]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/fec.c
m68knommu: fix ColdFire 5272 fec driver hash registers
[net-next-2.6.git] / drivers / net / fec.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
10 *
7dd6a2aa 11 * Right now, I am very wasteful with the buffers. I allocate memory
1da177e4
LT
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets.
17 *
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
20 *
562d2f8c
GU
21 * Support for FEC controller of ColdFire processors.
22 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
7dd6a2aa
GU
23 *
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
677177c5 25 * Copyright (c) 2004-2006 Macq Electronique SA.
1da177e4
LT
26 */
27
1da177e4
LT
28#include <linux/module.h>
29#include <linux/kernel.h>
30#include <linux/string.h>
31#include <linux/ptrace.h>
32#include <linux/errno.h>
33#include <linux/ioport.h>
34#include <linux/slab.h>
35#include <linux/interrupt.h>
36#include <linux/pci.h>
37#include <linux/init.h>
38#include <linux/delay.h>
39#include <linux/netdevice.h>
40#include <linux/etherdevice.h>
41#include <linux/skbuff.h>
42#include <linux/spinlock.h>
43#include <linux/workqueue.h>
44#include <linux/bitops.h>
45
46#include <asm/irq.h>
47#include <asm/uaccess.h>
48#include <asm/io.h>
49#include <asm/pgtable.h>
080853af 50#include <asm/cacheflush.h>
1da177e4 51
7dd6a2aa 52#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
562d2f8c 53 defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
6b265293 54 defined(CONFIG_M520x) || defined(CONFIG_M532x)
1da177e4
LT
55#include <asm/coldfire.h>
56#include <asm/mcfsim.h>
57#include "fec.h"
58#else
59#include <asm/8xx_immap.h>
60#include <asm/mpc8xx.h>
61#include "commproc.h"
62#endif
63
64#if defined(CONFIG_FEC2)
65#define FEC_MAX_PORTS 2
66#else
67#define FEC_MAX_PORTS 1
68#endif
69
70/*
71 * Define the fixed address of the FEC hardware.
72 */
73static unsigned int fec_hw[] = {
74#if defined(CONFIG_M5272)
75 (MCF_MBAR + 0x840),
76#elif defined(CONFIG_M527x)
77 (MCF_MBAR + 0x1000),
78 (MCF_MBAR + 0x1800),
7dd6a2aa 79#elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
1da177e4 80 (MCF_MBAR + 0x1000),
562d2f8c
GU
81#elif defined(CONFIG_M520x)
82 (MCF_MBAR+0x30000),
6b265293
MW
83#elif defined(CONFIG_M532x)
84 (MCF_MBAR+0xfc030000),
1da177e4
LT
85#else
86 &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
87#endif
88};
89
90static unsigned char fec_mac_default[] = {
91 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
92};
93
94/*
95 * Some hardware gets it MAC address out of local flash memory.
96 * if this is non-zero then assume it is the address to get MAC from.
97 */
98#if defined(CONFIG_NETtel)
99#define FEC_FLASHMAC 0xf0006006
100#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
101#define FEC_FLASHMAC 0xf0006000
1da177e4
LT
102#elif defined(CONFIG_CANCam)
103#define FEC_FLASHMAC 0xf0020000
7dd6a2aa
GU
104#elif defined (CONFIG_M5272C3)
105#define FEC_FLASHMAC (0xffe04000 + 4)
106#elif defined(CONFIG_MOD5272)
107#define FEC_FLASHMAC 0xffc0406b
1da177e4
LT
108#else
109#define FEC_FLASHMAC 0
110#endif
111
1da177e4
LT
112/* Forward declarations of some structures to support different PHYs
113*/
114
115typedef struct {
116 uint mii_data;
117 void (*funct)(uint mii_reg, struct net_device *dev);
118} phy_cmd_t;
119
120typedef struct {
121 uint id;
122 char *name;
123
124 const phy_cmd_t *config;
125 const phy_cmd_t *startup;
126 const phy_cmd_t *ack_int;
127 const phy_cmd_t *shutdown;
128} phy_info_t;
129
130/* The number of Tx and Rx buffers. These are allocated from the page
131 * pool. The code may assume these are power of two, so it it best
132 * to keep them that size.
133 * We don't need to allocate pages for the transmitter. We just use
134 * the skbuffer directly.
135 */
136#define FEC_ENET_RX_PAGES 8
137#define FEC_ENET_RX_FRSIZE 2048
138#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
139#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
140#define FEC_ENET_TX_FRSIZE 2048
141#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
142#define TX_RING_SIZE 16 /* Must be power of two */
143#define TX_RING_MOD_MASK 15 /* for this to work */
144
562d2f8c 145#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
6b265293 146#error "FEC: descriptor ring size constants too large"
562d2f8c
GU
147#endif
148
1da177e4
LT
149/* Interrupt events/masks.
150*/
151#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
152#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
153#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
154#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
155#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
156#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
157#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
158#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
159#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
160#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
161
162/* The FEC stores dest/src/type, data, and checksum for receive packets.
163 */
164#define PKT_MAXBUF_SIZE 1518
165#define PKT_MINBUF_SIZE 64
166#define PKT_MAXBLR_SIZE 1520
167
168
169/*
6b265293 170 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
1da177e4
LT
171 * size bits. Other FEC hardware does not, so we need to take that into
172 * account when setting it.
173 */
562d2f8c 174#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
6b265293 175 defined(CONFIG_M520x) || defined(CONFIG_M532x)
1da177e4
LT
176#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
177#else
178#define OPT_FRAME_SIZE 0
179#endif
180
181/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
182 * tx_bd_base always point to the base of the buffer descriptors. The
183 * cur_rx and cur_tx point to the currently available buffer.
184 * The dirty_tx tracks the current buffer that is being sent by the
185 * controller. The cur_tx and dirty_tx are equal under both completely
186 * empty and completely full conditions. The empty/ready indicator in
187 * the buffer descriptor determines the actual condition.
188 */
189struct fec_enet_private {
190 /* Hardware registers of the FEC device */
191 volatile fec_t *hwp;
192
cb84d6e7
GU
193 struct net_device *netdev;
194
1da177e4
LT
195 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
196 unsigned char *tx_bounce[TX_RING_SIZE];
197 struct sk_buff* tx_skbuff[TX_RING_SIZE];
198 ushort skb_cur;
199 ushort skb_dirty;
200
201 /* CPM dual port RAM relative addresses.
202 */
203 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
204 cbd_t *tx_bd_base;
205 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
206 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
1da177e4
LT
207 uint tx_full;
208 spinlock_t lock;
209
210 uint phy_id;
211 uint phy_id_done;
212 uint phy_status;
213 uint phy_speed;
7dd6a2aa 214 phy_info_t const *phy;
1da177e4
LT
215 struct work_struct phy_task;
216
217 uint sequence_done;
218 uint mii_phy_task_queued;
219
220 uint phy_addr;
221
222 int index;
223 int opened;
224 int link;
225 int old_link;
226 int full_duplex;
1da177e4
LT
227};
228
229static int fec_enet_open(struct net_device *dev);
230static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
231static void fec_enet_mii(struct net_device *dev);
7d12e780 232static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
1da177e4
LT
233static void fec_enet_tx(struct net_device *dev);
234static void fec_enet_rx(struct net_device *dev);
235static int fec_enet_close(struct net_device *dev);
1da177e4
LT
236static void set_multicast_list(struct net_device *dev);
237static void fec_restart(struct net_device *dev, int duplex);
238static void fec_stop(struct net_device *dev);
239static void fec_set_mac_address(struct net_device *dev);
240
241
242/* MII processing. We keep this as simple as possible. Requests are
243 * placed on the list (if there is room). When the request is finished
244 * by the MII, an optional function may be called.
245 */
246typedef struct mii_list {
247 uint mii_regval;
248 void (*mii_func)(uint val, struct net_device *dev);
249 struct mii_list *mii_next;
250} mii_list_t;
251
252#define NMII 20
7dd6a2aa
GU
253static mii_list_t mii_cmds[NMII];
254static mii_list_t *mii_free;
255static mii_list_t *mii_head;
256static mii_list_t *mii_tail;
1da177e4 257
6aa20a22 258static int mii_queue(struct net_device *dev, int request,
1da177e4
LT
259 void (*func)(uint, struct net_device *));
260
261/* Make MII read/write commands for the FEC.
262*/
263#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
264#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
265 (VAL & 0xffff))
266#define mk_mii_end 0
267
268/* Transmitter timeout.
269*/
270#define TX_TIMEOUT (2*HZ)
271
272/* Register definitions for the PHY.
273*/
274
275#define MII_REG_CR 0 /* Control Register */
276#define MII_REG_SR 1 /* Status Register */
277#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
278#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
6aa20a22 279#define MII_REG_ANAR 4 /* A-N Advertisement Register */
1da177e4
LT
280#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
281#define MII_REG_ANER 6 /* A-N Expansion Register */
282#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
283#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
284
285/* values for phy_status */
286
287#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
288#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
289#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
290#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
6aa20a22 291#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
1da177e4 292#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
6aa20a22 293#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
1da177e4
LT
294
295#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
296#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
297#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
298#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
299#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
6aa20a22 300#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
1da177e4 301#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
6aa20a22 302#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
1da177e4
LT
303
304
305static int
306fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
307{
308 struct fec_enet_private *fep;
309 volatile fec_t *fecp;
310 volatile cbd_t *bdp;
0e702ab3 311 unsigned short status;
1da177e4
LT
312
313 fep = netdev_priv(dev);
314 fecp = (volatile fec_t*)dev->base_addr;
315
316 if (!fep->link) {
317 /* Link is down or autonegotiation is in progress. */
318 return 1;
319 }
320
321 /* Fill in a Tx ring entry */
322 bdp = fep->cur_tx;
323
0e702ab3 324 status = bdp->cbd_sc;
1da177e4 325#ifndef final_version
0e702ab3 326 if (status & BD_ENET_TX_READY) {
1da177e4
LT
327 /* Ooops. All transmit buffers are full. Bail out.
328 * This should not happen, since dev->tbusy should be set.
329 */
330 printk("%s: tx queue full!.\n", dev->name);
331 return 1;
332 }
333#endif
334
335 /* Clear all of the status flags.
336 */
0e702ab3 337 status &= ~BD_ENET_TX_STATS;
1da177e4
LT
338
339 /* Set buffer length and buffer pointer.
340 */
341 bdp->cbd_bufaddr = __pa(skb->data);
342 bdp->cbd_datlen = skb->len;
343
344 /*
345 * On some FEC implementations data must be aligned on
346 * 4-byte boundaries. Use bounce buffers to copy data
347 * and get it aligned. Ugh.
348 */
349 if (bdp->cbd_bufaddr & 0x3) {
350 unsigned int index;
351 index = bdp - fep->tx_bd_base;
352 memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
353 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
354 }
355
356 /* Save skb pointer.
357 */
358 fep->tx_skbuff[fep->skb_cur] = skb;
359
09f75cd7 360 dev->stats.tx_bytes += skb->len;
1da177e4 361 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
6aa20a22 362
1da177e4
LT
363 /* Push the data cache so the CPM does not get stale memory
364 * data.
