_lo: The low part of data to be written (bit31 ~ bit0).
1698 *
1699 * This routine writes 8 bytes of data to the table of the switch.
1700 * Hardware interrupts are disabled to minimize corruption of written data.
1701 */
1702static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1703 u32 data_lo)
1704{
1705 u16 ctrl_addr;
1706 uint interrupt;
1707
1708 ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1709
1710 interrupt = hw_block_intr(hw);
1711
1712 writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1713 writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1714
1715 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1716 HW_DELAY(hw, KS884X_IACR_OFFSET);
1717
1718 hw_restore_intr(hw, interrupt);
1719}
1720
1721/**
1722 * sw_w_sta_mac_table - write to the static MAC table
1723 * @hw: The hardware instance.
1724 * @addr: The address of the table entry.
1725 * @mac_addr: The MAC address.
1726 * @ports: The port members.
1727 * @override: The flag to override the port receive/transmit settings.
1728 * @valid: The flag to indicate entry is valid.
1729 * @use_fid: The flag to indicate the FID is valid.
1730 * @fid: The FID value.
1731 *
1732 * This routine writes an entry of the static MAC table of the switch. It
1733 * calls sw_w_table_64() to write the data.
1734 */
1735static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1736 u8 ports, int override, int valid, int use_fid, u8 fid)
1737{
1738 u32 data_hi;
1739 u32 data_lo;
1740
1741 data_lo = ((u32) mac_addr[2] << 24) |
1742 ((u32) mac_addr[3] << 16) |
1743 ((u32) mac_addr[4] << 8) | mac_addr[5];
1744 data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1745 data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1746
1747 if (override)
1748 data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1749 if (use_fid) {
1750 data_hi |= STATIC_MAC_TABLE_USE_FID;
1751 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1752 }
1753 if (valid)
1754 data_hi |= STATIC_MAC_TABLE_VALID;
1755
1756 sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1757}
1758
1759/**
1760 * sw_r_vlan_table - read from the VLAN table
1761 * @hw: The hardware instance.
1762 * @addr: The address of the table entry.
1763 * @vid: Buffer to store the VID.
1764 * @fid: Buffer to store the VID.
1765 * @member: Buffer to store the port membership.
1766 *
1767 * This function reads an entry of the VLAN table of the switch. It calls
1768 * sw_r_table() to get the data.
1769 *
1770 * Return 0 if the entry is valid; otherwise -1.
1771 */
1772static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1773 u8 *member)
1774{
1775 u32 data;
1776
1777 sw_r_table(hw, TABLE_VLAN, addr, &data);
1778 if (data & VLAN_TABLE_VALID) {
1779 *vid = (u16)(data & VLAN_TABLE_VID);
1780 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1781 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1782 VLAN_TABLE_MEMBERSHIP_SHIFT);
1783 return 0;
1784 }
1785 return -1;
1786}
1787
1788/**
1789 * port_r_mib_cnt - read MIB counter
1790 * @hw: The hardware instance.
1791 * @port: The port index.
1792 * @addr: The address of the counter.
1793 * @cnt: Buffer to store the counter.
1794 *
1795 * This routine reads a MIB counter of the port.
1796 * Hardware interrupts are disabled to minimize corruption of read data.
1797 */
1798static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1799{
1800 u32 data;
1801 u16 ctrl_addr;
1802 uint interrupt;
1803 int timeout;
1804
1805 ctrl_addr = addr + PORT_COUNTER_NUM * port;
1806
1807 interrupt = hw_block_intr(hw);
1808
1809 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1810 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1811 HW_DELAY(hw, KS884X_IACR_OFFSET);
1812
1813 for (timeout = 100; timeout > 0; timeout--) {
1814 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1815
1816 if (data & MIB_COUNTER_VALID) {
1817 if (data & MIB_COUNTER_OVERFLOW)
1818 *cnt += MIB_COUNTER_VALUE + 1;
1819 *cnt += data & MIB_COUNTER_VALUE;
1820 break;
1821 }
1822 }
1823
1824 hw_restore_intr(hw, interrupt);
1825}
1826
1827/**
1828 * port_r_mib_pkt - read dropped packet counts
1829 * @hw: The hardware instance.
1830 * @port: The port index.
1831 * @cnt: Buffer to store the receive and transmit dropped packet counts.
1832 *
1833 * This routine reads the dropped packet counts of the port.
1834 * Hardware interrupts are disabled to minimize corruption of read data.
1835 */
1836static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1837{
1838 u32 cur;
1839 u32 data;
1840 u16 ctrl_addr;
1841 uint interrupt;
1842 int index;
1843
1844 index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1845 do {
1846 interrupt = hw_block_intr(hw);
1847
1848 ctrl_addr = (u16) index;
1849 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1850 << 8);
1851 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1852 HW_DELAY(hw, KS884X_IACR_OFFSET);
1853 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1854
1855 hw_restore_intr(hw, interrupt);
1856
1857 data &= MIB_PACKET_DROPPED;
1858 cur = *last;
1859 if (data != cur) {
1860 *last = data;
1861 if (data < cur)
1862 data += MIB_PACKET_DROPPED + 1;
1863 data -= cur;
1864 *cnt += data;
1865 }
1866 ++last;
1867 ++cnt;
1868 index -= KS_MIB_PACKET_DROPPED_TX -
1869 KS_MIB_PACKET_DROPPED_TX_0 + 1;
1870 } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1871}
1872
1873/**
1874 * port_r_cnt - read MIB counters periodically
1875 * @hw: The hardware instance.
1876 * @port: The port index.
1877 *
1878 * This routine is used to read the counters of the port periodically to avoid
1879 * counter overflow. The hardware should be acquired first before calling this
1880 * routine.
1881 *
1882 * Return non-zero when not all counters not read.
1883 */
1884static int port_r_cnt(struct ksz_hw *hw, int port)
1885{
1886 struct ksz_port_mib *mib = &hw->port_mib[port];
1887
1888 if (mib->mib_start < PORT_COUNTER_NUM)
1889 while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1890 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1891 &mib->counter[mib->cnt_ptr]);
1892 ++mib->cnt_ptr;
1893 }
1894 if (hw->mib_cnt > PORT_COUNTER_NUM)
1895 port_r_mib_pkt(hw, port, mib->dropped,
1896 &mib->counter[PORT_COUNTER_NUM]);
1897 mib->cnt_ptr = 0;
1898 return 0;
1899}
1900
1901/**
1902 * port_init_cnt - initialize MIB counter values
1903 * @hw: The hardware instance.
1904 * @port: The port index.
1905 *
1906 * This routine is used to initialize all counters to zero if the hardware
1907 * cannot do it after reset.
1908 */
1909static void port_init_cnt(struct ksz_hw *hw, int port)
1910{
1911 struct ksz_port_mib *mib = &hw->port_mib[port];
1912
1913 mib->cnt_ptr = 0;
1914 if (mib->mib_start < PORT_COUNTER_NUM)
1915 do {
1916 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1917 &mib->counter[mib->cnt_ptr]);
1918 ++mib->cnt_ptr;
1919 } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1920 if (hw->mib_cnt > PORT_COUNTER_NUM)
1921 port_r_mib_pkt(hw, port, mib->dropped,
1922 &mib->counter[PORT_COUNTER_NUM]);
1923 memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1924 mib->cnt_ptr = 0;
1925}
1926
1927/*
1928 * Port functions
1929 */
1930
1931/**
1932 * port_chk - check port register bits
1933 * @hw: The hardware instance.
1934 * @port: The port index.
1935 * @offset: The offset of the port register.
1936 * @bits: The data bits to check.
1937 *
1938 * This function checks whether the specified bits of the port register are set
1939 * or not.
1940 *
1941 * Return 0 if the bits are not set.
1942 */
1943static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1944{
1945 u32 addr;
1946 u16 data;
1947
1948 PORT_CTRL_ADDR(port, addr);
1949 addr += offset;
1950 data = readw(hw->io + addr);
1951 return (data & bits) == bits;
1952}
1953
1954/**
1955 * port_cfg - set port register bits
1956 * @hw: The hardware instance.
1957 * @port: The port index.
1958 * @offset: The offset of the port register.
1959 * @bits: The data bits to set.
1960 * @set: The flag indicating whether the bits are to be set or not.
1961 *
1962 * This routine sets or resets the specified bits of the port register.
1963 */
1964static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1965 int set)
1966{
1967 u32 addr;
1968 u16 data;
1969
1970 PORT_CTRL_ADDR(port, addr);
1971 addr += offset;
1972 data = readw(hw->io + addr);
1973 if (set)
1974 data |= bits;
1975 else
1976 data &= ~bits;
1977 writew(data, hw->io + addr);
1978}
1979
1980/**
1981 * port_chk_shift - check port bit
1982 * @hw: The hardware instance.
1983 * @port: The port index.
1984 * @offset: The offset of the register.
1985 * @shift: Number of bits to shift.
1986 *
1987 * This function checks whether the specified port is set in the register or
1988 * not.
1989 *
1990 * Return 0 if the port is not set.
1991 */
1992static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1993{
1994 u16 data;
1995 u16 bit = 1 << port;
1996
1997 data = readw(hw->io + addr);
1998 data >>= shift;
1999 return (data & bit) == bit;
2000}
2001
2002/**
2003 * port_cfg_shift - set port bit
2004 * @hw: The hardware instance.
2005 * @port: The port index.
2006 * @offset: The offset of the register.
2007 * @shift: Number of bits to shift.
2008 * @set: The flag indicating whether the port is to be set or not.
2009 *
2010 * This routine sets or resets the specified port in the register.
2011 */
2012static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2013 int set)
2014{
2015 u16 data;
2016 u16 bits = 1 << port;
2017
2018 data = readw(hw->io + addr);
2019 bits <<= shift;
2020 if (set)
2021 data |= bits;
2022 else
2023 data &= ~bits;
2024 writew(data, hw->io + addr);
2025}
2026
2027/**
2028 * port_r8 - read byte from port register
2029 * @hw: The hardware instance.
2030 * @port: The port index.
2031 * @offset: The offset of the port register.
2032 * @data: Buffer to store the data.
2033 *
2034 * This routine reads a byte from the port register.
2035 */
2036static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2037{
2038 u32 addr;
2039
2040 PORT_CTRL_ADDR(port, addr);
2041 addr += offset;
2042 *data = readb(hw->io + addr);
2043}
2044
2045/**
2046 * port_r16 - read word from port register.
2047 * @hw: The hardware instance.
2048 * @port: The port index.
2049 * @offset: The offset of the port register.
2050 * @data: Buffer to store the data.
2051 *
2052 * This routine reads a word from the port register.
2053 */
2054static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2055{
2056 u32 addr;
2057
2058 PORT_CTRL_ADDR(port, addr);
2059 addr += offset;
2060 *data = readw(hw->io + addr);
2061}
2062
2063/**
2064 * port_w16 - write word to port register.
2065 * @hw: The hardware instance.
2066 * @port: The port index.
2067 * @offset: The offset of the port register.
2068 * @data: Data to write.
2069 *
2070 * This routine writes a word to the port register.
2071 */
2072static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2073{
2074 u32 addr;
2075
2076 PORT_CTRL_ADDR(port, addr);
2077 addr += offset;
2078 writew(data, hw->io + addr);
2079}
2080
2081/**
2082 * sw_chk - check switch register bits
2083 * @hw: The hardware instance.
2084 * @addr: The address of the switch register.
2085 * @bits: The data bits to check.
2086 *
2087 * This function checks whether the specified bits of the switch register are
2088 * set or not.
2089 *
2090 * Return 0 if the bits are not set.
2091 */
2092static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2093{
2094 u16 data;
2095
2096 data = readw(hw->io + addr);
2097 return (data & bits) == bits;
2098}
2099
2100/**
2101 * sw_cfg - set switch register bits
2102 * @hw: The hardware instance.
2103 * @addr: The address of the switch register.
2104 * @bits: The data bits to set.
2105 * @set: The flag indicating whether the bits are to be set or not.
2106 *
2107 * This function sets or resets the specified bits of the switch register.
2108 */
2109static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2110{
2111 u16 data;
2112
2113 data = readw(hw->io + addr);
2114 if (set)
2115 data |= bits;
2116 else
2117 data &= ~bits;
2118 writew(data, hw->io + addr);
2119}
2120
2121/* Bandwidth */
2122
2123static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2124{
2125 port_cfg(hw, p,
2126 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2127}
2128
2129static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2130{
2131 return port_chk(hw, p,
2132 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2133}
2134
2135/* Driver set switch broadcast storm protection at 10% rate. */
2136#define BROADCAST_STORM_PROTECTION_RATE 10
2137
2138/* 148,800 frames * 67 ms / 100 */
2139#define BROADCAST_STORM_VALUE 9969
2140
2141/**
2142 * sw_cfg_broad_storm - configure broadcast storm threshold
2143 * @hw: The hardware instance.
2144 * @percent: Broadcast storm threshold in percent of transmit rate.
2145 *
2146 * This routine configures the broadcast storm threshold of the switch.
2147 */
2148static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2149{
2150 u16 data;
2151 u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2152
2153 if (value > BROADCAST_STORM_RATE)
2154 value = BROADCAST_STORM_RATE;
2155
2156 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2157 data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2158 data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2159 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2160}
2161
2162/**
2163 * sw_get_board_storm - get broadcast storm threshold
2164 * @hw: The hardware instance.
2165 * @percent: Buffer to store the broadcast storm threshold percentage.
2166 *
2167 * This routine retrieves the broadcast storm threshold of the switch.
2168 */
2169static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2170{
2171 int num;
2172 u16 data;
2173
2174 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2175 num = (data & BROADCAST_STORM_RATE_HI);
2176 num <<= 8;
2177 num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2178 num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2179 *percent = (u8) num;
2180}
2181
2182/**
2183 * sw_dis_broad_storm - disable broadstorm
2184 * @hw: The hardware instance.
2185 * @port: The port index.
2186 *
2187 * This routine disables the broadcast storm limit function of the switch.
2188 */
2189static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2190{
2191 port_cfg_broad_storm(hw, port, 0);
2192}
2193
2194/**
2195 * sw_ena_broad_storm - enable broadcast storm
2196 * @hw: The hardware instance.
2197 * @port: The port index.
2198 *
2199 * This routine enables the broadcast storm limit function of the switch.
2200 */
2201static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2202{
2203 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2204 port_cfg_broad_storm(hw, port, 1);
2205}
2206
2207/**
2208 * sw_init_broad_storm - initialize broadcast storm
2209 * @hw: The hardware instance.
2210 *
2211 * This routine initializes the broadcast storm limit function of the switch.
2212 */
2213static void sw_init_broad_storm(struct ksz_hw *hw)
2214{
2215 int port;
2216
2217 hw->ksz_switch->broad_per = 1;
2218 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2219 for (port = 0; port < TOTAL_PORT_NUM; port++)
2220 sw_dis_broad_storm(hw, port);
2221 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2222}
2223
2224/**
2225 * hw_cfg_broad_storm - configure broadcast storm
2226 * @hw: The hardware instance.
2227 * @percent: Broadcast storm threshold in percent of transmit rate.
2228 *
2229 * This routine configures the broadcast storm threshold of the switch.
2230 * It is called by user functions. The hardware should be acquired first.
2231 */
2232static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2233{
2234 if (percent > 100)
2235 percent = 100;
2236
2237 sw_cfg_broad_storm(hw, percent);
2238 sw_get_broad_storm(hw, &percent);
2239 hw->ksz_switch->broad_per = percent;
2240}
2241
2242/**
2243 * sw_dis_prio_rate - disable switch priority rate
2244 * @hw: The hardware instance.
2245 * @port: The port index.
2246 *
2247 * This routine disables the priority rate function of the switch.
2248 */
2249static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2250{
2251 u32 addr;
2252
2253 PORT_CTRL_ADDR(port, addr);
2254 addr += KS8842_PORT_IN_RATE_OFFSET;
2255 writel(0, hw->io + addr);
2256}
2257
2258/**
2259 * sw_init_prio_rate - initialize switch prioirty rate
2260 * @hw: The hardware instance.
2261 *
2262 * This routine initializes the priority rate function of the switch.
2263 */
2264static void sw_init_prio_rate(struct ksz_hw *hw)
2265{
2266 int port;
2267 int prio;
2268 struct ksz_switch *sw = hw->ksz_switch;
2269
2270 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2271 for (prio = 0; prio < PRIO_QUEUES; prio++) {
2272 sw->port_cfg[port].rx_rate[prio] =
2273 sw->port_cfg[port].tx_rate[prio] = 0;
2274 }
2275 sw_dis_prio_rate(hw, port);
2276 }
2277}
2278
2279/* Communication */
2280
2281static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2282{
2283 port_cfg(hw, p,
2284 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2285}
2286
2287static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2288{
2289 port_cfg(hw, p,
2290 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2291}
2292
2293static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2294{
2295 return port_chk(hw, p,
2296 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2297}
2298
2299static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2300{
2301 return port_chk(hw, p,
2302 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2303}
2304
2305/* Spanning Tree */
2306
2307static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set)
2308{
2309 port_cfg(hw, p,
2310 KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set);
2311}
2312
2313static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2314{
2315 port_cfg(hw, p,
2316 KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2317}
2318
2319static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2320{
2321 port_cfg(hw, p,
2322 KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2323}
2324
2325static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2326{
2327 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2328}
2329
2330static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2331{
2332 if (!(hw->overrides & FAST_AGING)) {
2333 sw_cfg_fast_aging(hw, 1);
2334 mdelay(1);
2335 sw_cfg_fast_aging(hw, 0);
2336 }
2337}
2338
2339/* VLAN */
2340
2341static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2342{
2343 port_cfg(hw, p,
2344 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2345}
2346
2347static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2348{
2349 port_cfg(hw, p,
2350 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2351}
2352
2353static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2354{
2355 return port_chk(hw, p,
2356 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2357}
2358
2359static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2360{
2361 return port_chk(hw, p,
2362 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2363}
2364
2365static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2366{
2367 port_cfg(hw, p,
2368 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2369}
2370
2371static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2372{
2373 port_cfg(hw, p,
2374 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2375}
2376
2377static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2378{
2379 return port_chk(hw, p,
2380 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2381}
2382
2383static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2384{
2385 return port_chk(hw, p,
2386 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2387}
2388
2389/* Mirroring */
2390
2391static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2392{
2393 port_cfg(hw, p,
2394 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2395}
2396
2397static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2398{
2399 port_cfg(hw, p,
2400 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2401}
2402
2403static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2404{
2405 port_cfg(hw, p,
2406 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2407}
2408
2409static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2410{
2411 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2412}
2413
2414static void sw_init_mirror(struct ksz_hw *hw)
2415{
2416 int port;
2417
2418 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2419 port_cfg_mirror_sniffer(hw, port, 0);
2420 port_cfg_mirror_rx(hw, port, 0);
2421 port_cfg_mirror_tx(hw, port, 0);
2422 }
2423 sw_cfg_mirror_rx_tx(hw, 0);
2424}
2425
2426static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2427{
2428 sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2429 SWITCH_UNK_DEF_PORT_ENABLE, set);
2430}
2431
2432static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2433{
2434 return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2435 SWITCH_UNK_DEF_PORT_ENABLE);
2436}
2437
2438static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2439{
2440 port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2441}
2442
2443static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2444{
2445 return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2446}
2447
2448/* Priority */
2449
2450static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2451{
2452 port_cfg(hw, p,
2453 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2454}
2455
2456static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2457{
2458 port_cfg(hw, p,
2459 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2460}
2461
2462static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2463{
2464 port_cfg(hw, p,
2465 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2466}
2467
2468static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2469{
2470 port_cfg(hw, p,
2471 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2472}
2473
2474static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2475{
2476 return port_chk(hw, p,
2477 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2478}
2479
2480static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2481{
2482 return port_chk(hw, p,
2483 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2484}
2485
2486static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2487{
2488 return port_chk(hw, p,
2489 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2490}
2491
2492static inline int port_chk_prio(struct ksz_hw *hw, int p)
2493{
2494 return port_chk(hw, p,
2495 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2496}
2497
2498/**
2499 * sw_dis_diffserv - disable switch DiffServ priority
2500 * @hw: The hardware instance.
2501 * @port: The port index.
2502 *
2503 * This routine disables the DiffServ priority function of the switch.
2504 */
2505static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2506{
2507 port_cfg_diffserv(hw, port, 0);
2508}
2509
2510/**
2511 * sw_dis_802_1p - disable switch 802.1p priority
2512 * @hw: The hardware instance.
2513 * @port: The port index.
2514 *
2515 * This routine disables the 802.1p priority function of the switch.
2516 */
2517static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2518{
2519 port_cfg_802_1p(hw, port, 0);
2520}
2521
2522/**
2523 * sw_cfg_replace_null_vid -
2524 * @hw: The hardware instance.
2525 * @set: The flag to disable or enable.
2526 *
2527 */
2528static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2529{
2530 sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2531}
2532
2533/**
2534 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2535 * @hw: The hardware instance.
2536 * @port: The port index.
2537 * @set: The flag to disable or enable.
2538 *
2539 * This routine enables the 802.1p priority re-mapping function of the switch.
2540 * That allows 802.1p priority field to be replaced with the port's default
2541 * tag's priority value if the ingress packet's 802.1p priority has a higher
2542 * priority than port's default tag's priority.
2543 */
2544static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2545{
2546 port_cfg_replace_vid(hw, port, set);
2547}
2548
2549/**
2550 * sw_cfg_port_based - configure switch port based priority
2551 * @hw: The hardware instance.
