]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/ipg.c
ipg: remove boolean macros
[net-next-2.6.git] / drivers / net / ipg.c
CommitLineData
1202d6ff
FR
1/*
2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
3 *
4 * Copyright (C) 2003, 2007 IC Plus Corp
5 *
6 * Original Author:
7 *
8 * Craig Rich
9 * Sundance Technology, Inc.
10 * www.sundanceti.com
11 * craig_rich@sundanceti.com
12 *
13 * Current Maintainer:
14 *
15 * Sorbica Shieh.
16 * http://www.icplus.com.tw
17 * sorbica@icplus.com.tw
18 *
19 * Jesse Huang
20 * http://www.icplus.com.tw
21 * jesse@icplus.com.tw
22 */
23#include <linux/crc32.h>
24#include <linux/ethtool.h>
25#include <linux/mii.h>
26#include <linux/mutex.h>
27
1dad939d 28#include <asm/div64.h>
29
1202d6ff
FR
30#define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
31#define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
32#define IPG_RESET_MASK \
33 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
34 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
35 IPG_AC_AUTO_INIT)
36
37#define ipg_w32(val32,reg) iowrite32((val32), ioaddr + (reg))
38#define ipg_w16(val16,reg) iowrite16((val16), ioaddr + (reg))
39#define ipg_w8(val8,reg) iowrite8((val8), ioaddr + (reg))
40
41#define ipg_r32(reg) ioread32(ioaddr + (reg))
42#define ipg_r16(reg) ioread16(ioaddr + (reg))
43#define ipg_r8(reg) ioread8(ioaddr + (reg))
44
45#define JUMBO_FRAME_4k_ONLY
46enum {
47 netdev_io_size = 128
48};
49
50#include "ipg.h"
51#define DRV_NAME "ipg"
52
53MODULE_AUTHOR("IC Plus Corp. 2003");
54MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver "
55 DrvVer);
56MODULE_LICENSE("GPL");
57
96fd74b2
AB
58//variable record -- index by leading revision/length
59//Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
60static unsigned short DefaultPhyParam[] = {
61 // 11/12/03 IP1000A v1-3 rev=0x40
62 /*--------------------------------------------------------------------------
63 (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
64 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
65 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700,
66 --------------------------------------------------------------------------*/
67 // 12/17/03 IP1000A v1-4 rev=0x40
68 (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
69 0x0000,
70 30, 0x005e, 9, 0x0700,
71 // 01/09/04 IP1000A v1-5 rev=0x41
72 (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
73 0x0000,
74 30, 0x005e, 9, 0x0700,
75 0x0000
76};
77
1202d6ff
FR
78static const char *ipg_brand_name[] = {
79 "IC PLUS IP1000 1000/100/10 based NIC",
80 "Sundance Technology ST2021 based NIC",
81 "Tamarack Microelectronics TC9020/9021 based NIC",
82 "Tamarack Microelectronics TC9020/9021 based NIC",
83 "D-Link NIC",
84 "D-Link NIC IP1000A"
85};
86
87static struct pci_device_id ipg_pci_tbl[] __devinitdata = {
88 { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
89 { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
90 { PCI_VDEVICE(SUNDANCE, 0x1021), 2 },
91 { PCI_VDEVICE(DLINK, 0x9021), 3 },
92 { PCI_VDEVICE(DLINK, 0x4000), 4 },
93 { PCI_VDEVICE(DLINK, 0x4020), 5 },
94 { 0, }
95};
96
97MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
98
99static inline void __iomem *ipg_ioaddr(struct net_device *dev)
100{
101 struct ipg_nic_private *sp = netdev_priv(dev);
102 return sp->ioaddr;
103}
104
105#ifdef IPG_DEBUG
106static void ipg_dump_rfdlist(struct net_device *dev)
107{
108 struct ipg_nic_private *sp = netdev_priv(dev);
109 void __iomem *ioaddr = sp->ioaddr;
110 unsigned int i;
111 u32 offset;
112
113 IPG_DEBUG_MSG("_dump_rfdlist\n");
114
115 printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
116 printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty);
117 printk(KERN_INFO "RFDList start address = %16.16lx\n",
118 (unsigned long) sp->rxd_map);
119 printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n",
120 ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
121
122 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
123 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
124 printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
125 offset, (unsigned long) sp->rxd[i].next_desc);
126 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
127 printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i,
128 offset, (unsigned long) sp->rxd[i].rfs);
129 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
130 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i,
131 offset, (unsigned long) sp->rxd[i].frag_info);
132 }
133}
134
135static void ipg_dump_tfdlist(struct net_device *dev)
136{
137 struct ipg_nic_private *sp = netdev_priv(dev);
138 void __iomem *ioaddr = sp->ioaddr;
139 unsigned int i;
140 u32 offset;
141
142 IPG_DEBUG_MSG("_dump_tfdlist\n");
143
144 printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current);
145 printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
146 printk(KERN_INFO "TFDList start address = %16.16lx\n",
147 (unsigned long) sp->txd_map);
148 printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n",
149 ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
150
151 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
152 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
153 printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
154 offset, (unsigned long) sp->txd[i].next_desc);
155
156 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
157 printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i,
158 offset, (unsigned long) sp->txd[i].tfc);
159 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
160 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i,
161 offset, (unsigned long) sp->txd[i].frag_info);
162 }
163}
164#endif
165
166static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
167{
168 ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
169 ndelay(IPG_PC_PHYCTRLWAIT_NS);
170}
171
172static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
173{
174 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
175 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
176}
177
178static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
179{
180 phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
181
182 ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
183}
184
185static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
186{
187 ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
188 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
189}
190
191static u16 read_phy_bit(void __iomem * ioaddr, u8 phyctrlpolarity)
192{
193 u16 bit_data;
194
195 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
196
197 bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
198
199 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
200
201 return bit_data;
202}
203
204/*
205 * Read a register from the Physical Layer device located
206 * on the IPG NIC, using the IPG PHYCTRL register.
207 */
208static int mdio_read(struct net_device * dev, int phy_id, int phy_reg)
209{
210 void __iomem *ioaddr = ipg_ioaddr(dev);
211 /*
212 * The GMII mangement frame structure for a read is as follows:
213 *
214 * |Preamble|st|op|phyad|regad|ta| data |idle|
215 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
216 *
217 * <32 1s> = 32 consecutive logic 1 values
218 * A = bit of Physical Layer device address (MSB first)
219 * R = bit of register address (MSB first)
220 * z = High impedance state
221 * D = bit of read data (MSB first)
222 *
223 * Transmission order is 'Preamble' field first, bits transmitted
224 * left to right (first to last).
225 */
226 struct {
227 u32 field;
228 unsigned int len;
229 } p[] = {
230 { GMII_PREAMBLE, 32 }, /* Preamble */
231 { GMII_ST, 2 }, /* ST */
232 { GMII_READ, 2 }, /* OP */
233 { phy_id, 5 }, /* PHYAD */
234 { phy_reg, 5 }, /* REGAD */
235 { 0x0000, 2 }, /* TA */
236 { 0x0000, 16 }, /* DATA */
237 { 0x0000, 1 } /* IDLE */
238 };
239 unsigned int i, j;
240 u8 polarity, data;
241
242 polarity = ipg_r8(PHY_CTRL);
243 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
244
245 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
246 for (j = 0; j < 5; j++) {
247 for (i = 0; i < p[j].len; i++) {
248 /* For each variable length field, the MSB must be
249 * transmitted first. Rotate through the field bits,
250 * starting with the MSB, and move each bit into the
251 * the 1st (2^1) bit position (this is the bit position
252 * corresponding to the MgmtData bit of the PhyCtrl
253 * register for the IPG).
254 *
255 * Example: ST = 01;
256 *
257 * First write a '0' to bit 1 of the PhyCtrl
258 * register, then write a '1' to bit 1 of the
259 * PhyCtrl register.
260 *
261 * To do this, right shift the MSB of ST by the value:
262 * [field length - 1 - #ST bits already written]
263 * then left shift this result by 1.
264 */
265 data = (p[j].field >> (p[j].len - 1 - i)) << 1;
266 data &= IPG_PC_MGMTDATA;
267 data |= polarity | IPG_PC_MGMTDIR;
268
269 ipg_drive_phy_ctl_low_high(ioaddr, data);
270 }
271 }
272
273 send_three_state(ioaddr, polarity);
274
275 read_phy_bit(ioaddr, polarity);
276
277 /*
278 * For a read cycle, the bits for the next two fields (TA and
279 * DATA) are driven by the PHY (the IPG reads these bits).
280 */
281 for (i = 0; i < p[6].len; i++) {
282 p[6].field |=
283 (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
284 }
285
286 send_three_state(ioaddr, polarity);
287 send_three_state(ioaddr, polarity);
288 send_three_state(ioaddr, polarity);
289 send_end(ioaddr, polarity);
290
291 /* Return the value of the DATA field. */
292 return p[6].field;
293}
294
295/*
296 * Write to a register from the Physical Layer device located
297 * on the IPG NIC, using the IPG PHYCTRL register.
