]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/e1000e/lib.c
Merge branch 'for-rmk' of git://git.pengutronix.de/git/imx/linux-2.6
[net-next-2.6.git] / drivers / net / e1000e / lib.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
451152d9 4 Copyright(c) 1999 - 2010 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
bc7f75fa
AK
29#include "e1000.h"
30
31enum e1000_mng_mode {
32 e1000_mng_mode_none = 0,
33 e1000_mng_mode_asf,
34 e1000_mng_mode_pt,
35 e1000_mng_mode_ipmi,
36 e1000_mng_mode_host_if_only
37};
38
39#define E1000_FACTPS_MNGCG 0x20000000
40
ad68076e
BA
41/* Intel(R) Active Management Technology signature */
42#define E1000_IAMT_SIGNATURE 0x544D4149
bc7f75fa
AK
43
44/**
45 * e1000e_get_bus_info_pcie - Get PCIe bus information
46 * @hw: pointer to the HW structure
47 *
48 * Determines and stores the system bus information for a particular
49 * network interface. The following bus information is determined and stored:
50 * bus speed, bus width, type (PCIe), and PCIe function.
51 **/
52s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
53{
f4d2dd4c 54 struct e1000_mac_info *mac = &hw->mac;
bc7f75fa
AK
55 struct e1000_bus_info *bus = &hw->bus;
56 struct e1000_adapter *adapter = hw->adapter;
f4d2dd4c 57 u16 pcie_link_status, cap_offset;
bc7f75fa
AK
58
59 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
60 if (!cap_offset) {
61 bus->width = e1000_bus_width_unknown;
62 } else {
63 pci_read_config_word(adapter->pdev,
64 cap_offset + PCIE_LINK_STATUS,
65 &pcie_link_status);
66 bus->width = (enum e1000_bus_width)((pcie_link_status &
67 PCIE_LINK_WIDTH_MASK) >>
68 PCIE_LINK_WIDTH_SHIFT);
69 }
70
f4d2dd4c 71 mac->ops.set_lan_id(hw);
bc7f75fa
AK
72
73 return 0;
74}
75
f4d2dd4c
BA
76/**
77 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
78 *
79 * @hw: pointer to the HW structure
80 *
81 * Determines the LAN function id by reading memory-mapped registers
82 * and swaps the port value if requested.
83 **/
84void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
85{
86 struct e1000_bus_info *bus = &hw->bus;
87 u32 reg;
88
89 /*
90 * The status register reports the correct function number
91 * for the device regardless of function swap state.
92 */
93 reg = er32(STATUS);
94 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
95}
96
97/**
98 * e1000_set_lan_id_single_port - Set LAN id for a single port device
99 * @hw: pointer to the HW structure
100 *
101 * Sets the LAN function id to zero for a single port device.
102 **/
103void e1000_set_lan_id_single_port(struct e1000_hw *hw)
104{
105 struct e1000_bus_info *bus = &hw->bus;
106
107 bus->func = 0;
108}
109
bc7f75fa 110/**
caaddaf8
BA
111 * e1000_clear_vfta_generic - Clear VLAN filter table
112 * @hw: pointer to the HW structure
113 *
114 * Clears the register array which contains the VLAN filter table by
115 * setting all the values to 0.
116 **/
117void e1000_clear_vfta_generic(struct e1000_hw *hw)
118{
119 u32 offset;
120
121 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
122 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
123 e1e_flush();
124 }
125}
126
127/**
128 * e1000_write_vfta_generic - Write value to VLAN filter table
bc7f75fa
AK
129 * @hw: pointer to the HW structure
130 * @offset: register offset in VLAN filter table
131 * @value: register value written to VLAN filter table
132 *
133 * Writes value at the given offset in the register array which stores
134 * the VLAN filter table.
135 **/
caaddaf8 136void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
bc7f75fa
AK
137{
138 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
139 e1e_flush();
140}
141
142/**
143 * e1000e_init_rx_addrs - Initialize receive address's
144 * @hw: pointer to the HW structure
145 * @rar_count: receive address registers
146 *
147 * Setups the receive address registers by setting the base receive address
148 * register to the devices MAC address and clearing all the other receive
149 * address registers to 0.
