]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/e1000e/netdev.c
net: replace uses of __constant_{endian}
[net-next-2.6.git] / drivers / net / e1000e / netdev.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
ad68076e 4 Copyright(c) 1999 - 2008 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/delay.h>
36#include <linux/netdevice.h>
37#include <linux/tcp.h>
38#include <linux/ipv6.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if_vlan.h>
44#include <linux/cpu.h>
45#include <linux/smp.h>
97ac8cae 46#include <linux/pm_qos_params.h>
bc7f75fa
AK
47
48#include "e1000.h"
49
92af3e95 50#define DRV_VERSION "0.3.3.4-k2"
bc7f75fa
AK
51char e1000e_driver_name[] = "e1000e";
52const char e1000e_driver_version[] = DRV_VERSION;
53
54static const struct e1000_info *e1000_info_tbl[] = {
55 [board_82571] = &e1000_82571_info,
56 [board_82572] = &e1000_82572_info,
57 [board_82573] = &e1000_82573_info,
4662e82b 58 [board_82574] = &e1000_82574_info,
bc7f75fa
AK
59 [board_80003es2lan] = &e1000_es2_info,
60 [board_ich8lan] = &e1000_ich8_info,
61 [board_ich9lan] = &e1000_ich9_info,
f4187b56 62 [board_ich10lan] = &e1000_ich10_info,
bc7f75fa
AK
63};
64
65#ifdef DEBUG
66/**
67 * e1000_get_hw_dev_name - return device name string
68 * used by hardware layer to print debugging information
69 **/
70char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
71{
589c085f 72 return hw->adapter->netdev->name;
bc7f75fa
AK
73}
74#endif
75
76/**
77 * e1000_desc_unused - calculate if we have unused descriptors
78 **/
79static int e1000_desc_unused(struct e1000_ring *ring)
80{
81 if (ring->next_to_clean > ring->next_to_use)
82 return ring->next_to_clean - ring->next_to_use - 1;
83
84 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
85}
86
87/**
ad68076e 88 * e1000_receive_skb - helper function to handle Rx indications
bc7f75fa
AK
89 * @adapter: board private structure
90 * @status: descriptor status field as written by hardware
91 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
92 * @skb: pointer to sk_buff to be indicated to stack
93 **/
94static void e1000_receive_skb(struct e1000_adapter *adapter,
95 struct net_device *netdev,
96 struct sk_buff *skb,
a39fe742 97 u8 status, __le16 vlan)
bc7f75fa
AK
98{
99 skb->protocol = eth_type_trans(skb, netdev);
100
101 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
c405b828
HX
102 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
103 le16_to_cpu(vlan), skb);
bc7f75fa 104 else
89c88b16 105 napi_gro_receive(&adapter->napi, skb);
bc7f75fa
AK
106}
107
108/**
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
114 **/
115static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116 u32 csum, struct sk_buff *skb)
117{
118 u16 status = (u16)status_err;
119 u8 errors = (u8)(status_err >> 24);
120 skb->ip_summed = CHECKSUM_NONE;
121
122 /* Ignore Checksum bit is set */
123 if (status & E1000_RXD_STAT_IXSM)
124 return;
125 /* TCP/UDP checksum error bit is set */
126 if (errors & E1000_RXD_ERR_TCPE) {
127 /* let the stack verify checksum errors */
128 adapter->hw_csum_err++;
129 return;
130 }
131
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134 return;
135
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status & E1000_RXD_STAT_TCPCS) {
138 /* TCP checksum is good */
139 skb->ip_summed = CHECKSUM_UNNECESSARY;
140 } else {
ad68076e
BA
141 /*
142 * IP fragment with UDP payload
143 * Hardware complements the payload checksum, so we undo it
bc7f75fa
AK
144 * and then put the value in host order for further stack use.
145 */
a39fe742
AV
146 __sum16 sum = (__force __sum16)htons(csum);
147 skb->csum = csum_unfold(~sum);
bc7f75fa
AK
148 skb->ip_summed = CHECKSUM_COMPLETE;
149 }
150 adapter->hw_csum_good++;
151}
152
153/**
154 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
155 * @adapter: address of board private structure
156 **/
157static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
158 int cleaned_count)
159{
160 struct net_device *netdev = adapter->netdev;
161 struct pci_dev *pdev = adapter->pdev;
162 struct e1000_ring *rx_ring = adapter->rx_ring;
163 struct e1000_rx_desc *rx_desc;
164 struct e1000_buffer *buffer_info;
165 struct sk_buff *skb;
166 unsigned int i;
167 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
168
169 i = rx_ring->next_to_use;
170 buffer_info = &rx_ring->buffer_info[i];
171
172 while (cleaned_count--) {
173 skb = buffer_info->skb;
174 if (skb) {
175 skb_trim(skb, 0);
176 goto map_skb;
177 }
178
179 skb = netdev_alloc_skb(netdev, bufsz);
180 if (!skb) {
181 /* Better luck next round */
182 adapter->alloc_rx_buff_failed++;
183 break;
184 }
185
ad68076e
BA
186 /*
187 * Make buffer alignment 2 beyond a 16 byte boundary
bc7f75fa
AK
188 * this will result in a 16 byte aligned IP header after
189 * the 14 byte MAC header is removed
190 */
191 skb_reserve(skb, NET_IP_ALIGN);
192
193 buffer_info->skb = skb;
194map_skb:
195 buffer_info->dma = pci_map_single(pdev, skb->data,
196 adapter->rx_buffer_len,
197 PCI_DMA_FROMDEVICE);
8d8bb39b 198 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
bc7f75fa
AK
199 dev_err(&pdev->dev, "RX DMA map failed\n");
200 adapter->rx_dma_failed++;
201 break;
202 }
203
204 rx_desc = E1000_RX_DESC(*rx_ring, i);
205 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
206
207 i++;
208 if (i == rx_ring->count)
209 i = 0;
210 buffer_info = &rx_ring->buffer_info[i];
211 }
212
213 if (rx_ring->next_to_use != i) {
214 rx_ring->next_to_use = i;
215 if (i-- == 0)
216 i = (rx_ring->count - 1);
217
ad68076e
BA
218 /*
219 * Force memory writes to complete before letting h/w
bc7f75fa
AK
220 * know there are new descriptors to fetch. (Only
221 * applicable for weak-ordered memory model archs,
ad68076e
BA
222 * such as IA-64).
223 */
bc7f75fa
AK
224 wmb();
225 writel(i, adapter->hw.hw_addr + rx_ring->tail);
226 }
227}
228
229/**
230 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
231 * @adapter: address of board private structure
232 **/
233static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
234 int cleaned_count)
235{
236 struct net_device *netdev = adapter->netdev;
237 struct pci_dev *pdev = adapter->pdev;
238 union e1000_rx_desc_packet_split *rx_desc;
239 struct e1000_ring *rx_ring = adapter->rx_ring;
240 struct e1000_buffer *buffer_info;
241 struct e1000_ps_page *ps_page;
242 struct sk_buff *skb;
243 unsigned int i, j;
244
245 i = rx_ring->next_to_use;
246 buffer_info = &rx_ring->buffer_info[i];
247
248 while (cleaned_count--) {
249 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
250
251 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40
AK
252 ps_page = &buffer_info->ps_pages[j];
253 if (j >= adapter->rx_ps_pages) {
254 /* all unused desc entries get hw null ptr */
a39fe742 255 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
47f44e40
AK
256 continue;
257 }
258 if (!ps_page->page) {
259 ps_page->page = alloc_page(GFP_ATOMIC);
bc7f75fa 260 if (!ps_page->page) {
47f44e40
AK
261 adapter->alloc_rx_buff_failed++;
262 goto no_buffers;
263 }
264 ps_page->dma = pci_map_page(pdev,
265 ps_page->page,
266 0, PAGE_SIZE,
267 PCI_DMA_FROMDEVICE);
8d8bb39b 268 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
47f44e40
AK
269 dev_err(&adapter->pdev->dev,
270 "RX DMA page map failed\n");
271 adapter->rx_dma_failed++;
272 goto no_buffers;
bc7f75fa 273 }
bc7f75fa 274 }
47f44e40
AK
275 /*
276 * Refresh the desc even if buffer_addrs
277 * didn't change because each write-back
278 * erases this info.
279 */
280 rx_desc->read.buffer_addr[j+1] =
281 cpu_to_le64(ps_page->dma);
bc7f75fa
AK
282 }
283
284 skb = netdev_alloc_skb(netdev,
285 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
286
287 if (!skb) {
288 adapter->alloc_rx_buff_failed++;
289 break;
290 }
291
ad68076e
BA
292 /*
293 * Make buffer alignment 2 beyond a 16 byte boundary
bc7f75fa
AK
294 * this will result in a 16 byte aligned IP header after
295 * the 14 byte MAC header is removed
296 */
297 skb_reserve(skb, NET_IP_ALIGN);
298
299 buffer_info->skb = skb;
300 buffer_info->dma = pci_map_single(pdev, skb->data,
301 adapter->rx_ps_bsize0,
302 PCI_DMA_FROMDEVICE);
8d8bb39b 303 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
bc7f75fa
AK
304 dev_err(&pdev->dev, "RX DMA map failed\n");
305 adapter->rx_dma_failed++;
306 /* cleanup skb */
307 dev_kfree_skb_any(skb);
308 buffer_info->skb = NULL;
309 break;
310 }
311
312 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
313
314 i++;
315 if (i == rx_ring->count)
316 i = 0;
317 buffer_info = &rx_ring->buffer_info[i];
318 }
319
320no_buffers:
321 if (rx_ring->next_to_use != i) {
322 rx_ring->next_to_use = i;
323
324 if (!(i--))
325 i = (rx_ring->count - 1);
326
ad68076e
BA
327 /*
328 * Force memory writes to complete before letting h/w
bc7f75fa
AK
329 * know there are new descriptors to fetch. (Only
330 * applicable for weak-ordered memory model archs,
ad68076e
BA
331 * such as IA-64).
332 */
bc7f75fa 333 wmb();
ad68076e
BA
334 /*
335 * Hardware increments by 16 bytes, but packet split
bc7f75fa
AK
336 * descriptors are 32 bytes...so we increment tail
337 * twice as much.
338 */
339 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
340 }
341}
342
97ac8cae
BA
343/**
344 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
345 * @adapter: address of board private structure
97ac8cae
BA
346 * @cleaned_count: number of buffers to allocate this pass
347 **/
348
349static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
350 int cleaned_count)
351{
352 struct net_device *netdev = adapter->netdev;
353 struct pci_dev *pdev = adapter->pdev;
354 struct e1000_rx_desc *rx_desc;
355 struct e1000_ring *rx_ring = adapter->rx_ring;
356 struct e1000_buffer *buffer_info;
357 struct sk_buff *skb;
358 unsigned int i;
359 unsigned int bufsz = 256 -
360 16 /* for skb_reserve */ -
361 NET_IP_ALIGN;
362
363 i = rx_ring->next_to_use;
364 buffer_info = &rx_ring->buffer_info[i];
365
366 while (cleaned_count--) {
367 skb = buffer_info->skb;
368 if (skb) {
369 skb_trim(skb, 0);
370 goto check_page;
371 }
372
373 skb = netdev_alloc_skb(netdev, bufsz);
374 if (unlikely(!skb)) {
375 /* Better luck next round */
376 adapter->alloc_rx_buff_failed++;
377 break;
378 }
379
380 /* Make buffer alignment 2 beyond a 16 byte boundary
381 * this will result in a 16 byte aligned IP header after
382 * the 14 byte MAC header is removed
383 */
384 skb_reserve(skb, NET_IP_ALIGN);
385
386 buffer_info->skb = skb;
387check_page:
388 /* allocate a new page if necessary */
389 if (!buffer_info->page) {
390 buffer_info->page = alloc_page(GFP_ATOMIC);
391 if (unlikely(!buffer_info->page)) {
392 adapter->alloc_rx_buff_failed++;
393 break;
394 }
395 }
396
397 if (!buffer_info->dma)
398 buffer_info->dma = pci_map_page(pdev,
399 buffer_info->page, 0,
400 PAGE_SIZE,
401 PCI_DMA_FROMDEVICE);
402
403 rx_desc = E1000_RX_DESC(*rx_ring, i);
404 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
405
406 if (unlikely(++i == rx_ring->count))
407 i = 0;
408 buffer_info = &rx_ring->buffer_info[i];
409 }
410
411 if (likely(rx_ring->next_to_use != i)) {
412 rx_ring->next_to_use = i;
413 if (unlikely(i-- == 0))
414 i = (rx_ring->count - 1);
415
416 /* Force memory writes to complete before letting h/w
417 * know there are new descriptors to fetch. (Only
418 * applicable for weak-ordered memory model archs,
419 * such as IA-64). */
420 wmb();
421 writel(i, adapter->hw.hw_addr + rx_ring->tail);
422 }
423}
424
bc7f75fa
AK
425/**
426 * e1000_clean_rx_irq - Send received data up the network stack; legacy
427 * @adapter: board private structure
428 *
429 * the return value indicates whether actual cleaning was done, there
430 * is no guarantee that everything was cleaned
431 **/
432static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
433 int *work_done, int work_to_do)
434{
435 struct net_device *netdev = adapter->netdev;
436 struct pci_dev *pdev = adapter->pdev;
437 struct e1000_ring *rx_ring = adapter->rx_ring;
438 struct e1000_rx_desc *rx_desc, *next_rxd;
439 struct e1000_buffer *buffer_info, *next_buffer;
440 u32 length;
441 unsigned int i;
442 int cleaned_count = 0;
443 bool cleaned = 0;
444 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
445
446 i = rx_ring->next_to_clean;
447 rx_desc = E1000_RX_DESC(*rx_ring, i);
448 buffer_info = &rx_ring->buffer_info[i];
449
450 while (rx_desc->status & E1000_RXD_STAT_DD) {
451 struct sk_buff *skb;
452 u8 status;
453
454 if (*work_done >= work_to_do)
455 break;
456 (*work_done)++;
457
458 status = rx_desc->status;
459 skb = buffer_info->skb;
460 buffer_info->skb = NULL;
461
462 prefetch(skb->data - NET_IP_ALIGN);
463
464 i++;
465 if (i == rx_ring->count)
466 i = 0;
467 next_rxd = E1000_RX_DESC(*rx_ring, i);
468 prefetch(next_rxd);
469
470 next_buffer = &rx_ring->buffer_info[i];
471
472 cleaned = 1;
473 cleaned_count++;
474 pci_unmap_single(pdev,
475 buffer_info->dma,
476 adapter->rx_buffer_len,
477 PCI_DMA_FROMDEVICE);
478 buffer_info->dma = 0;
479
480 length = le16_to_cpu(rx_desc->length);
481
482 /* !EOP means multiple descriptors were used to store a single
483 * packet, also make sure the frame isn't just CRC only */
484 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
485 /* All receives must fit into a single buffer */
44defeb3
JK
486 e_dbg("%s: Receive packet consumed multiple buffers\n",
487 netdev->name);
bc7f75fa
AK
488 /* recycle */
489 buffer_info->skb = skb;
490 goto next_desc;
491 }
492
493 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
494 /* recycle */
495 buffer_info->skb = skb;
496 goto next_desc;
497 }
498
eb7c3adb
JK
499 /* adjust length to remove Ethernet CRC */
500 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
501 length -= 4;
502
bc7f75fa
AK
503 total_rx_bytes += length;
504 total_rx_packets++;
505
ad68076e
BA
506 /*
507 * code added for copybreak, this should improve
bc7f75fa 508 * performance for small packets with large amounts
ad68076e
BA
509 * of reassembly being done in the stack
510 */
bc7f75fa
AK
511 if (length < copybreak) {
512 struct sk_buff *new_skb =
513 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
514 if (new_skb) {
515 skb_reserve(new_skb, NET_IP_ALIGN);
808ff676
BA
516 skb_copy_to_linear_data_offset(new_skb,
517 -NET_IP_ALIGN,
518 (skb->data -
519 NET_IP_ALIGN),
520 (length +
521 NET_IP_ALIGN));
bc7f75fa
AK
522 /* save the skb in buffer_info as good */
523 buffer_info->skb = skb;
524 skb = new_skb;
525 }
526 /* else just continue with the old one */
527 }
528 /* end copybreak code */
529 skb_put(skb, length);
530
531 /* Receive Checksum Offload */
532 e1000_rx_checksum(adapter,
533 (u32)(status) |
534 ((u32)(rx_desc->errors) << 24),
535 le16_to_cpu(rx_desc->csum), skb);
536
537 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
538
539next_desc:
540 rx_desc->status = 0;
541
542 /* return some buffers to hardware, one at a time is too slow */
543 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
544 adapter->alloc_rx_buf(adapter, cleaned_count);
545 cleaned_count = 0;
546 }
547
548 /* use prefetched values */
549 rx_desc = next_rxd;
550 buffer_info = next_buffer;
551 }
552 rx_ring->next_to_clean = i;
553
554 cleaned_count = e1000_desc_unused(rx_ring);
555 if (cleaned_count)
556 adapter->alloc_rx_buf(adapter, cleaned_count);
557
bc7f75fa 558 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 559 adapter->total_rx_packets += total_rx_packets;
41988692 560 adapter->net_stats.rx_bytes += total_rx_bytes;
7c25769f 561 adapter->net_stats.rx_packets += total_rx_packets;
bc7f75fa
AK
562 return cleaned;
563}
564
bc7f75fa
AK
565static void e1000_put_txbuf(struct e1000_adapter *adapter,
566 struct e1000_buffer *buffer_info)
567{
568 if (buffer_info->dma) {
569 pci_unmap_page(adapter->pdev, buffer_info->dma,
570 buffer_info->length, PCI_DMA_TODEVICE);
571 buffer_info->dma = 0;
572 }
573 if (buffer_info->skb) {
574 dev_kfree_skb_any(buffer_info->skb);
575 buffer_info->skb = NULL;
576 }
577}
578
579static void e1000_print_tx_hang(struct e1000_adapter *adapter)
580{
581 struct e1000_ring *tx_ring = adapter->tx_ring;
582 unsigned int i = tx_ring->next_to_clean;
583 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
584 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
bc7f75fa
AK
585
586 /* detected Tx unit hang */
44defeb3
JK
587 e_err("Detected Tx Unit Hang:\n"
588 " TDH <%x>\n"
589 " TDT <%x>\n"
590 " next_to_use <%x>\n"
591 " next_to_clean <%x>\n"
592 "buffer_info[next_to_clean]:\n"
593 " time_stamp <%lx>\n"
594 " next_to_watch <%x>\n"
595 " jiffies <%lx>\n"
596 " next_to_watch.status <%x>\n",
597 readl(adapter->hw.hw_addr + tx_ring->head),
598 readl(adapter->hw.hw_addr + tx_ring->tail),
599 tx_ring->next_to_use,
600 tx_ring->next_to_clean,
601 tx_ring->buffer_info[eop].time_stamp,
602 eop,
603 jiffies,
604 eop_desc->upper.fields.status);
bc7f75fa
AK
605}
606
607/**
608 * e1000_clean_tx_irq - Reclaim resources after transmit completes
609 * @adapter: board private structure
610 *
611 * the return value indicates whether actual cleaning was done, there
612 * is no guarantee that everything was cleaned
613 **/
614static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
615{
616 struct net_device *netdev = adapter->netdev;
617 struct e1000_hw *hw = &adapter->hw;
618 struct e1000_ring *tx_ring = adapter->tx_ring;
619 struct e1000_tx_desc *tx_desc, *eop_desc;
620 struct e1000_buffer *buffer_info;
621 unsigned int i, eop;
622 unsigned int count = 0;
623 bool cleaned = 0;
624 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
625
626 i = tx_ring->next_to_clean;
627 eop = tx_ring->buffer_info[i].next_to_watch;
628 eop_desc = E1000_TX_DESC(*tx_ring, eop);
629
630 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
631 for (cleaned = 0; !cleaned; ) {
632 tx_desc = E1000_TX_DESC(*tx_ring, i);
633 buffer_info = &tx_ring->buffer_info[i];
634 cleaned = (i == eop);
635
636 if (cleaned) {
637 struct sk_buff *skb = buffer_info->skb;
638 unsigned int segs, bytecount;
639 segs = skb_shinfo(skb)->gso_segs ?: 1;
640 /* multiply data chunks by size of headers */
641 bytecount = ((segs - 1) * skb_headlen(skb)) +
642 skb->len;
643 total_tx_packets += segs;
644 total_tx_bytes += bytecount;
645 }
646
647 e1000_put_txbuf(adapter, buffer_info);
648 tx_desc->upper.data = 0;
649
650 i++;
651 if (i == tx_ring->count)
652 i = 0;
653 }
654
655 eop = tx_ring->buffer_info[i].next_to_watch;
656 eop_desc = E1000_TX_DESC(*tx_ring, eop);
657#define E1000_TX_WEIGHT 64
658 /* weight of a sort for tx, to avoid endless transmit cleanup */
659 if (count++ == E1000_TX_WEIGHT)
660 break;
661 }
662
663 tx_ring->next_to_clean = i;
664
665#define TX_WAKE_THRESHOLD 32
666 if (cleaned && netif_carrier_ok(netdev) &&
667 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
668 /* Make sure that anybody stopping the queue after this
669 * sees the new next_to_clean.