2552 * @port: The port index.
2553 * @prio: The priority to set.
2554 *
2555 * This routine configures the port based priority of the switch.
2556 */
2557static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2558{
2559 u16 data;
2560
2561 if (prio > PORT_BASED_PRIORITY_BASE)
2562 prio = PORT_BASED_PRIORITY_BASE;
2563
2564 hw->ksz_switch->port_cfg[port].port_prio = prio;
2565
2566 port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2567 data &= ~PORT_BASED_PRIORITY_MASK;
2568 data |= prio << PORT_BASED_PRIORITY_SHIFT;
2569 port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2570}
2571
2572/**
2573 * sw_dis_multi_queue - disable transmit multiple queues
2574 * @hw: The hardware instance.
2575 * @port: The port index.
2576 *
2577 * This routine disables the transmit multiple queues selection of the switch
2578 * port. Only single transmit queue on the port.
2579 */
2580static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2581{
2582 port_cfg_prio(hw, port, 0);
2583}
2584
2585/**
2586 * sw_init_prio - initialize switch priority
2587 * @hw: The hardware instance.
2588 *
2589 * This routine initializes the switch QoS priority functions.
2590 */
2591static void sw_init_prio(struct ksz_hw *hw)
2592{
2593 int port;
2594 int tos;
2595 struct ksz_switch *sw = hw->ksz_switch;
2596
2597 /*
2598 * Init all the 802.1p tag priority value to be assigned to different
2599 * priority queue.
2600 */
2601 sw->p_802_1p[0] = 0;
2602 sw->p_802_1p[1] = 0;
2603 sw->p_802_1p[2] = 1;
2604 sw->p_802_1p[3] = 1;
2605 sw->p_802_1p[4] = 2;
2606 sw->p_802_1p[5] = 2;
2607 sw->p_802_1p[6] = 3;
2608 sw->p_802_1p[7] = 3;
2609
2610 /*
2611 * Init all the DiffServ priority value to be assigned to priority
2612 * queue 0.
2613 */
2614 for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2615 sw->diffserv[tos] = 0;
2616
2617 /* All QoS functions disabled. */
2618 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2619 sw_dis_multi_queue(hw, port);
2620 sw_dis_diffserv(hw, port);
2621 sw_dis_802_1p(hw, port);
2622 sw_cfg_replace_vid(hw, port, 0);
2623
2624 sw->port_cfg[port].port_prio = 0;
2625 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2626 }
2627 sw_cfg_replace_null_vid(hw, 0);
2628}
2629
2630/**
2631 * port_get_def_vid - get port default VID.
2632 * @hw: The hardware instance.
2633 * @port: The port index.
2634 * @vid: Buffer to store the VID.
2635 *
2636 * This routine retrieves the default VID of the port.
2637 */
2638static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2639{
2640 u32 addr;
2641
2642 PORT_CTRL_ADDR(port, addr);
2643 addr += KS8842_PORT_CTRL_VID_OFFSET;
2644 *vid = readw(hw->io + addr);
2645}
2646
2647/**
2648 * sw_init_vlan - initialize switch VLAN
2649 * @hw: The hardware instance.
2650 *
2651 * This routine initializes the VLAN function of the switch.
2652 */
2653static void sw_init_vlan(struct ksz_hw *hw)
2654{
2655 int port;
2656 int entry;
2657 struct ksz_switch *sw = hw->ksz_switch;
2658
2659 /* Read 16 VLAN entries from device's VLAN table. */
2660 for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2661 sw_r_vlan_table(hw, entry,
2662 &sw->vlan_table[entry].vid,
2663 &sw->vlan_table[entry].fid,
2664 &sw->vlan_table[entry].member);
2665 }
2666
2667 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2668 port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2669 sw->port_cfg[port].member = PORT_MASK;
2670 }
2671}
2672
2673/**
2674 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2675 * @hw: The hardware instance.
2676 * @port: The port index.
2677 * @member: The port-based VLAN membership.
2678 *
2679 * This routine configures the port-based VLAN membership of the port.
2680 */
2681static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2682{
2683 u32 addr;
2684 u8 data;
2685
2686 PORT_CTRL_ADDR(port, addr);
2687 addr += KS8842_PORT_CTRL_2_OFFSET;
2688
2689 data = readb(hw->io + addr);
2690 data &= ~PORT_VLAN_MEMBERSHIP;
2691 data |= (member & PORT_MASK);
2692 writeb(data, hw->io + addr);
2693
2694 hw->ksz_switch->port_cfg[port].member = member;
2695}
2696
2697/**
2698 * sw_get_addr - get the switch MAC address.
2699 * @hw: The hardware instance.
2700 * @mac_addr: Buffer to store the MAC address.
2701 *
2702 * This function retrieves the MAC address of the switch.
2703 */
2704static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2705{
2706 int i;
2707
2708 for (i = 0; i < 6; i += 2) {
2709 mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2710 mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2711 }
2712}
2713
2714/**
2715 * sw_set_addr - configure switch MAC address
2716 * @hw: The hardware instance.
2717 * @mac_addr: The MAC address.
2718 *
2719 * This function configures the MAC address of the switch.
2720 */
2721static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2722{
2723 int i;
2724
2725 for (i = 0; i < 6; i += 2) {
2726 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2727 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2728 }
2729}
2730
2731/**
2732 * sw_set_global_ctrl - set switch global control
2733 * @hw: The hardware instance.
2734 *
2735 * This routine sets the global control of the switch function.
2736 */
2737static void sw_set_global_ctrl(struct ksz_hw *hw)
2738{
2739 u16 data;
2740
2741 /* Enable switch MII flow control. */
2742 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2743 data |= SWITCH_FLOW_CTRL;
2744 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2745
2746 data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2747
2748 /* Enable aggressive back off algorithm in half duplex mode. */
2749 data |= SWITCH_AGGR_BACKOFF;
2750
2751 /* Enable automatic fast aging when link changed detected. */
2752 data |= SWITCH_AGING_ENABLE;
2753 data |= SWITCH_LINK_AUTO_AGING;
2754
2755 if (hw->overrides & FAST_AGING)
2756 data |= SWITCH_FAST_AGING;
2757 else
2758 data &= ~SWITCH_FAST_AGING;
2759 writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2760
2761 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2762
2763 /* Enable no excessive collision drop. */
2764 data |= NO_EXC_COLLISION_DROP;
2765 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2766}
2767
2768enum {
2769 STP_STATE_DISABLED = 0,
2770 STP_STATE_LISTENING,
2771 STP_STATE_LEARNING,
2772 STP_STATE_FORWARDING,
2773 STP_STATE_BLOCKED,
2774 STP_STATE_SIMPLE
2775};
2776
2777/**
2778 * port_set_stp_state - configure port spanning tree state
2779 * @hw: The hardware instance.
2780 * @port: The port index.
2781 * @state: The spanning tree state.
2782 *
2783 * This routine configures the spanning tree state of the port.
2784 */
2785static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2786{
2787 u16 data;
2788
2789 port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2790 switch (state) {
2791 case STP_STATE_DISABLED:
2792 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2793 data |= PORT_LEARN_DISABLE;
2794 break;
2795 case STP_STATE_LISTENING:
2796/*
2797 * No need to turn on transmit because of port direct mode.
2798 * Turning on receive is required if static MAC table is not setup.
2799 */
2800 data &= ~PORT_TX_ENABLE;
2801 data |= PORT_RX_ENABLE;
2802 data |= PORT_LEARN_DISABLE;
2803 break;
2804 case STP_STATE_LEARNING:
2805 data &= ~PORT_TX_ENABLE;
2806 data |= PORT_RX_ENABLE;
2807 data &= ~PORT_LEARN_DISABLE;
2808 break;
2809 case STP_STATE_FORWARDING:
2810 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2811 data &= ~PORT_LEARN_DISABLE;
2812 break;
2813 case STP_STATE_BLOCKED:
2814/*
2815 * Need to setup static MAC table with override to keep receiving BPDU
2816 * messages. See sw_init_stp routine.
2817 */
2818 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2819 data |= PORT_LEARN_DISABLE;
2820 break;
2821 case STP_STATE_SIMPLE:
2822 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2823 data |= PORT_LEARN_DISABLE;
2824 break;
2825 }
2826 port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2827 hw->ksz_switch->port_cfg[port].stp_state = state;
2828}
2829
2830#define STP_ENTRY 0
2831#define BROADCAST_ENTRY 1
2832#define BRIDGE_ADDR_ENTRY 2
2833#define IPV6_ADDR_ENTRY 3
2834
2835/**
2836 * sw_clr_sta_mac_table - clear static MAC table
2837 * @hw: The hardware instance.
2838 *
2839 * This routine clears the static MAC table.
2840 */
2841static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2842{
2843 struct ksz_mac_table *entry;
2844 int i;
2845
2846 for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2847 entry = &hw->ksz_switch->mac_table[i];
2848 sw_w_sta_mac_table(hw, i,
2849 entry->mac_addr, entry->ports,
2850 entry->override, 0,
2851 entry->use_fid, entry->fid);
2852 }
2853}
2854
2855/**
2856 * sw_init_stp - initialize switch spanning tree support
2857 * @hw: The hardware instance.
2858 *
2859 * This routine initializes the spanning tree support of the switch.
2860 */
2861static void sw_init_stp(struct ksz_hw *hw)
2862{
2863 struct ksz_mac_table *entry;
2864
2865 entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2866 entry->mac_addr[0] = 0x01;
2867 entry->mac_addr[1] = 0x80;
2868 entry->mac_addr[2] = 0xC2;
2869 entry->mac_addr[3] = 0x00;
2870 entry->mac_addr[4] = 0x00;
2871 entry->mac_addr[5] = 0x00;
2872 entry->ports = HOST_MASK;
2873 entry->override = 1;
2874 entry->valid = 1;
2875 sw_w_sta_mac_table(hw, STP_ENTRY,
2876 entry->mac_addr, entry->ports,
2877 entry->override, entry->valid,
2878 entry->use_fid, entry->fid);
2879}
2880
2881/**
2882 * sw_block_addr - block certain packets from the host port
2883 * @hw: The hardware instance.
2884 *
2885 * This routine blocks certain packets from reaching to the host port.
2886 */
2887static void sw_block_addr(struct ksz_hw *hw)
2888{
2889 struct ksz_mac_table *entry;
2890 int i;
2891
2892 for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2893 entry = &hw->ksz_switch->mac_table[i];
2894 entry->valid = 0;
2895 sw_w_sta_mac_table(hw, i,
2896 entry->mac_addr, entry->ports,
2897 entry->override, entry->valid,
2898 entry->use_fid, entry->fid);
2899 }
2900}
2901
2902#define PHY_LINK_SUPPORT \
2903 (PHY_AUTO_NEG_ASYM_PAUSE | \
2904 PHY_AUTO_NEG_SYM_PAUSE | \
2905 PHY_AUTO_NEG_100BT4 | \
2906 PHY_AUTO_NEG_100BTX_FD | \
2907 PHY_AUTO_NEG_100BTX | \
2908 PHY_AUTO_NEG_10BT_FD | \
2909 PHY_AUTO_NEG_10BT)
2910
2911static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2912{
2913 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2914}
2915
2916static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2917{
2918 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2919}
2920
2921static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2922{
2923 *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2924}
2925
2926static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2927{
2928 *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2929}
2930
2931static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2932{
2933 writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2934}
2935
2936static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2937{
2938 *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2939}
2940
2941static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2942{
2943 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2944}
2945
2946static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2947{
2948 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2949}
2950
2951static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2952{
2953 *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2954}
2955
2956static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2957{
2958 writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2959}
2960
2961static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2962{
2963 *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2964}
2965
2966static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2967{
2968 writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2969}
2970
2971/**
2972 * hw_r_phy - read data from PHY register
2973 * @hw: The hardware instance.
2974 * @port: Port to read.
2975 * @reg: PHY register to read.
2976 * @val: Buffer to store the read data.
2977 *
2978 * This routine reads data from the PHY register.
2979 */
2980static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2981{
2982 int phy;
2983
2984 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2985 *val = readw(hw->io + phy);
2986}
2987
2988/**
2989 * port_w_phy - write data to PHY register
2990 * @hw: The hardware instance.
2991 * @port: Port to write.
2992 * @reg: PHY register to write.
2993 * @val: Word data to write.
2994 *
2995 * This routine writes data to the PHY register.
2996 */
2997static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2998{
2999 int phy;
3000
3001 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
3002 writew(val, hw->io + phy);
3003}
3004
3005/*
3006 * EEPROM access functions
3007 */
3008
3009#define AT93C_CODE 0
3010#define AT93C_WR_OFF 0x00
3011#define AT93C_WR_ALL 0x10
3012#define AT93C_ER_ALL 0x20
3013#define AT93C_WR_ON 0x30
3014
3015#define AT93C_WRITE 1
3016#define AT93C_READ 2
3017#define AT93C_ERASE 3
3018
3019#define EEPROM_DELAY 4
3020
3021static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3022{
3023 u16 data;
3024
3025 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3026 data &= ~gpio;
3027 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3028}
3029
3030static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3031{
3032 u16 data;
3033
3034 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3035 data |= gpio;
3036 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3037}
3038
3039static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3040{
3041 u16 data;
3042
3043 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3044 return (u8)(data & gpio);
3045}
3046
3047static void eeprom_clk(struct ksz_hw *hw)
3048{
3049 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3050 udelay(EEPROM_DELAY);
3051 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3052 udelay(EEPROM_DELAY);
3053}
3054
3055static u16 spi_r(struct ksz_hw *hw)
3056{
3057 int i;
3058 u16 temp = 0;
3059
3060 for (i = 15; i >= 0; i--) {
3061 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3062 udelay(EEPROM_DELAY);
3063
3064 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3065
3066 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3067 udelay(EEPROM_DELAY);
3068 }
3069 return temp;
3070}
3071
3072static void spi_w(struct ksz_hw *hw, u16 data)
3073{
3074 int i;
3075
3076 for (i = 15; i >= 0; i--) {
3077 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3078 drop_gpio(hw, EEPROM_DATA_OUT);
3079 eeprom_clk(hw);
3080 }
3081}
3082
3083static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3084{
3085 int i;
3086
3087 /* Initial start bit */
3088 raise_gpio(hw, EEPROM_DATA_OUT);
3089 eeprom_clk(hw);
3090
3091 /* AT93C operation */
3092 for (i = 1; i >= 0; i--) {
3093 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3094 drop_gpio(hw, EEPROM_DATA_OUT);
3095 eeprom_clk(hw);
3096 }
3097
3098 /* Address location */
3099 for (i = 5; i >= 0; i--) {
3100 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3101 drop_gpio(hw, EEPROM_DATA_OUT);
3102 eeprom_clk(hw);
3103 }
3104}
3105
3106#define EEPROM_DATA_RESERVED 0
3107#define EEPROM_DATA_MAC_ADDR_0 1
3108#define EEPROM_DATA_MAC_ADDR_1 2
3109#define EEPROM_DATA_MAC_ADDR_2 3
3110#define EEPROM_DATA_SUBSYS_ID 4
3111#define EEPROM_DATA_SUBSYS_VEN_ID 5
3112#define EEPROM_DATA_PM_CAP 6
3113
3114/* User defined EEPROM data */
3115#define EEPROM_DATA_OTHER_MAC_ADDR 9
3116
3117/**
3118 * eeprom_read - read from AT93C46 EEPROM
3119 * @hw: The hardware instance.
3120 * @reg: The register offset.
3121 *
3122 * This function reads a word from the AT93C46 EEPROM.
3123 *
3124 * Return the data value.
3125 */
3126static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3127{
3128 u16 data;
3129
3130 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3131
3132 spi_reg(hw, AT93C_READ, reg);
3133 data = spi_r(hw);
3134
3135 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3136
3137 return data;
3138}
3139
3140/**
3141 * eeprom_write - write to AT93C46 EEPROM
3142 * @hw: The hardware instance.
3143 * @reg: The register offset.
3144 * @data: The data value.
3145 *
3146 * This procedure writes a word to the AT93C46 EEPROM.
3147 */
3148static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3149{
3150 int timeout;
3151
3152 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3153
3154 /* Enable write. */
3155 spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3156 drop_gpio(hw, EEPROM_CHIP_SELECT);
3157 udelay(1);
3158
3159 /* Erase the register. */
3160 raise_gpio(hw, EEPROM_CHIP_SELECT);
3161 spi_reg(hw, AT93C_ERASE, reg);
3162 drop_gpio(hw, EEPROM_CHIP_SELECT);
3163 udelay(1);
3164
3165 /* Check operation complete. */
3166 raise_gpio(hw, EEPROM_CHIP_SELECT);
3167 timeout = 8;
3168 mdelay(2);
3169 do {
3170 mdelay(1);
3171 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3172 drop_gpio(hw, EEPROM_CHIP_SELECT);
3173 udelay(1);
3174
3175 /* Write the register. */
3176 raise_gpio(hw, EEPROM_CHIP_SELECT);
3177 spi_reg(hw, AT93C_WRITE, reg);
3178 spi_w(hw, data);
3179 drop_gpio(hw, EEPROM_CHIP_SELECT);
3180 udelay(1);
3181
3182 /* Check operation complete. */
3183 raise_gpio(hw, EEPROM_CHIP_SELECT);
3184 timeout = 8;
3185 mdelay(2);
3186 do {
3187 mdelay(1);
3188 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3189 drop_gpio(hw, EEPROM_CHIP_SELECT);
3190 udelay(1);
3191
3192 /* Disable write. */
3193 raise_gpio(hw, EEPROM_CHIP_SELECT);
3194 spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3195
3196 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3197}
3198
3199/*
3200 * Link detection routines
3201 */
3202
3203static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3204{
3205 ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3206 switch (port->flow_ctrl) {
3207 case PHY_FLOW_CTRL:
3208 ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3209 break;
3210 /* Not supported. */
3211 case PHY_TX_ONLY:
3212 case PHY_RX_ONLY:
3213 default:
3214 break;
3215 }
3216 return ctrl;
3217}
3218
3219static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3220{
3221 u32 rx_cfg;
3222 u32 tx_cfg;
3223
3224 rx_cfg = hw->rx_cfg;
3225 tx_cfg = hw->tx_cfg;
3226 if (rx)
3227 hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3228 else
3229 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3230 if (tx)
3231 hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3232 else
3233 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3234 if (hw->enabled) {
3235 if (rx_cfg != hw->rx_cfg)
3236 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3237 if (tx_cfg != hw->tx_cfg)
3238 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3239 }
3240}
3241
3242static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3243 u16 local, u16 remote)
3244{
3245 int rx;
3246 int tx;
3247
3248 if (hw->overrides & PAUSE_FLOW_CTRL)
3249 return;
3250
3251 rx = tx = 0;
3252 if (port->force_link)
3253 rx = tx = 1;
3254 if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3255 if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3256 rx = tx = 1;
3257 } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3258 (local & PHY_AUTO_NEG_PAUSE) ==
3259 PHY_AUTO_NEG_ASYM_PAUSE) {
3260 tx = 1;
3261 }
3262 } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3263 if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3264 rx = 1;
3265 }
3266 if (!hw->ksz_switch)
3267 set_flow_ctrl(hw, rx, tx);
3268}
3269
3270static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3271 struct ksz_port_info *info, u16 link_status)
3272{
3273 if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3274 !(hw->overrides & PAUSE_FLOW_CTRL)) {
3275 u32 cfg = hw->tx_cfg;
3276
3277 /* Disable flow control in the half duplex mode. */
3278 if (1 == info->duplex)
3279 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3280 if (hw->enabled && cfg != hw->tx_cfg)
3281 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3282 }
3283}
3284
3285/**
3286 * port_get_link_speed - get current link status
3287 * @port: The port instance.
3288 *
3289 * This routine reads PHY registers to determine the current link status of the
3290 * switch ports.
3291 */
3292static void port_get_link_speed(struct ksz_port *port)
3293{
3294 uint interrupt;
3295 struct ksz_port_info *info;
3296 struct ksz_port_info *linked = NULL;
3297 struct ksz_hw *hw = port->hw;
3298 u16 data;
3299 u16 status;
3300 u8 local;
3301 u8 remote;
3302 int i;
3303 int p;
3304 int change = 0;
3305
3306 interrupt = hw_block_intr(hw);
3307
3308 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3309 info = &hw->port_info[p];
3310 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3311 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3312
3313 /*
3314 * Link status is changing all the time even when there is no
3315 * cable connection!