150 **/
151void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
152{
153 u32 i;
b7a9216c 154 u8 mac_addr[ETH_ALEN] = {0};
bc7f75fa
AK
155
156 /* Setup the receive address */
3bb99fe2 157 e_dbg("Programming MAC Address into RAR[0]\n");
bc7f75fa
AK
158
159 e1000e_rar_set(hw, hw->mac.addr, 0);
160
161 /* Zero out the other (rar_entry_count - 1) receive addresses */
3bb99fe2 162 e_dbg("Clearing RAR[1-%u]\n", rar_count-1);
b7a9216c
BA
163 for (i = 1; i < rar_count; i++)
164 e1000e_rar_set(hw, mac_addr, i);
bc7f75fa
AK
165}
166
608f8a0d
BA
167/**
168 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
169 * @hw: pointer to the HW structure
170 *
171 * Checks the nvm for an alternate MAC address. An alternate MAC address
172 * can be setup by pre-boot software and must be treated like a permanent
173 * address and must override the actual permanent MAC address. If an
174 * alternate MAC address is found it is programmed into RAR0, replacing
175 * the permanent address that was installed into RAR0 by the Si on reset.
176 * This function will return SUCCESS unless it encounters an error while
177 * reading the EEPROM.
178 **/
179s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
180{
181 u32 i;
182 s32 ret_val = 0;
183 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
184 u8 alt_mac_addr[ETH_ALEN];
185
1aef70ef
BA
186 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
187 if (ret_val)
188 goto out;
189
190 /* Check for LOM (vs. NIC) or one of two valid mezzanine cards */
191 if (!((nvm_data & NVM_COMPAT_LOM) ||
192 (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_DUAL) ||
193 (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)))
194 goto out;
195
608f8a0d
BA
196 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
197 &nvm_alt_mac_addr_offset);
198 if (ret_val) {
199 e_dbg("NVM Read Error\n");
200 goto out;
201 }
202
203 if (nvm_alt_mac_addr_offset == 0xFFFF) {
204 /* There is no Alternate MAC Address */
205 goto out;
206 }
207
208 if (hw->bus.func == E1000_FUNC_1)
209 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
210 for (i = 0; i < ETH_ALEN; i += 2) {
211 offset = nvm_alt_mac_addr_offset + (i >> 1);
212 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
213 if (ret_val) {
214 e_dbg("NVM Read Error\n");
215 goto out;
216 }
217
218 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
219 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
220 }
221
222 /* if multicast bit is set, the alternate address will not be used */
223 if (alt_mac_addr[0] & 0x01) {
224 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
225 goto out;
226 }
227
228 /*
229 * We have a valid alternate MAC address, and we want to treat it the
230 * same as the normal permanent MAC address stored by the HW into the
231 * RAR. Do this by mapping this address into RAR0.
232 */
233 e1000e_rar_set(hw, alt_mac_addr, 0);
234
235out:
236 return ret_val;
237}
238
bc7f75fa
AK
239/**
240 * e1000e_rar_set - Set receive address register
241 * @hw: pointer to the HW structure
242 * @addr: pointer to the receive address
243 * @index: receive address array register
244 *
245 * Sets the receive address array register at index to the address passed
246 * in by addr.
247 **/
248void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
249{
250 u32 rar_low, rar_high;
251
ad68076e
BA
252 /*
253 * HW expects these in little endian so we reverse the byte order
bc7f75fa
AK
254 * from network order (big endian) to little endian
255 */
256 rar_low = ((u32) addr[0] |
257 ((u32) addr[1] << 8) |
258 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
259
260 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
261
b7a9216c
BA
262 /* If MAC address zero, no need to set the AV bit */
263 if (rar_low || rar_high)
264 rar_high |= E1000_RAH_AV;
bc7f75fa 265
b7a9216c
BA
266 /*
267 * Some bridges will combine consecutive 32-bit writes into
268 * a single burst write, which will malfunction on some parts.
269 * The flushes avoid this.
