]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/e1000e/netdev.c
e1000e: add support for 82583 device id
[net-next-2.6.git] / drivers / net / e1000e / netdev.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
ad68076e 4 Copyright(c) 1999 - 2008 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/delay.h>
36#include <linux/netdevice.h>
37#include <linux/tcp.h>
38#include <linux/ipv6.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if_vlan.h>
44#include <linux/cpu.h>
45#include <linux/smp.h>
97ac8cae 46#include <linux/pm_qos_params.h>
111b9dc5 47#include <linux/aer.h>
bc7f75fa
AK
48
49#include "e1000.h"
50
92af3e95 51#define DRV_VERSION "0.3.3.4-k2"
bc7f75fa
AK
52char e1000e_driver_name[] = "e1000e";
53const char e1000e_driver_version[] = DRV_VERSION;
54
55static const struct e1000_info *e1000_info_tbl[] = {
56 [board_82571] = &e1000_82571_info,
57 [board_82572] = &e1000_82572_info,
58 [board_82573] = &e1000_82573_info,
4662e82b 59 [board_82574] = &e1000_82574_info,
8c81c9c3 60 [board_82583] = &e1000_82583_info,
bc7f75fa
AK
61 [board_80003es2lan] = &e1000_es2_info,
62 [board_ich8lan] = &e1000_ich8_info,
63 [board_ich9lan] = &e1000_ich9_info,
f4187b56 64 [board_ich10lan] = &e1000_ich10_info,
bc7f75fa
AK
65};
66
67#ifdef DEBUG
68/**
69 * e1000_get_hw_dev_name - return device name string
70 * used by hardware layer to print debugging information
71 **/
72char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
73{
589c085f 74 return hw->adapter->netdev->name;
bc7f75fa
AK
75}
76#endif
77
78/**
79 * e1000_desc_unused - calculate if we have unused descriptors
80 **/
81static int e1000_desc_unused(struct e1000_ring *ring)
82{
83 if (ring->next_to_clean > ring->next_to_use)
84 return ring->next_to_clean - ring->next_to_use - 1;
85
86 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
87}
88
89/**
ad68076e 90 * e1000_receive_skb - helper function to handle Rx indications
bc7f75fa
AK
91 * @adapter: board private structure
92 * @status: descriptor status field as written by hardware
93 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
94 * @skb: pointer to sk_buff to be indicated to stack
95 **/
96static void e1000_receive_skb(struct e1000_adapter *adapter,
97 struct net_device *netdev,
98 struct sk_buff *skb,
a39fe742 99 u8 status, __le16 vlan)
bc7f75fa
AK
100{
101 skb->protocol = eth_type_trans(skb, netdev);
102
103 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
c405b828
HX
104 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
105 le16_to_cpu(vlan), skb);
bc7f75fa 106 else
89c88b16 107 napi_gro_receive(&adapter->napi, skb);
bc7f75fa
AK
108}
109
110/**
111 * e1000_rx_checksum - Receive Checksum Offload for 82543
112 * @adapter: board private structure
113 * @status_err: receive descriptor status and error fields
114 * @csum: receive descriptor csum field
115 * @sk_buff: socket buffer with received data
116 **/
117static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
118 u32 csum, struct sk_buff *skb)
119{
120 u16 status = (u16)status_err;
121 u8 errors = (u8)(status_err >> 24);
122 skb->ip_summed = CHECKSUM_NONE;
123
124 /* Ignore Checksum bit is set */
125 if (status & E1000_RXD_STAT_IXSM)
126 return;
127 /* TCP/UDP checksum error bit is set */
128 if (errors & E1000_RXD_ERR_TCPE) {
129 /* let the stack verify checksum errors */
130 adapter->hw_csum_err++;
131 return;
132 }
133
134 /* TCP/UDP Checksum has not been calculated */
135 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
136 return;
137
138 /* It must be a TCP or UDP packet with a valid checksum */
139 if (status & E1000_RXD_STAT_TCPCS) {
140 /* TCP checksum is good */
141 skb->ip_summed = CHECKSUM_UNNECESSARY;
142 } else {
ad68076e
BA
143 /*
144 * IP fragment with UDP payload
145 * Hardware complements the payload checksum, so we undo it
bc7f75fa
AK
146 * and then put the value in host order for further stack use.
147 */
a39fe742
AV
148 __sum16 sum = (__force __sum16)htons(csum);
149 skb->csum = csum_unfold(~sum);
bc7f75fa
AK
150 skb->ip_summed = CHECKSUM_COMPLETE;
151 }
152 adapter->hw_csum_good++;
153}
154
155/**
156 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
157 * @adapter: address of board private structure
158 **/
159static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
160 int cleaned_count)
161{
162 struct net_device *netdev = adapter->netdev;
163 struct pci_dev *pdev = adapter->pdev;
164 struct e1000_ring *rx_ring = adapter->rx_ring;
165 struct e1000_rx_desc *rx_desc;
166 struct e1000_buffer *buffer_info;
167 struct sk_buff *skb;
168 unsigned int i;
169 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
170
171 i = rx_ring->next_to_use;
172 buffer_info = &rx_ring->buffer_info[i];
173
174 while (cleaned_count--) {
175 skb = buffer_info->skb;
176 if (skb) {
177 skb_trim(skb, 0);
178 goto map_skb;
179 }
180
181 skb = netdev_alloc_skb(netdev, bufsz);
182 if (!skb) {
183 /* Better luck next round */
184 adapter->alloc_rx_buff_failed++;
185 break;
186 }
187
ad68076e
BA
188 /*
189 * Make buffer alignment 2 beyond a 16 byte boundary
bc7f75fa
AK
190 * this will result in a 16 byte aligned IP header after
191 * the 14 byte MAC header is removed
192 */
193 skb_reserve(skb, NET_IP_ALIGN);
194
195 buffer_info->skb = skb;
196map_skb:
197 buffer_info->dma = pci_map_single(pdev, skb->data,
198 adapter->rx_buffer_len,
199 PCI_DMA_FROMDEVICE);
8d8bb39b 200 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
bc7f75fa
AK
201 dev_err(&pdev->dev, "RX DMA map failed\n");
202 adapter->rx_dma_failed++;
203 break;
204 }
205
206 rx_desc = E1000_RX_DESC(*rx_ring, i);
207 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
208
209 i++;
210 if (i == rx_ring->count)
211 i = 0;
212 buffer_info = &rx_ring->buffer_info[i];
213 }
214
215 if (rx_ring->next_to_use != i) {
216 rx_ring->next_to_use = i;
217 if (i-- == 0)
218 i = (rx_ring->count - 1);
219
ad68076e
BA
220 /*
221 * Force memory writes to complete before letting h/w
bc7f75fa
AK
222 * know there are new descriptors to fetch. (Only
223 * applicable for weak-ordered memory model archs,
ad68076e
BA
224 * such as IA-64).
225 */
bc7f75fa
AK
226 wmb();
227 writel(i, adapter->hw.hw_addr + rx_ring->tail);
228 }
229}
230
231/**
232 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
233 * @adapter: address of board private structure
234 **/
235static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
236 int cleaned_count)
237{
238 struct net_device *netdev = adapter->netdev;
239 struct pci_dev *pdev = adapter->pdev;
240 union e1000_rx_desc_packet_split *rx_desc;
241 struct e1000_ring *rx_ring = adapter->rx_ring;
242 struct e1000_buffer *buffer_info;
243 struct e1000_ps_page *ps_page;
244 struct sk_buff *skb;
245 unsigned int i, j;
246
247 i = rx_ring->next_to_use;
248 buffer_info = &rx_ring->buffer_info[i];
249
250 while (cleaned_count--) {
251 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
252
253 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40
AK
254 ps_page = &buffer_info->ps_pages[j];
255 if (j >= adapter->rx_ps_pages) {
256 /* all unused desc entries get hw null ptr */
a39fe742 257 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
47f44e40
AK
258 continue;
259 }
260 if (!ps_page->page) {
261 ps_page->page = alloc_page(GFP_ATOMIC);
bc7f75fa 262 if (!ps_page->page) {
47f44e40
AK
263 adapter->alloc_rx_buff_failed++;
264 goto no_buffers;
265 }
266 ps_page->dma = pci_map_page(pdev,
267 ps_page->page,
268 0, PAGE_SIZE,
269 PCI_DMA_FROMDEVICE);
8d8bb39b 270 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
47f44e40
AK
271 dev_err(&adapter->pdev->dev,
272 "RX DMA page map failed\n");
273 adapter->rx_dma_failed++;
274 goto no_buffers;
bc7f75fa 275 }
bc7f75fa 276 }
47f44e40
AK
277 /*
278 * Refresh the desc even if buffer_addrs
279 * didn't change because each write-back
280 * erases this info.
281 */
282 rx_desc->read.buffer_addr[j+1] =
283 cpu_to_le64(ps_page->dma);
bc7f75fa
AK
284 }
285
286 skb = netdev_alloc_skb(netdev,
287 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
288
289 if (!skb) {
290 adapter->alloc_rx_buff_failed++;
291 break;
292 }
293
ad68076e
BA
294 /*
295 * Make buffer alignment 2 beyond a 16 byte boundary
bc7f75fa
AK
296 * this will result in a 16 byte aligned IP header after
297 * the 14 byte MAC header is removed
298 */
299 skb_reserve(skb, NET_IP_ALIGN);
300
301 buffer_info->skb = skb;
302 buffer_info->dma = pci_map_single(pdev, skb->data,
303 adapter->rx_ps_bsize0,
304 PCI_DMA_FROMDEVICE);
8d8bb39b 305 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
bc7f75fa
AK
306 dev_err(&pdev->dev, "RX DMA map failed\n");
307 adapter->rx_dma_failed++;
308 /* cleanup skb */
309 dev_kfree_skb_any(skb);
310 buffer_info->skb = NULL;
311 break;
312 }
313
314 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
315
316 i++;
317 if (i == rx_ring->count)
318 i = 0;
319 buffer_info = &rx_ring->buffer_info[i];
320 }
321
322no_buffers:
323 if (rx_ring->next_to_use != i) {
324 rx_ring->next_to_use = i;
325
326 if (!(i--))
327 i = (rx_ring->count - 1);
328
ad68076e
BA
329 /*
330 * Force memory writes to complete before letting h/w
bc7f75fa
AK
331 * know there are new descriptors to fetch. (Only
332 * applicable for weak-ordered memory model archs,
ad68076e
BA
333 * such as IA-64).
334 */
bc7f75fa 335 wmb();
ad68076e
BA
336 /*
337 * Hardware increments by 16 bytes, but packet split
bc7f75fa
AK
338 * descriptors are 32 bytes...so we increment tail
339 * twice as much.
340 */
341 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
342 }
343}
344
97ac8cae
BA
345/**
346 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
347 * @adapter: address of board private structure
97ac8cae
BA
348 * @cleaned_count: number of buffers to allocate this pass
349 **/
350
351static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
352 int cleaned_count)
353{
354 struct net_device *netdev = adapter->netdev;
355 struct pci_dev *pdev = adapter->pdev;
356 struct e1000_rx_desc *rx_desc;
357 struct e1000_ring *rx_ring = adapter->rx_ring;
358 struct e1000_buffer *buffer_info;
359 struct sk_buff *skb;
360 unsigned int i;
361 unsigned int bufsz = 256 -
362 16 /* for skb_reserve */ -
363 NET_IP_ALIGN;
364
365 i = rx_ring->next_to_use;
366 buffer_info = &rx_ring->buffer_info[i];
367
368 while (cleaned_count--) {
369 skb = buffer_info->skb;
370 if (skb) {
371 skb_trim(skb, 0);
372 goto check_page;
373 }
374
375 skb = netdev_alloc_skb(netdev, bufsz);
376 if (unlikely(!skb)) {
377 /* Better luck next round */
378 adapter->alloc_rx_buff_failed++;
379 break;
380 }
381
382 /* Make buffer alignment 2 beyond a 16 byte boundary
383 * this will result in a 16 byte aligned IP header after
384 * the 14 byte MAC header is removed
385 */
386 skb_reserve(skb, NET_IP_ALIGN);
387
388 buffer_info->skb = skb;
389check_page:
390 /* allocate a new page if necessary */
391 if (!buffer_info->page) {
392 buffer_info->page = alloc_page(GFP_ATOMIC);
393 if (unlikely(!buffer_info->page)) {
394 adapter->alloc_rx_buff_failed++;
395 break;
396 }
397 }
398
399 if (!buffer_info->dma)
400 buffer_info->dma = pci_map_page(pdev,
401 buffer_info->page, 0,
402 PAGE_SIZE,
403 PCI_DMA_FROMDEVICE);
404
405 rx_desc = E1000_RX_DESC(*rx_ring, i);
406 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
407
408 if (unlikely(++i == rx_ring->count))
409 i = 0;
410 buffer_info = &rx_ring->buffer_info[i];
411 }
412
413 if (likely(rx_ring->next_to_use != i)) {
414 rx_ring->next_to_use = i;
415 if (unlikely(i-- == 0))
416 i = (rx_ring->count - 1);
417
418 /* Force memory writes to complete before letting h/w
419 * know there are new descriptors to fetch. (Only
420 * applicable for weak-ordered memory model archs,
421 * such as IA-64). */
422 wmb();
423 writel(i, adapter->hw.hw_addr + rx_ring->tail);
424 }
425}
426
bc7f75fa
AK
427/**
428 * e1000_clean_rx_irq - Send received data up the network stack; legacy
429 * @adapter: board private structure
430 *
431 * the return value indicates whether actual cleaning was done, there
432 * is no guarantee that everything was cleaned
433 **/
434static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
435 int *work_done, int work_to_do)
436{
437 struct net_device *netdev = adapter->netdev;
438 struct pci_dev *pdev = adapter->pdev;
439 struct e1000_ring *rx_ring = adapter->rx_ring;
440 struct e1000_rx_desc *rx_desc, *next_rxd;
441 struct e1000_buffer *buffer_info, *next_buffer;
442 u32 length;
443 unsigned int i;
444 int cleaned_count = 0;
445 bool cleaned = 0;
446 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
447
448 i = rx_ring->next_to_clean;
449 rx_desc = E1000_RX_DESC(*rx_ring, i);
450 buffer_info = &rx_ring->buffer_info[i];
451
452 while (rx_desc->status & E1000_RXD_STAT_DD) {
453 struct sk_buff *skb;
454 u8 status;
455
456 if (*work_done >= work_to_do)
457 break;
458 (*work_done)++;
459
460 status = rx_desc->status;
461 skb = buffer_info->skb;
462 buffer_info->skb = NULL;
463
464 prefetch(skb->data - NET_IP_ALIGN);
465
466 i++;
467 if (i == rx_ring->count)
468 i = 0;
469 next_rxd = E1000_RX_DESC(*rx_ring, i);
470 prefetch(next_rxd);
471
472 next_buffer = &rx_ring->buffer_info[i];
473
474 cleaned = 1;
475 cleaned_count++;
476 pci_unmap_single(pdev,
477 buffer_info->dma,
478 adapter->rx_buffer_len,
479 PCI_DMA_FROMDEVICE);
480 buffer_info->dma = 0;
481
482 length = le16_to_cpu(rx_desc->length);
483
484 /* !EOP means multiple descriptors were used to store a single
485 * packet, also make sure the frame isn't just CRC only */
486 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
487 /* All receives must fit into a single buffer */
44defeb3
JK
488 e_dbg("%s: Receive packet consumed multiple buffers\n",
489 netdev->name);
bc7f75fa
AK
490 /* recycle */
491 buffer_info->skb = skb;
492 goto next_desc;
493 }
494
495 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
496 /* recycle */
497 buffer_info->skb = skb;
498 goto next_desc;
499 }
500
eb7c3adb
JK
501 /* adjust length to remove Ethernet CRC */
502 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
503 length -= 4;
504
bc7f75fa
AK
505 total_rx_bytes += length;
506 total_rx_packets++;
507
ad68076e
BA
508 /*
509 * code added for copybreak, this should improve
bc7f75fa 510 * performance for small packets with large amounts
ad68076e
BA
511 * of reassembly being done in the stack
512 */
bc7f75fa
AK
513 if (length < copybreak) {
514 struct sk_buff *new_skb =
515 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
516 if (new_skb) {
517 skb_reserve(new_skb, NET_IP_ALIGN);
808ff676
BA
518 skb_copy_to_linear_data_offset(new_skb,
519 -NET_IP_ALIGN,
520 (skb->data -
521 NET_IP_ALIGN),
522 (length +
523 NET_IP_ALIGN));
bc7f75fa
AK
524 /* save the skb in buffer_info as good */
525 buffer_info->skb = skb;
526 skb = new_skb;
527 }
528 /* else just continue with the old one */
529 }
530 /* end copybreak code */
531 skb_put(skb, length);
532
533 /* Receive Checksum Offload */
534 e1000_rx_checksum(adapter,
535 (u32)(status) |
536 ((u32)(rx_desc->errors) << 24),
537 le16_to_cpu(rx_desc->csum), skb);
538
539 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
540
541next_desc:
542 rx_desc->status = 0;
543
544 /* return some buffers to hardware, one at a time is too slow */
545 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
546 adapter->alloc_rx_buf(adapter, cleaned_count);
547 cleaned_count = 0;
548 }
549
550 /* use prefetched values */
551 rx_desc = next_rxd;
552 buffer_info = next_buffer;
553 }
554 rx_ring->next_to_clean = i;
555
556 cleaned_count = e1000_desc_unused(rx_ring);
557 if (cleaned_count)
558 adapter->alloc_rx_buf(adapter, cleaned_count);
559
bc7f75fa 560 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 561 adapter->total_rx_packets += total_rx_packets;
41988692 562 adapter->net_stats.rx_bytes += total_rx_bytes;
7c25769f 563 adapter->net_stats.rx_packets += total_rx_packets;
bc7f75fa
AK
564 return cleaned;
565}
566
bc7f75fa
AK
567static void e1000_put_txbuf(struct e1000_adapter *adapter,
568 struct e1000_buffer *buffer_info)
569{
8ddc951c 570 buffer_info->dma = 0;
bc7f75fa 571 if (buffer_info->skb) {
8ddc951c
JB
572 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
573 DMA_TO_DEVICE);
bc7f75fa
AK
574 dev_kfree_skb_any(buffer_info->skb);
575 buffer_info->skb = NULL;
576 }
577}
578
579static void e1000_print_tx_hang(struct e1000_adapter *adapter)
580{
581 struct e1000_ring *tx_ring = adapter->tx_ring;
582 unsigned int i = tx_ring->next_to_clean;
583 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
584 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
bc7f75fa
AK
585
586 /* detected Tx unit hang */
44defeb3
JK
587 e_err("Detected Tx Unit Hang:\n"
588 " TDH <%x>\n"
589 " TDT <%x>\n"
590 " next_to_use <%x>\n"
591 " next_to_clean <%x>\n"
592 "buffer_info[next_to_clean]:\n"
593 " time_stamp <%lx>\n"
594 " next_to_watch <%x>\n"
595 " jiffies <%lx>\n"
596 " next_to_watch.status <%x>\n",
597 readl(adapter->hw.hw_addr + tx_ring->head),
598 readl(adapter->hw.hw_addr + tx_ring->tail),
599 tx_ring->next_to_use,
600 tx_ring->next_to_clean,
601 tx_ring->buffer_info[eop].time_stamp,
602 eop,
603 jiffies,
604 eop_desc->upper.fields.status);
bc7f75fa
AK
605}
606
607/**
608 * e1000_clean_tx_irq - Reclaim resources after transmit completes
609 * @adapter: board private structure
610 *
611 * the return value indicates whether actual cleaning was done, there
612 * is no guarantee that everything was cleaned
613 **/
614static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
615{
616 struct net_device *netdev = adapter->netdev;
617 struct e1000_hw *hw = &adapter->hw;
618 struct e1000_ring *tx_ring = adapter->tx_ring;
619 struct e1000_tx_desc *tx_desc, *eop_desc;
620 struct e1000_buffer *buffer_info;
621 unsigned int i, eop;
622 unsigned int count = 0;
623 bool cleaned = 0;
624 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
625
626 i = tx_ring->next_to_clean;
627 eop = tx_ring->buffer_info[i].next_to_watch;
628 eop_desc = E1000_TX_DESC(*tx_ring, eop);
629
630 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
631 for (cleaned = 0; !cleaned; ) {
632 tx_desc = E1000_TX_DESC(*tx_ring, i);
633 buffer_info = &tx_ring->buffer_info[i];
634 cleaned = (i == eop);
635
636 if (cleaned) {
637 struct sk_buff *skb = buffer_info->skb;
638 unsigned int segs, bytecount;
639 segs = skb_shinfo(skb)->gso_segs ?: 1;
640 /* multiply data chunks by size of headers */
641 bytecount = ((segs - 1) * skb_headlen(skb)) +
642 skb->len;
643 total_tx_packets += segs;
644 total_tx_bytes += bytecount;
645 }
646
647 e1000_put_txbuf(adapter, buffer_info);
648 tx_desc->upper.data = 0;
649
650 i++;
651 if (i == tx_ring->count)
652 i = 0;
653 }
654
655 eop = tx_ring->buffer_info[i].next_to_watch;
656 eop_desc = E1000_TX_DESC(*tx_ring, eop);
657#define E1000_TX_WEIGHT 64
658 /* weight of a sort for tx, to avoid endless transmit cleanup */
659 if (count++ == E1000_TX_WEIGHT)
660 break;
661 }
662
663 tx_ring->next_to_clean = i;
664
665#define TX_WAKE_THRESHOLD 32
666 if (cleaned && netif_carrier_ok(netdev) &&
667 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
668 /* Make sure that anybody stopping the queue after this
669 * sees the new next_to_clean.