3316 */
3317 remote = status & (PORT_AUTO_NEG_COMPLETE |
3318 PORT_STATUS_LINK_GOOD);
3319 local = (u8) data;
3320
3321 /* No change to status. */
3322 if (local == info->advertised && remote == info->partner)
3323 continue;
3324
3325 info->advertised = local;
3326 info->partner = remote;
3327 if (status & PORT_STATUS_LINK_GOOD) {
3328
3329 /* Remember the first linked port. */
3330 if (!linked)
3331 linked = info;
3332
3333 info->tx_rate = 10 * TX_RATE_UNIT;
3334 if (status & PORT_STATUS_SPEED_100MBIT)
3335 info->tx_rate = 100 * TX_RATE_UNIT;
3336
3337 info->duplex = 1;
3338 if (status & PORT_STATUS_FULL_DUPLEX)
3339 info->duplex = 2;
3340
3341 if (media_connected != info->state) {
3342 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3343 &data);
3344 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3345 &status);
3346 determine_flow_ctrl(hw, port, data, status);
3347 if (hw->ksz_switch) {
3348 port_cfg_back_pressure(hw, p,
3349 (1 == info->duplex));
3350 }
3351 change |= 1 << i;
3352 port_cfg_change(hw, port, info, status);
3353 }
3354 info->state = media_connected;
3355 } else {
3356 if (media_disconnected != info->state) {
3357 change |= 1 << i;
3358
3359 /* Indicate the link just goes down. */
3360 hw->port_mib[p].link_down = 1;
3361 }
3362 info->state = media_disconnected;
3363 }
3364 hw->port_mib[p].state = (u8) info->state;
3365 }
3366
3367 if (linked && media_disconnected == port->linked->state)
3368 port->linked = linked;
3369
3370 hw_restore_intr(hw, interrupt);
3371}
3372
3373#define PHY_RESET_TIMEOUT 10
3374
3375/**
3376 * port_set_link_speed - set port speed
3377 * @port: The port instance.
3378 *
3379 * This routine sets the link speed of the switch ports.
3380 */
3381static void port_set_link_speed(struct ksz_port *port)
3382{
3383 struct ksz_port_info *info;
3384 struct ksz_hw *hw = port->hw;
3385 u16 data;
3386 u16 cfg;
3387 u8 status;
3388 int i;
3389 int p;
3390
3391 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3392 info = &hw->port_info[p];
3393
3394 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3395 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3396
3397 cfg = 0;
3398 if (status & PORT_STATUS_LINK_GOOD)
3399 cfg = data;
3400
3401 data |= PORT_AUTO_NEG_ENABLE;
3402 data = advertised_flow_ctrl(port, data);
3403
3404 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3405 PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3406
3407 /* Check if manual configuration is specified by the user. */
3408 if (port->speed || port->duplex) {
3409 if (10 == port->speed)
3410 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3411 PORT_AUTO_NEG_100BTX);
3412 else if (100 == port->speed)
3413 data &= ~(PORT_AUTO_NEG_10BT_FD |
3414 PORT_AUTO_NEG_10BT);
3415 if (1 == port->duplex)
3416 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3417 PORT_AUTO_NEG_10BT_FD);
3418 else if (2 == port->duplex)
3419 data &= ~(PORT_AUTO_NEG_100BTX |
3420 PORT_AUTO_NEG_10BT);
3421 }
3422 if (data != cfg) {
3423 data |= PORT_AUTO_NEG_RESTART;
3424 port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3425 }
3426 }
3427}
3428
3429/**
3430 * port_force_link_speed - force port speed
3431 * @port: The port instance.
3432 *
3433 * This routine forces the link speed of the switch ports.
3434 */
3435static void port_force_link_speed(struct ksz_port *port)
3436{
3437 struct ksz_hw *hw = port->hw;
3438 u16 data;
3439 int i;
3440 int phy;
3441 int p;
3442
3443 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3444 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3445 hw_r_phy_ctrl(hw, phy, &data);
3446
3447 data &= ~PHY_AUTO_NEG_ENABLE;
3448
3449 if (10 == port->speed)
3450 data &= ~PHY_SPEED_100MBIT;
3451 else if (100 == port->speed)
3452 data |= PHY_SPEED_100MBIT;
3453 if (1 == port->duplex)
3454 data &= ~PHY_FULL_DUPLEX;
3455 else if (2 == port->duplex)
3456 data |= PHY_FULL_DUPLEX;
3457 hw_w_phy_ctrl(hw, phy, data);
3458 }
3459}
3460
3461static void port_set_power_saving(struct ksz_port *port, int enable)
3462{
3463 struct ksz_hw *hw = port->hw;
3464 int i;
3465 int p;
3466
3467 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3468 port_cfg(hw, p,
3469 KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3470}
3471
3472/*
3473 * KSZ8841 power management functions
3474 */
3475
3476/**
3477 * hw_chk_wol_pme_status - check PMEN pin
3478 * @hw: The hardware instance.
3479 *
3480 * This function is used to check PMEN pin is asserted.
3481 *
3482 * Return 1 if PMEN pin is asserted; otherwise, 0.
3483 */
3484static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3485{
3486 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3487 struct pci_dev *pdev = hw_priv->pdev;
3488 u16 data;
3489
3490 if (!pdev->pm_cap)
3491 return 0;
3492 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3493 return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3494}
3495
3496/**
3497 * hw_clr_wol_pme_status - clear PMEN pin
3498 * @hw: The hardware instance.
3499 *
3500 * This routine is used to clear PME_Status to deassert PMEN pin.
3501 */
3502static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3503{
3504 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3505 struct pci_dev *pdev = hw_priv->pdev;
3506 u16 data;
3507
3508 if (!pdev->pm_cap)
3509 return;
3510
3511 /* Clear PME_Status to deassert PMEN pin. */
3512 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3513 data |= PCI_PM_CTRL_PME_STATUS;
3514 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3515}
3516
3517/**
3518 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3519 * @hw: The hardware instance.
3520 * @set: The flag indicating whether to enable or disable.
3521 *
3522 * This routine is used to enable or disable Wake-on-LAN.
3523 */
3524static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3525{
3526 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3527 struct pci_dev *pdev = hw_priv->pdev;
3528 u16 data;
3529
3530 if (!pdev->pm_cap)
3531 return;
3532 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3533 data &= ~PCI_PM_CTRL_STATE_MASK;
3534 if (set)
3535 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3536 else
3537 data &= ~PCI_PM_CTRL_PME_ENABLE;
3538 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3539}
3540
3541/**
3542 * hw_cfg_wol - configure Wake-on-LAN features
3543 * @hw: The hardware instance.
3544 * @frame: The pattern frame bit.
3545 * @set: The flag indicating whether to enable or disable.
3546 *
3547 * This routine is used to enable or disable certain Wake-on-LAN features.
3548 */
3549static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3550{
3551 u16 data;
3552
3553 data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3554 if (set)
3555 data |= frame;
3556 else
3557 data &= ~frame;
3558 writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3559}
3560
3561/**
3562 * hw_set_wol_frame - program Wake-on-LAN pattern
3563 * @hw: The hardware instance.
3564 * @i: The frame index.
3565 * @mask_size: The size of the mask.
3566 * @mask: Mask to ignore certain bytes in the pattern.
3567 * @frame_size: The size of the frame.
3568 * @pattern: The frame data.
3569 *
3570 * This routine is used to program Wake-on-LAN pattern.
3571 */
3572static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3573 u8 *mask, uint frame_size, u8 *pattern)
3574{
3575 int bits;
3576 int from;
3577 int len;
3578 int to;
3579 u32 crc;
3580 u8 data[64];
3581 u8 val = 0;
3582
3583 if (frame_size > mask_size * 8)
3584 frame_size = mask_size * 8;
3585 if (frame_size > 64)
3586 frame_size = 64;
3587
3588 i *= 0x10;
3589 writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3590 writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3591
3592 bits = len = from = to = 0;
3593 do {
3594 if (bits) {
3595 if ((val & 1))
3596 data[to++] = pattern[from];
3597 val >>= 1;
3598 ++from;
3599 --bits;
3600 } else {
3601 val = mask[len];
3602 writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3603 + len);
3604 ++len;
3605 if (val)
3606 bits = 8;
3607 else
3608 from += 8;
3609 }
3610 } while (from < (int) frame_size);
3611 if (val) {
3612 bits = mask[len - 1];
3613 val <<= (from % 8);
3614 bits &= ~val;
3615 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3616 1);
3617 }
3618 crc = ether_crc(to, data);
3619 writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3620}
3621
3622/**
3623 * hw_add_wol_arp - add ARP pattern
3624 * @hw: The hardware instance.
3625 * @ip_addr: The IPv4 address assigned to the device.
3626 *
3627 * This routine is used to add ARP pattern for waking up the host.
3628 */
3629static void hw_add_wol_arp(struct ksz_hw *hw, u8 *ip_addr)
3630{
3631 u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3632 u8 pattern[42] = {
3633 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3634 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3635 0x08, 0x06,
3636 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3637 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3638 0x00, 0x00, 0x00, 0x00,
3639 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3640 0x00, 0x00, 0x00, 0x00 };
3641
3642 memcpy(&pattern[38], ip_addr, 4);
3643 hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3644}
3645
3646/**
3647 * hw_add_wol_bcast - add broadcast pattern
3648 * @hw: The hardware instance.
3649 *
3650 * This routine is used to add broadcast pattern for waking up the host.
3651 */
3652static void hw_add_wol_bcast(struct ksz_hw *hw)
3653{
3654 u8 mask[] = { 0x3F };
3655 u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3656
3657 hw_set_wol_frame(hw, 2, 1, mask, MAC_ADDR_LEN, pattern);
3658}
3659
3660/**
3661 * hw_add_wol_mcast - add multicast pattern
3662 * @hw: The hardware instance.
3663 *
3664 * This routine is used to add multicast pattern for waking up the host.
3665 *
3666 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3667 * by IPv6 ping command. Note that multicast packets are filtred through the
3668 * multicast hash table, so not all multicast packets can wake up the host.
3669 */
3670static void hw_add_wol_mcast(struct ksz_hw *hw)
3671{
3672 u8 mask[] = { 0x3F };
3673 u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3674
3675 memcpy(&pattern[3], &hw->override_addr[3], 3);
3676 hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3677}
3678
3679/**
3680 * hw_add_wol_ucast - add unicast pattern
3681 * @hw: The hardware instance.
3682 *
3683 * This routine is used to add unicast pattern to wakeup the host.
3684 *
3685 * It is assumed the unicast packet is directed to the device, as the hardware
3686 * can only receive them in normal case.
3687 */
3688static void hw_add_wol_ucast(struct ksz_hw *hw)
3689{
3690 u8 mask[] = { 0x3F };
3691
3692 hw_set_wol_frame(hw, 0, 1, mask, MAC_ADDR_LEN, hw->override_addr);
3693}
3694
3695/**
3696 * hw_enable_wol - enable Wake-on-LAN
3697 * @hw: The hardware instance.
3698 * @wol_enable: The Wake-on-LAN settings.
3699 * @net_addr: The IPv4 address assigned to the device.
3700 *
3701 * This routine is used to enable Wake-on-LAN depending on driver settings.
3702 */
3703static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, u8 *net_addr)
3704{
3705 hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3706 hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3707 hw_add_wol_ucast(hw);
3708 hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3709 hw_add_wol_mcast(hw);
3710 hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3711 hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3712 hw_add_wol_arp(hw, net_addr);
3713}
3714
3715/**
3716 * hw_init - check driver is correct for the hardware
3717 * @hw: The hardware instance.
3718 *
3719 * This function checks the hardware is correct for this driver and sets the
3720 * hardware up for proper initialization.
3721 *
3722 * Return number of ports or 0 if not right.
3723 */
3724static int hw_init(struct ksz_hw *hw)
3725{
3726 int rc = 0;
3727 u16 data;
3728 u16 revision;
3729
3730 /* Set bus speed to 125MHz. */
3731 writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3732
3733 /* Check KSZ884x chip ID. */
3734 data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3735
3736 revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3737 data &= KS884X_CHIP_ID_MASK_41;
3738 if (REG_CHIP_ID_41 == data)
3739 rc = 1;
3740 else if (REG_CHIP_ID_42 == data)
3741 rc = 2;
3742 else
3743 return 0;
3744
3745 /* Setup hardware features or bug workarounds. */
3746 if (revision <= 1) {
3747 hw->features |= SMALL_PACKET_TX_BUG;
3748 if (1 == rc)
3749 hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3750 }
3751 hw->features |= IPV6_CSUM_GEN_HACK;
3752 return rc;
3753}
3754
3755/**
3756 * hw_reset - reset the hardware
3757 * @hw: The hardware instance.
3758 *
3759 * This routine resets the hardware.
3760 */
3761static void hw_reset(struct ksz_hw *hw)
3762{
3763 writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3764
3765 /* Wait for device to reset. */
3766 mdelay(10);
3767
3768 /* Write 0 to clear device reset. */
3769 writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3770}
3771
3772/**
3773 * hw_setup - setup the hardware
3774 * @hw: The hardware instance.
3775 *
3776 * This routine setup the hardware for proper operation.
3777 */
3778static void hw_setup(struct ksz_hw *hw)
3779{
3780#if SET_DEFAULT_LED
3781 u16 data;
3782
3783 /* Change default LED mode. */
3784 data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3785 data &= ~LED_MODE;
3786 data |= SET_DEFAULT_LED;
3787 writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3788#endif
3789
3790 /* Setup transmit control. */
3791 hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3792 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3793
3794 /* Setup receive control. */
3795 hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3796 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3797 hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3798
3799 /* Hardware cannot handle UDP packet in IP fragments. */
3800 hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3801
3802 if (hw->all_multi)
3803 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3804 if (hw->promiscuous)
3805 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3806}
3807
3808/**
3809 * hw_setup_intr - setup interrupt mask
3810 * @hw: The hardware instance.
3811 *
3812 * This routine setup the interrupt mask for proper operation.
3813 */
3814static void hw_setup_intr(struct ksz_hw *hw)
3815{
3816 hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3817}
3818
3819static void ksz_check_desc_num(struct ksz_desc_info *info)
3820{
3821#define MIN_DESC_SHIFT 2
3822
3823 int alloc = info->alloc;
3824 int shift;
3825
3826 shift = 0;
3827 while (!(alloc & 1)) {
3828 shift++;
3829 alloc >>= 1;
3830 }
3831 if (alloc != 1 || shift < MIN_DESC_SHIFT) {
0dc7d2b3 3832 pr_alert("Hardware descriptor numbers not right!\n");
8ca86fd8
TH
3833 while (alloc) {
3834 shift++;
3835 alloc >>= 1;
3836 }
3837 if (shift < MIN_DESC_SHIFT)
3838 shift = MIN_DESC_SHIFT;
3839 alloc = 1 << shift;
3840 info->alloc = alloc;
3841 }
3842 info->mask = info->alloc - 1;
3843}
3844
3845static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3846{
3847 int i;
3848 u32 phys = desc_info->ring_phys;
3849 struct ksz_hw_desc *desc = desc_info->ring_virt;
3850 struct ksz_desc *cur = desc_info->ring;
3851 struct ksz_desc *previous = NULL;
3852
3853 for (i = 0; i < desc_info->alloc; i++) {
3854 cur->phw = desc++;
3855 phys += desc_info->size;
3856 previous = cur++;
3857 previous->phw->next = cpu_to_le32(phys);
3858 }
3859 previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3860 previous->sw.buf.rx.end_of_ring = 1;
3861 previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3862
3863 desc_info->avail = desc_info->alloc;
3864 desc_info->last = desc_info->next = 0;
3865
3866 desc_info->cur = desc_info->ring;
3867}
3868
3869/**
3870 * hw_set_desc_base - set descriptor base addresses
3871 * @hw: The hardware instance.
3872 * @tx_addr: The transmit descriptor base.
3873 * @rx_addr: The receive descriptor base.
3874 *
3875 * This routine programs the descriptor base addresses after reset.
3876 */
3877static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3878{
3879 /* Set base address of Tx/Rx descriptors. */
3880 writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3881 writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3882}
3883
3884static void hw_reset_pkts(struct ksz_desc_info *info)
3885{
3886 info->cur = info->ring;
3887 info->avail = info->alloc;
3888 info->last = info->next = 0;
3889}
3890
3891static inline void hw_resume_rx(struct ksz_hw *hw)
3892{
3893 writel(DMA_START, hw->io + KS_DMA_RX_START);
3894}
3895
3896/**
3897 * hw_start_rx - start receiving
3898 * @hw: The hardware instance.
3899 *
3900 * This routine starts the receive function of the hardware.
3901 */
3902static void hw_start_rx(struct ksz_hw *hw)
3903{
3904 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3905
3906 /* Notify when the receive stops. */
3907 hw->intr_mask |= KS884X_INT_RX_STOPPED;
3908
3909 writel(DMA_START, hw->io + KS_DMA_RX_START);
3910 hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3911 hw->rx_stop++;
3912
3913 /* Variable overflows. */
3914 if (0 == hw->rx_stop)
3915 hw->rx_stop = 2;
3916}
3917
3918/*
3919 * hw_stop_rx - stop receiving
3920 * @hw: The hardware instance.
3921 *
3922 * This routine stops the receive function of the hardware.
3923 */
3924static void hw_stop_rx(struct ksz_hw *hw)
3925{
3926 hw->rx_stop = 0;
3927 hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3928 writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3929}
3930
3931/**
3932 * hw_start_tx - start transmitting
3933 * @hw: The hardware instance.
3934 *
3935 * This routine starts the transmit function of the hardware.
3936 */
3937static void hw_start_tx(struct ksz_hw *hw)
3938{
3939 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3940}
3941
3942/**
3943 * hw_stop_tx - stop transmitting
3944 * @hw: The hardware instance.
3945 *
3946 * This routine stops the transmit function of the hardware.
3947 */
3948static void hw_stop_tx(struct ksz_hw *hw)
3949{
3950 writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3951}
3952
3953/**
3954 * hw_disable - disable hardware
3955 * @hw: The hardware instance.
3956 *
3957 * This routine disables the hardware.
3958 */
3959static void hw_disable(struct ksz_hw *hw)
3960{
3961 hw_stop_rx(hw);
3962 hw_stop_tx(hw);
3963 hw->enabled = 0;
3964}
3965
3966/**
3967 * hw_enable - enable hardware
3968 * @hw: The hardware instance.
3969 *
3970 * This routine enables the hardware.
3971 */
3972static void hw_enable(struct ksz_hw *hw)
3973{
3974 hw_start_tx(hw);
3975 hw_start_rx(hw);
3976 hw->enabled = 1;
3977}
3978
3979/**
3980 * hw_alloc_pkt - allocate enough descriptors for transmission
3981 * @hw: The hardware instance.
3982 * @length: The length of the packet.
3983 * @physical: Number of descriptors required.
3984 *
3985 * This function allocates descriptors for transmission.
3986 *
3987 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3988 */
3989static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3990{
3991 /* Always leave one descriptor free. */
3992 if (hw->tx_desc_info.avail <= 1)
3993 return 0;
3994
3995 /* Allocate a descriptor for transmission and mark it current. */
3996 get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3997 hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3998
3999 /* Keep track of number of transmit descriptors used so far. */
4000 ++hw->tx_int_cnt;
4001 hw->tx_size += length;
4002
4003 /* Cannot hold on too much data. */
4004 if (hw->tx_size >= MAX_TX_HELD_SIZE)
4005 hw->tx_int_cnt = hw->tx_int_mask + 1;
4006
4007 if (physical > hw->tx_desc_info.avail)
4008 return 1;
4009
4010 return hw->tx_desc_info.avail;
4011}
4012
4013/**
4014 * hw_send_pkt - mark packet for transmission
4015 * @hw: The hardware instance.
4016 *
4017 * This routine marks the packet for transmission in PCI version.
4018 */
4019static void hw_send_pkt(struct ksz_hw *hw)
4020{
4021 struct ksz_desc *cur = hw->tx_desc_info.cur;
4022
4023 cur->sw.buf.tx.last_seg = 1;
4024
4025 /* Interrupt only after specified number of descriptors used. */
4026 if (hw->tx_int_cnt > hw->tx_int_mask) {
4027 cur->sw.buf.tx.intr = 1;
4028 hw->tx_int_cnt = 0;
4029 hw->tx_size = 0;
4030 }
4031
4032 /* KSZ8842 supports port directed transmission. */
4033 cur->sw.buf.tx.dest_port = hw->dst_ports;
4034
4035 release_desc(cur);
4036
4037 writel(0, hw->io + KS_DMA_TX_START);
4038}
4039
4040static int empty_addr(u8 *addr)
4041{
4042 u32 *addr1 = (u32 *) addr;
4043 u16 *addr2 = (u16 *) &addr[4];
4044
4045 return 0 == *addr1 && 0 == *addr2;
4046}
4047
4048/**
4049 * hw_set_addr - set MAC address
4050 * @hw: The hardware instance.
4051 *
4052 * This routine programs the MAC address of the hardware when the address is
4053 * overrided.
4054 */
4055static void hw_set_addr(struct ksz_hw *hw)
4056{
4057 int i;
4058
4059 for (i = 0; i < MAC_ADDR_LEN; i++)
4060 writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4061 hw->io + KS884X_ADDR_0_OFFSET + i);
4062
4063 sw_set_addr(hw, hw->override_addr);
4064}
4065
4066/**
4067 * hw_read_addr - read MAC address
4068 * @hw: The hardware instance.
4069 *
4070 * This routine retrieves the MAC address of the hardware.