365 */
366 flush_dcache_range((unsigned long)skb->data,
367 (unsigned long)skb->data + skb->len);
368
369 spin_lock_irq(&fep->lock);
370
0e702ab3
GU
371 /* Send it on its way. Tell FEC it's ready, interrupt when done,
372 * it's the last BD of the frame, and to put the CRC on the end.
1da177e4
LT
373 */
374
0e702ab3 375 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
1da177e4 376 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
0e702ab3 377 bdp->cbd_sc = status;
1da177e4
LT
378
379 dev->trans_start = jiffies;
380
381 /* Trigger transmission start */
0e702ab3 382 fecp->fec_x_des_active = 0;
1da177e4
LT
383
384 /* If this was the last BD in the ring, start at the beginning again.
385 */
0e702ab3 386 if (status & BD_ENET_TX_WRAP) {
1da177e4
LT
387 bdp = fep->tx_bd_base;
388 } else {
389 bdp++;
390 }
391
392 if (bdp == fep->dirty_tx) {
393 fep->tx_full = 1;
394 netif_stop_queue(dev);
395 }
396
397 fep->cur_tx = (cbd_t *)bdp;
398
399 spin_unlock_irq(&fep->lock);
400
401 return 0;
402}
403
404static void
405fec_timeout(struct net_device *dev)
406{
407 struct fec_enet_private *fep = netdev_priv(dev);
408
409 printk("%s: transmit timed out.\n", dev->name);
09f75cd7 410 dev->stats.tx_errors++;
1da177e4
LT
411#ifndef final_version
412 {
413 int i;
414 cbd_t *bdp;
415
416 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
417 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
418 (unsigned long)fep->dirty_tx,
419 (unsigned long)fep->cur_rx);
420
421 bdp = fep->tx_bd_base;
422 printk(" tx: %u buffers\n", TX_RING_SIZE);
423 for (i = 0 ; i < TX_RING_SIZE; i++) {
6aa20a22 424 printk(" %08x: %04x %04x %08x\n",
1da177e4
LT
425 (uint) bdp,
426 bdp->cbd_sc,
427 bdp->cbd_datlen,
428 (int) bdp->cbd_bufaddr);
429 bdp++;
430 }
431
432 bdp = fep->rx_bd_base;
433 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
434 for (i = 0 ; i < RX_RING_SIZE; i++) {
435 printk(" %08x: %04x %04x %08x\n",
436 (uint) bdp,
437 bdp->cbd_sc,
438 bdp->cbd_datlen,
439 (int) bdp->cbd_bufaddr);
440 bdp++;
441 }
442 }
443#endif
7dd6a2aa 444 fec_restart(dev, fep->full_duplex);
1da177e4
LT
445 netif_wake_queue(dev);
446}
447
448/* The interrupt handler.
449 * This is called from the MPC core interrupt.
450 */
451static irqreturn_t
7d12e780 452fec_enet_interrupt(int irq, void * dev_id)
1da177e4
LT
453{
454 struct net_device *dev = dev_id;
455 volatile fec_t *fecp;
456 uint int_events;
457 int handled = 0;
458
459 fecp = (volatile fec_t*)dev->base_addr;
460
461 /* Get the interrupt events that caused us to be here.
462 */
463 while ((int_events = fecp->fec_ievent) != 0) {
464 fecp->fec_ievent = int_events;
465
466 /* Handle receive event in its own function.
467 */
468 if (int_events & FEC_ENET_RXF) {
469 handled = 1;
470 fec_enet_rx(dev);
471 }
472
473 /* Transmit OK, or non-fatal error. Update the buffer
474 descriptors. FEC handles all errors, we just discover
475 them as part of the transmit process.
476 */
477 if (int_events & FEC_ENET_TXF) {
478 handled = 1;
479 fec_enet_tx(dev);
480 }
481
482 if (int_events & FEC_ENET_MII) {
483 handled = 1;
484 fec_enet_mii(dev);
485 }
6aa20a22 486
1da177e4
LT
487 }
488 return IRQ_RETVAL(handled);
489}
490
491
492static void
493fec_enet_tx(struct net_device *dev)
494{
495 struct fec_enet_private *fep;
496 volatile cbd_t *bdp;
0e702ab3 497 unsigned short status;
1da177e4
LT
498 struct sk_buff *skb;
499
500 fep = netdev_priv(dev);
501 spin_lock(&fep->lock);
502 bdp = fep->dirty_tx;
503
0e702ab3 504 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1da177e4
LT
505 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
506
507 skb = fep->tx_skbuff[fep->skb_dirty];
508 /* Check for errors. */
0e702ab3 509 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1da177e4
LT
510 BD_ENET_TX_RL | BD_ENET_TX_UN |
511 BD_ENET_TX_CSL)) {
09f75cd7 512 dev->stats.tx_errors++;
0e702ab3 513 if (status & BD_ENET_TX_HB) /* No heartbeat */
09f75cd7 514 dev->stats.tx_heartbeat_errors++;
0e702ab3 515 if (status & BD_ENET_TX_LC) /* Late collision */
09f75cd7 516 dev->stats.tx_window_errors++;
0e702ab3 517 if (status & BD_ENET_TX_RL) /* Retrans limit */
09f75cd7 518 dev->stats.tx_aborted_errors++;
0e702ab3 519 if (status & BD_ENET_TX_UN) /* Underrun */
09f75cd7 520 dev->stats.tx_fifo_errors++;
0e702ab3 521 if (status & BD_ENET_TX_CSL) /* Carrier lost */
09f75cd7 522 dev->stats.tx_carrier_errors++;
1da177e4 523 } else {
09f75cd7 524 dev->stats.tx_packets++;
1da177e4
LT
525 }
526
527#ifndef final_version
0e702ab3 528 if (status & BD_ENET_TX_READY)
1da177e4
LT
529 printk("HEY! Enet xmit interrupt and TX_READY.\n");
530#endif
531 /* Deferred means some collisions occurred during transmit,
532 * but we eventually sent the packet OK.
533 */
0e702ab3 534 if (status & BD_ENET_TX_DEF)
09f75cd7 535 dev->stats.collisions++;
6aa20a22 536
1da177e4
LT
537 /* Free the sk buffer associated with this last transmit.
538 */
539 dev_kfree_skb_any(skb);
540 fep->tx_skbuff[fep->skb_dirty] = NULL;
541 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
6aa20a22 542
1da177e4
LT
543 /* Update pointer to next buffer descriptor to be transmitted.
544 */
0e702ab3 545 if (status & BD_ENET_TX_WRAP)
1da177e4
LT
546 bdp = fep->tx_bd_base;
547 else
548 bdp++;
6aa20a22 549
1da177e4
LT
550 /* Since we have freed up a buffer, the ring is no longer
551 * full.
552 */
553 if (fep->tx_full) {
554 fep->tx_full = 0;
555 if (netif_queue_stopped(dev))
556 netif_wake_queue(dev);
557 }
558 }
559 fep->dirty_tx = (cbd_t *)bdp;
560 spin_unlock(&fep->lock);
561}
562
563
564/* During a receive, the cur_rx points to the current incoming buffer.
565 * When we update through the ring, if the next incoming buffer has
566 * not been given to the system, we just set the empty indicator,
567 * effectively tossing the packet.
568 */
569static void
570fec_enet_rx(struct net_device *dev)
571{
572 struct fec_enet_private *fep;
573 volatile fec_t *fecp;
574 volatile cbd_t *bdp;
0e702ab3 575 unsigned short status;
1da177e4
LT
576 struct sk_buff *skb;
577 ushort pkt_len;
578 __u8 *data;
6aa20a22 579
0e702ab3
GU
580#ifdef CONFIG_M532x
581 flush_cache_all();
6aa20a22 582#endif
1da177e4
LT
583
584 fep = netdev_priv(dev);
585 fecp = (volatile fec_t*)dev->base_addr;
586
587 /* First, grab all of the stats for the incoming packet.
588 * These get messed up if we get called due to a busy condition.
589 */
590 bdp = fep->cur_rx;
591
0e702ab3 592while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1da177e4
LT
593
594#ifndef final_version
595 /* Since we have allocated space to hold a complete frame,
596 * the last indicator should be set.
597 */
0e702ab3 598 if ((status & BD_ENET_RX_LAST) == 0)
1da177e4
LT
599 printk("FEC ENET: rcv is not +last\n");
600#endif
601
602 if (!fep->opened)
603 goto rx_processing_done;
604
605 /* Check for errors. */
0e702ab3 606 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1da177e4 607 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
09f75cd7 608 dev->stats.rx_errors++;
0e702ab3 609 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1da177e4 610 /* Frame too long or too short. */
09f75cd7 611 dev->stats.rx_length_errors++;
1da177e4 612 }
0e702ab3 613 if (status & BD_ENET_RX_NO) /* Frame alignment */
09f75cd7 614 dev->stats.rx_frame_errors++;
0e702ab3 615 if (status & BD_ENET_RX_CR) /* CRC Error */
09f75cd7 616 dev->stats.rx_crc_errors++;
0e702ab3 617 if (status & BD_ENET_RX_OV) /* FIFO overrun */
09f75cd7 618 dev->stats.rx_fifo_errors++;
1da177e4
LT
619 }
620
621 /* Report late collisions as a frame error.
622 * On this error, the BD is closed, but we don't know what we
623 * have in the buffer. So, just drop this frame on the floor.
624 */
0e702ab3 625 if (status & BD_ENET_RX_CL) {
09f75cd7
JG
626 dev->stats.rx_errors++;
627 dev->stats.rx_frame_errors++;
1da177e4
LT
628 goto rx_processing_done;
629 }
630
631 /* Process the incoming frame.
632 */
09f75cd7 633 dev->stats.rx_packets++;
1da177e4 634 pkt_len = bdp->cbd_datlen;
09f75cd7 635 dev->stats.rx_bytes += pkt_len;
1da177e4
LT
636 data = (__u8*)__va(bdp->cbd_bufaddr);
637
638 /* This does 16 byte alignment, exactly what we need.
639 * The packet length includes FCS, but we don't want to
640 * include that when passing upstream as it messes up
641 * bridging applications.
642 */
643 skb = dev_alloc_skb(pkt_len-4);
644
645 if (skb == NULL) {
646 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
09f75cd7 647 dev->stats.rx_dropped++;
1da177e4 648 } else {
1da177e4 649 skb_put(skb,pkt_len-4); /* Make room */
8c7b7faa 650 skb_copy_to_linear_data(skb, data, pkt_len-4);
1da177e4
LT
651 skb->protocol=eth_type_trans(skb,dev);
652 netif_rx(skb);
653 }
654 rx_processing_done:
655
656 /* Clear the status flags for this buffer.
657 */
0e702ab3 658 status &= ~BD_ENET_RX_STATS;
1da177e4
LT
659
660 /* Mark the buffer empty.
661 */
0e702ab3
GU
662 status |= BD_ENET_RX_EMPTY;
663 bdp->cbd_sc = status;
1da177e4
LT
664
665 /* Update BD pointer to next entry.
666 */
0e702ab3 667 if (status & BD_ENET_RX_WRAP)
1da177e4
LT
668 bdp = fep->rx_bd_base;
669 else
670 bdp++;
6aa20a22 671
1da177e4
LT
672#if 1
673 /* Doing this here will keep the FEC running while we process
674 * incoming frames. On a heavily loaded network, we should be
675 * able to keep up at the expense of system resources.