670 */
671 smp_mb();
672
673 if (netif_queue_stopped(netdev) &&
674 !(test_bit(__E1000_DOWN, &adapter->state))) {
675 netif_wake_queue(netdev);
676 ++adapter->restart_queue;
677 }
678 }
679
680 if (adapter->detect_tx_hung) {
ad68076e
BA
681 /*
682 * Detect a transmit hang in hardware, this serializes the
683 * check with the clearing of time_stamp and movement of i
684 */
bc7f75fa 685 adapter->detect_tx_hung = 0;
8ddc951c
JB
686 /*
687 * read barrier to make sure that the ->dma member and time
688 * stamp are updated fully
689 */
690 smp_rmb();
bc7f75fa
AK
691 if (tx_ring->buffer_info[eop].dma &&
692 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
693 + (adapter->tx_timeout_factor * HZ))
ad68076e 694 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
bc7f75fa
AK
695 e1000_print_tx_hang(adapter);
696 netif_stop_queue(netdev);
697 }
698 }
699 adapter->total_tx_bytes += total_tx_bytes;
700 adapter->total_tx_packets += total_tx_packets;
41988692 701 adapter->net_stats.tx_bytes += total_tx_bytes;
7c25769f 702 adapter->net_stats.tx_packets += total_tx_packets;
bc7f75fa
AK
703 return cleaned;
704}
705
bc7f75fa
AK
706/**
707 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
708 * @adapter: board private structure
709 *
710 * the return value indicates whether actual cleaning was done, there
711 * is no guarantee that everything was cleaned
712 **/
713static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
714 int *work_done, int work_to_do)
715{
716 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
717 struct net_device *netdev = adapter->netdev;
718 struct pci_dev *pdev = adapter->pdev;
719 struct e1000_ring *rx_ring = adapter->rx_ring;
720 struct e1000_buffer *buffer_info, *next_buffer;
721 struct e1000_ps_page *ps_page;
722 struct sk_buff *skb;
723 unsigned int i, j;
724 u32 length, staterr;
725 int cleaned_count = 0;
726 bool cleaned = 0;
727 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
728
729 i = rx_ring->next_to_clean;
730 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
731 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
732 buffer_info = &rx_ring->buffer_info[i];
733
734 while (staterr & E1000_RXD_STAT_DD) {
735 if (*work_done >= work_to_do)
736 break;
737 (*work_done)++;
738 skb = buffer_info->skb;
739
740 /* in the packet split case this is header only */
741 prefetch(skb->data - NET_IP_ALIGN);
742
743 i++;
744 if (i == rx_ring->count)
745 i = 0;
746 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
747 prefetch(next_rxd);
748
749 next_buffer = &rx_ring->buffer_info[i];
750
751 cleaned = 1;
752 cleaned_count++;
753 pci_unmap_single(pdev, buffer_info->dma,
754 adapter->rx_ps_bsize0,
755 PCI_DMA_FROMDEVICE);
756 buffer_info->dma = 0;
757
758 if (!(staterr & E1000_RXD_STAT_EOP)) {
44defeb3
JK
759 e_dbg("%s: Packet Split buffers didn't pick up the "
760 "full packet\n", netdev->name);
bc7f75fa
AK
761 dev_kfree_skb_irq(skb);
762 goto next_desc;
763 }
764
765 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
766 dev_kfree_skb_irq(skb);
767 goto next_desc;
768 }
769
770 length = le16_to_cpu(rx_desc->wb.middle.length0);
771
772 if (!length) {
44defeb3
JK
773 e_dbg("%s: Last part of the packet spanning multiple "
774 "descriptors\n", netdev->name);
bc7f75fa
AK
775 dev_kfree_skb_irq(skb);
776 goto next_desc;
777 }
778
779 /* Good Receive */
780 skb_put(skb, length);
781
782 {
ad68076e
BA
783 /*
784 * this looks ugly, but it seems compiler issues make it
785 * more efficient than reusing j
786 */
bc7f75fa
AK
787 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
788
ad68076e
BA
789 /*
790 * page alloc/put takes too long and effects small packet
791 * throughput, so unsplit small packets and save the alloc/put
792 * only valid in softirq (napi) context to call kmap_*
793 */
bc7f75fa
AK
794 if (l1 && (l1 <= copybreak) &&
795 ((length + l1) <= adapter->rx_ps_bsize0)) {
796 u8 *vaddr;
797
47f44e40 798 ps_page = &buffer_info->ps_pages[0];
bc7f75fa 799
ad68076e
BA
800 /*
801 * there is no documentation about how to call
bc7f75fa 802 * kmap_atomic, so we can't hold the mapping
ad68076e
BA
803 * very long
804 */
bc7f75fa
AK
805 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
806 PAGE_SIZE, PCI_DMA_FROMDEVICE);
807 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
808 memcpy(skb_tail_pointer(skb), vaddr, l1);
809 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
810 pci_dma_sync_single_for_device(pdev, ps_page->dma,
811 PAGE_SIZE, PCI_DMA_FROMDEVICE);
140a7480 812
eb7c3adb
JK
813 /* remove the CRC */
814 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
815 l1 -= 4;
816
bc7f75fa
AK
817 skb_put(skb, l1);
818 goto copydone;
819 } /* if */
820 }
821
822 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
823 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
824 if (!length)
825 break;
826
47f44e40 827 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
828 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
829 PCI_DMA_FROMDEVICE);
830 ps_page->dma = 0;
831 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
832 ps_page->page = NULL;
833 skb->len += length;
834 skb->data_len += length;
835 skb->truesize += length;
836 }
837
eb7c3adb
JK
838 /* strip the ethernet crc, problem is we're using pages now so
839 * this whole operation can get a little cpu intensive
840 */
841 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
842 pskb_trim(skb, skb->len - 4);
843
bc7f75fa
AK
844copydone:
845 total_rx_bytes += skb->len;
846 total_rx_packets++;
847
848 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
849 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
850
851 if (rx_desc->wb.upper.header_status &
852 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
853 adapter->rx_hdr_split++;
854
855 e1000_receive_skb(adapter, netdev, skb,
856 staterr, rx_desc->wb.middle.vlan);
857
858next_desc:
859 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
860 buffer_info->skb = NULL;
861
862 /* return some buffers to hardware, one at a time is too slow */
863 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
864 adapter->alloc_rx_buf(adapter, cleaned_count);
865 cleaned_count = 0;
866 }
867
868 /* use prefetched values */
869 rx_desc = next_rxd;
870 buffer_info = next_buffer;
871
872 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
873 }
874 rx_ring->next_to_clean = i;
875
876 cleaned_count = e1000_desc_unused(rx_ring);
877 if (cleaned_count)
878 adapter->alloc_rx_buf(adapter, cleaned_count);
879
bc7f75fa 880 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 881 adapter->total_rx_packets += total_rx_packets;
41988692 882 adapter->net_stats.rx_bytes += total_rx_bytes;
7c25769f 883 adapter->net_stats.rx_packets += total_rx_packets;
bc7f75fa
AK
884 return cleaned;
885}
886
97ac8cae
BA
887/**
888 * e1000_consume_page - helper function
889 **/
890static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
891 u16 length)
892{
893 bi->page = NULL;
894 skb->len += length;
895 skb->data_len += length;
896 skb->truesize += length;
897}
898
899/**
900 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
901 * @adapter: board private structure
902 *
903 * the return value indicates whether actual cleaning was done, there
904 * is no guarantee that everything was cleaned
905 **/
906
907static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
908 int *work_done, int work_to_do)
909{
910 struct net_device *netdev = adapter->netdev;
911 struct pci_dev *pdev = adapter->pdev;
912 struct e1000_ring *rx_ring = adapter->rx_ring;
913 struct e1000_rx_desc *rx_desc, *next_rxd;
914 struct e1000_buffer *buffer_info, *next_buffer;
915 u32 length;
916 unsigned int i;
917 int cleaned_count = 0;
918 bool cleaned = false;
919 unsigned int total_rx_bytes=0, total_rx_packets=0;
920
921 i = rx_ring->next_to_clean;
922 rx_desc = E1000_RX_DESC(*rx_ring, i);
923 buffer_info = &rx_ring->buffer_info[i];
924
925 while (rx_desc->status & E1000_RXD_STAT_DD) {
926 struct sk_buff *skb;
927 u8 status;
928
929 if (*work_done >= work_to_do)
930 break;
931 (*work_done)++;
932
933 status = rx_desc->status;
934 skb = buffer_info->skb;
935 buffer_info->skb = NULL;
936
937 ++i;
938 if (i == rx_ring->count)
939 i = 0;
940 next_rxd = E1000_RX_DESC(*rx_ring, i);
941 prefetch(next_rxd);
942
943 next_buffer = &rx_ring->buffer_info[i];
944
945 cleaned = true;
946 cleaned_count++;
947 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
948 PCI_DMA_FROMDEVICE);
949 buffer_info->dma = 0;
950
951 length = le16_to_cpu(rx_desc->length);
952
953 /* errors is only valid for DD + EOP descriptors */
954 if (unlikely((status & E1000_RXD_STAT_EOP) &&
955 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
956 /* recycle both page and skb */
957 buffer_info->skb = skb;
958 /* an error means any chain goes out the window
959 * too */
960 if (rx_ring->rx_skb_top)
961 dev_kfree_skb(rx_ring->rx_skb_top);
962 rx_ring->rx_skb_top = NULL;
963 goto next_desc;
964 }
965
966#define rxtop rx_ring->rx_skb_top
967 if (!(status & E1000_RXD_STAT_EOP)) {
968 /* this descriptor is only the beginning (or middle) */
969 if (!rxtop) {
970 /* this is the beginning of a chain */
971 rxtop = skb;
972 skb_fill_page_desc(rxtop, 0, buffer_info->page,
973 0, length);
974 } else {
975 /* this is the middle of a chain */
976 skb_fill_page_desc(rxtop,
977 skb_shinfo(rxtop)->nr_frags,
978 buffer_info->page, 0, length);
979 /* re-use the skb, only consumed the page */
980 buffer_info->skb = skb;
981 }
982 e1000_consume_page(buffer_info, rxtop, length);
983 goto next_desc;
984 } else {
985 if (rxtop) {
986 /* end of the chain */
987 skb_fill_page_desc(rxtop,
988 skb_shinfo(rxtop)->nr_frags,
989 buffer_info->page, 0, length);
990 /* re-use the current skb, we only consumed the
991 * page */
992 buffer_info->skb = skb;
993 skb = rxtop;
994 rxtop = NULL;
995 e1000_consume_page(buffer_info, skb, length);
996 } else {
997 /* no chain, got EOP, this buf is the packet
998 * copybreak to save the put_page/alloc_page */
999 if (length <= copybreak &&
1000 skb_tailroom(skb) >= length) {
1001 u8 *vaddr;
1002 vaddr = kmap_atomic(buffer_info->page,
1003 KM_SKB_DATA_SOFTIRQ);
1004 memcpy(skb_tail_pointer(skb), vaddr,
1005 length);
1006 kunmap_atomic(vaddr,
1007 KM_SKB_DATA_SOFTIRQ);
1008 /* re-use the page, so don't erase
1009 * buffer_info->page */
1010 skb_put(skb, length);
1011 } else {
1012 skb_fill_page_desc(skb, 0,
1013 buffer_info->page, 0,
1014 length);
1015 e1000_consume_page(buffer_info, skb,
1016 length);
1017 }
1018 }
1019 }
1020
1021 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1022 e1000_rx_checksum(adapter,
1023 (u32)(status) |
1024 ((u32)(rx_desc->errors) << 24),
1025 le16_to_cpu(rx_desc->csum), skb);
1026
1027 /* probably a little skewed due to removing CRC */
1028 total_rx_bytes += skb->len;
1029 total_rx_packets++;
1030
1031 /* eth type trans needs skb->data to point to something */
1032 if (!pskb_may_pull(skb, ETH_HLEN)) {
44defeb3 1033 e_err("pskb_may_pull failed.\n");
97ac8cae
BA
1034 dev_kfree_skb(skb);
1035 goto next_desc;
1036 }
1037
1038 e1000_receive_skb(adapter, netdev, skb, status,
1039 rx_desc->special);
1040
1041next_desc:
1042 rx_desc->status = 0;
1043
1044 /* return some buffers to hardware, one at a time is too slow */
1045 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1046 adapter->alloc_rx_buf(adapter, cleaned_count);
1047 cleaned_count = 0;
1048 }
1049
1050 /* use prefetched values */
1051 rx_desc = next_rxd;
1052 buffer_info = next_buffer;
1053 }
1054 rx_ring->next_to_clean = i;
1055
1056 cleaned_count = e1000_desc_unused(rx_ring);
1057 if (cleaned_count)
1058 adapter->alloc_rx_buf(adapter, cleaned_count);
1059
1060 adapter->total_rx_bytes += total_rx_bytes;
1061 adapter->total_rx_packets += total_rx_packets;
1062 adapter->net_stats.rx_bytes += total_rx_bytes;
1063 adapter->net_stats.rx_packets += total_rx_packets;
1064 return cleaned;
1065}
1066
bc7f75fa
AK
1067/**
1068 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1069 * @adapter: board private structure
1070 **/
1071static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1072{
1073 struct e1000_ring *rx_ring = adapter->rx_ring;
1074 struct e1000_buffer *buffer_info;
1075 struct e1000_ps_page *ps_page;
1076 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
1077 unsigned int i, j;
1078
1079 /* Free all the Rx ring sk_buffs */
1080 for (i = 0; i < rx_ring->count; i++) {
1081 buffer_info = &rx_ring->buffer_info[i];
1082 if (buffer_info->dma) {
1083 if (adapter->clean_rx == e1000_clean_rx_irq)
1084 pci_unmap_single(pdev, buffer_info->dma,
1085 adapter->rx_buffer_len,
1086 PCI_DMA_FROMDEVICE);
97ac8cae
BA
1087 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1088 pci_unmap_page(pdev, buffer_info->dma,
1089 PAGE_SIZE,
1090 PCI_DMA_FROMDEVICE);
bc7f75fa
AK
1091 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1092 pci_unmap_single(pdev, buffer_info->dma,
1093 adapter->rx_ps_bsize0,
1094 PCI_DMA_FROMDEVICE);
1095 buffer_info->dma = 0;
1096 }
1097
97ac8cae
BA
1098 if (buffer_info->page) {
1099 put_page(buffer_info->page);
1100 buffer_info->page = NULL;
1101 }
1102
bc7f75fa
AK
1103 if (buffer_info->skb) {
1104 dev_kfree_skb(buffer_info->skb);
1105 buffer_info->skb = NULL;
1106 }
1107
1108 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40 1109 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
1110 if (!ps_page->page)
1111 break;
1112 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1113 PCI_DMA_FROMDEVICE);
1114 ps_page->dma = 0;
1115 put_page(ps_page->page);
1116 ps_page->page = NULL;
1117 }
1118 }
1119
1120 /* there also may be some cached data from a chained receive */
1121 if (rx_ring->rx_skb_top) {
1122 dev_kfree_skb(rx_ring->rx_skb_top);
1123 rx_ring->rx_skb_top = NULL;
1124 }
1125
bc7f75fa
AK
1126 /* Zero out the descriptor ring */
1127 memset(rx_ring->desc, 0, rx_ring->size);
1128
1129 rx_ring->next_to_clean = 0;
1130 rx_ring->next_to_use = 0;
1131
1132 writel(0, adapter->hw.hw_addr + rx_ring->head);
1133 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1134}
1135
a8f88ff5
JB
1136static void e1000e_downshift_workaround(struct work_struct *work)
1137{
1138 struct e1000_adapter *adapter = container_of(work,
1139 struct e1000_adapter, downshift_task);
1140
1141 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1142}
1143
bc7f75fa
AK
1144/**
1145 * e1000_intr_msi - Interrupt Handler
1146 * @irq: interrupt number
1147 * @data: pointer to a network interface device structure
1148 **/
1149static irqreturn_t e1000_intr_msi(int irq, void *data)
1150{
1151 struct net_device *netdev = data;
1152 struct e1000_adapter *adapter = netdev_priv(netdev);
1153 struct e1000_hw *hw = &adapter->hw;
1154 u32 icr = er32(ICR);
1155
ad68076e
BA
1156 /*
1157 * read ICR disables interrupts using IAM
1158 */
bc7f75fa 1159
573cca8c 1160 if (icr & E1000_ICR_LSC) {
bc7f75fa 1161 hw->mac.get_link_status = 1;
ad68076e
BA
1162 /*
1163 * ICH8 workaround-- Call gig speed drop workaround on cable
1164 * disconnect (LSC) before accessing any PHY registers
1165 */
bc7f75fa
AK
1166 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1167 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1168 schedule_work(&adapter->downshift_task);
bc7f75fa 1169
ad68076e
BA
1170 /*
1171 * 80003ES2LAN workaround-- For packet buffer work-around on
bc7f75fa 1172 * link down event; disable receives here in the ISR and reset
ad68076e
BA
1173 * adapter in watchdog
1174 */
bc7f75fa
AK
1175 if (netif_carrier_ok(netdev) &&
1176 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1177 /* disable receives */
1178 u32 rctl = er32(RCTL);
1179 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 1180 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
1181 }
1182 /* guard against interrupt when we're going down */
1183 if (!test_bit(__E1000_DOWN, &adapter->state))
1184 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1185 }
1186
288379f0 1187 if (napi_schedule_prep(&adapter->napi)) {
bc7f75fa
AK
1188 adapter->total_tx_bytes = 0;
1189 adapter->total_tx_packets = 0;
1190 adapter->total_rx_bytes = 0;
1191 adapter->total_rx_packets = 0;
288379f0 1192 __napi_schedule(&adapter->napi);
bc7f75fa
AK
1193 }
1194
1195 return IRQ_HANDLED;
1196}
1197
1198/**
1199 * e1000_intr - Interrupt Handler
1200 * @irq: interrupt number
1201 * @data: pointer to a network interface device structure
1202 **/
1203static irqreturn_t e1000_intr(int irq, void *data)
1204{
1205 struct net_device *netdev = data;
1206 struct e1000_adapter *adapter = netdev_priv(netdev);
1207 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 1208 u32 rctl, icr = er32(ICR);
4662e82b 1209
bc7f75fa
AK
1210 if (!icr)
1211 return IRQ_NONE; /* Not our interrupt */
1212
ad68076e
BA
1213 /*
1214 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1215 * not set, then the adapter didn't send an interrupt
1216 */
bc7f75fa
AK
1217 if (!(icr & E1000_ICR_INT_ASSERTED))
1218 return IRQ_NONE;
1219
ad68076e
BA
1220 /*
1221 * Interrupt Auto-Mask...upon reading ICR,
1222 * interrupts are masked. No need for the
1223 * IMC write
1224 */
bc7f75fa 1225
573cca8c 1226 if (icr & E1000_ICR_LSC) {
bc7f75fa 1227 hw->mac.get_link_status = 1;
ad68076e
BA
1228 /*
1229 * ICH8 workaround-- Call gig speed drop workaround on cable
1230 * disconnect (LSC) before accessing any PHY registers
1231 */
bc7f75fa
AK
1232 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1233 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1234 schedule_work(&adapter->downshift_task);
bc7f75fa 1235
ad68076e
BA
1236 /*
1237 * 80003ES2LAN workaround--
bc7f75fa
AK
1238 * For packet buffer work-around on link down event;
1239 * disable receives here in the ISR and
1240 * reset adapter in watchdog
1241 */
1242 if (netif_carrier_ok(netdev) &&
1243 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1244 /* disable receives */
1245 rctl = er32(RCTL);
1246 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 1247 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
1248 }
1249 /* guard against interrupt when we're going down */
1250 if (!test_bit(__E1000_DOWN, &adapter->state))
1251 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1252 }
1253
288379f0 1254 if (napi_schedule_prep(&adapter->napi)) {
bc7f75fa
AK
1255 adapter->total_tx_bytes = 0;
1256 adapter->total_tx_packets = 0;
1257 adapter->total_rx_bytes = 0;
1258 adapter->total_rx_packets = 0;
288379f0 1259 __napi_schedule(&adapter->napi);
bc7f75fa
AK
1260 }
1261
1262 return IRQ_HANDLED;
1263}
1264
4662e82b
BA
1265static irqreturn_t e1000_msix_other(int irq, void *data)
1266{
1267 struct net_device *netdev = data;
1268 struct e1000_adapter *adapter = netdev_priv(netdev);
1269 struct e1000_hw *hw = &adapter->hw;
1270 u32 icr = er32(ICR);
1271
1272 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1273 ew32(IMS, E1000_IMS_OTHER);
1274 return IRQ_NONE;
1275 }
1276
1277 if (icr & adapter->eiac_mask)
1278 ew32(ICS, (icr & adapter->eiac_mask));
1279
1280 if (icr & E1000_ICR_OTHER) {
1281 if (!(icr & E1000_ICR_LSC))
1282 goto no_link_interrupt;
1283 hw->mac.get_link_status = 1;
1284 /* guard against interrupt when we're going down */
1285 if (!test_bit(__E1000_DOWN, &adapter->state))
1286 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1287 }
1288
1289no_link_interrupt:
1290 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1291
1292 return IRQ_HANDLED;
1293}
1294
1295
1296static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1297{
1298 struct net_device *netdev = data;
1299 struct e1000_adapter *adapter = netdev_priv(netdev);
1300 struct e1000_hw *hw = &adapter->hw;
1301 struct e1000_ring *tx_ring = adapter->tx_ring;
1302
1303
1304 adapter->total_tx_bytes = 0;
1305 adapter->total_tx_packets = 0;
1306
1307 if (!e1000_clean_tx_irq(adapter))
1308 /* Ring was not completely cleaned, so fire another interrupt */
1309 ew32(ICS, tx_ring->ims_val);
1310
1311 return IRQ_HANDLED;
1312}
1313
1314static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1315{
1316 struct net_device *netdev = data;
1317 struct e1000_adapter *adapter = netdev_priv(netdev);
1318
1319 /* Write the ITR value calculated at the end of the
1320 * previous interrupt.
1321 */
1322 if (adapter->rx_ring->set_itr) {
1323 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1324 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1325 adapter->rx_ring->set_itr = 0;
1326 }
1327
288379f0 1328 if (napi_schedule_prep(&adapter->napi)) {
4662e82b
BA
1329 adapter->total_rx_bytes = 0;
1330 adapter->total_rx_packets = 0;
288379f0 1331 __napi_schedule(&adapter->napi);
4662e82b
BA
1332 }
1333 return IRQ_HANDLED;
1334}
1335
1336/**
1337 * e1000_configure_msix - Configure MSI-X hardware
1338 *
1339 * e1000_configure_msix sets up the hardware to properly
1340 * generate MSI-X interrupts.