298 */
299static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
300{
301 void __iomem *ioaddr = ipg_ioaddr(dev);
302 /*
303 * The GMII mangement frame structure for a read is as follows:
304 *
305 * |Preamble|st|op|phyad|regad|ta| data |idle|
306 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
307 *
308 * <32 1s> = 32 consecutive logic 1 values
309 * A = bit of Physical Layer device address (MSB first)
310 * R = bit of register address (MSB first)
311 * z = High impedance state
312 * D = bit of write data (MSB first)
313 *
314 * Transmission order is 'Preamble' field first, bits transmitted
315 * left to right (first to last).
316 */
317 struct {
318 u32 field;
319 unsigned int len;
320 } p[] = {
321 { GMII_PREAMBLE, 32 }, /* Preamble */
322 { GMII_ST, 2 }, /* ST */
323 { GMII_WRITE, 2 }, /* OP */
324 { phy_id, 5 }, /* PHYAD */
325 { phy_reg, 5 }, /* REGAD */
326 { 0x0002, 2 }, /* TA */
327 { val & 0xffff, 16 }, /* DATA */
328 { 0x0000, 1 } /* IDLE */
329 };
330 unsigned int i, j;
331 u8 polarity, data;
332
333 polarity = ipg_r8(PHY_CTRL);
334 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
335
336 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
337 for (j = 0; j < 7; j++) {
338 for (i = 0; i < p[j].len; i++) {
339 /* For each variable length field, the MSB must be
340 * transmitted first. Rotate through the field bits,
341 * starting with the MSB, and move each bit into the
342 * the 1st (2^1) bit position (this is the bit position
343 * corresponding to the MgmtData bit of the PhyCtrl
344 * register for the IPG).
345 *
346 * Example: ST = 01;
347 *
348 * First write a '0' to bit 1 of the PhyCtrl
349 * register, then write a '1' to bit 1 of the
350 * PhyCtrl register.
351 *
352 * To do this, right shift the MSB of ST by the value:
353 * [field length - 1 - #ST bits already written]
354 * then left shift this result by 1.
355 */
356 data = (p[j].field >> (p[j].len - 1 - i)) << 1;
357 data &= IPG_PC_MGMTDATA;
358 data |= polarity | IPG_PC_MGMTDIR;
359
360 ipg_drive_phy_ctl_low_high(ioaddr, data);
361 }
362 }
363
364 /* The last cycle is a tri-state, so read from the PHY. */
365 for (j = 7; j < 8; j++) {
366 for (i = 0; i < p[j].len; i++) {
367 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
368
369 p[j].field |= ((ipg_r8(PHY_CTRL) &
370 IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
371
372 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
373 }
374 }
375}
376
377/* Set LED_Mode JES20040127EEPROM */
378static void ipg_set_led_mode(struct net_device *dev)
379{
380 struct ipg_nic_private *sp = netdev_priv(dev);
381 void __iomem *ioaddr = sp->ioaddr;
382 u32 mode;
383
384 mode = ipg_r32(ASIC_CTRL);
385 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
386
387 if ((sp->LED_Mode & 0x03) > 1)
388 mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */
389
390 if ((sp->LED_Mode & 0x01) == 1)
391 mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */
392
393 if ((sp->LED_Mode & 0x08) == 8)
394 mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */
395
396 ipg_w32(mode, ASIC_CTRL);
397}
398
399/* Set PHYSet JES20040127EEPROM */
400static void ipg_set_phy_set(struct net_device *dev)
401{
402 struct ipg_nic_private *sp = netdev_priv(dev);
403 void __iomem *ioaddr = sp->ioaddr;
404 int physet;
405
406 physet = ipg_r8(PHY_SET);
407 physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
408 physet |= ((sp->LED_Mode & 0x70) >> 4);
409 ipg_w8(physet, PHY_SET);
410}
411
412static int ipg_reset(struct net_device *dev, u32 resetflags)
413{
414 /* Assert functional resets via the IPG AsicCtrl
415 * register as specified by the 'resetflags' input
416 * parameter.
417 */
418 void __iomem *ioaddr = ipg_ioaddr(dev); //JES20040127EEPROM:
419 unsigned int timeout_count = 0;
420
421 IPG_DEBUG_MSG("_reset\n");
422
423 ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
424
425 /* Delay added to account for problem with 10Mbps reset. */
426 mdelay(IPG_AC_RESETWAIT);
427
428 while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
429 mdelay(IPG_AC_RESETWAIT);
430 if (++timeout_count > IPG_AC_RESET_TIMEOUT)
431 return -ETIME;
432 }
433 /* Set LED Mode in Asic Control JES20040127EEPROM */
434 ipg_set_led_mode(dev);
435
436 /* Set PHYSet Register Value JES20040127EEPROM */
437 ipg_set_phy_set(dev);
438 return 0;
439}
440
441/* Find the GMII PHY address. */
442static int ipg_find_phyaddr(struct net_device *dev)
443{
444 unsigned int phyaddr, i;
445
446 for (i = 0; i < 32; i++) {
447 u32 status;
448
449 /* Search for the correct PHY address among 32 possible. */
450 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
451
452 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
453 GMII_PHY_ID1
454 */
455
456 status = mdio_read(dev, phyaddr, MII_BMSR);
457
458 if ((status != 0xFFFF) && (status != 0))
459 return phyaddr;
460 }
461
462 return 0x1f;
463}
464
465/*
466 * Configure IPG based on result of IEEE 802.3 PHY
467 * auto-negotiation.
468 */
469static int ipg_config_autoneg(struct net_device *dev)
470{
471 struct ipg_nic_private *sp = netdev_priv(dev);
472 void __iomem *ioaddr = sp->ioaddr;
473 unsigned int txflowcontrol;
474 unsigned int rxflowcontrol;
475 unsigned int fullduplex;
476 unsigned int gig;
477 u32 mac_ctrl_val;
478 u32 asicctrl;
479 u8 phyctrl;
480
481 IPG_DEBUG_MSG("_config_autoneg\n");
482
483 asicctrl = ipg_r32(ASIC_CTRL);
484 phyctrl = ipg_r8(PHY_CTRL);
485 mac_ctrl_val = ipg_r32(MAC_CTRL);
486
487 /* Set flags for use in resolving auto-negotation, assuming
488 * non-1000Mbps, half duplex, no flow control.
489 */
490 fullduplex = 0;
491 txflowcontrol = 0;
492 rxflowcontrol = 0;
493 gig = 0;
494
495 /* To accomodate a problem in 10Mbps operation,
496 * set a global flag if PHY running in 10Mbps mode.
497 */
498 sp->tenmbpsmode = 0;
499
500 printk(KERN_INFO "%s: Link speed = ", dev->name);
501
502 /* Determine actual speed of operation. */
503 switch (phyctrl & IPG_PC_LINK_SPEED) {
504 case IPG_PC_LINK_SPEED_10MBPS:
505 printk("10Mbps.\n");
506 printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
507 dev->name);
508 sp->tenmbpsmode = 1;
509 break;
510 case IPG_PC_LINK_SPEED_100MBPS:
511 printk("100Mbps.\n");
512 break;
513 case IPG_PC_LINK_SPEED_1000MBPS:
514 printk("1000Mbps.\n");
515 gig = 1;
516 break;
517 default:
518 printk("undefined!\n");
519 return 0;
520 }
521
522 if (phyctrl & IPG_PC_DUPLEX_STATUS) {
523 fullduplex = 1;
524 txflowcontrol = 1;
525 rxflowcontrol = 1;
526 }
527
528 /* Configure full duplex, and flow control. */
529 if (fullduplex == 1) {
530 /* Configure IPG for full duplex operation. */
531 printk(KERN_INFO "%s: setting full duplex, ", dev->name);
532
533 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
534
535 if (txflowcontrol == 1) {
536 printk("TX flow control");
537 mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
538 } else {
539 printk("no TX flow control");
540 mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
541 }
542
543 if (rxflowcontrol == 1) {
544 printk(", RX flow control.");
545 mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
546 } else {
547 printk(", no RX flow control.");
548 mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
549 }
550
551 printk("\n");
552 } else {
553 /* Configure IPG for half duplex operation. */
554 printk(KERN_INFO "%s: setting half duplex, "
555 "no TX flow control, no RX flow control.\n", dev->name);
556
557 mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
558 ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
559 ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
560 }
561 ipg_w32(mac_ctrl_val, MAC_CTRL);
562 return 0;
563}
564
565/* Determine and configure multicast operation and set
566 * receive mode for IPG.
567 */
568static void ipg_nic_set_multicast_list(struct net_device *dev)
569{
570 void __iomem *ioaddr = ipg_ioaddr(dev);
571 struct dev_mc_list *mc_list_ptr;
572 unsigned int hashindex;
573 u32 hashtable[2];
574 u8 receivemode;
575
576 IPG_DEBUG_MSG("_nic_set_multicast_list\n");
577
578 receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
579
580 if (dev->flags & IFF_PROMISC) {
581 /* NIC to be configured in promiscuous mode. */
582 receivemode = IPG_RM_RECEIVEALLFRAMES;
583 } else if ((dev->flags & IFF_ALLMULTI) ||
584 (dev->flags & IFF_MULTICAST &
585 (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) {
586 /* NIC to be configured to receive all multicast
587 * frames. */
588 receivemode |= IPG_RM_RECEIVEMULTICAST;
589 } else if (dev->flags & IFF_MULTICAST & (dev->mc_count > 0)) {
590 /* NIC to be configured to receive selected
591 * multicast addresses. */
592 receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
593 }
594
595 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
596 * The IPG applies a cyclic-redundancy-check (the same CRC
597 * used to calculate the frame data FCS) to the destination
598 * address all incoming multicast frames whose destination
599 * address has the multicast bit set. The least significant
600 * 6 bits of the CRC result are used as an addressing index
601 * into the hash table. If the value of the bit addressed by
602 * this index is a 1, the frame is passed to the host system.