670 */
671 smp_mb();
672
673 if (netif_queue_stopped(netdev) &&
674 !(test_bit(__E1000_DOWN, &adapter->state))) {
675 netif_wake_queue(netdev);
676 ++adapter->restart_queue;
677 }
678 }
679
680 if (adapter->detect_tx_hung) {
ad68076e
BA
681 /*
682 * Detect a transmit hang in hardware, this serializes the
683 * check with the clearing of time_stamp and movement of i
684 */
bc7f75fa
AK
685 adapter->detect_tx_hung = 0;
686 if (tx_ring->buffer_info[eop].dma &&
687 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
688 + (adapter->tx_timeout_factor * HZ))
ad68076e 689 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
bc7f75fa
AK
690 e1000_print_tx_hang(adapter);
691 netif_stop_queue(netdev);
692 }
693 }
694 adapter->total_tx_bytes += total_tx_bytes;
695 adapter->total_tx_packets += total_tx_packets;
41988692 696 adapter->net_stats.tx_bytes += total_tx_bytes;
7c25769f 697 adapter->net_stats.tx_packets += total_tx_packets;
bc7f75fa
AK
698 return cleaned;
699}
700
bc7f75fa
AK
701/**
702 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
703 * @adapter: board private structure
704 *
705 * the return value indicates whether actual cleaning was done, there
706 * is no guarantee that everything was cleaned
707 **/
708static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
709 int *work_done, int work_to_do)
710{
711 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
712 struct net_device *netdev = adapter->netdev;
713 struct pci_dev *pdev = adapter->pdev;
714 struct e1000_ring *rx_ring = adapter->rx_ring;
715 struct e1000_buffer *buffer_info, *next_buffer;
716 struct e1000_ps_page *ps_page;
717 struct sk_buff *skb;
718 unsigned int i, j;
719 u32 length, staterr;
720 int cleaned_count = 0;
721 bool cleaned = 0;
722 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
723
724 i = rx_ring->next_to_clean;
725 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
726 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
727 buffer_info = &rx_ring->buffer_info[i];
728
729 while (staterr & E1000_RXD_STAT_DD) {
730 if (*work_done >= work_to_do)
731 break;
732 (*work_done)++;
733 skb = buffer_info->skb;
734
735 /* in the packet split case this is header only */
736 prefetch(skb->data - NET_IP_ALIGN);
737
738 i++;
739 if (i == rx_ring->count)
740 i = 0;
741 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
742 prefetch(next_rxd);
743
744 next_buffer = &rx_ring->buffer_info[i];
745
746 cleaned = 1;
747 cleaned_count++;
748 pci_unmap_single(pdev, buffer_info->dma,
749 adapter->rx_ps_bsize0,
750 PCI_DMA_FROMDEVICE);
751 buffer_info->dma = 0;
752
753 if (!(staterr & E1000_RXD_STAT_EOP)) {
44defeb3
JK
754 e_dbg("%s: Packet Split buffers didn't pick up the "
755 "full packet\n", netdev->name);
bc7f75fa
AK
756 dev_kfree_skb_irq(skb);
757 goto next_desc;
758 }
759
760 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
761 dev_kfree_skb_irq(skb);
762 goto next_desc;
763 }
764
765 length = le16_to_cpu(rx_desc->wb.middle.length0);
766
767 if (!length) {
44defeb3
JK
768 e_dbg("%s: Last part of the packet spanning multiple "
769 "descriptors\n", netdev->name);
bc7f75fa
AK
770 dev_kfree_skb_irq(skb);
771 goto next_desc;
772 }
773
774 /* Good Receive */
775 skb_put(skb, length);
776
777 {
ad68076e
BA
778 /*
779 * this looks ugly, but it seems compiler issues make it
780 * more efficient than reusing j
781 */
bc7f75fa
AK
782 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
783
ad68076e
BA
784 /*
785 * page alloc/put takes too long and effects small packet
786 * throughput, so unsplit small packets and save the alloc/put
787 * only valid in softirq (napi) context to call kmap_*
788 */
bc7f75fa
AK
789 if (l1 && (l1 <= copybreak) &&
790 ((length + l1) <= adapter->rx_ps_bsize0)) {
791 u8 *vaddr;
792
47f44e40 793 ps_page = &buffer_info->ps_pages[0];
bc7f75fa 794
ad68076e
BA
795 /*
796 * there is no documentation about how to call
bc7f75fa 797 * kmap_atomic, so we can't hold the mapping
ad68076e
BA
798 * very long
799 */
bc7f75fa
AK
800 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
801 PAGE_SIZE, PCI_DMA_FROMDEVICE);
802 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
803 memcpy(skb_tail_pointer(skb), vaddr, l1);
804 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
805 pci_dma_sync_single_for_device(pdev, ps_page->dma,
806 PAGE_SIZE, PCI_DMA_FROMDEVICE);
140a7480 807
eb7c3adb
JK
808 /* remove the CRC */
809 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
810 l1 -= 4;
811
bc7f75fa
AK
812 skb_put(skb, l1);
813 goto copydone;
814 } /* if */
815 }
816
817 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
818 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
819 if (!length)
820 break;
821
47f44e40 822 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
823 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
824 PCI_DMA_FROMDEVICE);
825 ps_page->dma = 0;
826 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
827 ps_page->page = NULL;
828 skb->len += length;
829 skb->data_len += length;
830 skb->truesize += length;
831 }
832
eb7c3adb
JK
833 /* strip the ethernet crc, problem is we're using pages now so
834 * this whole operation can get a little cpu intensive
835 */
836 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
837 pskb_trim(skb, skb->len - 4);
838
bc7f75fa
AK
839copydone:
840 total_rx_bytes += skb->len;
841 total_rx_packets++;
842
843 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
844 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
845
846 if (rx_desc->wb.upper.header_status &
847 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
848 adapter->rx_hdr_split++;
849
850 e1000_receive_skb(adapter, netdev, skb,
851 staterr, rx_desc->wb.middle.vlan);
852
853next_desc:
854 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
855 buffer_info->skb = NULL;
856
857 /* return some buffers to hardware, one at a time is too slow */
858 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
859 adapter->alloc_rx_buf(adapter, cleaned_count);
860 cleaned_count = 0;
861 }
862
863 /* use prefetched values */
864 rx_desc = next_rxd;
865 buffer_info = next_buffer;
866
867 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
868 }
869 rx_ring->next_to_clean = i;
870
871 cleaned_count = e1000_desc_unused(rx_ring);
872 if (cleaned_count)
873 adapter->alloc_rx_buf(adapter, cleaned_count);
874
bc7f75fa 875 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 876 adapter->total_rx_packets += total_rx_packets;
41988692 877 adapter->net_stats.rx_bytes += total_rx_bytes;
7c25769f 878 adapter->net_stats.rx_packets += total_rx_packets;
bc7f75fa
AK
879 return cleaned;
880}
881
97ac8cae
BA
882/**
883 * e1000_consume_page - helper function
884 **/
885static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
886 u16 length)
887{
888 bi->page = NULL;
889 skb->len += length;
890 skb->data_len += length;
891 skb->truesize += length;
892}
893
894/**
895 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
896 * @adapter: board private structure
897 *
898 * the return value indicates whether actual cleaning was done, there
899 * is no guarantee that everything was cleaned
900 **/
901
902static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
903 int *work_done, int work_to_do)
904{
905 struct net_device *netdev = adapter->netdev;
906 struct pci_dev *pdev = adapter->pdev;
907 struct e1000_ring *rx_ring = adapter->rx_ring;
908 struct e1000_rx_desc *rx_desc, *next_rxd;
909 struct e1000_buffer *buffer_info, *next_buffer;
910 u32 length;
911 unsigned int i;
912 int cleaned_count = 0;
913 bool cleaned = false;
914 unsigned int total_rx_bytes=0, total_rx_packets=0;
915
916 i = rx_ring->next_to_clean;
917 rx_desc = E1000_RX_DESC(*rx_ring, i);
918 buffer_info = &rx_ring->buffer_info[i];
919
920 while (rx_desc->status & E1000_RXD_STAT_DD) {
921 struct sk_buff *skb;
922 u8 status;
923
924 if (*work_done >= work_to_do)
925 break;
926 (*work_done)++;
927
928 status = rx_desc->status;
929 skb = buffer_info->skb;
930 buffer_info->skb = NULL;
931
932 ++i;
933 if (i == rx_ring->count)
934 i = 0;
935 next_rxd = E1000_RX_DESC(*rx_ring, i);
936 prefetch(next_rxd);
937
938 next_buffer = &rx_ring->buffer_info[i];
939
940 cleaned = true;
941 cleaned_count++;
942 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
943 PCI_DMA_FROMDEVICE);
944 buffer_info->dma = 0;
945
946 length = le16_to_cpu(rx_desc->length);
947
948 /* errors is only valid for DD + EOP descriptors */
949 if (unlikely((status & E1000_RXD_STAT_EOP) &&
950 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
951 /* recycle both page and skb */
952 buffer_info->skb = skb;
953 /* an error means any chain goes out the window
954 * too */
955 if (rx_ring->rx_skb_top)
956 dev_kfree_skb(rx_ring->rx_skb_top);
957 rx_ring->rx_skb_top = NULL;
958 goto next_desc;
959 }
960
961#define rxtop rx_ring->rx_skb_top
962 if (!(status & E1000_RXD_STAT_EOP)) {
963 /* this descriptor is only the beginning (or middle) */
964 if (!rxtop) {
965 /* this is the beginning of a chain */
966 rxtop = skb;
967 skb_fill_page_desc(rxtop, 0, buffer_info->page,
968 0, length);
969 } else {
970 /* this is the middle of a chain */
971 skb_fill_page_desc(rxtop,
972 skb_shinfo(rxtop)->nr_frags,
973 buffer_info->page, 0, length);
974 /* re-use the skb, only consumed the page */
975 buffer_info->skb = skb;
976 }
977 e1000_consume_page(buffer_info, rxtop, length);
978 goto next_desc;
979 } else {
980 if (rxtop) {
981 /* end of the chain */
982 skb_fill_page_desc(rxtop,
983 skb_shinfo(rxtop)->nr_frags,
984 buffer_info->page, 0, length);
985 /* re-use the current skb, we only consumed the
986 * page */
987 buffer_info->skb = skb;
988 skb = rxtop;
989 rxtop = NULL;
990 e1000_consume_page(buffer_info, skb, length);
991 } else {
992 /* no chain, got EOP, this buf is the packet
993 * copybreak to save the put_page/alloc_page */
994 if (length <= copybreak &&
995 skb_tailroom(skb) >= length) {
996 u8 *vaddr;
997 vaddr = kmap_atomic(buffer_info->page,
998 KM_SKB_DATA_SOFTIRQ);
999 memcpy(skb_tail_pointer(skb), vaddr,
1000 length);
1001 kunmap_atomic(vaddr,
1002 KM_SKB_DATA_SOFTIRQ);
1003 /* re-use the page, so don't erase
1004 * buffer_info->page */
1005 skb_put(skb, length);
1006 } else {
1007 skb_fill_page_desc(skb, 0,
1008 buffer_info->page, 0,
1009 length);
1010 e1000_consume_page(buffer_info, skb,
1011 length);
1012 }
1013 }
1014 }
1015
1016 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1017 e1000_rx_checksum(adapter,
1018 (u32)(status) |
1019 ((u32)(rx_desc->errors) << 24),
1020 le16_to_cpu(rx_desc->csum), skb);
1021
1022 /* probably a little skewed due to removing CRC */
1023 total_rx_bytes += skb->len;
1024 total_rx_packets++;
1025
1026 /* eth type trans needs skb->data to point to something */
1027 if (!pskb_may_pull(skb, ETH_HLEN)) {
44defeb3 1028 e_err("pskb_may_pull failed.\n");
97ac8cae
BA
1029 dev_kfree_skb(skb);
1030 goto next_desc;
1031 }
1032
1033 e1000_receive_skb(adapter, netdev, skb, status,
1034 rx_desc->special);
1035
1036next_desc:
1037 rx_desc->status = 0;
1038
1039 /* return some buffers to hardware, one at a time is too slow */
1040 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1041 adapter->alloc_rx_buf(adapter, cleaned_count);
1042 cleaned_count = 0;
1043 }
1044
1045 /* use prefetched values */
1046 rx_desc = next_rxd;
1047 buffer_info = next_buffer;
1048 }
1049 rx_ring->next_to_clean = i;
1050
1051 cleaned_count = e1000_desc_unused(rx_ring);
1052 if (cleaned_count)
1053 adapter->alloc_rx_buf(adapter, cleaned_count);
1054
1055 adapter->total_rx_bytes += total_rx_bytes;
1056 adapter->total_rx_packets += total_rx_packets;
1057 adapter->net_stats.rx_bytes += total_rx_bytes;
1058 adapter->net_stats.rx_packets += total_rx_packets;
1059 return cleaned;
1060}
1061
bc7f75fa
AK
1062/**
1063 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1064 * @adapter: board private structure
1065 **/
1066static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1067{
1068 struct e1000_ring *rx_ring = adapter->rx_ring;
1069 struct e1000_buffer *buffer_info;
1070 struct e1000_ps_page *ps_page;
1071 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
1072 unsigned int i, j;
1073
1074 /* Free all the Rx ring sk_buffs */
1075 for (i = 0; i < rx_ring->count; i++) {
1076 buffer_info = &rx_ring->buffer_info[i];
1077 if (buffer_info->dma) {
1078 if (adapter->clean_rx == e1000_clean_rx_irq)
1079 pci_unmap_single(pdev, buffer_info->dma,
1080 adapter->rx_buffer_len,
1081 PCI_DMA_FROMDEVICE);
97ac8cae
BA
1082 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1083 pci_unmap_page(pdev, buffer_info->dma,
1084 PAGE_SIZE,
1085 PCI_DMA_FROMDEVICE);
bc7f75fa
AK
1086 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1087 pci_unmap_single(pdev, buffer_info->dma,
1088 adapter->rx_ps_bsize0,
1089 PCI_DMA_FROMDEVICE);
1090 buffer_info->dma = 0;
1091 }
1092
97ac8cae
BA
1093 if (buffer_info->page) {
1094 put_page(buffer_info->page);
1095 buffer_info->page = NULL;
1096 }
1097
bc7f75fa
AK
1098 if (buffer_info->skb) {
1099 dev_kfree_skb(buffer_info->skb);
1100 buffer_info->skb = NULL;
1101 }
1102
1103 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40 1104 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
1105 if (!ps_page->page)
1106 break;
1107 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1108 PCI_DMA_FROMDEVICE);
1109 ps_page->dma = 0;
1110 put_page(ps_page->page);
1111 ps_page->page = NULL;
1112 }
1113 }
1114
1115 /* there also may be some cached data from a chained receive */
1116 if (rx_ring->rx_skb_top) {
1117 dev_kfree_skb(rx_ring->rx_skb_top);
1118 rx_ring->rx_skb_top = NULL;
1119 }
1120
bc7f75fa
AK
1121 /* Zero out the descriptor ring */
1122 memset(rx_ring->desc, 0, rx_ring->size);
1123
1124 rx_ring->next_to_clean = 0;
1125 rx_ring->next_to_use = 0;
1126
1127 writel(0, adapter->hw.hw_addr + rx_ring->head);
1128 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1129}
1130
a8f88ff5
JB
1131static void e1000e_downshift_workaround(struct work_struct *work)
1132{
1133 struct e1000_adapter *adapter = container_of(work,
1134 struct e1000_adapter, downshift_task);
1135
1136 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1137}
1138
bc7f75fa
AK
1139/**
1140 * e1000_intr_msi - Interrupt Handler
1141 * @irq: interrupt number
1142 * @data: pointer to a network interface device structure
1143 **/
1144static irqreturn_t e1000_intr_msi(int irq, void *data)
1145{
1146 struct net_device *netdev = data;
1147 struct e1000_adapter *adapter = netdev_priv(netdev);
1148 struct e1000_hw *hw = &adapter->hw;
1149 u32 icr = er32(ICR);
1150
ad68076e
BA
1151 /*
1152 * read ICR disables interrupts using IAM
1153 */
bc7f75fa
AK
1154
1155 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1156 hw->mac.get_link_status = 1;
ad68076e
BA
1157 /*
1158 * ICH8 workaround-- Call gig speed drop workaround on cable
1159 * disconnect (LSC) before accessing any PHY registers
1160 */
bc7f75fa
AK
1161 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1162 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1163 schedule_work(&adapter->downshift_task);
bc7f75fa 1164
ad68076e
BA
1165 /*
1166 * 80003ES2LAN workaround-- For packet buffer work-around on
bc7f75fa 1167 * link down event; disable receives here in the ISR and reset
ad68076e
BA
1168 * adapter in watchdog
1169 */
bc7f75fa
AK
1170 if (netif_carrier_ok(netdev) &&
1171 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1172 /* disable receives */
1173 u32 rctl = er32(RCTL);
1174 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 1175 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
1176 }
1177 /* guard against interrupt when we're going down */
1178 if (!test_bit(__E1000_DOWN, &adapter->state))
1179 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1180 }
1181
288379f0 1182 if (napi_schedule_prep(&adapter->napi)) {
bc7f75fa
AK
1183 adapter->total_tx_bytes = 0;
1184 adapter->total_tx_packets = 0;
1185 adapter->total_rx_bytes = 0;
1186 adapter->total_rx_packets = 0;
288379f0 1187 __napi_schedule(&adapter->napi);
bc7f75fa
AK
1188 }
1189
1190 return IRQ_HANDLED;
1191}
1192
1193/**
1194 * e1000_intr - Interrupt Handler
1195 * @irq: interrupt number
1196 * @data: pointer to a network interface device structure
1197 **/
1198static irqreturn_t e1000_intr(int irq, void *data)
1199{
1200 struct net_device *netdev = data;
1201 struct e1000_adapter *adapter = netdev_priv(netdev);
1202 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 1203 u32 rctl, icr = er32(ICR);
4662e82b 1204
bc7f75fa
AK
1205 if (!icr)
1206 return IRQ_NONE; /* Not our interrupt */
1207
ad68076e
BA
1208 /*
1209 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1210 * not set, then the adapter didn't send an interrupt
1211 */
bc7f75fa
AK
1212 if (!(icr & E1000_ICR_INT_ASSERTED))
1213 return IRQ_NONE;
1214
ad68076e
BA
1215 /*
1216 * Interrupt Auto-Mask...upon reading ICR,
1217 * interrupts are masked. No need for the
1218 * IMC write
1219 */
bc7f75fa
AK
1220
1221 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1222 hw->mac.get_link_status = 1;
ad68076e
BA
1223 /*
1224 * ICH8 workaround-- Call gig speed drop workaround on cable
1225 * disconnect (LSC) before accessing any PHY registers
1226 */
bc7f75fa
AK
1227 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1228 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1229 schedule_work(&adapter->downshift_task);
bc7f75fa 1230
ad68076e
BA
1231 /*
1232 * 80003ES2LAN workaround--
bc7f75fa
AK
1233 * For packet buffer work-around on link down event;
1234 * disable receives here in the ISR and
1235 * reset adapter in watchdog
1236 */
1237 if (netif_carrier_ok(netdev) &&
1238 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1239 /* disable receives */
1240 rctl = er32(RCTL);
1241 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 1242 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
1243 }
1244 /* guard against interrupt when we're going down */
1245 if (!test_bit(__E1000_DOWN, &adapter->state))
1246 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1247 }
1248
288379f0 1249 if (napi_schedule_prep(&adapter->napi)) {
bc7f75fa
AK
1250 adapter->total_tx_bytes = 0;
1251 adapter->total_tx_packets = 0;
1252 adapter->total_rx_bytes = 0;
1253 adapter->total_rx_packets = 0;
288379f0 1254 __napi_schedule(&adapter->napi);
bc7f75fa
AK
1255 }
1256
1257 return IRQ_HANDLED;
1258}
1259
4662e82b
BA
1260static irqreturn_t e1000_msix_other(int irq, void *data)
1261{
1262 struct net_device *netdev = data;
1263 struct e1000_adapter *adapter = netdev_priv(netdev);
1264 struct e1000_hw *hw = &adapter->hw;
1265 u32 icr = er32(ICR);
1266
1267 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1268 ew32(IMS, E1000_IMS_OTHER);
1269 return IRQ_NONE;
1270 }
1271
1272 if (icr & adapter->eiac_mask)
1273 ew32(ICS, (icr & adapter->eiac_mask));
1274
1275 if (icr & E1000_ICR_OTHER) {
1276 if (!(icr & E1000_ICR_LSC))
1277 goto no_link_interrupt;
1278 hw->mac.get_link_status = 1;
1279 /* guard against interrupt when we're going down */
1280 if (!test_bit(__E1000_DOWN, &adapter->state))
1281 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1282 }
1283
1284no_link_interrupt:
1285 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1286
1287 return IRQ_HANDLED;
1288}
1289
1290
1291static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1292{
1293 struct net_device *netdev = data;
1294 struct e1000_adapter *adapter = netdev_priv(netdev);
1295 struct e1000_hw *hw = &adapter->hw;
1296 struct e1000_ring *tx_ring = adapter->tx_ring;
1297
1298
1299 adapter->total_tx_bytes = 0;
1300 adapter->total_tx_packets = 0;
1301
1302 if (!e1000_clean_tx_irq(adapter))
1303 /* Ring was not completely cleaned, so fire another interrupt */
1304 ew32(ICS, tx_ring->ims_val);
1305
1306 return IRQ_HANDLED;
1307}
1308
1309static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1310{
1311 struct net_device *netdev = data;
1312 struct e1000_adapter *adapter = netdev_priv(netdev);
1313
1314 /* Write the ITR value calculated at the end of the
1315 * previous interrupt.
1316 */
1317 if (adapter->rx_ring->set_itr) {
1318 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1319 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1320 adapter->rx_ring->set_itr = 0;
1321 }
1322
288379f0 1323 if (napi_schedule_prep(&adapter->napi)) {
4662e82b
BA
1324 adapter->total_rx_bytes = 0;
1325 adapter->total_rx_packets = 0;
288379f0 1326 __napi_schedule(&adapter->napi);
4662e82b
BA
1327 }
1328 return IRQ_HANDLED;
1329}
1330
1331/**
1332 * e1000_configure_msix - Configure MSI-X hardware
1333 *
1334 * e1000_configure_msix sets up the hardware to properly
1335 * generate MSI-X interrupts.