4071 */
4072static void hw_read_addr(struct ksz_hw *hw)
4073{
4074 int i;
4075
4076 for (i = 0; i < MAC_ADDR_LEN; i++)
4077 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4078 KS884X_ADDR_0_OFFSET + i);
4079
4080 if (!hw->mac_override) {
4081 memcpy(hw->override_addr, hw->perm_addr, MAC_ADDR_LEN);
4082 if (empty_addr(hw->override_addr)) {
4083 memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS,
4084 MAC_ADDR_LEN);
4085 memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4086 MAC_ADDR_LEN);
4087 hw->override_addr[5] += hw->id;
4088 hw_set_addr(hw);
4089 }
4090 }
4091}
4092
4093static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4094{
4095 int i;
4096 u32 mac_addr_lo;
4097 u32 mac_addr_hi;
4098
4099 mac_addr_hi = 0;
4100 for (i = 0; i < 2; i++) {
4101 mac_addr_hi <<= 8;
4102 mac_addr_hi |= mac_addr[i];
4103 }
4104 mac_addr_hi |= ADD_ADDR_ENABLE;
4105 mac_addr_lo = 0;
4106 for (i = 2; i < 6; i++) {
4107 mac_addr_lo <<= 8;
4108 mac_addr_lo |= mac_addr[i];
4109 }
4110 index *= ADD_ADDR_INCR;
4111
4112 writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4113 writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4114}
4115
4116static void hw_set_add_addr(struct ksz_hw *hw)
4117{
4118 int i;
4119
4120 for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4121 if (empty_addr(hw->address[i]))
4122 writel(0, hw->io + ADD_ADDR_INCR * i +
4123 KS_ADD_ADDR_0_HI);
4124 else
4125 hw_ena_add_addr(hw, i, hw->address[i]);
4126 }
4127}
4128
4129static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4130{
4131 int i;
4132 int j = ADDITIONAL_ENTRIES;
4133
4134 if (!memcmp(hw->override_addr, mac_addr, MAC_ADDR_LEN))
4135 return 0;
4136 for (i = 0; i < hw->addr_list_size; i++) {
4137 if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN))
4138 return 0;
4139 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4140 j = i;
4141 }
4142 if (j < ADDITIONAL_ENTRIES) {
4143 memcpy(hw->address[j], mac_addr, MAC_ADDR_LEN);
4144 hw_ena_add_addr(hw, j, hw->address[j]);
4145 return 0;
4146 }
4147 return -1;
4148}
4149
4150static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4151{
4152 int i;
4153
4154 for (i = 0; i < hw->addr_list_size; i++) {
4155 if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN)) {
4156 memset(hw->address[i], 0, MAC_ADDR_LEN);
4157 writel(0, hw->io + ADD_ADDR_INCR * i +
4158 KS_ADD_ADDR_0_HI);
4159 return 0;
4160 }
4161 }
4162 return -1;
4163}
4164
4165/**
4166 * hw_clr_multicast - clear multicast addresses
4167 * @hw: The hardware instance.
4168 *
4169 * This routine removes all multicast addresses set in the hardware.
4170 */
4171static void hw_clr_multicast(struct ksz_hw *hw)
4172{
4173 int i;
4174
4175 for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4176 hw->multi_bits[i] = 0;
4177
4178 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4179 }
4180}
4181
4182/**
4183 * hw_set_grp_addr - set multicast addresses
4184 * @hw: The hardware instance.
4185 *
4186 * This routine programs multicast addresses for the hardware to accept those
4187 * addresses.
4188 */
4189static void hw_set_grp_addr(struct ksz_hw *hw)
4190{
4191 int i;
4192 int index;
4193 int position;
4194 int value;
4195
4196 memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4197
4198 for (i = 0; i < hw->multi_list_size; i++) {
4199 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4200 index = position >> 3;
4201 value = 1 << (position & 7);
4202 hw->multi_bits[index] |= (u8) value;
4203 }
4204
4205 for (i = 0; i < HW_MULTICAST_SIZE; i++)
4206 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4207 i);
4208}
4209
4210/**
4211 * hw_set_multicast - enable or disable all multicast receiving
4212 * @hw: The hardware instance.
4213 * @multicast: To turn on or off the all multicast feature.
4214 *
4215 * This routine enables/disables the hardware to accept all multicast packets.
4216 */
4217static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4218{
4219 /* Stop receiving for reconfiguration. */
4220 hw_stop_rx(hw);
4221
4222 if (multicast)
4223 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4224 else
4225 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4226
4227 if (hw->enabled)
4228 hw_start_rx(hw);
4229}
4230
4231/**
4232 * hw_set_promiscuous - enable or disable promiscuous receiving
4233 * @hw: The hardware instance.
4234 * @prom: To turn on or off the promiscuous feature.
4235 *
4236 * This routine enables/disables the hardware to accept all packets.
4237 */
4238static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4239{
4240 /* Stop receiving for reconfiguration. */
4241 hw_stop_rx(hw);
4242
4243 if (prom)
4244 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4245 else
4246 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4247
4248 if (hw->enabled)
4249 hw_start_rx(hw);
4250}
4251
4252/**
4253 * sw_enable - enable the switch
4254 * @hw: The hardware instance.
4255 * @enable: The flag to enable or disable the switch
4256 *
4257 * This routine is used to enable/disable the switch in KSZ8842.
4258 */
4259static void sw_enable(struct ksz_hw *hw, int enable)
4260{
4261 int port;
4262
4263 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4264 if (hw->dev_count > 1) {
4265 /* Set port-base vlan membership with host port. */
4266 sw_cfg_port_base_vlan(hw, port,
4267 HOST_MASK | (1 << port));
4268 port_set_stp_state(hw, port, STP_STATE_DISABLED);
4269 } else {
4270 sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4271 port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4272 }
4273 }
4274 if (hw->dev_count > 1)
4275 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4276 else
4277 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4278
4279 if (enable)
4280 enable = KS8842_START;
4281 writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4282}
4283
4284/**
4285 * sw_setup - setup the switch
4286 * @hw: The hardware instance.
4287 *
4288 * This routine setup the hardware switch engine for default operation.
4289 */
4290static void sw_setup(struct ksz_hw *hw)
4291{
4292 int port;
4293
4294 sw_set_global_ctrl(hw);
4295
4296 /* Enable switch broadcast storm protection at 10% percent rate. */
4297 sw_init_broad_storm(hw);
4298 hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4299 for (port = 0; port < SWITCH_PORT_NUM; port++)
4300 sw_ena_broad_storm(hw, port);
4301
4302 sw_init_prio(hw);
4303
4304 sw_init_mirror(hw);
4305
4306 sw_init_prio_rate(hw);
4307
4308 sw_init_vlan(hw);
4309
4310 if (hw->features & STP_SUPPORT)
4311 sw_init_stp(hw);
4312 if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4313 SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4314 hw->overrides |= PAUSE_FLOW_CTRL;
4315 sw_enable(hw, 1);
4316}
4317
4318/**
4319 * ksz_start_timer - start kernel timer
4320 * @info: Kernel timer information.
4321 * @time: The time tick.
4322 *
4323 * This routine starts the kernel timer after the specified time tick.
4324 */
4325static void ksz_start_timer(struct ksz_timer_info *info, int time)
4326{
4327 info->cnt = 0;
4328 info->timer.expires = jiffies + time;
4329 add_timer(&info->timer);
4330
4331 /* infinity */
4332 info->max = -1;
4333}
4334
4335/**
4336 * ksz_stop_timer - stop kernel timer
4337 * @info: Kernel timer information.
4338 *
4339 * This routine stops the kernel timer.
4340 */
4341static void ksz_stop_timer(struct ksz_timer_info *info)
4342{
4343 if (info->max) {
4344 info->max = 0;
4345 del_timer_sync(&info->timer);
4346 }
4347}
4348
4349static void ksz_init_timer(struct ksz_timer_info *info, int period,
4350 void (*function)(unsigned long), void *data)
4351{
4352 info->max = 0;
4353 info->period = period;
4354 init_timer(&info->timer);
4355 info->timer.function = function;
4356 info->timer.data = (unsigned long) data;
4357}
4358
4359static void ksz_update_timer(struct ksz_timer_info *info)
4360{
4361 ++info->cnt;
4362 if (info->max > 0) {
4363 if (info->cnt < info->max) {
4364 info->timer.expires = jiffies + info->period;
4365 add_timer(&info->timer);
4366 } else
4367 info->max = 0;
4368 } else if (info->max < 0) {
4369 info->timer.expires = jiffies + info->period;
4370 add_timer(&info->timer);
4371 }
4372}
4373
4374/**
4375 * ksz_alloc_soft_desc - allocate software descriptors
4376 * @desc_info: Descriptor information structure.
4377 * @transmit: Indication that descriptors are for transmit.
4378 *
4379 * This local function allocates software descriptors for manipulation in
4380 * memory.
4381 *
4382 * Return 0 if successful.
4383 */
4384static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4385{
4386 desc_info->ring = kmalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4387 GFP_KERNEL);
4388 if (!desc_info->ring)
4389 return 1;
4390 memset((void *) desc_info->ring, 0,
4391 sizeof(struct ksz_desc) * desc_info->alloc);
4392 hw_init_desc(desc_info, transmit);
4393 return 0;
4394}
4395
4396/**
4397 * ksz_alloc_desc - allocate hardware descriptors
4398 * @adapter: Adapter information structure.
4399 *
4400 * This local function allocates hardware descriptors for receiving and
4401 * transmitting.
4402 *
4403 * Return 0 if successful.
4404 */
4405static int ksz_alloc_desc(struct dev_info *adapter)
4406{
4407 struct ksz_hw *hw = &adapter->hw;
4408 int offset;
4409
4410 /* Allocate memory for RX & TX descriptors. */
4411 adapter->desc_pool.alloc_size =
4412 hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4413 hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4414 DESC_ALIGNMENT;
4415
4416 adapter->desc_pool.alloc_virt =
4417 pci_alloc_consistent(
4418 adapter->pdev, adapter->desc_pool.alloc_size,
4419 &adapter->desc_pool.dma_addr);
4420 if (adapter->desc_pool.alloc_virt == NULL) {
4421 adapter->desc_pool.alloc_size = 0;
4422 return 1;
4423 }
4424 memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size);
4425
4426 /* Align to the next cache line boundary. */
4427 offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4428 (DESC_ALIGNMENT -
4429 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4430 adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4431 adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4432
4433 /* Allocate receive/transmit descriptors. */
4434 hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4435 adapter->desc_pool.virt;
4436 hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4437 offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4438 hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4439 (adapter->desc_pool.virt + offset);
4440 hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4441
4442 if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4443 return 1;
4444 if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4445 return 1;
4446
4447 return 0;
4448}
4449
4450/**
4451 * free_dma_buf - release DMA buffer resources
4452 * @adapter: Adapter information structure.
4453 *
4454 * This routine is just a helper function to release the DMA buffer resources.
4455 */
4456static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4457 int direction)
4458{
4459 pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4460 dev_kfree_skb(dma_buf->skb);
4461 dma_buf->skb = NULL;
4462 dma_buf->dma = 0;
4463}
4464
4465/**
4466 * ksz_init_rx_buffers - initialize receive descriptors
4467 * @adapter: Adapter information structure.
4468 *
4469 * This routine initializes DMA buffers for receiving.
4470 */
4471static void ksz_init_rx_buffers(struct dev_info *adapter)
4472{
4473 int i;
4474 struct ksz_desc *desc;
4475 struct ksz_dma_buf *dma_buf;
4476 struct ksz_hw *hw = &adapter->hw;
4477 struct ksz_desc_info *info = &hw->rx_desc_info;
4478
4479 for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4480 get_rx_pkt(info, &desc);
4481
4482 dma_buf = DMA_BUFFER(desc);
4483 if (dma_buf->skb && dma_buf->len != adapter->mtu)
4484 free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4485 dma_buf->len = adapter->mtu;
4486 if (!dma_buf->skb)
4487 dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4488 if (dma_buf->skb && !dma_buf->dma) {
4489 dma_buf->skb->dev = adapter->dev;
4490 dma_buf->dma = pci_map_single(
4491 adapter->pdev,
4492 skb_tail_pointer(dma_buf->skb),
4493 dma_buf->len,
4494 PCI_DMA_FROMDEVICE);
4495 }
4496
4497 /* Set descriptor. */
4498 set_rx_buf(desc, dma_buf->dma);
4499 set_rx_len(desc, dma_buf->len);
4500 release_desc(desc);
4501 }
4502}
4503
4504/**
4505 * ksz_alloc_mem - allocate memory for hardware descriptors
4506 * @adapter: Adapter information structure.
4507 *
4508 * This function allocates memory for use by hardware descriptors for receiving
4509 * and transmitting.
4510 *
4511 * Return 0 if successful.
4512 */
4513static int ksz_alloc_mem(struct dev_info *adapter)
4514{
4515 struct ksz_hw *hw = &adapter->hw;
4516
4517 /* Determine the number of receive and transmit descriptors. */
4518 hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4519 hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4520
4521 /* Determine how many descriptors to skip transmit interrupt. */
4522 hw->tx_int_cnt = 0;
4523 hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4524 if (hw->tx_int_mask > 8)
4525 hw->tx_int_mask = 8;
4526 while (hw->tx_int_mask) {
4527 hw->tx_int_cnt++;
4528 hw->tx_int_mask >>= 1;
4529 }
4530 if (hw->tx_int_cnt) {
4531 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4532 hw->tx_int_cnt = 0;
4533 }
4534
4535 /* Determine the descriptor size. */
4536 hw->rx_desc_info.size =
4537 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4538 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4539 hw->tx_desc_info.size =
4540 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4541 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4542 if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
0dc7d2b3 4543 pr_alert("Hardware descriptor size not right!\n");
8ca86fd8
TH
4544 ksz_check_desc_num(&hw->rx_desc_info);
4545 ksz_check_desc_num(&hw->tx_desc_info);
4546
4547 /* Allocate descriptors. */
4548 if (ksz_alloc_desc(adapter))
4549 return 1;
4550
4551 return 0;
4552}
4553
4554/**
4555 * ksz_free_desc - free software and hardware descriptors
4556 * @adapter: Adapter information structure.
4557 *
4558 * This local routine frees the software and hardware descriptors allocated by
4559 * ksz_alloc_desc().
4560 */
4561static void ksz_free_desc(struct dev_info *adapter)
4562{
4563 struct ksz_hw *hw = &adapter->hw;
4564
4565 /* Reset descriptor. */
4566 hw->rx_desc_info.ring_virt = NULL;
4567 hw->tx_desc_info.ring_virt = NULL;
4568 hw->rx_desc_info.ring_phys = 0;
4569 hw->tx_desc_info.ring_phys = 0;
4570
4571 /* Free memory. */
4572 if (adapter->desc_pool.alloc_virt)
4573 pci_free_consistent(
4574 adapter->pdev,
4575 adapter->desc_pool.alloc_size,
4576 adapter->desc_pool.alloc_virt,
4577 adapter->desc_pool.dma_addr);
4578
4579 /* Reset resource pool. */
4580 adapter->desc_pool.alloc_size = 0;
4581 adapter->desc_pool.alloc_virt = NULL;
4582
4583 kfree(hw->rx_desc_info.ring);
4584 hw->rx_desc_info.ring = NULL;
4585 kfree(hw->tx_desc_info.ring);
4586 hw->tx_desc_info.ring = NULL;
4587}
4588
4589/**
4590 * ksz_free_buffers - free buffers used in the descriptors
4591 * @adapter: Adapter information structure.
4592 * @desc_info: Descriptor information structure.
4593 *
4594 * This local routine frees buffers used in the DMA buffers.
4595 */
4596static void ksz_free_buffers(struct dev_info *adapter,
4597 struct ksz_desc_info *desc_info, int direction)
4598{
4599 int i;
4600 struct ksz_dma_buf *dma_buf;
4601 struct ksz_desc *desc = desc_info->ring;
4602
4603 for (i = 0; i < desc_info->alloc; i++) {
4604 dma_buf = DMA_BUFFER(desc);
4605 if (dma_buf->skb)
4606 free_dma_buf(adapter, dma_buf, direction);
4607 desc++;
4608 }
4609}
4610
4611/**
4612 * ksz_free_mem - free all resources used by descriptors
4613 * @adapter: Adapter information structure.
4614 *
4615 * This local routine frees all the resources allocated by ksz_alloc_mem().
4616 */
4617static void ksz_free_mem(struct dev_info *adapter)
4618{
4619 /* Free transmit buffers. */
4620 ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4621 PCI_DMA_TODEVICE);
4622
4623 /* Free receive buffers. */
4624 ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4625 PCI_DMA_FROMDEVICE);
4626
4627 /* Free descriptors. */
4628 ksz_free_desc(adapter);
4629}
4630
4631static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4632 u64 *counter)
4633{
4634 int i;
4635 int mib;
4636 int port;
4637 struct ksz_port_mib *port_mib;
4638
4639 memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4640 for (i = 0, port = first; i < cnt; i++, port++) {
4641 port_mib = &hw->port_mib[port];
4642 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4643 counter[mib] += port_mib->counter[mib];
4644 }
4645}
4646
4647/**
4648 * send_packet - send packet
4649 * @skb: Socket buffer.
4650 * @dev: Network device.
4651 *
4652 * This routine is used to send a packet out to the network.
4653 */
4654static void send_packet(struct sk_buff *skb, struct net_device *dev)
4655{
4656 struct ksz_desc *desc;
4657 struct ksz_desc *first;
4658 struct dev_priv *priv = netdev_priv(dev);
4659 struct dev_info *hw_priv = priv->adapter;
4660 struct ksz_hw *hw = &hw_priv->hw;
4661 struct ksz_desc_info *info = &hw->tx_desc_info;
4662 struct ksz_dma_buf *dma_buf;
4663 int len;
4664 int last_frag = skb_shinfo(skb)->nr_frags;
4665
4666 /*
4667 * KSZ8842 with multiple device interfaces needs to be told which port
4668 * to send.
4669 */
4670 if (hw->dev_count > 1)
4671 hw->dst_ports = 1 << priv->port.first_port;
4672
4673 /* Hardware will pad the length to 60. */
4674 len = skb->len;
4675
4676 /* Remember the very first descriptor. */
4677 first = info->cur;
4678 desc = first;
4679
4680 dma_buf = DMA_BUFFER(desc);
4681 if (last_frag) {
4682 int frag;
4683 skb_frag_t *this_frag;
4684
e743d313 4685 dma_buf->len = skb_headlen(skb);
8ca86fd8
TH
4686
4687 dma_buf->dma = pci_map_single(
4688 hw_priv->pdev, skb->data, dma_buf->len,
4689 PCI_DMA_TODEVICE);
4690 set_tx_buf(desc, dma_buf->dma);
4691 set_tx_len(desc, dma_buf->len);
4692
4693 frag = 0;
4694 do {
4695 this_frag = &skb_shinfo(skb)->frags[frag];
4696
4697 /* Get a new descriptor. */
4698 get_tx_pkt(info, &desc);
4699
4700 /* Keep track of descriptors used so far. */
4701 ++hw->tx_int_cnt;
4702
4703 dma_buf = DMA_BUFFER(desc);
4704 dma_buf->len = this_frag->size;
4705
4706 dma_buf->dma = pci_map_single(
4707 hw_priv->pdev,
4708 page_address(this_frag->page) +
4709 this_frag->page_offset,
4710 dma_buf->len,
4711 PCI_DMA_TODEVICE);
4712 set_tx_buf(desc, dma_buf->dma);
4713 set_tx_len(desc, dma_buf->len);
4714
4715 frag++;
4716 if (frag == last_frag)
4717 break;
4718
4719 /* Do not release the last descriptor here. */
4720 release_desc(desc);
4721 } while (1);
4722
4723 /* current points to the last descriptor. */
4724 info->cur = desc;
4725
4726 /* Release the first descriptor. */
4727 release_desc(first);
4728 } else {
4729 dma_buf->len = len;
4730
4731 dma_buf->dma = pci_map_single(
4732 hw_priv->pdev, skb->data, dma_buf->len,
4733 PCI_DMA_TODEVICE);
4734 set_tx_buf(desc, dma_buf->dma);
4735 set_tx_len(desc, dma_buf->len);
4736 }
4737
4738 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4739 (desc)->sw.buf.tx.csum_gen_tcp = 1;
4740 (desc)->sw.buf.tx.csum_gen_udp = 1;
4741 }
4742
4743 /*
4744 * The last descriptor holds the packet so that it can be returned to
4745 * network subsystem after all descriptors are transmitted.
4746 */
4747 dma_buf->skb = skb;
4748
4749 hw_send_pkt(hw);
4750
4751 /* Update transmit statistics. */
897dd41d
KV
4752 dev->stats.tx_packets++;
4753 dev->stats.tx_bytes += len;
8ca86fd8
TH
4754}
4755
4756/**
4757 * transmit_cleanup - clean up transmit descriptors
4758 * @dev: Network device.
4759 *
4760 * This routine is called to clean up the transmitted buffers.
4761 */
4762static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4763{
4764 int last;
4765 union desc_stat status;
4766 struct ksz_hw *hw = &hw_priv->hw;
4767 struct ksz_desc_info *info = &hw->tx_desc_info;
4768 struct ksz_desc *desc;
4769 struct ksz_dma_buf *dma_buf;
4770 struct net_device *dev = NULL;
4771
4772 spin_lock(&hw_priv->hwlock);
4773 last = info->last;
4774
4775 while (info->avail < info->alloc) {
4776 /* Get next descriptor which is not hardware owned. */
4777 desc = &info->ring[last];
4778 status.data = le32_to_cpu(desc->phw->ctrl.data);
4779 if (status.tx.hw_owned) {
4780 if (normal)
4781 break;
4782 else
4783 reset_desc(desc, status);
4784 }
4785
4786 dma_buf = DMA_BUFFER(desc);
4787 pci_unmap_single(
4788 hw_priv->pdev, dma_buf->dma, dma_buf->len,
4789 PCI_DMA_TODEVICE);
4790
4791 /* This descriptor contains the last buffer in the packet. */
4792 if (dma_buf->skb) {
4793 dev = dma_buf->skb->dev;
4794
4795 /* Release the packet back to network subsystem. */
4796 dev_kfree_skb_irq(dma_buf->skb);
4797 dma_buf->skb = NULL;
4798 }
4799
4800 /* Free the transmitted descriptor. */
4801 last++;
4802 last &= info->mask;
4803 info->avail++;
4804 }
4805 info->last = last;
4806 spin_unlock(&hw_priv->hwlock);
4807
4808 /* Notify the network subsystem that the packet has been sent. */
4809 if (dev)
4810 dev->trans_start = jiffies;
4811}
4812
4813/**
4814 * transmit_done - transmit done processing
4815 * @dev: Network device.