603 */
604
605 /* Clear hashtable. */
606 hashtable[0] = 0x00000000;
607 hashtable[1] = 0x00000000;
608
609 /* Cycle through all multicast addresses to filter. */
610 for (mc_list_ptr = dev->mc_list;
611 mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) {
612 /* Calculate CRC result for each multicast address. */
613 hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr,
614 ETH_ALEN);
615
616 /* Use only the least significant 6 bits. */
617 hashindex = hashindex & 0x3F;
618
619 /* Within "hashtable", set bit number "hashindex"
620 * to a logic 1.
621 */
622 set_bit(hashindex, (void *)hashtable);
623 }
624
625 /* Write the value of the hashtable, to the 4, 16 bit
626 * HASHTABLE IPG registers.
627 */
628 ipg_w32(hashtable[0], HASHTABLE_0);
629 ipg_w32(hashtable[1], HASHTABLE_1);
630
631 ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
632
633 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
634}
635
636static int ipg_io_config(struct net_device *dev)
637{
638 void __iomem *ioaddr = ipg_ioaddr(dev);
639 u32 origmacctrl;
640 u32 restoremacctrl;
641
642 IPG_DEBUG_MSG("_io_config\n");
643
644 origmacctrl = ipg_r32(MAC_CTRL);
645
646 restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
647
648 /* Based on compilation option, determine if FCS is to be
649 * stripped on receive frames by IPG.
650 */
651 if (!IPG_STRIP_FCS_ON_RX)
652 restoremacctrl |= IPG_MC_RCV_FCS;
653
654 /* Determine if transmitter and/or receiver are
655 * enabled so we may restore MACCTRL correctly.
656 */
657 if (origmacctrl & IPG_MC_TX_ENABLED)
658 restoremacctrl |= IPG_MC_TX_ENABLE;
659
660 if (origmacctrl & IPG_MC_RX_ENABLED)
661 restoremacctrl |= IPG_MC_RX_ENABLE;
662
663 /* Transmitter and receiver must be disabled before setting
664 * IFSSelect.
665 */
666 ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
667 IPG_MC_RSVD_MASK, MAC_CTRL);
668
669 /* Now that transmitter and receiver are disabled, write
670 * to IFSSelect.
671 */
672 ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
673
674 /* Set RECEIVEMODE register. */
675 ipg_nic_set_multicast_list(dev);
676
677 ipg_w16(IPG_MAX_RXFRAME_SIZE, MAX_FRAME_SIZE);
678
679 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD);
680 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
681 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH);
682 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD);
683 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
684 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH);
685 ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
686 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
687 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
688 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
689 ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH);
690 ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
691
692 /* IPG multi-frag frame bug workaround.
693 * Per silicon revision B3 eratta.
694 */
695 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
696
697 /* IPG TX poll now bug workaround.
698 * Per silicon revision B3 eratta.
699 */
700 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
701
702 /* IPG RX poll now bug workaround.
703 * Per silicon revision B3 eratta.
704 */
705 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
706
707 /* Now restore MACCTRL to original setting. */
708 ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
709
710 /* Disable unused RMON statistics. */
711 ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
712
713 /* Disable unused MIB statistics. */
714 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
715 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
716 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
717 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
718 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
719 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
720
721 return 0;
722}
723
724/*
725 * Create a receive buffer within system memory and update
726 * NIC private structure appropriately.
727 */
728static int ipg_get_rxbuff(struct net_device *dev, int entry)
729{
730 struct ipg_nic_private *sp = netdev_priv(dev);
731 struct ipg_rx *rxfd = sp->rxd + entry;
732 struct sk_buff *skb;
733 u64 rxfragsize;
734
735 IPG_DEBUG_MSG("_get_rxbuff\n");
736
737 skb = netdev_alloc_skb(dev, IPG_RXSUPPORT_SIZE + NET_IP_ALIGN);
738 if (!skb) {
739 sp->RxBuff[entry] = NULL;
740 return -ENOMEM;
741 }
742
743 /* Adjust the data start location within the buffer to
744 * align IP address field to a 16 byte boundary.
745 */
746 skb_reserve(skb, NET_IP_ALIGN);
747
748 /* Associate the receive buffer with the IPG NIC. */
749 skb->dev = dev;
750
751 /* Save the address of the sk_buff structure. */
752 sp->RxBuff[entry] = skb;
753
754 rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
755 sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
756
757 /* Set the RFD fragment length. */
758 rxfragsize = IPG_RXFRAG_SIZE;
759 rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
760
761 return 0;
762}
763
764static int init_rfdlist(struct net_device *dev)
765{
766 struct ipg_nic_private *sp = netdev_priv(dev);
767 void __iomem *ioaddr = sp->ioaddr;
768 unsigned int i;
769
770 IPG_DEBUG_MSG("_init_rfdlist\n");
771
772 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
773 struct ipg_rx *rxfd = sp->rxd + i;
774
775 if (sp->RxBuff[i]) {
776 pci_unmap_single(sp->pdev,
325a8071 777 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1202d6ff
FR
778 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
779 IPG_DEV_KFREE_SKB(sp->RxBuff[i]);
780 sp->RxBuff[i] = NULL;
781 }
782
783 /* Clear out the RFS field. */
784 rxfd->rfs = 0x0000000000000000;
785
786 if (ipg_get_rxbuff(dev, i) < 0) {
787 /*
788 * A receive buffer was not ready, break the
789 * RFD list here.
790 */
791 IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
792
793 /* Just in case we cannot allocate a single RFD.
794 * Should not occur.
795 */
796 if (i == 0) {
797 printk(KERN_ERR "%s: No memory available"
798 " for RFD list.\n", dev->name);
799 return -ENOMEM;
800 }
801 }
802
803 rxfd->next_desc = cpu_to_le64(sp->rxd_map +
804 sizeof(struct ipg_rx)*(i + 1));
805 }
806 sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
807
808 sp->rx_current = 0;
809 sp->rx_dirty = 0;
810
811 /* Write the location of the RFDList to the IPG. */
812 ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
813 ipg_w32(0x00000000, RFD_LIST_PTR_1);
814
815 return 0;
816}
817
818static void init_tfdlist(struct net_device *dev)
819{
820 struct ipg_nic_private *sp = netdev_priv(dev);
821 void __iomem *ioaddr = sp->ioaddr;
822 unsigned int i;
823
824 IPG_DEBUG_MSG("_init_tfdlist\n");
825
826 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
827 struct ipg_tx *txfd = sp->txd + i;
828
829 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
830
831 if (sp->TxBuff[i]) {
832 IPG_DEV_KFREE_SKB(sp->TxBuff[i]);
833 sp->TxBuff[i] = NULL;
834 }
835
836 txfd->next_desc = cpu_to_le64(sp->txd_map +
837 sizeof(struct ipg_tx)*(i + 1));
838 }
839 sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
840
841 sp->tx_current = 0;
842 sp->tx_dirty = 0;
843
844 /* Write the location of the TFDList to the IPG. */
845 IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
846 (u32) sp->txd_map);
847 ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
848 ipg_w32(0x00000000, TFD_LIST_PTR_1);
849
850 sp->ResetCurrentTFD = 1;
851}
852
853/*
854 * Free all transmit buffers which have already been transfered
855 * via DMA to the IPG.
856 */
857static void ipg_nic_txfree(struct net_device *dev)
858{
859 struct ipg_nic_private *sp = netdev_priv(dev);
0da1b995 860 unsigned int released, pending, dirty;
1dad939d 861
1202d6ff
FR
862 IPG_DEBUG_MSG("_nic_txfree\n");
863
864 pending = sp->tx_current - sp->tx_dirty;
0da1b995 865 dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
1202d6ff
FR
866
867 for (released = 0; released < pending; released++) {
1202d6ff
FR
868 struct sk_buff *skb = sp->TxBuff[dirty];
869 struct ipg_tx *txfd = sp->txd + dirty;
870
871 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
872
873 /* Look at each TFD's TFC field beginning
874 * at the last freed TFD up to the current TFD.
875 * If the TFDDone bit is set, free the associated
876 * buffer.