1336 **/
1337static void e1000_configure_msix(struct e1000_adapter *adapter)
1338{
1339 struct e1000_hw *hw = &adapter->hw;
1340 struct e1000_ring *rx_ring = adapter->rx_ring;
1341 struct e1000_ring *tx_ring = adapter->tx_ring;
1342 int vector = 0;
1343 u32 ctrl_ext, ivar = 0;
1344
1345 adapter->eiac_mask = 0;
1346
1347 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1348 if (hw->mac.type == e1000_82574) {
1349 u32 rfctl = er32(RFCTL);
1350 rfctl |= E1000_RFCTL_ACK_DIS;
1351 ew32(RFCTL, rfctl);
1352 }
1353
1354#define E1000_IVAR_INT_ALLOC_VALID 0x8
1355 /* Configure Rx vector */
1356 rx_ring->ims_val = E1000_IMS_RXQ0;
1357 adapter->eiac_mask |= rx_ring->ims_val;
1358 if (rx_ring->itr_val)
1359 writel(1000000000 / (rx_ring->itr_val * 256),
1360 hw->hw_addr + rx_ring->itr_register);
1361 else
1362 writel(1, hw->hw_addr + rx_ring->itr_register);
1363 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1364
1365 /* Configure Tx vector */
1366 tx_ring->ims_val = E1000_IMS_TXQ0;
1367 vector++;
1368 if (tx_ring->itr_val)
1369 writel(1000000000 / (tx_ring->itr_val * 256),
1370 hw->hw_addr + tx_ring->itr_register);
1371 else
1372 writel(1, hw->hw_addr + tx_ring->itr_register);
1373 adapter->eiac_mask |= tx_ring->ims_val;
1374 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1375
1376 /* set vector for Other Causes, e.g. link changes */
1377 vector++;
1378 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1379 if (rx_ring->itr_val)
1380 writel(1000000000 / (rx_ring->itr_val * 256),
1381 hw->hw_addr + E1000_EITR_82574(vector));
1382 else
1383 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1384
1385 /* Cause Tx interrupts on every write back */
1386 ivar |= (1 << 31);
1387
1388 ew32(IVAR, ivar);
1389
1390 /* enable MSI-X PBA support */
1391 ctrl_ext = er32(CTRL_EXT);
1392 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1393
1394 /* Auto-Mask Other interrupts upon ICR read */
1395#define E1000_EIAC_MASK_82574 0x01F00000
1396 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1397 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1398 ew32(CTRL_EXT, ctrl_ext);
1399 e1e_flush();
1400}
1401
1402void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1403{
1404 if (adapter->msix_entries) {
1405 pci_disable_msix(adapter->pdev);
1406 kfree(adapter->msix_entries);
1407 adapter->msix_entries = NULL;
1408 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1409 pci_disable_msi(adapter->pdev);
1410 adapter->flags &= ~FLAG_MSI_ENABLED;
1411 }
1412
1413 return;
1414}
1415
1416/**
1417 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1418 *
1419 * Attempt to configure interrupts using the best available
1420 * capabilities of the hardware and kernel.
1421 **/
1422void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1423{
1424 int err;
1425 int numvecs, i;
1426
1427
1428 switch (adapter->int_mode) {
1429 case E1000E_INT_MODE_MSIX:
1430 if (adapter->flags & FLAG_HAS_MSIX) {
1431 numvecs = 3; /* RxQ0, TxQ0 and other */
1432 adapter->msix_entries = kcalloc(numvecs,
1433 sizeof(struct msix_entry),
1434 GFP_KERNEL);
1435 if (adapter->msix_entries) {
1436 for (i = 0; i < numvecs; i++)
1437 adapter->msix_entries[i].entry = i;
1438
1439 err = pci_enable_msix(adapter->pdev,
1440 adapter->msix_entries,
1441 numvecs);
1442 if (err == 0)
1443 return;
1444 }
1445 /* MSI-X failed, so fall through and try MSI */
1446 e_err("Failed to initialize MSI-X interrupts. "
1447 "Falling back to MSI interrupts.\n");
1448 e1000e_reset_interrupt_capability(adapter);
1449 }
1450 adapter->int_mode = E1000E_INT_MODE_MSI;
1451 /* Fall through */
1452 case E1000E_INT_MODE_MSI:
1453 if (!pci_enable_msi(adapter->pdev)) {
1454 adapter->flags |= FLAG_MSI_ENABLED;
1455 } else {
1456 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1457 e_err("Failed to initialize MSI interrupts. Falling "
1458 "back to legacy interrupts.\n");
1459 }
1460 /* Fall through */
1461 case E1000E_INT_MODE_LEGACY:
1462 /* Don't do anything; this is the system default */
1463 break;
1464 }
1465
1466 return;
1467}
1468
1469/**
1470 * e1000_request_msix - Initialize MSI-X interrupts
1471 *
1472 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1473 * kernel.
1474 **/
1475static int e1000_request_msix(struct e1000_adapter *adapter)
1476{
1477 struct net_device *netdev = adapter->netdev;
1478 int err = 0, vector = 0;
1479
1480 if (strlen(netdev->name) < (IFNAMSIZ - 5))
cb7b48f6 1481 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
4662e82b
BA
1482 else
1483 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1484 err = request_irq(adapter->msix_entries[vector].vector,
1485 &e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1486 netdev);
1487 if (err)
1488 goto out;
1489 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1490 adapter->rx_ring->itr_val = adapter->itr;
1491 vector++;
1492
1493 if (strlen(netdev->name) < (IFNAMSIZ - 5))
cb7b48f6 1494 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
4662e82b
BA
1495 else
1496 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1497 err = request_irq(adapter->msix_entries[vector].vector,
1498 &e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1499 netdev);
1500 if (err)
1501 goto out;
1502 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1503 adapter->tx_ring->itr_val = adapter->itr;
1504 vector++;
1505
1506 err = request_irq(adapter->msix_entries[vector].vector,
1507 &e1000_msix_other, 0, netdev->name, netdev);
1508 if (err)
1509 goto out;
1510
1511 e1000_configure_msix(adapter);
1512 return 0;
1513out:
1514 return err;
1515}
1516
f8d59f78
BA
1517/**
1518 * e1000_request_irq - initialize interrupts
1519 *
1520 * Attempts to configure interrupts using the best available
1521 * capabilities of the hardware and kernel.
1522 **/
bc7f75fa
AK
1523static int e1000_request_irq(struct e1000_adapter *adapter)
1524{
1525 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
1526 int err;
1527
4662e82b
BA
1528 if (adapter->msix_entries) {
1529 err = e1000_request_msix(adapter);
1530 if (!err)
1531 return err;
1532 /* fall back to MSI */
1533 e1000e_reset_interrupt_capability(adapter);
1534 adapter->int_mode = E1000E_INT_MODE_MSI;
1535 e1000e_set_interrupt_capability(adapter);
bc7f75fa 1536 }
4662e82b
BA
1537 if (adapter->flags & FLAG_MSI_ENABLED) {
1538 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0,
1539 netdev->name, netdev);
1540 if (!err)
1541 return err;
bc7f75fa 1542
4662e82b
BA
1543 /* fall back to legacy interrupt */
1544 e1000e_reset_interrupt_capability(adapter);
1545 adapter->int_mode = E1000E_INT_MODE_LEGACY;
bc7f75fa
AK
1546 }
1547
4662e82b
BA
1548 err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED,
1549 netdev->name, netdev);
1550 if (err)
1551 e_err("Unable to allocate interrupt, Error: %d\n", err);
1552
bc7f75fa
AK
1553 return err;
1554}
1555
1556static void e1000_free_irq(struct e1000_adapter *adapter)
1557{
1558 struct net_device *netdev = adapter->netdev;
1559
4662e82b
BA
1560 if (adapter->msix_entries) {
1561 int vector = 0;
1562
1563 free_irq(adapter->msix_entries[vector].vector, netdev);
1564 vector++;
1565
1566 free_irq(adapter->msix_entries[vector].vector, netdev);
1567 vector++;
1568
1569 /* Other Causes interrupt vector */
1570 free_irq(adapter->msix_entries[vector].vector, netdev);
1571 return;
bc7f75fa 1572 }
4662e82b
BA
1573
1574 free_irq(adapter->pdev->irq, netdev);
bc7f75fa
AK
1575}
1576
1577/**
1578 * e1000_irq_disable - Mask off interrupt generation on the NIC
1579 **/
1580static void e1000_irq_disable(struct e1000_adapter *adapter)
1581{
1582 struct e1000_hw *hw = &adapter->hw;
1583
bc7f75fa 1584 ew32(IMC, ~0);
4662e82b
BA
1585 if (adapter->msix_entries)
1586 ew32(EIAC_82574, 0);
bc7f75fa
AK
1587 e1e_flush();
1588 synchronize_irq(adapter->pdev->irq);
1589}
1590
1591/**
1592 * e1000_irq_enable - Enable default interrupt generation settings
1593 **/
1594static void e1000_irq_enable(struct e1000_adapter *adapter)
1595{
1596 struct e1000_hw *hw = &adapter->hw;
1597
4662e82b
BA
1598 if (adapter->msix_entries) {
1599 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1600 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1601 } else {
1602 ew32(IMS, IMS_ENABLE_MASK);
1603 }
74ef9c39 1604 e1e_flush();
bc7f75fa
AK
1605}
1606
1607/**
1608 * e1000_get_hw_control - get control of the h/w from f/w
1609 * @adapter: address of board private structure
1610 *
489815ce 1611 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1612 * For ASF and Pass Through versions of f/w this means that
1613 * the driver is loaded. For AMT version (only with 82573)
1614 * of the f/w this means that the network i/f is open.
1615 **/
1616static void e1000_get_hw_control(struct e1000_adapter *adapter)
1617{
1618 struct e1000_hw *hw = &adapter->hw;
1619 u32 ctrl_ext;
1620 u32 swsm;
1621
1622 /* Let firmware know the driver has taken over */
1623 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1624 swsm = er32(SWSM);
1625 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1626 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1627 ctrl_ext = er32(CTRL_EXT);
ad68076e 1628 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1629 }
1630}
1631
1632/**
1633 * e1000_release_hw_control - release control of the h/w to f/w
1634 * @adapter: address of board private structure
1635 *
489815ce 1636 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1637 * For ASF and Pass Through versions of f/w this means that the
1638 * driver is no longer loaded. For AMT version (only with 82573) i
1639 * of the f/w this means that the network i/f is closed.
1640 *
1641 **/
1642static void e1000_release_hw_control(struct e1000_adapter *adapter)
1643{
1644 struct e1000_hw *hw = &adapter->hw;
1645 u32 ctrl_ext;
1646 u32 swsm;
1647
1648 /* Let firmware taken over control of h/w */
1649 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1650 swsm = er32(SWSM);
1651 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1652 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1653 ctrl_ext = er32(CTRL_EXT);
ad68076e 1654 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1655 }
1656}
1657
bc7f75fa
AK
1658/**
1659 * @e1000_alloc_ring - allocate memory for a ring structure
1660 **/
1661static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1662 struct e1000_ring *ring)
1663{
1664 struct pci_dev *pdev = adapter->pdev;
1665
1666 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1667 GFP_KERNEL);
1668 if (!ring->desc)
1669 return -ENOMEM;
1670
1671 return 0;
1672}
1673
1674/**
1675 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1676 * @adapter: board private structure
1677 *
1678 * Return 0 on success, negative on failure
1679 **/
1680int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1681{
1682 struct e1000_ring *tx_ring = adapter->tx_ring;
1683 int err = -ENOMEM, size;
1684
1685 size = sizeof(struct e1000_buffer) * tx_ring->count;
1686 tx_ring->buffer_info = vmalloc(size);
1687 if (!tx_ring->buffer_info)
1688 goto err;
1689 memset(tx_ring->buffer_info, 0, size);
1690
1691 /* round up to nearest 4K */
1692 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1693 tx_ring->size = ALIGN(tx_ring->size, 4096);
1694
1695 err = e1000_alloc_ring_dma(adapter, tx_ring);
1696 if (err)
1697 goto err;
1698
1699 tx_ring->next_to_use = 0;
1700 tx_ring->next_to_clean = 0;
bc7f75fa
AK
1701
1702 return 0;
1703err:
1704 vfree(tx_ring->buffer_info);
44defeb3 1705 e_err("Unable to allocate memory for the transmit descriptor ring\n");
bc7f75fa
AK
1706 return err;
1707}
1708
1709/**
1710 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1711 * @adapter: board private structure
1712 *
1713 * Returns 0 on success, negative on failure
1714 **/
1715int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1716{
1717 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40
AK
1718 struct e1000_buffer *buffer_info;
1719 int i, size, desc_len, err = -ENOMEM;
bc7f75fa
AK
1720
1721 size = sizeof(struct e1000_buffer) * rx_ring->count;
1722 rx_ring->buffer_info = vmalloc(size);
1723 if (!rx_ring->buffer_info)
1724 goto err;
1725 memset(rx_ring->buffer_info, 0, size);
1726
47f44e40
AK
1727 for (i = 0; i < rx_ring->count; i++) {
1728 buffer_info = &rx_ring->buffer_info[i];
1729 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1730 sizeof(struct e1000_ps_page),
1731 GFP_KERNEL);
1732 if (!buffer_info->ps_pages)
1733 goto err_pages;
1734 }
bc7f75fa
AK
1735
1736 desc_len = sizeof(union e1000_rx_desc_packet_split);
1737
1738 /* Round up to nearest 4K */
1739 rx_ring->size = rx_ring->count * desc_len;
1740 rx_ring->size = ALIGN(rx_ring->size, 4096);
1741
1742 err = e1000_alloc_ring_dma(adapter, rx_ring);
1743 if (err)
47f44e40 1744 goto err_pages;
bc7f75fa
AK
1745
1746 rx_ring->next_to_clean = 0;
1747 rx_ring->next_to_use = 0;
1748 rx_ring->rx_skb_top = NULL;
1749
1750 return 0;
47f44e40
AK
1751
1752err_pages:
1753 for (i = 0; i < rx_ring->count; i++) {
1754 buffer_info = &rx_ring->buffer_info[i];
1755 kfree(buffer_info->ps_pages);
1756 }
bc7f75fa
AK
1757err:
1758 vfree(rx_ring->buffer_info);
44defeb3 1759 e_err("Unable to allocate memory for the transmit descriptor ring\n");
bc7f75fa
AK
1760 return err;
1761}
1762
1763/**
1764 * e1000_clean_tx_ring - Free Tx Buffers
1765 * @adapter: board private structure
1766 **/
1767static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1768{
1769 struct e1000_ring *tx_ring = adapter->tx_ring;
1770 struct e1000_buffer *buffer_info;
1771 unsigned long size;
1772 unsigned int i;
1773
1774 for (i = 0; i < tx_ring->count; i++) {
1775 buffer_info = &tx_ring->buffer_info[i];
1776 e1000_put_txbuf(adapter, buffer_info);
1777 }
1778
1779 size = sizeof(struct e1000_buffer) * tx_ring->count;
1780 memset(tx_ring->buffer_info, 0, size);
1781
1782 memset(tx_ring->desc, 0, tx_ring->size);
1783
1784 tx_ring->next_to_use = 0;
1785 tx_ring->next_to_clean = 0;
1786
1787 writel(0, adapter->hw.hw_addr + tx_ring->head);
1788 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1789}
1790
1791/**
1792 * e1000e_free_tx_resources - Free Tx Resources per Queue
1793 * @adapter: board private structure
1794 *
1795 * Free all transmit software resources
1796 **/
1797void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1798{
1799 struct pci_dev *pdev = adapter->pdev;
1800 struct e1000_ring *tx_ring = adapter->tx_ring;
1801
1802 e1000_clean_tx_ring(adapter);
1803
1804 vfree(tx_ring->buffer_info);
1805 tx_ring->buffer_info = NULL;
1806
1807 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1808 tx_ring->dma);
1809 tx_ring->desc = NULL;
1810}
1811
1812/**
1813 * e1000e_free_rx_resources - Free Rx Resources
1814 * @adapter: board private structure
1815 *
1816 * Free all receive software resources
1817 **/
1818
1819void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1820{
1821 struct pci_dev *pdev = adapter->pdev;
1822 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40 1823 int i;
bc7f75fa
AK
1824
1825 e1000_clean_rx_ring(adapter);
1826
47f44e40
AK
1827 for (i = 0; i < rx_ring->count; i++) {
1828 kfree(rx_ring->buffer_info[i].ps_pages);
1829 }
1830
bc7f75fa
AK
1831 vfree(rx_ring->buffer_info);
1832 rx_ring->buffer_info = NULL;
1833
bc7f75fa
AK
1834 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1835 rx_ring->dma);
1836 rx_ring->desc = NULL;
1837}
1838
1839/**
1840 * e1000_update_itr - update the dynamic ITR value based on statistics
489815ce
AK
1841 * @adapter: pointer to adapter
1842 * @itr_setting: current adapter->itr
1843 * @packets: the number of packets during this measurement interval
1844 * @bytes: the number of bytes during this measurement interval
1845 *
bc7f75fa
AK
1846 * Stores a new ITR value based on packets and byte
1847 * counts during the last interrupt. The advantage of per interrupt
1848 * computation is faster updates and more accurate ITR for the current
1849 * traffic pattern. Constants in this function were computed
1850 * based on theoretical maximum wire speed and thresholds were set based
1851 * on testing data as well as attempting to minimize response time
4662e82b
BA
1852 * while increasing bulk throughput. This functionality is controlled
1853 * by the InterruptThrottleRate module parameter.
bc7f75fa
AK
1854 **/
1855static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1856 u16 itr_setting, int packets,
1857 int bytes)
1858{
1859 unsigned int retval = itr_setting;
1860
1861 if (packets == 0)
1862 goto update_itr_done;
1863
1864 switch (itr_setting) {
1865 case lowest_latency:
1866 /* handle TSO and jumbo frames */
1867 if (bytes/packets > 8000)
1868 retval = bulk_latency;
1869 else if ((packets < 5) && (bytes > 512)) {
1870 retval = low_latency;
1871 }
1872 break;
1873 case low_latency: /* 50 usec aka 20000 ints/s */
1874 if (bytes > 10000) {
1875 /* this if handles the TSO accounting */
1876 if (bytes/packets > 8000) {
1877 retval = bulk_latency;
1878 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1879 retval = bulk_latency;
1880 } else if ((packets > 35)) {
1881 retval = lowest_latency;
1882 }
1883 } else if (bytes/packets > 2000) {
1884 retval = bulk_latency;
1885 } else if (packets <= 2 && bytes < 512) {
1886 retval = lowest_latency;
1887 }
1888 break;
1889 case bulk_latency: /* 250 usec aka 4000 ints/s */
1890 if (bytes > 25000) {
1891 if (packets > 35) {
1892 retval = low_latency;
1893 }
1894 } else if (bytes < 6000) {
1895 retval = low_latency;
1896 }
1897 break;
1898 }
1899
1900update_itr_done:
1901 return retval;
1902}
1903
1904static void e1000_set_itr(struct e1000_adapter *adapter)
1905{
1906 struct e1000_hw *hw = &adapter->hw;
1907 u16 current_itr;
1908 u32 new_itr = adapter->itr;
1909
1910 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1911 if (adapter->link_speed != SPEED_1000) {
1912 current_itr = 0;
1913 new_itr = 4000;
1914 goto set_itr_now;
1915 }
1916
1917 adapter->tx_itr = e1000_update_itr(adapter,
1918 adapter->tx_itr,
1919 adapter->total_tx_packets,
1920 adapter->total_tx_bytes);
1921 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1922 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1923 adapter->tx_itr = low_latency;
1924
1925 adapter->rx_itr = e1000_update_itr(adapter,
1926 adapter->rx_itr,
1927 adapter->total_rx_packets,
1928 adapter->total_rx_bytes);
1929 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1930 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1931 adapter->rx_itr = low_latency;
1932
1933 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1934
1935 switch (current_itr) {
1936 /* counts and packets in update_itr are dependent on these numbers */
1937 case lowest_latency:
1938 new_itr = 70000;
1939 break;
1940 case low_latency:
1941 new_itr = 20000; /* aka hwitr = ~200 */
1942 break;
1943 case bulk_latency:
1944 new_itr = 4000;
1945 break;
1946 default:
1947 break;
1948 }
1949
1950set_itr_now:
1951 if (new_itr != adapter->itr) {
ad68076e
BA
1952 /*
1953 * this attempts to bias the interrupt rate towards Bulk
bc7f75fa 1954 * by adding intermediate steps when interrupt rate is
ad68076e
BA
1955 * increasing
1956 */
bc7f75fa
AK
1957 new_itr = new_itr > adapter->itr ?