676 */
0e702ab3 677 fecp->fec_r_des_active = 0;
1da177e4 678#endif
0e702ab3 679 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
1da177e4
LT
680 fep->cur_rx = (cbd_t *)bdp;
681
682#if 0
683 /* Doing this here will allow us to process all frames in the
684 * ring before the FEC is allowed to put more there. On a heavily
685 * loaded network, some frames may be lost. Unfortunately, this
686 * increases the interrupt overhead since we can potentially work
687 * our way back to the interrupt return only to come right back
688 * here.
689 */
0e702ab3 690 fecp->fec_r_des_active = 0;
1da177e4
LT
691#endif
692}
693
694
0e702ab3 695/* called from interrupt context */
1da177e4
LT
696static void
697fec_enet_mii(struct net_device *dev)
698{
699 struct fec_enet_private *fep;
700 volatile fec_t *ep;
701 mii_list_t *mip;
702 uint mii_reg;
703
704 fep = netdev_priv(dev);
705 ep = fep->hwp;
706 mii_reg = ep->fec_mii_data;
0e702ab3
GU
707
708 spin_lock(&fep->lock);
6aa20a22 709
1da177e4
LT
710 if ((mip = mii_head) == NULL) {
711 printk("MII and no head!\n");
0e702ab3 712 goto unlock;
1da177e4
LT
713 }
714
715 if (mip->mii_func != NULL)
716 (*(mip->mii_func))(mii_reg, dev);
717
718 mii_head = mip->mii_next;
719 mip->mii_next = mii_free;
720 mii_free = mip;
721
722 if ((mip = mii_head) != NULL)
723 ep->fec_mii_data = mip->mii_regval;
0e702ab3
GU
724
725unlock:
726 spin_unlock(&fep->lock);
1da177e4
LT
727}
728
729static int
730mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
731{
732 struct fec_enet_private *fep;
733 unsigned long flags;
734 mii_list_t *mip;
735 int retval;
736
737 /* Add PHY address to register command.
738 */
739 fep = netdev_priv(dev);
740 regval |= fep->phy_addr << 23;
741
742 retval = 0;
743
0e702ab3 744 spin_lock_irqsave(&fep->lock,flags);
1da177e4
LT
745
746 if ((mip = mii_free) != NULL) {
747 mii_free = mip->mii_next;
748 mip->mii_regval = regval;
749 mip->mii_func = func;
750 mip->mii_next = NULL;
751 if (mii_head) {
752 mii_tail->mii_next = mip;
753 mii_tail = mip;
f909b1ef 754 } else {
1da177e4
LT
755 mii_head = mii_tail = mip;
756 fep->hwp->fec_mii_data = regval;
757 }
f909b1ef 758 } else {
1da177e4
LT
759 retval = 1;
760 }
761
0e702ab3 762 spin_unlock_irqrestore(&fep->lock,flags);
1da177e4
LT
763
764 return(retval);
765}
766
767static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
768{
1da177e4
LT
769 if(!c)
770 return;
771
be6cb66d
PDM
772 for (; c->mii_data != mk_mii_end; c++)
773 mii_queue(dev, c->mii_data, c->funct);
1da177e4
LT
774}
775
776static void mii_parse_sr(uint mii_reg, struct net_device *dev)
777{
778 struct fec_enet_private *fep = netdev_priv(dev);
779 volatile uint *s = &(fep->phy_status);
7dd6a2aa 780 uint status;
1da177e4 781
7dd6a2aa 782 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
1da177e4
LT
783
784 if (mii_reg & 0x0004)
7dd6a2aa 785 status |= PHY_STAT_LINK;
1da177e4 786 if (mii_reg & 0x0010)
7dd6a2aa 787 status |= PHY_STAT_FAULT;
1da177e4 788 if (mii_reg & 0x0020)
7dd6a2aa 789 status |= PHY_STAT_ANC;
7dd6a2aa 790 *s = status;
1da177e4
LT
791}
792
793static void mii_parse_cr(uint mii_reg, struct net_device *dev)
794{
795 struct fec_enet_private *fep = netdev_priv(dev);
796 volatile uint *s = &(fep->phy_status);
7dd6a2aa 797 uint status;
1da177e4 798
7dd6a2aa 799 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
1da177e4
LT
800
801 if (mii_reg & 0x1000)
7dd6a2aa 802 status |= PHY_CONF_ANE;
1da177e4 803 if (mii_reg & 0x4000)
7dd6a2aa
GU
804 status |= PHY_CONF_LOOP;
805 *s = status;
1da177e4
LT
806}
807
808static void mii_parse_anar(uint mii_reg, struct net_device *dev)
809{
810 struct fec_enet_private *fep = netdev_priv(dev);
811 volatile uint *s = &(fep->phy_status);
7dd6a2aa 812 uint status;
1da177e4 813
7dd6a2aa 814 status = *s & ~(PHY_CONF_SPMASK);
1da177e4
LT
815
816 if (mii_reg & 0x0020)
7dd6a2aa 817 status |= PHY_CONF_10HDX;
1da177e4 818 if (mii_reg & 0x0040)
7dd6a2aa 819 status |= PHY_CONF_10FDX;
1da177e4 820 if (mii_reg & 0x0080)
7dd6a2aa 821 status |= PHY_CONF_100HDX;
1da177e4 822 if (mii_reg & 0x00100)
7dd6a2aa
GU
823 status |= PHY_CONF_100FDX;
824 *s = status;
1da177e4
LT
825}
826
827/* ------------------------------------------------------------------------- */
828/* The Level one LXT970 is used by many boards */
829
830#define MII_LXT970_MIRROR 16 /* Mirror register */
831#define MII_LXT970_IER 17 /* Interrupt Enable Register */
832#define MII_LXT970_ISR 18 /* Interrupt Status Register */
833#define MII_LXT970_CONFIG 19 /* Configuration Register */
834#define MII_LXT970_CSR 20 /* Chip Status Register */
835
836static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
837{
838 struct fec_enet_private *fep = netdev_priv(dev);
839 volatile uint *s = &(fep->phy_status);
7dd6a2aa 840 uint status;
1da177e4 841
7dd6a2aa 842 status = *s & ~(PHY_STAT_SPMASK);
1da177e4
LT
843 if (mii_reg & 0x0800) {
844 if (mii_reg & 0x1000)
7dd6a2aa 845 status |= PHY_STAT_100FDX;
1da177e4 846 else
7dd6a2aa 847 status |= PHY_STAT_100HDX;
1da177e4
LT
848 } else {
849 if (mii_reg & 0x1000)
7dd6a2aa 850 status |= PHY_STAT_10FDX;
1da177e4 851 else
7dd6a2aa 852 status |= PHY_STAT_10HDX;
1da177e4 853 }
7dd6a2aa 854 *s = status;
1da177e4
LT
855}
856
7dd6a2aa 857static phy_cmd_t const phy_cmd_lxt970_config[] = {
1da177e4
LT
858 { mk_mii_read(MII_REG_CR), mii_parse_cr },
859 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
860 { mk_mii_end, }
7dd6a2aa
GU
861 };
862static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
1da177e4
LT
863 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
864 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
865 { mk_mii_end, }
7dd6a2aa
GU
866 };
867static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
1da177e4
LT
868 /* read SR and ISR to acknowledge */
869 { mk_mii_read(MII_REG_SR), mii_parse_sr },
870 { mk_mii_read(MII_LXT970_ISR), NULL },
871
872 /* find out the current status */
873 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
874 { mk_mii_end, }
7dd6a2aa
GU
875 };
876static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
1da177e4
LT
877 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
878 { mk_mii_end, }
7dd6a2aa
GU
879 };
880static phy_info_t const phy_info_lxt970 = {
6aa20a22 881 .id = 0x07810000,
7dd6a2aa
GU
882 .name = "LXT970",
883 .config = phy_cmd_lxt970_config,
884 .startup = phy_cmd_lxt970_startup,
885 .ack_int = phy_cmd_lxt970_ack_int,
886 .shutdown = phy_cmd_lxt970_shutdown
1da177e4 887};
6aa20a22 888
1da177e4
LT
889/* ------------------------------------------------------------------------- */
890/* The Level one LXT971 is used on some of my custom boards */
891
892/* register definitions for the 971 */
893
894#define MII_LXT971_PCR 16 /* Port Control Register */
895#define MII_LXT971_SR2 17 /* Status Register 2 */
896#define MII_LXT971_IER 18 /* Interrupt Enable Register */
897#define MII_LXT971_ISR 19 /* Interrupt Status Register */
898#define MII_LXT971_LCR 20 /* LED Control Register */
899#define MII_LXT971_TCR 30 /* Transmit Control Register */
900
6aa20a22 901/*
1da177e4
LT
902 * I had some nice ideas of running the MDIO faster...
903 * The 971 should support 8MHz and I tried it, but things acted really
904 * weird, so 2.5 MHz ought to be enough for anyone...
905 */
906
907static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
908{
909 struct fec_enet_private *fep = netdev_priv(dev);
910 volatile uint *s = &(fep->phy_status);
7dd6a2aa 911 uint status;
1da177e4 912
7dd6a2aa 913 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1da177e4
LT
914
915 if (mii_reg & 0x0400) {
916 fep->link = 1;
7dd6a2aa 917 status |= PHY_STAT_LINK;
1da177e4
LT
918 } else {
919 fep->link = 0;
920 }
921 if (mii_reg & 0x0080)
7dd6a2aa 922 status |= PHY_STAT_ANC;
1da177e4
LT
923 if (mii_reg & 0x4000) {
924 if (mii_reg & 0x0200)
7dd6a2aa 925 status |= PHY_STAT_100FDX;
1da177e4 926 else
7dd6a2aa 927 status |= PHY_STAT_100HDX;
1da177e4
LT
928 } else {
929 if (mii_reg & 0x0200)
7dd6a2aa 930 status |= PHY_STAT_10FDX;
1da177e4 931 else
7dd6a2aa 932 status |= PHY_STAT_10HDX;
1da177e4
LT
933 }
934 if (mii_reg & 0x0008)
7dd6a2aa 935 status |= PHY_STAT_FAULT;
1da177e4 936
7dd6a2aa
GU
937 *s = status;
938}
6aa20a22 939
7dd6a2aa 940static phy_cmd_t const phy_cmd_lxt971_config[] = {
6aa20a22 941 /* limit to 10MBit because my prototype board
1da177e4
LT
942 * doesn't work with 100. */
943 { mk_mii_read(MII_REG_CR), mii_parse_cr },
944 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
945 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
946 { mk_mii_end, }
7dd6a2aa
GU
947 };
948static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
1da177e4
LT
949 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
950 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
951 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
952 /* Somehow does the 971 tell me that the link is down
953 * the first read after power-up.