877 */
0da1b995
FR
878 if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
879 break;
1202d6ff
FR
880
881 /* Free the transmit buffer. */
882 if (skb) {
883 pci_unmap_single(sp->pdev,
325a8071 884 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1202d6ff
FR
885 skb->len, PCI_DMA_TODEVICE);
886
887 IPG_DEV_KFREE_SKB(skb);
888
889 sp->TxBuff[dirty] = NULL;
890 }
0da1b995 891 dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
1202d6ff
FR
892 }
893
894 sp->tx_dirty += released;
895
896 if (netif_queue_stopped(dev) &&
897 (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
898 netif_wake_queue(dev);
899 }
900}
901
902static void ipg_tx_timeout(struct net_device *dev)
903{
904 struct ipg_nic_private *sp = netdev_priv(dev);
905 void __iomem *ioaddr = sp->ioaddr;
906
907 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
908 IPG_AC_FIFO);
909
910 spin_lock_irq(&sp->lock);
911
912 /* Re-configure after DMA reset. */
913 if (ipg_io_config(dev) < 0) {
914 printk(KERN_INFO "%s: Error during re-configuration.\n",
915 dev->name);
916 }
917
918 init_tfdlist(dev);
919
920 spin_unlock_irq(&sp->lock);
921
922 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
923 MAC_CTRL);
924}
925
926/*
927 * For TxComplete interrupts, free all transmit
928 * buffers which have already been transfered via DMA
929 * to the IPG.
930 */
931static void ipg_nic_txcleanup(struct net_device *dev)
932{
933 struct ipg_nic_private *sp = netdev_priv(dev);
934 void __iomem *ioaddr = sp->ioaddr;
935 unsigned int i;
936
937 IPG_DEBUG_MSG("_nic_txcleanup\n");
938
939 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
940 /* Reading the TXSTATUS register clears the
941 * TX_COMPLETE interrupt.
942 */
943 u32 txstatusdword = ipg_r32(TX_STATUS);
944
945 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
946
947 /* Check for Transmit errors. Error bits only valid if
948 * TX_COMPLETE bit in the TXSTATUS register is a 1.
949 */
950 if (!(txstatusdword & IPG_TS_TX_COMPLETE))
951 break;
952
953 /* If in 10Mbps mode, indicate transmit is ready. */
954 if (sp->tenmbpsmode) {
955 netif_wake_queue(dev);
956 }
957
958 /* Transmit error, increment stat counters. */
959 if (txstatusdword & IPG_TS_TX_ERROR) {
960 IPG_DEBUG_MSG("Transmit error.\n");
961 sp->stats.tx_errors++;
962 }
963
964 /* Late collision, re-enable transmitter. */
965 if (txstatusdword & IPG_TS_LATE_COLLISION) {
966 IPG_DEBUG_MSG("Late collision on transmit.\n");
967 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
968 IPG_MC_RSVD_MASK, MAC_CTRL);
969 }
970
971 /* Maximum collisions, re-enable transmitter. */
972 if (txstatusdword & IPG_TS_TX_MAX_COLL) {
973 IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
974 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
975 IPG_MC_RSVD_MASK, MAC_CTRL);
976 }
977
978 /* Transmit underrun, reset and re-enable
979 * transmitter.
980 */
981 if (txstatusdword & IPG_TS_TX_UNDERRUN) {
982 IPG_DEBUG_MSG("Transmitter underrun.\n");
983 sp->stats.tx_fifo_errors++;
984 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
985 IPG_AC_NETWORK | IPG_AC_FIFO);
986
987 /* Re-configure after DMA reset. */
988 if (ipg_io_config(dev) < 0) {
989 printk(KERN_INFO
990 "%s: Error during re-configuration.\n",
991 dev->name);
992 }
993 init_tfdlist(dev);
994
995 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
996 IPG_MC_RSVD_MASK, MAC_CTRL);
997 }
998 }
999
1000 ipg_nic_txfree(dev);
1001}
1002
1003/* Provides statistical information about the IPG NIC. */
96fd74b2 1004static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
1202d6ff
FR
1005{
1006 struct ipg_nic_private *sp = netdev_priv(dev);
1007 void __iomem *ioaddr = sp->ioaddr;
1008 u16 temp1;
1009 u16 temp2;
1010
1011 IPG_DEBUG_MSG("_nic_get_stats\n");
1012
1013 /* Check to see if the NIC has been initialized via nic_open,
1014 * before trying to read statistic registers.
1015 */
1016 if (!test_bit(__LINK_STATE_START, &dev->state))
1017 return &sp->stats;
1018
1019 sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1020 sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1021 sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1022 sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1023 temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1024 sp->stats.rx_errors += temp1;
1025 sp->stats.rx_missed_errors += temp1;
1026 temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1027 ipg_r32(IPG_LATECOLLISIONS);
1028 temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1029 sp->stats.collisions += temp1;
1030 sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1031 sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1032 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1033 sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1034
1035 /* detailed tx_errors */
1036 sp->stats.tx_carrier_errors += temp2;
1037
1038 /* detailed rx_errors */
1039 sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1040 ipg_r16(IPG_FRAMETOOLONGERRRORS);
1041 sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1042
1043 /* Unutilized IPG statistic registers. */
1044 ipg_r32(IPG_MCSTFRAMESRCVDOK);
1045
1046 return &sp->stats;
1047}
1048
1049/* Restore used receive buffers. */
1050static int ipg_nic_rxrestore(struct net_device *dev)
1051{
1052 struct ipg_nic_private *sp = netdev_priv(dev);
1053 const unsigned int curr = sp->rx_current;
1054 unsigned int dirty = sp->rx_dirty;
1055
1056 IPG_DEBUG_MSG("_nic_rxrestore\n");
1057
1058 for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1059 unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1060
1061 /* rx_copybreak may poke hole here and there. */
1062 if (sp->RxBuff[entry])
1063 continue;
1064
1065 /* Generate a new receive buffer to replace the
1066 * current buffer (which will be released by the
1067 * Linux system).
1068 */
1069 if (ipg_get_rxbuff(dev, entry) < 0) {
1070 IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
1071
1072 break;
1073 }
1074
1075 /* Reset the RFS field. */
1076 sp->rxd[entry].rfs = 0x0000000000000000;
1077 }
1078 sp->rx_dirty = dirty;
1079
1080 return 0;
1081}
1082
1083#ifdef JUMBO_FRAME
1084
1085/* use jumboindex and jumbosize to control jumbo frame status
1086 initial status is jumboindex=-1 and jumbosize=0
1087 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1088 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1089 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1090 previous receiving and need to continue dumping the current one
1091*/
1092enum {
1093 NormalPacket,
1094 ErrorPacket
1095};
1096
1097enum {
1098 Frame_NoStart_NoEnd = 0,
1099 Frame_WithStart = 1,
1100 Frame_WithEnd = 10,
1101 Frame_WithStart_WithEnd = 11
1102};
1103
1104inline void ipg_nic_rx_free_skb(struct net_device *dev)
1105{
1106 struct ipg_nic_private *sp = netdev_priv(dev);
1107 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1108
1109 if (sp->RxBuff[entry]) {
1110 struct ipg_rx *rxfd = sp->rxd + entry;
1111
1112 pci_unmap_single(sp->pdev,
1113 le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1114 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1115 IPG_DEV_KFREE_SKB(sp->RxBuff[entry]);
1116 sp->RxBuff[entry] = NULL;
1117 }
1118}
1119
1120inline int ipg_nic_rx_check_frame_type(struct net_device *dev)
1121{
1122 struct ipg_nic_private *sp = netdev_priv(dev);
1123 struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1124 int type = Frame_NoStart_NoEnd;
1125
1126 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1127 type += Frame_WithStart;
1128 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1129 type += Frame_WithEnd;
1130 return type;
1131}
1132
1133inline int ipg_nic_rx_check_error(struct net_device *dev)
1134{
1135 struct ipg_nic_private *sp = netdev_priv(dev);
1136 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1137 struct ipg_rx *rxfd = sp->rxd + entry;
1138
1139 if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1140 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1141 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1142 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1143 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1144 (unsigned long) rxfd->rfs);
1145
1146 /* Increment general receive error statistic. */
1147 sp->stats.rx_errors++;
1148
1149 /* Increment detailed receive error statistics. */
1150 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1151 IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1152
1153 sp->stats.rx_fifo_errors++;
1154 }
1155
1156 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1157 IPG_DEBUG_MSG("RX runt occured.\n");
1158 sp->stats.rx_length_errors++;
1159 }
1160
1161 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1162 * error count handled by a IPG statistic register.
1163 */
1164
1165 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1166 IPG_DEBUG_MSG("RX alignment error occured.\n");
1167 sp->stats.rx_frame_errors++;
1168 }
1169
1170 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1171 * handled by a IPG statistic register.
1172 */
1173
1174 /* Free the memory associated with the RX
1175 * buffer since it is erroneous and we will
1176 * not pass it to higher layer processes.