1958 min(adapter->itr + (new_itr >> 2), new_itr) :
1959 new_itr;
1960 adapter->itr = new_itr;
4662e82b
BA
1961 adapter->rx_ring->itr_val = new_itr;
1962 if (adapter->msix_entries)
1963 adapter->rx_ring->set_itr = 1;
1964 else
1965 ew32(ITR, 1000000000 / (new_itr * 256));
bc7f75fa
AK
1966 }
1967}
1968
4662e82b
BA
1969/**
1970 * e1000_alloc_queues - Allocate memory for all rings
1971 * @adapter: board private structure to initialize
1972 **/
1973static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1974{
1975 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1976 if (!adapter->tx_ring)
1977 goto err;
1978
1979 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1980 if (!adapter->rx_ring)
1981 goto err;
1982
1983 return 0;
1984err:
1985 e_err("Unable to allocate memory for queues\n");
1986 kfree(adapter->rx_ring);
1987 kfree(adapter->tx_ring);
1988 return -ENOMEM;
1989}
1990
bc7f75fa
AK
1991/**
1992 * e1000_clean - NAPI Rx polling callback
ad68076e 1993 * @napi: struct associated with this polling callback
489815ce 1994 * @budget: amount of packets driver is allowed to process this poll
bc7f75fa
AK
1995 **/
1996static int e1000_clean(struct napi_struct *napi, int budget)
1997{
1998 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
4662e82b 1999 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 2000 struct net_device *poll_dev = adapter->netdev;
d2c7ddd6 2001 int tx_cleaned = 0, work_done = 0;
bc7f75fa 2002
4cf1653a 2003 adapter = netdev_priv(poll_dev);
bc7f75fa 2004
4662e82b
BA
2005 if (adapter->msix_entries &&
2006 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2007 goto clean_rx;
2008
92af3e95 2009 tx_cleaned = e1000_clean_tx_irq(adapter);
bc7f75fa 2010
4662e82b 2011clean_rx:
bc7f75fa 2012 adapter->clean_rx(adapter, &work_done, budget);
d2c7ddd6
DM
2013
2014 if (tx_cleaned)
2015 work_done = budget;
bc7f75fa 2016
53e52c72
DM
2017 /* If budget not fully consumed, exit the polling mode */
2018 if (work_done < budget) {
bc7f75fa
AK
2019 if (adapter->itr_setting & 3)
2020 e1000_set_itr(adapter);
288379f0 2021 napi_complete(napi);
4662e82b
BA
2022 if (adapter->msix_entries)
2023 ew32(IMS, adapter->rx_ring->ims_val);
2024 else
2025 e1000_irq_enable(adapter);
bc7f75fa
AK
2026 }
2027
2028 return work_done;
2029}
2030
2031static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2032{
2033 struct e1000_adapter *adapter = netdev_priv(netdev);
2034 struct e1000_hw *hw = &adapter->hw;
2035 u32 vfta, index;
2036
2037 /* don't update vlan cookie if already programmed */
2038 if ((adapter->hw.mng_cookie.status &
2039 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2040 (vid == adapter->mng_vlan_id))
2041 return;
2042 /* add VID to filter table */
2043 index = (vid >> 5) & 0x7F;
2044 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2045 vfta |= (1 << (vid & 0x1F));
2046 e1000e_write_vfta(hw, index, vfta);
2047}
2048
2049static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2050{
2051 struct e1000_adapter *adapter = netdev_priv(netdev);
2052 struct e1000_hw *hw = &adapter->hw;
2053 u32 vfta, index;
2054
74ef9c39
JB
2055 if (!test_bit(__E1000_DOWN, &adapter->state))
2056 e1000_irq_disable(adapter);
bc7f75fa 2057 vlan_group_set_device(adapter->vlgrp, vid, NULL);
74ef9c39
JB
2058
2059 if (!test_bit(__E1000_DOWN, &adapter->state))
2060 e1000_irq_enable(adapter);
bc7f75fa
AK
2061
2062 if ((adapter->hw.mng_cookie.status &
2063 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2064 (vid == adapter->mng_vlan_id)) {
2065 /* release control to f/w */
2066 e1000_release_hw_control(adapter);
2067 return;
2068 }
2069
2070 /* remove VID from filter table */
2071 index = (vid >> 5) & 0x7F;
2072 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2073 vfta &= ~(1 << (vid & 0x1F));
2074 e1000e_write_vfta(hw, index, vfta);
2075}
2076
2077static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2078{
2079 struct net_device *netdev = adapter->netdev;
2080 u16 vid = adapter->hw.mng_cookie.vlan_id;
2081 u16 old_vid = adapter->mng_vlan_id;
2082
2083 if (!adapter->vlgrp)
2084 return;
2085
2086 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2087 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2088 if (adapter->hw.mng_cookie.status &
2089 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2090 e1000_vlan_rx_add_vid(netdev, vid);
2091 adapter->mng_vlan_id = vid;
2092 }
2093
2094 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2095 (vid != old_vid) &&
2096 !vlan_group_get_device(adapter->vlgrp, old_vid))
2097 e1000_vlan_rx_kill_vid(netdev, old_vid);
2098 } else {
2099 adapter->mng_vlan_id = vid;
2100 }
2101}
2102
2103
2104static void e1000_vlan_rx_register(struct net_device *netdev,
2105 struct vlan_group *grp)
2106{
2107 struct e1000_adapter *adapter = netdev_priv(netdev);
2108 struct e1000_hw *hw = &adapter->hw;
2109 u32 ctrl, rctl;
2110
74ef9c39
JB
2111 if (!test_bit(__E1000_DOWN, &adapter->state))
2112 e1000_irq_disable(adapter);
bc7f75fa
AK
2113 adapter->vlgrp = grp;
2114
2115 if (grp) {
2116 /* enable VLAN tag insert/strip */
2117 ctrl = er32(CTRL);
2118 ctrl |= E1000_CTRL_VME;
2119 ew32(CTRL, ctrl);
2120
2121 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2122 /* enable VLAN receive filtering */
2123 rctl = er32(RCTL);
bc7f75fa
AK
2124 rctl &= ~E1000_RCTL_CFIEN;
2125 ew32(RCTL, rctl);
2126 e1000_update_mng_vlan(adapter);
2127 }
2128 } else {
2129 /* disable VLAN tag insert/strip */
2130 ctrl = er32(CTRL);
2131 ctrl &= ~E1000_CTRL_VME;
2132 ew32(CTRL, ctrl);
2133
2134 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
bc7f75fa
AK
2135 if (adapter->mng_vlan_id !=
2136 (u16)E1000_MNG_VLAN_NONE) {
2137 e1000_vlan_rx_kill_vid(netdev,
2138 adapter->mng_vlan_id);
2139 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2140 }
2141 }
2142 }
2143
74ef9c39
JB
2144 if (!test_bit(__E1000_DOWN, &adapter->state))
2145 e1000_irq_enable(adapter);
bc7f75fa
AK
2146}
2147
2148static void e1000_restore_vlan(struct e1000_adapter *adapter)
2149{
2150 u16 vid;
2151
2152 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2153
2154 if (!adapter->vlgrp)
2155 return;
2156
2157 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2158 if (!vlan_group_get_device(adapter->vlgrp, vid))
2159 continue;
2160 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2161 }
2162}
2163
2164static void e1000_init_manageability(struct e1000_adapter *adapter)
2165{
2166 struct e1000_hw *hw = &adapter->hw;
2167 u32 manc, manc2h;
2168
2169 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2170 return;
2171
2172 manc = er32(MANC);
2173
ad68076e
BA
2174 /*
2175 * enable receiving management packets to the host. this will probably
bc7f75fa 2176 * generate destination unreachable messages from the host OS, but
ad68076e
BA
2177 * the packets will be handled on SMBUS
2178 */
bc7f75fa
AK
2179 manc |= E1000_MANC_EN_MNG2HOST;
2180 manc2h = er32(MANC2H);
2181#define E1000_MNG2HOST_PORT_623 (1 << 5)
2182#define E1000_MNG2HOST_PORT_664 (1 << 6)
2183 manc2h |= E1000_MNG2HOST_PORT_623;
2184 manc2h |= E1000_MNG2HOST_PORT_664;
2185 ew32(MANC2H, manc2h);
2186 ew32(MANC, manc);
2187}
2188
2189/**
2190 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2191 * @adapter: board private structure
2192 *
2193 * Configure the Tx unit of the MAC after a reset.
2194 **/
2195static void e1000_configure_tx(struct e1000_adapter *adapter)
2196{
2197 struct e1000_hw *hw = &adapter->hw;
2198 struct e1000_ring *tx_ring = adapter->tx_ring;
2199 u64 tdba;
2200 u32 tdlen, tctl, tipg, tarc;
2201 u32 ipgr1, ipgr2;
2202
2203 /* Setup the HW Tx Head and Tail descriptor pointers */
2204 tdba = tx_ring->dma;
2205 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2206 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
2207 ew32(TDBAH, (tdba >> 32));
2208 ew32(TDLEN, tdlen);
2209 ew32(TDH, 0);
2210 ew32(TDT, 0);
2211 tx_ring->head = E1000_TDH;
2212 tx_ring->tail = E1000_TDT;
2213
2214 /* Set the default values for the Tx Inter Packet Gap timer */
2215 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2216 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2217 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2218
2219 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2220 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2221
2222 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2223 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2224 ew32(TIPG, tipg);
2225
2226 /* Set the Tx Interrupt Delay register */
2227 ew32(TIDV, adapter->tx_int_delay);
ad68076e 2228 /* Tx irq moderation */
bc7f75fa
AK
2229 ew32(TADV, adapter->tx_abs_int_delay);
2230
2231 /* Program the Transmit Control Register */
2232 tctl = er32(TCTL);
2233 tctl &= ~E1000_TCTL_CT;
2234 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2235 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2236
2237 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
e9ec2c0f 2238 tarc = er32(TARC(0));
ad68076e
BA
2239 /*
2240 * set the speed mode bit, we'll clear it if we're not at
2241 * gigabit link later
2242 */
bc7f75fa
AK
2243#define SPEED_MODE_BIT (1 << 21)
2244 tarc |= SPEED_MODE_BIT;
e9ec2c0f 2245 ew32(TARC(0), tarc);
bc7f75fa
AK
2246 }
2247
2248 /* errata: program both queues to unweighted RR */
2249 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
e9ec2c0f 2250 tarc = er32(TARC(0));
bc7f75fa 2251 tarc |= 1;
e9ec2c0f
JK
2252 ew32(TARC(0), tarc);
2253 tarc = er32(TARC(1));
bc7f75fa 2254 tarc |= 1;
e9ec2c0f 2255 ew32(TARC(1), tarc);
bc7f75fa
AK
2256 }
2257
2258 e1000e_config_collision_dist(hw);
2259
2260 /* Setup Transmit Descriptor Settings for eop descriptor */
2261 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2262
2263 /* only set IDE if we are delaying interrupts using the timers */
2264 if (adapter->tx_int_delay)
2265 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2266
2267 /* enable Report Status bit */
2268 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2269
2270 ew32(TCTL, tctl);
2271
2272 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2273}
2274
2275/**
2276 * e1000_setup_rctl - configure the receive control registers
2277 * @adapter: Board private structure
2278 **/
2279#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2280 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2281static void e1000_setup_rctl(struct e1000_adapter *adapter)
2282{
2283 struct e1000_hw *hw = &adapter->hw;
2284 u32 rctl, rfctl;
2285 u32 psrctl = 0;
2286 u32 pages = 0;
2287
2288 /* Program MC offset vector base */
2289 rctl = er32(RCTL);
2290 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2291 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2292 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2293 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2294
2295 /* Do not Store bad packets */
2296 rctl &= ~E1000_RCTL_SBP;
2297
2298 /* Enable Long Packet receive */
2299 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2300 rctl &= ~E1000_RCTL_LPE;
2301 else
2302 rctl |= E1000_RCTL_LPE;
2303
eb7c3adb
JK
2304 /* Some systems expect that the CRC is included in SMBUS traffic. The
2305 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2306 * host memory when this is enabled
2307 */
2308 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2309 rctl |= E1000_RCTL_SECRC;
5918bd88 2310
bc7f75fa
AK
2311 /* Setup buffer sizes */
2312 rctl &= ~E1000_RCTL_SZ_4096;
2313 rctl |= E1000_RCTL_BSEX;
2314 switch (adapter->rx_buffer_len) {
2315 case 256:
2316 rctl |= E1000_RCTL_SZ_256;
2317 rctl &= ~E1000_RCTL_BSEX;
2318 break;
2319 case 512:
2320 rctl |= E1000_RCTL_SZ_512;
2321 rctl &= ~E1000_RCTL_BSEX;
2322 break;
2323 case 1024:
2324 rctl |= E1000_RCTL_SZ_1024;
2325 rctl &= ~E1000_RCTL_BSEX;
2326 break;
2327 case 2048:
2328 default:
2329 rctl |= E1000_RCTL_SZ_2048;
2330 rctl &= ~E1000_RCTL_BSEX;
2331 break;
2332 case 4096:
2333 rctl |= E1000_RCTL_SZ_4096;
2334 break;
2335 case 8192:
2336 rctl |= E1000_RCTL_SZ_8192;
2337 break;
2338 case 16384:
2339 rctl |= E1000_RCTL_SZ_16384;
2340 break;
2341 }
2342
2343 /*
2344 * 82571 and greater support packet-split where the protocol
2345 * header is placed in skb->data and the packet data is
2346 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2347 * In the case of a non-split, skb->data is linearly filled,
2348 * followed by the page buffers. Therefore, skb->data is
2349 * sized to hold the largest protocol header.
2350 *
2351 * allocations using alloc_page take too long for regular MTU
2352 * so only enable packet split for jumbo frames
2353 *
2354 * Using pages when the page size is greater than 16k wastes
2355 * a lot of memory, since we allocate 3 pages at all times
2356 * per packet.
2357 */
bc7f75fa 2358 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
97ac8cae
BA
2359 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2360 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
bc7f75fa 2361 adapter->rx_ps_pages = pages;
97ac8cae
BA
2362 else
2363 adapter->rx_ps_pages = 0;
bc7f75fa
AK
2364
2365 if (adapter->rx_ps_pages) {
2366 /* Configure extra packet-split registers */
2367 rfctl = er32(RFCTL);
2368 rfctl |= E1000_RFCTL_EXTEN;
ad68076e
BA
2369 /*
2370 * disable packet split support for IPv6 extension headers,
2371 * because some malformed IPv6 headers can hang the Rx
2372 */
bc7f75fa
AK
2373 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2374 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2375
2376 ew32(RFCTL, rfctl);
2377
140a7480
AK
2378 /* Enable Packet split descriptors */
2379 rctl |= E1000_RCTL_DTYP_PS;
bc7f75fa
AK
2380
2381 psrctl |= adapter->rx_ps_bsize0 >>
2382 E1000_PSRCTL_BSIZE0_SHIFT;
2383
2384 switch (adapter->rx_ps_pages) {
2385 case 3:
2386 psrctl |= PAGE_SIZE <<
2387 E1000_PSRCTL_BSIZE3_SHIFT;
2388 case 2:
2389 psrctl |= PAGE_SIZE <<
2390 E1000_PSRCTL_BSIZE2_SHIFT;
2391 case 1:
2392 psrctl |= PAGE_SIZE >>
2393 E1000_PSRCTL_BSIZE1_SHIFT;
2394 break;
2395 }
2396
2397 ew32(PSRCTL, psrctl);
2398 }
2399
2400 ew32(RCTL, rctl);
318a94d6
JK
2401 /* just started the receive unit, no need to restart */
2402 adapter->flags &= ~FLAG_RX_RESTART_NOW;
bc7f75fa
AK
2403}
2404
2405/**
2406 * e1000_configure_rx - Configure Receive Unit after Reset
2407 * @adapter: board private structure
2408 *
2409 * Configure the Rx unit of the MAC after a reset.
2410 **/
2411static void e1000_configure_rx(struct e1000_adapter *adapter)
2412{
2413 struct e1000_hw *hw = &adapter->hw;
2414 struct e1000_ring *rx_ring = adapter->rx_ring;
2415 u64 rdba;
2416 u32 rdlen, rctl, rxcsum, ctrl_ext;
2417
2418 if (adapter->rx_ps_pages) {
2419 /* this is a 32 byte descriptor */
2420 rdlen = rx_ring->count *
2421 sizeof(union e1000_rx_desc_packet_split);
2422 adapter->clean_rx = e1000_clean_rx_irq_ps;
2423 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
97ac8cae
BA
2424 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2425 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2426 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2427 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
bc7f75fa 2428 } else {
97ac8cae 2429 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
bc7f75fa
AK
2430 adapter->clean_rx = e1000_clean_rx_irq;
2431 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2432 }
2433
2434 /* disable receives while setting up the descriptors */
2435 rctl = er32(RCTL);
2436 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2437 e1e_flush();
2438 msleep(10);
2439
2440 /* set the Receive Delay Timer Register */
2441 ew32(RDTR, adapter->rx_int_delay);
2442
2443 /* irq moderation */
2444 ew32(RADV, adapter->rx_abs_int_delay);
2445 if (adapter->itr_setting != 0)
ad68076e 2446 ew32(ITR, 1000000000 / (adapter->itr * 256));
bc7f75fa
AK
2447
2448 ctrl_ext = er32(CTRL_EXT);
2449 /* Reset delay timers after every interrupt */
2450 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2451 /* Auto-Mask interrupts upon ICR access */
2452 ctrl_ext |= E1000_CTRL_EXT_IAME;
2453 ew32(IAM, 0xffffffff);
2454 ew32(CTRL_EXT, ctrl_ext);
2455 e1e_flush();
2456
ad68076e
BA
2457 /*
2458 * Setup the HW Rx Head and Tail Descriptor Pointers and
2459 * the Base and Length of the Rx Descriptor Ring
2460 */
bc7f75fa
AK
2461 rdba = rx_ring->dma;
2462 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2463 ew32(RDBAH, (rdba >> 32));
2464 ew32(RDLEN, rdlen);
2465 ew32(RDH, 0);
2466 ew32(RDT, 0);
2467 rx_ring->head = E1000_RDH;
2468 rx_ring->tail = E1000_RDT;
2469
2470 /* Enable Receive Checksum Offload for TCP and UDP */
2471 rxcsum = er32(RXCSUM);
2472 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2473 rxcsum |= E1000_RXCSUM_TUOFL;
2474
ad68076e
BA
2475 /*
2476 * IPv4 payload checksum for UDP fragments must be
2477 * used in conjunction with packet-split.
2478 */
bc7f75fa
AK
2479 if (adapter->rx_ps_pages)
2480 rxcsum |= E1000_RXCSUM_IPPCSE;
2481 } else {
2482 rxcsum &= ~E1000_RXCSUM_TUOFL;
2483 /* no need to clear IPPCSE as it defaults to 0 */
2484 }
2485 ew32(RXCSUM, rxcsum);
2486
ad68076e
BA
2487 /*
2488 * Enable early receives on supported devices, only takes effect when
bc7f75fa 2489 * packet size is equal or larger than the specified value (in 8 byte
ad68076e
BA
2490 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2491 */
bc7f75fa 2492 if ((adapter->flags & FLAG_HAS_ERT) &&
97ac8cae
BA
2493 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2494 u32 rxdctl = er32(RXDCTL(0));
2495 ew32(RXDCTL(0), rxdctl | 0x3);
2496 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2497 /*
2498 * With jumbo frames and early-receive enabled, excessive
2499 * C4->C2 latencies result in dropped transactions.
2500 */
2501 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2502 e1000e_driver_name, 55);
2503 } else {
2504 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2505 e1000e_driver_name,
2506 PM_QOS_DEFAULT_VALUE);
2507 }
bc7f75fa
AK
2508
2509 /* Enable Receives */
2510 ew32(RCTL, rctl);
2511}
2512
2513/**
e2de3eb6 2514 * e1000_update_mc_addr_list - Update Multicast addresses
bc7f75fa
AK
2515 * @hw: pointer to the HW structure
2516 * @mc_addr_list: array of multicast addresses to program
2517 * @mc_addr_count: number of multicast addresses to program
2518 * @rar_used_count: the first RAR register free to program
2519 * @rar_count: total number of supported Receive Address Registers
2520 *
2521 * Updates the Receive Address Registers and Multicast Table Array.
2522 * The caller must have a packed mc_addr_list of multicast addresses.
2523 * The parameter rar_count will usually be hw->mac.rar_entry_count
2524 * unless there are workarounds that change this. Currently no func pointer
2525 * exists and all implementations are handled in the generic version of this
2526 * function.
2527 **/
e2de3eb6
JK
2528static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2529 u32 mc_addr_count, u32 rar_used_count,
2530 u32 rar_count)
bc7f75fa 2531{
e2de3eb6 2532 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
bc7f75fa
AK
2533 rar_used_count, rar_count);
2534}
2535
2536/**
2537 * e1000_set_multi - Multicast and Promiscuous mode set
2538 * @netdev: network interface device structure
2539 *
2540 * The set_multi entry point is called whenever the multicast address
2541 * list or the network interface flags are updated. This routine is
2542 * responsible for configuring the hardware for proper multicast,
2543 * promiscuous mode, and all-multi behavior.
2544 **/
2545static void e1000_set_multi(struct net_device *netdev)
2546{
2547 struct e1000_adapter *adapter = netdev_priv(netdev);
2548 struct e1000_hw *hw = &adapter->hw;
2549 struct e1000_mac_info *mac = &hw->mac;
2550 struct dev_mc_list *mc_ptr;
2551 u8 *mta_list;
2552 u32 rctl;
2553 int i;
2554
2555 /* Check for Promiscuous and All Multicast modes */
2556
2557 rctl = er32(RCTL);
2558
2559 if (netdev->flags & IFF_PROMISC) {
2560 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02 2561 rctl &= ~E1000_RCTL_VFE;
bc7f75fa 2562 } else {
746b9f02
PM
2563 if (netdev->flags & IFF_ALLMULTI) {
2564 rctl |= E1000_RCTL_MPE;
2565 rctl &= ~E1000_RCTL_UPE;
2566 } else {
2567 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2568 }
78ed11a5 2569 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
746b9f02 2570 rctl |= E1000_RCTL_VFE;
bc7f75fa
AK
2571 }
2572
2573 ew32(RCTL, rctl);
2574
2575 if (netdev->mc_count) {
2576 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2577 if (!mta_list)
2578 return;
2579
2580 /* prepare a packed array of only addresses. */
2581 mc_ptr = netdev->mc_list;
2582
2583 for (i = 0; i < netdev->mc_count; i++) {
2584 if (!mc_ptr)
2585 break;
2586 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2587 ETH_ALEN);
2588 mc_ptr = mc_ptr->next;
2589 }
2590
e2de3eb6 2591 e1000_update_mc_addr_list(hw, mta_list, i, 1,
bc7f75fa
AK
2592 mac->rar_entry_count);
2593 kfree(mta_list);
2594 } else {
2595 /*
2596 * if we're called from probe, we might not have
2597 * anything to do here, so clear out the list
2598 */
e2de3eb6 2599 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
bc7f75fa
AK
2600 }
2601}
2602
2603/**
ad68076e 2604 * e1000_configure - configure the hardware for Rx and Tx
bc7f75fa
AK
2605 * @adapter: private board structure
2606 **/
2607static void e1000_configure(struct e1000_adapter *adapter)
2608{
2609 e1000_set_multi(adapter->netdev);
2610
2611 e1000_restore_vlan(adapter);
2612 e1000_init_manageability(adapter);
2613
2614 e1000_configure_tx(adapter);
2615 e1000_setup_rctl(adapter);
2616 e1000_configure_rx(adapter);
ad68076e 2617 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
bc7f75fa
AK
2618}
2619
2620/**
2621 * e1000e_power_up_phy - restore link in case the phy was powered down
2622 * @adapter: address of board private structure
2623 *
2624 * The phy may be powered down to save power and turn off link when the
2625 * driver is unloaded and wake on lan is not enabled (among others)
2626 * *** this routine MUST be followed by a call to e1000e_reset ***
2627 **/
2628void e1000e_power_up_phy(struct e1000_adapter *adapter)
2629{
2630 u16 mii_reg = 0;
2631
2632 /* Just clear the power down bit to wake the phy back up */
318a94d6 2633 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
ad68076e
BA
2634 /*
2635 * According to the manual, the phy will retain its
2636 * settings across a power-down/up cycle
2637 */
bc7f75fa
AK
2638 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2639 mii_reg &= ~MII_CR_POWER_DOWN;
2640 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2641 }
2642
2643 adapter->hw.mac.ops.setup_link(&adapter->hw);
2644}
2645
2646/**
2647 * e1000_power_down_phy - Power down the PHY
2648 *
2649 * Power down the PHY so no link is implied when interface is down
2650 * The PHY cannot be powered down is management or WoL is active
2651 */
2652static void e1000_power_down_phy(struct e1000_adapter *adapter)
2653{
2654 struct e1000_hw *hw = &adapter->hw;
2655 u16 mii_reg;
2656
2657 /* WoL is enabled */
23b66e2b 2658 if (adapter->wol)
bc7f75fa
AK
2659 return;
2660
2661 /* non-copper PHY? */
318a94d6 2662 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
2663 return;
2664
2665 /* reset is blocked because of a SoL/IDER session */
ad68076e 2666 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
bc7f75fa
AK
2667 return;
2668
489815ce 2669 /* manageability (AMT) is enabled */
bc7f75fa
AK
2670 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2671 return;
2672
2673 /* power down the PHY */
2674 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2675 mii_reg |= MII_CR_POWER_DOWN;
2676 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2677 mdelay(1);
2678}
2679
2680/**
2681 * e1000e_reset - bring the hardware into a known good state
2682 *
2683 * This function boots the hardware and enables some settings that
2684 * require a configuration cycle of the hardware - those cannot be
2685 * set/changed during runtime. After reset the device needs to be
ad68076e 2686 * properly configured for Rx, Tx etc.
bc7f75fa
AK
2687 */
2688void e1000e_reset(struct e1000_adapter *adapter)
2689{
2690 struct e1000_mac_info *mac = &adapter->hw.mac;
318a94d6 2691 struct e1000_fc_info *fc = &adapter->hw.fc;
bc7f75fa
AK
2692 struct e1000_hw *hw = &adapter->hw;
2693 u32 tx_space, min_tx_space, min_rx_space;
318a94d6 2694 u32 pba = adapter->pba;
bc7f75fa
AK
2695 u16 hwm;
2696
ad68076e 2697 /* reset Packet Buffer Allocation to default */
318a94d6 2698 ew32(PBA, pba);
df762464 2699
318a94d6 2700 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
ad68076e
BA
2701 /*
2702 * To maintain wire speed transmits, the Tx FIFO should be
bc7f75fa
AK
2703 * large enough to accommodate two full transmit packets,
2704 * rounded up to the next 1KB and expressed in KB. Likewise,
2705 * the Rx FIFO should be large enough to accommodate at least
2706 * one full receive packet and is similarly rounded up and
ad68076e
BA
2707 * expressed in KB.