1341 **/
1342static void e1000_configure_msix(struct e1000_adapter *adapter)
1343{
1344 struct e1000_hw *hw = &adapter->hw;
1345 struct e1000_ring *rx_ring = adapter->rx_ring;
1346 struct e1000_ring *tx_ring = adapter->tx_ring;
1347 int vector = 0;
1348 u32 ctrl_ext, ivar = 0;
1349
1350 adapter->eiac_mask = 0;
1351
1352 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1353 if (hw->mac.type == e1000_82574) {
1354 u32 rfctl = er32(RFCTL);
1355 rfctl |= E1000_RFCTL_ACK_DIS;
1356 ew32(RFCTL, rfctl);
1357 }
1358
1359#define E1000_IVAR_INT_ALLOC_VALID 0x8
1360 /* Configure Rx vector */
1361 rx_ring->ims_val = E1000_IMS_RXQ0;
1362 adapter->eiac_mask |= rx_ring->ims_val;
1363 if (rx_ring->itr_val)
1364 writel(1000000000 / (rx_ring->itr_val * 256),
1365 hw->hw_addr + rx_ring->itr_register);
1366 else
1367 writel(1, hw->hw_addr + rx_ring->itr_register);
1368 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1369
1370 /* Configure Tx vector */
1371 tx_ring->ims_val = E1000_IMS_TXQ0;
1372 vector++;
1373 if (tx_ring->itr_val)
1374 writel(1000000000 / (tx_ring->itr_val * 256),
1375 hw->hw_addr + tx_ring->itr_register);
1376 else
1377 writel(1, hw->hw_addr + tx_ring->itr_register);
1378 adapter->eiac_mask |= tx_ring->ims_val;
1379 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1380
1381 /* set vector for Other Causes, e.g. link changes */
1382 vector++;
1383 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1384 if (rx_ring->itr_val)
1385 writel(1000000000 / (rx_ring->itr_val * 256),
1386 hw->hw_addr + E1000_EITR_82574(vector));
1387 else
1388 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1389
1390 /* Cause Tx interrupts on every write back */
1391 ivar |= (1 << 31);
1392
1393 ew32(IVAR, ivar);
1394
1395 /* enable MSI-X PBA support */
1396 ctrl_ext = er32(CTRL_EXT);
1397 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1398
1399 /* Auto-Mask Other interrupts upon ICR read */
1400#define E1000_EIAC_MASK_82574 0x01F00000
1401 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1402 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1403 ew32(CTRL_EXT, ctrl_ext);
1404 e1e_flush();
1405}
1406
1407void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1408{
1409 if (adapter->msix_entries) {
1410 pci_disable_msix(adapter->pdev);
1411 kfree(adapter->msix_entries);
1412 adapter->msix_entries = NULL;
1413 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1414 pci_disable_msi(adapter->pdev);
1415 adapter->flags &= ~FLAG_MSI_ENABLED;
1416 }
1417
1418 return;
1419}
1420
1421/**
1422 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1423 *
1424 * Attempt to configure interrupts using the best available
1425 * capabilities of the hardware and kernel.
1426 **/
1427void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1428{
1429 int err;
1430 int numvecs, i;
1431
1432
1433 switch (adapter->int_mode) {
1434 case E1000E_INT_MODE_MSIX:
1435 if (adapter->flags & FLAG_HAS_MSIX) {
1436 numvecs = 3; /* RxQ0, TxQ0 and other */
1437 adapter->msix_entries = kcalloc(numvecs,
1438 sizeof(struct msix_entry),
1439 GFP_KERNEL);
1440 if (adapter->msix_entries) {
1441 for (i = 0; i < numvecs; i++)
1442 adapter->msix_entries[i].entry = i;
1443
1444 err = pci_enable_msix(adapter->pdev,
1445 adapter->msix_entries,
1446 numvecs);
1447 if (err == 0)
1448 return;
1449 }
1450 /* MSI-X failed, so fall through and try MSI */
1451 e_err("Failed to initialize MSI-X interrupts. "
1452 "Falling back to MSI interrupts.\n");
1453 e1000e_reset_interrupt_capability(adapter);
1454 }
1455 adapter->int_mode = E1000E_INT_MODE_MSI;
1456 /* Fall through */
1457 case E1000E_INT_MODE_MSI:
1458 if (!pci_enable_msi(adapter->pdev)) {
1459 adapter->flags |= FLAG_MSI_ENABLED;
1460 } else {
1461 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1462 e_err("Failed to initialize MSI interrupts. Falling "
1463 "back to legacy interrupts.\n");
1464 }
1465 /* Fall through */
1466 case E1000E_INT_MODE_LEGACY:
1467 /* Don't do anything; this is the system default */
1468 break;
1469 }
1470
1471 return;
1472}
1473
1474/**
1475 * e1000_request_msix - Initialize MSI-X interrupts
1476 *
1477 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1478 * kernel.
1479 **/
1480static int e1000_request_msix(struct e1000_adapter *adapter)
1481{
1482 struct net_device *netdev = adapter->netdev;
1483 int err = 0, vector = 0;
1484
1485 if (strlen(netdev->name) < (IFNAMSIZ - 5))
cb7b48f6 1486 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
4662e82b
BA
1487 else
1488 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1489 err = request_irq(adapter->msix_entries[vector].vector,
1490 &e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1491 netdev);
1492 if (err)
1493 goto out;
1494 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1495 adapter->rx_ring->itr_val = adapter->itr;
1496 vector++;
1497
1498 if (strlen(netdev->name) < (IFNAMSIZ - 5))
cb7b48f6 1499 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
4662e82b
BA
1500 else
1501 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1502 err = request_irq(adapter->msix_entries[vector].vector,
1503 &e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1504 netdev);
1505 if (err)
1506 goto out;
1507 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1508 adapter->tx_ring->itr_val = adapter->itr;
1509 vector++;
1510
1511 err = request_irq(adapter->msix_entries[vector].vector,
1512 &e1000_msix_other, 0, netdev->name, netdev);
1513 if (err)
1514 goto out;
1515
1516 e1000_configure_msix(adapter);
1517 return 0;
1518out:
1519 return err;
1520}
1521
f8d59f78
BA
1522/**
1523 * e1000_request_irq - initialize interrupts
1524 *
1525 * Attempts to configure interrupts using the best available
1526 * capabilities of the hardware and kernel.
1527 **/
bc7f75fa
AK
1528static int e1000_request_irq(struct e1000_adapter *adapter)
1529{
1530 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
1531 int err;
1532
4662e82b
BA
1533 if (adapter->msix_entries) {
1534 err = e1000_request_msix(adapter);
1535 if (!err)
1536 return err;
1537 /* fall back to MSI */
1538 e1000e_reset_interrupt_capability(adapter);
1539 adapter->int_mode = E1000E_INT_MODE_MSI;
1540 e1000e_set_interrupt_capability(adapter);
bc7f75fa 1541 }
4662e82b
BA
1542 if (adapter->flags & FLAG_MSI_ENABLED) {
1543 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0,
1544 netdev->name, netdev);
1545 if (!err)
1546 return err;
bc7f75fa 1547
4662e82b
BA
1548 /* fall back to legacy interrupt */
1549 e1000e_reset_interrupt_capability(adapter);
1550 adapter->int_mode = E1000E_INT_MODE_LEGACY;
bc7f75fa
AK
1551 }
1552
4662e82b
BA
1553 err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED,
1554 netdev->name, netdev);
1555 if (err)
1556 e_err("Unable to allocate interrupt, Error: %d\n", err);
1557
bc7f75fa
AK
1558 return err;
1559}
1560
1561static void e1000_free_irq(struct e1000_adapter *adapter)
1562{
1563 struct net_device *netdev = adapter->netdev;
1564
4662e82b
BA
1565 if (adapter->msix_entries) {
1566 int vector = 0;
1567
1568 free_irq(adapter->msix_entries[vector].vector, netdev);
1569 vector++;
1570
1571 free_irq(adapter->msix_entries[vector].vector, netdev);
1572 vector++;
1573
1574 /* Other Causes interrupt vector */
1575 free_irq(adapter->msix_entries[vector].vector, netdev);
1576 return;
bc7f75fa 1577 }
4662e82b
BA
1578
1579 free_irq(adapter->pdev->irq, netdev);
bc7f75fa
AK
1580}
1581
1582/**
1583 * e1000_irq_disable - Mask off interrupt generation on the NIC
1584 **/
1585static void e1000_irq_disable(struct e1000_adapter *adapter)
1586{
1587 struct e1000_hw *hw = &adapter->hw;
1588
bc7f75fa 1589 ew32(IMC, ~0);
4662e82b
BA
1590 if (adapter->msix_entries)
1591 ew32(EIAC_82574, 0);
bc7f75fa
AK
1592 e1e_flush();
1593 synchronize_irq(adapter->pdev->irq);
1594}
1595
1596/**
1597 * e1000_irq_enable - Enable default interrupt generation settings
1598 **/
1599static void e1000_irq_enable(struct e1000_adapter *adapter)
1600{
1601 struct e1000_hw *hw = &adapter->hw;
1602
4662e82b
BA
1603 if (adapter->msix_entries) {
1604 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1605 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1606 } else {
1607 ew32(IMS, IMS_ENABLE_MASK);
1608 }
74ef9c39 1609 e1e_flush();
bc7f75fa
AK
1610}
1611
1612/**
1613 * e1000_get_hw_control - get control of the h/w from f/w
1614 * @adapter: address of board private structure
1615 *
489815ce 1616 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1617 * For ASF and Pass Through versions of f/w this means that
1618 * the driver is loaded. For AMT version (only with 82573)
1619 * of the f/w this means that the network i/f is open.
1620 **/
1621static void e1000_get_hw_control(struct e1000_adapter *adapter)
1622{
1623 struct e1000_hw *hw = &adapter->hw;
1624 u32 ctrl_ext;
1625 u32 swsm;
1626
1627 /* Let firmware know the driver has taken over */
1628 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1629 swsm = er32(SWSM);
1630 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1631 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1632 ctrl_ext = er32(CTRL_EXT);
ad68076e 1633 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1634 }
1635}
1636
1637/**
1638 * e1000_release_hw_control - release control of the h/w to f/w
1639 * @adapter: address of board private structure
1640 *
489815ce 1641 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1642 * For ASF and Pass Through versions of f/w this means that the
1643 * driver is no longer loaded. For AMT version (only with 82573) i
1644 * of the f/w this means that the network i/f is closed.
1645 *
1646 **/
1647static void e1000_release_hw_control(struct e1000_adapter *adapter)
1648{
1649 struct e1000_hw *hw = &adapter->hw;
1650 u32 ctrl_ext;
1651 u32 swsm;
1652
1653 /* Let firmware taken over control of h/w */
1654 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1655 swsm = er32(SWSM);
1656 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1657 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1658 ctrl_ext = er32(CTRL_EXT);
ad68076e 1659 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1660 }
1661}
1662
bc7f75fa
AK
1663/**
1664 * @e1000_alloc_ring - allocate memory for a ring structure
1665 **/
1666static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1667 struct e1000_ring *ring)
1668{
1669 struct pci_dev *pdev = adapter->pdev;
1670
1671 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1672 GFP_KERNEL);
1673 if (!ring->desc)
1674 return -ENOMEM;
1675
1676 return 0;
1677}
1678
1679/**
1680 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1681 * @adapter: board private structure
1682 *
1683 * Return 0 on success, negative on failure
1684 **/
1685int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1686{
1687 struct e1000_ring *tx_ring = adapter->tx_ring;
1688 int err = -ENOMEM, size;
1689
1690 size = sizeof(struct e1000_buffer) * tx_ring->count;
1691 tx_ring->buffer_info = vmalloc(size);
1692 if (!tx_ring->buffer_info)
1693 goto err;
1694 memset(tx_ring->buffer_info, 0, size);
1695
1696 /* round up to nearest 4K */
1697 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1698 tx_ring->size = ALIGN(tx_ring->size, 4096);
1699
1700 err = e1000_alloc_ring_dma(adapter, tx_ring);
1701 if (err)
1702 goto err;
1703
1704 tx_ring->next_to_use = 0;
1705 tx_ring->next_to_clean = 0;
bc7f75fa
AK
1706
1707 return 0;
1708err:
1709 vfree(tx_ring->buffer_info);
44defeb3 1710 e_err("Unable to allocate memory for the transmit descriptor ring\n");
bc7f75fa
AK
1711 return err;
1712}
1713
1714/**
1715 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1716 * @adapter: board private structure
1717 *
1718 * Returns 0 on success, negative on failure
1719 **/
1720int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1721{
1722 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40
AK
1723 struct e1000_buffer *buffer_info;
1724 int i, size, desc_len, err = -ENOMEM;
bc7f75fa
AK
1725
1726 size = sizeof(struct e1000_buffer) * rx_ring->count;
1727 rx_ring->buffer_info = vmalloc(size);
1728 if (!rx_ring->buffer_info)
1729 goto err;
1730 memset(rx_ring->buffer_info, 0, size);
1731
47f44e40
AK
1732 for (i = 0; i < rx_ring->count; i++) {
1733 buffer_info = &rx_ring->buffer_info[i];
1734 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1735 sizeof(struct e1000_ps_page),
1736 GFP_KERNEL);
1737 if (!buffer_info->ps_pages)
1738 goto err_pages;
1739 }
bc7f75fa
AK
1740
1741 desc_len = sizeof(union e1000_rx_desc_packet_split);
1742
1743 /* Round up to nearest 4K */
1744 rx_ring->size = rx_ring->count * desc_len;
1745 rx_ring->size = ALIGN(rx_ring->size, 4096);
1746
1747 err = e1000_alloc_ring_dma(adapter, rx_ring);
1748 if (err)
47f44e40 1749 goto err_pages;
bc7f75fa
AK
1750
1751 rx_ring->next_to_clean = 0;
1752 rx_ring->next_to_use = 0;
1753 rx_ring->rx_skb_top = NULL;
1754
1755 return 0;
47f44e40
AK
1756
1757err_pages:
1758 for (i = 0; i < rx_ring->count; i++) {
1759 buffer_info = &rx_ring->buffer_info[i];
1760 kfree(buffer_info->ps_pages);
1761 }
bc7f75fa
AK
1762err:
1763 vfree(rx_ring->buffer_info);
44defeb3 1764 e_err("Unable to allocate memory for the transmit descriptor ring\n");
bc7f75fa
AK
1765 return err;
1766}
1767
1768/**
1769 * e1000_clean_tx_ring - Free Tx Buffers
1770 * @adapter: board private structure
1771 **/
1772static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1773{
1774 struct e1000_ring *tx_ring = adapter->tx_ring;
1775 struct e1000_buffer *buffer_info;
1776 unsigned long size;
1777 unsigned int i;
1778
1779 for (i = 0; i < tx_ring->count; i++) {
1780 buffer_info = &tx_ring->buffer_info[i];
1781 e1000_put_txbuf(adapter, buffer_info);
1782 }
1783
1784 size = sizeof(struct e1000_buffer) * tx_ring->count;
1785 memset(tx_ring->buffer_info, 0, size);
1786
1787 memset(tx_ring->desc, 0, tx_ring->size);
1788
1789 tx_ring->next_to_use = 0;
1790 tx_ring->next_to_clean = 0;
1791
1792 writel(0, adapter->hw.hw_addr + tx_ring->head);
1793 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1794}
1795
1796/**
1797 * e1000e_free_tx_resources - Free Tx Resources per Queue
1798 * @adapter: board private structure
1799 *
1800 * Free all transmit software resources
1801 **/
1802void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1803{
1804 struct pci_dev *pdev = adapter->pdev;
1805 struct e1000_ring *tx_ring = adapter->tx_ring;
1806
1807 e1000_clean_tx_ring(adapter);
1808
1809 vfree(tx_ring->buffer_info);
1810 tx_ring->buffer_info = NULL;
1811
1812 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1813 tx_ring->dma);
1814 tx_ring->desc = NULL;
1815}
1816
1817/**
1818 * e1000e_free_rx_resources - Free Rx Resources
1819 * @adapter: board private structure
1820 *
1821 * Free all receive software resources
1822 **/
1823
1824void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1825{
1826 struct pci_dev *pdev = adapter->pdev;
1827 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40 1828 int i;
bc7f75fa
AK
1829
1830 e1000_clean_rx_ring(adapter);
1831
47f44e40
AK
1832 for (i = 0; i < rx_ring->count; i++) {
1833 kfree(rx_ring->buffer_info[i].ps_pages);
1834 }
1835
bc7f75fa
AK
1836 vfree(rx_ring->buffer_info);
1837 rx_ring->buffer_info = NULL;
1838
bc7f75fa
AK
1839 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1840 rx_ring->dma);
1841 rx_ring->desc = NULL;
1842}
1843
1844/**
1845 * e1000_update_itr - update the dynamic ITR value based on statistics
489815ce
AK
1846 * @adapter: pointer to adapter
1847 * @itr_setting: current adapter->itr
1848 * @packets: the number of packets during this measurement interval
1849 * @bytes: the number of bytes during this measurement interval
1850 *
bc7f75fa
AK
1851 * Stores a new ITR value based on packets and byte
1852 * counts during the last interrupt. The advantage of per interrupt
1853 * computation is faster updates and more accurate ITR for the current
1854 * traffic pattern. Constants in this function were computed
1855 * based on theoretical maximum wire speed and thresholds were set based
1856 * on testing data as well as attempting to minimize response time
4662e82b
BA
1857 * while increasing bulk throughput. This functionality is controlled
1858 * by the InterruptThrottleRate module parameter.
bc7f75fa
AK
1859 **/
1860static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1861 u16 itr_setting, int packets,
1862 int bytes)
1863{
1864 unsigned int retval = itr_setting;
1865
1866 if (packets == 0)
1867 goto update_itr_done;
1868
1869 switch (itr_setting) {
1870 case lowest_latency:
1871 /* handle TSO and jumbo frames */
1872 if (bytes/packets > 8000)
1873 retval = bulk_latency;
1874 else if ((packets < 5) && (bytes > 512)) {
1875 retval = low_latency;
1876 }
1877 break;
1878 case low_latency: /* 50 usec aka 20000 ints/s */
1879 if (bytes > 10000) {
1880 /* this if handles the TSO accounting */
1881 if (bytes/packets > 8000) {
1882 retval = bulk_latency;
1883 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1884 retval = bulk_latency;
1885 } else if ((packets > 35)) {
1886 retval = lowest_latency;
1887 }
1888 } else if (bytes/packets > 2000) {
1889 retval = bulk_latency;
1890 } else if (packets <= 2 && bytes < 512) {
1891 retval = lowest_latency;
1892 }
1893 break;
1894 case bulk_latency: /* 250 usec aka 4000 ints/s */
1895 if (bytes > 25000) {
1896 if (packets > 35) {
1897 retval = low_latency;
1898 }
1899 } else if (bytes < 6000) {
1900 retval = low_latency;
1901 }
1902 break;
1903 }
1904
1905update_itr_done:
1906 return retval;
1907}
1908
1909static void e1000_set_itr(struct e1000_adapter *adapter)
1910{
1911 struct e1000_hw *hw = &adapter->hw;
1912 u16 current_itr;
1913 u32 new_itr = adapter->itr;
1914
1915 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1916 if (adapter->link_speed != SPEED_1000) {
1917 current_itr = 0;
1918 new_itr = 4000;
1919 goto set_itr_now;
1920 }
1921
1922 adapter->tx_itr = e1000_update_itr(adapter,
1923 adapter->tx_itr,
1924 adapter->total_tx_packets,
1925 adapter->total_tx_bytes);
1926 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1927 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1928 adapter->tx_itr = low_latency;
1929
1930 adapter->rx_itr = e1000_update_itr(adapter,
1931 adapter->rx_itr,
1932 adapter->total_rx_packets,
1933 adapter->total_rx_bytes);
1934 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1935 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1936 adapter->rx_itr = low_latency;
1937
1938 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1939
1940 switch (current_itr) {
1941 /* counts and packets in update_itr are dependent on these numbers */
1942 case lowest_latency:
1943 new_itr = 70000;
1944 break;
1945 case low_latency:
1946 new_itr = 20000; /* aka hwitr = ~200 */
1947 break;
1948 case bulk_latency:
1949 new_itr = 4000;
1950 break;
1951 default:
1952 break;
1953 }
1954
1955set_itr_now:
1956 if (new_itr != adapter->itr) {
ad68076e
BA
1957 /*
1958 * this attempts to bias the interrupt rate towards Bulk
bc7f75fa 1959 * by adding intermediate steps when interrupt rate is
ad68076e
BA
1960 * increasing
1961 */
bc7f75fa
AK
1962 new_itr = new_itr > adapter->itr ?