270 */
271 ew32(RAL(index), rar_low);
272 e1e_flush();
273 ew32(RAH(index), rar_high);
274 e1e_flush();
bc7f75fa
AK
275}
276
bc7f75fa
AK
277/**
278 * e1000_hash_mc_addr - Generate a multicast hash value
279 * @hw: pointer to the HW structure
280 * @mc_addr: pointer to a multicast address
281 *
282 * Generates a multicast address hash value which is used to determine
283 * the multicast filter table array address and new table value. See
284 * e1000_mta_set_generic()
285 **/
286static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
287{
288 u32 hash_value, hash_mask;
289 u8 bit_shift = 0;
290
291 /* Register count multiplied by bits per register */
292 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
293
ad68076e
BA
294 /*
295 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
296 * where 0xFF would still fall within the hash mask.
297 */
bc7f75fa
AK
298 while (hash_mask >> bit_shift != 0xFF)
299 bit_shift++;
300
ad68076e
BA
301 /*
302 * The portion of the address that is used for the hash table
bc7f75fa
AK
303 * is determined by the mc_filter_type setting.
304 * The algorithm is such that there is a total of 8 bits of shifting.
305 * The bit_shift for a mc_filter_type of 0 represents the number of
306 * left-shifts where the MSB of mc_addr[5] would still fall within
307 * the hash_mask. Case 0 does this exactly. Since there are a total
308 * of 8 bits of shifting, then mc_addr[4] will shift right the
309 * remaining number of bits. Thus 8 - bit_shift. The rest of the
310 * cases are a variation of this algorithm...essentially raising the
311 * number of bits to shift mc_addr[5] left, while still keeping the
312 * 8-bit shifting total.
ad68076e
BA
313 *
314 * For example, given the following Destination MAC Address and an
bc7f75fa
AK
315 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
316 * we can see that the bit_shift for case 0 is 4. These are the hash
317 * values resulting from each mc_filter_type...
318 * [0] [1] [2] [3] [4] [5]
319 * 01 AA 00 12 34 56
320 * LSB MSB
321 *
322 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
323 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
324 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
325 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
326 */
327 switch (hw->mac.mc_filter_type) {
328 default:
329 case 0:
330 break;
331 case 1:
332 bit_shift += 1;
333 break;
334 case 2:
335 bit_shift += 2;
336 break;
337 case 3:
338 bit_shift += 4;
339 break;
340 }
341
342 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
343 (((u16) mc_addr[5]) << bit_shift)));
344
345 return hash_value;
346}
347
348/**
e2de3eb6 349 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
bc7f75fa
AK
350 * @hw: pointer to the HW structure
351 * @mc_addr_list: array of multicast addresses to program
352 * @mc_addr_count: number of multicast addresses to program
bc7f75fa 353 *
ab8932f3 354 * Updates entire Multicast Table Array.
bc7f75fa 355 * The caller must have a packed mc_addr_list of multicast addresses.
bc7f75fa 356 **/
e2de3eb6 357void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
ab8932f3 358 u8 *mc_addr_list, u32 mc_addr_count)
bc7f75fa 359{
ab8932f3
BA
360 u32 hash_value, hash_bit, hash_reg;
361 int i;
bc7f75fa 362
ab8932f3
BA
363 /* clear mta_shadow */
364 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
bc7f75fa 365
ab8932f3
BA
366 /* update mta_shadow from mc_addr_list */
367 for (i = 0; (u32) i < mc_addr_count; i++) {
bc7f75fa 368 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
ab8932f3 369
a72d2b2c
JB
370 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
371 hash_bit = hash_value & 0x1F;
a72d2b2c 372
ab8932f3
BA
373 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
374 mc_addr_list += (ETH_ALEN);
375 }
a72d2b2c 376
ab8932f3
BA
377 /* replace the entire MTA table */
378 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
379 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
a72d2b2c 380 e1e_flush();
bc7f75fa
AK
381}
382
383/**
384 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
385 * @hw: pointer to the HW structure
386 *
387 * Clears the base hardware counters by reading the counter registers.