1177 */
1178 if (sp->RxBuff[entry]) {
1179 pci_unmap_single(sp->pdev,
1180 le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1181 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1182
1183 IPG_DEV_KFREE_SKB(sp->RxBuff[entry]);
1184 sp->RxBuff[entry] = NULL;
1185 }
1186 return ErrorPacket;
1187 }
1188 return NormalPacket;
1189}
1190
1191static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1192 struct ipg_nic_private *sp,
1193 struct ipg_rx *rxfd, unsigned entry)
1194{
1195 struct SJumbo *jumbo = &sp->Jumbo;
1196 struct sk_buff *skb;
1197 int framelen;
1198
1199 if (jumbo->FoundStart) {
1200 IPG_DEV_KFREE_SKB(jumbo->skb);
1201 jumbo->FoundStart = 0;
1202 jumbo->CurrentSize = 0;
1203 jumbo->skb = NULL;
1204 }
1205
1206 // 1: found error, 0 no error
1207 if (ipg_nic_rx_check_error(dev) != NormalPacket)
1208 return;
1209
1210 skb = sp->RxBuff[entry];
1211 if (!skb)
1212 return;
1213
1214 // accept this frame and send to upper layer
1215 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1216 if (framelen > IPG_RXFRAG_SIZE)
1217 framelen = IPG_RXFRAG_SIZE;
1218
1219 skb_put(skb, framelen);
1220 skb->protocol = eth_type_trans(skb, dev);
1221 skb->ip_summed = CHECKSUM_NONE;
1222 netif_rx(skb);
1223 dev->last_rx = jiffies;
1224 sp->RxBuff[entry] = NULL;
1225}
1226
1227static void ipg_nic_rx_with_start(struct net_device *dev,
1228 struct ipg_nic_private *sp,
1229 struct ipg_rx *rxfd, unsigned entry)
1230{
1231 struct SJumbo *jumbo = &sp->Jumbo;
1232 struct pci_dev *pdev = sp->pdev;
1233 struct sk_buff *skb;
1234
1235 // 1: found error, 0 no error
1236 if (ipg_nic_rx_check_error(dev) != NormalPacket)
1237 return;
1238
1239 // accept this frame and send to upper layer
1240 skb = sp->RxBuff[entry];
1241 if (!skb)
1242 return;
1243
1244 if (jumbo->FoundStart)
1245 IPG_DEV_KFREE_SKB(jumbo->skb);
1246
1247 pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1248 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1249
1250 skb_put(skb, IPG_RXFRAG_SIZE);
1251
1252 jumbo->FoundStart = 1;
1253 jumbo->CurrentSize = IPG_RXFRAG_SIZE;
1254 jumbo->skb = skb;
1255
1256 sp->RxBuff[entry] = NULL;
1257 dev->last_rx = jiffies;
1258}
1259
1260static void ipg_nic_rx_with_end(struct net_device *dev,
1261 struct ipg_nic_private *sp,
1262 struct ipg_rx *rxfd, unsigned entry)
1263{
1264 struct SJumbo *jumbo = &sp->Jumbo;
1265
1266 //1: found error, 0 no error
1267 if (ipg_nic_rx_check_error(dev) == NormalPacket) {
1268 struct sk_buff *skb = sp->RxBuff[entry];
1269
1270 if (!skb)
1271 return;
1272
1273 if (jumbo->FoundStart) {
1274 int framelen, endframelen;
1275
1276 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1277
1278 endframeLen = framelen - jumbo->CurrentSize;
1279 /*
1280 if (framelen > IPG_RXFRAG_SIZE)
1281 framelen=IPG_RXFRAG_SIZE;
1282 */
1283 if (framelen > IPG_RXSUPPORT_SIZE)
1284 IPG_DEV_KFREE_SKB(jumbo->skb);
1285 else {
1286 memcpy(skb_put(jumbo->skb, endframeLen),
1287 skb->data, endframeLen);
1288
1289 jumbo->skb->protocol =
1290 eth_type_trans(jumbo->skb, dev);
1291
1292 jumbo->skb->ip_summed = CHECKSUM_NONE;
1293 netif_rx(jumbo->skb);
1294 }
1295 }
1296
1297 dev->last_rx = jiffies;
1298 jumbo->FoundStart = 0;
1299 jumbo->CurrentSize = 0;
1300 jumbo->skb = NULL;
1301
1302 ipg_nic_rx_free_skb(dev);
1303 } else {
1304 IPG_DEV_KFREE_SKB(jumbo->skb);
1305 jumbo->FoundStart = 0;
1306 jumbo->CurrentSize = 0;
1307 jumbo->skb = NULL;
1308 }
1309}
1310
1311static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1312 struct ipg_nic_private *sp,
1313 struct ipg_rx *rxfd, unsigned entry)
1314{
1315 struct SJumbo *jumbo = &sp->Jumbo;
1316
1317 //1: found error, 0 no error
1318 if (ipg_nic_rx_check_error(dev) == NormalPacket) {
1319 struct sk_buff *skb = sp->RxBuff[entry];
1320
1321 if (skb) {
1322 if (jumbo->FoundStart) {
1323 jumbo->CurrentSize += IPG_RXFRAG_SIZE;
1324 if (jumbo->CurrentSize <= IPG_RXSUPPORT_SIZE) {
1325 memcpy(skb_put(jumbo->skb,
1326 IPG_RXFRAG_SIZE),
1327 skb->data, IPG_RXFRAG_SIZE);
1328 }
1329 }
1330 dev->last_rx = jiffies;
1331 ipg_nic_rx_free_skb(dev);
1332 }
1333 } else {
1334 IPG_DEV_KFREE_SKB(jumbo->skb);
1335 jumbo->FoundStart = 0;
1336 jumbo->CurrentSize = 0;
1337 jumbo->skb = NULL;
1338 }
1339}
1340
1341static int ipg_nic_rx(struct net_device *dev)
1342{
1343 struct ipg_nic_private *sp = netdev_priv(dev);
1344 unsigned int curr = sp->rx_current;
1345 void __iomem *ioaddr = sp->ioaddr;
1346 unsigned int i;
1347
1348 IPG_DEBUG_MSG("_nic_rx\n");
1349
1350 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1351 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1352 struct ipg_rx *rxfd = sp->rxd + entry;
1353
1354 if (!(rxfd->rfs & le64_to_cpu(IPG_RFS_RFDDONE)))
1355 break;
1356
1357 switch (ipg_nic_rx_check_frame_type(dev)) {
1358 case Frame_WithStart_WithEnd:
1359 ipg_nic_rx_with_start_and_end(dev, tp, rxfd, entry);
1360 break;
1361 case Frame_WithStart:
1362 ipg_nic_rx_with_start(dev, tp, rxfd, entry);
1363 break;
1364 case Frame_WithEnd:
1365 ipg_nic_rx_with_end(dev, tp, rxfd, entry);
1366 break;
1367 case Frame_NoStart_NoEnd:
1368 ipg_nic_rx_no_start_no_end(dev, tp, rxfd, entry);
1369 break;
1370 }
1371 }
1372
1373 sp->rx_current = curr;
1374
1375 if (i == IPG_MAXRFDPROCESS_COUNT) {
1376 /* There are more RFDs to process, however the
1377 * allocated amount of RFD processing time has
1378 * expired. Assert Interrupt Requested to make
1379 * sure we come back to process the remaining RFDs.
1380 */
1381 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1382 }
1383
1384 ipg_nic_rxrestore(dev);
1385
1386 return 0;
1387}
1388
1389#else
1390static int ipg_nic_rx(struct net_device *dev)
1391{
1392 /* Transfer received Ethernet frames to higher network layers. */
1393 struct ipg_nic_private *sp = netdev_priv(dev);
1394 unsigned int curr = sp->rx_current;
1395 void __iomem *ioaddr = sp->ioaddr;
1396 struct ipg_rx *rxfd;
1397 unsigned int i;
1398
1399 IPG_DEBUG_MSG("_nic_rx\n");
1400
1401#define __RFS_MASK \
1402 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1403
1404 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1405 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1406 struct sk_buff *skb = sp->RxBuff[entry];
1407 unsigned int framelen;
1408
1409 rxfd = sp->rxd + entry;
1410
1411 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1412 break;
1413
1414 /* Get received frame length. */
1415 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1416
1417 /* Check for jumbo frame arrival with too small
1418 * RXFRAG_SIZE.
1419 */
1420 if (framelen > IPG_RXFRAG_SIZE) {
1421 IPG_DEBUG_MSG
1422 ("RFS FrameLen > allocated fragment size.\n");
1423
1424 framelen = IPG_RXFRAG_SIZE;
1425 }
1426
325a8071 1427 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1202d6ff
FR
1428 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1429 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
325a8071 1430 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1202d6ff
FR
1431
1432 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1433 (unsigned long int) rxfd->rfs);
1434
1435 /* Increment general receive error statistic. */
1436 sp->stats.rx_errors++;
1437
1438 /* Increment detailed receive error statistics. */
325a8071 1439 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1202d6ff
FR
1440 IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1441 sp->stats.rx_fifo_errors++;
1442 }
1443
325a8071 1444 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1202d6ff
FR
1445 IPG_DEBUG_MSG("RX runt occured.\n");
1446 sp->stats.rx_length_errors++;
1447 }
1448
325a8071 1449 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1202d6ff
FR
1450 /* Do nothing, error count handled by a IPG
1451 * statistic register.
1452 */
1453
325a8071 1454 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1202d6ff
FR
1455 IPG_DEBUG_MSG("RX alignment error occured.\n");
1456 sp->stats.rx_frame_errors++;
1457 }
1458
325a8071 1459 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1202d6ff
FR
1460 /* Do nothing, error count handled by a IPG
1461 * statistic register.
1462 */
1463
1464 /* Free the memory associated with the RX
1465 * buffer since it is erroneous and we will
1466 * not pass it to higher layer processes.
1467 */
1468 if (skb) {
325a8071 1469 __le64 info = rxfd->frag_info;
1202d6ff
FR
1470
1471 pci_unmap_single(sp->pdev,
325a8071 1472 le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1202d6ff
FR
1473 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1474
1475 IPG_DEV_KFREE_SKB(skb);
1476 }
1477 } else {
1478
1479 /* Adjust the new buffer length to accomodate the size
1480 * of the received frame.