1963 min(adapter->itr + (new_itr >> 2), new_itr) :
1964 new_itr;
1965 adapter->itr = new_itr;
4662e82b
BA
1966 adapter->rx_ring->itr_val = new_itr;
1967 if (adapter->msix_entries)
1968 adapter->rx_ring->set_itr = 1;
1969 else
1970 ew32(ITR, 1000000000 / (new_itr * 256));
bc7f75fa
AK
1971 }
1972}
1973
4662e82b
BA
1974/**
1975 * e1000_alloc_queues - Allocate memory for all rings
1976 * @adapter: board private structure to initialize
1977 **/
1978static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1979{
1980 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1981 if (!adapter->tx_ring)
1982 goto err;
1983
1984 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1985 if (!adapter->rx_ring)
1986 goto err;
1987
1988 return 0;
1989err:
1990 e_err("Unable to allocate memory for queues\n");
1991 kfree(adapter->rx_ring);
1992 kfree(adapter->tx_ring);
1993 return -ENOMEM;
1994}
1995
bc7f75fa
AK
1996/**
1997 * e1000_clean - NAPI Rx polling callback
ad68076e 1998 * @napi: struct associated with this polling callback
489815ce 1999 * @budget: amount of packets driver is allowed to process this poll
bc7f75fa
AK
2000 **/
2001static int e1000_clean(struct napi_struct *napi, int budget)
2002{
2003 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
4662e82b 2004 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 2005 struct net_device *poll_dev = adapter->netdev;
d2c7ddd6 2006 int tx_cleaned = 0, work_done = 0;
bc7f75fa 2007
4cf1653a 2008 adapter = netdev_priv(poll_dev);
bc7f75fa 2009
4662e82b
BA
2010 if (adapter->msix_entries &&
2011 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2012 goto clean_rx;
2013
92af3e95 2014 tx_cleaned = e1000_clean_tx_irq(adapter);
bc7f75fa 2015
4662e82b 2016clean_rx:
bc7f75fa 2017 adapter->clean_rx(adapter, &work_done, budget);
d2c7ddd6
DM
2018
2019 if (tx_cleaned)
2020 work_done = budget;
bc7f75fa 2021
53e52c72
DM
2022 /* If budget not fully consumed, exit the polling mode */
2023 if (work_done < budget) {
bc7f75fa
AK
2024 if (adapter->itr_setting & 3)
2025 e1000_set_itr(adapter);
288379f0 2026 napi_complete(napi);
4662e82b
BA
2027 if (adapter->msix_entries)
2028 ew32(IMS, adapter->rx_ring->ims_val);
2029 else
2030 e1000_irq_enable(adapter);
bc7f75fa
AK
2031 }
2032
2033 return work_done;
2034}
2035
2036static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2037{
2038 struct e1000_adapter *adapter = netdev_priv(netdev);
2039 struct e1000_hw *hw = &adapter->hw;
2040 u32 vfta, index;
2041
2042 /* don't update vlan cookie if already programmed */
2043 if ((adapter->hw.mng_cookie.status &
2044 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2045 (vid == adapter->mng_vlan_id))
2046 return;
2047 /* add VID to filter table */
2048 index = (vid >> 5) & 0x7F;
2049 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2050 vfta |= (1 << (vid & 0x1F));
2051 e1000e_write_vfta(hw, index, vfta);
2052}
2053
2054static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2055{
2056 struct e1000_adapter *adapter = netdev_priv(netdev);
2057 struct e1000_hw *hw = &adapter->hw;
2058 u32 vfta, index;
2059
74ef9c39
JB
2060 if (!test_bit(__E1000_DOWN, &adapter->state))
2061 e1000_irq_disable(adapter);
bc7f75fa 2062 vlan_group_set_device(adapter->vlgrp, vid, NULL);
74ef9c39
JB
2063
2064 if (!test_bit(__E1000_DOWN, &adapter->state))
2065 e1000_irq_enable(adapter);
bc7f75fa
AK
2066
2067 if ((adapter->hw.mng_cookie.status &
2068 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2069 (vid == adapter->mng_vlan_id)) {
2070 /* release control to f/w */
2071 e1000_release_hw_control(adapter);
2072 return;
2073 }
2074
2075 /* remove VID from filter table */
2076 index = (vid >> 5) & 0x7F;
2077 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2078 vfta &= ~(1 << (vid & 0x1F));
2079 e1000e_write_vfta(hw, index, vfta);
2080}
2081
2082static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2083{
2084 struct net_device *netdev = adapter->netdev;
2085 u16 vid = adapter->hw.mng_cookie.vlan_id;
2086 u16 old_vid = adapter->mng_vlan_id;
2087
2088 if (!adapter->vlgrp)
2089 return;
2090
2091 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2092 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2093 if (adapter->hw.mng_cookie.status &
2094 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2095 e1000_vlan_rx_add_vid(netdev, vid);
2096 adapter->mng_vlan_id = vid;
2097 }
2098
2099 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2100 (vid != old_vid) &&
2101 !vlan_group_get_device(adapter->vlgrp, old_vid))
2102 e1000_vlan_rx_kill_vid(netdev, old_vid);
2103 } else {
2104 adapter->mng_vlan_id = vid;
2105 }
2106}
2107
2108
2109static void e1000_vlan_rx_register(struct net_device *netdev,
2110 struct vlan_group *grp)
2111{
2112 struct e1000_adapter *adapter = netdev_priv(netdev);
2113 struct e1000_hw *hw = &adapter->hw;
2114 u32 ctrl, rctl;
2115
74ef9c39
JB
2116 if (!test_bit(__E1000_DOWN, &adapter->state))
2117 e1000_irq_disable(adapter);
bc7f75fa
AK
2118 adapter->vlgrp = grp;
2119
2120 if (grp) {
2121 /* enable VLAN tag insert/strip */
2122 ctrl = er32(CTRL);
2123 ctrl |= E1000_CTRL_VME;
2124 ew32(CTRL, ctrl);
2125
2126 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2127 /* enable VLAN receive filtering */
2128 rctl = er32(RCTL);
bc7f75fa
AK
2129 rctl &= ~E1000_RCTL_CFIEN;
2130 ew32(RCTL, rctl);
2131 e1000_update_mng_vlan(adapter);
2132 }
2133 } else {
2134 /* disable VLAN tag insert/strip */
2135 ctrl = er32(CTRL);
2136 ctrl &= ~E1000_CTRL_VME;
2137 ew32(CTRL, ctrl);
2138
2139 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
bc7f75fa
AK
2140 if (adapter->mng_vlan_id !=
2141 (u16)E1000_MNG_VLAN_NONE) {
2142 e1000_vlan_rx_kill_vid(netdev,
2143 adapter->mng_vlan_id);
2144 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2145 }
2146 }
2147 }
2148
74ef9c39
JB
2149 if (!test_bit(__E1000_DOWN, &adapter->state))
2150 e1000_irq_enable(adapter);
bc7f75fa
AK
2151}
2152
2153static void e1000_restore_vlan(struct e1000_adapter *adapter)
2154{
2155 u16 vid;
2156
2157 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2158
2159 if (!adapter->vlgrp)
2160 return;
2161
2162 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2163 if (!vlan_group_get_device(adapter->vlgrp, vid))
2164 continue;
2165 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2166 }
2167}
2168
2169static void e1000_init_manageability(struct e1000_adapter *adapter)
2170{
2171 struct e1000_hw *hw = &adapter->hw;
2172 u32 manc, manc2h;
2173
2174 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2175 return;
2176
2177 manc = er32(MANC);
2178
ad68076e
BA
2179 /*
2180 * enable receiving management packets to the host. this will probably
bc7f75fa 2181 * generate destination unreachable messages from the host OS, but
ad68076e
BA
2182 * the packets will be handled on SMBUS
2183 */
bc7f75fa
AK
2184 manc |= E1000_MANC_EN_MNG2HOST;
2185 manc2h = er32(MANC2H);
2186#define E1000_MNG2HOST_PORT_623 (1 << 5)
2187#define E1000_MNG2HOST_PORT_664 (1 << 6)
2188 manc2h |= E1000_MNG2HOST_PORT_623;
2189 manc2h |= E1000_MNG2HOST_PORT_664;
2190 ew32(MANC2H, manc2h);
2191 ew32(MANC, manc);
2192}
2193
2194/**
2195 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2196 * @adapter: board private structure
2197 *
2198 * Configure the Tx unit of the MAC after a reset.
2199 **/
2200static void e1000_configure_tx(struct e1000_adapter *adapter)
2201{
2202 struct e1000_hw *hw = &adapter->hw;
2203 struct e1000_ring *tx_ring = adapter->tx_ring;
2204 u64 tdba;
2205 u32 tdlen, tctl, tipg, tarc;
2206 u32 ipgr1, ipgr2;
2207
2208 /* Setup the HW Tx Head and Tail descriptor pointers */
2209 tdba = tx_ring->dma;
2210 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2211 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
2212 ew32(TDBAH, (tdba >> 32));
2213 ew32(TDLEN, tdlen);
2214 ew32(TDH, 0);
2215 ew32(TDT, 0);
2216 tx_ring->head = E1000_TDH;
2217 tx_ring->tail = E1000_TDT;
2218
2219 /* Set the default values for the Tx Inter Packet Gap timer */
2220 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2221 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2222 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2223
2224 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2225 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2226
2227 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2228 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2229 ew32(TIPG, tipg);
2230
2231 /* Set the Tx Interrupt Delay register */
2232 ew32(TIDV, adapter->tx_int_delay);
ad68076e 2233 /* Tx irq moderation */
bc7f75fa
AK
2234 ew32(TADV, adapter->tx_abs_int_delay);
2235
2236 /* Program the Transmit Control Register */
2237 tctl = er32(TCTL);
2238 tctl &= ~E1000_TCTL_CT;
2239 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2240 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2241
2242 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
e9ec2c0f 2243 tarc = er32(TARC(0));
ad68076e
BA
2244 /*
2245 * set the speed mode bit, we'll clear it if we're not at
2246 * gigabit link later
2247 */
bc7f75fa
AK
2248#define SPEED_MODE_BIT (1 << 21)
2249 tarc |= SPEED_MODE_BIT;
e9ec2c0f 2250 ew32(TARC(0), tarc);
bc7f75fa
AK
2251 }
2252
2253 /* errata: program both queues to unweighted RR */
2254 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
e9ec2c0f 2255 tarc = er32(TARC(0));
bc7f75fa 2256 tarc |= 1;
e9ec2c0f
JK
2257 ew32(TARC(0), tarc);
2258 tarc = er32(TARC(1));
bc7f75fa 2259 tarc |= 1;
e9ec2c0f 2260 ew32(TARC(1), tarc);
bc7f75fa
AK
2261 }
2262
2263 e1000e_config_collision_dist(hw);
2264
2265 /* Setup Transmit Descriptor Settings for eop descriptor */
2266 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2267
2268 /* only set IDE if we are delaying interrupts using the timers */
2269 if (adapter->tx_int_delay)
2270 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2271
2272 /* enable Report Status bit */
2273 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2274
2275 ew32(TCTL, tctl);
2276
2277 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2278}
2279
2280/**
2281 * e1000_setup_rctl - configure the receive control registers
2282 * @adapter: Board private structure
2283 **/
2284#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2285 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2286static void e1000_setup_rctl(struct e1000_adapter *adapter)
2287{
2288 struct e1000_hw *hw = &adapter->hw;
2289 u32 rctl, rfctl;
2290 u32 psrctl = 0;
2291 u32 pages = 0;
2292
2293 /* Program MC offset vector base */
2294 rctl = er32(RCTL);
2295 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2296 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2297 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2298 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2299
2300 /* Do not Store bad packets */
2301 rctl &= ~E1000_RCTL_SBP;
2302
2303 /* Enable Long Packet receive */
2304 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2305 rctl &= ~E1000_RCTL_LPE;
2306 else
2307 rctl |= E1000_RCTL_LPE;
2308
eb7c3adb
JK
2309 /* Some systems expect that the CRC is included in SMBUS traffic. The
2310 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2311 * host memory when this is enabled
2312 */
2313 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2314 rctl |= E1000_RCTL_SECRC;
5918bd88 2315
bc7f75fa
AK
2316 /* Setup buffer sizes */
2317 rctl &= ~E1000_RCTL_SZ_4096;
2318 rctl |= E1000_RCTL_BSEX;
2319 switch (adapter->rx_buffer_len) {
2320 case 256:
2321 rctl |= E1000_RCTL_SZ_256;
2322 rctl &= ~E1000_RCTL_BSEX;
2323 break;
2324 case 512:
2325 rctl |= E1000_RCTL_SZ_512;
2326 rctl &= ~E1000_RCTL_BSEX;
2327 break;
2328 case 1024:
2329 rctl |= E1000_RCTL_SZ_1024;
2330 rctl &= ~E1000_RCTL_BSEX;
2331 break;
2332 case 2048:
2333 default:
2334 rctl |= E1000_RCTL_SZ_2048;
2335 rctl &= ~E1000_RCTL_BSEX;
2336 break;
2337 case 4096:
2338 rctl |= E1000_RCTL_SZ_4096;
2339 break;
2340 case 8192:
2341 rctl |= E1000_RCTL_SZ_8192;
2342 break;
2343 case 16384:
2344 rctl |= E1000_RCTL_SZ_16384;
2345 break;
2346 }
2347
2348 /*
2349 * 82571 and greater support packet-split where the protocol
2350 * header is placed in skb->data and the packet data is
2351 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2352 * In the case of a non-split, skb->data is linearly filled,
2353 * followed by the page buffers. Therefore, skb->data is
2354 * sized to hold the largest protocol header.
2355 *
2356 * allocations using alloc_page take too long for regular MTU
2357 * so only enable packet split for jumbo frames
2358 *
2359 * Using pages when the page size is greater than 16k wastes
2360 * a lot of memory, since we allocate 3 pages at all times
2361 * per packet.
2362 */
bc7f75fa 2363 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
97ac8cae
BA
2364 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2365 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
bc7f75fa 2366 adapter->rx_ps_pages = pages;
97ac8cae
BA
2367 else
2368 adapter->rx_ps_pages = 0;
bc7f75fa
AK
2369
2370 if (adapter->rx_ps_pages) {
2371 /* Configure extra packet-split registers */
2372 rfctl = er32(RFCTL);
2373 rfctl |= E1000_RFCTL_EXTEN;
ad68076e
BA
2374 /*
2375 * disable packet split support for IPv6 extension headers,
2376 * because some malformed IPv6 headers can hang the Rx
2377 */
bc7f75fa
AK
2378 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2379 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2380
2381 ew32(RFCTL, rfctl);
2382
140a7480
AK
2383 /* Enable Packet split descriptors */
2384 rctl |= E1000_RCTL_DTYP_PS;
bc7f75fa
AK
2385
2386 psrctl |= adapter->rx_ps_bsize0 >>
2387 E1000_PSRCTL_BSIZE0_SHIFT;
2388
2389 switch (adapter->rx_ps_pages) {
2390 case 3:
2391 psrctl |= PAGE_SIZE <<
2392 E1000_PSRCTL_BSIZE3_SHIFT;
2393 case 2:
2394 psrctl |= PAGE_SIZE <<
2395 E1000_PSRCTL_BSIZE2_SHIFT;
2396 case 1:
2397 psrctl |= PAGE_SIZE >>
2398 E1000_PSRCTL_BSIZE1_SHIFT;
2399 break;
2400 }
2401
2402 ew32(PSRCTL, psrctl);
2403 }
2404
2405 ew32(RCTL, rctl);
318a94d6
JK
2406 /* just started the receive unit, no need to restart */
2407 adapter->flags &= ~FLAG_RX_RESTART_NOW;
bc7f75fa
AK
2408}
2409
2410/**
2411 * e1000_configure_rx - Configure Receive Unit after Reset
2412 * @adapter: board private structure
2413 *
2414 * Configure the Rx unit of the MAC after a reset.
2415 **/
2416static void e1000_configure_rx(struct e1000_adapter *adapter)
2417{
2418 struct e1000_hw *hw = &adapter->hw;
2419 struct e1000_ring *rx_ring = adapter->rx_ring;
2420 u64 rdba;
2421 u32 rdlen, rctl, rxcsum, ctrl_ext;
2422
2423 if (adapter->rx_ps_pages) {
2424 /* this is a 32 byte descriptor */
2425 rdlen = rx_ring->count *
2426 sizeof(union e1000_rx_desc_packet_split);
2427 adapter->clean_rx = e1000_clean_rx_irq_ps;
2428 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
97ac8cae
BA
2429 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2430 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2431 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2432 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
bc7f75fa 2433 } else {
97ac8cae 2434 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
bc7f75fa
AK
2435 adapter->clean_rx = e1000_clean_rx_irq;
2436 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2437 }
2438
2439 /* disable receives while setting up the descriptors */
2440 rctl = er32(RCTL);
2441 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2442 e1e_flush();
2443 msleep(10);
2444
2445 /* set the Receive Delay Timer Register */
2446 ew32(RDTR, adapter->rx_int_delay);
2447
2448 /* irq moderation */
2449 ew32(RADV, adapter->rx_abs_int_delay);
2450 if (adapter->itr_setting != 0)
ad68076e 2451 ew32(ITR, 1000000000 / (adapter->itr * 256));
bc7f75fa
AK
2452
2453 ctrl_ext = er32(CTRL_EXT);
2454 /* Reset delay timers after every interrupt */
2455 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2456 /* Auto-Mask interrupts upon ICR access */
2457 ctrl_ext |= E1000_CTRL_EXT_IAME;
2458 ew32(IAM, 0xffffffff);
2459 ew32(CTRL_EXT, ctrl_ext);
2460 e1e_flush();
2461
ad68076e
BA
2462 /*
2463 * Setup the HW Rx Head and Tail Descriptor Pointers and
2464 * the Base and Length of the Rx Descriptor Ring
2465 */
bc7f75fa
AK
2466 rdba = rx_ring->dma;
2467 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2468 ew32(RDBAH, (rdba >> 32));
2469 ew32(RDLEN, rdlen);
2470 ew32(RDH, 0);
2471 ew32(RDT, 0);
2472 rx_ring->head = E1000_RDH;
2473 rx_ring->tail = E1000_RDT;
2474
2475 /* Enable Receive Checksum Offload for TCP and UDP */
2476 rxcsum = er32(RXCSUM);
2477 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2478 rxcsum |= E1000_RXCSUM_TUOFL;
2479
ad68076e
BA
2480 /*
2481 * IPv4 payload checksum for UDP fragments must be
2482 * used in conjunction with packet-split.
2483 */
bc7f75fa
AK
2484 if (adapter->rx_ps_pages)
2485 rxcsum |= E1000_RXCSUM_IPPCSE;
2486 } else {
2487 rxcsum &= ~E1000_RXCSUM_TUOFL;
2488 /* no need to clear IPPCSE as it defaults to 0 */
2489 }
2490 ew32(RXCSUM, rxcsum);
2491
ad68076e
BA
2492 /*
2493 * Enable early receives on supported devices, only takes effect when
bc7f75fa 2494 * packet size is equal or larger than the specified value (in 8 byte
ad68076e
BA
2495 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2496 */
bc7f75fa 2497 if ((adapter->flags & FLAG_HAS_ERT) &&
97ac8cae
BA
2498 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2499 u32 rxdctl = er32(RXDCTL(0));
2500 ew32(RXDCTL(0), rxdctl | 0x3);
2501 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2502 /*
2503 * With jumbo frames and early-receive enabled, excessive
2504 * C4->C2 latencies result in dropped transactions.
2505 */
2506 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2507 e1000e_driver_name, 55);
2508 } else {
2509 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2510 e1000e_driver_name,
2511 PM_QOS_DEFAULT_VALUE);
2512 }
bc7f75fa
AK
2513
2514 /* Enable Receives */
2515 ew32(RCTL, rctl);
2516}
2517
2518/**
e2de3eb6 2519 * e1000_update_mc_addr_list - Update Multicast addresses
bc7f75fa
AK
2520 * @hw: pointer to the HW structure
2521 * @mc_addr_list: array of multicast addresses to program
2522 * @mc_addr_count: number of multicast addresses to program
2523 * @rar_used_count: the first RAR register free to program
2524 * @rar_count: total number of supported Receive Address Registers
2525 *
2526 * Updates the Receive Address Registers and Multicast Table Array.
2527 * The caller must have a packed mc_addr_list of multicast addresses.
2528 * The parameter rar_count will usually be hw->mac.rar_entry_count
2529 * unless there are workarounds that change this. Currently no func pointer
2530 * exists and all implementations are handled in the generic version of this
2531 * function.
2532 **/
e2de3eb6
JK
2533static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2534 u32 mc_addr_count, u32 rar_used_count,
2535 u32 rar_count)
bc7f75fa 2536{
e2de3eb6 2537 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
bc7f75fa
AK
2538 rar_used_count, rar_count);
2539}
2540
2541/**
2542 * e1000_set_multi - Multicast and Promiscuous mode set
2543 * @netdev: network interface device structure
2544 *
2545 * The set_multi entry point is called whenever the multicast address
2546 * list or the network interface flags are updated. This routine is
2547 * responsible for configuring the hardware for proper multicast,
2548 * promiscuous mode, and all-multi behavior.
2549 **/
2550static void e1000_set_multi(struct net_device *netdev)
2551{
2552 struct e1000_adapter *adapter = netdev_priv(netdev);
2553 struct e1000_hw *hw = &adapter->hw;
2554 struct e1000_mac_info *mac = &hw->mac;
2555 struct dev_mc_list *mc_ptr;
2556 u8 *mta_list;
2557 u32 rctl;
2558 int i;
2559
2560 /* Check for Promiscuous and All Multicast modes */
2561
2562 rctl = er32(RCTL);
2563
2564 if (netdev->flags & IFF_PROMISC) {
2565 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02 2566 rctl &= ~E1000_RCTL_VFE;
bc7f75fa 2567 } else {
746b9f02
PM
2568 if (netdev->flags & IFF_ALLMULTI) {
2569 rctl |= E1000_RCTL_MPE;
2570 rctl &= ~E1000_RCTL_UPE;
2571 } else {
2572 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2573 }
78ed11a5 2574 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
746b9f02 2575 rctl |= E1000_RCTL_VFE;
bc7f75fa
AK
2576 }
2577
2578 ew32(RCTL, rctl);
2579
2580 if (netdev->mc_count) {
2581 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2582 if (!mta_list)
2583 return;
2584
2585 /* prepare a packed array of only addresses. */
2586 mc_ptr = netdev->mc_list;
2587
2588 for (i = 0; i < netdev->mc_count; i++) {
2589 if (!mc_ptr)
2590 break;
2591 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2592 ETH_ALEN);
2593 mc_ptr = mc_ptr->next;
2594 }
2595
e2de3eb6 2596 e1000_update_mc_addr_list(hw, mta_list, i, 1,
bc7f75fa
AK
2597 mac->rar_entry_count);
2598 kfree(mta_list);
2599 } else {
2600 /*
2601 * if we're called from probe, we might not have
2602 * anything to do here, so clear out the list
2603 */
e2de3eb6 2604 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
bc7f75fa
AK
2605 }
2606}
2607
2608/**
ad68076e 2609 * e1000_configure - configure the hardware for Rx and Tx
bc7f75fa
AK
2610 * @adapter: private board structure
2611 **/
2612static void e1000_configure(struct e1000_adapter *adapter)
2613{
2614 e1000_set_multi(adapter->netdev);
2615
2616 e1000_restore_vlan(adapter);
2617 e1000_init_manageability(adapter);
2618
2619 e1000_configure_tx(adapter);
2620 e1000_setup_rctl(adapter);
2621 e1000_configure_rx(adapter);
ad68076e 2622 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
bc7f75fa
AK
2623}
2624
2625/**
2626 * e1000e_power_up_phy - restore link in case the phy was powered down
2627 * @adapter: address of board private structure
2628 *
2629 * The phy may be powered down to save power and turn off link when the
2630 * driver is unloaded and wake on lan is not enabled (among others)
2631 * *** this routine MUST be followed by a call to e1000e_reset ***
2632 **/
2633void e1000e_power_up_phy(struct e1000_adapter *adapter)
2634{
2635 u16 mii_reg = 0;
2636
2637 /* Just clear the power down bit to wake the phy back up */
318a94d6 2638 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
ad68076e
BA
2639 /*
2640 * According to the manual, the phy will retain its
2641 * settings across a power-down/up cycle
2642 */
bc7f75fa
AK
2643 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2644 mii_reg &= ~MII_CR_POWER_DOWN;
2645 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2646 }
2647
2648 adapter->hw.mac.ops.setup_link(&adapter->hw);
2649}
2650
2651/**
2652 * e1000_power_down_phy - Power down the PHY
2653 *
2654 * Power down the PHY so no link is implied when interface is down
2655 * The PHY cannot be powered down is management or WoL is active
2656 */
2657static void e1000_power_down_phy(struct e1000_adapter *adapter)
2658{
2659 struct e1000_hw *hw = &adapter->hw;
2660 u16 mii_reg;
2661
2662 /* WoL is enabled */
23b66e2b 2663 if (adapter->wol)
bc7f75fa
AK
2664 return;
2665
2666 /* non-copper PHY? */
318a94d6 2667 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
2668 return;
2669
2670 /* reset is blocked because of a SoL/IDER session */
ad68076e 2671 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
bc7f75fa
AK
2672 return;
2673
489815ce 2674 /* manageability (AMT) is enabled */
bc7f75fa
AK
2675 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2676 return;
2677
2678 /* power down the PHY */
2679 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2680 mii_reg |= MII_CR_POWER_DOWN;
2681 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2682 mdelay(1);
2683}
2684
2685/**
2686 * e1000e_reset - bring the hardware into a known good state
2687 *
2688 * This function boots the hardware and enables some settings that
2689 * require a configuration cycle of the hardware - those cannot be
2690 * set/changed during runtime. After reset the device needs to be
ad68076e 2691 * properly configured for Rx, Tx etc.
bc7f75fa
AK
2692 */
2693void e1000e_reset(struct e1000_adapter *adapter)
2694{
2695 struct e1000_mac_info *mac = &adapter->hw.mac;
318a94d6 2696 struct e1000_fc_info *fc = &adapter->hw.fc;
bc7f75fa
AK
2697 struct e1000_hw *hw = &adapter->hw;
2698 u32 tx_space, min_tx_space, min_rx_space;
318a94d6 2699 u32 pba = adapter->pba;
bc7f75fa
AK
2700 u16 hwm;
2701
ad68076e 2702 /* reset Packet Buffer Allocation to default */
318a94d6 2703 ew32(PBA, pba);
df762464 2704
318a94d6 2705 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
ad68076e
BA
2706 /*
2707 * To maintain wire speed transmits, the Tx FIFO should be
bc7f75fa
AK
2708 * large enough to accommodate two full transmit packets,
2709 * rounded up to the next 1KB and expressed in KB. Likewise,
2710 * the Rx FIFO should be large enough to accommodate at least
2711 * one full receive packet and is similarly rounded up and
ad68076e
BA
2712 * expressed in KB.