388 **/
389void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
390{
99673d9b
BA
391 er32(CRCERRS);
392 er32(SYMERRS);
393 er32(MPC);
394 er32(SCC);
395 er32(ECOL);
396 er32(MCC);
397 er32(LATECOL);
398 er32(COLC);
399 er32(DC);
400 er32(SEC);
401 er32(RLEC);
402 er32(XONRXC);
403 er32(XONTXC);
404 er32(XOFFRXC);
405 er32(XOFFTXC);
406 er32(FCRUC);
407 er32(GPRC);
408 er32(BPRC);
409 er32(MPRC);
410 er32(GPTC);
411 er32(GORCL);
412 er32(GORCH);
413 er32(GOTCL);
414 er32(GOTCH);
415 er32(RNBC);
416 er32(RUC);
417 er32(RFC);
418 er32(ROC);
419 er32(RJC);
420 er32(TORL);
421 er32(TORH);
422 er32(TOTL);
423 er32(TOTH);
424 er32(TPR);
425 er32(TPT);
426 er32(MPTC);
427 er32(BPTC);
bc7f75fa
AK
428}
429
430/**
431 * e1000e_check_for_copper_link - Check for link (Copper)
432 * @hw: pointer to the HW structure
433 *
434 * Checks to see of the link status of the hardware has changed. If a
435 * change in link status has been detected, then we read the PHY registers
436 * to get the current speed/duplex if link exists.
437 **/
438s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
439{
440 struct e1000_mac_info *mac = &hw->mac;
441 s32 ret_val;
442 bool link;
443
ad68076e
BA
444 /*
445 * We only want to go out to the PHY registers to see if Auto-Neg
bc7f75fa
AK
446 * has completed and/or if our link status has changed. The
447 * get_link_status flag is set upon receiving a Link Status
448 * Change or Rx Sequence Error interrupt.
449 */
450 if (!mac->get_link_status)
451 return 0;
452
ad68076e
BA
453 /*
454 * First we want to see if the MII Status Register reports
bc7f75fa
AK
455 * link. If so, then we want to get the current speed/duplex
456 * of the PHY.
457 */
458 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
459 if (ret_val)
460 return ret_val;
461
462 if (!link)
463 return ret_val; /* No link detected */
464
564ea9bb 465 mac->get_link_status = false;
bc7f75fa 466
ad68076e
BA
467 /*
468 * Check if there was DownShift, must be checked
469 * immediately after link-up
470 */
bc7f75fa
AK
471 e1000e_check_downshift(hw);
472
ad68076e
BA
473 /*
474 * If we are forcing speed/duplex, then we simply return since
bc7f75fa
AK
475 * we have already determined whether we have link or not.
476 */
477 if (!mac->autoneg) {
478 ret_val = -E1000_ERR_CONFIG;
479 return ret_val;
480 }
481
ad68076e
BA
482 /*
483 * Auto-Neg is enabled. Auto Speed Detection takes care
bc7f75fa
AK
484 * of MAC speed/duplex configuration. So we only need to
485 * configure Collision Distance in the MAC.
486 */
487 e1000e_config_collision_dist(hw);
488
ad68076e
BA
489 /*
490 * Configure Flow Control now that Auto-Neg has completed.
bc7f75fa
AK
491 * First, we need to restore the desired flow control
492 * settings because we may have had to re-autoneg with a
493 * different link partner.
494 */
495 ret_val = e1000e_config_fc_after_link_up(hw);
496 if (ret_val) {
3bb99fe2 497 e_dbg("Error configuring flow control\n");
bc7f75fa
AK
498 }
499
500 return ret_val;
501}
502
503/**
504 * e1000e_check_for_fiber_link - Check for link (Fiber)
505 * @hw: pointer to the HW structure
506 *
507 * Checks for link up on the hardware. If link is not up and we have
508 * a signal, then we need to force link up.
509 **/
510s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
511{
512 struct e1000_mac_info *mac = &hw->mac;
513 u32 rxcw;
514 u32 ctrl;
515 u32 status;
516 s32 ret_val;
517
518 ctrl = er32(CTRL);
519 status = er32(STATUS);
520 rxcw = er32(RXCW);
521
ad68076e
BA
522 /*
523 * If we don't have link (auto-negotiation failed or link partner
bc7f75fa
AK
524 * cannot auto-negotiate), the cable is plugged in (we have signal),
525 * and our link partner is not trying to auto-negotiate with us (we
526 * are receiving idles or data), we need to force link up. We also
527 * need to give auto-negotiation time to complete, in case the cable
528 * was just plugged in. The autoneg_failed flag does this.