4816 *
4817 * This routine is called when the transmit interrupt is triggered, indicating
4818 * either a packet is sent successfully or there are transmit errors.
4819 */
4820static void tx_done(struct dev_info *hw_priv)
4821{
4822 struct ksz_hw *hw = &hw_priv->hw;
4823 int port;
4824
4825 transmit_cleanup(hw_priv, 1);
4826
4827 for (port = 0; port < hw->dev_count; port++) {
4828 struct net_device *dev = hw->port_info[port].pdev;
4829
4830 if (netif_running(dev) && netif_queue_stopped(dev))
4831 netif_wake_queue(dev);
4832 }
4833}
4834
4835static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4836{
4837 skb->dev = old->dev;
4838 skb->protocol = old->protocol;
4839 skb->ip_summed = old->ip_summed;
4840 skb->csum = old->csum;
4841 skb_set_network_header(skb, ETH_HLEN);
4842
4843 dev_kfree_skb(old);
4844}
4845
4846/**
4847 * netdev_tx - send out packet
4848 * @skb: Socket buffer.
4849 * @dev: Network device.
4850 *
4851 * This function is used by the upper network layer to send out a packet.
4852 *
4853 * Return 0 if successful; otherwise an error code indicating failure.
4854 */
5ed83663 4855static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
8ca86fd8
TH
4856{
4857 struct dev_priv *priv = netdev_priv(dev);
4858 struct dev_info *hw_priv = priv->adapter;
4859 struct ksz_hw *hw = &hw_priv->hw;
4860 int left;
4861 int num = 1;
4862 int rc = 0;
4863
4864 if (hw->features & SMALL_PACKET_TX_BUG) {
4865 struct sk_buff *org_skb = skb;
4866
4867 if (skb->len <= 48) {
4868 if (skb_end_pointer(skb) - skb->data >= 50) {
4869 memset(&skb->data[skb->len], 0, 50 - skb->len);
4870 skb->len = 50;
4871 } else {
4872 skb = dev_alloc_skb(50);
4873 if (!skb)
4874 return NETDEV_TX_BUSY;
4875 memcpy(skb->data, org_skb->data, org_skb->len);
4876 memset(&skb->data[org_skb->len], 0,
4877 50 - org_skb->len);
4878 skb->len = 50;
4879 copy_old_skb(org_skb, skb);
4880 }
4881 }
4882 }
4883
4884 spin_lock_irq(&hw_priv->hwlock);
4885
4886 num = skb_shinfo(skb)->nr_frags + 1;
4887 left = hw_alloc_pkt(hw, skb->len, num);
4888 if (left) {
4889 if (left < num ||
4890 ((hw->features & IPV6_CSUM_GEN_HACK) &&
4891 (CHECKSUM_PARTIAL == skb->ip_summed) &&
4892 (ETH_P_IPV6 == htons(skb->protocol)))) {
4893 struct sk_buff *org_skb = skb;
4894
4895 skb = dev_alloc_skb(org_skb->len);
edee3932
JS
4896 if (!skb) {
4897 rc = NETDEV_TX_BUSY;
4898 goto unlock;
4899 }
8ca86fd8
TH
4900 skb_copy_and_csum_dev(org_skb, skb->data);
4901 org_skb->ip_summed = 0;
4902 skb->len = org_skb->len;
4903 copy_old_skb(org_skb, skb);
4904 }
4905 send_packet(skb, dev);
4906 if (left <= num)
4907 netif_stop_queue(dev);
4908 } else {
4909 /* Stop the transmit queue until packet is allocated. */
4910 netif_stop_queue(dev);
4911 rc = NETDEV_TX_BUSY;
4912 }
edee3932 4913unlock:
8ca86fd8
TH
4914 spin_unlock_irq(&hw_priv->hwlock);
4915
4916 return rc;
4917}
4918
4919/**
4920 * netdev_tx_timeout - transmit timeout processing
4921 * @dev: Network device.
4922 *
4923 * This routine is called when the transmit timer expires. That indicates the
4924 * hardware is not running correctly because transmit interrupts are not
4925 * triggered to free up resources so that the transmit routine can continue
4926 * sending out packets. The hardware is reset to correct the problem.
4927 */
4928static void netdev_tx_timeout(struct net_device *dev)
4929{
4930 static unsigned long last_reset;
4931
4932 struct dev_priv *priv = netdev_priv(dev);
4933 struct dev_info *hw_priv = priv->adapter;
4934 struct ksz_hw *hw = &hw_priv->hw;
4935 int port;
4936
4937 if (hw->dev_count > 1) {
4938 /*
4939 * Only reset the hardware if time between calls is long
4940 * enough.
4941 */
4942 if (jiffies - last_reset <= dev->watchdog_timeo)
4943 hw_priv = NULL;
4944 }
4945
4946 last_reset = jiffies;
4947 if (hw_priv) {
4948 hw_dis_intr(hw);
4949 hw_disable(hw);
4950
4951 transmit_cleanup(hw_priv, 0);
4952 hw_reset_pkts(&hw->rx_desc_info);
4953 hw_reset_pkts(&hw->tx_desc_info);
4954 ksz_init_rx_buffers(hw_priv);
4955
4956 hw_reset(hw);
4957
4958 hw_set_desc_base(hw,
4959 hw->tx_desc_info.ring_phys,
4960 hw->rx_desc_info.ring_phys);
4961 hw_set_addr(hw);
4962 if (hw->all_multi)
4963 hw_set_multicast(hw, hw->all_multi);
4964 else if (hw->multi_list_size)
4965 hw_set_grp_addr(hw);
4966
4967 if (hw->dev_count > 1) {
4968 hw_set_add_addr(hw);
4969 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4970 struct net_device *port_dev;
4971
4972 port_set_stp_state(hw, port,
4973 STP_STATE_DISABLED);
4974
4975 port_dev = hw->port_info[port].pdev;
4976 if (netif_running(port_dev))
4977 port_set_stp_state(hw, port,
4978 STP_STATE_SIMPLE);
4979 }
4980 }
4981
4982 hw_enable(hw);
4983 hw_ena_intr(hw);
4984 }
4985
4986 dev->trans_start = jiffies;
4987 netif_wake_queue(dev);
4988}
4989
4990static inline void csum_verified(struct sk_buff *skb)
4991{
4992 unsigned short protocol;
4993 struct iphdr *iph;
4994
4995 protocol = skb->protocol;
4996 skb_reset_network_header(skb);
4997 iph = (struct iphdr *) skb_network_header(skb);
4998 if (protocol == htons(ETH_P_8021Q)) {
4999 protocol = iph->tot_len;
5000 skb_set_network_header(skb, VLAN_HLEN);
5001 iph = (struct iphdr *) skb_network_header(skb);
5002 }
5003 if (protocol == htons(ETH_P_IP)) {
5004 if (iph->protocol == IPPROTO_TCP)
5005 skb->ip_summed = CHECKSUM_UNNECESSARY;
5006 }
5007}
5008
5009static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
5010 struct ksz_desc *desc, union desc_stat status)
5011{
5012 int packet_len;
5013 struct dev_priv *priv = netdev_priv(dev);
5014 struct dev_info *hw_priv = priv->adapter;
5015 struct ksz_dma_buf *dma_buf;
5016 struct sk_buff *skb;
5017 int rx_status;
5018
5019 /* Received length includes 4-byte CRC. */
5020 packet_len = status.rx.frame_len - 4;
5021
5022 dma_buf = DMA_BUFFER(desc);
5023 pci_dma_sync_single_for_cpu(
5024 hw_priv->pdev, dma_buf->dma, packet_len + 4,
5025 PCI_DMA_FROMDEVICE);
5026
5027 do {
5028 /* skb->data != skb->head */
5029 skb = dev_alloc_skb(packet_len + 2);
5030 if (!skb) {
897dd41d 5031 dev->stats.rx_dropped++;
8ca86fd8
TH
5032 return -ENOMEM;
5033 }
5034
5035 /*
5036 * Align socket buffer in 4-byte boundary for better
5037 * performance.
5038 */
5039 skb_reserve(skb, 2);
5040
5041 memcpy(skb_put(skb, packet_len),
5042 dma_buf->skb->data, packet_len);
5043 } while (0);
5044
8ca86fd8
TH
5045 skb->protocol = eth_type_trans(skb, dev);
5046
5047 if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5048 csum_verified(skb);
5049
5050 /* Update receive statistics. */
897dd41d
KV
5051 dev->stats.rx_packets++;
5052 dev->stats.rx_bytes += packet_len;
8ca86fd8
TH
5053
5054 /* Notify upper layer for received packet. */
8ca86fd8
TH
5055 rx_status = netif_rx(skb);
5056
5057 return 0;
5058}
5059
5060static int dev_rcv_packets(struct dev_info *hw_priv)
5061{
5062 int next;
5063 union desc_stat status;
5064 struct ksz_hw *hw = &hw_priv->hw;
5065 struct net_device *dev = hw->port_info[0].pdev;
5066 struct ksz_desc_info *info = &hw->rx_desc_info;
5067 int left = info->alloc;
5068 struct ksz_desc *desc;
5069 int received = 0;
5070
5071 next = info->next;
5072 while (left--) {
5073 /* Get next descriptor which is not hardware owned. */
5074 desc = &info->ring[next];
5075 status.data = le32_to_cpu(desc->phw->ctrl.data);
5076 if (status.rx.hw_owned)
5077 break;
5078
5079 /* Status valid only when last descriptor bit is set. */
5080 if (status.rx.last_desc && status.rx.first_desc) {
5081 if (rx_proc(dev, hw, desc, status))
5082 goto release_packet;
5083 received++;
5084 }
5085
5086release_packet:
5087 release_desc(desc);
5088 next++;
5089 next &= info->mask;
5090 }
5091 info->next = next;
5092
5093 return received;
5094}
5095
5096static int port_rcv_packets(struct dev_info *hw_priv)
5097{
5098 int next;
5099 union desc_stat status;
5100 struct ksz_hw *hw = &hw_priv->hw;
5101 struct net_device *dev = hw->port_info[0].pdev;
5102 struct ksz_desc_info *info = &hw->rx_desc_info;
5103 int left = info->alloc;
5104 struct ksz_desc *desc;
5105 int received = 0;
5106
5107 next = info->next;
5108 while (left--) {
5109 /* Get next descriptor which is not hardware owned. */
5110 desc = &info->ring[next];
5111 status.data = le32_to_cpu(desc->phw->ctrl.data);
5112 if (status.rx.hw_owned)
5113 break;
5114
5115 if (hw->dev_count > 1) {
5116 /* Get received port number. */
5117 int p = HW_TO_DEV_PORT(status.rx.src_port);
5118
5119 dev = hw->port_info[p].pdev;
5120 if (!netif_running(dev))
5121 goto release_packet;
5122 }
5123
5124 /* Status valid only when last descriptor bit is set. */
5125 if (status.rx.last_desc && status.rx.first_desc) {
5126 if (rx_proc(dev, hw, desc, status))
5127 goto release_packet;
5128 received++;
5129 }
5130
5131release_packet:
5132 release_desc(desc);
5133 next++;
5134 next &= info->mask;
5135 }
5136 info->next = next;
5137
5138 return received;
5139}
5140
5141static int dev_rcv_special(struct dev_info *hw_priv)
5142{
5143 int next;
5144 union desc_stat status;
5145 struct ksz_hw *hw = &hw_priv->hw;
5146 struct net_device *dev = hw->port_info[0].pdev;
5147 struct ksz_desc_info *info = &hw->rx_desc_info;
5148 int left = info->alloc;
5149 struct ksz_desc *desc;
5150 int received = 0;
5151
5152 next = info->next;
5153 while (left--) {
5154 /* Get next descriptor which is not hardware owned. */
5155 desc = &info->ring[next];
5156 status.data = le32_to_cpu(desc->phw->ctrl.data);
5157 if (status.rx.hw_owned)
5158 break;
5159
5160 if (hw->dev_count > 1) {
5161 /* Get received port number. */
5162 int p = HW_TO_DEV_PORT(status.rx.src_port);
5163
5164 dev = hw->port_info[p].pdev;
5165 if (!netif_running(dev))
5166 goto release_packet;
5167 }
5168
5169 /* Status valid only when last descriptor bit is set. */
5170 if (status.rx.last_desc && status.rx.first_desc) {
5171 /*
5172 * Receive without error. With receive errors
5173 * disabled, packets with receive errors will be
5174 * dropped, so no need to check the error bit.
5175 */
5176 if (!status.rx.error || (status.data &
5177 KS_DESC_RX_ERROR_COND) ==
5178 KS_DESC_RX_ERROR_TOO_LONG) {
5179 if (rx_proc(dev, hw, desc, status))
5180 goto release_packet;
5181 received++;
5182 } else {
5183 struct dev_priv *priv = netdev_priv(dev);
5184
5185 /* Update receive error statistics. */
5186 priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5187 }
5188 }
5189
5190release_packet:
5191 release_desc(desc);
5192 next++;
5193 next &= info->mask;
5194 }
5195 info->next = next;
5196
5197 return received;
5198}
5199
5200static void rx_proc_task(unsigned long data)
5201{
5202 struct dev_info *hw_priv = (struct dev_info *) data;
5203 struct ksz_hw *hw = &hw_priv->hw;
5204
5205 if (!hw->enabled)
5206 return;
5207 if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5208
5209 /* In case receive process is suspended because of overrun. */
5210 hw_resume_rx(hw);
5211
5212 /* tasklets are interruptible. */
5213 spin_lock_irq(&hw_priv->hwlock);
5214 hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5215 spin_unlock_irq(&hw_priv->hwlock);
5216 } else {
5217 hw_ack_intr(hw, KS884X_INT_RX);
5218 tasklet_schedule(&hw_priv->rx_tasklet);
5219 }
5220}
5221
5222static void tx_proc_task(unsigned long data)
5223{
5224 struct dev_info *hw_priv = (struct dev_info *) data;
5225 struct ksz_hw *hw = &hw_priv->hw;
5226
5227 hw_ack_intr(hw, KS884X_INT_TX_MASK);
5228
5229 tx_done(hw_priv);
5230
5231 /* tasklets are interruptible. */
5232 spin_lock_irq(&hw_priv->hwlock);
5233 hw_turn_on_intr(hw, KS884X_INT_TX);
5234 spin_unlock_irq(&hw_priv->hwlock);
5235}
5236
5237static inline void handle_rx_stop(struct ksz_hw *hw)
5238{
5239 /* Receive just has been stopped. */
5240 if (0 == hw->rx_stop)
5241 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5242 else if (hw->rx_stop > 1) {
5243 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5244 hw_start_rx(hw);
5245 } else {
5246 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5247 hw->rx_stop = 0;
5248 }
5249 } else
5250 /* Receive just has been started. */
5251 hw->rx_stop++;
5252}
5253
5254/**
5255 * netdev_intr - interrupt handling
5256 * @irq: Interrupt number.
5257 * @dev_id: Network device.
5258 *
5259 * This function is called by upper network layer to signal interrupt.
5260 *
5261 * Return IRQ_HANDLED if interrupt is handled.
5262 */
5263static irqreturn_t netdev_intr(int irq, void *dev_id)
5264{
5265 uint int_enable = 0;
5266 struct net_device *dev = (struct net_device *) dev_id;
5267 struct dev_priv *priv = netdev_priv(dev);
5268 struct dev_info *hw_priv = priv->adapter;
5269 struct ksz_hw *hw = &hw_priv->hw;
5270
5271 hw_read_intr(hw, &int_enable);
5272
5273 /* Not our interrupt! */
5274 if (!int_enable)
5275 return IRQ_NONE;
5276
5277 do {
5278 hw_ack_intr(hw, int_enable);
5279 int_enable &= hw->intr_mask;
5280
5281 if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5282 hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5283 tasklet_schedule(&hw_priv->tx_tasklet);
5284 }
5285
5286 if (likely(int_enable & KS884X_INT_RX)) {
5287 hw_dis_intr_bit(hw, KS884X_INT_RX);
5288 tasklet_schedule(&hw_priv->rx_tasklet);
5289 }
5290
5291 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
897dd41d 5292 dev->stats.rx_fifo_errors++;
8ca86fd8
TH
5293 hw_resume_rx(hw);
5294 }
5295
5296 if (unlikely(int_enable & KS884X_INT_PHY)) {
5297 struct ksz_port *port = &priv->port;
5298
5299 hw->features |= LINK_INT_WORKING;
5300 port_get_link_speed(port);
5301 }
5302
5303 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5304 handle_rx_stop(hw);
5305 break;
5306 }
5307
5308 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5309 u32 data;
5310
5311 hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
0dc7d2b3 5312 pr_info("Tx stopped\n");
8ca86fd8
TH
5313 data = readl(hw->io + KS_DMA_TX_CTRL);
5314 if (!(data & DMA_TX_ENABLE))
0dc7d2b3 5315 pr_info("Tx disabled\n");
8ca86fd8
TH
5316 break;
5317 }
5318 } while (0);
5319
5320 hw_ena_intr(hw);
5321
5322 return IRQ_HANDLED;
5323}
5324
5325/*
5326 * Linux network device functions
5327 */
5328
5329static unsigned long next_jiffies;
5330
5331#ifdef CONFIG_NET_POLL_CONTROLLER
5332static void netdev_netpoll(struct net_device *dev)
5333{
5334 struct dev_priv *priv = netdev_priv(dev);
5335 struct dev_info *hw_priv = priv->adapter;
5336
5337 hw_dis_intr(&hw_priv->hw);
5338 netdev_intr(dev->irq, dev);
5339}
5340#endif
5341
5342static void bridge_change(struct ksz_hw *hw)
5343{
5344 int port;
5345 u8 member;
5346 struct ksz_switch *sw = hw->ksz_switch;
5347
5348 /* No ports in forwarding state. */
5349 if (!sw->member) {
5350 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5351 sw_block_addr(hw);
5352 }
5353 for (port = 0; port < SWITCH_PORT_NUM; port++) {
5354 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5355 member = HOST_MASK | sw->member;
5356 else
5357 member = HOST_MASK | (1 << port);
5358 if (member != sw->port_cfg[port].member)
5359 sw_cfg_port_base_vlan(hw, port, member);
5360 }
5361}
5362
5363/**
5364 * netdev_close - close network device
5365 * @dev: Network device.
5366 *
5367 * This function process the close operation of network device. This is caused
5368 * by the user command "ifconfig ethX down."
5369 *
5370 * Return 0 if successful; otherwise an error code indicating failure.
5371 */
5372static int netdev_close(struct net_device *dev)
5373{
5374 struct dev_priv *priv = netdev_priv(dev);
5375 struct dev_info *hw_priv = priv->adapter;
5376 struct ksz_port *port = &priv->port;
5377 struct ksz_hw *hw = &hw_priv->hw;
5378 int pi;
5379
5380 netif_stop_queue(dev);
5381
5382 ksz_stop_timer(&priv->monitor_timer_info);
5383
5384 /* Need to shut the port manually in multiple device interfaces mode. */
5385 if (hw->dev_count > 1) {
5386 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5387
5388 /* Port is closed. Need to change bridge setting. */
5389 if (hw->features & STP_SUPPORT) {
5390 pi = 1 << port->first_port;
5391 if (hw->ksz_switch->member & pi) {
5392 hw->ksz_switch->member &= ~pi;
5393 bridge_change(hw);
5394 }
5395 }
5396 }
5397 if (port->first_port > 0)
5398 hw_del_addr(hw, dev->dev_addr);
5399 if (!hw_priv->wol_enable)
5400 port_set_power_saving(port, true);
5401
5402 if (priv->multicast)
5403 --hw->all_multi;
5404 if (priv->promiscuous)
5405 --hw->promiscuous;
5406
5407 hw_priv->opened--;
5408 if (!(hw_priv->opened)) {
5409 ksz_stop_timer(&hw_priv->mib_timer_info);
5410 flush_work(&hw_priv->mib_read);
5411
5412 hw_dis_intr(hw);
5413 hw_disable(hw);
5414 hw_clr_multicast(hw);
5415
5416 /* Delay for receive task to stop scheduling itself. */
5417 msleep(2000 / HZ);
5418
5419 tasklet_disable(&hw_priv->rx_tasklet);
5420 tasklet_disable(&hw_priv->tx_tasklet);
5421 free_irq(dev->irq, hw_priv->dev);
5422
5423 transmit_cleanup(hw_priv, 0);
5424 hw_reset_pkts(&hw->rx_desc_info);
5425 hw_reset_pkts(&hw->tx_desc_info);
5426
5427 /* Clean out static MAC table when the switch is shutdown. */
5428 if (hw->features & STP_SUPPORT)
5429 sw_clr_sta_mac_table(hw);
5430 }
5431
5432 return 0;
5433}
5434
5435static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5436{
5437 if (hw->ksz_switch) {
5438 u32 data;
5439
5440 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5441 if (hw->features & RX_HUGE_FRAME)
5442 data |= SWITCH_HUGE_PACKET;
5443 else
5444 data &= ~SWITCH_HUGE_PACKET;
5445 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5446 }
5447 if (hw->features & RX_HUGE_FRAME) {
5448 hw->rx_cfg |= DMA_RX_ERROR;
5449 hw_priv->dev_rcv = dev_rcv_special;
5450 } else {
5451 hw->rx_cfg &= ~DMA_RX_ERROR;
5452 if (hw->dev_count > 1)
5453 hw_priv->dev_rcv = port_rcv_packets;
5454 else
5455 hw_priv->dev_rcv = dev_rcv_packets;
5456 }
5457}
5458
5459static int prepare_hardware(struct net_device *dev)
5460{
5461 struct dev_priv *priv = netdev_priv(dev);
5462 struct dev_info *hw_priv = priv->adapter;
5463 struct ksz_hw *hw = &hw_priv->hw;
5464 int rc = 0;
5465
5466 /* Remember the network device that requests interrupts. */
5467 hw_priv->dev = dev;
5468 rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5469 if (rc)
5470 return rc;
5471 tasklet_enable(&hw_priv->rx_tasklet);
5472 tasklet_enable(&hw_priv->tx_tasklet);
5473
5474 hw->promiscuous = 0;
5475 hw->all_multi = 0;
5476 hw->multi_list_size = 0;
5477
5478 hw_reset(hw);
5479
5480 hw_set_desc_base(hw,
5481 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5482 hw_set_addr(hw);
5483 hw_cfg_huge_frame(hw_priv, hw);
5484 ksz_init_rx_buffers(hw_priv);
5485 return 0;
5486}
5487
0dc7d2b3
JP
5488static void set_media_state(struct net_device *dev, int media_state)
5489{
5490 struct dev_priv *priv = netdev_priv(dev);
5491
5492 if (media_state == priv->media_state)
5493 netif_carrier_on(dev);
5494 else
5495 netif_carrier_off(dev);
5496 netif_info(priv, link, dev, "link %s\n",
5497 media_state == priv->media_state ? "on" : "off");
5498}
5499
8ca86fd8
TH
5500/**
5501 * netdev_open - open network device
5502 * @dev: Network device.