2713 */
df762464 2714 pba = er32(PBA);
bc7f75fa 2715 /* upper 16 bits has Tx packet buffer allocation size in KB */
df762464 2716 tx_space = pba >> 16;
bc7f75fa 2717 /* lower 16 bits has Rx packet buffer allocation size in KB */
df762464 2718 pba &= 0xffff;
ad68076e
BA
2719 /*
2720 * the Tx fifo also stores 16 bytes of information about the tx
2721 * but don't include ethernet FCS because hardware appends it
318a94d6
JK
2722 */
2723 min_tx_space = (adapter->max_frame_size +
bc7f75fa
AK
2724 sizeof(struct e1000_tx_desc) -
2725 ETH_FCS_LEN) * 2;
2726 min_tx_space = ALIGN(min_tx_space, 1024);
2727 min_tx_space >>= 10;
2728 /* software strips receive CRC, so leave room for it */
318a94d6 2729 min_rx_space = adapter->max_frame_size;
bc7f75fa
AK
2730 min_rx_space = ALIGN(min_rx_space, 1024);
2731 min_rx_space >>= 10;
2732
ad68076e
BA
2733 /*
2734 * If current Tx allocation is less than the min Tx FIFO size,
bc7f75fa 2735 * and the min Tx FIFO size is less than the current Rx FIFO
ad68076e
BA
2736 * allocation, take space away from current Rx allocation
2737 */
df762464
AK
2738 if ((tx_space < min_tx_space) &&
2739 ((min_tx_space - tx_space) < pba)) {
2740 pba -= min_tx_space - tx_space;
bc7f75fa 2741
ad68076e
BA
2742 /*
2743 * if short on Rx space, Rx wins and must trump tx
2744 * adjustment or use Early Receive if available
2745 */
df762464 2746 if ((pba < min_rx_space) &&
bc7f75fa
AK
2747 (!(adapter->flags & FLAG_HAS_ERT)))
2748 /* ERT enabled in e1000_configure_rx */
df762464 2749 pba = min_rx_space;
bc7f75fa 2750 }
df762464
AK
2751
2752 ew32(PBA, pba);
bc7f75fa
AK
2753 }
2754
bc7f75fa 2755
ad68076e
BA
2756 /*
2757 * flow control settings
2758 *
2759 * The high water mark must be low enough to fit one full frame
bc7f75fa
AK
2760 * (or the size used for early receive) above it in the Rx FIFO.
2761 * Set it to the lower of:
2762 * - 90% of the Rx FIFO size, and
2763 * - the full Rx FIFO size minus the early receive size (for parts
2764 * with ERT support assuming ERT set to E1000_ERT_2048), or
ad68076e
BA
2765 * - the full Rx FIFO size minus one full frame
2766 */
bc7f75fa 2767 if (adapter->flags & FLAG_HAS_ERT)
318a94d6
JK
2768 hwm = min(((pba << 10) * 9 / 10),
2769 ((pba << 10) - (E1000_ERT_2048 << 3)));
bc7f75fa 2770 else
318a94d6
JK
2771 hwm = min(((pba << 10) * 9 / 10),
2772 ((pba << 10) - adapter->max_frame_size));
bc7f75fa 2773
318a94d6
JK
2774 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2775 fc->low_water = fc->high_water - 8;
bc7f75fa
AK
2776
2777 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
318a94d6 2778 fc->pause_time = 0xFFFF;
bc7f75fa 2779 else
318a94d6
JK
2780 fc->pause_time = E1000_FC_PAUSE_TIME;
2781 fc->send_xon = 1;
5c48ef3e 2782 fc->current_mode = fc->requested_mode;
bc7f75fa
AK
2783
2784 /* Allow time for pending master requests to run */
2785 mac->ops.reset_hw(hw);
97ac8cae
BA
2786
2787 /*
2788 * For parts with AMT enabled, let the firmware know
2789 * that the network interface is in control
2790 */
c43bc57e 2791 if (adapter->flags & FLAG_HAS_AMT)
97ac8cae
BA
2792 e1000_get_hw_control(adapter);
2793
bc7f75fa
AK
2794 ew32(WUC, 0);
2795
2796 if (mac->ops.init_hw(hw))
44defeb3 2797 e_err("Hardware Error\n");
bc7f75fa
AK
2798
2799 e1000_update_mng_vlan(adapter);
2800
2801 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2802 ew32(VET, ETH_P_8021Q);
2803
2804 e1000e_reset_adaptive(hw);
2805 e1000_get_phy_info(hw);
2806
2807 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2808 u16 phy_data = 0;
ad68076e
BA
2809 /*
2810 * speed up time to link by disabling smart power down, ignore
bc7f75fa 2811 * the return value of this function because there is nothing
ad68076e
BA
2812 * different we would do if it failed
2813 */
bc7f75fa
AK
2814 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2815 phy_data &= ~IGP02E1000_PM_SPD;
2816 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2817 }
bc7f75fa
AK
2818}
2819
2820int e1000e_up(struct e1000_adapter *adapter)
2821{
2822 struct e1000_hw *hw = &adapter->hw;
2823
2824 /* hardware has been reset, we need to reload some things */
2825 e1000_configure(adapter);
2826
2827 clear_bit(__E1000_DOWN, &adapter->state);
2828
2829 napi_enable(&adapter->napi);
4662e82b
BA
2830 if (adapter->msix_entries)
2831 e1000_configure_msix(adapter);
bc7f75fa
AK
2832 e1000_irq_enable(adapter);
2833
2834 /* fire a link change interrupt to start the watchdog */
2835 ew32(ICS, E1000_ICS_LSC);
2836 return 0;
2837}
2838
2839void e1000e_down(struct e1000_adapter *adapter)
2840{
2841 struct net_device *netdev = adapter->netdev;
2842 struct e1000_hw *hw = &adapter->hw;
2843 u32 tctl, rctl;
2844
ad68076e
BA
2845 /*
2846 * signal that we're down so the interrupt handler does not
2847 * reschedule our watchdog timer
2848 */
bc7f75fa
AK
2849 set_bit(__E1000_DOWN, &adapter->state);
2850
2851 /* disable receives in the hardware */
2852 rctl = er32(RCTL);
2853 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2854 /* flush and sleep below */
2855
d55b53ff 2856 netif_tx_stop_all_queues(netdev);
bc7f75fa
AK
2857
2858 /* disable transmits in the hardware */
2859 tctl = er32(TCTL);
2860 tctl &= ~E1000_TCTL_EN;
2861 ew32(TCTL, tctl);
2862 /* flush both disables and wait for them to finish */
2863 e1e_flush();
2864 msleep(10);
2865
2866 napi_disable(&adapter->napi);
2867 e1000_irq_disable(adapter);
2868
2869 del_timer_sync(&adapter->watchdog_timer);
2870 del_timer_sync(&adapter->phy_info_timer);
2871
2872 netdev->tx_queue_len = adapter->tx_queue_len;
2873 netif_carrier_off(netdev);
2874 adapter->link_speed = 0;
2875 adapter->link_duplex = 0;
2876
52cc3086
JK
2877 if (!pci_channel_offline(adapter->pdev))
2878 e1000e_reset(adapter);
bc7f75fa
AK
2879 e1000_clean_tx_ring(adapter);
2880 e1000_clean_rx_ring(adapter);
2881
2882 /*
2883 * TODO: for power management, we could drop the link and
2884 * pci_disable_device here.
2885 */
2886}
2887
2888void e1000e_reinit_locked(struct e1000_adapter *adapter)
2889{
2890 might_sleep();
2891 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2892 msleep(1);
2893 e1000e_down(adapter);
2894 e1000e_up(adapter);
2895 clear_bit(__E1000_RESETTING, &adapter->state);
2896}
2897
2898/**
2899 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2900 * @adapter: board private structure to initialize
2901 *
2902 * e1000_sw_init initializes the Adapter private data structure.
2903 * Fields are initialized based on PCI device information and
2904 * OS network device settings (MTU size).
2905 **/
2906static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2907{
bc7f75fa
AK
2908 struct net_device *netdev = adapter->netdev;
2909
2910 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2911 adapter->rx_ps_bsize0 = 128;
318a94d6
JK
2912 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2913 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
bc7f75fa 2914
4662e82b 2915 e1000e_set_interrupt_capability(adapter);
bc7f75fa 2916
4662e82b
BA
2917 if (e1000_alloc_queues(adapter))
2918 return -ENOMEM;
bc7f75fa 2919
bc7f75fa 2920 /* Explicitly disable IRQ since the NIC can be in any state. */
bc7f75fa
AK
2921 e1000_irq_disable(adapter);
2922
bc7f75fa
AK
2923 set_bit(__E1000_DOWN, &adapter->state);
2924 return 0;
bc7f75fa
AK
2925}
2926
f8d59f78
BA
2927/**
2928 * e1000_intr_msi_test - Interrupt Handler
2929 * @irq: interrupt number
2930 * @data: pointer to a network interface device structure
2931 **/
2932static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2933{
2934 struct net_device *netdev = data;
2935 struct e1000_adapter *adapter = netdev_priv(netdev);
2936 struct e1000_hw *hw = &adapter->hw;
2937 u32 icr = er32(ICR);
2938
2939 e_dbg("%s: icr is %08X\n", netdev->name, icr);
2940 if (icr & E1000_ICR_RXSEQ) {
2941 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2942 wmb();
2943 }
2944
2945 return IRQ_HANDLED;
2946}
2947
2948/**
2949 * e1000_test_msi_interrupt - Returns 0 for successful test
2950 * @adapter: board private struct
2951 *
2952 * code flow taken from tg3.c
2953 **/
2954static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2955{
2956 struct net_device *netdev = adapter->netdev;
2957 struct e1000_hw *hw = &adapter->hw;
2958 int err;
2959
2960 /* poll_enable hasn't been called yet, so don't need disable */
2961 /* clear any pending events */
2962 er32(ICR);
2963
2964 /* free the real vector and request a test handler */
2965 e1000_free_irq(adapter);
4662e82b 2966 e1000e_reset_interrupt_capability(adapter);
f8d59f78
BA
2967
2968 /* Assume that the test fails, if it succeeds then the test
2969 * MSI irq handler will unset this flag */
2970 adapter->flags |= FLAG_MSI_TEST_FAILED;
2971
2972 err = pci_enable_msi(adapter->pdev);
2973 if (err)
2974 goto msi_test_failed;
2975
2976 err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
2977 netdev->name, netdev);
2978 if (err) {
2979 pci_disable_msi(adapter->pdev);
2980 goto msi_test_failed;
2981 }
2982
2983 wmb();
2984
2985 e1000_irq_enable(adapter);
2986
2987 /* fire an unusual interrupt on the test handler */
2988 ew32(ICS, E1000_ICS_RXSEQ);
2989 e1e_flush();
2990 msleep(50);
2991
2992 e1000_irq_disable(adapter);
2993
2994 rmb();
2995
2996 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4662e82b 2997 adapter->int_mode = E1000E_INT_MODE_LEGACY;
f8d59f78
BA
2998 err = -EIO;
2999 e_info("MSI interrupt test failed!\n");
3000 }
3001
3002 free_irq(adapter->pdev->irq, netdev);
3003 pci_disable_msi(adapter->pdev);
3004
3005 if (err == -EIO)
3006 goto msi_test_failed;
3007
3008 /* okay so the test worked, restore settings */
3009 e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
3010msi_test_failed:
4662e82b 3011 e1000e_set_interrupt_capability(adapter);
f8d59f78
BA
3012 e1000_request_irq(adapter);
3013 return err;
3014}
3015
3016/**
3017 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3018 * @adapter: board private struct
3019 *
3020 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3021 **/
3022static int e1000_test_msi(struct e1000_adapter *adapter)
3023{
3024 int err;
3025 u16 pci_cmd;
3026
3027 if (!(adapter->flags & FLAG_MSI_ENABLED))
3028 return 0;
3029
3030 /* disable SERR in case the MSI write causes a master abort */
3031 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3032 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3033 pci_cmd & ~PCI_COMMAND_SERR);
3034
3035 err = e1000_test_msi_interrupt(adapter);
3036
3037 /* restore previous setting of command word */
3038 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3039
3040 /* success ! */
3041 if (!err)
3042 return 0;
3043
3044 /* EIO means MSI test failed */
3045 if (err != -EIO)
3046 return err;
3047
3048 /* back to INTx mode */
3049 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3050
3051 e1000_free_irq(adapter);
3052
3053 err = e1000_request_irq(adapter);
3054
3055 return err;
3056}
3057
bc7f75fa
AK
3058/**
3059 * e1000_open - Called when a network interface is made active
3060 * @netdev: network interface device structure
3061 *
3062 * Returns 0 on success, negative value on failure
3063 *
3064 * The open entry point is called when a network interface is made
3065 * active by the system (IFF_UP). At this point all resources needed
3066 * for transmit and receive operations are allocated, the interrupt
3067 * handler is registered with the OS, the watchdog timer is started,
3068 * and the stack is notified that the interface is ready.
3069 **/
3070static int e1000_open(struct net_device *netdev)
3071{
3072 struct e1000_adapter *adapter = netdev_priv(netdev);
3073 struct e1000_hw *hw = &adapter->hw;
3074 int err;
3075
3076 /* disallow open during test */
3077 if (test_bit(__E1000_TESTING, &adapter->state))
3078 return -EBUSY;
3079
3080 /* allocate transmit descriptors */
3081 err = e1000e_setup_tx_resources(adapter);
3082 if (err)
3083 goto err_setup_tx;
3084
3085 /* allocate receive descriptors */
3086 err = e1000e_setup_rx_resources(adapter);
3087 if (err)
3088 goto err_setup_rx;
3089
3090 e1000e_power_up_phy(adapter);
3091
3092 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3093 if ((adapter->hw.mng_cookie.status &
3094 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3095 e1000_update_mng_vlan(adapter);
3096
ad68076e
BA
3097 /*
3098 * If AMT is enabled, let the firmware know that the network
3099 * interface is now open
3100 */
c43bc57e 3101 if (adapter->flags & FLAG_HAS_AMT)
bc7f75fa
AK
3102 e1000_get_hw_control(adapter);
3103
ad68076e
BA
3104 /*
3105 * before we allocate an interrupt, we must be ready to handle it.
bc7f75fa
AK
3106 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3107 * as soon as we call pci_request_irq, so we have to setup our
ad68076e
BA
3108 * clean_rx handler before we do so.
3109 */
bc7f75fa
AK
3110 e1000_configure(adapter);
3111
3112 err = e1000_request_irq(adapter);
3113 if (err)
3114 goto err_req_irq;
3115
f8d59f78
BA
3116 /*
3117 * Work around PCIe errata with MSI interrupts causing some chipsets to
3118 * ignore e1000e MSI messages, which means we need to test our MSI
3119 * interrupt now
3120 */
4662e82b 3121 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
f8d59f78
BA
3122 err = e1000_test_msi(adapter);
3123 if (err) {
3124 e_err("Interrupt allocation failed\n");
3125 goto err_req_irq;
3126 }
3127 }
3128
bc7f75fa
AK
3129 /* From here on the code is the same as e1000e_up() */
3130 clear_bit(__E1000_DOWN, &adapter->state);
3131
3132 napi_enable(&adapter->napi);
3133
3134 e1000_irq_enable(adapter);
3135
d55b53ff
JK
3136 netif_tx_start_all_queues(netdev);
3137
bc7f75fa
AK
3138 /* fire a link status change interrupt to start the watchdog */
3139 ew32(ICS, E1000_ICS_LSC);
3140
3141 return 0;
3142
3143err_req_irq:
3144 e1000_release_hw_control(adapter);
3145 e1000_power_down_phy(adapter);
3146 e1000e_free_rx_resources(adapter);
3147err_setup_rx:
3148 e1000e_free_tx_resources(adapter);
3149err_setup_tx:
3150 e1000e_reset(adapter);
3151
3152 return err;
3153}
3154
3155/**
3156 * e1000_close - Disables a network interface
3157 * @netdev: network interface device structure
3158 *
3159 * Returns 0, this is not allowed to fail
3160 *
3161 * The close entry point is called when an interface is de-activated
3162 * by the OS. The hardware is still under the drivers control, but
3163 * needs to be disabled. A global MAC reset is issued to stop the
3164 * hardware, and all transmit and receive resources are freed.
3165 **/
3166static int e1000_close(struct net_device *netdev)
3167{
3168 struct e1000_adapter *adapter = netdev_priv(netdev);
3169
3170 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3171 e1000e_down(adapter);
3172 e1000_power_down_phy(adapter);
3173 e1000_free_irq(adapter);
3174
3175 e1000e_free_tx_resources(adapter);
3176 e1000e_free_rx_resources(adapter);
3177
ad68076e
BA
3178 /*
3179 * kill manageability vlan ID if supported, but not if a vlan with
3180 * the same ID is registered on the host OS (let 8021q kill it)
3181 */
bc7f75fa
AK
3182 if ((adapter->hw.mng_cookie.status &
3183 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3184 !(adapter->vlgrp &&
3185 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3186 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3187
ad68076e
BA
3188 /*
3189 * If AMT is enabled, let the firmware know that the network
3190 * interface is now closed
3191 */
c43bc57e 3192 if (adapter->flags & FLAG_HAS_AMT)
bc7f75fa
AK
3193 e1000_release_hw_control(adapter);
3194
3195 return 0;
3196}
3197/**
3198 * e1000_set_mac - Change the Ethernet Address of the NIC
3199 * @netdev: network interface device structure
3200 * @p: pointer to an address structure
3201 *
3202 * Returns 0 on success, negative on failure
3203 **/
3204static int e1000_set_mac(struct net_device *netdev, void *p)
3205{
3206 struct e1000_adapter *adapter = netdev_priv(netdev);
3207 struct sockaddr *addr = p;
3208
3209 if (!is_valid_ether_addr(addr->sa_data))
3210 return -EADDRNOTAVAIL;
3211
3212 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3213 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3214
3215 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3216
3217 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3218 /* activate the work around */
3219 e1000e_set_laa_state_82571(&adapter->hw, 1);
3220
ad68076e
BA
3221 /*
3222 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
3223 * between the time RAR[0] gets clobbered and the time it
3224 * gets fixed (in e1000_watchdog), the actual LAA is in one
3225 * of the RARs and no incoming packets directed to this port
3226 * are dropped. Eventually the LAA will be in RAR[0] and
ad68076e
BA
3227 * RAR[14]
3228 */
bc7f75fa
AK
3229 e1000e_rar_set(&adapter->hw,
3230 adapter->hw.mac.addr,
3231 adapter->hw.mac.rar_entry_count - 1);
3232 }
3233
3234 return 0;
3235}
3236
a8f88ff5
JB
3237/**
3238 * e1000e_update_phy_task - work thread to update phy
3239 * @work: pointer to our work struct
3240 *
3241 * this worker thread exists because we must acquire a
3242 * semaphore to read the phy, which we could msleep while
3243 * waiting for it, and we can't msleep in a timer.
3244 **/
3245static void e1000e_update_phy_task(struct work_struct *work)
3246{
3247 struct e1000_adapter *adapter = container_of(work,
3248 struct e1000_adapter, update_phy_task);
3249 e1000_get_phy_info(&adapter->hw);
3250}
3251
ad68076e
BA
3252/*
3253 * Need to wait a few seconds after link up to get diagnostic information from
3254 * the phy
3255 */
bc7f75fa
AK
3256static void e1000_update_phy_info(unsigned long data)
3257{
3258 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
a8f88ff5 3259 schedule_work(&adapter->update_phy_task);
bc7f75fa
AK
3260}
3261
3262/**
3263 * e1000e_update_stats - Update the board statistics counters
3264 * @adapter: board private structure
3265 **/
3266void e1000e_update_stats(struct e1000_adapter *adapter)
3267{
3268 struct e1000_hw *hw = &adapter->hw;
3269 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
3270
3271 /*
3272 * Prevent stats update while adapter is being reset, or if the pci
3273 * connection is down.