1481 */
1482 skb_put(skb, framelen);
1483
1484 /* Set the buffer's protocol field to Ethernet. */
1485 skb->protocol = eth_type_trans(skb, dev);
1486
1487 /* If the frame contains an IP/TCP/UDP frame,
1488 * determine if upper layer must check IP/TCP/UDP
1489 * checksums.
1490 *
1491 * NOTE: DO NOT RELY ON THE TCP/UDP CHECKSUM
1492 * VERIFICATION FOR SILICON REVISIONS B3
1493 * AND EARLIER!
1494 *
1495 if ((le64_to_cpu(rxfd->rfs &
1496 (IPG_RFS_TCPDETECTED | IPG_RFS_UDPDETECTED |
1497 IPG_RFS_IPDETECTED))) &&
1498 !(le64_to_cpu(rxfd->rfs &
1499 (IPG_RFS_TCPERROR | IPG_RFS_UDPERROR |
1500 IPG_RFS_IPERROR)))) {
1501 * Indicate IP checksums were performed
1502 * by the IPG.
1503 *
1504 skb->ip_summed = CHECKSUM_UNNECESSARY;
1505 } else
1506 */
1507 {
1508 /* The IPG encountered an error with (or
1509 * there were no) IP/TCP/UDP checksums.
1510 * This may or may not indicate an invalid
1511 * IP/TCP/UDP frame was received. Let the
1512 * upper layer decide.
1513 */
1514 skb->ip_summed = CHECKSUM_NONE;
1515 }
1516
1517 /* Hand off frame for higher layer processing.
1518 * The function netif_rx() releases the sk_buff
1519 * when processing completes.
1520 */
1521 netif_rx(skb);
1522
1523 /* Record frame receive time (jiffies = Linux
1524 * kernel current time stamp).
1525 */
1526 dev->last_rx = jiffies;
1527 }
1528
1529 /* Assure RX buffer is not reused by IPG. */
1530 sp->RxBuff[entry] = NULL;
1531 }
1532
1533 /*
1534 * If there are more RFDs to proces and the allocated amount of RFD
1535 * processing time has expired, assert Interrupt Requested to make
1536 * sure we come back to process the remaining RFDs.
1537 */
1538 if (i == IPG_MAXRFDPROCESS_COUNT)
1539 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1540
1541#ifdef IPG_DEBUG
1542 /* Check if the RFD list contained no receive frame data. */
1543 if (!i)
1544 sp->EmptyRFDListCount++;
1545#endif
325a8071
AV
1546 while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1547 !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1548 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1202d6ff
FR
1549 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1550
1551 rxfd = sp->rxd + entry;
1552
1553 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
1554
1555 /* An unexpected event, additional code needed to handle
1556 * properly. So for the time being, just disregard the
1557 * frame.
1558 */
1559
1560 /* Free the memory associated with the RX
1561 * buffer since it is erroneous and we will
1562 * not pass it to higher layer processes.
1563 */
1564 if (sp->RxBuff[entry]) {
1565 pci_unmap_single(sp->pdev,
325a8071 1566 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1202d6ff
FR
1567 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1568 IPG_DEV_KFREE_SKB(sp->RxBuff[entry]);
1569 }
1570
1571 /* Assure RX buffer is not reused by IPG. */
1572 sp->RxBuff[entry] = NULL;
1573 }
1574
1575 sp->rx_current = curr;
1576
1577 /* Check to see if there are a minimum number of used
1578 * RFDs before restoring any (should improve performance.)
1579 */
1580 if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1581 ipg_nic_rxrestore(dev);
1582
1583 return 0;
1584}
1585#endif
1586
1587static void ipg_reset_after_host_error(struct work_struct *work)
1588{
1589 struct ipg_nic_private *sp =
1590 container_of(work, struct ipg_nic_private, task.work);
1591 struct net_device *dev = sp->dev;
1592
1593 IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL));
1594
1595 /*
1596 * Acknowledge HostError interrupt by resetting
1597 * IPG DMA and HOST.
1598 */
1599 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1600
1601 init_rfdlist(dev);
1602 init_tfdlist(dev);
1603
1604 if (ipg_io_config(dev) < 0) {
1605 printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
1606 dev->name);
1607 schedule_delayed_work(&sp->task, HZ);
1608 }
1609}
1610
1611static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1612{
1613 struct net_device *dev = dev_inst;
1614 struct ipg_nic_private *sp = netdev_priv(dev);
1615 void __iomem *ioaddr = sp->ioaddr;
1616 unsigned int handled = 0;
1617 u16 status;
1618
1619 IPG_DEBUG_MSG("_interrupt_handler\n");
1620
1621#ifdef JUMBO_FRAME
1622 ipg_nic_rxrestore(dev);
1623#endif
227bc24d
FR
1624 spin_lock(&sp->lock);
1625
1202d6ff
FR
1626 /* Get interrupt source information, and acknowledge
1627 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1628 * IntRequested, MacControlFrame, LinkEvent) interrupts
1629 * if issued. Also, all IPG interrupts are disabled by
1630 * reading IntStatusAck.
1631 */
1632 status = ipg_r16(INT_STATUS_ACK);
1633
1634 IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);
1635
1636 /* Shared IRQ of remove event. */
1637 if (!(status & IPG_IS_RSVD_MASK))
1638 goto out_enable;
1639
1640 handled = 1;
1641
1642 if (unlikely(!netif_running(dev)))
227bc24d 1643 goto out_unlock;
1202d6ff
FR
1644
1645 /* If RFDListEnd interrupt, restore all used RFDs. */
1646 if (status & IPG_IS_RFD_LIST_END) {
1647 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
1648
1649 /* The RFD list end indicates an RFD was encountered
1650 * with a 0 NextPtr, or with an RFDDone bit set to 1
1651 * (indicating the RFD is not read for use by the
1652 * IPG.) Try to restore all RFDs.
1653 */
1654 ipg_nic_rxrestore(dev);
1655
1656#ifdef IPG_DEBUG
1657 /* Increment the RFDlistendCount counter. */
1658 sp->RFDlistendCount++;
1659#endif
1660 }
1661
1662 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1663 * IntRequested interrupt, process received frames. */
1664 if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1665 (status & IPG_IS_RFD_LIST_END) ||
1666 (status & IPG_IS_RX_DMA_COMPLETE) ||
1667 (status & IPG_IS_INT_REQUESTED)) {
1668#ifdef IPG_DEBUG
1669 /* Increment the RFD list checked counter if interrupted
1670 * only to check the RFD list. */
1671 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1672 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1673 (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1674 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1675 IPG_IS_UPDATE_STATS)))
1676 sp->RFDListCheckedCount++;
1677#endif
1678
1679 ipg_nic_rx(dev);
1680 }
1681
1682 /* If TxDMAComplete interrupt, free used TFDs. */
1683 if (status & IPG_IS_TX_DMA_COMPLETE)
1684 ipg_nic_txfree(dev);
1685
1686 /* TxComplete interrupts indicate one of numerous actions.
1687 * Determine what action to take based on TXSTATUS register.
1688 */
1689 if (status & IPG_IS_TX_COMPLETE)
1690 ipg_nic_txcleanup(dev);
1691
1692 /* If UpdateStats interrupt, update Linux Ethernet statistics */
1693 if (status & IPG_IS_UPDATE_STATS)
1694 ipg_nic_get_stats(dev);
1695
1696 /* If HostError interrupt, reset IPG. */
1697 if (status & IPG_IS_HOST_ERROR) {
1698 IPG_DDEBUG_MSG("HostError Interrupt\n");
1699
1700 schedule_delayed_work(&sp->task, 0);
1701 }
1702
1703 /* If LinkEvent interrupt, resolve autonegotiation. */
1704 if (status & IPG_IS_LINK_EVENT) {
1705 if (ipg_config_autoneg(dev) < 0)
1706 printk(KERN_INFO "%s: Auto-negotiation error.\n",
1707 dev->name);
1708 }
1709
1710 /* If MACCtrlFrame interrupt, do nothing. */
1711 if (status & IPG_IS_MAC_CTRL_FRAME)
1712 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
1713
1714 /* If RxComplete interrupt, do nothing. */
1715 if (status & IPG_IS_RX_COMPLETE)
1716 IPG_DEBUG_MSG("RxComplete interrupt.\n");
1717
1718 /* If RxEarly interrupt, do nothing. */
1719 if (status & IPG_IS_RX_EARLY)
1720 IPG_DEBUG_MSG("RxEarly interrupt.\n");
1721
1722out_enable:
1723 /* Re-enable IPG interrupts. */
1724 ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1725 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1726 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
227bc24d 1727out_unlock:
1202d6ff 1728 spin_unlock(&sp->lock);
227bc24d 1729
1202d6ff
FR
1730 return IRQ_RETVAL(handled);
1731}
1732
1733static void ipg_rx_clear(struct ipg_nic_private *sp)
1734{
1735 unsigned int i;
1736
1737 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1738 if (sp->RxBuff[i]) {
1739 struct ipg_rx *rxfd = sp->rxd + i;
1740
1741 IPG_DEV_KFREE_SKB(sp->RxBuff[i]);
1742 sp->RxBuff[i] = NULL;
1743 pci_unmap_single(sp->pdev,
325a8071 1744 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1202d6ff
FR
1745 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1746 }
1747 }
1748}
1749
1750static void ipg_tx_clear(struct ipg_nic_private *sp)
1751{
1752 unsigned int i;
1753
1754 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1755 if (sp->TxBuff[i]) {
1756 struct ipg_tx *txfd = sp->txd + i;
1757
1758 pci_unmap_single(sp->pdev,
325a8071 1759 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1202d6ff
FR
1760 sp->TxBuff[i]->len, PCI_DMA_TODEVICE);
1761
1762 IPG_DEV_KFREE_SKB(sp->TxBuff[i]);
1763
1764 sp->TxBuff[i] = NULL;
1765 }
1766 }
1767}
1768
1769static int ipg_nic_open(struct net_device *dev)
1770{
1771 struct ipg_nic_private *sp = netdev_priv(dev);
1772 void __iomem *ioaddr = sp->ioaddr;
1773 struct pci_dev *pdev = sp->pdev;
1774 int rc;
1775
1776 IPG_DEBUG_MSG("_nic_open\n");
1777
1778 sp->rx_buf_sz = IPG_RXSUPPORT_SIZE;
1779
1780 /* Check for interrupt line conflicts, and request interrupt
1781 * line for IPG.