5503 *
5504 * This function process the open operation of network device. This is caused
5505 * by the user command "ifconfig ethX up."
5506 *
5507 * Return 0 if successful; otherwise an error code indicating failure.
5508 */
5509static int netdev_open(struct net_device *dev)
5510{
5511 struct dev_priv *priv = netdev_priv(dev);
5512 struct dev_info *hw_priv = priv->adapter;
5513 struct ksz_hw *hw = &hw_priv->hw;
5514 struct ksz_port *port = &priv->port;
5515 int i;
5516 int p;
5517 int rc = 0;
5518
5519 priv->multicast = 0;
5520 priv->promiscuous = 0;
5521
5522 /* Reset device statistics. */
897dd41d 5523 memset(&dev->stats, 0, sizeof(struct net_device_stats));
8ca86fd8
TH
5524 memset((void *) port->counter, 0,
5525 (sizeof(u64) * OID_COUNTER_LAST));
5526
5527 if (!(hw_priv->opened)) {
5528 rc = prepare_hardware(dev);
5529 if (rc)
5530 return rc;
5531 for (i = 0; i < hw->mib_port_cnt; i++) {
5532 if (next_jiffies < jiffies)
5533 next_jiffies = jiffies + HZ * 2;
5534 else
5535 next_jiffies += HZ * 1;
5536 hw_priv->counter[i].time = next_jiffies;
5537 hw->port_mib[i].state = media_disconnected;
5538 port_init_cnt(hw, i);
5539 }
5540 if (hw->ksz_switch)
5541 hw->port_mib[HOST_PORT].state = media_connected;
5542 else {
5543 hw_add_wol_bcast(hw);
5544 hw_cfg_wol_pme(hw, 0);
5545 hw_clr_wol_pme_status(&hw_priv->hw);
5546 }
5547 }
5548 port_set_power_saving(port, false);
5549
5550 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5551 /*
5552 * Initialize to invalid value so that link detection
5553 * is done.
5554 */
5555 hw->port_info[p].partner = 0xFF;
5556 hw->port_info[p].state = media_disconnected;
5557 }
5558
5559 /* Need to open the port in multiple device interfaces mode. */
5560 if (hw->dev_count > 1) {
5561 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5562 if (port->first_port > 0)
5563 hw_add_addr(hw, dev->dev_addr);
5564 }
5565
5566 port_get_link_speed(port);
5567 if (port->force_link)
5568 port_force_link_speed(port);
5569 else
5570 port_set_link_speed(port);
5571
5572 if (!(hw_priv->opened)) {
5573 hw_setup_intr(hw);
5574 hw_enable(hw);
5575 hw_ena_intr(hw);
5576
5577 if (hw->mib_port_cnt)
5578 ksz_start_timer(&hw_priv->mib_timer_info,
5579 hw_priv->mib_timer_info.period);
5580 }
5581
5582 hw_priv->opened++;
5583
5584 ksz_start_timer(&priv->monitor_timer_info,
5585 priv->monitor_timer_info.period);
5586
5587 priv->media_state = port->linked->state;
5588
0dc7d2b3 5589 set_media_state(dev, media_connected);
8ca86fd8
TH
5590 netif_start_queue(dev);
5591
5592 return 0;
5593}
5594
5595/* RX errors = rx_errors */
5596/* RX dropped = rx_dropped */
5597/* RX overruns = rx_fifo_errors */
5598/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5599/* TX errors = tx_errors */
5600/* TX dropped = tx_dropped */
5601/* TX overruns = tx_fifo_errors */
5602/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5603/* collisions = collisions */
5604
5605/**
5606 * netdev_query_statistics - query network device statistics
5607 * @dev: Network device.
5608 *
5609 * This function returns the statistics of the network device. The device
5610 * needs not be opened.
5611 *
5612 * Return network device statistics.
5613 */
5614static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5615{
5616 struct dev_priv *priv = netdev_priv(dev);
5617 struct ksz_port *port = &priv->port;
5618 struct ksz_hw *hw = &priv->adapter->hw;
5619 struct ksz_port_mib *mib;
5620 int i;
5621 int p;
5622
897dd41d
KV
5623 dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5624 dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
8ca86fd8
TH
5625
5626 /* Reset to zero to add count later. */
897dd41d
KV
5627 dev->stats.multicast = 0;
5628 dev->stats.collisions = 0;
5629 dev->stats.rx_length_errors = 0;
5630 dev->stats.rx_crc_errors = 0;
5631 dev->stats.rx_frame_errors = 0;
5632 dev->stats.tx_window_errors = 0;
8ca86fd8
TH
5633
5634 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5635 mib = &hw->port_mib[p];
5636
897dd41d 5637 dev->stats.multicast += (unsigned long)
8ca86fd8
TH
5638 mib->counter[MIB_COUNTER_RX_MULTICAST];
5639
897dd41d 5640 dev->stats.collisions += (unsigned long)
8ca86fd8
TH
5641 mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5642
897dd41d 5643 dev->stats.rx_length_errors += (unsigned long)(
8ca86fd8
TH
5644 mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5645 mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5646 mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5647 mib->counter[MIB_COUNTER_RX_JABBER]);
897dd41d 5648 dev->stats.rx_crc_errors += (unsigned long)
8ca86fd8 5649 mib->counter[MIB_COUNTER_RX_CRC_ERR];
897dd41d 5650 dev->stats.rx_frame_errors += (unsigned long)(
8ca86fd8
TH
5651 mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5652 mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5653
897dd41d 5654 dev->stats.tx_window_errors += (unsigned long)
8ca86fd8
TH
5655 mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5656 }
5657
897dd41d 5658 return &dev->stats;
8ca86fd8
TH
5659}
5660
5661/**
5662 * netdev_set_mac_address - set network device MAC address
5663 * @dev: Network device.
5664 * @addr: Buffer of MAC address.
5665 *
5666 * This function is used to set the MAC address of the network device.
5667 *
5668 * Return 0 to indicate success.
5669 */
5670static int netdev_set_mac_address(struct net_device *dev, void *addr)
5671{
5672 struct dev_priv *priv = netdev_priv(dev);
5673 struct dev_info *hw_priv = priv->adapter;
5674 struct ksz_hw *hw = &hw_priv->hw;
5675 struct sockaddr *mac = addr;
5676 uint interrupt;
5677
5678 if (priv->port.first_port > 0)
5679 hw_del_addr(hw, dev->dev_addr);
5680 else {
5681 hw->mac_override = 1;
5682 memcpy(hw->override_addr, mac->sa_data, MAC_ADDR_LEN);
5683 }
5684
5685 memcpy(dev->dev_addr, mac->sa_data, MAX_ADDR_LEN);
5686
5687 interrupt = hw_block_intr(hw);
5688
5689 if (priv->port.first_port > 0)
5690 hw_add_addr(hw, dev->dev_addr);
5691 else
5692 hw_set_addr(hw);
5693 hw_restore_intr(hw, interrupt);
5694
5695 return 0;
5696}
5697
5698static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5699 struct ksz_hw *hw, int promiscuous)
5700{
5701 if (promiscuous != priv->promiscuous) {
5702 u8 prev_state = hw->promiscuous;
5703
5704 if (promiscuous)
5705 ++hw->promiscuous;
5706 else
5707 --hw->promiscuous;
5708 priv->promiscuous = promiscuous;
5709
5710 /* Turn on/off promiscuous mode. */
5711 if (hw->promiscuous <= 1 && prev_state <= 1)
5712 hw_set_promiscuous(hw, hw->promiscuous);
5713
5714 /*
5715 * Port is not in promiscuous mode, meaning it is released
5716 * from the bridge.
5717 */
5718 if ((hw->features & STP_SUPPORT) && !promiscuous &&
f350a0a8 5719 (dev->priv_flags & IFF_BRIDGE_PORT)) {
8ca86fd8
TH
5720 struct ksz_switch *sw = hw->ksz_switch;
5721 int port = priv->port.first_port;
5722
5723 port_set_stp_state(hw, port, STP_STATE_DISABLED);
5724 port = 1 << port;
5725 if (sw->member & port) {
5726 sw->member &= ~port;
5727 bridge_change(hw);
5728 }
5729 }
5730 }
5731}
5732
5733static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5734 int multicast)
5735{
5736 if (multicast != priv->multicast) {
5737 u8 all_multi = hw->all_multi;
5738
5739 if (multicast)
5740 ++hw->all_multi;
5741 else
5742 --hw->all_multi;
5743 priv->multicast = multicast;
5744
5745 /* Turn on/off all multicast mode. */
5746 if (hw->all_multi <= 1 && all_multi <= 1)
5747 hw_set_multicast(hw, hw->all_multi);
5748 }
5749}
5750
5751/**
5752 * netdev_set_rx_mode
5753 * @dev: Network device.
5754 *
5755 * This routine is used to set multicast addresses or put the network device
5756 * into promiscuous mode.
5757 */
5758static void netdev_set_rx_mode(struct net_device *dev)
5759{
5760 struct dev_priv *priv = netdev_priv(dev);
5761 struct dev_info *hw_priv = priv->adapter;
5762 struct ksz_hw *hw = &hw_priv->hw;
22bedad3 5763 struct netdev_hw_addr *ha;
8ca86fd8
TH
5764 int multicast = (dev->flags & IFF_ALLMULTI);
5765
5766 dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5767
5768 if (hw_priv->hw.dev_count > 1)
5769 multicast |= (dev->flags & IFF_MULTICAST);
5770 dev_set_multicast(priv, hw, multicast);
5771
5772 /* Cannot use different hashes in multiple device interfaces mode. */
5773 if (hw_priv->hw.dev_count > 1)
5774 return;
5775
f9dcbcc9 5776 if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
8ca86fd8
TH
5777 int i = 0;
5778
5779 /* List too big to support so turn on all multicast mode. */
22bedad3 5780 if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
8ca86fd8
TH
5781 if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5782 hw->multi_list_size = MAX_MULTICAST_LIST;
5783 ++hw->all_multi;
5784 hw_set_multicast(hw, hw->all_multi);
5785 }
5786 return;
5787 }
5788
22bedad3
JP
5789 netdev_for_each_mc_addr(ha, dev) {
5790 if (!(*ha->addr & 1))
8ca86fd8
TH
5791 continue;
5792 if (i >= MAX_MULTICAST_LIST)
5793 break;
22bedad3 5794 memcpy(hw->multi_list[i++], ha->addr, MAC_ADDR_LEN);
8ca86fd8
TH
5795 }
5796 hw->multi_list_size = (u8) i;
5797 hw_set_grp_addr(hw);
5798 } else {
5799 if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5800 --hw->all_multi;
5801 hw_set_multicast(hw, hw->all_multi);
5802 }
5803 hw->multi_list_size = 0;
5804 hw_clr_multicast(hw);
5805 }
5806}
5807
5808static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5809{
5810 struct dev_priv *priv = netdev_priv(dev);
5811 struct dev_info *hw_priv = priv->adapter;
5812 struct ksz_hw *hw = &hw_priv->hw;
5813 int hw_mtu;
5814
5815 if (netif_running(dev))
5816 return -EBUSY;
5817
5818 /* Cannot use different MTU in multiple device interfaces mode. */
5819 if (hw->dev_count > 1)
5820 if (dev != hw_priv->dev)
5821 return 0;
5822 if (new_mtu < 60)
5823 return -EINVAL;
5824
5825 if (dev->mtu != new_mtu) {
5826 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5827 if (hw_mtu > MAX_RX_BUF_SIZE)
5828 return -EINVAL;
5829 if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5830 hw->features |= RX_HUGE_FRAME;
5831 hw_mtu = MAX_RX_BUF_SIZE;
5832 } else {
5833 hw->features &= ~RX_HUGE_FRAME;
5834 hw_mtu = REGULAR_RX_BUF_SIZE;
5835 }
5836 hw_mtu = (hw_mtu + 3) & ~3;
5837 hw_priv->mtu = hw_mtu;
5838 dev->mtu = new_mtu;
5839 }
5840 return 0;
5841}
5842
5843/**
5844 * netdev_ioctl - I/O control processing
5845 * @dev: Network device.
5846 * @ifr: Interface request structure.
5847 * @cmd: I/O control code.
5848 *
5849 * This function is used to process I/O control calls.
5850 *
5851 * Return 0 to indicate success.
5852 */
5853static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5854{
5855 struct dev_priv *priv = netdev_priv(dev);
5856 struct dev_info *hw_priv = priv->adapter;
5857 struct ksz_hw *hw = &hw_priv->hw;
5858 struct ksz_port *port = &priv->port;
5859 int rc;
5860 int result = 0;
5861 struct mii_ioctl_data *data = if_mii(ifr);
5862
5863 if (down_interruptible(&priv->proc_sem))
5864 return -ERESTARTSYS;
5865
5866 /* assume success */
5867 rc = 0;
5868 switch (cmd) {
5869 /* Get address of MII PHY in use. */
5870 case SIOCGMIIPHY:
5871 data->phy_id = priv->id;
5872
5873 /* Fallthrough... */
5874
5875 /* Read MII PHY register. */
5876 case SIOCGMIIREG:
5877 if (data->phy_id != priv->id || data->reg_num >= 6)
5878 result = -EIO;
5879 else
5880 hw_r_phy(hw, port->linked->port_id, data->reg_num,
5881 &data->val_out);
5882 break;
5883
5884 /* Write MII PHY register. */
5885 case SIOCSMIIREG:
5886 if (!capable(CAP_NET_ADMIN))
5887 result = -EPERM;
5888 else if (data->phy_id != priv->id || data->reg_num >= 6)
5889 result = -EIO;
5890 else
5891 hw_w_phy(hw, port->linked->port_id, data->reg_num,
5892 data->val_in);
5893 break;
5894
5895 default:
5896 result = -EOPNOTSUPP;
5897 }
5898
5899 up(&priv->proc_sem);
5900
5901 return result;
5902}
5903
5904/*
5905 * MII support
5906 */
5907
5908/**
5909 * mdio_read - read PHY register
5910 * @dev: Network device.
5911 * @phy_id: The PHY id.
5912 * @reg_num: The register number.
5913 *
5914 * This function returns the PHY register value.
5915 *
5916 * Return the register value.
5917 */
5918static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5919{
5920 struct dev_priv *priv = netdev_priv(dev);
5921 struct ksz_port *port = &priv->port;
5922 struct ksz_hw *hw = port->hw;
5923 u16 val_out;
5924
5925 hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5926 return val_out;
5927}
5928
5929/**
5930 * mdio_write - set PHY register
5931 * @dev: Network device.
5932 * @phy_id: The PHY id.
5933 * @reg_num: The register number.
5934 * @val: The register value.
5935 *
5936 * This procedure sets the PHY register value.
5937 */
5938static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5939{
5940 struct dev_priv *priv = netdev_priv(dev);
5941 struct ksz_port *port = &priv->port;
5942 struct ksz_hw *hw = port->hw;
5943 int i;
5944 int pi;
5945
5946 for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5947 hw_w_phy(hw, pi, reg_num << 1, val);
5948}
5949
5950/*
5951 * ethtool support
5952 */
5953
5954#define EEPROM_SIZE 0x40
5955
5956static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5957
5958#define ADVERTISED_ALL \
5959 (ADVERTISED_10baseT_Half | \
5960 ADVERTISED_10baseT_Full | \
5961 ADVERTISED_100baseT_Half | \
5962 ADVERTISED_100baseT_Full)
5963
5964/* These functions use the MII functions in mii.c. */
5965
5966/**
5967 * netdev_get_settings - get network device settings
5968 * @dev: Network device.
5969 * @cmd: Ethtool command.
5970 *
5971 * This function queries the PHY and returns its state in the ethtool command.
5972 *
5973 * Return 0 if successful; otherwise an error code.
5974 */
5975static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5976{
5977 struct dev_priv *priv = netdev_priv(dev);
5978 struct dev_info *hw_priv = priv->adapter;
5979
5980 mutex_lock(&hw_priv->lock);
5981 mii_ethtool_gset(&priv->mii_if, cmd);
5982 cmd->advertising |= SUPPORTED_TP;
5983 mutex_unlock(&hw_priv->lock);
5984
5985 /* Save advertised settings for workaround in next function. */
5986 priv->advertising = cmd->advertising;
5987 return 0;
5988}
5989
5990/**
5991 * netdev_set_settings - set network device settings
5992 * @dev: Network device.
5993 * @cmd: Ethtool command.
5994 *
5995 * This function sets the PHY according to the ethtool command.
5996 *
5997 * Return 0 if successful; otherwise an error code.
5998 */
5999static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6000{
6001 struct dev_priv *priv = netdev_priv(dev);
6002 struct dev_info *hw_priv = priv->adapter;
6003 struct ksz_port *port = &priv->port;
6004 int rc;
6005
6006 /*
6007 * ethtool utility does not change advertised setting if auto
6008 * negotiation is not specified explicitly.
6009 */
6010 if (cmd->autoneg && priv->advertising == cmd->advertising) {
6011 cmd->advertising |= ADVERTISED_ALL;
6012 if (10 == cmd->speed)
6013 cmd->advertising &=
6014 ~(ADVERTISED_100baseT_Full |
6015 ADVERTISED_100baseT_Half);
6016 else if (100 == cmd->speed)
6017 cmd->advertising &=
6018 ~(ADVERTISED_10baseT_Full |
6019 ADVERTISED_10baseT_Half);
6020 if (0 == cmd->duplex)
6021 cmd->advertising &=
6022 ~(ADVERTISED_100baseT_Full |
6023 ADVERTISED_10baseT_Full);
6024 else if (1 == cmd->duplex)
6025 cmd->advertising &=
6026 ~(ADVERTISED_100baseT_Half |
6027 ADVERTISED_10baseT_Half);
6028 }
6029 mutex_lock(&hw_priv->lock);
6030 if (cmd->autoneg &&
6031 (cmd->advertising & ADVERTISED_ALL) ==
6032 ADVERTISED_ALL) {
6033 port->duplex = 0;
6034 port->speed = 0;
6035 port->force_link = 0;
6036 } else {
6037 port->duplex = cmd->duplex + 1;
6038 if (cmd->speed != 1000)
6039 port->speed = cmd->speed;
6040 if (cmd->autoneg)
6041 port->force_link = 0;
6042 else
6043 port->force_link = 1;
6044 }
6045 rc = mii_ethtool_sset(&priv->mii_if, cmd);
6046 mutex_unlock(&hw_priv->lock);
6047 return rc;
6048}
6049
6050/**
6051 * netdev_nway_reset - restart auto-negotiation
6052 * @dev: Network device.
6053 *
6054 * This function restarts the PHY for auto-negotiation.
6055 *
6056 * Return 0 if successful; otherwise an error code.
6057 */
6058static int netdev_nway_reset(struct net_device *dev)
6059{
6060 struct dev_priv *priv = netdev_priv(dev);
6061 struct dev_info *hw_priv = priv->adapter;
6062 int rc;
6063
6064 mutex_lock(&hw_priv->lock);
6065 rc = mii_nway_restart(&priv->mii_if);
6066 mutex_unlock(&hw_priv->lock);
6067 return rc;
6068}
6069
6070/**
6071 * netdev_get_link - get network device link status
6072 * @dev: Network device.
6073 *
6074 * This function gets the link status from the PHY.
6075 *
6076 * Return true if PHY is linked and false otherwise.