2708 */
df762464 2709 pba = er32(PBA);
bc7f75fa 2710 /* upper 16 bits has Tx packet buffer allocation size in KB */
df762464 2711 tx_space = pba >> 16;
bc7f75fa 2712 /* lower 16 bits has Rx packet buffer allocation size in KB */
df762464 2713 pba &= 0xffff;
ad68076e
BA
2714 /*
2715 * the Tx fifo also stores 16 bytes of information about the tx
2716 * but don't include ethernet FCS because hardware appends it
318a94d6
JK
2717 */
2718 min_tx_space = (adapter->max_frame_size +
bc7f75fa
AK
2719 sizeof(struct e1000_tx_desc) -
2720 ETH_FCS_LEN) * 2;
2721 min_tx_space = ALIGN(min_tx_space, 1024);
2722 min_tx_space >>= 10;
2723 /* software strips receive CRC, so leave room for it */
318a94d6 2724 min_rx_space = adapter->max_frame_size;
bc7f75fa
AK
2725 min_rx_space = ALIGN(min_rx_space, 1024);
2726 min_rx_space >>= 10;
2727
ad68076e
BA
2728 /*
2729 * If current Tx allocation is less than the min Tx FIFO size,
bc7f75fa 2730 * and the min Tx FIFO size is less than the current Rx FIFO
ad68076e
BA
2731 * allocation, take space away from current Rx allocation
2732 */
df762464
AK
2733 if ((tx_space < min_tx_space) &&
2734 ((min_tx_space - tx_space) < pba)) {
2735 pba -= min_tx_space - tx_space;
bc7f75fa 2736
ad68076e
BA
2737 /*
2738 * if short on Rx space, Rx wins and must trump tx
2739 * adjustment or use Early Receive if available
2740 */
df762464 2741 if ((pba < min_rx_space) &&
bc7f75fa
AK
2742 (!(adapter->flags & FLAG_HAS_ERT)))
2743 /* ERT enabled in e1000_configure_rx */
df762464 2744 pba = min_rx_space;
bc7f75fa 2745 }
df762464
AK
2746
2747 ew32(PBA, pba);
bc7f75fa
AK
2748 }
2749
bc7f75fa 2750
ad68076e
BA
2751 /*
2752 * flow control settings
2753 *
2754 * The high water mark must be low enough to fit one full frame
bc7f75fa
AK
2755 * (or the size used for early receive) above it in the Rx FIFO.
2756 * Set it to the lower of:
2757 * - 90% of the Rx FIFO size, and
2758 * - the full Rx FIFO size minus the early receive size (for parts
2759 * with ERT support assuming ERT set to E1000_ERT_2048), or
ad68076e
BA
2760 * - the full Rx FIFO size minus one full frame
2761 */
bc7f75fa 2762 if (adapter->flags & FLAG_HAS_ERT)
318a94d6
JK
2763 hwm = min(((pba << 10) * 9 / 10),
2764 ((pba << 10) - (E1000_ERT_2048 << 3)));
bc7f75fa 2765 else
318a94d6
JK
2766 hwm = min(((pba << 10) * 9 / 10),
2767 ((pba << 10) - adapter->max_frame_size));
bc7f75fa 2768
318a94d6
JK
2769 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2770 fc->low_water = fc->high_water - 8;
bc7f75fa
AK
2771
2772 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
318a94d6 2773 fc->pause_time = 0xFFFF;
bc7f75fa 2774 else
318a94d6
JK
2775 fc->pause_time = E1000_FC_PAUSE_TIME;
2776 fc->send_xon = 1;
5c48ef3e 2777 fc->current_mode = fc->requested_mode;
bc7f75fa
AK
2778
2779 /* Allow time for pending master requests to run */
2780 mac->ops.reset_hw(hw);
97ac8cae
BA
2781
2782 /*
2783 * For parts with AMT enabled, let the firmware know
2784 * that the network interface is in control
2785 */
c43bc57e 2786 if (adapter->flags & FLAG_HAS_AMT)
97ac8cae
BA
2787 e1000_get_hw_control(adapter);
2788
bc7f75fa
AK
2789 ew32(WUC, 0);
2790
2791 if (mac->ops.init_hw(hw))
44defeb3 2792 e_err("Hardware Error\n");
bc7f75fa
AK
2793
2794 e1000_update_mng_vlan(adapter);
2795
2796 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2797 ew32(VET, ETH_P_8021Q);
2798
2799 e1000e_reset_adaptive(hw);
2800 e1000_get_phy_info(hw);
2801
2802 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2803 u16 phy_data = 0;
ad68076e
BA
2804 /*
2805 * speed up time to link by disabling smart power down, ignore
bc7f75fa 2806 * the return value of this function because there is nothing
ad68076e
BA
2807 * different we would do if it failed
2808 */
bc7f75fa
AK
2809 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2810 phy_data &= ~IGP02E1000_PM_SPD;
2811 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2812 }
bc7f75fa
AK
2813}
2814
2815int e1000e_up(struct e1000_adapter *adapter)
2816{
2817 struct e1000_hw *hw = &adapter->hw;
2818
2819 /* hardware has been reset, we need to reload some things */
2820 e1000_configure(adapter);
2821
2822 clear_bit(__E1000_DOWN, &adapter->state);
2823
2824 napi_enable(&adapter->napi);
4662e82b
BA
2825 if (adapter->msix_entries)
2826 e1000_configure_msix(adapter);
bc7f75fa
AK
2827 e1000_irq_enable(adapter);
2828
2829 /* fire a link change interrupt to start the watchdog */
2830 ew32(ICS, E1000_ICS_LSC);
2831 return 0;
2832}
2833
2834void e1000e_down(struct e1000_adapter *adapter)
2835{
2836 struct net_device *netdev = adapter->netdev;
2837 struct e1000_hw *hw = &adapter->hw;
2838 u32 tctl, rctl;
2839
ad68076e
BA
2840 /*
2841 * signal that we're down so the interrupt handler does not
2842 * reschedule our watchdog timer
2843 */
bc7f75fa
AK
2844 set_bit(__E1000_DOWN, &adapter->state);
2845
2846 /* disable receives in the hardware */
2847 rctl = er32(RCTL);
2848 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2849 /* flush and sleep below */
2850
d55b53ff 2851 netif_tx_stop_all_queues(netdev);
bc7f75fa
AK
2852
2853 /* disable transmits in the hardware */
2854 tctl = er32(TCTL);
2855 tctl &= ~E1000_TCTL_EN;
2856 ew32(TCTL, tctl);
2857 /* flush both disables and wait for them to finish */
2858 e1e_flush();
2859 msleep(10);
2860
2861 napi_disable(&adapter->napi);
2862 e1000_irq_disable(adapter);
2863
2864 del_timer_sync(&adapter->watchdog_timer);
2865 del_timer_sync(&adapter->phy_info_timer);
2866
2867 netdev->tx_queue_len = adapter->tx_queue_len;
2868 netif_carrier_off(netdev);
2869 adapter->link_speed = 0;
2870 adapter->link_duplex = 0;
2871
52cc3086
JK
2872 if (!pci_channel_offline(adapter->pdev))
2873 e1000e_reset(adapter);
bc7f75fa
AK
2874 e1000_clean_tx_ring(adapter);
2875 e1000_clean_rx_ring(adapter);
2876
2877 /*
2878 * TODO: for power management, we could drop the link and
2879 * pci_disable_device here.
2880 */
2881}
2882
2883void e1000e_reinit_locked(struct e1000_adapter *adapter)
2884{
2885 might_sleep();
2886 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2887 msleep(1);
2888 e1000e_down(adapter);
2889 e1000e_up(adapter);
2890 clear_bit(__E1000_RESETTING, &adapter->state);
2891}
2892
2893/**
2894 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2895 * @adapter: board private structure to initialize
2896 *
2897 * e1000_sw_init initializes the Adapter private data structure.
2898 * Fields are initialized based on PCI device information and
2899 * OS network device settings (MTU size).
2900 **/
2901static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2902{
bc7f75fa
AK
2903 struct net_device *netdev = adapter->netdev;
2904
2905 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2906 adapter->rx_ps_bsize0 = 128;
318a94d6
JK
2907 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2908 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
bc7f75fa 2909
4662e82b 2910 e1000e_set_interrupt_capability(adapter);
bc7f75fa 2911
4662e82b
BA
2912 if (e1000_alloc_queues(adapter))
2913 return -ENOMEM;
bc7f75fa 2914
bc7f75fa 2915 /* Explicitly disable IRQ since the NIC can be in any state. */
bc7f75fa
AK
2916 e1000_irq_disable(adapter);
2917
bc7f75fa
AK
2918 set_bit(__E1000_DOWN, &adapter->state);
2919 return 0;
bc7f75fa
AK
2920}
2921
f8d59f78
BA
2922/**
2923 * e1000_intr_msi_test - Interrupt Handler
2924 * @irq: interrupt number
2925 * @data: pointer to a network interface device structure
2926 **/
2927static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2928{
2929 struct net_device *netdev = data;
2930 struct e1000_adapter *adapter = netdev_priv(netdev);
2931 struct e1000_hw *hw = &adapter->hw;
2932 u32 icr = er32(ICR);
2933
2934 e_dbg("%s: icr is %08X\n", netdev->name, icr);
2935 if (icr & E1000_ICR_RXSEQ) {
2936 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2937 wmb();
2938 }
2939
2940 return IRQ_HANDLED;
2941}
2942
2943/**
2944 * e1000_test_msi_interrupt - Returns 0 for successful test
2945 * @adapter: board private struct
2946 *
2947 * code flow taken from tg3.c
2948 **/
2949static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2950{
2951 struct net_device *netdev = adapter->netdev;
2952 struct e1000_hw *hw = &adapter->hw;
2953 int err;
2954
2955 /* poll_enable hasn't been called yet, so don't need disable */
2956 /* clear any pending events */
2957 er32(ICR);
2958
2959 /* free the real vector and request a test handler */
2960 e1000_free_irq(adapter);
4662e82b 2961 e1000e_reset_interrupt_capability(adapter);
f8d59f78
BA
2962
2963 /* Assume that the test fails, if it succeeds then the test
2964 * MSI irq handler will unset this flag */
2965 adapter->flags |= FLAG_MSI_TEST_FAILED;
2966
2967 err = pci_enable_msi(adapter->pdev);
2968 if (err)
2969 goto msi_test_failed;
2970
2971 err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
2972 netdev->name, netdev);
2973 if (err) {
2974 pci_disable_msi(adapter->pdev);
2975 goto msi_test_failed;
2976 }
2977
2978 wmb();
2979
2980 e1000_irq_enable(adapter);
2981
2982 /* fire an unusual interrupt on the test handler */
2983 ew32(ICS, E1000_ICS_RXSEQ);
2984 e1e_flush();
2985 msleep(50);
2986
2987 e1000_irq_disable(adapter);
2988
2989 rmb();
2990
2991 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4662e82b 2992 adapter->int_mode = E1000E_INT_MODE_LEGACY;
f8d59f78
BA
2993 err = -EIO;
2994 e_info("MSI interrupt test failed!\n");
2995 }
2996
2997 free_irq(adapter->pdev->irq, netdev);
2998 pci_disable_msi(adapter->pdev);
2999
3000 if (err == -EIO)
3001 goto msi_test_failed;
3002
3003 /* okay so the test worked, restore settings */
3004 e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
3005msi_test_failed:
4662e82b 3006 e1000e_set_interrupt_capability(adapter);
f8d59f78
BA
3007 e1000_request_irq(adapter);
3008 return err;
3009}
3010
3011/**
3012 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3013 * @adapter: board private struct
3014 *
3015 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3016 **/
3017static int e1000_test_msi(struct e1000_adapter *adapter)
3018{
3019 int err;
3020 u16 pci_cmd;
3021
3022 if (!(adapter->flags & FLAG_MSI_ENABLED))
3023 return 0;
3024
3025 /* disable SERR in case the MSI write causes a master abort */
3026 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3027 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3028 pci_cmd & ~PCI_COMMAND_SERR);
3029
3030 err = e1000_test_msi_interrupt(adapter);
3031
3032 /* restore previous setting of command word */
3033 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3034
3035 /* success ! */
3036 if (!err)
3037 return 0;
3038
3039 /* EIO means MSI test failed */
3040 if (err != -EIO)
3041 return err;
3042
3043 /* back to INTx mode */
3044 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3045
3046 e1000_free_irq(adapter);
3047
3048 err = e1000_request_irq(adapter);
3049
3050 return err;
3051}
3052
bc7f75fa
AK
3053/**
3054 * e1000_open - Called when a network interface is made active
3055 * @netdev: network interface device structure
3056 *
3057 * Returns 0 on success, negative value on failure
3058 *
3059 * The open entry point is called when a network interface is made
3060 * active by the system (IFF_UP). At this point all resources needed
3061 * for transmit and receive operations are allocated, the interrupt
3062 * handler is registered with the OS, the watchdog timer is started,
3063 * and the stack is notified that the interface is ready.
3064 **/
3065static int e1000_open(struct net_device *netdev)
3066{
3067 struct e1000_adapter *adapter = netdev_priv(netdev);
3068 struct e1000_hw *hw = &adapter->hw;
3069 int err;
3070
3071 /* disallow open during test */
3072 if (test_bit(__E1000_TESTING, &adapter->state))
3073 return -EBUSY;
3074
3075 /* allocate transmit descriptors */
3076 err = e1000e_setup_tx_resources(adapter);
3077 if (err)
3078 goto err_setup_tx;
3079
3080 /* allocate receive descriptors */
3081 err = e1000e_setup_rx_resources(adapter);
3082 if (err)
3083 goto err_setup_rx;
3084
3085 e1000e_power_up_phy(adapter);
3086
3087 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3088 if ((adapter->hw.mng_cookie.status &
3089 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3090 e1000_update_mng_vlan(adapter);
3091
ad68076e
BA
3092 /*
3093 * If AMT is enabled, let the firmware know that the network
3094 * interface is now open
3095 */
c43bc57e 3096 if (adapter->flags & FLAG_HAS_AMT)
bc7f75fa
AK
3097 e1000_get_hw_control(adapter);
3098
ad68076e
BA
3099 /*
3100 * before we allocate an interrupt, we must be ready to handle it.
bc7f75fa
AK
3101 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3102 * as soon as we call pci_request_irq, so we have to setup our
ad68076e
BA
3103 * clean_rx handler before we do so.
3104 */
bc7f75fa
AK
3105 e1000_configure(adapter);
3106
3107 err = e1000_request_irq(adapter);
3108 if (err)
3109 goto err_req_irq;
3110
f8d59f78
BA
3111 /*
3112 * Work around PCIe errata with MSI interrupts causing some chipsets to
3113 * ignore e1000e MSI messages, which means we need to test our MSI
3114 * interrupt now
3115 */
4662e82b 3116 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
f8d59f78
BA
3117 err = e1000_test_msi(adapter);
3118 if (err) {
3119 e_err("Interrupt allocation failed\n");
3120 goto err_req_irq;
3121 }
3122 }
3123
bc7f75fa
AK
3124 /* From here on the code is the same as e1000e_up() */
3125 clear_bit(__E1000_DOWN, &adapter->state);
3126
3127 napi_enable(&adapter->napi);
3128
3129 e1000_irq_enable(adapter);
3130
d55b53ff
JK
3131 netif_tx_start_all_queues(netdev);
3132
bc7f75fa
AK
3133 /* fire a link status change interrupt to start the watchdog */
3134 ew32(ICS, E1000_ICS_LSC);
3135
3136 return 0;
3137
3138err_req_irq:
3139 e1000_release_hw_control(adapter);
3140 e1000_power_down_phy(adapter);
3141 e1000e_free_rx_resources(adapter);
3142err_setup_rx:
3143 e1000e_free_tx_resources(adapter);
3144err_setup_tx:
3145 e1000e_reset(adapter);
3146
3147 return err;
3148}
3149
3150/**
3151 * e1000_close - Disables a network interface
3152 * @netdev: network interface device structure
3153 *
3154 * Returns 0, this is not allowed to fail
3155 *
3156 * The close entry point is called when an interface is de-activated
3157 * by the OS. The hardware is still under the drivers control, but
3158 * needs to be disabled. A global MAC reset is issued to stop the
3159 * hardware, and all transmit and receive resources are freed.
3160 **/
3161static int e1000_close(struct net_device *netdev)
3162{
3163 struct e1000_adapter *adapter = netdev_priv(netdev);
3164
3165 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3166 e1000e_down(adapter);
3167 e1000_power_down_phy(adapter);
3168 e1000_free_irq(adapter);
3169
3170 e1000e_free_tx_resources(adapter);
3171 e1000e_free_rx_resources(adapter);
3172
ad68076e
BA
3173 /*
3174 * kill manageability vlan ID if supported, but not if a vlan with
3175 * the same ID is registered on the host OS (let 8021q kill it)
3176 */
bc7f75fa
AK
3177 if ((adapter->hw.mng_cookie.status &
3178 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3179 !(adapter->vlgrp &&
3180 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3181 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3182
ad68076e
BA
3183 /*
3184 * If AMT is enabled, let the firmware know that the network
3185 * interface is now closed
3186 */
c43bc57e 3187 if (adapter->flags & FLAG_HAS_AMT)
bc7f75fa
AK
3188 e1000_release_hw_control(adapter);
3189
3190 return 0;
3191}
3192/**
3193 * e1000_set_mac - Change the Ethernet Address of the NIC
3194 * @netdev: network interface device structure
3195 * @p: pointer to an address structure
3196 *
3197 * Returns 0 on success, negative on failure
3198 **/
3199static int e1000_set_mac(struct net_device *netdev, void *p)
3200{
3201 struct e1000_adapter *adapter = netdev_priv(netdev);
3202 struct sockaddr *addr = p;
3203
3204 if (!is_valid_ether_addr(addr->sa_data))
3205 return -EADDRNOTAVAIL;
3206
3207 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3208 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3209
3210 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3211
3212 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3213 /* activate the work around */
3214 e1000e_set_laa_state_82571(&adapter->hw, 1);
3215
ad68076e
BA
3216 /*
3217 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
3218 * between the time RAR[0] gets clobbered and the time it
3219 * gets fixed (in e1000_watchdog), the actual LAA is in one
3220 * of the RARs and no incoming packets directed to this port
3221 * are dropped. Eventually the LAA will be in RAR[0] and
ad68076e
BA
3222 * RAR[14]
3223 */
bc7f75fa
AK
3224 e1000e_rar_set(&adapter->hw,
3225 adapter->hw.mac.addr,
3226 adapter->hw.mac.rar_entry_count - 1);
3227 }
3228
3229 return 0;
3230}
3231
a8f88ff5
JB
3232/**
3233 * e1000e_update_phy_task - work thread to update phy
3234 * @work: pointer to our work struct
3235 *
3236 * this worker thread exists because we must acquire a
3237 * semaphore to read the phy, which we could msleep while
3238 * waiting for it, and we can't msleep in a timer.
3239 **/
3240static void e1000e_update_phy_task(struct work_struct *work)
3241{
3242 struct e1000_adapter *adapter = container_of(work,
3243 struct e1000_adapter, update_phy_task);
3244 e1000_get_phy_info(&adapter->hw);
3245}
3246
ad68076e
BA
3247/*
3248 * Need to wait a few seconds after link up to get diagnostic information from
3249 * the phy
3250 */
bc7f75fa
AK
3251static void e1000_update_phy_info(unsigned long data)
3252{
3253 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
a8f88ff5 3254 schedule_work(&adapter->update_phy_task);
bc7f75fa
AK
3255}
3256
3257/**
3258 * e1000e_update_stats - Update the board statistics counters
3259 * @adapter: board private structure
3260 **/
3261void e1000e_update_stats(struct e1000_adapter *adapter)
3262{
3263 struct e1000_hw *hw = &adapter->hw;
3264 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
3265
3266 /*
3267 * Prevent stats update while adapter is being reset, or if the pci
3268 * connection is down.