954 * read here to get a valid value in ack_int */
6aa20a22 955 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1da177e4 956 { mk_mii_end, }
7dd6a2aa
GU
957 };
958static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
959 /* acknowledge the int before reading status ! */
960 { mk_mii_read(MII_LXT971_ISR), NULL },
1da177e4
LT
961 /* find out the current status */
962 { mk_mii_read(MII_REG_SR), mii_parse_sr },
963 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
1da177e4 964 { mk_mii_end, }
7dd6a2aa
GU
965 };
966static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
1da177e4
LT
967 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
968 { mk_mii_end, }
7dd6a2aa
GU
969 };
970static phy_info_t const phy_info_lxt971 = {
6aa20a22 971 .id = 0x0001378e,
7dd6a2aa
GU
972 .name = "LXT971",
973 .config = phy_cmd_lxt971_config,
974 .startup = phy_cmd_lxt971_startup,
975 .ack_int = phy_cmd_lxt971_ack_int,
976 .shutdown = phy_cmd_lxt971_shutdown
1da177e4
LT
977};
978
979/* ------------------------------------------------------------------------- */
980/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
981
982/* register definitions */
983
984#define MII_QS6612_MCR 17 /* Mode Control Register */
985#define MII_QS6612_FTR 27 /* Factory Test Register */
986#define MII_QS6612_MCO 28 /* Misc. Control Register */
987#define MII_QS6612_ISR 29 /* Interrupt Source Register */
988#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
989#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
990
991static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
992{
993 struct fec_enet_private *fep = netdev_priv(dev);
994 volatile uint *s = &(fep->phy_status);
7dd6a2aa 995 uint status;
1da177e4 996
7dd6a2aa 997 status = *s & ~(PHY_STAT_SPMASK);
1da177e4
LT
998
999 switch((mii_reg >> 2) & 7) {
7dd6a2aa
GU
1000 case 1: status |= PHY_STAT_10HDX; break;
1001 case 2: status |= PHY_STAT_100HDX; break;
1002 case 5: status |= PHY_STAT_10FDX; break;
1003 case 6: status |= PHY_STAT_100FDX; break;
1da177e4
LT
1004}
1005
7dd6a2aa
GU
1006 *s = status;
1007}
1008
1009static phy_cmd_t const phy_cmd_qs6612_config[] = {
6aa20a22 1010 /* The PHY powers up isolated on the RPX,
1da177e4
LT
1011 * so send a command to allow operation.
1012 */
1013 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1014
1015 /* parse cr and anar to get some info */
1016 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1017 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1018 { mk_mii_end, }
7dd6a2aa
GU
1019 };
1020static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
1da177e4
LT
1021 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1022 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1023 { mk_mii_end, }
7dd6a2aa
GU
1024 };
1025static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1da177e4
LT
1026 /* we need to read ISR, SR and ANER to acknowledge */
1027 { mk_mii_read(MII_QS6612_ISR), NULL },
1028 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1029 { mk_mii_read(MII_REG_ANER), NULL },
1030
1031 /* read pcr to get info */
1032 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1033 { mk_mii_end, }
7dd6a2aa
GU
1034 };
1035static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1da177e4
LT
1036 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1037 { mk_mii_end, }
7dd6a2aa
GU
1038 };
1039static phy_info_t const phy_info_qs6612 = {
6aa20a22 1040 .id = 0x00181440,
7dd6a2aa
GU
1041 .name = "QS6612",
1042 .config = phy_cmd_qs6612_config,
1043 .startup = phy_cmd_qs6612_startup,
1044 .ack_int = phy_cmd_qs6612_ack_int,
1045 .shutdown = phy_cmd_qs6612_shutdown
1da177e4
LT
1046};
1047
1048/* ------------------------------------------------------------------------- */
1049/* AMD AM79C874 phy */
1050
1051/* register definitions for the 874 */
1052
1053#define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1054#define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1055#define MII_AM79C874_DR 18 /* Diagnostic Register */
1056#define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1057#define MII_AM79C874_MCR 21 /* ModeControl Register */
1058#define MII_AM79C874_DC 23 /* Disconnect Counter */
1059#define MII_AM79C874_REC 24 /* Recieve Error Counter */
1060
1061static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1062{
1063 struct fec_enet_private *fep = netdev_priv(dev);
1064 volatile uint *s = &(fep->phy_status);
7dd6a2aa 1065 uint status;
1da177e4 1066
7dd6a2aa 1067 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1da177e4
LT
1068
1069 if (mii_reg & 0x0080)
7dd6a2aa 1070 status |= PHY_STAT_ANC;
1da177e4 1071 if (mii_reg & 0x0400)
7dd6a2aa 1072 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1da177e4 1073 else
7dd6a2aa
GU
1074 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1075
1076 *s = status;
1da177e4
LT
1077}
1078
7dd6a2aa 1079static phy_cmd_t const phy_cmd_am79c874_config[] = {
1da177e4
LT
1080 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1081 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1082 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1083 { mk_mii_end, }
7dd6a2aa
GU
1084 };
1085static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1da177e4
LT
1086 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1087 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
6aa20a22 1088 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1da177e4 1089 { mk_mii_end, }
7dd6a2aa
GU
1090 };
1091static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1da177e4
LT
1092 /* find out the current status */
1093 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1094 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1095 /* we only need to read ISR to acknowledge */
1096 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1097 { mk_mii_end, }
7dd6a2aa
GU
1098 };
1099static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1da177e4
LT
1100 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1101 { mk_mii_end, }
7dd6a2aa
GU
1102 };
1103static phy_info_t const phy_info_am79c874 = {
1104 .id = 0x00022561,
1105 .name = "AM79C874",
1106 .config = phy_cmd_am79c874_config,
1107 .startup = phy_cmd_am79c874_startup,
1108 .ack_int = phy_cmd_am79c874_ack_int,
1109 .shutdown = phy_cmd_am79c874_shutdown
1da177e4
LT
1110};
1111
7dd6a2aa 1112
1da177e4
LT
1113/* ------------------------------------------------------------------------- */
1114/* Kendin KS8721BL phy */
1115
1116/* register definitions for the 8721 */
1117
1118#define MII_KS8721BL_RXERCR 21
1119#define MII_KS8721BL_ICSR 22
1120#define MII_KS8721BL_PHYCR 31
1121
7dd6a2aa 1122static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1da177e4
LT
1123 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1124 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1125 { mk_mii_end, }
7dd6a2aa
GU
1126 };
1127static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1da177e4
LT
1128 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1129 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
6aa20a22 1130 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1da177e4 1131 { mk_mii_end, }
7dd6a2aa
GU
1132 };
1133static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1da177e4
LT
1134 /* find out the current status */
1135 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1136 /* we only need to read ISR to acknowledge */
1137 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1138 { mk_mii_end, }
7dd6a2aa
GU
1139 };
1140static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1da177e4
LT
1141 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1142 { mk_mii_end, }
7dd6a2aa
GU
1143 };
1144static phy_info_t const phy_info_ks8721bl = {
6aa20a22 1145 .id = 0x00022161,
7dd6a2aa
GU
1146 .name = "KS8721BL",
1147 .config = phy_cmd_ks8721bl_config,
1148 .startup = phy_cmd_ks8721bl_startup,
1149 .ack_int = phy_cmd_ks8721bl_ack_int,
1150 .shutdown = phy_cmd_ks8721bl_shutdown
1da177e4
LT
1151};
1152
562d2f8c
GU
1153/* ------------------------------------------------------------------------- */
1154/* register definitions for the DP83848 */
1155
1156#define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1157
1158static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1159{
1160 struct fec_enet_private *fep = dev->priv;
1161 volatile uint *s = &(fep->phy_status);
1162
1163 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1164
1165 /* Link up */
1166 if (mii_reg & 0x0001) {
1167 fep->link = 1;
1168 *s |= PHY_STAT_LINK;
1169 } else
1170 fep->link = 0;
1171 /* Status of link */
1172 if (mii_reg & 0x0010) /* Autonegotioation complete */
1173 *s |= PHY_STAT_ANC;
1174 if (mii_reg & 0x0002) { /* 10MBps? */
1175 if (mii_reg & 0x0004) /* Full Duplex? */
1176 *s |= PHY_STAT_10FDX;
1177 else
1178 *s |= PHY_STAT_10HDX;
1179 } else { /* 100 Mbps? */
1180 if (mii_reg & 0x0004) /* Full Duplex? */
1181 *s |= PHY_STAT_100FDX;
1182 else
1183 *s |= PHY_STAT_100HDX;
1184 }
1185 if (mii_reg & 0x0008)
1186 *s |= PHY_STAT_FAULT;
1187}
1188
1189static phy_info_t phy_info_dp83848= {
1190 0x020005c9,
1191 "DP83848",
1192
1193 (const phy_cmd_t []) { /* config */
1194 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1195 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1196 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1197 { mk_mii_end, }
1198 },
1199 (const phy_cmd_t []) { /* startup - enable interrupts */
1200 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1201 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1202 { mk_mii_end, }
1203 },
1204 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1205 { mk_mii_end, }
1206 },
1207 (const phy_cmd_t []) { /* shutdown */
1208 { mk_mii_end, }
1209 },
1210};
1211
1da177e4
LT
1212/* ------------------------------------------------------------------------- */
1213
7dd6a2aa 1214static phy_info_t const * const phy_info[] = {
1da177e4
LT
1215 &phy_info_lxt970,
1216 &phy_info_lxt971,
1217 &phy_info_qs6612,
1218 &phy_info_am79c874,
1219 &phy_info_ks8721bl,
562d2f8c 1220 &phy_info_dp83848,
1da177e4
LT
1221 NULL
1222};
1223
1224/* ------------------------------------------------------------------------- */
6b265293 1225#if !defined(CONFIG_M532x)
1da177e4
LT
1226#ifdef CONFIG_RPXCLASSIC
1227static void
1228mii_link_interrupt(void *dev_id);
1229#else
1230static irqreturn_t
7d12e780 1231mii_link_interrupt(int irq, void * dev_id);
1da177e4 1232#endif
6b265293 1233#endif
1da177e4
LT
1234
1235#if defined(CONFIG_M5272)
1da177e4
LT
1236/*
1237 * Code specific to Coldfire 5272 setup.
1238 */
1239static void __inline__ fec_request_intrs(struct net_device *dev)
1240{
1241 volatile unsigned long *icrp;
7dd6a2aa
GU
1242 static const struct idesc {
1243 char *name;
1244 unsigned short irq;
7d12e780 1245 irq_handler_t handler;
7dd6a2aa
GU
1246 } *idp, id[] = {
1247 { "fec(RX)", 86, fec_enet_interrupt },
1248 { "fec(TX)", 87, fec_enet_interrupt },
1249 { "fec(OTHER)", 88, fec_enet_interrupt },
1250 { "fec(MII)", 66, mii_link_interrupt },
1251 { NULL },
1252 };
1da177e4
LT
1253
1254 /* Setup interrupt handlers. */
7dd6a2aa 1255 for (idp = id; idp->name; idp++) {
0a504779 1256 if (request_irq(idp->irq, idp->handler, IRQF_DISABLED, idp->name, dev) != 0)
7dd6a2aa
GU
1257 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1258 }
1da177e4
LT
1259
1260 /* Unmask interrupt at ColdFire 5272 SIM */
1261 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1262 *icrp = 0x00000ddd;
1263 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
f861d62e 1264 *icrp = 0x0d000000;
1da177e4
LT
1265}
1266
1267static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1268{
1269 volatile fec_t *fecp;
1270
1271 fecp = fep->hwp;
1272 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1273 fecp->fec_x_cntrl = 0x00;
1274
1275 /*
1276 * Set MII speed to 2.5 MHz
1277 * See 5272 manual section 11.5.8: MSCR
1278 */
1279 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1280 fecp->fec_mii_speed = fep->phy_speed;
1281
1282 fec_restart(dev, 0);
1283}
1284
1285static void __inline__ fec_get_mac(struct net_device *dev)
1286{
1287 struct fec_enet_private *fep = netdev_priv(dev);
1288 volatile fec_t *fecp;
7dd6a2aa 1289 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4
LT
1290
1291 fecp = fep->hwp;
1292
7dd6a2aa 1293 if (FEC_FLASHMAC) {
1da177e4
LT
1294 /*
1295 * Get MAC address from FLASH.