6077 */
6078static u32 netdev_get_link(struct net_device *dev)
6079{
6080 struct dev_priv *priv = netdev_priv(dev);
6081 int rc;
6082
6083 rc = mii_link_ok(&priv->mii_if);
6084 return rc;
6085}
6086
6087/**
6088 * netdev_get_drvinfo - get network driver information
6089 * @dev: Network device.
6090 * @info: Ethtool driver info data structure.
6091 *
6092 * This procedure returns the driver information.
6093 */
6094static void netdev_get_drvinfo(struct net_device *dev,
6095 struct ethtool_drvinfo *info)
6096{
6097 struct dev_priv *priv = netdev_priv(dev);
6098 struct dev_info *hw_priv = priv->adapter;
6099
6100 strcpy(info->driver, DRV_NAME);
6101 strcpy(info->version, DRV_VERSION);
6102 strcpy(info->bus_info, pci_name(hw_priv->pdev));
6103}
6104
6105/**
6106 * netdev_get_regs_len - get length of register dump
6107 * @dev: Network device.
6108 *
6109 * This function returns the length of the register dump.
6110 *
6111 * Return length of the register dump.
6112 */
6113static struct hw_regs {
6114 int start;
6115 int end;
6116} hw_regs_range[] = {
6117 { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS },
6118 { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI },
6119 { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
6120 { KS884X_SIDER_P, KS8842_SGCR7_P },
6121 { KS8842_MACAR1_P, KS8842_TOSR8_P },
6122 { KS884X_P1MBCR_P, KS8842_P3ERCR_P },
6123 { 0, 0 }
6124};
6125
6126static int netdev_get_regs_len(struct net_device *dev)
6127{
6128 struct hw_regs *range = hw_regs_range;
6129 int regs_len = 0x10 * sizeof(u32);
6130
6131 while (range->end > range->start) {
6132 regs_len += (range->end - range->start + 3) / 4 * 4;
6133 range++;
6134 }
6135 return regs_len;
6136}
6137
6138/**
6139 * netdev_get_regs - get register dump
6140 * @dev: Network device.
6141 * @regs: Ethtool registers data structure.
6142 * @ptr: Buffer to store the register values.
6143 *
6144 * This procedure dumps the register values in the provided buffer.
6145 */
6146static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6147 void *ptr)
6148{
6149 struct dev_priv *priv = netdev_priv(dev);
6150 struct dev_info *hw_priv = priv->adapter;
6151 struct ksz_hw *hw = &hw_priv->hw;
6152 int *buf = (int *) ptr;
6153 struct hw_regs *range = hw_regs_range;
6154 int len;
6155
6156 mutex_lock(&hw_priv->lock);
6157 regs->version = 0;
6158 for (len = 0; len < 0x40; len += 4) {
6159 pci_read_config_dword(hw_priv->pdev, len, buf);
6160 buf++;
6161 }
6162 while (range->end > range->start) {
6163 for (len = range->start; len < range->end; len += 4) {
6164 *buf = readl(hw->io + len);
6165 buf++;
6166 }
6167 range++;
6168 }
6169 mutex_unlock(&hw_priv->lock);
6170}
6171
6172#define WOL_SUPPORT \
6173 (WAKE_PHY | WAKE_MAGIC | \
6174 WAKE_UCAST | WAKE_MCAST | \
6175 WAKE_BCAST | WAKE_ARP)
6176
6177/**
6178 * netdev_get_wol - get Wake-on-LAN support
6179 * @dev: Network device.
6180 * @wol: Ethtool Wake-on-LAN data structure.
6181 *
6182 * This procedure returns Wake-on-LAN support.
6183 */
6184static void netdev_get_wol(struct net_device *dev,
6185 struct ethtool_wolinfo *wol)
6186{
6187 struct dev_priv *priv = netdev_priv(dev);
6188 struct dev_info *hw_priv = priv->adapter;
6189
6190 wol->supported = hw_priv->wol_support;
6191 wol->wolopts = hw_priv->wol_enable;
6192 memset(&wol->sopass, 0, sizeof(wol->sopass));
6193}
6194
6195/**
6196 * netdev_set_wol - set Wake-on-LAN support
6197 * @dev: Network device.
6198 * @wol: Ethtool Wake-on-LAN data structure.
6199 *
6200 * This function sets Wake-on-LAN support.
6201 *
6202 * Return 0 if successful; otherwise an error code.
6203 */
6204static int netdev_set_wol(struct net_device *dev,
6205 struct ethtool_wolinfo *wol)
6206{
6207 struct dev_priv *priv = netdev_priv(dev);
6208 struct dev_info *hw_priv = priv->adapter;
6209
6210 /* Need to find a way to retrieve the device IP address. */
6211 u8 net_addr[] = { 192, 168, 1, 1 };
6212
6213 if (wol->wolopts & ~hw_priv->wol_support)
6214 return -EINVAL;
6215
6216 hw_priv->wol_enable = wol->wolopts;
6217
6218 /* Link wakeup cannot really be disabled. */
6219 if (wol->wolopts)
6220 hw_priv->wol_enable |= WAKE_PHY;
6221 hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6222 return 0;
6223}
6224
6225/**
6226 * netdev_get_msglevel - get debug message level
6227 * @dev: Network device.
6228 *
6229 * This function returns current debug message level.
6230 *
6231 * Return current debug message flags.
6232 */
6233static u32 netdev_get_msglevel(struct net_device *dev)
6234{
6235 struct dev_priv *priv = netdev_priv(dev);
6236
6237 return priv->msg_enable;
6238}
6239
6240/**
6241 * netdev_set_msglevel - set debug message level
6242 * @dev: Network device.
6243 * @value: Debug message flags.
6244 *
6245 * This procedure sets debug message level.
6246 */
6247static void netdev_set_msglevel(struct net_device *dev, u32 value)
6248{
6249 struct dev_priv *priv = netdev_priv(dev);
6250
6251 priv->msg_enable = value;
6252}
6253
6254/**
6255 * netdev_get_eeprom_len - get EEPROM length
6256 * @dev: Network device.
6257 *
6258 * This function returns the length of the EEPROM.
6259 *
6260 * Return length of the EEPROM.
6261 */
6262static int netdev_get_eeprom_len(struct net_device *dev)
6263{
6264 return EEPROM_SIZE * 2;
6265}
6266
6267/**
6268 * netdev_get_eeprom - get EEPROM data
6269 * @dev: Network device.
6270 * @eeprom: Ethtool EEPROM data structure.
6271 * @data: Buffer to store the EEPROM data.
6272 *
6273 * This function dumps the EEPROM data in the provided buffer.
6274 *
6275 * Return 0 if successful; otherwise an error code.
6276 */
6277#define EEPROM_MAGIC 0x10A18842
6278
6279static int netdev_get_eeprom(struct net_device *dev,
6280 struct ethtool_eeprom *eeprom, u8 *data)
6281{
6282 struct dev_priv *priv = netdev_priv(dev);
6283 struct dev_info *hw_priv = priv->adapter;
6284 u8 *eeprom_byte = (u8 *) eeprom_data;
6285 int i;
6286 int len;
6287
6288 len = (eeprom->offset + eeprom->len + 1) / 2;
6289 for (i = eeprom->offset / 2; i < len; i++)
6290 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6291 eeprom->magic = EEPROM_MAGIC;
6292 memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6293
6294 return 0;
6295}
6296
6297/**
6298 * netdev_set_eeprom - write EEPROM data
6299 * @dev: Network device.
6300 * @eeprom: Ethtool EEPROM data structure.
6301 * @data: Data buffer.
6302 *
6303 * This function modifies the EEPROM data one byte at a time.
6304 *
6305 * Return 0 if successful; otherwise an error code.
6306 */
6307static int netdev_set_eeprom(struct net_device *dev,
6308 struct ethtool_eeprom *eeprom, u8 *data)
6309{
6310 struct dev_priv *priv = netdev_priv(dev);
6311 struct dev_info *hw_priv = priv->adapter;
6312 u16 eeprom_word[EEPROM_SIZE];
6313 u8 *eeprom_byte = (u8 *) eeprom_word;
6314 int i;
6315 int len;
6316
6317 if (eeprom->magic != EEPROM_MAGIC)
4881a4f8 6318 return -EINVAL;
8ca86fd8
TH
6319
6320 len = (eeprom->offset + eeprom->len + 1) / 2;
6321 for (i = eeprom->offset / 2; i < len; i++)
6322 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6323 memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6324 memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6325 for (i = 0; i < EEPROM_SIZE; i++)
6326 if (eeprom_word[i] != eeprom_data[i]) {
6327 eeprom_data[i] = eeprom_word[i];
6328 eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6329 }
6330
6331 return 0;
6332}
6333
6334/**
6335 * netdev_get_pauseparam - get flow control parameters
6336 * @dev: Network device.
6337 * @pause: Ethtool PAUSE settings data structure.
6338 *
6339 * This procedure returns the PAUSE control flow settings.
6340 */
6341static void netdev_get_pauseparam(struct net_device *dev,
6342 struct ethtool_pauseparam *pause)
6343{
6344 struct dev_priv *priv = netdev_priv(dev);
6345 struct dev_info *hw_priv = priv->adapter;
6346 struct ksz_hw *hw = &hw_priv->hw;
6347
6348 pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6349 if (!hw->ksz_switch) {
6350 pause->rx_pause =
6351 (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6352 pause->tx_pause =
6353 (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6354 } else {
6355 pause->rx_pause =
6356 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6357 SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6358 pause->tx_pause =
6359 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6360 SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6361 }
6362}
6363
6364/**
6365 * netdev_set_pauseparam - set flow control parameters
6366 * @dev: Network device.
6367 * @pause: Ethtool PAUSE settings data structure.
6368 *
6369 * This function sets the PAUSE control flow settings.
6370 * Not implemented yet.
6371 *
6372 * Return 0 if successful; otherwise an error code.
6373 */
6374static int netdev_set_pauseparam(struct net_device *dev,
6375 struct ethtool_pauseparam *pause)
6376{
6377 struct dev_priv *priv = netdev_priv(dev);
6378 struct dev_info *hw_priv = priv->adapter;
6379 struct ksz_hw *hw = &hw_priv->hw;
6380 struct ksz_port *port = &priv->port;
6381
6382 mutex_lock(&hw_priv->lock);
6383 if (pause->autoneg) {
6384 if (!pause->rx_pause && !pause->tx_pause)
6385 port->flow_ctrl = PHY_NO_FLOW_CTRL;
6386 else
6387 port->flow_ctrl = PHY_FLOW_CTRL;
6388 hw->overrides &= ~PAUSE_FLOW_CTRL;
6389 port->force_link = 0;
6390 if (hw->ksz_switch) {
6391 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6392 SWITCH_RX_FLOW_CTRL, 1);
6393 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6394 SWITCH_TX_FLOW_CTRL, 1);
6395 }
6396 port_set_link_speed(port);
6397 } else {
6398 hw->overrides |= PAUSE_FLOW_CTRL;
6399 if (hw->ksz_switch) {
6400 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6401 SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6402 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6403 SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6404 } else
6405 set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6406 }
6407 mutex_unlock(&hw_priv->lock);
6408
6409 return 0;
6410}
6411
6412/**
6413 * netdev_get_ringparam - get tx/rx ring parameters
6414 * @dev: Network device.
6415 * @pause: Ethtool RING settings data structure.
6416 *
6417 * This procedure returns the TX/RX ring settings.
6418 */
6419static void netdev_get_ringparam(struct net_device *dev,
6420 struct ethtool_ringparam *ring)
6421{
6422 struct dev_priv *priv = netdev_priv(dev);
6423 struct dev_info *hw_priv = priv->adapter;
6424 struct ksz_hw *hw = &hw_priv->hw;
6425
6426 ring->tx_max_pending = (1 << 9);
6427 ring->tx_pending = hw->tx_desc_info.alloc;
6428 ring->rx_max_pending = (1 << 9);
6429 ring->rx_pending = hw->rx_desc_info.alloc;
6430}
6431
6432#define STATS_LEN (TOTAL_PORT_COUNTER_NUM)
6433
6434static struct {
6435 char string[ETH_GSTRING_LEN];
6436} ethtool_stats_keys[STATS_LEN] = {
6437 { "rx_lo_priority_octets" },
6438 { "rx_hi_priority_octets" },
6439 { "rx_undersize_packets" },
6440 { "rx_fragments" },
6441 { "rx_oversize_packets" },
6442 { "rx_jabbers" },
6443 { "rx_symbol_errors" },
6444 { "rx_crc_errors" },
6445 { "rx_align_errors" },
6446 { "rx_mac_ctrl_packets" },
6447 { "rx_pause_packets" },
6448 { "rx_bcast_packets" },
6449 { "rx_mcast_packets" },
6450 { "rx_ucast_packets" },
6451 { "rx_64_or_less_octet_packets" },
6452 { "rx_65_to_127_octet_packets" },
6453 { "rx_128_to_255_octet_packets" },
6454 { "rx_256_to_511_octet_packets" },
6455 { "rx_512_to_1023_octet_packets" },
6456 { "rx_1024_to_1522_octet_packets" },
6457
6458 { "tx_lo_priority_octets" },
6459 { "tx_hi_priority_octets" },
6460 { "tx_late_collisions" },
6461 { "tx_pause_packets" },
6462 { "tx_bcast_packets" },
6463 { "tx_mcast_packets" },
6464 { "tx_ucast_packets" },
6465 { "tx_deferred" },
6466 { "tx_total_collisions" },
6467 { "tx_excessive_collisions" },
6468 { "tx_single_collisions" },
6469 { "tx_mult_collisions" },
6470
6471 { "rx_discards" },
6472 { "tx_discards" },
6473};
6474
6475/**
6476 * netdev_get_strings - get statistics identity strings
6477 * @dev: Network device.
6478 * @stringset: String set identifier.
6479 * @buf: Buffer to store the strings.
6480 *
6481 * This procedure returns the strings used to identify the statistics.
6482 */
6483static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6484{
6485 struct dev_priv *priv = netdev_priv(dev);
6486 struct dev_info *hw_priv = priv->adapter;
6487 struct ksz_hw *hw = &hw_priv->hw;
6488
6489 if (ETH_SS_STATS == stringset)
6490 memcpy(buf, &ethtool_stats_keys,
6491 ETH_GSTRING_LEN * hw->mib_cnt);
6492}
6493
6494/**
6495 * netdev_get_sset_count - get statistics size
6496 * @dev: Network device.
6497 * @sset: The statistics set number.
6498 *
6499 * This function returns the size of the statistics to be reported.
6500 *
6501 * Return size of the statistics to be reported.
6502 */
6503static int netdev_get_sset_count(struct net_device *dev, int sset)
6504{
6505 struct dev_priv *priv = netdev_priv(dev);
6506 struct dev_info *hw_priv = priv->adapter;
6507 struct ksz_hw *hw = &hw_priv->hw;
6508
6509 switch (sset) {
6510 case ETH_SS_STATS:
6511 return hw->mib_cnt;
6512 default:
6513 return -EOPNOTSUPP;
6514 }
6515}
6516
6517/**
6518 * netdev_get_ethtool_stats - get network device statistics
6519 * @dev: Network device.
6520 * @stats: Ethtool statistics data structure.
6521 * @data: Buffer to store the statistics.
6522 *
6523 * This procedure returns the statistics.
6524 */
6525static void netdev_get_ethtool_stats(struct net_device *dev,
6526 struct ethtool_stats *stats, u64 *data)
6527{
6528 struct dev_priv *priv = netdev_priv(dev);
6529 struct dev_info *hw_priv = priv->adapter;
6530 struct ksz_hw *hw = &hw_priv->hw;
6531 struct ksz_port *port = &priv->port;
6532 int n_stats = stats->n_stats;
6533 int i;
6534 int n;
6535 int p;
6536 int rc;
6537 u64 counter[TOTAL_PORT_COUNTER_NUM];
6538
6539 mutex_lock(&hw_priv->lock);
6540 n = SWITCH_PORT_NUM;
6541 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6542 if (media_connected == hw->port_mib[p].state) {
6543 hw_priv->counter[p].read = 1;
6544
6545 /* Remember first port that requests read. */
6546 if (n == SWITCH_PORT_NUM)
6547 n = p;
6548 }
6549 }
6550 mutex_unlock(&hw_priv->lock);
6551
6552 if (n < SWITCH_PORT_NUM)
6553 schedule_work(&hw_priv->mib_read);
6554
6555 if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6556 p = n;
6557 rc = wait_event_interruptible_timeout(
6558 hw_priv->counter[p].counter,
6559 2 == hw_priv->counter[p].read,
6560 HZ * 1);
6561 } else
6562 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6563 if (0 == i) {
6564 rc = wait_event_interruptible_timeout(
6565 hw_priv->counter[p].counter,
6566 2 == hw_priv->counter[p].read,
6567 HZ * 2);
6568 } else if (hw->port_mib[p].cnt_ptr) {
6569 rc = wait_event_interruptible_timeout(
6570 hw_priv->counter[p].counter,
6571 2 == hw_priv->counter[p].read,
6572 HZ * 1);
6573 }
6574 }
6575
6576 get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6577 n = hw->mib_cnt;
6578 if (n > n_stats)
6579 n = n_stats;
6580 n_stats -= n;
6581 for (i = 0; i < n; i++)
6582 *data++ = counter[i];
6583}
6584
6585/**
6586 * netdev_get_rx_csum - get receive checksum support
6587 * @dev: Network device.
6588 *
6589 * This function gets receive checksum support setting.
6590 *
6591 * Return true if receive checksum is enabled; false otherwise.
6592 */
6593static u32 netdev_get_rx_csum(struct net_device *dev)
6594{
6595 struct dev_priv *priv = netdev_priv(dev);
6596 struct dev_info *hw_priv = priv->adapter;
6597 struct ksz_hw *hw = &hw_priv->hw;
6598
6599 return hw->rx_cfg &
6600 (DMA_RX_CSUM_UDP |
6601 DMA_RX_CSUM_TCP |
6602 DMA_RX_CSUM_IP);
6603}
6604
6605/**
6606 * netdev_set_rx_csum - set receive checksum support
6607 * @dev: Network device.
6608 * @data: Zero to disable receive checksum support.
6609 *
6610 * This function sets receive checksum support setting.
6611 *
6612 * Return 0 if successful; otherwise an error code.
6613 */
6614static int netdev_set_rx_csum(struct net_device *dev, u32 data)
6615{
6616 struct dev_priv *priv = netdev_priv(dev);
6617 struct dev_info *hw_priv = priv->adapter;
6618 struct ksz_hw *hw = &hw_priv->hw;
6619 u32 new_setting = hw->rx_cfg;
6620
6621 if (data)
6622 new_setting |=
6623 (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP |
6624 DMA_RX_CSUM_IP);
6625 else
6626 new_setting &=
6627 ~(DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP |
6628 DMA_RX_CSUM_IP);
6629 new_setting &= ~DMA_RX_CSUM_UDP;
6630 mutex_lock(&hw_priv->lock);
6631 if (new_setting != hw->rx_cfg) {
6632 hw->rx_cfg = new_setting;
6633 if (hw->enabled)
6634 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6635 }
6636 mutex_unlock(&hw_priv->lock);
6637 return 0;
6638}
6639
6640static struct ethtool_ops netdev_ethtool_ops = {
6641 .get_settings = netdev_get_settings,
6642 .set_settings = netdev_set_settings,
6643 .nway_reset = netdev_nway_reset,
6644 .get_link = netdev_get_link,
6645 .get_drvinfo = netdev_get_drvinfo,
6646 .get_regs_len = netdev_get_regs_len,
6647 .get_regs = netdev_get_regs,
6648 .get_wol = netdev_get_wol,
6649 .set_wol = netdev_set_wol,
6650 .get_msglevel = netdev_get_msglevel,
6651 .set_msglevel = netdev_set_msglevel,
6652 .get_eeprom_len = netdev_get_eeprom_len,
6653 .get_eeprom = netdev_get_eeprom,
6654 .set_eeprom = netdev_set_eeprom,
6655 .get_pauseparam = netdev_get_pauseparam,
6656 .set_pauseparam = netdev_set_pauseparam,
6657 .get_ringparam = netdev_get_ringparam,
6658 .get_strings = netdev_get_strings,
6659 .get_sset_count = netdev_get_sset_count,
6660 .get_ethtool_stats = netdev_get_ethtool_stats,
6661 .get_rx_csum = netdev_get_rx_csum,
6662 .set_rx_csum = netdev_set_rx_csum,
6663 .get_tx_csum = ethtool_op_get_tx_csum,
6664 .set_tx_csum = ethtool_op_set_tx_csum,
6665 .get_sg = ethtool_op_get_sg,
6666 .set_sg = ethtool_op_set_sg,
6667};
6668
6669/*
6670 * Hardware monitoring
6671 */
6672
6673static void update_link(struct net_device *dev, struct dev_priv *priv,
6674 struct ksz_port *port)
6675{
6676 if (priv->media_state != port->linked->state) {
6677 priv->media_state = port->linked->state;
0dc7d2b3
JP
6678 if (netif_running(dev))
6679 set_media_state(dev, media_connected);
8ca86fd8
TH
6680 }
6681}
6682
6683static void mib_read_work(struct work_struct *work)
6684{
6685 struct dev_info *hw_priv =
6686 container_of(work, struct dev_info, mib_read);
6687 struct ksz_hw *hw = &hw_priv->hw;
6688 struct ksz_port_mib *mib;
6689 int i;
6690
6691 next_jiffies = jiffies;
6692 for (i = 0; i < hw->mib_port_cnt; i++) {
6693 mib = &hw->port_mib[i];
6694
6695 /* Reading MIB counters or requested to read. */
6696 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6697
6698 /* Need to process receive interrupt. */
6699 if (port_r_cnt(hw, i))
6700 break;
6701 hw_priv->counter[i].read = 0;
6702
6703 /* Finish reading counters. */
6704 if (0 == mib->cnt_ptr) {
6705 hw_priv->counter[i].read = 2;
6706 wake_up_interruptible(
6707 &hw_priv->counter[i].counter);
6708 }
6709 } else if (jiffies >= hw_priv->counter[i].time) {
6710 /* Only read MIB counters when the port is connected. */
6711 if (media_connected == mib->state)
6712 hw_priv->counter[i].read = 1;
6713 next_jiffies += HZ * 1 * hw->mib_port_cnt;
6714 hw_priv->counter[i].time = next_jiffies;
6715
6716 /* Port is just disconnected. */
6717 } else if (mib->link_down) {
6718 mib->link_down = 0;
6719
6720 /* Read counters one last time after link is lost. */
6721 hw_priv->counter[i].read = 1;
6722 }
6723 }
6724}
6725
6726static void mib_monitor(unsigned long ptr)
6727{
6728 struct dev_info *hw_priv = (struct dev_info *) ptr;
6729
6730 mib_read_work(&hw_priv->mib_read);
6731
6732 /* This is used to verify Wake-on-LAN is working. */
6733 if (hw_priv->pme_wait) {
6734 if (hw_priv->pme_wait <= jiffies) {
6735 hw_clr_wol_pme_status(&hw_priv->hw);
6736 hw_priv->pme_wait = 0;
6737 }
6738 } else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6739
6740 /* PME is asserted. Wait 2 seconds to clear it. */
6741 hw_priv->pme_wait = jiffies + HZ * 2;
6742 }
6743
6744 ksz_update_timer(&hw_priv->mib_timer_info);
6745}
6746
6747/**
6748 * dev_monitor - periodic monitoring
6749 * @ptr: Network device pointer.