1782 *
1783 * IMPORTANT: Disable IPG interrupts prior to registering
1784 * IRQ.
1785 */
1786 ipg_w16(0x0000, INT_ENABLE);
1787
1788 /* Register the interrupt line to be used by the IPG within
1789 * the Linux system.
1790 */
1791 rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED,
1792 dev->name, dev);
1793 if (rc < 0) {
1794 printk(KERN_INFO "%s: Error when requesting interrupt.\n",
1795 dev->name);
1796 goto out;
1797 }
1798
1799 dev->irq = pdev->irq;
1800
1801 rc = -ENOMEM;
1802
1803 sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1804 &sp->rxd_map, GFP_KERNEL);
1805 if (!sp->rxd)
1806 goto err_free_irq_0;
1807
1808 sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1809 &sp->txd_map, GFP_KERNEL);
1810 if (!sp->txd)
1811 goto err_free_rx_1;
1812
1813 rc = init_rfdlist(dev);
1814 if (rc < 0) {
1815 printk(KERN_INFO "%s: Error during configuration.\n",
1816 dev->name);
1817 goto err_free_tx_2;
1818 }
1819
1820 init_tfdlist(dev);
1821
1822 rc = ipg_io_config(dev);
1823 if (rc < 0) {
1824 printk(KERN_INFO "%s: Error during configuration.\n",
1825 dev->name);
1826 goto err_release_tfdlist_3;
1827 }
1828
1829 /* Resolve autonegotiation. */
1830 if (ipg_config_autoneg(dev) < 0)
1831 printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
1832
1833#ifdef JUMBO_FRAME
1834 /* initialize JUMBO Frame control variable */
1835 sp->Jumbo.FoundStart = 0;
1836 sp->Jumbo.CurrentSize = 0;
1837 sp->Jumbo.skb = 0;
1838 dev->mtu = IPG_TXFRAG_SIZE;
1839#endif
1840
1841 /* Enable transmit and receive operation of the IPG. */
1842 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1843 IPG_MC_RSVD_MASK, MAC_CTRL);
1844
1845 netif_start_queue(dev);
1846out:
1847 return rc;
1848
1849err_release_tfdlist_3:
1850 ipg_tx_clear(sp);
1851 ipg_rx_clear(sp);
1852err_free_tx_2:
1853 dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1854err_free_rx_1:
1855 dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1856err_free_irq_0:
1857 free_irq(pdev->irq, dev);
1858 goto out;
1859}
1860
1861static int ipg_nic_stop(struct net_device *dev)
1862{
1863 struct ipg_nic_private *sp = netdev_priv(dev);
1864 void __iomem *ioaddr = sp->ioaddr;
1865 struct pci_dev *pdev = sp->pdev;
1866
1867 IPG_DEBUG_MSG("_nic_stop\n");
1868
1869 netif_stop_queue(dev);
1870
1871 IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount);
1872 IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount);
1873 IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount);
1874 IPG_DUMPTFDLIST(dev);
1875
1876 do {
1877 (void) ipg_r16(INT_STATUS_ACK);
1878
1879 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1880
1881 synchronize_irq(pdev->irq);
1882 } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1883
1884 ipg_rx_clear(sp);
1885
1886 ipg_tx_clear(sp);
1887
1888 pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1889 pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1890
1891 free_irq(pdev->irq, dev);
1892
1893 return 0;
1894}
1895
1896static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1897{
1898 struct ipg_nic_private *sp = netdev_priv(dev);
1899 void __iomem *ioaddr = sp->ioaddr;
1900 unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1901 unsigned long flags;
1902 struct ipg_tx *txfd;
1903
1904 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1905
1906 /* If in 10Mbps mode, stop the transmit queue so
1907 * no more transmit frames are accepted.
1908 */
1909 if (sp->tenmbpsmode)
1910 netif_stop_queue(dev);
1911
1912 if (sp->ResetCurrentTFD) {
1913 sp->ResetCurrentTFD = 0;
1914 entry = 0;
1915 }
1916
1917 txfd = sp->txd + entry;
1918
1919 sp->TxBuff[entry] = skb;
1920
1921 /* Clear all TFC fields, except TFDDONE. */
1922 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1923
1924 /* Specify the TFC field within the TFD. */
1925 txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1926 (IPG_TFC_FRAMEID & cpu_to_le64(sp->tx_current)) |
1927 (IPG_TFC_FRAGCOUNT & (1 << 24)));
1928
1929 /* Request TxComplete interrupts at an interval defined
1930 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1931 * Request TxComplete interrupt for every frame
1932 * if in 10Mbps mode to accomodate problem with 10Mbps
1933 * processing.
1934 */
1935 if (sp->tenmbpsmode)
1936 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
47cccd7d 1937 txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1202d6ff
FR
1938 /* Based on compilation option, determine if FCS is to be
1939 * appended to transmit frame by IPG.
1940 */
1941 if (!(IPG_APPEND_FCS_ON_TX))
1942 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1943
1944 /* Based on compilation option, determine if IP, TCP and/or
1945 * UDP checksums are to be added to transmit frame by IPG.
1946 */
1947 if (IPG_ADD_IPCHECKSUM_ON_TX)
1948 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1949
1950 if (IPG_ADD_TCPCHECKSUM_ON_TX)
1951 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1952
1953 if (IPG_ADD_UDPCHECKSUM_ON_TX)
1954 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1955
1956 /* Based on compilation option, determine if VLAN tag info is to be
1957 * inserted into transmit frame by IPG.
1958 */
1959 if (IPG_INSERT_MANUAL_VLAN_TAG) {
1960 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1961 ((u64) IPG_MANUAL_VLAN_VID << 32) |
1962 ((u64) IPG_MANUAL_VLAN_CFI << 44) |
1963 ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1964 }
1965
1966 /* The fragment start location within system memory is defined
1967 * by the sk_buff structure's data field. The physical address
1968 * of this location within the system's virtual memory space
1969 * is determined using the IPG_HOST2BUS_MAP function.
1970 */
1971 txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1972 skb->len, PCI_DMA_TODEVICE));
1973
1974 /* The length of the fragment within system memory is defined by
1975 * the sk_buff structure's len field.
1976 */
1977 txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1978 ((u64) (skb->len & 0xffff) << 48));
1979
1980 /* Clear the TFDDone bit last to indicate the TFD is ready
1981 * for transfer to the IPG.