3274 */
3275 if (adapter->link_speed == 0)
3276 return;
3277 if (pci_channel_offline(pdev))
3278 return;
3279
bc7f75fa
AK
3280 adapter->stats.crcerrs += er32(CRCERRS);
3281 adapter->stats.gprc += er32(GPRC);
7c25769f
BA
3282 adapter->stats.gorc += er32(GORCL);
3283 er32(GORCH); /* Clear gorc */
bc7f75fa
AK
3284 adapter->stats.bprc += er32(BPRC);
3285 adapter->stats.mprc += er32(MPRC);
3286 adapter->stats.roc += er32(ROC);
3287
bc7f75fa
AK
3288 adapter->stats.mpc += er32(MPC);
3289 adapter->stats.scc += er32(SCC);
3290 adapter->stats.ecol += er32(ECOL);
3291 adapter->stats.mcc += er32(MCC);
3292 adapter->stats.latecol += er32(LATECOL);
3293 adapter->stats.dc += er32(DC);
bc7f75fa
AK
3294 adapter->stats.xonrxc += er32(XONRXC);
3295 adapter->stats.xontxc += er32(XONTXC);
3296 adapter->stats.xoffrxc += er32(XOFFRXC);
3297 adapter->stats.xofftxc += er32(XOFFTXC);
bc7f75fa 3298 adapter->stats.gptc += er32(GPTC);
7c25769f
BA
3299 adapter->stats.gotc += er32(GOTCL);
3300 er32(GOTCH); /* Clear gotc */
bc7f75fa
AK
3301 adapter->stats.rnbc += er32(RNBC);
3302 adapter->stats.ruc += er32(RUC);
bc7f75fa
AK
3303
3304 adapter->stats.mptc += er32(MPTC);
3305 adapter->stats.bptc += er32(BPTC);
3306
3307 /* used for adaptive IFS */
3308
3309 hw->mac.tx_packet_delta = er32(TPT);
3310 adapter->stats.tpt += hw->mac.tx_packet_delta;
3311 hw->mac.collision_delta = er32(COLC);
3312 adapter->stats.colc += hw->mac.collision_delta;
3313
3314 adapter->stats.algnerrc += er32(ALGNERRC);
3315 adapter->stats.rxerrc += er32(RXERRC);
8c81c9c3 3316 if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
4662e82b 3317 adapter->stats.tncrs += er32(TNCRS);
bc7f75fa
AK
3318 adapter->stats.cexterr += er32(CEXTERR);
3319 adapter->stats.tsctc += er32(TSCTC);
3320 adapter->stats.tsctfc += er32(TSCTFC);
3321
bc7f75fa 3322 /* Fill out the OS statistics structure */
bc7f75fa
AK
3323 adapter->net_stats.multicast = adapter->stats.mprc;
3324 adapter->net_stats.collisions = adapter->stats.colc;
3325
3326 /* Rx Errors */
3327
ad68076e
BA
3328 /*
3329 * RLEC on some newer hardware can be incorrect so build
3330 * our own version based on RUC and ROC
3331 */
bc7f75fa
AK
3332 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3333 adapter->stats.crcerrs + adapter->stats.algnerrc +
3334 adapter->stats.ruc + adapter->stats.roc +
3335 adapter->stats.cexterr;
3336 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3337 adapter->stats.roc;
3338 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3339 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3340 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3341
3342 /* Tx Errors */
3343 adapter->net_stats.tx_errors = adapter->stats.ecol +
3344 adapter->stats.latecol;
3345 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3346 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3347 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3348
3349 /* Tx Dropped needs to be maintained elsewhere */
3350
bc7f75fa
AK
3351 /* Management Stats */
3352 adapter->stats.mgptc += er32(MGTPTC);
3353 adapter->stats.mgprc += er32(MGTPRC);
3354 adapter->stats.mgpdc += er32(MGTPDC);
bc7f75fa
AK
3355}
3356
7c25769f
BA
3357/**
3358 * e1000_phy_read_status - Update the PHY register status snapshot
3359 * @adapter: board private structure
3360 **/
3361static void e1000_phy_read_status(struct e1000_adapter *adapter)
3362{
3363 struct e1000_hw *hw = &adapter->hw;
3364 struct e1000_phy_regs *phy = &adapter->phy_regs;
3365 int ret_val;
7c25769f
BA
3366
3367 if ((er32(STATUS) & E1000_STATUS_LU) &&
3368 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3369 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3370 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3371 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3372 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3373 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3374 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3375 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3376 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3377 if (ret_val)
44defeb3 3378 e_warn("Error reading PHY register\n");
7c25769f
BA
3379 } else {
3380 /*
3381 * Do not read PHY registers if link is not up
3382 * Set values to typical power-on defaults
3383 */
3384 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3385 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3386 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3387 BMSR_ERCAP);
3388 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3389 ADVERTISE_ALL | ADVERTISE_CSMA);
3390 phy->lpa = 0;
3391 phy->expansion = EXPANSION_ENABLENPAGE;
3392 phy->ctrl1000 = ADVERTISE_1000FULL;
3393 phy->stat1000 = 0;
3394 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3395 }
7c25769f
BA
3396}
3397
bc7f75fa
AK
3398static void e1000_print_link_info(struct e1000_adapter *adapter)
3399{
bc7f75fa
AK
3400 struct e1000_hw *hw = &adapter->hw;
3401 u32 ctrl = er32(CTRL);
3402
8f12fe86
BA
3403 /* Link status message must follow this format for user tools */
3404 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3405 "Flow Control: %s\n",
3406 adapter->netdev->name,
44defeb3
JK
3407 adapter->link_speed,
3408 (adapter->link_duplex == FULL_DUPLEX) ?
3409 "Full Duplex" : "Half Duplex",
3410 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3411 "RX/TX" :
3412 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3413 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
bc7f75fa
AK
3414}
3415
a20e4cf9 3416bool e1000_has_link(struct e1000_adapter *adapter)
318a94d6
JK
3417{
3418 struct e1000_hw *hw = &adapter->hw;
3419 bool link_active = 0;
3420 s32 ret_val = 0;
3421
3422 /*
3423 * get_link_status is set on LSC (link status) interrupt or
3424 * Rx sequence error interrupt. get_link_status will stay
3425 * false until the check_for_link establishes link
3426 * for copper adapters ONLY
3427 */
3428 switch (hw->phy.media_type) {
3429 case e1000_media_type_copper:
3430 if (hw->mac.get_link_status) {
3431 ret_val = hw->mac.ops.check_for_link(hw);
3432 link_active = !hw->mac.get_link_status;
3433 } else {
3434 link_active = 1;
3435 }
3436 break;
3437 case e1000_media_type_fiber:
3438 ret_val = hw->mac.ops.check_for_link(hw);
3439 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3440 break;
3441 case e1000_media_type_internal_serdes:
3442 ret_val = hw->mac.ops.check_for_link(hw);
3443 link_active = adapter->hw.mac.serdes_has_link;
3444 break;
3445 default:
3446 case e1000_media_type_unknown:
3447 break;
3448 }
3449
3450 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3451 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3452 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
44defeb3 3453 e_info("Gigabit has been disabled, downgrading speed\n");
318a94d6
JK
3454 }
3455
3456 return link_active;
3457}
3458
3459static void e1000e_enable_receives(struct e1000_adapter *adapter)
3460{
3461 /* make sure the receive unit is started */
3462 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3463 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3464 struct e1000_hw *hw = &adapter->hw;
3465 u32 rctl = er32(RCTL);
3466 ew32(RCTL, rctl | E1000_RCTL_EN);
3467 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3468 }
3469}
3470
bc7f75fa
AK
3471/**
3472 * e1000_watchdog - Timer Call-back
3473 * @data: pointer to adapter cast into an unsigned long
3474 **/
3475static void e1000_watchdog(unsigned long data)
3476{
3477 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3478
3479 /* Do the rest outside of interrupt context */
3480 schedule_work(&adapter->watchdog_task);
3481
3482 /* TODO: make this use queue_delayed_work() */
3483}
3484
3485static void e1000_watchdog_task(struct work_struct *work)
3486{
3487 struct e1000_adapter *adapter = container_of(work,
3488 struct e1000_adapter, watchdog_task);
bc7f75fa
AK
3489 struct net_device *netdev = adapter->netdev;
3490 struct e1000_mac_info *mac = &adapter->hw.mac;
75eb0fad 3491 struct e1000_phy_info *phy = &adapter->hw.phy;
bc7f75fa
AK
3492 struct e1000_ring *tx_ring = adapter->tx_ring;
3493 struct e1000_hw *hw = &adapter->hw;
3494 u32 link, tctl;
bc7f75fa
AK
3495 int tx_pending = 0;
3496
318a94d6
JK
3497 link = e1000_has_link(adapter);
3498 if ((netif_carrier_ok(netdev)) && link) {
3499 e1000e_enable_receives(adapter);
bc7f75fa 3500 goto link_up;
bc7f75fa
AK
3501 }
3502
3503 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3504 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3505 e1000_update_mng_vlan(adapter);
3506
bc7f75fa
AK
3507 if (link) {
3508 if (!netif_carrier_ok(netdev)) {
3509 bool txb2b = 1;
318a94d6 3510 /* update snapshot of PHY registers on LSC */
7c25769f 3511 e1000_phy_read_status(adapter);
bc7f75fa
AK
3512 mac->ops.get_link_up_info(&adapter->hw,
3513 &adapter->link_speed,
3514 &adapter->link_duplex);
3515 e1000_print_link_info(adapter);
f4187b56
BA
3516 /*
3517 * On supported PHYs, check for duplex mismatch only
3518 * if link has autonegotiated at 10/100 half
3519 */
3520 if ((hw->phy.type == e1000_phy_igp_3 ||
3521 hw->phy.type == e1000_phy_bm) &&
3522 (hw->mac.autoneg == true) &&
3523 (adapter->link_speed == SPEED_10 ||
3524 adapter->link_speed == SPEED_100) &&
3525 (adapter->link_duplex == HALF_DUPLEX)) {
3526 u16 autoneg_exp;
3527
3528 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3529
3530 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3531 e_info("Autonegotiated half duplex but"
3532 " link partner cannot autoneg. "
3533 " Try forcing full duplex if "
3534 "link gets many collisions.\n");
3535 }
3536
ad68076e
BA
3537 /*
3538 * tweak tx_queue_len according to speed/duplex
3539 * and adjust the timeout factor
3540 */
bc7f75fa
AK
3541 netdev->tx_queue_len = adapter->tx_queue_len;
3542 adapter->tx_timeout_factor = 1;
3543 switch (adapter->link_speed) {
3544 case SPEED_10:
3545 txb2b = 0;
3546 netdev->tx_queue_len = 10;
10f1b492 3547 adapter->tx_timeout_factor = 16;
bc7f75fa
AK
3548 break;
3549 case SPEED_100:
3550 txb2b = 0;
3551 netdev->tx_queue_len = 100;
3552 /* maybe add some timeout factor ? */
3553 break;
3554 }
3555
ad68076e
BA
3556 /*
3557 * workaround: re-program speed mode bit after
3558 * link-up event
3559 */
bc7f75fa
AK
3560 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3561 !txb2b) {
3562 u32 tarc0;
e9ec2c0f 3563 tarc0 = er32(TARC(0));
bc7f75fa 3564 tarc0 &= ~SPEED_MODE_BIT;
e9ec2c0f 3565 ew32(TARC(0), tarc0);
bc7f75fa
AK
3566 }
3567
ad68076e
BA
3568 /*
3569 * disable TSO for pcie and 10/100 speeds, to avoid
3570 * some hardware issues
3571 */
bc7f75fa
AK
3572 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3573 switch (adapter->link_speed) {
3574 case SPEED_10:
3575 case SPEED_100:
44defeb3 3576 e_info("10/100 speed: disabling TSO\n");
bc7f75fa
AK
3577 netdev->features &= ~NETIF_F_TSO;
3578 netdev->features &= ~NETIF_F_TSO6;
3579 break;
3580 case SPEED_1000:
3581 netdev->features |= NETIF_F_TSO;
3582 netdev->features |= NETIF_F_TSO6;
3583 break;
3584 default:
3585 /* oops */
3586 break;
3587 }
3588 }
3589
ad68076e
BA
3590 /*
3591 * enable transmits in the hardware, need to do this
3592 * after setting TARC(0)
3593 */
bc7f75fa
AK
3594 tctl = er32(TCTL);
3595 tctl |= E1000_TCTL_EN;
3596 ew32(TCTL, tctl);
3597
75eb0fad
BA
3598 /*
3599 * Perform any post-link-up configuration before
3600 * reporting link up.
3601 */
3602 if (phy->ops.cfg_on_link_up)
3603 phy->ops.cfg_on_link_up(hw);
3604
bc7f75fa 3605 netif_carrier_on(netdev);
d55b53ff 3606 netif_tx_wake_all_queues(netdev);
bc7f75fa
AK
3607
3608 if (!test_bit(__E1000_DOWN, &adapter->state))
3609 mod_timer(&adapter->phy_info_timer,
3610 round_jiffies(jiffies + 2 * HZ));
bc7f75fa
AK
3611 }
3612 } else {
3613 if (netif_carrier_ok(netdev)) {
3614 adapter->link_speed = 0;
3615 adapter->link_duplex = 0;
8f12fe86
BA
3616 /* Link status message must follow this format */
3617 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
3618 adapter->netdev->name);
bc7f75fa 3619 netif_carrier_off(netdev);
d55b53ff 3620 netif_tx_stop_all_queues(netdev);
bc7f75fa
AK
3621 if (!test_bit(__E1000_DOWN, &adapter->state))
3622 mod_timer(&adapter->phy_info_timer,
3623 round_jiffies(jiffies + 2 * HZ));
3624
3625 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3626 schedule_work(&adapter->reset_task);
3627 }
3628 }
3629
3630link_up:
3631 e1000e_update_stats(adapter);
3632
3633 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3634 adapter->tpt_old = adapter->stats.tpt;
3635 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3636 adapter->colc_old = adapter->stats.colc;
3637
7c25769f
BA
3638 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3639 adapter->gorc_old = adapter->stats.gorc;
3640 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3641 adapter->gotc_old = adapter->stats.gotc;
bc7f75fa
AK
3642
3643 e1000e_update_adaptive(&adapter->hw);
3644
3645 if (!netif_carrier_ok(netdev)) {
3646 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3647 tx_ring->count);
3648 if (tx_pending) {
ad68076e
BA
3649 /*
3650 * We've lost link, so the controller stops DMA,
bc7f75fa
AK
3651 * but we've got queued Tx work that's never going
3652 * to get done, so reset controller to flush Tx.
ad68076e
BA
3653 * (Do the reset outside of interrupt context).
3654 */
bc7f75fa
AK
3655 adapter->tx_timeout_count++;
3656 schedule_work(&adapter->reset_task);
3657 }
3658 }
3659
ad68076e 3660 /* Cause software interrupt to ensure Rx ring is cleaned */
4662e82b
BA
3661 if (adapter->msix_entries)
3662 ew32(ICS, adapter->rx_ring->ims_val);
3663 else
3664 ew32(ICS, E1000_ICS_RXDMT0);
bc7f75fa
AK
3665
3666 /* Force detection of hung controller every watchdog period */
3667 adapter->detect_tx_hung = 1;
3668
ad68076e
BA
3669 /*
3670 * With 82571 controllers, LAA may be overwritten due to controller
3671 * reset from the other port. Set the appropriate LAA in RAR[0]
3672 */
bc7f75fa
AK
3673 if (e1000e_get_laa_state_82571(hw))
3674 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3675
3676 /* Reset the timer */
3677 if (!test_bit(__E1000_DOWN, &adapter->state))
3678 mod_timer(&adapter->watchdog_timer,
3679 round_jiffies(jiffies + 2 * HZ));
3680}
3681
3682#define E1000_TX_FLAGS_CSUM 0x00000001
3683#define E1000_TX_FLAGS_VLAN 0x00000002
3684#define E1000_TX_FLAGS_TSO 0x00000004
3685#define E1000_TX_FLAGS_IPV4 0x00000008
3686#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3687#define E1000_TX_FLAGS_VLAN_SHIFT 16
3688
3689static int e1000_tso(struct e1000_adapter *adapter,
3690 struct sk_buff *skb)
3691{
3692 struct e1000_ring *tx_ring = adapter->tx_ring;
3693 struct e1000_context_desc *context_desc;
3694 struct e1000_buffer *buffer_info;
3695 unsigned int i;
3696 u32 cmd_length = 0;
3697 u16 ipcse = 0, tucse, mss;
3698 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3699 int err;
3700
3701 if (skb_is_gso(skb)) {
3702 if (skb_header_cloned(skb)) {
3703 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3704 if (err)
3705 return err;
3706 }
3707
3708 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3709 mss = skb_shinfo(skb)->gso_size;
3710 if (skb->protocol == htons(ETH_P_IP)) {
3711 struct iphdr *iph = ip_hdr(skb);
3712 iph->tot_len = 0;
3713 iph->check = 0;
3714 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3715 iph->daddr, 0,
3716 IPPROTO_TCP,
3717 0);
3718 cmd_length = E1000_TXD_CMD_IP;
3719 ipcse = skb_transport_offset(skb) - 1;
3720 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3721 ipv6_hdr(skb)->payload_len = 0;
3722 tcp_hdr(skb)->check =
3723 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3724 &ipv6_hdr(skb)->daddr,
3725 0, IPPROTO_TCP, 0);
3726 ipcse = 0;
3727 }
3728 ipcss = skb_network_offset(skb);
3729 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3730 tucss = skb_transport_offset(skb);
3731 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3732 tucse = 0;
3733
3734 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3735 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3736
3737 i = tx_ring->next_to_use;
3738 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3739 buffer_info = &tx_ring->buffer_info[i];
3740
3741 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3742 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3743 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3744 context_desc->upper_setup.tcp_fields.tucss = tucss;
3745 context_desc->upper_setup.tcp_fields.tucso = tucso;
3746 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3747 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3748 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3749 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3750
3751 buffer_info->time_stamp = jiffies;
3752 buffer_info->next_to_watch = i;
3753
3754 i++;
3755 if (i == tx_ring->count)
3756 i = 0;
3757 tx_ring->next_to_use = i;
3758
3759 return 1;
3760 }
3761
3762 return 0;
3763}
3764
3765static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3766{
3767 struct e1000_ring *tx_ring = adapter->tx_ring;
3768 struct e1000_context_desc *context_desc;
3769 struct e1000_buffer *buffer_info;
3770 unsigned int i;
3771 u8 css;
af807c82 3772 u32 cmd_len = E1000_TXD_CMD_DEXT;
bc7f75fa 3773
af807c82
DG
3774 if (skb->ip_summed != CHECKSUM_PARTIAL)
3775 return 0;
bc7f75fa 3776
af807c82 3777 switch (skb->protocol) {
09640e63 3778 case cpu_to_be16(ETH_P_IP):
af807c82
DG
3779 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3780 cmd_len |= E1000_TXD_CMD_TCP;
3781 break;
09640e63 3782 case cpu_to_be16(ETH_P_IPV6):
af807c82
DG
3783 /* XXX not handling all IPV6 headers */
3784 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3785 cmd_len |= E1000_TXD_CMD_TCP;
3786 break;
3787 default:
3788 if (unlikely(net_ratelimit()))
3789 e_warn("checksum_partial proto=%x!\n", skb->protocol);
3790 break;
bc7f75fa
AK
3791 }
3792
af807c82
DG
3793 css = skb_transport_offset(skb);
3794
3795 i = tx_ring->next_to_use;
3796 buffer_info = &tx_ring->buffer_info[i];
3797 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3798
3799 context_desc->lower_setup.ip_config = 0;
3800 context_desc->upper_setup.tcp_fields.tucss = css;
3801 context_desc->upper_setup.tcp_fields.tucso =
3802 css + skb->csum_offset;
3803 context_desc->upper_setup.tcp_fields.tucse = 0;
3804 context_desc->tcp_seg_setup.data = 0;
3805 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3806
3807 buffer_info->time_stamp = jiffies;
3808 buffer_info->next_to_watch = i;
3809
3810 i++;
3811 if (i == tx_ring->count)
3812 i = 0;
3813 tx_ring->next_to_use = i;
3814
3815 return 1;
bc7f75fa
AK
3816}
3817
3818#define E1000_MAX_PER_TXD 8192
3819#define E1000_MAX_TXD_PWR 12
3820
3821static int e1000_tx_map(struct e1000_adapter *adapter,
3822 struct sk_buff *skb, unsigned int first,
3823 unsigned int max_per_txd, unsigned int nr_frags,
3824 unsigned int mss)
3825{
3826 struct e1000_ring *tx_ring = adapter->tx_ring;
8ddc951c
JB
3827 unsigned int len = skb_headlen(skb);
3828 unsigned int offset, size, count = 0, i;
bc7f75fa 3829 unsigned int f;
8ddc951c 3830 dma_addr_t map;
bc7f75fa
AK
3831
3832 i = tx_ring->next_to_use;
3833
8ddc951c
JB
3834 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3835 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3836 adapter->tx_dma_failed++;
3837 dev_kfree_skb(skb);
3838 return -2;
3839 }
3840
3841 map = skb_shinfo(skb)->dma_maps[0];
3842 offset = 0;
3843
bc7f75fa 3844 while (len) {
8ddc951c 3845 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
bc7f75fa
AK
3846 size = min(len, max_per_txd);
3847
bc7f75fa
AK
3848 buffer_info->length = size;
3849 /* set time_stamp *before* dma to help avoid a possible race */
3850 buffer_info->time_stamp = jiffies;
8ddc951c 3851 buffer_info->dma = map + offset;
bc7f75fa
AK
3852 buffer_info->next_to_watch = i;
3853
3854 len -= size;
3855 offset += size;
3856 count++;
3857 i++;
3858 if (i == tx_ring->count)
3859 i = 0;
3860 }
3861
3862 for (f = 0; f < nr_frags; f++) {
3863 struct skb_frag_struct *frag;
3864
3865 frag = &skb_shinfo(skb)->frags[f];
3866 len = frag->size;
8ddc951c
JB
3867 map = skb_shinfo(skb)->dma_maps[f + 1];
3868 offset = 0;
bc7f75fa
AK
3869
3870 while (len) {
8ddc951c 3871 struct e1000_buffer *buffer_info;
bc7f75fa
AK
3872 buffer_info = &tx_ring->buffer_info[i];
3873 size = min(len, max_per_txd);
bc7f75fa
AK
3874
3875 buffer_info->length = size;
3876 buffer_info->time_stamp = jiffies;
8ddc951c 3877 buffer_info->dma = map + offset;
bc7f75fa
AK
3878 buffer_info->next_to_watch = i;
3879
3880 len -= size;
3881 offset += size;
3882 count++;
3883
3884 i++;
3885 if (i == tx_ring->count)
3886 i = 0;
3887 }
3888 }
3889
3890 if (i == 0)
3891 i = tx_ring->count - 1;
3892 else
3893 i--;
3894
3895 tx_ring->buffer_info[i].skb = skb;
3896 tx_ring->buffer_info[first].next_to_watch = i;
8ddc951c 3897 smp_wmb();
bc7f75fa
AK
3898
3899 return count;
3900}
3901
3902static void e1000_tx_queue(struct e1000_adapter *adapter,
3903 int tx_flags, int count)
3904{
3905 struct e1000_ring *tx_ring = adapter->tx_ring;
3906 struct e1000_tx_desc *tx_desc = NULL;
3907 struct e1000_buffer *buffer_info;
3908 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3909 unsigned int i;
3910
3911 if (tx_flags & E1000_TX_FLAGS_TSO) {
3912 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3913 E1000_TXD_CMD_TSE;
3914 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3915
3916 if (tx_flags & E1000_TX_FLAGS_IPV4)
3917 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3918 }
3919
3920 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3921 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3922 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3923 }
3924
3925 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3926 txd_lower |= E1000_TXD_CMD_VLE;
3927 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3928 }
3929
3930 i = tx_ring->next_to_use;
3931
3932 while (count--) {
3933 buffer_info = &tx_ring->buffer_info[i];
3934 tx_desc = E1000_TX_DESC(*tx_ring, i);
3935 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3936 tx_desc->lower.data =
3937 cpu_to_le32(txd_lower | buffer_info->length);
3938 tx_desc->upper.data = cpu_to_le32(txd_upper);
3939
3940 i++;
3941 if (i == tx_ring->count)
3942 i = 0;
3943 }
3944
3945 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3946
ad68076e
BA
3947 /*
3948 * Force memory writes to complete before letting h/w
bc7f75fa
AK
3949 * know there are new descriptors to fetch. (Only
3950 * applicable for weak-ordered memory model archs,
ad68076e
BA
3951 * such as IA-64).