6750 *
6751 * This routine is run in a kernel timer to monitor the network device.
6752 */
6753static void dev_monitor(unsigned long ptr)
6754{
6755 struct net_device *dev = (struct net_device *) ptr;
6756 struct dev_priv *priv = netdev_priv(dev);
6757 struct dev_info *hw_priv = priv->adapter;
6758 struct ksz_hw *hw = &hw_priv->hw;
6759 struct ksz_port *port = &priv->port;
6760
6761 if (!(hw->features & LINK_INT_WORKING))
6762 port_get_link_speed(port);
6763 update_link(dev, priv, port);
6764
6765 ksz_update_timer(&priv->monitor_timer_info);
6766}
6767
6768/*
6769 * Linux network device interface functions
6770 */
6771
6772/* Driver exported variables */
6773
6774static int msg_enable;
6775
6776static char *macaddr = ":";
6777static char *mac1addr = ":";
6778
6779/*
6780 * This enables multiple network device mode for KSZ8842, which contains a
6781 * switch with two physical ports. Some users like to take control of the
6782 * ports for running Spanning Tree Protocol. The driver will create an
6783 * additional eth? device for the other port.
6784 *
6785 * Some limitations are the network devices cannot have different MTU and
6786 * multicast hash tables.
6787 */
6788static int multi_dev;
6789
6790/*
6791 * As most users select multiple network device mode to use Spanning Tree
6792 * Protocol, this enables a feature in which most unicast and multicast packets
6793 * are forwarded inside the switch and not passed to the host. Only packets
6794 * that need the host's attention are passed to it. This prevents the host
6795 * wasting CPU time to examine each and every incoming packets and do the
6796 * forwarding itself.
6797 *
6798 * As the hack requires the private bridge header, the driver cannot compile
6799 * with just the kernel headers.
6800 *
6801 * Enabling STP support also turns on multiple network device mode.
6802 */
6803static int stp;
6804
6805/*
6806 * This enables fast aging in the KSZ8842 switch. Not sure what situation
6807 * needs that. However, fast aging is used to flush the dynamic MAC table when
6808 * STP suport is enabled.
6809 */
6810static int fast_aging;
6811
6812/**
421f91d2 6813 * netdev_init - initialize network device.
8ca86fd8
TH
6814 * @dev: Network device.
6815 *
6816 * This function initializes the network device.
6817 *
6818 * Return 0 if successful; otherwise an error code indicating failure.
6819 */
6820static int __init netdev_init(struct net_device *dev)
6821{
6822 struct dev_priv *priv = netdev_priv(dev);
6823
6824 /* 500 ms timeout */
6825 ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6826 dev_monitor, dev);
6827
6828 /* 500 ms timeout */
6829 dev->watchdog_timeo = HZ / 2;
6830
6831 dev->features |= NETIF_F_IP_CSUM;
6832
6833 /*
6834 * Hardware does not really support IPv6 checksum generation, but
6835 * driver actually runs faster with this on. Refer IPV6_CSUM_GEN_HACK.
6836 */
6837 dev->features |= NETIF_F_IPV6_CSUM;
6838 dev->features |= NETIF_F_SG;
6839
6840 sema_init(&priv->proc_sem, 1);
6841
6842 priv->mii_if.phy_id_mask = 0x1;
6843 priv->mii_if.reg_num_mask = 0x7;
6844 priv->mii_if.dev = dev;
6845 priv->mii_if.mdio_read = mdio_read;
6846 priv->mii_if.mdio_write = mdio_write;
6847 priv->mii_if.phy_id = priv->port.first_port + 1;
6848
6849 priv->msg_enable = netif_msg_init(msg_enable,
6850 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6851
6852 return 0;
6853}
6854
6855static const struct net_device_ops netdev_ops = {
6856 .ndo_init = netdev_init,
6857 .ndo_open = netdev_open,
6858 .ndo_stop = netdev_close,
6859 .ndo_get_stats = netdev_query_statistics,
6860 .ndo_start_xmit = netdev_tx,
6861 .ndo_tx_timeout = netdev_tx_timeout,
6862 .ndo_change_mtu = netdev_change_mtu,
6863 .ndo_set_mac_address = netdev_set_mac_address,
96ed741e 6864 .ndo_validate_addr = eth_validate_addr,
8ca86fd8
TH
6865 .ndo_do_ioctl = netdev_ioctl,
6866 .ndo_set_rx_mode = netdev_set_rx_mode,
6867#ifdef CONFIG_NET_POLL_CONTROLLER
6868 .ndo_poll_controller = netdev_netpoll,
6869#endif
6870};
6871
6872static void netdev_free(struct net_device *dev)
6873{
6874 if (dev->watchdog_timeo)
6875 unregister_netdev(dev);
6876
6877 free_netdev(dev);
6878}
6879
6880struct platform_info {
6881 struct dev_info dev_info;
6882 struct net_device *netdev[SWITCH_PORT_NUM];
6883};
6884
6885static int net_device_present;
6886
6887static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6888{
6889 int i;
6890 int j;
6891 int got_num;
6892 int num;
6893
6894 i = j = num = got_num = 0;
6895 while (j < MAC_ADDR_LEN) {
6896 if (macaddr[i]) {
5c4ac8c6
AS
6897 int digit;
6898
8ca86fd8 6899 got_num = 1;
5c4ac8c6
AS
6900 digit = hex_to_bin(macaddr[i]);
6901 if (digit >= 0)
6902 num = num * 16 + digit;
8ca86fd8
TH
6903 else if (':' == macaddr[i])
6904 got_num = 2;
6905 else
6906 break;
6907 } else if (got_num)
6908 got_num = 2;
6909 else
6910 break;
6911 if (2 == got_num) {
6912 if (MAIN_PORT == port) {
6913 hw_priv->hw.override_addr[j++] = (u8) num;
6914 hw_priv->hw.override_addr[5] +=
6915 hw_priv->hw.id;
6916 } else {
6917 hw_priv->hw.ksz_switch->other_addr[j++] =
6918 (u8) num;
6919 hw_priv->hw.ksz_switch->other_addr[5] +=
6920 hw_priv->hw.id;
6921 }
6922 num = got_num = 0;
6923 }
6924 i++;
6925 }
6926 if (MAC_ADDR_LEN == j) {
6927 if (MAIN_PORT == port)
6928 hw_priv->hw.mac_override = 1;
6929 }
6930}
6931
6932#define KS884X_DMA_MASK (~0x0UL)
6933
6934static void read_other_addr(struct ksz_hw *hw)
6935{
6936 int i;
6937 u16 data[3];
6938 struct ksz_switch *sw = hw->ksz_switch;
6939
6940 for (i = 0; i < 3; i++)
6941 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6942 if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6943 sw->other_addr[5] = (u8) data[0];
6944 sw->other_addr[4] = (u8)(data[0] >> 8);
6945 sw->other_addr[3] = (u8) data[1];
6946 sw->other_addr[2] = (u8)(data[1] >> 8);
6947 sw->other_addr[1] = (u8) data[2];
6948 sw->other_addr[0] = (u8)(data[2] >> 8);
6949 }
6950}
6951
6952#ifndef PCI_VENDOR_ID_MICREL_KS
6953#define PCI_VENDOR_ID_MICREL_KS 0x16c6
6954#endif
6955
6956static int __init pcidev_init(struct pci_dev *pdev,
6957 const struct pci_device_id *id)
6958{
6959 struct net_device *dev;
6960 struct dev_priv *priv;
6961 struct dev_info *hw_priv;
6962 struct ksz_hw *hw;
6963 struct platform_info *info;
6964 struct ksz_port *port;
6965 unsigned long reg_base;
6966 unsigned long reg_len;
6967 int cnt;
6968 int i;
6969 int mib_port_count;
6970 int pi;
6971 int port_count;
6972 int result;
0dc7d2b3 6973 char banner[sizeof(version)];
8ca86fd8
TH
6974 struct ksz_switch *sw = NULL;
6975
6976 result = pci_enable_device(pdev);
6977 if (result)
6978 return result;
6979
6980 result = -ENODEV;
6981
6982 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6983 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6984 return result;
6985
6986 reg_base = pci_resource_start(pdev, 0);
6987 reg_len = pci_resource_len(pdev, 0);
6988 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6989 return result;
6990
6991 if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6992 return result;
6993 pci_set_master(pdev);
6994
6995 result = -ENOMEM;
6996
0dc7d2b3 6997 info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
8ca86fd8
TH
6998 if (!info)
6999 goto pcidev_init_dev_err;
8ca86fd8
TH
7000
7001 hw_priv = &info->dev_info;
7002 hw_priv->pdev = pdev;
7003
7004 hw = &hw_priv->hw;
7005
7006 hw->io = ioremap(reg_base, reg_len);
7007 if (!hw->io)
7008 goto pcidev_init_io_err;
7009
7010 cnt = hw_init(hw);
7011 if (!cnt) {
7012 if (msg_enable & NETIF_MSG_PROBE)
0dc7d2b3 7013 pr_alert("chip not detected\n");
8ca86fd8
TH
7014 result = -ENODEV;
7015 goto pcidev_init_alloc_err;
7016 }
7017
0dc7d2b3
JP
7018 snprintf(banner, sizeof(banner), "%s", version);
7019 banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */
7020 dev_info(&hw_priv->pdev->dev, "%s\n", banner);
7021 dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
8ca86fd8
TH
7022
7023 /* Assume device is KSZ8841. */
7024 hw->dev_count = 1;
7025 port_count = 1;
7026 mib_port_count = 1;
7027 hw->addr_list_size = 0;
7028 hw->mib_cnt = PORT_COUNTER_NUM;
7029 hw->mib_port_cnt = 1;
7030
7031 /* KSZ8842 has a switch with multiple ports. */
7032 if (2 == cnt) {
7033 if (fast_aging)
7034 hw->overrides |= FAST_AGING;
7035
7036 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7037
7038 /* Multiple network device interfaces are required. */
7039 if (multi_dev) {
7040 hw->dev_count = SWITCH_PORT_NUM;
7041 hw->addr_list_size = SWITCH_PORT_NUM - 1;
7042 }
7043
7044 /* Single network device has multiple ports. */
7045 if (1 == hw->dev_count) {
7046 port_count = SWITCH_PORT_NUM;
7047 mib_port_count = SWITCH_PORT_NUM;
7048 }
7049 hw->mib_port_cnt = TOTAL_PORT_NUM;
a05abcb5 7050 hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
8ca86fd8
TH
7051 if (!hw->ksz_switch)
7052 goto pcidev_init_alloc_err;
8ca86fd8
TH
7053
7054 sw = hw->ksz_switch;
7055 }
7056 for (i = 0; i < hw->mib_port_cnt; i++)
7057 hw->port_mib[i].mib_start = 0;
7058
7059 hw->parent = hw_priv;
7060
7061 /* Default MTU is 1500. */
7062 hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7063
7064 if (ksz_alloc_mem(hw_priv))
7065 goto pcidev_init_mem_err;
7066
7067 hw_priv->hw.id = net_device_present;
7068
7069 spin_lock_init(&hw_priv->hwlock);
7070 mutex_init(&hw_priv->lock);
7071
7072 /* tasklet is enabled. */
7073 tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
7074 (unsigned long) hw_priv);
7075 tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
7076 (unsigned long) hw_priv);
7077
7078 /* tasklet_enable will decrement the atomic counter. */
7079 tasklet_disable(&hw_priv->rx_tasklet);
7080 tasklet_disable(&hw_priv->tx_tasklet);
7081
7082 for (i = 0; i < TOTAL_PORT_NUM; i++)
7083 init_waitqueue_head(&hw_priv->counter[i].counter);
7084
7085 if (macaddr[0] != ':')
7086 get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7087
7088 /* Read MAC address and initialize override address if not overrided. */
7089 hw_read_addr(hw);
7090
7091 /* Multiple device interfaces mode requires a second MAC address. */
7092 if (hw->dev_count > 1) {
7093 memcpy(sw->other_addr, hw->override_addr, MAC_ADDR_LEN);
7094 read_other_addr(hw);
7095 if (mac1addr[0] != ':')
7096 get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7097 }
7098
7099 hw_setup(hw);
7100 if (hw->ksz_switch)
7101 sw_setup(hw);
7102 else {
7103 hw_priv->wol_support = WOL_SUPPORT;
7104 hw_priv->wol_enable = 0;
7105 }
7106
7107 INIT_WORK(&hw_priv->mib_read, mib_read_work);
7108
7109 /* 500 ms timeout */
7110 ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7111 mib_monitor, hw_priv);
7112
7113 for (i = 0; i < hw->dev_count; i++) {
7114 dev = alloc_etherdev(sizeof(struct dev_priv));
7115 if (!dev)
7116 goto pcidev_init_reg_err;
7117 info->netdev[i] = dev;
7118
7119 priv = netdev_priv(dev);
7120 priv->adapter = hw_priv;
7121 priv->id = net_device_present++;
7122
7123 port = &priv->port;
7124 port->port_cnt = port_count;
7125 port->mib_port_cnt = mib_port_count;
7126 port->first_port = i;
7127 port->flow_ctrl = PHY_FLOW_CTRL;
7128
7129 port->hw = hw;
7130 port->linked = &hw->port_info[port->first_port];
7131
7132 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7133 hw->port_info[pi].port_id = pi;
7134 hw->port_info[pi].pdev = dev;
7135 hw->port_info[pi].state = media_disconnected;
7136 }
7137
7138 dev->mem_start = (unsigned long) hw->io;
7139 dev->mem_end = dev->mem_start + reg_len - 1;
7140 dev->irq = pdev->irq;
7141 if (MAIN_PORT == i)
7142 memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7143 MAC_ADDR_LEN);
7144 else {
7145 memcpy(dev->dev_addr, sw->other_addr,
7146 MAC_ADDR_LEN);
7147 if (!memcmp(sw->other_addr, hw->override_addr,
7148 MAC_ADDR_LEN))
7149 dev->dev_addr[5] += port->first_port;
7150 }
7151
7152 dev->netdev_ops = &netdev_ops;
7153 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7154 if (register_netdev(dev))
7155 goto pcidev_init_reg_err;
7156 port_set_power_saving(port, true);
7157 }
7158
7159 pci_dev_get(hw_priv->pdev);
7160 pci_set_drvdata(pdev, info);
7161 return 0;
7162
7163pcidev_init_reg_err:
7164 for (i = 0; i < hw->dev_count; i++) {
7165 if (info->netdev[i]) {
7166 netdev_free(info->netdev[i]);
7167 info->netdev[i] = NULL;
7168 }
7169 }
7170
7171pcidev_init_mem_err:
7172 ksz_free_mem(hw_priv);
7173 kfree(hw->ksz_switch);
7174
7175pcidev_init_alloc_err:
7176 iounmap(hw->io);
7177
7178pcidev_init_io_err:
7179 kfree(info);
7180
7181pcidev_init_dev_err:
7182 release_mem_region(reg_base, reg_len);
7183
7184 return result;
7185}
7186
7187static void pcidev_exit(struct pci_dev *pdev)
7188{
7189 int i;
7190 struct platform_info *info = pci_get_drvdata(pdev);
7191 struct dev_info *hw_priv = &info->dev_info;
7192
7193 pci_set_drvdata(pdev, NULL);
7194
7195 release_mem_region(pci_resource_start(pdev, 0),
7196 pci_resource_len(pdev, 0));
7197 for (i = 0; i < hw_priv->hw.dev_count; i++) {
7198 if (info->netdev[i])
7199 netdev_free(info->netdev[i]);
7200 }
7201 if (hw_priv->hw.io)
7202 iounmap(hw_priv->hw.io);
7203 ksz_free_mem(hw_priv);
7204 kfree(hw_priv->hw.ksz_switch);
7205 pci_dev_put(hw_priv->pdev);
7206 kfree(info);
7207}
7208
7209#ifdef CONFIG_PM
7210static int pcidev_resume(struct pci_dev *pdev)
7211{
7212 int i;
7213 struct platform_info *info = pci_get_drvdata(pdev);
7214 struct dev_info *hw_priv = &info->dev_info;
7215 struct ksz_hw *hw = &hw_priv->hw;
7216
7217 pci_set_power_state(pdev, PCI_D0);
7218 pci_restore_state(pdev);
7219 pci_enable_wake(pdev, PCI_D0, 0);
7220
7221 if (hw_priv->wol_enable)
7222 hw_cfg_wol_pme(hw, 0);
7223 for (i = 0; i < hw->dev_count; i++) {
7224 if (info->netdev[i]) {
7225 struct net_device *dev = info->netdev[i];
7226
7227 if (netif_running(dev)) {
7228 netdev_open(dev);
7229 netif_device_attach(dev);
7230 }
7231 }
7232 }
7233 return 0;
7234}
7235
7236static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7237{
7238 int i;
7239 struct platform_info *info = pci_get_drvdata(pdev);
7240 struct dev_info *hw_priv = &info->dev_info;
7241 struct ksz_hw *hw = &hw_priv->hw;
7242
7243 /* Need to find a way to retrieve the device IP address. */
7244 u8 net_addr[] = { 192, 168, 1, 1 };
7245
7246 for (i = 0; i < hw->dev_count; i++) {
7247 if (info->netdev[i]) {
7248 struct net_device *dev = info->netdev[i];
7249
7250 if (netif_running(dev)) {
7251 netif_device_detach(dev);
7252 netdev_close(dev);
7253 }
7254 }
7255 }
7256 if (hw_priv->wol_enable) {
7257 hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7258 hw_cfg_wol_pme(hw, 1);
7259 }
7260
7261 pci_save_state(pdev);
7262 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7263 pci_set_power_state(pdev, pci_choose_state(pdev, state));
7264 return 0;
7265}
7266#endif
7267
7268static char pcidev_name[] = "ksz884xp";
7269
7270static struct pci_device_id pcidev_table[] = {
7271 { PCI_VENDOR_ID_MICREL_KS, 0x8841,
7272 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7273 { PCI_VENDOR_ID_MICREL_KS, 0x8842,
7274 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7275 { 0 }
7276};
7277
7278MODULE_DEVICE_TABLE(pci, pcidev_table);
7279
7280static struct pci_driver pci_device_driver = {
7281#ifdef CONFIG_PM
7282 .suspend = pcidev_suspend,
7283 .resume = pcidev_resume,
7284#endif
7285 .name = pcidev_name,
7286 .id_table = pcidev_table,
7287 .probe = pcidev_init,
7288 .remove = pcidev_exit
7289};
7290
7291static int __init ksz884x_init_module(void)
7292{
7293 return pci_register_driver(&pci_device_driver);
7294}
7295
7296static void __exit ksz884x_cleanup_module(void)
7297{
7298 pci_unregister_driver(&pci_device_driver);
7299}
7300
7301module_init(ksz884x_init_module);
7302module_exit(ksz884x_cleanup_module);
7303
7304MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7305MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7306MODULE_LICENSE("GPL");
7307
7308module_param_named(message, msg_enable, int, 0);
7309MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7310
7311module_param(macaddr, charp, 0);
7312module_param(mac1addr, charp, 0);
7313module_param(fast_aging, int, 0);
7314module_param(multi_dev, int, 0);
7315module_param(stp, int, 0);
7316MODULE_PARM_DESC(macaddr, "MAC address");
7317MODULE_PARM_DESC(mac1addr, "Second MAC address");
7318MODULE_PARM_DESC(fast_aging, "Fast aging");
7319MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7320MODULE_PARM_DESC(stp, "STP support");