1982 */
1983 txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1984
1985 spin_lock_irqsave(&sp->lock, flags);
1986
1987 sp->tx_current++;
1988
1989 mmiowb();
1990
1991 ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1992
1993 if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
dafdec74 1994 netif_stop_queue(dev);
1202d6ff
FR
1995
1996 spin_unlock_irqrestore(&sp->lock, flags);
1997
1998 return NETDEV_TX_OK;
1999}
2000
2001static void ipg_set_phy_default_param(unsigned char rev,
2002 struct net_device *dev, int phy_address)
2003{
2004 unsigned short length;
2005 unsigned char revision;
2006 unsigned short *phy_param;
2007 unsigned short address, value;
2008
2009 phy_param = &DefaultPhyParam[0];
2010 length = *phy_param & 0x00FF;
2011 revision = (unsigned char)((*phy_param) >> 8);
2012 phy_param++;
2013 while (length != 0) {
2014 if (rev == revision) {
2015 while (length > 1) {
2016 address = *phy_param;
2017 value = *(phy_param + 1);
2018 phy_param += 2;
2019 mdio_write(dev, phy_address, address, value);
2020 length -= 4;
2021 }
2022 break;
2023 } else {
2024 phy_param += length / 2;
2025 length = *phy_param & 0x00FF;
2026 revision = (unsigned char)((*phy_param) >> 8);
2027 phy_param++;
2028 }
2029 }
2030}
2031
2032/* JES20040127EEPROM */
2033static int read_eeprom(struct net_device *dev, int eep_addr)
2034{
2035 void __iomem *ioaddr = ipg_ioaddr(dev);
2036 unsigned int i;
2037 int ret = 0;
2038 u16 value;
2039
2040 value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
2041 ipg_w16(value, EEPROM_CTRL);
2042
2043 for (i = 0; i < 1000; i++) {
2044 u16 data;
2045
2046 mdelay(10);
2047 data = ipg_r16(EEPROM_CTRL);
2048 if (!(data & IPG_EC_EEPROM_BUSY)) {
2049 ret = ipg_r16(EEPROM_DATA);
2050 break;
2051 }
2052 }
2053 return ret;
2054}
2055
2056static void ipg_init_mii(struct net_device *dev)
2057{
2058 struct ipg_nic_private *sp = netdev_priv(dev);
2059 struct mii_if_info *mii_if = &sp->mii_if;
2060 int phyaddr;
2061
2062 mii_if->dev = dev;
2063 mii_if->mdio_read = mdio_read;
2064 mii_if->mdio_write = mdio_write;
2065 mii_if->phy_id_mask = 0x1f;
2066 mii_if->reg_num_mask = 0x1f;
2067
2068 mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2069
2070 if (phyaddr != 0x1f) {
2071 u16 mii_phyctrl, mii_1000cr;
2072 u8 revisionid = 0;
2073
2074 mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000);
2075 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2076 GMII_PHY_1000BASETCONTROL_PreferMaster;
2077 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2078
2079 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2080
2081 /* Set default phyparam */
2082 pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
2083 ipg_set_phy_default_param(revisionid, dev, phyaddr);
2084
2085 /* Reset PHY */
2086 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2087 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2088
2089 }
2090}
2091
2092static int ipg_hw_init(struct net_device *dev)
2093{
2094 struct ipg_nic_private *sp = netdev_priv(dev);
2095 void __iomem *ioaddr = sp->ioaddr;
2096 unsigned int i;
2097 int rc;
2098
2099 /* Read/Write and Reset EEPROM Value Jesse20040128EEPROM_VALUE */
2100 /* Read LED Mode Configuration from EEPROM */
2101 sp->LED_Mode = read_eeprom(dev, 6);
2102
2103 /* Reset all functions within the IPG. Do not assert
2104 * RST_OUT as not compatible with some PHYs.
2105 */
2106 rc = ipg_reset(dev, IPG_RESET_MASK);
2107 if (rc < 0)
2108 goto out;
2109
2110 ipg_init_mii(dev);
2111
2112 /* Read MAC Address from EEPROM */
2113 for (i = 0; i < 3; i++)
2114 sp->station_addr[i] = read_eeprom(dev, 16 + i);
2115
2116 for (i = 0; i < 3; i++)
2117 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2118
2119 /* Set station address in ethernet_device structure. */
2120 dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2121 dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2122 dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2123 dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2124 dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2125 dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2126out:
2127 return rc;
2128}
2129
2130static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2131{
2132 struct ipg_nic_private *sp = netdev_priv(dev);
2133 int rc;
2134
2135 mutex_lock(&sp->mii_mutex);
2136 rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2137 mutex_unlock(&sp->mii_mutex);
2138
2139 return rc;
2140}
2141
2142static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2143{
2144 /* Function to accomodate changes to Maximum Transfer Unit
2145 * (or MTU) of IPG NIC. Cannot use default function since
2146 * the default will not allow for MTU > 1500 bytes.
2147 */
2148
2149 IPG_DEBUG_MSG("_nic_change_mtu\n");
2150
2151 /* Check that the new MTU value is between 68 (14 byte header, 46
2152 * byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which
2153 * corresponds to the MAXFRAMESIZE register in the IPG.
2154 */
2155 if ((new_mtu < 68) || (new_mtu > IPG_MAX_RXFRAME_SIZE))
2156 return -EINVAL;
2157
2158 dev->mtu = new_mtu;
2159
2160 return 0;
2161}
2162
2163static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2164{
2165 struct ipg_nic_private *sp = netdev_priv(dev);
2166 int rc;
2167
2168 mutex_lock(&sp->mii_mutex);
2169 rc = mii_ethtool_gset(&sp->mii_if, cmd);
2170 mutex_unlock(&sp->mii_mutex);
2171
2172 return rc;
2173}
2174
2175static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2176{
2177 struct ipg_nic_private *sp = netdev_priv(dev);
2178 int rc;
2179
2180 mutex_lock(&sp->mii_mutex);
2181 rc = mii_ethtool_sset(&sp->mii_if, cmd);
2182 mutex_unlock(&sp->mii_mutex);
2183
2184 return rc;
2185}
2186
2187static int ipg_nway_reset(struct net_device *dev)
2188{
2189 struct ipg_nic_private *sp = netdev_priv(dev);
2190 int rc;
2191
2192 mutex_lock(&sp->mii_mutex);
2193 rc = mii_nway_restart(&sp->mii_if);
2194 mutex_unlock(&sp->mii_mutex);
2195
2196 return rc;
2197}
2198
2199static struct ethtool_ops ipg_ethtool_ops = {
2200 .get_settings = ipg_get_settings,
2201 .set_settings = ipg_set_settings,
2202 .nway_reset = ipg_nway_reset,
2203};
2204
2205static void ipg_remove(struct pci_dev *pdev)
2206{
2207 struct net_device *dev = pci_get_drvdata(pdev);
2208 struct ipg_nic_private *sp = netdev_priv(dev);
2209
2210 IPG_DEBUG_MSG("_remove\n");
2211
2212 /* Un-register Ethernet device. */
2213 unregister_netdev(dev);
2214
2215 pci_iounmap(pdev, sp->ioaddr);
2216
2217 pci_release_regions(pdev);
2218
2219 free_netdev(dev);
2220 pci_disable_device(pdev);
2221 pci_set_drvdata(pdev, NULL);
2222}
2223
2224static int __devinit ipg_probe(struct pci_dev *pdev,
2225 const struct pci_device_id *id)
2226{
2227 unsigned int i = id->driver_data;
2228 struct ipg_nic_private *sp;
2229 struct net_device *dev;
2230 void __iomem *ioaddr;
2231 int rc;
2232
2233 rc = pci_enable_device(pdev);
2234 if (rc < 0)
2235 goto out;
2236
2237 printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2238
2239 pci_set_master(pdev);
2240
2241 rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK);
2242 if (rc < 0) {
2243 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2244 if (rc < 0) {
2245 printk(KERN_ERR "%s: DMA config failed.\n",
2246 pci_name(pdev));
2247 goto err_disable_0;
2248 }
2249 }
2250
2251 /*
2252 * Initialize net device.
2253 */
2254 dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2255 if (!dev) {
2256 printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
2257 rc = -ENOMEM;
2258 goto err_disable_0;
2259 }
2260
2261 sp = netdev_priv(dev);
2262 spin_lock_init(&sp->lock);
2263 mutex_init(&sp->mii_mutex);
2264
2265 /* Declare IPG NIC functions for Ethernet device methods.
2266 */
2267 dev->open = &ipg_nic_open;
2268 dev->stop = &ipg_nic_stop;
2269 dev->hard_start_xmit = &ipg_nic_hard_start_xmit;
2270 dev->get_stats = &ipg_nic_get_stats;
2271 dev->set_multicast_list = &ipg_nic_set_multicast_list;
2272 dev->do_ioctl = ipg_ioctl;
2273 dev->tx_timeout = ipg_tx_timeout;
2274 dev->change_mtu = &ipg_nic_change_mtu;
2275
2276 SET_NETDEV_DEV(dev, &pdev->dev);
2277 SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2278
2279 rc = pci_request_regions(pdev, DRV_NAME);
2280 if (rc)
2281 goto err_free_dev_1;
2282
2283 ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2284 if (!ioaddr) {
2285 printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
2286 rc = -EIO;
2287 goto err_release_regions_2;
2288 }
2289
2290 /* Save the pointer to the PCI device information. */
2291 sp->ioaddr = ioaddr;
2292 sp->pdev = pdev;
2293 sp->dev = dev;
2294
2295 INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2296
2297 pci_set_drvdata(pdev, dev);
2298
2299 rc = ipg_hw_init(dev);
2300 if (rc < 0)
2301 goto err_unmap_3;
2302
2303 rc = register_netdev(dev);
2304 if (rc < 0)
2305 goto err_unmap_3;
2306
2307 printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
2308out:
2309 return rc;
2310
2311err_unmap_3:
2312 pci_iounmap(pdev, ioaddr);
2313err_release_regions_2:
2314 pci_release_regions(pdev);
2315err_free_dev_1:
2316 free_netdev(dev);
2317err_disable_0:
2318 pci_disable_device(pdev);
2319 goto out;
2320}
2321
2322static struct pci_driver ipg_pci_driver = {
2323 .name = IPG_DRIVER_NAME,
2324 .id_table = ipg_pci_tbl,
2325 .probe = ipg_probe,
2326 .remove = __devexit_p(ipg_remove),
2327};
2328
2329static int __init ipg_init_module(void)
2330{
2331 return pci_register_driver(&ipg_pci_driver);
2332}
2333
2334static void __exit ipg_exit_module(void)
2335{
2336 pci_unregister_driver(&ipg_pci_driver);
2337}
2338
2339module_init(ipg_init_module);
2340module_exit(ipg_exit_module);