3269 */
3270 if (adapter->link_speed == 0)
3271 return;
3272 if (pci_channel_offline(pdev))
3273 return;
3274
bc7f75fa
AK
3275 adapter->stats.crcerrs += er32(CRCERRS);
3276 adapter->stats.gprc += er32(GPRC);
7c25769f
BA
3277 adapter->stats.gorc += er32(GORCL);
3278 er32(GORCH); /* Clear gorc */
bc7f75fa
AK
3279 adapter->stats.bprc += er32(BPRC);
3280 adapter->stats.mprc += er32(MPRC);
3281 adapter->stats.roc += er32(ROC);
3282
bc7f75fa
AK
3283 adapter->stats.mpc += er32(MPC);
3284 adapter->stats.scc += er32(SCC);
3285 adapter->stats.ecol += er32(ECOL);
3286 adapter->stats.mcc += er32(MCC);
3287 adapter->stats.latecol += er32(LATECOL);
3288 adapter->stats.dc += er32(DC);
bc7f75fa
AK
3289 adapter->stats.xonrxc += er32(XONRXC);
3290 adapter->stats.xontxc += er32(XONTXC);
3291 adapter->stats.xoffrxc += er32(XOFFRXC);
3292 adapter->stats.xofftxc += er32(XOFFTXC);
bc7f75fa 3293 adapter->stats.gptc += er32(GPTC);
7c25769f
BA
3294 adapter->stats.gotc += er32(GOTCL);
3295 er32(GOTCH); /* Clear gotc */
bc7f75fa
AK
3296 adapter->stats.rnbc += er32(RNBC);
3297 adapter->stats.ruc += er32(RUC);
bc7f75fa
AK
3298
3299 adapter->stats.mptc += er32(MPTC);
3300 adapter->stats.bptc += er32(BPTC);
3301
3302 /* used for adaptive IFS */
3303
3304 hw->mac.tx_packet_delta = er32(TPT);
3305 adapter->stats.tpt += hw->mac.tx_packet_delta;
3306 hw->mac.collision_delta = er32(COLC);
3307 adapter->stats.colc += hw->mac.collision_delta;
3308
3309 adapter->stats.algnerrc += er32(ALGNERRC);
3310 adapter->stats.rxerrc += er32(RXERRC);
4662e82b
BA
3311 if (hw->mac.type != e1000_82574)
3312 adapter->stats.tncrs += er32(TNCRS);
bc7f75fa
AK
3313 adapter->stats.cexterr += er32(CEXTERR);
3314 adapter->stats.tsctc += er32(TSCTC);
3315 adapter->stats.tsctfc += er32(TSCTFC);
3316
bc7f75fa 3317 /* Fill out the OS statistics structure */
bc7f75fa
AK
3318 adapter->net_stats.multicast = adapter->stats.mprc;
3319 adapter->net_stats.collisions = adapter->stats.colc;
3320
3321 /* Rx Errors */
3322
ad68076e
BA
3323 /*
3324 * RLEC on some newer hardware can be incorrect so build
3325 * our own version based on RUC and ROC
3326 */
bc7f75fa
AK
3327 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3328 adapter->stats.crcerrs + adapter->stats.algnerrc +
3329 adapter->stats.ruc + adapter->stats.roc +
3330 adapter->stats.cexterr;
3331 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3332 adapter->stats.roc;
3333 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3334 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3335 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3336
3337 /* Tx Errors */
3338 adapter->net_stats.tx_errors = adapter->stats.ecol +
3339 adapter->stats.latecol;
3340 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3341 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3342 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3343
3344 /* Tx Dropped needs to be maintained elsewhere */
3345
bc7f75fa
AK
3346 /* Management Stats */
3347 adapter->stats.mgptc += er32(MGTPTC);
3348 adapter->stats.mgprc += er32(MGTPRC);
3349 adapter->stats.mgpdc += er32(MGTPDC);
bc7f75fa
AK
3350}
3351
7c25769f
BA
3352/**
3353 * e1000_phy_read_status - Update the PHY register status snapshot
3354 * @adapter: board private structure
3355 **/
3356static void e1000_phy_read_status(struct e1000_adapter *adapter)
3357{
3358 struct e1000_hw *hw = &adapter->hw;
3359 struct e1000_phy_regs *phy = &adapter->phy_regs;
3360 int ret_val;
7c25769f
BA
3361
3362 if ((er32(STATUS) & E1000_STATUS_LU) &&
3363 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3364 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3365 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3366 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3367 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3368 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3369 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3370 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3371 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3372 if (ret_val)
44defeb3 3373 e_warn("Error reading PHY register\n");
7c25769f
BA
3374 } else {
3375 /*
3376 * Do not read PHY registers if link is not up
3377 * Set values to typical power-on defaults
3378 */
3379 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3380 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3381 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3382 BMSR_ERCAP);
3383 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3384 ADVERTISE_ALL | ADVERTISE_CSMA);
3385 phy->lpa = 0;
3386 phy->expansion = EXPANSION_ENABLENPAGE;
3387 phy->ctrl1000 = ADVERTISE_1000FULL;
3388 phy->stat1000 = 0;
3389 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3390 }
7c25769f
BA
3391}
3392
bc7f75fa
AK
3393static void e1000_print_link_info(struct e1000_adapter *adapter)
3394{
bc7f75fa
AK
3395 struct e1000_hw *hw = &adapter->hw;
3396 u32 ctrl = er32(CTRL);
3397
8f12fe86
BA
3398 /* Link status message must follow this format for user tools */
3399 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3400 "Flow Control: %s\n",
3401 adapter->netdev->name,
44defeb3
JK
3402 adapter->link_speed,
3403 (adapter->link_duplex == FULL_DUPLEX) ?
3404 "Full Duplex" : "Half Duplex",
3405 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3406 "RX/TX" :
3407 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3408 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
bc7f75fa
AK
3409}
3410
a20e4cf9 3411bool e1000_has_link(struct e1000_adapter *adapter)
318a94d6
JK
3412{
3413 struct e1000_hw *hw = &adapter->hw;
3414 bool link_active = 0;
3415 s32 ret_val = 0;
3416
3417 /*
3418 * get_link_status is set on LSC (link status) interrupt or
3419 * Rx sequence error interrupt. get_link_status will stay
3420 * false until the check_for_link establishes link
3421 * for copper adapters ONLY
3422 */
3423 switch (hw->phy.media_type) {
3424 case e1000_media_type_copper:
3425 if (hw->mac.get_link_status) {
3426 ret_val = hw->mac.ops.check_for_link(hw);
3427 link_active = !hw->mac.get_link_status;
3428 } else {
3429 link_active = 1;
3430 }
3431 break;
3432 case e1000_media_type_fiber:
3433 ret_val = hw->mac.ops.check_for_link(hw);
3434 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3435 break;
3436 case e1000_media_type_internal_serdes:
3437 ret_val = hw->mac.ops.check_for_link(hw);
3438 link_active = adapter->hw.mac.serdes_has_link;
3439 break;
3440 default:
3441 case e1000_media_type_unknown:
3442 break;
3443 }
3444
3445 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3446 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3447 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
44defeb3 3448 e_info("Gigabit has been disabled, downgrading speed\n");
318a94d6
JK
3449 }
3450
3451 return link_active;
3452}
3453
3454static void e1000e_enable_receives(struct e1000_adapter *adapter)
3455{
3456 /* make sure the receive unit is started */
3457 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3458 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3459 struct e1000_hw *hw = &adapter->hw;
3460 u32 rctl = er32(RCTL);
3461 ew32(RCTL, rctl | E1000_RCTL_EN);
3462 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3463 }
3464}
3465
bc7f75fa
AK
3466/**
3467 * e1000_watchdog - Timer Call-back
3468 * @data: pointer to adapter cast into an unsigned long
3469 **/
3470static void e1000_watchdog(unsigned long data)
3471{
3472 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3473
3474 /* Do the rest outside of interrupt context */
3475 schedule_work(&adapter->watchdog_task);
3476
3477 /* TODO: make this use queue_delayed_work() */
3478}
3479
3480static void e1000_watchdog_task(struct work_struct *work)
3481{
3482 struct e1000_adapter *adapter = container_of(work,
3483 struct e1000_adapter, watchdog_task);
bc7f75fa
AK
3484 struct net_device *netdev = adapter->netdev;
3485 struct e1000_mac_info *mac = &adapter->hw.mac;
75eb0fad 3486 struct e1000_phy_info *phy = &adapter->hw.phy;
bc7f75fa
AK
3487 struct e1000_ring *tx_ring = adapter->tx_ring;
3488 struct e1000_hw *hw = &adapter->hw;
3489 u32 link, tctl;
bc7f75fa
AK
3490 int tx_pending = 0;
3491
318a94d6
JK
3492 link = e1000_has_link(adapter);
3493 if ((netif_carrier_ok(netdev)) && link) {
3494 e1000e_enable_receives(adapter);
bc7f75fa 3495 goto link_up;
bc7f75fa
AK
3496 }
3497
3498 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3499 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3500 e1000_update_mng_vlan(adapter);
3501
bc7f75fa
AK
3502 if (link) {
3503 if (!netif_carrier_ok(netdev)) {
3504 bool txb2b = 1;
318a94d6 3505 /* update snapshot of PHY registers on LSC */
7c25769f 3506 e1000_phy_read_status(adapter);
bc7f75fa
AK
3507 mac->ops.get_link_up_info(&adapter->hw,
3508 &adapter->link_speed,
3509 &adapter->link_duplex);
3510 e1000_print_link_info(adapter);
f4187b56
BA
3511 /*
3512 * On supported PHYs, check for duplex mismatch only
3513 * if link has autonegotiated at 10/100 half
3514 */
3515 if ((hw->phy.type == e1000_phy_igp_3 ||
3516 hw->phy.type == e1000_phy_bm) &&
3517 (hw->mac.autoneg == true) &&
3518 (adapter->link_speed == SPEED_10 ||
3519 adapter->link_speed == SPEED_100) &&
3520 (adapter->link_duplex == HALF_DUPLEX)) {
3521 u16 autoneg_exp;
3522
3523 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3524
3525 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3526 e_info("Autonegotiated half duplex but"
3527 " link partner cannot autoneg. "
3528 " Try forcing full duplex if "
3529 "link gets many collisions.\n");
3530 }
3531
ad68076e
BA
3532 /*
3533 * tweak tx_queue_len according to speed/duplex
3534 * and adjust the timeout factor
3535 */
bc7f75fa
AK
3536 netdev->tx_queue_len = adapter->tx_queue_len;
3537 adapter->tx_timeout_factor = 1;
3538 switch (adapter->link_speed) {
3539 case SPEED_10:
3540 txb2b = 0;
3541 netdev->tx_queue_len = 10;
10f1b492 3542 adapter->tx_timeout_factor = 16;
bc7f75fa
AK
3543 break;
3544 case SPEED_100:
3545 txb2b = 0;
3546 netdev->tx_queue_len = 100;
3547 /* maybe add some timeout factor ? */
3548 break;
3549 }
3550
ad68076e
BA
3551 /*
3552 * workaround: re-program speed mode bit after
3553 * link-up event
3554 */
bc7f75fa
AK
3555 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3556 !txb2b) {
3557 u32 tarc0;
e9ec2c0f 3558 tarc0 = er32(TARC(0));
bc7f75fa 3559 tarc0 &= ~SPEED_MODE_BIT;
e9ec2c0f 3560 ew32(TARC(0), tarc0);
bc7f75fa
AK
3561 }
3562
ad68076e
BA
3563 /*
3564 * disable TSO for pcie and 10/100 speeds, to avoid
3565 * some hardware issues
3566 */
bc7f75fa
AK
3567 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3568 switch (adapter->link_speed) {
3569 case SPEED_10:
3570 case SPEED_100:
44defeb3 3571 e_info("10/100 speed: disabling TSO\n");
bc7f75fa
AK
3572 netdev->features &= ~NETIF_F_TSO;
3573 netdev->features &= ~NETIF_F_TSO6;
3574 break;
3575 case SPEED_1000:
3576 netdev->features |= NETIF_F_TSO;
3577 netdev->features |= NETIF_F_TSO6;
3578 break;
3579 default:
3580 /* oops */
3581 break;
3582 }
3583 }
3584
ad68076e
BA
3585 /*
3586 * enable transmits in the hardware, need to do this
3587 * after setting TARC(0)
3588 */
bc7f75fa
AK
3589 tctl = er32(TCTL);
3590 tctl |= E1000_TCTL_EN;
3591 ew32(TCTL, tctl);
3592
75eb0fad
BA
3593 /*
3594 * Perform any post-link-up configuration before
3595 * reporting link up.
3596 */
3597 if (phy->ops.cfg_on_link_up)
3598 phy->ops.cfg_on_link_up(hw);
3599
bc7f75fa 3600 netif_carrier_on(netdev);
d55b53ff 3601 netif_tx_wake_all_queues(netdev);
bc7f75fa
AK
3602
3603 if (!test_bit(__E1000_DOWN, &adapter->state))
3604 mod_timer(&adapter->phy_info_timer,
3605 round_jiffies(jiffies + 2 * HZ));
bc7f75fa
AK
3606 }
3607 } else {
3608 if (netif_carrier_ok(netdev)) {
3609 adapter->link_speed = 0;
3610 adapter->link_duplex = 0;
8f12fe86
BA
3611 /* Link status message must follow this format */
3612 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
3613 adapter->netdev->name);
bc7f75fa 3614 netif_carrier_off(netdev);
d55b53ff 3615 netif_tx_stop_all_queues(netdev);
bc7f75fa
AK
3616 if (!test_bit(__E1000_DOWN, &adapter->state))
3617 mod_timer(&adapter->phy_info_timer,
3618 round_jiffies(jiffies + 2 * HZ));
3619
3620 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3621 schedule_work(&adapter->reset_task);
3622 }
3623 }
3624
3625link_up:
3626 e1000e_update_stats(adapter);
3627
3628 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3629 adapter->tpt_old = adapter->stats.tpt;
3630 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3631 adapter->colc_old = adapter->stats.colc;
3632
7c25769f
BA
3633 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3634 adapter->gorc_old = adapter->stats.gorc;
3635 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3636 adapter->gotc_old = adapter->stats.gotc;
bc7f75fa
AK
3637
3638 e1000e_update_adaptive(&adapter->hw);
3639
3640 if (!netif_carrier_ok(netdev)) {
3641 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3642 tx_ring->count);
3643 if (tx_pending) {
ad68076e
BA
3644 /*
3645 * We've lost link, so the controller stops DMA,
bc7f75fa
AK
3646 * but we've got queued Tx work that's never going
3647 * to get done, so reset controller to flush Tx.
ad68076e
BA
3648 * (Do the reset outside of interrupt context).
3649 */
bc7f75fa
AK
3650 adapter->tx_timeout_count++;
3651 schedule_work(&adapter->reset_task);
3652 }
3653 }
3654
ad68076e 3655 /* Cause software interrupt to ensure Rx ring is cleaned */
4662e82b
BA
3656 if (adapter->msix_entries)
3657 ew32(ICS, adapter->rx_ring->ims_val);
3658 else
3659 ew32(ICS, E1000_ICS_RXDMT0);
bc7f75fa
AK
3660
3661 /* Force detection of hung controller every watchdog period */
3662 adapter->detect_tx_hung = 1;
3663
ad68076e
BA
3664 /*
3665 * With 82571 controllers, LAA may be overwritten due to controller
3666 * reset from the other port. Set the appropriate LAA in RAR[0]
3667 */
bc7f75fa
AK
3668 if (e1000e_get_laa_state_82571(hw))
3669 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3670
3671 /* Reset the timer */
3672 if (!test_bit(__E1000_DOWN, &adapter->state))
3673 mod_timer(&adapter->watchdog_timer,
3674 round_jiffies(jiffies + 2 * HZ));
3675}
3676
3677#define E1000_TX_FLAGS_CSUM 0x00000001
3678#define E1000_TX_FLAGS_VLAN 0x00000002
3679#define E1000_TX_FLAGS_TSO 0x00000004
3680#define E1000_TX_FLAGS_IPV4 0x00000008
3681#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3682#define E1000_TX_FLAGS_VLAN_SHIFT 16
3683
3684static int e1000_tso(struct e1000_adapter *adapter,
3685 struct sk_buff *skb)
3686{
3687 struct e1000_ring *tx_ring = adapter->tx_ring;
3688 struct e1000_context_desc *context_desc;
3689 struct e1000_buffer *buffer_info;
3690 unsigned int i;
3691 u32 cmd_length = 0;
3692 u16 ipcse = 0, tucse, mss;
3693 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3694 int err;
3695
3696 if (skb_is_gso(skb)) {
3697 if (skb_header_cloned(skb)) {
3698 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3699 if (err)
3700 return err;
3701 }
3702
3703 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3704 mss = skb_shinfo(skb)->gso_size;
3705 if (skb->protocol == htons(ETH_P_IP)) {
3706 struct iphdr *iph = ip_hdr(skb);
3707 iph->tot_len = 0;
3708 iph->check = 0;
3709 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3710 iph->daddr, 0,
3711 IPPROTO_TCP,
3712 0);
3713 cmd_length = E1000_TXD_CMD_IP;
3714 ipcse = skb_transport_offset(skb) - 1;
3715 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3716 ipv6_hdr(skb)->payload_len = 0;
3717 tcp_hdr(skb)->check =
3718 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3719 &ipv6_hdr(skb)->daddr,
3720 0, IPPROTO_TCP, 0);
3721 ipcse = 0;
3722 }
3723 ipcss = skb_network_offset(skb);
3724 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3725 tucss = skb_transport_offset(skb);
3726 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3727 tucse = 0;
3728
3729 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3730 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3731
3732 i = tx_ring->next_to_use;
3733 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3734 buffer_info = &tx_ring->buffer_info[i];
3735
3736 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3737 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3738 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3739 context_desc->upper_setup.tcp_fields.tucss = tucss;
3740 context_desc->upper_setup.tcp_fields.tucso = tucso;
3741 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3742 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3743 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3744 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3745
3746 buffer_info->time_stamp = jiffies;
3747 buffer_info->next_to_watch = i;
3748
3749 i++;
3750 if (i == tx_ring->count)
3751 i = 0;
3752 tx_ring->next_to_use = i;
3753
3754 return 1;
3755 }
3756
3757 return 0;
3758}
3759
3760static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3761{
3762 struct e1000_ring *tx_ring = adapter->tx_ring;
3763 struct e1000_context_desc *context_desc;
3764 struct e1000_buffer *buffer_info;
3765 unsigned int i;
3766 u8 css;
af807c82 3767 u32 cmd_len = E1000_TXD_CMD_DEXT;
bc7f75fa 3768
af807c82
DG
3769 if (skb->ip_summed != CHECKSUM_PARTIAL)
3770 return 0;
bc7f75fa 3771
af807c82 3772 switch (skb->protocol) {
09640e63 3773 case cpu_to_be16(ETH_P_IP):
af807c82
DG
3774 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3775 cmd_len |= E1000_TXD_CMD_TCP;
3776 break;
09640e63 3777 case cpu_to_be16(ETH_P_IPV6):
af807c82
DG
3778 /* XXX not handling all IPV6 headers */
3779 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3780 cmd_len |= E1000_TXD_CMD_TCP;
3781 break;
3782 default:
3783 if (unlikely(net_ratelimit()))
3784 e_warn("checksum_partial proto=%x!\n", skb->protocol);
3785 break;
bc7f75fa
AK
3786 }
3787
af807c82
DG
3788 css = skb_transport_offset(skb);
3789
3790 i = tx_ring->next_to_use;
3791 buffer_info = &tx_ring->buffer_info[i];
3792 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3793
3794 context_desc->lower_setup.ip_config = 0;
3795 context_desc->upper_setup.tcp_fields.tucss = css;
3796 context_desc->upper_setup.tcp_fields.tucso =
3797 css + skb->csum_offset;
3798 context_desc->upper_setup.tcp_fields.tucse = 0;
3799 context_desc->tcp_seg_setup.data = 0;
3800 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3801
3802 buffer_info->time_stamp = jiffies;
3803 buffer_info->next_to_watch = i;
3804
3805 i++;
3806 if (i == tx_ring->count)
3807 i = 0;
3808 tx_ring->next_to_use = i;
3809
3810 return 1;
bc7f75fa
AK
3811}
3812
3813#define E1000_MAX_PER_TXD 8192
3814#define E1000_MAX_TXD_PWR 12
3815
3816static int e1000_tx_map(struct e1000_adapter *adapter,
3817 struct sk_buff *skb, unsigned int first,
3818 unsigned int max_per_txd, unsigned int nr_frags,
3819 unsigned int mss)
3820{
3821 struct e1000_ring *tx_ring = adapter->tx_ring;
3822 struct e1000_buffer *buffer_info;
3823 unsigned int len = skb->len - skb->data_len;
3824 unsigned int offset = 0, size, count = 0, i;
3825 unsigned int f;
3826
3827 i = tx_ring->next_to_use;
3828
3829 while (len) {
3830 buffer_info = &tx_ring->buffer_info[i];
3831 size = min(len, max_per_txd);
3832
3833 /* Workaround for premature desc write-backs
3834 * in TSO mode. Append 4-byte sentinel desc */
3835 if (mss && !nr_frags && size == len && size > 8)
3836 size -= 4;
3837
3838 buffer_info->length = size;
3839 /* set time_stamp *before* dma to help avoid a possible race */
3840 buffer_info->time_stamp = jiffies;
3841 buffer_info->dma =
3842 pci_map_single(adapter->pdev,
3843 skb->data + offset,
3844 size,
3845 PCI_DMA_TODEVICE);
8d8bb39b 3846 if (pci_dma_mapping_error(adapter->pdev, buffer_info->dma)) {
bc7f75fa
AK
3847 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3848 adapter->tx_dma_failed++;
3849 return -1;
3850 }
3851 buffer_info->next_to_watch = i;
3852
3853 len -= size;
3854 offset += size;
3855 count++;
3856 i++;
3857 if (i == tx_ring->count)
3858 i = 0;
3859 }
3860
3861 for (f = 0; f < nr_frags; f++) {
3862 struct skb_frag_struct *frag;
3863
3864 frag = &skb_shinfo(skb)->frags[f];
3865 len = frag->size;
3866 offset = frag->page_offset;
3867
3868 while (len) {
3869 buffer_info = &tx_ring->buffer_info[i];
3870 size = min(len, max_per_txd);
3871 /* Workaround for premature desc write-backs
3872 * in TSO mode. Append 4-byte sentinel desc */
3873 if (mss && f == (nr_frags-1) && size == len && size > 8)
3874 size -= 4;
3875
3876 buffer_info->length = size;
3877 buffer_info->time_stamp = jiffies;
3878 buffer_info->dma =
3879 pci_map_page(adapter->pdev,
3880 frag->page,
3881 offset,
3882 size,
3883 PCI_DMA_TODEVICE);
8d8bb39b
FT
3884 if (pci_dma_mapping_error(adapter->pdev,
3885 buffer_info->dma)) {
bc7f75fa
AK
3886 dev_err(&adapter->pdev->dev,
3887 "TX DMA page map failed\n");
3888 adapter->tx_dma_failed++;
3889 return -1;
3890 }
3891
3892 buffer_info->next_to_watch = i;
3893
3894 len -= size;
3895 offset += size;
3896 count++;
3897
3898 i++;
3899 if (i == tx_ring->count)
3900 i = 0;
3901 }
3902 }
3903
3904 if (i == 0)
3905 i = tx_ring->count - 1;
3906 else
3907 i--;
3908
3909 tx_ring->buffer_info[i].skb = skb;
3910 tx_ring->buffer_info[first].next_to_watch = i;
3911
3912 return count;
3913}
3914
3915static void e1000_tx_queue(struct e1000_adapter *adapter,
3916 int tx_flags, int count)
3917{
3918 struct e1000_ring *tx_ring = adapter->tx_ring;
3919 struct e1000_tx_desc *tx_desc = NULL;
3920 struct e1000_buffer *buffer_info;
3921 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3922 unsigned int i;
3923
3924 if (tx_flags & E1000_TX_FLAGS_TSO) {
3925 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3926 E1000_TXD_CMD_TSE;
3927 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3928
3929 if (tx_flags & E1000_TX_FLAGS_IPV4)
3930 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3931 }
3932
3933 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3934 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3935 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3936 }
3937
3938 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3939 txd_lower |= E1000_TXD_CMD_VLE;
3940 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3941 }
3942
3943 i = tx_ring->next_to_use;
3944
3945 while (count--) {
3946 buffer_info = &tx_ring->buffer_info[i];
3947 tx_desc = E1000_TX_DESC(*tx_ring, i);
3948 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3949 tx_desc->lower.data =
3950 cpu_to_le32(txd_lower | buffer_info->length);
3951 tx_desc->upper.data = cpu_to_le32(txd_upper);
3952
3953 i++;
3954 if (i == tx_ring->count)
3955 i = 0;
3956 }
3957
3958 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3959
ad68076e
BA
3960 /*
3961 * Force memory writes to complete before letting h/w
bc7f75fa
AK
3962 * know there are new descriptors to fetch. (Only
3963 * applicable for weak-ordered memory model archs,
ad68076e
BA
3964 * such as IA-64).