1296 * If it is all 1's or 0's, use the default.
1297 */
7dd6a2aa 1298 iap = (unsigned char *)FEC_FLASHMAC;
1da177e4
LT
1299 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1300 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1301 iap = fec_mac_default;
1302 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1303 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1304 iap = fec_mac_default;
1305 } else {
1306 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1307 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1308 iap = &tmpaddr[0];
1309 }
1310
7dd6a2aa 1311 memcpy(dev->dev_addr, iap, ETH_ALEN);
1da177e4
LT
1312
1313 /* Adjust MAC if using default MAC address */
7dd6a2aa
GU
1314 if (iap == fec_mac_default)
1315 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1da177e4
LT
1316}
1317
1318static void __inline__ fec_enable_phy_intr(void)
1319{
1320}
1321
1322static void __inline__ fec_disable_phy_intr(void)
1323{
1324 volatile unsigned long *icrp;
1325 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
f861d62e 1326 *icrp = 0x08000000;
1da177e4
LT
1327}
1328
1329static void __inline__ fec_phy_ack_intr(void)
1330{
1331 volatile unsigned long *icrp;
1332 /* Acknowledge the interrupt */
1333 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
f861d62e 1334 *icrp = 0x0d000000;
1da177e4
LT
1335}
1336
1337static void __inline__ fec_localhw_setup(void)
1338{
1339}
1340
1341/*
1342 * Do not need to make region uncached on 5272.
1343 */
1344static void __inline__ fec_uncache(unsigned long addr)
1345{
1346}
1347
1348/* ------------------------------------------------------------------------- */
1349
7dd6a2aa 1350#elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1da177e4
LT
1351
1352/*
7dd6a2aa
GU
1353 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1354 * the 5270/5271/5274/5275 and 5280/5282 setups.
1da177e4
LT
1355 */
1356static void __inline__ fec_request_intrs(struct net_device *dev)
1357{
1358 struct fec_enet_private *fep;
1359 int b;
7dd6a2aa
GU
1360 static const struct idesc {
1361 char *name;
1362 unsigned short irq;
1363 } *idp, id[] = {
1364 { "fec(TXF)", 23 },
1365 { "fec(TXB)", 24 },
1366 { "fec(TXFIFO)", 25 },
1367 { "fec(TXCR)", 26 },
1368 { "fec(RXF)", 27 },
1369 { "fec(RXB)", 28 },
1370 { "fec(MII)", 29 },
1371 { "fec(LC)", 30 },
1372 { "fec(HBERR)", 31 },
1373 { "fec(GRA)", 32 },
1374 { "fec(EBERR)", 33 },
1375 { "fec(BABT)", 34 },
1376 { "fec(BABR)", 35 },
1377 { NULL },
1378 };
1da177e4
LT
1379
1380 fep = netdev_priv(dev);
1381 b = (fep->index) ? 128 : 64;
1382
1383 /* Setup interrupt handlers. */
7dd6a2aa 1384 for (idp = id; idp->name; idp++) {
0a504779 1385 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name, dev) != 0)
7dd6a2aa
GU
1386 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1387 }
1da177e4
LT
1388
1389 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1390 {
1391 volatile unsigned char *icrp;
1392 volatile unsigned long *imrp;
83901fc1 1393 int i, ilip;
1da177e4
LT
1394
1395 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1396 icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1397 MCFINTC_ICR0);
83901fc1
WC
1398 for (i = 23, ilip = 0x28; (i < 36); i++)
1399 icrp[i] = ilip--;
1da177e4
LT
1400
1401 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1402 MCFINTC_IMRH);
1403 *imrp &= ~0x0000000f;
1404 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1405 MCFINTC_IMRL);
1406 *imrp &= ~0xff800001;
1407 }
1408
1409#if defined(CONFIG_M528x)
1410 /* Set up gpio outputs for MII lines */
1411 {
7dd6a2aa
GU
1412 volatile u16 *gpio_paspar;
1413 volatile u8 *gpio_pehlpar;
6aa20a22 1414
7dd6a2aa
GU
1415 gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
1416 gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
1417 *gpio_paspar |= 0x0f00;
1418 *gpio_pehlpar = 0xc0;
1da177e4
LT
1419 }
1420#endif
b8a94b3d
MC
1421
1422#if defined(CONFIG_M527x)
1423 /* Set up gpio outputs for MII lines */
1424 {
1425 volatile u8 *gpio_par_fec;
1426 volatile u16 *gpio_par_feci2c;
1427
1428 gpio_par_feci2c = (volatile u16 *)(MCF_IPSBAR + 0x100082);
1429 /* Set up gpio outputs for FEC0 MII lines */
1430 gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100078);
1431
1432 *gpio_par_feci2c |= 0x0f00;
1433 *gpio_par_fec |= 0xc0;
1434
1435#if defined(CONFIG_FEC2)
1436 /* Set up gpio outputs for FEC1 MII lines */
1437 gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100079);
1438
1439 *gpio_par_feci2c |= 0x00a0;
1440 *gpio_par_fec |= 0xc0;
1441#endif /* CONFIG_FEC2 */
1442 }
1443#endif /* CONFIG_M527x */
1da177e4
LT
1444}
1445
1446static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1447{
1448 volatile fec_t *fecp;
1449
1450 fecp = fep->hwp;
1451 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1452 fecp->fec_x_cntrl = 0x00;
1453
1454 /*
1455 * Set MII speed to 2.5 MHz
1456 * See 5282 manual section 17.5.4.7: MSCR
1457 */
1458 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1459 fecp->fec_mii_speed = fep->phy_speed;
1460
1461 fec_restart(dev, 0);
1462}
1463
1464static void __inline__ fec_get_mac(struct net_device *dev)
1465{
1466 struct fec_enet_private *fep = netdev_priv(dev);
1467 volatile fec_t *fecp;
7dd6a2aa 1468 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4
LT
1469
1470 fecp = fep->hwp;
1471
7dd6a2aa 1472 if (FEC_FLASHMAC) {
1da177e4
LT
1473 /*
1474 * Get MAC address from FLASH.
1475 * If it is all 1's or 0's, use the default.
1476 */
7dd6a2aa 1477 iap = FEC_FLASHMAC;
1da177e4
LT
1478 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1479 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1480 iap = fec_mac_default;
1481 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1482 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1483 iap = fec_mac_default;
1484 } else {
1485 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1486 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1487 iap = &tmpaddr[0];
1488 }
1489
7dd6a2aa 1490 memcpy(dev->dev_addr, iap, ETH_ALEN);
1da177e4
LT
1491
1492 /* Adjust MAC if using default MAC address */
7dd6a2aa
GU
1493 if (iap == fec_mac_default)
1494 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1da177e4
LT
1495}
1496
1497static void __inline__ fec_enable_phy_intr(void)
1498{
1499}
1500
1501static void __inline__ fec_disable_phy_intr(void)
1502{
1503}
1504
1505static void __inline__ fec_phy_ack_intr(void)
1506{
1507}
1508
1509static void __inline__ fec_localhw_setup(void)
1510{
1511}
1512
1513/*
1514 * Do not need to make region uncached on 5272.
1515 */
1516static void __inline__ fec_uncache(unsigned long addr)
1517{
1518}
1519
1520/* ------------------------------------------------------------------------- */
1521
562d2f8c
GU
1522#elif defined(CONFIG_M520x)
1523
1524/*
1525 * Code specific to Coldfire 520x
1526 */
1527static void __inline__ fec_request_intrs(struct net_device *dev)
1528{
1529 struct fec_enet_private *fep;
1530 int b;
1531 static const struct idesc {
1532 char *name;
1533 unsigned short irq;
1534 } *idp, id[] = {
1535 { "fec(TXF)", 23 },
1536 { "fec(TXB)", 24 },
1537 { "fec(TXFIFO)", 25 },
1538 { "fec(TXCR)", 26 },
1539 { "fec(RXF)", 27 },
1540 { "fec(RXB)", 28 },
1541 { "fec(MII)", 29 },
1542 { "fec(LC)", 30 },
1543 { "fec(HBERR)", 31 },
1544 { "fec(GRA)", 32 },
1545 { "fec(EBERR)", 33 },
1546 { "fec(BABT)", 34 },
1547 { "fec(BABR)", 35 },
1548 { NULL },
1549 };
1550
1551 fep = netdev_priv(dev);
1552 b = 64 + 13;
1553
1554 /* Setup interrupt handlers. */
1555 for (idp = id; idp->name; idp++) {
0a504779 1556 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
562d2f8c
GU
1557 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1558 }
1559
1560 /* Unmask interrupts at ColdFire interrupt controller */
1561 {
1562 volatile unsigned char *icrp;
1563 volatile unsigned long *imrp;
1564
1565 icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
1566 MCFINTC_ICR0);
1567 for (b = 36; (b < 49); b++)
1568 icrp[b] = 0x04;
1569 imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
1570 MCFINTC_IMRH);
1571 *imrp &= ~0x0001FFF0;
1572 }
1573 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
1574 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
1575}
1576
1577static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1578{
1579 volatile fec_t *fecp;
1580
1581 fecp = fep->hwp;
1582 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1583 fecp->fec_x_cntrl = 0x00;
1584
1585 /*
1586 * Set MII speed to 2.5 MHz
1587 * See 5282 manual section 17.5.4.7: MSCR
1588 */
1589 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1590 fecp->fec_mii_speed = fep->phy_speed;
1591
1592 fec_restart(dev, 0);
1593}
1594
1595static void __inline__ fec_get_mac(struct net_device *dev)
1596{
1597 struct fec_enet_private *fep = netdev_priv(dev);
1598 volatile fec_t *fecp;
1599 unsigned char *iap, tmpaddr[ETH_ALEN];
1600
1601 fecp = fep->hwp;
1602
1603 if (FEC_FLASHMAC) {
1604 /*
1605 * Get MAC address from FLASH.
1606 * If it is all 1's or 0's, use the default.