3952 */
bc7f75fa
AK
3953 wmb();
3954
3955 tx_ring->next_to_use = i;
3956 writel(i, adapter->hw.hw_addr + tx_ring->tail);
ad68076e
BA
3957 /*
3958 * we need this if more than one processor can write to our tail
3959 * at a time, it synchronizes IO on IA64/Altix systems
3960 */
bc7f75fa
AK
3961 mmiowb();
3962}
3963
3964#define MINIMUM_DHCP_PACKET_SIZE 282
3965static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3966 struct sk_buff *skb)
3967{
3968 struct e1000_hw *hw = &adapter->hw;
3969 u16 length, offset;
3970
3971 if (vlan_tx_tag_present(skb)) {
3972 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3973 && (adapter->hw.mng_cookie.status &
3974 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3975 return 0;
3976 }
3977
3978 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3979 return 0;
3980
3981 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3982 return 0;
3983
3984 {
3985 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3986 struct udphdr *udp;
3987
3988 if (ip->protocol != IPPROTO_UDP)
3989 return 0;
3990
3991 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3992 if (ntohs(udp->dest) != 67)
3993 return 0;
3994
3995 offset = (u8 *)udp + 8 - skb->data;
3996 length = skb->len - offset;
3997 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3998 }
3999
4000 return 0;
4001}
4002
4003static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4004{
4005 struct e1000_adapter *adapter = netdev_priv(netdev);
4006
4007 netif_stop_queue(netdev);
ad68076e
BA
4008 /*
4009 * Herbert's original patch had:
bc7f75fa 4010 * smp_mb__after_netif_stop_queue();
ad68076e
BA
4011 * but since that doesn't exist yet, just open code it.
4012 */
bc7f75fa
AK
4013 smp_mb();
4014
ad68076e
BA
4015 /*
4016 * We need to check again in a case another CPU has just
4017 * made room available.
4018 */
bc7f75fa
AK
4019 if (e1000_desc_unused(adapter->tx_ring) < size)
4020 return -EBUSY;
4021
4022 /* A reprieve! */
4023 netif_start_queue(netdev);
4024 ++adapter->restart_queue;
4025 return 0;
4026}
4027
4028static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4029{
4030 struct e1000_adapter *adapter = netdev_priv(netdev);
4031
4032 if (e1000_desc_unused(adapter->tx_ring) >= size)
4033 return 0;
4034 return __e1000_maybe_stop_tx(netdev, size);
4035}
4036
4037#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4038static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4039{
4040 struct e1000_adapter *adapter = netdev_priv(netdev);
4041 struct e1000_ring *tx_ring = adapter->tx_ring;
4042 unsigned int first;
4043 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4044 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4045 unsigned int tx_flags = 0;
4e6c709c 4046 unsigned int len = skb->len - skb->data_len;
4e6c709c
AK
4047 unsigned int nr_frags;
4048 unsigned int mss;
bc7f75fa
AK
4049 int count = 0;
4050 int tso;
4051 unsigned int f;
bc7f75fa
AK
4052
4053 if (test_bit(__E1000_DOWN, &adapter->state)) {
4054 dev_kfree_skb_any(skb);
4055 return NETDEV_TX_OK;
4056 }
4057
4058 if (skb->len <= 0) {
4059 dev_kfree_skb_any(skb);
4060 return NETDEV_TX_OK;
4061 }
4062
4063 mss = skb_shinfo(skb)->gso_size;
ad68076e
BA
4064 /*
4065 * The controller does a simple calculation to
bc7f75fa
AK
4066 * make sure there is enough room in the FIFO before
4067 * initiating the DMA for each buffer. The calc is:
4068 * 4 = ceil(buffer len/mss). To make sure we don't
4069 * overrun the FIFO, adjust the max buffer len if mss
ad68076e
BA
4070 * drops.
4071 */
bc7f75fa
AK
4072 if (mss) {
4073 u8 hdr_len;
4074 max_per_txd = min(mss << 2, max_per_txd);
4075 max_txd_pwr = fls(max_per_txd) - 1;
4076
ad68076e
BA
4077 /*
4078 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4079 * points to just header, pull a few bytes of payload from
4080 * frags into skb->data
4081 */
bc7f75fa 4082 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
ad68076e
BA
4083 /*
4084 * we do this workaround for ES2LAN, but it is un-necessary,
4085 * avoiding it could save a lot of cycles
4086 */
4e6c709c 4087 if (skb->data_len && (hdr_len == len)) {
bc7f75fa
AK
4088 unsigned int pull_size;
4089
4090 pull_size = min((unsigned int)4, skb->data_len);
4091 if (!__pskb_pull_tail(skb, pull_size)) {
44defeb3 4092 e_err("__pskb_pull_tail failed.\n");
bc7f75fa
AK
4093 dev_kfree_skb_any(skb);
4094 return NETDEV_TX_OK;
4095 }
4096 len = skb->len - skb->data_len;
4097 }
4098 }
4099
4100 /* reserve a descriptor for the offload context */
4101 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4102 count++;
4103 count++;
4104
4105 count += TXD_USE_COUNT(len, max_txd_pwr);
4106
4107 nr_frags = skb_shinfo(skb)->nr_frags;
4108 for (f = 0; f < nr_frags; f++)
4109 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4110 max_txd_pwr);
4111
4112 if (adapter->hw.mac.tx_pkt_filtering)
4113 e1000_transfer_dhcp_info(adapter, skb);
4114
ad68076e
BA
4115 /*
4116 * need: count + 2 desc gap to keep tail from touching
4117 * head, otherwise try next time
4118 */
92af3e95 4119 if (e1000_maybe_stop_tx(netdev, count + 2))
bc7f75fa 4120 return NETDEV_TX_BUSY;
bc7f75fa
AK
4121
4122 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4123 tx_flags |= E1000_TX_FLAGS_VLAN;
4124 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4125 }
4126
4127 first = tx_ring->next_to_use;
4128
4129 tso = e1000_tso(adapter, skb);
4130 if (tso < 0) {
4131 dev_kfree_skb_any(skb);
bc7f75fa
AK
4132 return NETDEV_TX_OK;
4133 }
4134
4135 if (tso)
4136 tx_flags |= E1000_TX_FLAGS_TSO;
4137 else if (e1000_tx_csum(adapter, skb))
4138 tx_flags |= E1000_TX_FLAGS_CSUM;
4139
ad68076e
BA
4140 /*
4141 * Old method was to assume IPv4 packet by default if TSO was enabled.
bc7f75fa 4142 * 82571 hardware supports TSO capabilities for IPv6 as well...
ad68076e
BA
4143 * no longer assume, we must.
4144 */
bc7f75fa
AK
4145 if (skb->protocol == htons(ETH_P_IP))
4146 tx_flags |= E1000_TX_FLAGS_IPV4;
4147
4148 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4149 if (count < 0) {
4150 /* handle pci_map_single() error in e1000_tx_map */
4151 dev_kfree_skb_any(skb);
7b5dfe1a 4152 return NETDEV_TX_OK;
bc7f75fa
AK
4153 }
4154
4155 e1000_tx_queue(adapter, tx_flags, count);
4156
4157 netdev->trans_start = jiffies;
4158
4159 /* Make sure there is space in the ring for the next send. */
4160 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4161
bc7f75fa
AK
4162 return NETDEV_TX_OK;
4163}
4164
4165/**
4166 * e1000_tx_timeout - Respond to a Tx Hang
4167 * @netdev: network interface device structure
4168 **/
4169static void e1000_tx_timeout(struct net_device *netdev)
4170{
4171 struct e1000_adapter *adapter = netdev_priv(netdev);
4172
4173 /* Do the reset outside of interrupt context */
4174 adapter->tx_timeout_count++;
4175 schedule_work(&adapter->reset_task);
4176}
4177
4178static void e1000_reset_task(struct work_struct *work)
4179{
4180 struct e1000_adapter *adapter;
4181 adapter = container_of(work, struct e1000_adapter, reset_task);
4182
4183 e1000e_reinit_locked(adapter);
4184}
4185
4186/**
4187 * e1000_get_stats - Get System Network Statistics
4188 * @netdev: network interface device structure
4189 *
4190 * Returns the address of the device statistics structure.
4191 * The statistics are actually updated from the timer callback.
4192 **/
4193static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4194{
4195 struct e1000_adapter *adapter = netdev_priv(netdev);
4196
4197 /* only return the current stats */
4198 return &adapter->net_stats;
4199}
4200
4201/**
4202 * e1000_change_mtu - Change the Maximum Transfer Unit
4203 * @netdev: network interface device structure
4204 * @new_mtu: new value for maximum frame size
4205 *
4206 * Returns 0 on success, negative on failure
4207 **/
4208static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4209{
4210 struct e1000_adapter *adapter = netdev_priv(netdev);
4211 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4212
d53f706d 4213 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
bc7f75fa 4214 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
44defeb3 4215 e_err("Invalid MTU setting\n");
bc7f75fa
AK
4216 return -EINVAL;
4217 }
4218
4219 /* Jumbo frame size limits */
4220 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
4221 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
44defeb3 4222 e_err("Jumbo Frames not supported.\n");
bc7f75fa
AK
4223 return -EINVAL;
4224 }
4225 if (adapter->hw.phy.type == e1000_phy_ife) {
44defeb3 4226 e_err("Jumbo Frames not supported.\n");
bc7f75fa
AK
4227 return -EINVAL;
4228 }
4229 }
4230
4231#define MAX_STD_JUMBO_FRAME_SIZE 9234
4232 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
44defeb3 4233 e_err("MTU > 9216 not supported.\n");
bc7f75fa
AK
4234 return -EINVAL;
4235 }
4236
4237 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4238 msleep(1);
4239 /* e1000e_down has a dependency on max_frame_size */
318a94d6 4240 adapter->max_frame_size = max_frame;
bc7f75fa
AK
4241 if (netif_running(netdev))
4242 e1000e_down(adapter);
4243
ad68076e
BA
4244 /*
4245 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
bc7f75fa
AK
4246 * means we reserve 2 more, this pushes us to allocate from the next
4247 * larger slab size.
ad68076e 4248 * i.e. RXBUFFER_2048 --> size-4096 slab
97ac8cae
BA
4249 * However with the new *_jumbo_rx* routines, jumbo receives will use
4250 * fragmented skbs
ad68076e 4251 */
bc7f75fa
AK
4252
4253 if (max_frame <= 256)
4254 adapter->rx_buffer_len = 256;
4255 else if (max_frame <= 512)
4256 adapter->rx_buffer_len = 512;
4257 else if (max_frame <= 1024)
4258 adapter->rx_buffer_len = 1024;
4259 else if (max_frame <= 2048)
4260 adapter->rx_buffer_len = 2048;
4261 else
4262 adapter->rx_buffer_len = 4096;
4263
4264 /* adjust allocation if LPE protects us, and we aren't using SBP */
4265 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4266 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4267 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
ad68076e 4268 + ETH_FCS_LEN;
bc7f75fa 4269
44defeb3 4270 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
bc7f75fa
AK
4271 netdev->mtu = new_mtu;
4272
4273 if (netif_running(netdev))
4274 e1000e_up(adapter);
4275 else
4276 e1000e_reset(adapter);
4277
4278 clear_bit(__E1000_RESETTING, &adapter->state);
4279
4280 return 0;
4281}
4282
4283static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4284 int cmd)
4285{
4286 struct e1000_adapter *adapter = netdev_priv(netdev);
4287 struct mii_ioctl_data *data = if_mii(ifr);
bc7f75fa 4288
318a94d6 4289 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
4290 return -EOPNOTSUPP;
4291
4292 switch (cmd) {
4293 case SIOCGMIIPHY:
4294 data->phy_id = adapter->hw.phy.addr;
4295 break;
4296 case SIOCGMIIREG:
4297 if (!capable(CAP_NET_ADMIN))
4298 return -EPERM;
7c25769f
BA
4299 switch (data->reg_num & 0x1F) {
4300 case MII_BMCR:
4301 data->val_out = adapter->phy_regs.bmcr;
4302 break;
4303 case MII_BMSR:
4304 data->val_out = adapter->phy_regs.bmsr;
4305 break;
4306 case MII_PHYSID1:
4307 data->val_out = (adapter->hw.phy.id >> 16);
4308 break;
4309 case MII_PHYSID2:
4310 data->val_out = (adapter->hw.phy.id & 0xFFFF);
4311 break;
4312 case MII_ADVERTISE:
4313 data->val_out = adapter->phy_regs.advertise;
4314 break;
4315 case MII_LPA:
4316 data->val_out = adapter->phy_regs.lpa;
4317 break;
4318 case MII_EXPANSION:
4319 data->val_out = adapter->phy_regs.expansion;
4320 break;
4321 case MII_CTRL1000:
4322 data->val_out = adapter->phy_regs.ctrl1000;
4323 break;
4324 case MII_STAT1000:
4325 data->val_out = adapter->phy_regs.stat1000;
4326 break;
4327 case MII_ESTATUS:
4328 data->val_out = adapter->phy_regs.estatus;
4329 break;
4330 default:
bc7f75fa
AK
4331 return -EIO;
4332 }
bc7f75fa
AK
4333 break;
4334 case SIOCSMIIREG:
4335 default:
4336 return -EOPNOTSUPP;
4337 }
4338 return 0;
4339}
4340
4341static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4342{
4343 switch (cmd) {
4344 case SIOCGMIIPHY:
4345 case SIOCGMIIREG:
4346 case SIOCSMIIREG:
4347 return e1000_mii_ioctl(netdev, ifr, cmd);
4348 default:
4349 return -EOPNOTSUPP;
4350 }
4351}
4352
4353static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4354{
4355 struct net_device *netdev = pci_get_drvdata(pdev);
4356 struct e1000_adapter *adapter = netdev_priv(netdev);
4357 struct e1000_hw *hw = &adapter->hw;
4358 u32 ctrl, ctrl_ext, rctl, status;
4359 u32 wufc = adapter->wol;
4360 int retval = 0;
4361
4362 netif_device_detach(netdev);
4363
4364 if (netif_running(netdev)) {
4365 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4366 e1000e_down(adapter);
4367 e1000_free_irq(adapter);
4368 }
4662e82b 4369 e1000e_reset_interrupt_capability(adapter);
bc7f75fa
AK
4370
4371 retval = pci_save_state(pdev);
4372 if (retval)
4373 return retval;
4374
4375 status = er32(STATUS);
4376 if (status & E1000_STATUS_LU)
4377 wufc &= ~E1000_WUFC_LNKC;
4378
4379 if (wufc) {
4380 e1000_setup_rctl(adapter);
4381 e1000_set_multi(netdev);
4382
4383 /* turn on all-multi mode if wake on multicast is enabled */
4384 if (wufc & E1000_WUFC_MC) {
4385 rctl = er32(RCTL);
4386 rctl |= E1000_RCTL_MPE;
4387 ew32(RCTL, rctl);
4388 }
4389
4390 ctrl = er32(CTRL);
4391 /* advertise wake from D3Cold */
4392 #define E1000_CTRL_ADVD3WUC 0x00100000
4393 /* phy power management enable */
4394 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4395 ctrl |= E1000_CTRL_ADVD3WUC |
4396 E1000_CTRL_EN_PHY_PWR_MGMT;
4397 ew32(CTRL, ctrl);
4398
318a94d6
JK
4399 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4400 adapter->hw.phy.media_type ==
4401 e1000_media_type_internal_serdes) {
bc7f75fa
AK
4402 /* keep the laser running in D3 */
4403 ctrl_ext = er32(CTRL_EXT);
4404 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4405 ew32(CTRL_EXT, ctrl_ext);
4406 }
4407
97ac8cae
BA
4408 if (adapter->flags & FLAG_IS_ICH)
4409 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4410
bc7f75fa
AK
4411 /* Allow time for pending master requests to run */
4412 e1000e_disable_pcie_master(&adapter->hw);
4413
4414 ew32(WUC, E1000_WUC_PME_EN);
4415 ew32(WUFC, wufc);
4416 pci_enable_wake(pdev, PCI_D3hot, 1);
4417 pci_enable_wake(pdev, PCI_D3cold, 1);
4418 } else {
4419 ew32(WUC, 0);
4420 ew32(WUFC, 0);
4421 pci_enable_wake(pdev, PCI_D3hot, 0);
4422 pci_enable_wake(pdev, PCI_D3cold, 0);
4423 }
4424
bc7f75fa
AK
4425 /* make sure adapter isn't asleep if manageability is enabled */
4426 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
4427 pci_enable_wake(pdev, PCI_D3hot, 1);
4428 pci_enable_wake(pdev, PCI_D3cold, 1);
4429 }
4430
4431 if (adapter->hw.phy.type == e1000_phy_igp_3)
4432 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4433
ad68076e
BA
4434 /*
4435 * Release control of h/w to f/w. If f/w is AMT enabled, this
4436 * would have already happened in close and is redundant.
4437 */
bc7f75fa
AK
4438 e1000_release_hw_control(adapter);
4439
4440 pci_disable_device(pdev);
4441
005cbdfc
AD
4442 /*
4443 * The pci-e switch on some quad port adapters will report a
4444 * correctable error when the MAC transitions from D0 to D3. To
4445 * prevent this we need to mask off the correctable errors on the
4446 * downstream port of the pci-e switch.
4447 */
4448 if (adapter->flags & FLAG_IS_QUAD_PORT) {
4449 struct pci_dev *us_dev = pdev->bus->self;
4450 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
4451 u16 devctl;
4452
4453 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
4454 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
4455 (devctl & ~PCI_EXP_DEVCTL_CERE));
4456
4457 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4458
4459 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
4460 } else {
4461 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4462 }
bc7f75fa
AK
4463
4464 return 0;
4465}
4466
1eae4eb2
AK
4467static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4468{
4469 int pos;
1eae4eb2
AK
4470 u16 val;
4471
4472 /*
4473 * 82573 workaround - disable L1 ASPM on mobile chipsets
4474 *
4475 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4476 * resulting in lost data or garbage information on the pci-e link
4477 * level. This could result in (false) bad EEPROM checksum errors,
4478 * long ping times (up to 2s) or even a system freeze/hang.
4479 *
4480 * Unfortunately this feature saves about 1W power consumption when
4481 * active.
4482 */
4483 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
1eae4eb2
AK
4484 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4485 if (val & 0x2) {
4486 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4487 val &= ~0x2;
4488 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4489 }
4490}
4491
bc7f75fa
AK
4492#ifdef CONFIG_PM
4493static int e1000_resume(struct pci_dev *pdev)
4494{
4495 struct net_device *netdev = pci_get_drvdata(pdev);
4496 struct e1000_adapter *adapter = netdev_priv(netdev);
4497 struct e1000_hw *hw = &adapter->hw;
4498 u32 err;
4499
4500 pci_set_power_state(pdev, PCI_D0);
4501 pci_restore_state(pdev);
1eae4eb2 4502 e1000e_disable_l1aspm(pdev);
6e4f6f6b 4503
f0f422e5 4504 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
4505 if (err) {
4506 dev_err(&pdev->dev,
4507 "Cannot enable PCI device from suspend\n");
4508 return err;
4509 }
4510
111b9dc5
JB
4511 /* AER (Advanced Error Reporting) hooks */
4512 err = pci_enable_pcie_error_reporting(pdev);
4513 if (err) {
4514 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
4515 "0x%x\n", err);
4516 /* non-fatal, continue */
4517 }
4518
bc7f75fa
AK
4519 pci_set_master(pdev);
4520
4521 pci_enable_wake(pdev, PCI_D3hot, 0);
4522 pci_enable_wake(pdev, PCI_D3cold, 0);
4523
4662e82b 4524 e1000e_set_interrupt_capability(adapter);
bc7f75fa
AK
4525 if (netif_running(netdev)) {
4526 err = e1000_request_irq(adapter);
4527 if (err)
4528 return err;
4529 }
4530
4531 e1000e_power_up_phy(adapter);
4532 e1000e_reset(adapter);
4533 ew32(WUS, ~0);
4534
4535 e1000_init_manageability(adapter);
4536
4537 if (netif_running(netdev))
4538 e1000e_up(adapter);
4539
4540 netif_device_attach(netdev);
4541
ad68076e
BA
4542 /*
4543 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4544 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4545 * under the control of the driver.
4546 */
c43bc57e 4547 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
4548 e1000_get_hw_control(adapter);
4549
4550 return 0;
4551}
4552#endif
4553
4554static void e1000_shutdown(struct pci_dev *pdev)
4555{
4556 e1000_suspend(pdev, PMSG_SUSPEND);
4557}
4558
4559#ifdef CONFIG_NET_POLL_CONTROLLER
4560/*
4561 * Polling 'interrupt' - used by things like netconsole to send skbs
4562 * without having to re-enable interrupts. It's not called while
4563 * the interrupt routine is executing.
4564 */
4565static void e1000_netpoll(struct net_device *netdev)
4566{
4567 struct e1000_adapter *adapter = netdev_priv(netdev);
4568
4569 disable_irq(adapter->pdev->irq);
4570 e1000_intr(adapter->pdev->irq, netdev);
4571
bc7f75fa
AK
4572 enable_irq(adapter->pdev->irq);
4573}
4574#endif
4575
4576/**
4577 * e1000_io_error_detected - called when PCI error is detected
4578 * @pdev: Pointer to PCI device
4579 * @state: The current pci connection state
4580 *
4581 * This function is called after a PCI bus error affecting
4582 * this device has been detected.
4583 */
4584static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4585 pci_channel_state_t state)
4586{
4587 struct net_device *netdev = pci_get_drvdata(pdev);
4588 struct e1000_adapter *adapter = netdev_priv(netdev);
4589
4590 netif_device_detach(netdev);
4591
4592 if (netif_running(netdev))
4593 e1000e_down(adapter);
4594 pci_disable_device(pdev);
4595
4596 /* Request a slot slot reset. */
4597 return PCI_ERS_RESULT_NEED_RESET;
4598}
4599
4600/**
4601 * e1000_io_slot_reset - called after the pci bus has been reset.