3965 */
bc7f75fa
AK
3966 wmb();
3967
3968 tx_ring->next_to_use = i;
3969 writel(i, adapter->hw.hw_addr + tx_ring->tail);
ad68076e
BA
3970 /*
3971 * we need this if more than one processor can write to our tail
3972 * at a time, it synchronizes IO on IA64/Altix systems
3973 */
bc7f75fa
AK
3974 mmiowb();
3975}
3976
3977#define MINIMUM_DHCP_PACKET_SIZE 282
3978static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3979 struct sk_buff *skb)
3980{
3981 struct e1000_hw *hw = &adapter->hw;
3982 u16 length, offset;
3983
3984 if (vlan_tx_tag_present(skb)) {
3985 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3986 && (adapter->hw.mng_cookie.status &
3987 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3988 return 0;
3989 }
3990
3991 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3992 return 0;
3993
3994 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3995 return 0;
3996
3997 {
3998 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3999 struct udphdr *udp;
4000
4001 if (ip->protocol != IPPROTO_UDP)
4002 return 0;
4003
4004 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4005 if (ntohs(udp->dest) != 67)
4006 return 0;
4007
4008 offset = (u8 *)udp + 8 - skb->data;
4009 length = skb->len - offset;
4010 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4011 }
4012
4013 return 0;
4014}
4015
4016static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4017{
4018 struct e1000_adapter *adapter = netdev_priv(netdev);
4019
4020 netif_stop_queue(netdev);
ad68076e
BA
4021 /*
4022 * Herbert's original patch had:
bc7f75fa 4023 * smp_mb__after_netif_stop_queue();
ad68076e
BA
4024 * but since that doesn't exist yet, just open code it.
4025 */
bc7f75fa
AK
4026 smp_mb();
4027
ad68076e
BA
4028 /*
4029 * We need to check again in a case another CPU has just
4030 * made room available.
4031 */
bc7f75fa
AK
4032 if (e1000_desc_unused(adapter->tx_ring) < size)
4033 return -EBUSY;
4034
4035 /* A reprieve! */
4036 netif_start_queue(netdev);
4037 ++adapter->restart_queue;
4038 return 0;
4039}
4040
4041static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4042{
4043 struct e1000_adapter *adapter = netdev_priv(netdev);
4044
4045 if (e1000_desc_unused(adapter->tx_ring) >= size)
4046 return 0;
4047 return __e1000_maybe_stop_tx(netdev, size);
4048}
4049
4050#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4051static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4052{
4053 struct e1000_adapter *adapter = netdev_priv(netdev);
4054 struct e1000_ring *tx_ring = adapter->tx_ring;
4055 unsigned int first;
4056 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4057 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4058 unsigned int tx_flags = 0;
4e6c709c 4059 unsigned int len = skb->len - skb->data_len;
4e6c709c
AK
4060 unsigned int nr_frags;
4061 unsigned int mss;
bc7f75fa
AK
4062 int count = 0;
4063 int tso;
4064 unsigned int f;
bc7f75fa
AK
4065
4066 if (test_bit(__E1000_DOWN, &adapter->state)) {
4067 dev_kfree_skb_any(skb);
4068 return NETDEV_TX_OK;
4069 }
4070
4071 if (skb->len <= 0) {
4072 dev_kfree_skb_any(skb);
4073 return NETDEV_TX_OK;
4074 }
4075
4076 mss = skb_shinfo(skb)->gso_size;
ad68076e
BA
4077 /*
4078 * The controller does a simple calculation to
bc7f75fa
AK
4079 * make sure there is enough room in the FIFO before
4080 * initiating the DMA for each buffer. The calc is:
4081 * 4 = ceil(buffer len/mss). To make sure we don't
4082 * overrun the FIFO, adjust the max buffer len if mss
ad68076e
BA
4083 * drops.
4084 */
bc7f75fa
AK
4085 if (mss) {
4086 u8 hdr_len;
4087 max_per_txd = min(mss << 2, max_per_txd);
4088 max_txd_pwr = fls(max_per_txd) - 1;
4089
ad68076e
BA
4090 /*
4091 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4092 * points to just header, pull a few bytes of payload from
4093 * frags into skb->data
4094 */
bc7f75fa 4095 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
ad68076e
BA
4096 /*
4097 * we do this workaround for ES2LAN, but it is un-necessary,
4098 * avoiding it could save a lot of cycles
4099 */
4e6c709c 4100 if (skb->data_len && (hdr_len == len)) {
bc7f75fa
AK
4101 unsigned int pull_size;
4102
4103 pull_size = min((unsigned int)4, skb->data_len);
4104 if (!__pskb_pull_tail(skb, pull_size)) {
44defeb3 4105 e_err("__pskb_pull_tail failed.\n");
bc7f75fa
AK
4106 dev_kfree_skb_any(skb);
4107 return NETDEV_TX_OK;
4108 }
4109 len = skb->len - skb->data_len;
4110 }
4111 }
4112
4113 /* reserve a descriptor for the offload context */
4114 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4115 count++;
4116 count++;
4117
4118 count += TXD_USE_COUNT(len, max_txd_pwr);
4119
4120 nr_frags = skb_shinfo(skb)->nr_frags;
4121 for (f = 0; f < nr_frags; f++)
4122 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4123 max_txd_pwr);
4124
4125 if (adapter->hw.mac.tx_pkt_filtering)
4126 e1000_transfer_dhcp_info(adapter, skb);
4127
ad68076e
BA
4128 /*
4129 * need: count + 2 desc gap to keep tail from touching
4130 * head, otherwise try next time
4131 */
92af3e95 4132 if (e1000_maybe_stop_tx(netdev, count + 2))
bc7f75fa 4133 return NETDEV_TX_BUSY;
bc7f75fa
AK
4134
4135 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4136 tx_flags |= E1000_TX_FLAGS_VLAN;
4137 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4138 }
4139
4140 first = tx_ring->next_to_use;
4141
4142 tso = e1000_tso(adapter, skb);
4143 if (tso < 0) {
4144 dev_kfree_skb_any(skb);
bc7f75fa
AK
4145 return NETDEV_TX_OK;
4146 }
4147
4148 if (tso)
4149 tx_flags |= E1000_TX_FLAGS_TSO;
4150 else if (e1000_tx_csum(adapter, skb))
4151 tx_flags |= E1000_TX_FLAGS_CSUM;
4152
ad68076e
BA
4153 /*
4154 * Old method was to assume IPv4 packet by default if TSO was enabled.
bc7f75fa 4155 * 82571 hardware supports TSO capabilities for IPv6 as well...
ad68076e
BA
4156 * no longer assume, we must.
4157 */
bc7f75fa
AK
4158 if (skb->protocol == htons(ETH_P_IP))
4159 tx_flags |= E1000_TX_FLAGS_IPV4;
4160
4161 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4162 if (count < 0) {
4163 /* handle pci_map_single() error in e1000_tx_map */
4164 dev_kfree_skb_any(skb);
7b5dfe1a 4165 return NETDEV_TX_OK;
bc7f75fa
AK
4166 }
4167
4168 e1000_tx_queue(adapter, tx_flags, count);
4169
4170 netdev->trans_start = jiffies;
4171
4172 /* Make sure there is space in the ring for the next send. */
4173 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4174
bc7f75fa
AK
4175 return NETDEV_TX_OK;
4176}
4177
4178/**
4179 * e1000_tx_timeout - Respond to a Tx Hang
4180 * @netdev: network interface device structure
4181 **/
4182static void e1000_tx_timeout(struct net_device *netdev)
4183{
4184 struct e1000_adapter *adapter = netdev_priv(netdev);
4185
4186 /* Do the reset outside of interrupt context */
4187 adapter->tx_timeout_count++;
4188 schedule_work(&adapter->reset_task);
4189}
4190
4191static void e1000_reset_task(struct work_struct *work)
4192{
4193 struct e1000_adapter *adapter;
4194 adapter = container_of(work, struct e1000_adapter, reset_task);
4195
4196 e1000e_reinit_locked(adapter);
4197}
4198
4199/**
4200 * e1000_get_stats - Get System Network Statistics
4201 * @netdev: network interface device structure
4202 *
4203 * Returns the address of the device statistics structure.
4204 * The statistics are actually updated from the timer callback.
4205 **/
4206static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4207{
4208 struct e1000_adapter *adapter = netdev_priv(netdev);
4209
4210 /* only return the current stats */
4211 return &adapter->net_stats;
4212}
4213
4214/**
4215 * e1000_change_mtu - Change the Maximum Transfer Unit
4216 * @netdev: network interface device structure
4217 * @new_mtu: new value for maximum frame size
4218 *
4219 * Returns 0 on success, negative on failure
4220 **/
4221static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4222{
4223 struct e1000_adapter *adapter = netdev_priv(netdev);
4224 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4225
d53f706d 4226 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
bc7f75fa 4227 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
44defeb3 4228 e_err("Invalid MTU setting\n");
bc7f75fa
AK
4229 return -EINVAL;
4230 }
4231
4232 /* Jumbo frame size limits */
4233 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
4234 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
44defeb3 4235 e_err("Jumbo Frames not supported.\n");
bc7f75fa
AK
4236 return -EINVAL;
4237 }
4238 if (adapter->hw.phy.type == e1000_phy_ife) {
44defeb3 4239 e_err("Jumbo Frames not supported.\n");
bc7f75fa
AK
4240 return -EINVAL;
4241 }
4242 }
4243
4244#define MAX_STD_JUMBO_FRAME_SIZE 9234
4245 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
44defeb3 4246 e_err("MTU > 9216 not supported.\n");
bc7f75fa
AK
4247 return -EINVAL;
4248 }
4249
4250 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4251 msleep(1);
4252 /* e1000e_down has a dependency on max_frame_size */
318a94d6 4253 adapter->max_frame_size = max_frame;
bc7f75fa
AK
4254 if (netif_running(netdev))
4255 e1000e_down(adapter);
4256
ad68076e
BA
4257 /*
4258 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
bc7f75fa
AK
4259 * means we reserve 2 more, this pushes us to allocate from the next
4260 * larger slab size.
ad68076e 4261 * i.e. RXBUFFER_2048 --> size-4096 slab
97ac8cae
BA
4262 * However with the new *_jumbo_rx* routines, jumbo receives will use
4263 * fragmented skbs
ad68076e 4264 */
bc7f75fa
AK
4265
4266 if (max_frame <= 256)
4267 adapter->rx_buffer_len = 256;
4268 else if (max_frame <= 512)
4269 adapter->rx_buffer_len = 512;
4270 else if (max_frame <= 1024)
4271 adapter->rx_buffer_len = 1024;
4272 else if (max_frame <= 2048)
4273 adapter->rx_buffer_len = 2048;
4274 else
4275 adapter->rx_buffer_len = 4096;
4276
4277 /* adjust allocation if LPE protects us, and we aren't using SBP */
4278 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4279 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4280 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
ad68076e 4281 + ETH_FCS_LEN;
bc7f75fa 4282
44defeb3 4283 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
bc7f75fa
AK
4284 netdev->mtu = new_mtu;
4285
4286 if (netif_running(netdev))
4287 e1000e_up(adapter);
4288 else
4289 e1000e_reset(adapter);
4290
4291 clear_bit(__E1000_RESETTING, &adapter->state);
4292
4293 return 0;
4294}
4295
4296static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4297 int cmd)
4298{
4299 struct e1000_adapter *adapter = netdev_priv(netdev);
4300 struct mii_ioctl_data *data = if_mii(ifr);
bc7f75fa 4301
318a94d6 4302 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
4303 return -EOPNOTSUPP;
4304
4305 switch (cmd) {
4306 case SIOCGMIIPHY:
4307 data->phy_id = adapter->hw.phy.addr;
4308 break;
4309 case SIOCGMIIREG:
4310 if (!capable(CAP_NET_ADMIN))
4311 return -EPERM;
7c25769f
BA
4312 switch (data->reg_num & 0x1F) {
4313 case MII_BMCR:
4314 data->val_out = adapter->phy_regs.bmcr;
4315 break;
4316 case MII_BMSR:
4317 data->val_out = adapter->phy_regs.bmsr;
4318 break;
4319 case MII_PHYSID1:
4320 data->val_out = (adapter->hw.phy.id >> 16);
4321 break;
4322 case MII_PHYSID2:
4323 data->val_out = (adapter->hw.phy.id & 0xFFFF);
4324 break;
4325 case MII_ADVERTISE:
4326 data->val_out = adapter->phy_regs.advertise;
4327 break;
4328 case MII_LPA:
4329 data->val_out = adapter->phy_regs.lpa;
4330 break;
4331 case MII_EXPANSION:
4332 data->val_out = adapter->phy_regs.expansion;
4333 break;
4334 case MII_CTRL1000:
4335 data->val_out = adapter->phy_regs.ctrl1000;
4336 break;
4337 case MII_STAT1000:
4338 data->val_out = adapter->phy_regs.stat1000;
4339 break;
4340 case MII_ESTATUS:
4341 data->val_out = adapter->phy_regs.estatus;
4342 break;
4343 default:
bc7f75fa
AK
4344 return -EIO;
4345 }
bc7f75fa
AK
4346 break;
4347 case SIOCSMIIREG:
4348 default:
4349 return -EOPNOTSUPP;
4350 }
4351 return 0;
4352}
4353
4354static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4355{
4356 switch (cmd) {
4357 case SIOCGMIIPHY:
4358 case SIOCGMIIREG:
4359 case SIOCSMIIREG:
4360 return e1000_mii_ioctl(netdev, ifr, cmd);
4361 default:
4362 return -EOPNOTSUPP;
4363 }
4364}
4365
4366static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4367{
4368 struct net_device *netdev = pci_get_drvdata(pdev);
4369 struct e1000_adapter *adapter = netdev_priv(netdev);
4370 struct e1000_hw *hw = &adapter->hw;
4371 u32 ctrl, ctrl_ext, rctl, status;
4372 u32 wufc = adapter->wol;
4373 int retval = 0;
4374
4375 netif_device_detach(netdev);
4376
4377 if (netif_running(netdev)) {
4378 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4379 e1000e_down(adapter);
4380 e1000_free_irq(adapter);
4381 }
4662e82b 4382 e1000e_reset_interrupt_capability(adapter);
bc7f75fa
AK
4383
4384 retval = pci_save_state(pdev);
4385 if (retval)
4386 return retval;
4387
4388 status = er32(STATUS);
4389 if (status & E1000_STATUS_LU)
4390 wufc &= ~E1000_WUFC_LNKC;
4391
4392 if (wufc) {
4393 e1000_setup_rctl(adapter);
4394 e1000_set_multi(netdev);
4395
4396 /* turn on all-multi mode if wake on multicast is enabled */
4397 if (wufc & E1000_WUFC_MC) {
4398 rctl = er32(RCTL);
4399 rctl |= E1000_RCTL_MPE;
4400 ew32(RCTL, rctl);
4401 }
4402
4403 ctrl = er32(CTRL);
4404 /* advertise wake from D3Cold */
4405 #define E1000_CTRL_ADVD3WUC 0x00100000
4406 /* phy power management enable */
4407 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4408 ctrl |= E1000_CTRL_ADVD3WUC |
4409 E1000_CTRL_EN_PHY_PWR_MGMT;
4410 ew32(CTRL, ctrl);
4411
318a94d6
JK
4412 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4413 adapter->hw.phy.media_type ==
4414 e1000_media_type_internal_serdes) {
bc7f75fa
AK
4415 /* keep the laser running in D3 */
4416 ctrl_ext = er32(CTRL_EXT);
4417 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4418 ew32(CTRL_EXT, ctrl_ext);
4419 }
4420
97ac8cae
BA
4421 if (adapter->flags & FLAG_IS_ICH)
4422 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4423
bc7f75fa
AK
4424 /* Allow time for pending master requests to run */
4425 e1000e_disable_pcie_master(&adapter->hw);
4426
4427 ew32(WUC, E1000_WUC_PME_EN);
4428 ew32(WUFC, wufc);
4429 pci_enable_wake(pdev, PCI_D3hot, 1);
4430 pci_enable_wake(pdev, PCI_D3cold, 1);
4431 } else {
4432 ew32(WUC, 0);
4433 ew32(WUFC, 0);
4434 pci_enable_wake(pdev, PCI_D3hot, 0);
4435 pci_enable_wake(pdev, PCI_D3cold, 0);
4436 }
4437
bc7f75fa
AK
4438 /* make sure adapter isn't asleep if manageability is enabled */
4439 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
4440 pci_enable_wake(pdev, PCI_D3hot, 1);
4441 pci_enable_wake(pdev, PCI_D3cold, 1);
4442 }
4443
4444 if (adapter->hw.phy.type == e1000_phy_igp_3)
4445 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4446
ad68076e
BA
4447 /*
4448 * Release control of h/w to f/w. If f/w is AMT enabled, this
4449 * would have already happened in close and is redundant.
4450 */
bc7f75fa
AK
4451 e1000_release_hw_control(adapter);
4452
4453 pci_disable_device(pdev);
4454
005cbdfc
AD
4455 /*
4456 * The pci-e switch on some quad port adapters will report a
4457 * correctable error when the MAC transitions from D0 to D3. To
4458 * prevent this we need to mask off the correctable errors on the
4459 * downstream port of the pci-e switch.
4460 */
4461 if (adapter->flags & FLAG_IS_QUAD_PORT) {
4462 struct pci_dev *us_dev = pdev->bus->self;
4463 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
4464 u16 devctl;
4465
4466 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
4467 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
4468 (devctl & ~PCI_EXP_DEVCTL_CERE));
4469
4470 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4471
4472 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
4473 } else {
4474 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4475 }
bc7f75fa
AK
4476
4477 return 0;
4478}
4479
1eae4eb2
AK
4480static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4481{
4482 int pos;
1eae4eb2
AK
4483 u16 val;
4484
4485 /*
4486 * 82573 workaround - disable L1 ASPM on mobile chipsets
4487 *
4488 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4489 * resulting in lost data or garbage information on the pci-e link
4490 * level. This could result in (false) bad EEPROM checksum errors,
4491 * long ping times (up to 2s) or even a system freeze/hang.
4492 *
4493 * Unfortunately this feature saves about 1W power consumption when
4494 * active.
4495 */
4496 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
1eae4eb2
AK
4497 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4498 if (val & 0x2) {
4499 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4500 val &= ~0x2;
4501 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4502 }
4503}
4504
bc7f75fa
AK
4505#ifdef CONFIG_PM
4506static int e1000_resume(struct pci_dev *pdev)
4507{
4508 struct net_device *netdev = pci_get_drvdata(pdev);
4509 struct e1000_adapter *adapter = netdev_priv(netdev);
4510 struct e1000_hw *hw = &adapter->hw;
4511 u32 err;
4512
4513 pci_set_power_state(pdev, PCI_D0);
4514 pci_restore_state(pdev);
1eae4eb2 4515 e1000e_disable_l1aspm(pdev);
6e4f6f6b 4516
f0f422e5 4517 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
4518 if (err) {
4519 dev_err(&pdev->dev,
4520 "Cannot enable PCI device from suspend\n");
4521 return err;
4522 }
4523
4524 pci_set_master(pdev);
4525
4526 pci_enable_wake(pdev, PCI_D3hot, 0);
4527 pci_enable_wake(pdev, PCI_D3cold, 0);
4528
4662e82b 4529 e1000e_set_interrupt_capability(adapter);
bc7f75fa
AK
4530 if (netif_running(netdev)) {
4531 err = e1000_request_irq(adapter);
4532 if (err)
4533 return err;
4534 }
4535
4536 e1000e_power_up_phy(adapter);
4537 e1000e_reset(adapter);
4538 ew32(WUS, ~0);
4539
4540 e1000_init_manageability(adapter);
4541
4542 if (netif_running(netdev))
4543 e1000e_up(adapter);
4544
4545 netif_device_attach(netdev);
4546
ad68076e
BA
4547 /*
4548 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4549 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4550 * under the control of the driver.
4551 */
c43bc57e 4552 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
4553 e1000_get_hw_control(adapter);
4554
4555 return 0;
4556}
4557#endif
4558
4559static void e1000_shutdown(struct pci_dev *pdev)
4560{
4561 e1000_suspend(pdev, PMSG_SUSPEND);
4562}
4563
4564#ifdef CONFIG_NET_POLL_CONTROLLER
4565/*
4566 * Polling 'interrupt' - used by things like netconsole to send skbs
4567 * without having to re-enable interrupts. It's not called while
4568 * the interrupt routine is executing.
4569 */
4570static void e1000_netpoll(struct net_device *netdev)
4571{
4572 struct e1000_adapter *adapter = netdev_priv(netdev);
4573
4574 disable_irq(adapter->pdev->irq);
4575 e1000_intr(adapter->pdev->irq, netdev);
4576
bc7f75fa
AK
4577 enable_irq(adapter->pdev->irq);
4578}
4579#endif
4580
4581/**
4582 * e1000_io_error_detected - called when PCI error is detected
4583 * @pdev: Pointer to PCI device
4584 * @state: The current pci connection state
4585 *
4586 * This function is called after a PCI bus error affecting
4587 * this device has been detected.