1607 */
1608 iap = FEC_FLASHMAC;
1609 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1610 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1611 iap = fec_mac_default;
1612 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1613 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1614 iap = fec_mac_default;
1615 } else {
1616 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1617 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1618 iap = &tmpaddr[0];
1619 }
1620
1621 memcpy(dev->dev_addr, iap, ETH_ALEN);
1622
1623 /* Adjust MAC if using default MAC address */
1624 if (iap == fec_mac_default)
1625 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1626}
1627
1628static void __inline__ fec_enable_phy_intr(void)
1629{
1630}
1631
1632static void __inline__ fec_disable_phy_intr(void)
1633{
1634}
1635
1636static void __inline__ fec_phy_ack_intr(void)
1637{
1638}
1639
1640static void __inline__ fec_localhw_setup(void)
1641{
1642}
1643
1644static void __inline__ fec_uncache(unsigned long addr)
1645{
1646}
1647
1648/* ------------------------------------------------------------------------- */
1649
6b265293
MW
1650#elif defined(CONFIG_M532x)
1651/*
1652 * Code specific for M532x
1653 */
1654static void __inline__ fec_request_intrs(struct net_device *dev)
1655{
1656 struct fec_enet_private *fep;
1657 int b;
1658 static const struct idesc {
1659 char *name;
1660 unsigned short irq;
1661 } *idp, id[] = {
1662 { "fec(TXF)", 36 },
1663 { "fec(TXB)", 37 },
1664 { "fec(TXFIFO)", 38 },
1665 { "fec(TXCR)", 39 },
1666 { "fec(RXF)", 40 },
1667 { "fec(RXB)", 41 },
1668 { "fec(MII)", 42 },
1669 { "fec(LC)", 43 },
1670 { "fec(HBERR)", 44 },
1671 { "fec(GRA)", 45 },
1672 { "fec(EBERR)", 46 },
1673 { "fec(BABT)", 47 },
1674 { "fec(BABR)", 48 },
1675 { NULL },
1676 };
1677
1678 fep = netdev_priv(dev);
1679 b = (fep->index) ? 128 : 64;
1680
1681 /* Setup interrupt handlers. */
1682 for (idp = id; idp->name; idp++) {
0a504779 1683 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
6aa20a22 1684 printk("FEC: Could not allocate %s IRQ(%d)!\n",
6b265293
MW
1685 idp->name, b+idp->irq);
1686 }
1687
1688 /* Unmask interrupts */
1689 MCF_INTC0_ICR36 = 0x2;
1690 MCF_INTC0_ICR37 = 0x2;
1691 MCF_INTC0_ICR38 = 0x2;
1692 MCF_INTC0_ICR39 = 0x2;
1693 MCF_INTC0_ICR40 = 0x2;
1694 MCF_INTC0_ICR41 = 0x2;
1695 MCF_INTC0_ICR42 = 0x2;
1696 MCF_INTC0_ICR43 = 0x2;
1697 MCF_INTC0_ICR44 = 0x2;
1698 MCF_INTC0_ICR45 = 0x2;
1699 MCF_INTC0_ICR46 = 0x2;
1700 MCF_INTC0_ICR47 = 0x2;
1701 MCF_INTC0_ICR48 = 0x2;
1702
1703 MCF_INTC0_IMRH &= ~(
1704 MCF_INTC_IMRH_INT_MASK36 |
1705 MCF_INTC_IMRH_INT_MASK37 |
1706 MCF_INTC_IMRH_INT_MASK38 |
1707 MCF_INTC_IMRH_INT_MASK39 |
1708 MCF_INTC_IMRH_INT_MASK40 |
1709 MCF_INTC_IMRH_INT_MASK41 |
1710 MCF_INTC_IMRH_INT_MASK42 |
1711 MCF_INTC_IMRH_INT_MASK43 |
1712 MCF_INTC_IMRH_INT_MASK44 |
1713 MCF_INTC_IMRH_INT_MASK45 |
1714 MCF_INTC_IMRH_INT_MASK46 |
1715 MCF_INTC_IMRH_INT_MASK47 |
1716 MCF_INTC_IMRH_INT_MASK48 );
1717
1718 /* Set up gpio outputs for MII lines */
1719 MCF_GPIO_PAR_FECI2C |= (0 |
1720 MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
1721 MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
1722 MCF_GPIO_PAR_FEC = (0 |
1723 MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
1724 MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
1725}
1726
1727static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1728{
1729 volatile fec_t *fecp;
1730
1731 fecp = fep->hwp;
1732 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1733 fecp->fec_x_cntrl = 0x00;
1734
1735 /*
1736 * Set MII speed to 2.5 MHz
1737 */
1738 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1739 fecp->fec_mii_speed = fep->phy_speed;
1740
1741 fec_restart(dev, 0);
1742}
1743
1744static void __inline__ fec_get_mac(struct net_device *dev)
1745{
1746 struct fec_enet_private *fep = netdev_priv(dev);
1747 volatile fec_t *fecp;
1748 unsigned char *iap, tmpaddr[ETH_ALEN];
1749
1750 fecp = fep->hwp;
1751
1752 if (FEC_FLASHMAC) {
1753 /*
1754 * Get MAC address from FLASH.
1755 * If it is all 1's or 0's, use the default.
1756 */
1757 iap = FEC_FLASHMAC;
1758 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1759 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1760 iap = fec_mac_default;
1761 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1762 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1763 iap = fec_mac_default;
1764 } else {
1765 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1766 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1767 iap = &tmpaddr[0];
1768 }
1769
1770 memcpy(dev->dev_addr, iap, ETH_ALEN);
1771
1772 /* Adjust MAC if using default MAC address */
1773 if (iap == fec_mac_default)
1774 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1775}
1776
1777static void __inline__ fec_enable_phy_intr(void)
1778{
1779}
1780
1781static void __inline__ fec_disable_phy_intr(void)
1782{
1783}
1784
1785static void __inline__ fec_phy_ack_intr(void)
1786{
1787}
1788
1789static void __inline__ fec_localhw_setup(void)
1790{
1791}
1792
1793/*
1794 * Do not need to make region uncached on 532x.
1795 */
1796static void __inline__ fec_uncache(unsigned long addr)
1797{
1798}
1799
1800/* ------------------------------------------------------------------------- */
1801
1802
1da177e4
LT
1803#else
1804
1805/*
7dd6a2aa 1806 * Code specific to the MPC860T setup.
1da177e4
LT
1807 */
1808static void __inline__ fec_request_intrs(struct net_device *dev)
1809{
1810 volatile immap_t *immap;
1811
1812 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1813
1814 if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1815 panic("Could not allocate FEC IRQ!");
1816
1817#ifdef CONFIG_RPXCLASSIC
1818 /* Make Port C, bit 15 an input that causes interrupts.
1819 */
1820 immap->im_ioport.iop_pcpar &= ~0x0001;
1821 immap->im_ioport.iop_pcdir &= ~0x0001;
1822 immap->im_ioport.iop_pcso &= ~0x0001;
1823 immap->im_ioport.iop_pcint |= 0x0001;
1824 cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
1825
1826 /* Make LEDS reflect Link status.
1827 */
1828 *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
1829#endif
1830#ifdef CONFIG_FADS
1831 if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
1832 panic("Could not allocate MII IRQ!");
1833#endif
1834}
1835
1836static void __inline__ fec_get_mac(struct net_device *dev)
1837{
1da177e4 1838 bd_t *bd;
1da177e4 1839
1da177e4 1840 bd = (bd_t *)__res;
7dd6a2aa 1841 memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
1da177e4
LT
1842
1843#ifdef CONFIG_RPXCLASSIC
1844 /* The Embedded Planet boards have only one MAC address in
1845 * the EEPROM, but can have two Ethernet ports. For the
1846 * FEC port, we create another address by setting one of
1847 * the address bits above something that would have (up to
1848 * now) been allocated.
1849 */
7dd6a2aa 1850 dev->dev_adrd[3] |= 0x80;
1da177e4 1851#endif
1da177e4
LT
1852}
1853
1854static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1855{
1856 extern uint _get_IMMR(void);
1857 volatile immap_t *immap;
1858 volatile fec_t *fecp;
1859
1860 fecp = fep->hwp;
1861 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1862
1863 /* Configure all of port D for MII.
1864 */
1865 immap->im_ioport.iop_pdpar = 0x1fff;
1866
1867 /* Bits moved from Rev. D onward.
1868 */
1869 if ((_get_IMMR() & 0xffff) < 0x0501)
1870 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
1871 else
1872 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
6aa20a22 1873
1da177e4
LT
1874 /* Set MII speed to 2.5 MHz
1875 */
6aa20a22 1876 fecp->fec_mii_speed = fep->phy_speed =
1da177e4
LT
1877 ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
1878}
1879
1880static void __inline__ fec_enable_phy_intr(void)
1881{
1882 volatile fec_t *fecp;
1883
1884 fecp = fep->hwp;
1885
6aa20a22 1886 /* Enable MII command finished interrupt
1da177e4
LT
1887 */
1888 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1889}
1890
1891static void __inline__ fec_disable_phy_intr(void)
1892{
1893}
1894
1895static void __inline__ fec_phy_ack_intr(void)
1896{
1897}
1898
1899static void __inline__ fec_localhw_setup(void)
1900{
1901 volatile fec_t *fecp;
1902
1903 fecp = fep->hwp;
1904 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1905 /* Enable big endian and don't care about SDMA FC.
1906 */
1907 fecp->fec_fun_code = 0x78000000;
1908}
1909
1910static void __inline__ fec_uncache(unsigned long addr)
1911{
1912 pte_t *pte;
1913 pte = va_to_pte(mem_addr);
1914 pte_val(*pte) |= _PAGE_NO_CACHE;
1915 flush_tlb_page(init_mm.mmap, mem_addr);
1916}
1917
1918#endif
1919
1920/* ------------------------------------------------------------------------- */
1921
1922static void mii_display_status(struct net_device *dev)
1923{
1924 struct fec_enet_private *fep = netdev_priv(dev);
1925 volatile uint *s = &(fep->phy_status);
1926
1927 if (!fep->link && !fep->old_link) {
1928 /* Link is still down - don't print anything */
1929 return;
1930 }
1931
1932 printk("%s: status: ", dev->name);
1933
1934 if (!fep->link) {
1935 printk("link down");
1936 } else {
1937 printk("link up");
1938
1939 switch(*s & PHY_STAT_SPMASK) {
1940 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1941 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1942 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1943 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1944 default:
1945 printk(", Unknown speed/duplex");
1946 }
1947
1948 if (*s & PHY_STAT_ANC)
1949 printk(", auto-negotiation complete");
1950 }
1951
1952 if (*s & PHY_STAT_FAULT)
1953 printk(", remote fault");
1954
1955 printk(".\n");
1956}
1957
cb84d6e7 1958static void mii_display_config(struct work_struct *work)
1da177e4 1959{
cb84d6e7
GU
1960 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1961 struct net_device *dev = fep->netdev;
7dd6a2aa 1962 uint status = fep->phy_status;
1da177e4
LT
1963
1964 /*
1965 ** When we get here, phy_task is already removed from
1966 ** the workqueue. It is thus safe to allow to reuse it.