4602 * @pdev: Pointer to PCI device
4603 *
4604 * Restart the card from scratch, as if from a cold-boot. Implementation
4605 * resembles the first-half of the e1000_resume routine.
4606 */
4607static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4608{
4609 struct net_device *netdev = pci_get_drvdata(pdev);
4610 struct e1000_adapter *adapter = netdev_priv(netdev);
4611 struct e1000_hw *hw = &adapter->hw;
6e4f6f6b 4612 int err;
111b9dc5 4613 pci_ers_result_t result;
bc7f75fa 4614
1eae4eb2 4615 e1000e_disable_l1aspm(pdev);
f0f422e5 4616 err = pci_enable_device_mem(pdev);
6e4f6f6b 4617 if (err) {
bc7f75fa
AK
4618 dev_err(&pdev->dev,
4619 "Cannot re-enable PCI device after reset.\n");
111b9dc5
JB
4620 result = PCI_ERS_RESULT_DISCONNECT;
4621 } else {
4622 pci_set_master(pdev);
4623 pci_restore_state(pdev);
bc7f75fa 4624
111b9dc5
JB
4625 pci_enable_wake(pdev, PCI_D3hot, 0);
4626 pci_enable_wake(pdev, PCI_D3cold, 0);
bc7f75fa 4627
111b9dc5
JB
4628 e1000e_reset(adapter);
4629 ew32(WUS, ~0);
4630 result = PCI_ERS_RESULT_RECOVERED;
4631 }
bc7f75fa 4632
111b9dc5
JB
4633 pci_cleanup_aer_uncorrect_error_status(pdev);
4634
4635 return result;
bc7f75fa
AK
4636}
4637
4638/**
4639 * e1000_io_resume - called when traffic can start flowing again.
4640 * @pdev: Pointer to PCI device
4641 *
4642 * This callback is called when the error recovery driver tells us that
4643 * its OK to resume normal operation. Implementation resembles the
4644 * second-half of the e1000_resume routine.
4645 */
4646static void e1000_io_resume(struct pci_dev *pdev)
4647{
4648 struct net_device *netdev = pci_get_drvdata(pdev);
4649 struct e1000_adapter *adapter = netdev_priv(netdev);
4650
4651 e1000_init_manageability(adapter);
4652
4653 if (netif_running(netdev)) {
4654 if (e1000e_up(adapter)) {
4655 dev_err(&pdev->dev,
4656 "can't bring device back up after reset\n");
4657 return;
4658 }
4659 }
4660
4661 netif_device_attach(netdev);
4662
ad68076e
BA
4663 /*
4664 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4665 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4666 * under the control of the driver.
4667 */
c43bc57e 4668 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
4669 e1000_get_hw_control(adapter);
4670
4671}
4672
4673static void e1000_print_device_info(struct e1000_adapter *adapter)
4674{
4675 struct e1000_hw *hw = &adapter->hw;
4676 struct net_device *netdev = adapter->netdev;
69e3fd8c 4677 u32 pba_num;
bc7f75fa
AK
4678
4679 /* print bus type/speed/width info */
7c510e4b 4680 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
44defeb3
JK
4681 /* bus width */
4682 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4683 "Width x1"),
4684 /* MAC address */
7c510e4b 4685 netdev->dev_addr);
44defeb3
JK
4686 e_info("Intel(R) PRO/%s Network Connection\n",
4687 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
69e3fd8c 4688 e1000e_read_pba_num(hw, &pba_num);
44defeb3
JK
4689 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4690 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
bc7f75fa
AK
4691}
4692
10aa4c04
AK
4693static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4694{
4695 struct e1000_hw *hw = &adapter->hw;
4696 int ret_val;
4697 u16 buf = 0;
4698
4699 if (hw->mac.type != e1000_82573)
4700 return;
4701
4702 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
e243455d 4703 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
10aa4c04 4704 /* Deep Smart Power Down (DSPD) */
6c2a9efa
FP
4705 dev_warn(&adapter->pdev->dev,
4706 "Warning: detected DSPD enabled in EEPROM\n");
10aa4c04
AK
4707 }
4708
4709 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
e243455d 4710 if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
10aa4c04 4711 /* ASPM enable */
6c2a9efa
FP
4712 dev_warn(&adapter->pdev->dev,
4713 "Warning: detected ASPM enabled in EEPROM\n");
10aa4c04
AK
4714 }
4715}
4716
651c2466
SH
4717static const struct net_device_ops e1000e_netdev_ops = {
4718 .ndo_open = e1000_open,
4719 .ndo_stop = e1000_close,
00829823 4720 .ndo_start_xmit = e1000_xmit_frame,
651c2466
SH
4721 .ndo_get_stats = e1000_get_stats,
4722 .ndo_set_multicast_list = e1000_set_multi,
4723 .ndo_set_mac_address = e1000_set_mac,
4724 .ndo_change_mtu = e1000_change_mtu,
4725 .ndo_do_ioctl = e1000_ioctl,
4726 .ndo_tx_timeout = e1000_tx_timeout,
4727 .ndo_validate_addr = eth_validate_addr,
4728
4729 .ndo_vlan_rx_register = e1000_vlan_rx_register,
4730 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
4731 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
4732#ifdef CONFIG_NET_POLL_CONTROLLER
4733 .ndo_poll_controller = e1000_netpoll,
4734#endif
4735};
4736
bc7f75fa
AK
4737/**
4738 * e1000_probe - Device Initialization Routine
4739 * @pdev: PCI device information struct
4740 * @ent: entry in e1000_pci_tbl
4741 *
4742 * Returns 0 on success, negative on failure
4743 *
4744 * e1000_probe initializes an adapter identified by a pci_dev structure.
4745 * The OS initialization, configuring of the adapter private structure,
4746 * and a hardware reset occur.
4747 **/
4748static int __devinit e1000_probe(struct pci_dev *pdev,
4749 const struct pci_device_id *ent)
4750{
4751 struct net_device *netdev;
4752 struct e1000_adapter *adapter;
4753 struct e1000_hw *hw;
4754 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
f47e81fc
BB
4755 resource_size_t mmio_start, mmio_len;
4756 resource_size_t flash_start, flash_len;
bc7f75fa
AK
4757
4758 static int cards_found;
4759 int i, err, pci_using_dac;
4760 u16 eeprom_data = 0;
4761 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4762
1eae4eb2 4763 e1000e_disable_l1aspm(pdev);
6e4f6f6b 4764
f0f422e5 4765 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
4766 if (err)
4767 return err;
4768
4769 pci_using_dac = 0;
4770 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4771 if (!err) {
4772 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4773 if (!err)
4774 pci_using_dac = 1;
4775 } else {
4776 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4777 if (err) {
4778 err = pci_set_consistent_dma_mask(pdev,
4779 DMA_32BIT_MASK);
4780 if (err) {
4781 dev_err(&pdev->dev, "No usable DMA "
4782 "configuration, aborting\n");
4783 goto err_dma;
4784 }
4785 }
4786 }
4787
e8de1481 4788 err = pci_request_selected_regions_exclusive(pdev,
f0f422e5
BA
4789 pci_select_bars(pdev, IORESOURCE_MEM),
4790 e1000e_driver_name);
bc7f75fa
AK
4791 if (err)
4792 goto err_pci_reg;
4793
4794 pci_set_master(pdev);
438b365a
BA
4795 /* PCI config space info */
4796 err = pci_save_state(pdev);
4797 if (err)
4798 goto err_alloc_etherdev;
bc7f75fa
AK
4799
4800 err = -ENOMEM;
4801 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4802 if (!netdev)
4803 goto err_alloc_etherdev;
4804
bc7f75fa
AK
4805 SET_NETDEV_DEV(netdev, &pdev->dev);
4806
4807 pci_set_drvdata(pdev, netdev);
4808 adapter = netdev_priv(netdev);
4809 hw = &adapter->hw;
4810 adapter->netdev = netdev;
4811 adapter->pdev = pdev;
4812 adapter->ei = ei;
4813 adapter->pba = ei->pba;
4814 adapter->flags = ei->flags;
eb7c3adb 4815 adapter->flags2 = ei->flags2;
bc7f75fa
AK
4816 adapter->hw.adapter = adapter;
4817 adapter->hw.mac.type = ei->mac;
4818 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4819
4820 mmio_start = pci_resource_start(pdev, 0);
4821 mmio_len = pci_resource_len(pdev, 0);
4822
4823 err = -EIO;
4824 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4825 if (!adapter->hw.hw_addr)
4826 goto err_ioremap;
4827
4828 if ((adapter->flags & FLAG_HAS_FLASH) &&
4829 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4830 flash_start = pci_resource_start(pdev, 1);
4831 flash_len = pci_resource_len(pdev, 1);
4832 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4833 if (!adapter->hw.flash_address)
4834 goto err_flashmap;
4835 }
4836
4837 /* construct the net_device struct */
651c2466 4838 netdev->netdev_ops = &e1000e_netdev_ops;
bc7f75fa 4839 e1000e_set_ethtool_ops(netdev);
bc7f75fa
AK
4840 netdev->watchdog_timeo = 5 * HZ;
4841 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
bc7f75fa
AK
4842 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4843
4844 netdev->mem_start = mmio_start;
4845 netdev->mem_end = mmio_start + mmio_len;
4846
4847 adapter->bd_number = cards_found++;
4848
4662e82b
BA
4849 e1000e_check_options(adapter);
4850
bc7f75fa
AK
4851 /* setup adapter struct */
4852 err = e1000_sw_init(adapter);
4853 if (err)
4854 goto err_sw_init;
4855
4856 err = -EIO;
4857
4858 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4859 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4860 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4861
69e3fd8c 4862 err = ei->get_variants(adapter);
bc7f75fa
AK
4863 if (err)
4864 goto err_hw_init;
4865
4a770358
BA
4866 if ((adapter->flags & FLAG_IS_ICH) &&
4867 (adapter->flags & FLAG_READ_ONLY_NVM))
4868 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
4869
bc7f75fa
AK
4870 hw->mac.ops.get_bus_info(&adapter->hw);
4871
318a94d6 4872 adapter->hw.phy.autoneg_wait_to_complete = 0;
bc7f75fa
AK
4873
4874 /* Copper options */
318a94d6 4875 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
bc7f75fa
AK
4876 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4877 adapter->hw.phy.disable_polarity_correction = 0;
4878 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4879 }
4880
4881 if (e1000_check_reset_block(&adapter->hw))
44defeb3 4882 e_info("PHY reset is blocked due to SOL/IDER session.\n");
bc7f75fa
AK
4883
4884 netdev->features = NETIF_F_SG |
4885 NETIF_F_HW_CSUM |
4886 NETIF_F_HW_VLAN_TX |
4887 NETIF_F_HW_VLAN_RX;
4888
4889 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4890 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4891
4892 netdev->features |= NETIF_F_TSO;
4893 netdev->features |= NETIF_F_TSO6;
4894
a5136e23
JK
4895 netdev->vlan_features |= NETIF_F_TSO;
4896 netdev->vlan_features |= NETIF_F_TSO6;
4897 netdev->vlan_features |= NETIF_F_HW_CSUM;
4898 netdev->vlan_features |= NETIF_F_SG;
4899
bc7f75fa
AK
4900 if (pci_using_dac)
4901 netdev->features |= NETIF_F_HIGHDMA;
4902
bc7f75fa
AK
4903 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4904 adapter->flags |= FLAG_MNG_PT_ENABLED;
4905
ad68076e
BA
4906 /*
4907 * before reading the NVM, reset the controller to
4908 * put the device in a known good starting state
4909 */
bc7f75fa
AK
4910 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4911
4912 /*
4913 * systems with ASPM and others may see the checksum fail on the first
4914 * attempt. Let's give it a few tries
4915 */
4916 for (i = 0;; i++) {
4917 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4918 break;
4919 if (i == 2) {
44defeb3 4920 e_err("The NVM Checksum Is Not Valid\n");
bc7f75fa
AK
4921 err = -EIO;
4922 goto err_eeprom;
4923 }
4924 }
4925
10aa4c04
AK
4926 e1000_eeprom_checks(adapter);
4927
bc7f75fa
AK
4928 /* copy the MAC address out of the NVM */
4929 if (e1000e_read_mac_addr(&adapter->hw))
44defeb3 4930 e_err("NVM Read Error while reading MAC address\n");
bc7f75fa
AK
4931
4932 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4933 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4934
4935 if (!is_valid_ether_addr(netdev->perm_addr)) {
7c510e4b 4936 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
bc7f75fa
AK
4937 err = -EIO;
4938 goto err_eeprom;
4939 }
4940
4941 init_timer(&adapter->watchdog_timer);
4942 adapter->watchdog_timer.function = &e1000_watchdog;
4943 adapter->watchdog_timer.data = (unsigned long) adapter;
4944
4945 init_timer(&adapter->phy_info_timer);
4946 adapter->phy_info_timer.function = &e1000_update_phy_info;
4947 adapter->phy_info_timer.data = (unsigned long) adapter;
4948
4949 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4950 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
a8f88ff5
JB
4951 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
4952 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
bc7f75fa 4953
bc7f75fa
AK
4954 /* Initialize link parameters. User can change them with ethtool */
4955 adapter->hw.mac.autoneg = 1;
309af40b 4956 adapter->fc_autoneg = 1;
5c48ef3e
BA
4957 adapter->hw.fc.requested_mode = e1000_fc_default;
4958 adapter->hw.fc.current_mode = e1000_fc_default;
bc7f75fa
AK
4959 adapter->hw.phy.autoneg_advertised = 0x2f;
4960
4961 /* ring size defaults */
4962 adapter->rx_ring->count = 256;
4963 adapter->tx_ring->count = 256;
4964
4965 /*
4966 * Initial Wake on LAN setting - If APM wake is enabled in
4967 * the EEPROM, enable the ACPI Magic Packet filter
4968 */
4969 if (adapter->flags & FLAG_APME_IN_WUC) {
4970 /* APME bit in EEPROM is mapped to WUC.APME */
4971 eeprom_data = er32(WUC);
4972 eeprom_apme_mask = E1000_WUC_APME;
4973 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4974 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4975 (adapter->hw.bus.func == 1))
4976 e1000_read_nvm(&adapter->hw,
4977 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4978 else
4979 e1000_read_nvm(&adapter->hw,
4980 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4981 }
4982
4983 /* fetch WoL from EEPROM */
4984 if (eeprom_data & eeprom_apme_mask)
4985 adapter->eeprom_wol |= E1000_WUFC_MAG;
4986
4987 /*
4988 * now that we have the eeprom settings, apply the special cases
4989 * where the eeprom may be wrong or the board simply won't support
4990 * wake on lan on a particular port
4991 */
4992 if (!(adapter->flags & FLAG_HAS_WOL))
4993 adapter->eeprom_wol = 0;
4994
4995 /* initialize the wol settings based on the eeprom settings */
4996 adapter->wol = adapter->eeprom_wol;
6ff68026 4997 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
bc7f75fa 4998
84527590
BA
4999 /* save off EEPROM version number */
5000 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5001
bc7f75fa
AK
5002 /* reset the hardware with the new settings */
5003 e1000e_reset(adapter);
5004
ad68076e
BA
5005 /*
5006 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 5007 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
5008 * under the control of the driver.
5009 */
c43bc57e 5010 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
5011 e1000_get_hw_control(adapter);
5012
5013 /* tell the stack to leave us alone until e1000_open() is called */
5014 netif_carrier_off(netdev);
d55b53ff 5015 netif_tx_stop_all_queues(netdev);
bc7f75fa
AK
5016
5017 strcpy(netdev->name, "eth%d");
5018 err = register_netdev(netdev);
5019 if (err)
5020 goto err_register;
5021
5022 e1000_print_device_info(adapter);
5023
5024 return 0;
5025
5026err_register:
c43bc57e
JB
5027 if (!(adapter->flags & FLAG_HAS_AMT))
5028 e1000_release_hw_control(adapter);
bc7f75fa
AK
5029err_eeprom:
5030 if (!e1000_check_reset_block(&adapter->hw))
5031 e1000_phy_hw_reset(&adapter->hw);
c43bc57e 5032err_hw_init:
bc7f75fa 5033
bc7f75fa
AK
5034 kfree(adapter->tx_ring);
5035 kfree(adapter->rx_ring);
5036err_sw_init:
c43bc57e
JB
5037 if (adapter->hw.flash_address)
5038 iounmap(adapter->hw.flash_address);
e82f54ba 5039 e1000e_reset_interrupt_capability(adapter);
c43bc57e 5040err_flashmap:
bc7f75fa
AK
5041 iounmap(adapter->hw.hw_addr);
5042err_ioremap:
5043 free_netdev(netdev);
5044err_alloc_etherdev:
f0f422e5
BA
5045 pci_release_selected_regions(pdev,
5046 pci_select_bars(pdev, IORESOURCE_MEM));
bc7f75fa
AK
5047err_pci_reg:
5048err_dma:
5049 pci_disable_device(pdev);
5050 return err;
5051}
5052
5053/**
5054 * e1000_remove - Device Removal Routine
5055 * @pdev: PCI device information struct
5056 *
5057 * e1000_remove is called by the PCI subsystem to alert the driver
5058 * that it should release a PCI device. The could be caused by a
5059 * Hot-Plug event, or because the driver is going to be removed from
5060 * memory.
5061 **/
5062static void __devexit e1000_remove(struct pci_dev *pdev)
5063{
5064 struct net_device *netdev = pci_get_drvdata(pdev);
5065 struct e1000_adapter *adapter = netdev_priv(netdev);
111b9dc5 5066 int err;
bc7f75fa 5067
ad68076e
BA
5068 /*
5069 * flush_scheduled work may reschedule our watchdog task, so
5070 * explicitly disable watchdog tasks from being rescheduled
5071 */
bc7f75fa
AK
5072 set_bit(__E1000_DOWN, &adapter->state);
5073 del_timer_sync(&adapter->watchdog_timer);
5074 del_timer_sync(&adapter->phy_info_timer);
5075
5076 flush_scheduled_work();
5077
ad68076e
BA
5078 /*
5079 * Release control of h/w to f/w. If f/w is AMT enabled, this
5080 * would have already happened in close and is redundant.
5081 */
bc7f75fa
AK
5082 e1000_release_hw_control(adapter);
5083
5084 unregister_netdev(netdev);
5085
5086 if (!e1000_check_reset_block(&adapter->hw))
5087 e1000_phy_hw_reset(&adapter->hw);
5088
4662e82b 5089 e1000e_reset_interrupt_capability(adapter);
bc7f75fa
AK
5090 kfree(adapter->tx_ring);
5091 kfree(adapter->rx_ring);
5092
5093 iounmap(adapter->hw.hw_addr);
5094 if (adapter->hw.flash_address)
5095 iounmap(adapter->hw.flash_address);
f0f422e5
BA
5096 pci_release_selected_regions(pdev,
5097 pci_select_bars(pdev, IORESOURCE_MEM));
bc7f75fa
AK
5098
5099 free_netdev(netdev);
5100
111b9dc5
JB
5101 /* AER disable */
5102 err = pci_disable_pcie_error_reporting(pdev);
5103 if (err)
5104 dev_err(&pdev->dev,
5105 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
5106
bc7f75fa
AK
5107 pci_disable_device(pdev);
5108}
5109
5110/* PCI Error Recovery (ERS) */
5111static struct pci_error_handlers e1000_err_handler = {
5112 .error_detected = e1000_io_error_detected,
5113 .slot_reset = e1000_io_slot_reset,
5114 .resume = e1000_io_resume,
5115};
5116
5117static struct pci_device_id e1000_pci_tbl[] = {
bc7f75fa
AK
5118 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5119 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5120 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5121 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5122 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5123 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
040babf9
AK
5124 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5125 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5126 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
ad68076e 5127
bc7f75fa
AK
5128 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5129 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5130 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5131 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
ad68076e 5132
bc7f75fa
AK
5133 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5134 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5135 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
ad68076e 5136
4662e82b 5137 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
8c81c9c3 5138 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
4662e82b 5139
bc7f75fa
AK
5140 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5141 board_80003es2lan },
5142 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5143 board_80003es2lan },
5144 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5145 board_80003es2lan },
5146 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5147 board_80003es2lan },
ad68076e 5148
bc7f75fa
AK
5149 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5150 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5151 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5152 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5153 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5154 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5155 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
ad68076e 5156
bc7f75fa
AK
5157 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5158 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5159 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5160 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5161 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
2f15f9d6 5162 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
97ac8cae
BA
5163 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5164 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5165 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5166
5167 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5168 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5169 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
bc7f75fa 5170
f4187b56
BA
5171 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5172 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5173
bc7f75fa
AK
5174 { } /* terminate list */
5175};
5176MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5177
5178/* PCI Device API Driver */
5179static struct pci_driver e1000_driver = {
5180 .name = e1000e_driver_name,
5181 .id_table = e1000_pci_tbl,
5182 .probe = e1000_probe,
5183 .remove = __devexit_p(e1000_remove),
5184#ifdef CONFIG_PM
ad68076e 5185 /* Power Management Hooks */
bc7f75fa
AK
5186 .suspend = e1000_suspend,
5187 .resume = e1000_resume,
5188#endif
5189 .shutdown = e1000_shutdown,
5190 .err_handler = &e1000_err_handler
5191};
5192
5193/**
5194 * e1000_init_module - Driver Registration Routine
5195 *
5196 * e1000_init_module is the first routine called when the driver is
5197 * loaded. All it does is register with the PCI subsystem.
5198 **/
5199static int __init e1000_init_module(void)
5200{
5201 int ret;
5202 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5203 e1000e_driver_name, e1000e_driver_version);
ad68076e 5204 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
bc7f75fa
AK
5205 e1000e_driver_name);
5206 ret = pci_register_driver(&e1000_driver);
97ac8cae
BA
5207 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
5208 PM_QOS_DEFAULT_VALUE);
5209
bc7f75fa
AK
5210 return ret;
5211}
5212module_init(e1000_init_module);
5213
5214/**
5215 * e1000_exit_module - Driver Exit Cleanup Routine
5216 *
5217 * e1000_exit_module is called just before the driver is removed
5218 * from memory.
5219 **/
5220static void __exit e1000_exit_module(void)
5221{
5222 pci_unregister_driver(&e1000_driver);
97ac8cae 5223 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
bc7f75fa
AK
5224}
5225module_exit(e1000_exit_module);
5226
5227
5228MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5229MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5230MODULE_LICENSE("GPL");
5231MODULE_VERSION(DRV_VERSION);
5232
5233/* e1000_main.c */