4588 */
4589static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4590 pci_channel_state_t state)
4591{
4592 struct net_device *netdev = pci_get_drvdata(pdev);
4593 struct e1000_adapter *adapter = netdev_priv(netdev);
4594
4595 netif_device_detach(netdev);
4596
4597 if (netif_running(netdev))
4598 e1000e_down(adapter);
4599 pci_disable_device(pdev);
4600
4601 /* Request a slot slot reset. */
4602 return PCI_ERS_RESULT_NEED_RESET;
4603}
4604
4605/**
4606 * e1000_io_slot_reset - called after the pci bus has been reset.
4607 * @pdev: Pointer to PCI device
4608 *
4609 * Restart the card from scratch, as if from a cold-boot. Implementation
4610 * resembles the first-half of the e1000_resume routine.
4611 */
4612static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4613{
4614 struct net_device *netdev = pci_get_drvdata(pdev);
4615 struct e1000_adapter *adapter = netdev_priv(netdev);
4616 struct e1000_hw *hw = &adapter->hw;
6e4f6f6b 4617 int err;
bc7f75fa 4618
1eae4eb2 4619 e1000e_disable_l1aspm(pdev);
f0f422e5 4620 err = pci_enable_device_mem(pdev);
6e4f6f6b 4621 if (err) {
bc7f75fa
AK
4622 dev_err(&pdev->dev,
4623 "Cannot re-enable PCI device after reset.\n");
4624 return PCI_ERS_RESULT_DISCONNECT;
4625 }
4626 pci_set_master(pdev);
aad32739 4627 pci_restore_state(pdev);
bc7f75fa
AK
4628
4629 pci_enable_wake(pdev, PCI_D3hot, 0);
4630 pci_enable_wake(pdev, PCI_D3cold, 0);
4631
4632 e1000e_reset(adapter);
4633 ew32(WUS, ~0);
4634
4635 return PCI_ERS_RESULT_RECOVERED;
4636}
4637
4638/**
4639 * e1000_io_resume - called when traffic can start flowing again.
4640 * @pdev: Pointer to PCI device
4641 *
4642 * This callback is called when the error recovery driver tells us that
4643 * its OK to resume normal operation. Implementation resembles the
4644 * second-half of the e1000_resume routine.
4645 */
4646static void e1000_io_resume(struct pci_dev *pdev)
4647{
4648 struct net_device *netdev = pci_get_drvdata(pdev);
4649 struct e1000_adapter *adapter = netdev_priv(netdev);
4650
4651 e1000_init_manageability(adapter);
4652
4653 if (netif_running(netdev)) {
4654 if (e1000e_up(adapter)) {
4655 dev_err(&pdev->dev,
4656 "can't bring device back up after reset\n");
4657 return;
4658 }
4659 }
4660
4661 netif_device_attach(netdev);
4662
ad68076e
BA
4663 /*
4664 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4665 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4666 * under the control of the driver.
4667 */
c43bc57e 4668 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
4669 e1000_get_hw_control(adapter);
4670
4671}
4672
4673static void e1000_print_device_info(struct e1000_adapter *adapter)
4674{
4675 struct e1000_hw *hw = &adapter->hw;
4676 struct net_device *netdev = adapter->netdev;
69e3fd8c 4677 u32 pba_num;
bc7f75fa
AK
4678
4679 /* print bus type/speed/width info */
7c510e4b 4680 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
44defeb3
JK
4681 /* bus width */
4682 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4683 "Width x1"),
4684 /* MAC address */
7c510e4b 4685 netdev->dev_addr);
44defeb3
JK
4686 e_info("Intel(R) PRO/%s Network Connection\n",
4687 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
69e3fd8c 4688 e1000e_read_pba_num(hw, &pba_num);
44defeb3
JK
4689 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4690 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
bc7f75fa
AK
4691}
4692
10aa4c04
AK
4693static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4694{
4695 struct e1000_hw *hw = &adapter->hw;
4696 int ret_val;
4697 u16 buf = 0;
4698
4699 if (hw->mac.type != e1000_82573)
4700 return;
4701
4702 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
e243455d 4703 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
10aa4c04 4704 /* Deep Smart Power Down (DSPD) */
6c2a9efa
FP
4705 dev_warn(&adapter->pdev->dev,
4706 "Warning: detected DSPD enabled in EEPROM\n");
10aa4c04
AK
4707 }
4708
4709 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
e243455d 4710 if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
10aa4c04 4711 /* ASPM enable */
6c2a9efa
FP
4712 dev_warn(&adapter->pdev->dev,
4713 "Warning: detected ASPM enabled in EEPROM\n");
10aa4c04
AK
4714 }
4715}
4716
651c2466
SH
4717static const struct net_device_ops e1000e_netdev_ops = {
4718 .ndo_open = e1000_open,
4719 .ndo_stop = e1000_close,
00829823 4720 .ndo_start_xmit = e1000_xmit_frame,
651c2466
SH
4721 .ndo_get_stats = e1000_get_stats,
4722 .ndo_set_multicast_list = e1000_set_multi,
4723 .ndo_set_mac_address = e1000_set_mac,
4724 .ndo_change_mtu = e1000_change_mtu,
4725 .ndo_do_ioctl = e1000_ioctl,
4726 .ndo_tx_timeout = e1000_tx_timeout,
4727 .ndo_validate_addr = eth_validate_addr,
4728
4729 .ndo_vlan_rx_register = e1000_vlan_rx_register,
4730 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
4731 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
4732#ifdef CONFIG_NET_POLL_CONTROLLER
4733 .ndo_poll_controller = e1000_netpoll,
4734#endif
4735};
4736
bc7f75fa
AK
4737/**
4738 * e1000_probe - Device Initialization Routine
4739 * @pdev: PCI device information struct
4740 * @ent: entry in e1000_pci_tbl
4741 *
4742 * Returns 0 on success, negative on failure
4743 *
4744 * e1000_probe initializes an adapter identified by a pci_dev structure.
4745 * The OS initialization, configuring of the adapter private structure,
4746 * and a hardware reset occur.
4747 **/
4748static int __devinit e1000_probe(struct pci_dev *pdev,
4749 const struct pci_device_id *ent)
4750{
4751 struct net_device *netdev;
4752 struct e1000_adapter *adapter;
4753 struct e1000_hw *hw;
4754 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
f47e81fc
BB
4755 resource_size_t mmio_start, mmio_len;
4756 resource_size_t flash_start, flash_len;
bc7f75fa
AK
4757
4758 static int cards_found;
4759 int i, err, pci_using_dac;
4760 u16 eeprom_data = 0;
4761 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4762
1eae4eb2 4763 e1000e_disable_l1aspm(pdev);
6e4f6f6b 4764
f0f422e5 4765 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
4766 if (err)
4767 return err;
4768
4769 pci_using_dac = 0;
4770 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4771 if (!err) {
4772 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4773 if (!err)
4774 pci_using_dac = 1;
4775 } else {
4776 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4777 if (err) {
4778 err = pci_set_consistent_dma_mask(pdev,
4779 DMA_32BIT_MASK);
4780 if (err) {
4781 dev_err(&pdev->dev, "No usable DMA "
4782 "configuration, aborting\n");
4783 goto err_dma;
4784 }
4785 }
4786 }
4787
e8de1481 4788 err = pci_request_selected_regions_exclusive(pdev,
f0f422e5
BA
4789 pci_select_bars(pdev, IORESOURCE_MEM),
4790 e1000e_driver_name);
bc7f75fa
AK
4791 if (err)
4792 goto err_pci_reg;
4793
4794 pci_set_master(pdev);
438b365a
BA
4795 /* PCI config space info */
4796 err = pci_save_state(pdev);
4797 if (err)
4798 goto err_alloc_etherdev;
bc7f75fa
AK
4799
4800 err = -ENOMEM;
4801 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4802 if (!netdev)
4803 goto err_alloc_etherdev;
4804
bc7f75fa
AK
4805 SET_NETDEV_DEV(netdev, &pdev->dev);
4806
4807 pci_set_drvdata(pdev, netdev);
4808 adapter = netdev_priv(netdev);
4809 hw = &adapter->hw;
4810 adapter->netdev = netdev;
4811 adapter->pdev = pdev;
4812 adapter->ei = ei;
4813 adapter->pba = ei->pba;
4814 adapter->flags = ei->flags;
eb7c3adb 4815 adapter->flags2 = ei->flags2;
bc7f75fa
AK
4816 adapter->hw.adapter = adapter;
4817 adapter->hw.mac.type = ei->mac;
4818 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4819
4820 mmio_start = pci_resource_start(pdev, 0);
4821 mmio_len = pci_resource_len(pdev, 0);
4822
4823 err = -EIO;
4824 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4825 if (!adapter->hw.hw_addr)
4826 goto err_ioremap;
4827
4828 if ((adapter->flags & FLAG_HAS_FLASH) &&
4829 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4830 flash_start = pci_resource_start(pdev, 1);
4831 flash_len = pci_resource_len(pdev, 1);
4832 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4833 if (!adapter->hw.flash_address)
4834 goto err_flashmap;
4835 }
4836
4837 /* construct the net_device struct */
651c2466 4838 netdev->netdev_ops = &e1000e_netdev_ops;
bc7f75fa 4839 e1000e_set_ethtool_ops(netdev);
bc7f75fa
AK
4840 netdev->watchdog_timeo = 5 * HZ;
4841 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
bc7f75fa
AK
4842 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4843
4844 netdev->mem_start = mmio_start;
4845 netdev->mem_end = mmio_start + mmio_len;
4846
4847 adapter->bd_number = cards_found++;
4848
4662e82b
BA
4849 e1000e_check_options(adapter);
4850
bc7f75fa
AK
4851 /* setup adapter struct */
4852 err = e1000_sw_init(adapter);
4853 if (err)
4854 goto err_sw_init;
4855
4856 err = -EIO;
4857
4858 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4859 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4860 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4861
69e3fd8c 4862 err = ei->get_variants(adapter);
bc7f75fa
AK
4863 if (err)
4864 goto err_hw_init;
4865
4a770358
BA
4866 if ((adapter->flags & FLAG_IS_ICH) &&
4867 (adapter->flags & FLAG_READ_ONLY_NVM))
4868 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
4869
bc7f75fa
AK
4870 hw->mac.ops.get_bus_info(&adapter->hw);
4871
318a94d6 4872 adapter->hw.phy.autoneg_wait_to_complete = 0;
bc7f75fa
AK
4873
4874 /* Copper options */
318a94d6 4875 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
bc7f75fa
AK
4876 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4877 adapter->hw.phy.disable_polarity_correction = 0;
4878 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4879 }
4880
4881 if (e1000_check_reset_block(&adapter->hw))
44defeb3 4882 e_info("PHY reset is blocked due to SOL/IDER session.\n");
bc7f75fa
AK
4883
4884 netdev->features = NETIF_F_SG |
4885 NETIF_F_HW_CSUM |
4886 NETIF_F_HW_VLAN_TX |
4887 NETIF_F_HW_VLAN_RX;
4888
4889 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4890 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4891
4892 netdev->features |= NETIF_F_TSO;
4893 netdev->features |= NETIF_F_TSO6;
4894
a5136e23
JK
4895 netdev->vlan_features |= NETIF_F_TSO;
4896 netdev->vlan_features |= NETIF_F_TSO6;
4897 netdev->vlan_features |= NETIF_F_HW_CSUM;
4898 netdev->vlan_features |= NETIF_F_SG;
4899
bc7f75fa
AK
4900 if (pci_using_dac)
4901 netdev->features |= NETIF_F_HIGHDMA;
4902
bc7f75fa
AK
4903 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4904 adapter->flags |= FLAG_MNG_PT_ENABLED;
4905
ad68076e
BA
4906 /*
4907 * before reading the NVM, reset the controller to
4908 * put the device in a known good starting state
4909 */
bc7f75fa
AK
4910 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4911
4912 /*
4913 * systems with ASPM and others may see the checksum fail on the first
4914 * attempt. Let's give it a few tries
4915 */
4916 for (i = 0;; i++) {
4917 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4918 break;
4919 if (i == 2) {
44defeb3 4920 e_err("The NVM Checksum Is Not Valid\n");
bc7f75fa
AK
4921 err = -EIO;
4922 goto err_eeprom;
4923 }
4924 }
4925
10aa4c04
AK
4926 e1000_eeprom_checks(adapter);
4927
bc7f75fa
AK
4928 /* copy the MAC address out of the NVM */
4929 if (e1000e_read_mac_addr(&adapter->hw))
44defeb3 4930 e_err("NVM Read Error while reading MAC address\n");
bc7f75fa
AK
4931
4932 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4933 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4934
4935 if (!is_valid_ether_addr(netdev->perm_addr)) {
7c510e4b 4936 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
bc7f75fa
AK
4937 err = -EIO;
4938 goto err_eeprom;
4939 }
4940
4941 init_timer(&adapter->watchdog_timer);
4942 adapter->watchdog_timer.function = &e1000_watchdog;
4943 adapter->watchdog_timer.data = (unsigned long) adapter;
4944
4945 init_timer(&adapter->phy_info_timer);
4946 adapter->phy_info_timer.function = &e1000_update_phy_info;
4947 adapter->phy_info_timer.data = (unsigned long) adapter;
4948
4949 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4950 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
a8f88ff5
JB
4951 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
4952 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
bc7f75fa 4953
bc7f75fa
AK
4954 /* Initialize link parameters. User can change them with ethtool */
4955 adapter->hw.mac.autoneg = 1;
309af40b 4956 adapter->fc_autoneg = 1;
5c48ef3e
BA
4957 adapter->hw.fc.requested_mode = e1000_fc_default;
4958 adapter->hw.fc.current_mode = e1000_fc_default;
bc7f75fa
AK
4959 adapter->hw.phy.autoneg_advertised = 0x2f;
4960
4961 /* ring size defaults */
4962 adapter->rx_ring->count = 256;
4963 adapter->tx_ring->count = 256;
4964
4965 /*
4966 * Initial Wake on LAN setting - If APM wake is enabled in
4967 * the EEPROM, enable the ACPI Magic Packet filter
4968 */
4969 if (adapter->flags & FLAG_APME_IN_WUC) {
4970 /* APME bit in EEPROM is mapped to WUC.APME */
4971 eeprom_data = er32(WUC);
4972 eeprom_apme_mask = E1000_WUC_APME;
4973 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4974 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4975 (adapter->hw.bus.func == 1))
4976 e1000_read_nvm(&adapter->hw,
4977 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4978 else
4979 e1000_read_nvm(&adapter->hw,
4980 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4981 }
4982
4983 /* fetch WoL from EEPROM */
4984 if (eeprom_data & eeprom_apme_mask)
4985 adapter->eeprom_wol |= E1000_WUFC_MAG;
4986
4987 /*
4988 * now that we have the eeprom settings, apply the special cases
4989 * where the eeprom may be wrong or the board simply won't support
4990 * wake on lan on a particular port
4991 */
4992 if (!(adapter->flags & FLAG_HAS_WOL))
4993 adapter->eeprom_wol = 0;
4994
4995 /* initialize the wol settings based on the eeprom settings */
4996 adapter->wol = adapter->eeprom_wol;
6ff68026 4997 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
bc7f75fa 4998
84527590
BA
4999 /* save off EEPROM version number */
5000 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5001
bc7f75fa
AK
5002 /* reset the hardware with the new settings */
5003 e1000e_reset(adapter);
5004
ad68076e
BA
5005 /*
5006 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 5007 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
5008 * under the control of the driver.
5009 */
c43bc57e 5010 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
5011 e1000_get_hw_control(adapter);
5012
5013 /* tell the stack to leave us alone until e1000_open() is called */
5014 netif_carrier_off(netdev);
d55b53ff 5015 netif_tx_stop_all_queues(netdev);
bc7f75fa
AK
5016
5017 strcpy(netdev->name, "eth%d");
5018 err = register_netdev(netdev);
5019 if (err)
5020 goto err_register;
5021
5022 e1000_print_device_info(adapter);
5023
5024 return 0;
5025
5026err_register:
c43bc57e
JB
5027 if (!(adapter->flags & FLAG_HAS_AMT))
5028 e1000_release_hw_control(adapter);
bc7f75fa
AK
5029err_eeprom:
5030 if (!e1000_check_reset_block(&adapter->hw))
5031 e1000_phy_hw_reset(&adapter->hw);
c43bc57e 5032err_hw_init:
bc7f75fa 5033
bc7f75fa
AK
5034 kfree(adapter->tx_ring);
5035 kfree(adapter->rx_ring);
5036err_sw_init:
c43bc57e
JB
5037 if (adapter->hw.flash_address)
5038 iounmap(adapter->hw.flash_address);
e82f54ba 5039 e1000e_reset_interrupt_capability(adapter);
c43bc57e 5040err_flashmap:
bc7f75fa
AK
5041 iounmap(adapter->hw.hw_addr);
5042err_ioremap:
5043 free_netdev(netdev);
5044err_alloc_etherdev:
f0f422e5
BA
5045 pci_release_selected_regions(pdev,
5046 pci_select_bars(pdev, IORESOURCE_MEM));
bc7f75fa
AK
5047err_pci_reg:
5048err_dma:
5049 pci_disable_device(pdev);
5050 return err;
5051}
5052
5053/**
5054 * e1000_remove - Device Removal Routine
5055 * @pdev: PCI device information struct
5056 *
5057 * e1000_remove is called by the PCI subsystem to alert the driver
5058 * that it should release a PCI device. The could be caused by a
5059 * Hot-Plug event, or because the driver is going to be removed from
5060 * memory.
5061 **/
5062static void __devexit e1000_remove(struct pci_dev *pdev)
5063{
5064 struct net_device *netdev = pci_get_drvdata(pdev);
5065 struct e1000_adapter *adapter = netdev_priv(netdev);
5066
ad68076e
BA
5067 /*
5068 * flush_scheduled work may reschedule our watchdog task, so
5069 * explicitly disable watchdog tasks from being rescheduled
5070 */
bc7f75fa
AK
5071 set_bit(__E1000_DOWN, &adapter->state);
5072 del_timer_sync(&adapter->watchdog_timer);
5073 del_timer_sync(&adapter->phy_info_timer);
5074
5075 flush_scheduled_work();
5076
ad68076e
BA
5077 /*
5078 * Release control of h/w to f/w. If f/w is AMT enabled, this
5079 * would have already happened in close and is redundant.
5080 */
bc7f75fa
AK
5081 e1000_release_hw_control(adapter);
5082
5083 unregister_netdev(netdev);
5084
5085 if (!e1000_check_reset_block(&adapter->hw))
5086 e1000_phy_hw_reset(&adapter->hw);
5087
4662e82b 5088 e1000e_reset_interrupt_capability(adapter);
bc7f75fa
AK
5089 kfree(adapter->tx_ring);
5090 kfree(adapter->rx_ring);
5091
5092 iounmap(adapter->hw.hw_addr);
5093 if (adapter->hw.flash_address)
5094 iounmap(adapter->hw.flash_address);
f0f422e5
BA
5095 pci_release_selected_regions(pdev,
5096 pci_select_bars(pdev, IORESOURCE_MEM));
bc7f75fa
AK
5097
5098 free_netdev(netdev);
5099
5100 pci_disable_device(pdev);
5101}
5102
5103/* PCI Error Recovery (ERS) */
5104static struct pci_error_handlers e1000_err_handler = {
5105 .error_detected = e1000_io_error_detected,
5106 .slot_reset = e1000_io_slot_reset,
5107 .resume = e1000_io_resume,
5108};
5109
5110static struct pci_device_id e1000_pci_tbl[] = {
bc7f75fa
AK
5111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5115 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5116 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
040babf9
AK
5117 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5118 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5119 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
ad68076e 5120
bc7f75fa
AK
5121 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5122 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5123 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5124 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
ad68076e 5125
bc7f75fa
AK
5126 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5127 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5128 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
ad68076e 5129
4662e82b
BA
5130 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5131
bc7f75fa
AK
5132 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5133 board_80003es2lan },
5134 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5135 board_80003es2lan },
5136 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5137 board_80003es2lan },
5138 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5139 board_80003es2lan },
ad68076e 5140
bc7f75fa
AK
5141 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5142 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5143 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5144 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5145 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5146 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5147 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
ad68076e 5148
bc7f75fa
AK
5149 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5150 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5151 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5152 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5153 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
2f15f9d6 5154 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
97ac8cae
BA
5155 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5156 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5157 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5158
5159 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5160 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5161 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
bc7f75fa 5162
f4187b56
BA
5163 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5164 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5165
bc7f75fa
AK
5166 { } /* terminate list */
5167};
5168MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5169
5170/* PCI Device API Driver */
5171static struct pci_driver e1000_driver = {
5172 .name = e1000e_driver_name,
5173 .id_table = e1000_pci_tbl,
5174 .probe = e1000_probe,
5175 .remove = __devexit_p(e1000_remove),
5176#ifdef CONFIG_PM
ad68076e 5177 /* Power Management Hooks */
bc7f75fa
AK
5178 .suspend = e1000_suspend,
5179 .resume = e1000_resume,
5180#endif
5181 .shutdown = e1000_shutdown,
5182 .err_handler = &e1000_err_handler
5183};
5184
5185/**
5186 * e1000_init_module - Driver Registration Routine
5187 *
5188 * e1000_init_module is the first routine called when the driver is
5189 * loaded. All it does is register with the PCI subsystem.
5190 **/
5191static int __init e1000_init_module(void)
5192{
5193 int ret;
5194 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5195 e1000e_driver_name, e1000e_driver_version);
ad68076e 5196 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
bc7f75fa
AK
5197 e1000e_driver_name);
5198 ret = pci_register_driver(&e1000_driver);
97ac8cae
BA
5199 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
5200 PM_QOS_DEFAULT_VALUE);
5201
bc7f75fa
AK
5202 return ret;
5203}
5204module_init(e1000_init_module);
5205
5206/**
5207 * e1000_exit_module - Driver Exit Cleanup Routine
5208 *
5209 * e1000_exit_module is called just before the driver is removed
5210 * from memory.
5211 **/
5212static void __exit e1000_exit_module(void)
5213{
5214 pci_unregister_driver(&e1000_driver);
97ac8cae 5215 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
bc7f75fa
AK
5216}
5217module_exit(e1000_exit_module);
5218
5219
5220MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5221MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5222MODULE_LICENSE("GPL");
5223MODULE_VERSION(DRV_VERSION);
5224
5225/* e1000_main.c */