1967 */
1968 fep->mii_phy_task_queued = 0;
1969 printk("%s: config: auto-negotiation ", dev->name);
1970
7dd6a2aa 1971 if (status & PHY_CONF_ANE)
1da177e4
LT
1972 printk("on");
1973 else
1974 printk("off");
1975
7dd6a2aa 1976 if (status & PHY_CONF_100FDX)
1da177e4 1977 printk(", 100FDX");
7dd6a2aa 1978 if (status & PHY_CONF_100HDX)
1da177e4 1979 printk(", 100HDX");
7dd6a2aa 1980 if (status & PHY_CONF_10FDX)
1da177e4 1981 printk(", 10FDX");
7dd6a2aa 1982 if (status & PHY_CONF_10HDX)
1da177e4 1983 printk(", 10HDX");
7dd6a2aa 1984 if (!(status & PHY_CONF_SPMASK))
1da177e4
LT
1985 printk(", No speed/duplex selected?");
1986
7dd6a2aa 1987 if (status & PHY_CONF_LOOP)
1da177e4 1988 printk(", loopback enabled");
6aa20a22 1989
1da177e4
LT
1990 printk(".\n");
1991
1992 fep->sequence_done = 1;
1993}
1994
cb84d6e7 1995static void mii_relink(struct work_struct *work)
1da177e4 1996{
cb84d6e7
GU
1997 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1998 struct net_device *dev = fep->netdev;
1da177e4
LT
1999 int duplex;
2000
2001 /*
2002 ** When we get here, phy_task is already removed from
2003 ** the workqueue. It is thus safe to allow to reuse it.
2004 */
2005 fep->mii_phy_task_queued = 0;
2006 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
2007 mii_display_status(dev);
2008 fep->old_link = fep->link;
2009
2010 if (fep->link) {
2011 duplex = 0;
6aa20a22 2012 if (fep->phy_status
1da177e4
LT
2013 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
2014 duplex = 1;
2015 fec_restart(dev, duplex);
f909b1ef 2016 } else
1da177e4
LT
2017 fec_stop(dev);
2018
2019#if 0
2020 enable_irq(fep->mii_irq);
2021#endif
2022
2023}
2024
2025/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
2026static void mii_queue_relink(uint mii_reg, struct net_device *dev)
2027{
2028 struct fec_enet_private *fep = netdev_priv(dev);
2029
2030 /*
2031 ** We cannot queue phy_task twice in the workqueue. It
2032 ** would cause an endless loop in the workqueue.
2033 ** Fortunately, if the last mii_relink entry has not yet been
2034 ** executed now, it will do the job for the current interrupt,
2035 ** which is just what we want.
2036 */
2037 if (fep->mii_phy_task_queued)
2038 return;
2039
2040 fep->mii_phy_task_queued = 1;
cb84d6e7 2041 INIT_WORK(&fep->phy_task, mii_relink);
1da177e4
LT
2042 schedule_work(&fep->phy_task);
2043}
2044
7dd6a2aa 2045/* mii_queue_config is called in interrupt context from fec_enet_mii */
1da177e4
LT
2046static void mii_queue_config(uint mii_reg, struct net_device *dev)
2047{
2048 struct fec_enet_private *fep = netdev_priv(dev);
2049
2050 if (fep->mii_phy_task_queued)
2051 return;
2052
2053 fep->mii_phy_task_queued = 1;
cb84d6e7 2054 INIT_WORK(&fep->phy_task, mii_display_config);
1da177e4
LT
2055 schedule_work(&fep->phy_task);
2056}
2057
7dd6a2aa
GU
2058phy_cmd_t const phy_cmd_relink[] = {
2059 { mk_mii_read(MII_REG_CR), mii_queue_relink },
2060 { mk_mii_end, }
2061 };
2062phy_cmd_t const phy_cmd_config[] = {
2063 { mk_mii_read(MII_REG_CR), mii_queue_config },
2064 { mk_mii_end, }
2065 };
1da177e4
LT
2066
2067/* Read remainder of PHY ID.
2068*/
2069static void
2070mii_discover_phy3(uint mii_reg, struct net_device *dev)
2071{
2072 struct fec_enet_private *fep;
2073 int i;
2074
2075 fep = netdev_priv(dev);
2076 fep->phy_id |= (mii_reg & 0xffff);
2077 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
2078
2079 for(i = 0; phy_info[i]; i++) {
2080 if(phy_info[i]->id == (fep->phy_id >> 4))
2081 break;
2082 }
2083
2084 if (phy_info[i])
2085 printk(" -- %s\n", phy_info[i]->name);
2086 else
2087 printk(" -- unknown PHY!\n");
6aa20a22 2088
1da177e4
LT
2089 fep->phy = phy_info[i];
2090 fep->phy_id_done = 1;
2091}
2092
2093/* Scan all of the MII PHY addresses looking for someone to respond
2094 * with a valid ID. This usually happens quickly.
2095 */
2096static void
2097mii_discover_phy(uint mii_reg, struct net_device *dev)
2098{
2099 struct fec_enet_private *fep;
2100 volatile fec_t *fecp;
2101 uint phytype;
2102
2103 fep = netdev_priv(dev);
2104 fecp = fep->hwp;
2105
2106 if (fep->phy_addr < 32) {
2107 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
6aa20a22 2108
1da177e4
LT
2109 /* Got first part of ID, now get remainder.
2110 */
2111 fep->phy_id = phytype << 16;
2112 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
2113 mii_discover_phy3);
f909b1ef 2114 } else {
1da177e4
LT
2115 fep->phy_addr++;
2116 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
2117 mii_discover_phy);
2118 }
2119 } else {
2120 printk("FEC: No PHY device found.\n");
2121 /* Disable external MII interface */
2122 fecp->fec_mii_speed = fep->phy_speed = 0;
2123 fec_disable_phy_intr();
2124 }
2125}
2126
2127/* This interrupt occurs when the PHY detects a link change.
2128*/
2129#ifdef CONFIG_RPXCLASSIC
2130static void
2131mii_link_interrupt(void *dev_id)
2132#else
2133static irqreturn_t
7d12e780 2134mii_link_interrupt(int irq, void * dev_id)
1da177e4
LT
2135#endif
2136{
2137 struct net_device *dev = dev_id;
2138 struct fec_enet_private *fep = netdev_priv(dev);
2139
2140 fec_phy_ack_intr();
2141
2142#if 0
2143 disable_irq(fep->mii_irq); /* disable now, enable later */
2144#endif
2145
2146 mii_do_cmd(dev, fep->phy->ack_int);
2147 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
2148
2149 return IRQ_HANDLED;
2150}
2151
2152static int
2153fec_enet_open(struct net_device *dev)
2154{
2155 struct fec_enet_private *fep = netdev_priv(dev);
2156
2157 /* I should reset the ring buffers here, but I don't yet know
2158 * a simple way to do that.
2159 */
2160 fec_set_mac_address(dev);
2161
2162 fep->sequence_done = 0;
2163 fep->link = 0;
2164
2165 if (fep->phy) {
2166 mii_do_cmd(dev, fep->phy->ack_int);
2167 mii_do_cmd(dev, fep->phy->config);
2168 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
2169
6b265293
MW
2170 /* Poll until the PHY tells us its configuration
2171 * (not link state).
2172 * Request is initiated by mii_do_cmd above, but answer
2173 * comes by interrupt.
2174 * This should take about 25 usec per register at 2.5 MHz,
2175 * and we read approximately 5 registers.
1da177e4
LT
2176 */
2177 while(!fep->sequence_done)
2178 schedule();
2179
2180 mii_do_cmd(dev, fep->phy->startup);
2181
2182 /* Set the initial link state to true. A lot of hardware
2183 * based on this device does not implement a PHY interrupt,
2184 * so we are never notified of link change.
2185 */
2186 fep->link = 1;
2187 } else {
2188 fep->link = 1; /* lets just try it and see */
2189 /* no phy, go full duplex, it's most likely a hub chip */
2190 fec_restart(dev, 1);
2191 }
2192
2193 netif_start_queue(dev);
2194 fep->opened = 1;
2195 return 0; /* Success */
2196}
2197
2198static int
2199fec_enet_close(struct net_device *dev)
2200{
2201 struct fec_enet_private *fep = netdev_priv(dev);
2202
2203 /* Don't know what to do yet.
2204 */
2205 fep->opened = 0;
2206 netif_stop_queue(dev);
2207 fec_stop(dev);
2208
2209 return 0;
2210}
2211
1da177e4
LT
2212/* Set or clear the multicast filter for this adaptor.
2213 * Skeleton taken from sunlance driver.
2214 * The CPM Ethernet implementation allows Multicast as well as individual
2215 * MAC address filtering. Some of the drivers check to make sure it is
2216 * a group multicast address, and discard those that are not. I guess I
2217 * will do the same for now, but just remove the test if you want
2218 * individual filtering as well (do the upper net layers want or support
2219 * this kind of feature?).
2220 */
2221
2222#define HASH_BITS 6 /* #bits in hash */
2223#define CRC32_POLY 0xEDB88320
2224
2225static void set_multicast_list(struct net_device *dev)
2226{
2227 struct fec_enet_private *fep;
2228 volatile fec_t *ep;
2229 struct dev_mc_list *dmi;
2230 unsigned int i, j, bit, data, crc;
2231 unsigned char hash;
2232
2233 fep = netdev_priv(dev);
2234 ep = fep->hwp;
2235
2236 if (dev->flags&IFF_PROMISC) {
1da177e4
LT
2237 ep->fec_r_cntrl |= 0x0008;
2238 } else {
2239
2240 ep->fec_r_cntrl &= ~0x0008;
2241
2242 if (dev->flags & IFF_ALLMULTI) {
2243 /* Catch all multicast addresses, so set the
2244 * filter to all 1's.
2245 */
cc462f7d
GU
2246 ep->fec_grp_hash_table_high = 0xffffffff;
2247 ep->fec_grp_hash_table_low = 0xffffffff;
1da177e4
LT
2248 } else {
2249 /* Clear filter and add the addresses in hash register.
2250 */
cc462f7d
GU
2251 ep->fec_grp_hash_table_high = 0;
2252 ep->fec_grp_hash_table_low = 0;
6aa20a22 2253
1da177e4
LT
2254 dmi = dev->mc_list;
2255
2256 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
2257 {
2258 /* Only support group multicast for now.
2259 */
2260 if (!(dmi->dmi_addr[0] & 1))
2261 continue;
6aa20a22 2262
1da177e4
LT
2263 /* calculate crc32 value of mac address
2264 */
2265 crc = 0xffffffff;
2266
2267 for (i = 0; i < dmi->dmi_addrlen; i++)
2268 {
2269 data = dmi->dmi_addr[i];
2270 for (bit = 0; bit < 8; bit++, data >>= 1)
2271 {
2272 crc = (crc >> 1) ^
2273 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2274 }
2275 }
2276
2277 /* only upper 6 bits (HASH_BITS) are used
2278 which point to specific bit in he hash registers
2279 */
2280 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
6aa20a22 2281
1da177e4 2282 if (hash > 31)
cc462f7d 2283 ep->fec_grp_hash_table_high |= 1 << (hash - 32);
1da177e4 2284 else
cc462f7d 2285 ep->fec_grp_hash_table_low |= 1 << hash;
1da177e4
LT
2286 }
2287 }
2288 }
2289}
2290
2291/* Set a MAC change in hardware.
2292 */
2293static void
2294fec_set_mac_address(struct net_device *dev)
2295{
1da177e4
LT
2296 volatile fec_t *fecp;
2297
7dd6a2aa 2298 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
1da177e4
LT
2299
2300 /* Set station address. */
7dd6a2aa
GU
2301 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
2302 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
2303 fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
2304 (dev->dev_addr[4] << 24);
1da177e4
LT
2305
2306}
2307
2308/* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2309 */
2310 /*
2311 * XXX: We need to clean up on failure exits here.
2312 */
2313int __init fec_enet_init(struct net_device *dev)
2314{
2315 struct fec_enet_private *fep = netdev_priv(dev);
2316 unsigned long mem_addr;
2317 volatile cbd_t *bdp;
2318 cbd_t *cbd_base;
2319 volatile fec_t *fecp;
2320 int i, j;
2321 static int index = 0;
2322
2323 /* Only allow us to be probed once. */
2324 if (index >= FEC_MAX_PORTS)
2325 return -ENXIO;
2326
562d2f8c
GU
2327 /* Allocate memory for buffer descriptors.
2328 */
2329 mem_addr = __get_free_page(GFP_KERNEL);
2330 if (mem_addr == 0) {
2331 printk("FEC: allocate descriptor memory failed?\n");
2332 return -ENOMEM;
2333 }
2334
1da177e4
LT
2335 /* Create an Ethernet device instance.
2336 */
2337 fecp = (volatile fec_t *) fec_hw[index];
2338
2339 fep->index = index;
2340 fep->hwp = fecp;
cb84d6e7 2341 fep->netdev = dev;
1da177e4
LT
2342
2343 /* Whack a reset. We should wait for this.
2344 */
2345 fecp->fec_ecntrl = 1;
2346 udelay(10);
2347
1da177e4
LT
2348 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2349 * this needs some work to get unique addresses.
2350 *
2351 * This is our default MAC address unless the user changes
2352 * it via eth_mac_addr (our dev->set_mac_addr handler).
2353 */
2354 fec_get_mac(dev);
2355
1da177e4
LT
2356 cbd_base = (cbd_t *)mem_addr;
2357 /* XXX: missing check for allocation failure */
2358
2359 fec_uncache(mem_addr);
2360
2361 /* Set receive and transmit descriptor base.
2362 */
2363 fep->rx_bd_base = cbd_base;
2364 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2365
2366 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2367 fep->cur_rx = fep->rx_bd_base;
2368
2369 fep->skb_cur = fep->skb_dirty = 0;
2370
2371 /* Initialize the receive buffer descriptors.
2372 */
2373 bdp = fep->rx_bd_base;
2374 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2375
2376 /* Allocate a page.
2377 */
2378 mem_addr = __get_free_page(GFP_KERNEL);
2379 /* XXX: missing check for allocation failure */
2380
2381 fec_uncache(mem_addr);
2382
2383 /* Initialize the BD for every fragment in the page.
2384 */
2385 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2386 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2387 bdp->cbd_bufaddr = __pa(mem_addr);
2388 mem_addr += FEC_ENET_RX_FRSIZE;
2389 bdp++;
2390 }
2391 }
2392
2393 /* Set the last buffer to wrap.
2394 */
2395 bdp--;
2396 bdp->cbd_sc |= BD_SC_WRAP;
2397
2398 /* ...and the same for transmmit.
2399 */
2400 bdp = fep->tx_bd_base;
2401 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2402 if (j >= FEC_ENET_TX_FRPPG) {
2403 mem_addr = __get_free_page(GFP_KERNEL);
2404 j = 1;
2405 } else {
2406 mem_addr += FEC_ENET_TX_FRSIZE;
2407 j++;
2408 }
2409 fep->tx_bounce[i] = (unsigned char *) mem_addr;
2410
2411 /* Initialize the BD for every fragment in the page.
2412 */
2413 bdp->cbd_sc = 0;
2414 bdp->cbd_bufaddr = 0;
2415 bdp++;
2416 }
2417
2418 /* Set the last buffer to wrap.
2419 */
2420 bdp--;
2421 bdp->cbd_sc |= BD_SC_WRAP;
2422
2423 /* Set receive and transmit descriptor base.
2424 */
2425 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2426 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2427
2428 /* Install our interrupt handlers. This varies depending on
2429 * the architecture.
2430 */
2431 fec_request_intrs(dev);
2432
cc462f7d
GU
2433 fecp->fec_grp_hash_table_high = 0;
2434 fecp->fec_grp_hash_table_low = 0;
562d2f8c
GU
2435 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2436 fecp->fec_ecntrl = 2;
6b265293 2437 fecp->fec_r_des_active = 0;
cc462f7d
GU
2438#ifndef CONFIG_M5272
2439 fecp->fec_hash_table_high = 0;
2440 fecp->fec_hash_table_low = 0;
2441#endif
562d2f8c 2442
1da177e4
LT
2443 dev->base_addr = (unsigned long)fecp;
2444
2445 /* The FEC Ethernet specific entries in the device structure. */
2446 dev->open = fec_enet_open;
2447 dev->hard_start_xmit = fec_enet_start_xmit;
2448 dev->tx_timeout = fec_timeout;
2449 dev->watchdog_timeo = TX_TIMEOUT;
2450 dev->stop = fec_enet_close;
1da177e4
LT
2451 dev->set_multicast_list = set_multicast_list;
2452
2453 for (i=0; i<NMII-1; i++)
2454 mii_cmds[i].mii_next = &mii_cmds[i+1];
2455 mii_free = mii_cmds;
2456
2457 /* setup MII interface */
2458 fec_set_mii(dev, fep);
2459
6b265293
MW
2460 /* Clear and enable interrupts */
2461 fecp->fec_ievent = 0xffc00000;
2462 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2463 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2464
1da177e4
LT
2465 /* Queue up command to detect the PHY and initialize the
2466 * remainder of the interface.
2467 */
2468 fep->phy_id_done = 0;
2469 fep->phy_addr = 0;
2470 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2471
2472 index++;
2473 return 0;
2474}
2475
2476/* This function is called to start or restart the FEC during a link
2477 * change. This only happens when switching between half and full
2478 * duplex.
2479 */
2480static void
2481fec_restart(struct net_device *dev, int duplex)
2482{
2483 struct fec_enet_private *fep;
2484 volatile cbd_t *bdp;
2485 volatile fec_t *fecp;
2486 int i;
2487
2488 fep = netdev_priv(dev);
2489 fecp = fep->hwp;
2490
2491 /* Whack a reset. We should wait for this.
2492 */
2493 fecp->fec_ecntrl = 1;
2494 udelay(10);
2495
1da177e4
LT
2496 /* Clear any outstanding interrupt.
2497 */
7dd6a2aa 2498 fecp->fec_ievent = 0xffc00000;
1da177e4
LT
2499 fec_enable_phy_intr();
2500
2501 /* Set station address.
2502 */
7dd6a2aa 2503 fec_set_mac_address(dev);
1da177e4
LT
2504
2505 /* Reset all multicast.
2506 */
cc462f7d
GU
2507 fecp->fec_grp_hash_table_high = 0;
2508 fecp->fec_grp_hash_table_low = 0;
1da177e4
LT
2509
2510 /* Set maximum receive buffer size.
2511 */
2512 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2513
2514 fec_localhw_setup();
2515
2516 /* Set receive and transmit descriptor base.
2517 */
2518 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2519 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2520
2521 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2522 fep->cur_rx = fep->rx_bd_base;
2523
2524 /* Reset SKB transmit buffers.
2525 */
2526 fep->skb_cur = fep->skb_dirty = 0;
2527 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2528 if (fep->tx_skbuff[i] != NULL) {
2529 dev_kfree_skb_any(fep->tx_skbuff[i]);
2530 fep->tx_skbuff[i] = NULL;
2531 }
2532 }
2533
2534 /* Initialize the receive buffer descriptors.
2535 */
2536 bdp = fep->rx_bd_base;
2537 for (i=0; i<RX_RING_SIZE; i++) {
2538
2539 /* Initialize the BD for every fragment in the page.
2540 */
2541 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2542 bdp++;
2543 }
2544
2545 /* Set the last buffer to wrap.
2546 */
2547 bdp--;
2548 bdp->cbd_sc |= BD_SC_WRAP;
2549
2550 /* ...and the same for transmmit.
2551 */
2552 bdp = fep->tx_bd_base;
2553 for (i=0; i<TX_RING_SIZE; i++) {
2554
2555 /* Initialize the BD for every fragment in the page.
2556 */
2557 bdp->cbd_sc = 0;
2558 bdp->cbd_bufaddr = 0;
2559 bdp++;
2560 }
2561
2562 /* Set the last buffer to wrap.
2563 */
2564 bdp--;
2565 bdp->cbd_sc |= BD_SC_WRAP;
2566
2567 /* Enable MII mode.
2568 */
2569 if (duplex) {
2570 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2571 fecp->fec_x_cntrl = 0x04; /* FD enable */
f909b1ef 2572 } else {
1da177e4
LT
2573 /* MII enable|No Rcv on Xmit */
2574 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2575 fecp->fec_x_cntrl = 0x00;
2576 }
2577 fep->full_duplex = duplex;
2578
2579 /* Set MII speed.
2580 */
2581 fecp->fec_mii_speed = fep->phy_speed;
2582
2583 /* And last, enable the transmit and receive processing.
2584 */
2585 fecp->fec_ecntrl = 2;
6b265293
MW
2586 fecp->fec_r_des_active = 0;
2587
2588 /* Enable interrupts we wish to service.
2589 */
2590 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2591 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
1da177e4
LT
2592}
2593
2594static void
2595fec_stop(struct net_device *dev)
2596{
2597 volatile fec_t *fecp;
2598 struct fec_enet_private *fep;
2599
2600 fep = netdev_priv(dev);
2601 fecp = fep->hwp;
2602
677177c5
PDM
2603 /*
2604 ** We cannot expect a graceful transmit stop without link !!!
2605 */
2606 if (fep->link)
2607 {
2608 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
2609 udelay(10);
2610 if (!(fecp->fec_ievent & FEC_ENET_GRA))
2611 printk("fec_stop : Graceful transmit stop did not complete !\n");
2612 }
1da177e4
LT
2613
2614 /* Whack a reset. We should wait for this.
2615 */
2616 fecp->fec_ecntrl = 1;
2617 udelay(10);
2618
2619 /* Clear outstanding MII command interrupts.
2620 */
2621 fecp->fec_ievent = FEC_ENET_MII;
2622 fec_enable_phy_intr();
2623
2624 fecp->fec_imask = FEC_ENET_MII;
2625 fecp->fec_mii_speed = fep->phy_speed;
2626}
2627
2628static int __init fec_enet_module_init(void)
2629{
2630 struct net_device *dev;
7dd6a2aa 2631 int i, j, err;
0795af57 2632 DECLARE_MAC_BUF(mac);
7dd6a2aa
GU
2633
2634 printk("FEC ENET Version 0.2\n");
1da177e4
LT
2635
2636 for (i = 0; (i < FEC_MAX_PORTS); i++) {
2637 dev = alloc_etherdev(sizeof(struct fec_enet_private));
2638 if (!dev)
2639 return -ENOMEM;
2640 err = fec_enet_init(dev);
2641 if (err) {
2642 free_netdev(dev);
2643 continue;
2644 }
2645 if (register_netdev(dev) != 0) {
2646 /* XXX: missing cleanup here */
2647 free_netdev(dev);
2648 return -EIO;
2649 }
7dd6a2aa 2650
0795af57
JP
2651 printk("%s: ethernet %s\n",
2652 dev->name, print_mac(mac, dev->dev_addr));
1da177e4
LT
2653 }
2654 return 0;
2655}
2656
2657module_init(fec_enet_module_init);
2658
2659MODULE_LICENSE("GPL");