529 */
530 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
531 if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
532 (!(rxcw & E1000_RXCW_C))) {
533 if (mac->autoneg_failed == 0) {
534 mac->autoneg_failed = 1;
535 return 0;
536 }
3bb99fe2 537 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
bc7f75fa
AK
538
539 /* Disable auto-negotiation in the TXCW register */
540 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
541
542 /* Force link-up and also force full-duplex. */
543 ctrl = er32(CTRL);
544 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
545 ew32(CTRL, ctrl);
546
547 /* Configure Flow Control after forcing link up. */
548 ret_val = e1000e_config_fc_after_link_up(hw);
549 if (ret_val) {
3bb99fe2 550 e_dbg("Error configuring flow control\n");
bc7f75fa
AK
551 return ret_val;
552 }
553 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
ad68076e
BA
554 /*
555 * If we are forcing link and we are receiving /C/ ordered
bc7f75fa
AK
556 * sets, re-enable auto-negotiation in the TXCW register
557 * and disable forced link in the Device Control register
558 * in an attempt to auto-negotiate with our link partner.
559 */
3bb99fe2 560 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
bc7f75fa
AK
561 ew32(TXCW, mac->txcw);
562 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
563
612e244c 564 mac->serdes_has_link = true;
bc7f75fa
AK
565 }
566
567 return 0;
568}
569
570/**
571 * e1000e_check_for_serdes_link - Check for link (Serdes)
572 * @hw: pointer to the HW structure
573 *
574 * Checks for link up on the hardware. If link is not up and we have
575 * a signal, then we need to force link up.
576 **/
577s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
578{
579 struct e1000_mac_info *mac = &hw->mac;
580 u32 rxcw;
581 u32 ctrl;
582 u32 status;
583 s32 ret_val;
584
585 ctrl = er32(CTRL);
586 status = er32(STATUS);
587 rxcw = er32(RXCW);
588
ad68076e
BA
589 /*
590 * If we don't have link (auto-negotiation failed or link partner
bc7f75fa
AK
591 * cannot auto-negotiate), and our link partner is not trying to
592 * auto-negotiate with us (we are receiving idles or data),
593 * we need to force link up. We also need to give auto-negotiation
594 * time to complete.
595 */
596 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
597 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
598 if (mac->autoneg_failed == 0) {
599 mac->autoneg_failed = 1;
600 return 0;
601 }
3bb99fe2 602 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
bc7f75fa
AK
603
604 /* Disable auto-negotiation in the TXCW register */
605 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
606
607 /* Force link-up and also force full-duplex. */
608 ctrl = er32(CTRL);
609 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
610 ew32(CTRL, ctrl);
611
612 /* Configure Flow Control after forcing link up. */
613 ret_val = e1000e_config_fc_after_link_up(hw);
614 if (ret_val) {
3bb99fe2 615 e_dbg("Error configuring flow control\n");
bc7f75fa
AK
616 return ret_val;
617 }
618 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
ad68076e
BA
619 /*
620 * If we are forcing link and we are receiving /C/ ordered
bc7f75fa
AK
621 * sets, re-enable auto-negotiation in the TXCW register
622 * and disable forced link in the Device Control register
623 * in an attempt to auto-negotiate with our link partner.
624 */
3bb99fe2 625 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
bc7f75fa
AK
626 ew32(TXCW, mac->txcw);
627 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
628
612e244c 629 mac->serdes_has_link = true;
bc7f75fa 630 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
ad68076e
BA
631 /*
632 * If we force link for non-auto-negotiation switch, check
bc7f75fa
AK
633 * link status based on MAC synchronization for internal
634 * serdes media type.
635 */
636 /* SYNCH bit and IV bit are sticky. */
637 udelay(10);
63dcf3d3
BA
638 rxcw = er32(RXCW);
639 if (rxcw & E1000_RXCW_SYNCH) {
bc7f75fa 640 if (!(rxcw & E1000_RXCW_IV)) {
63dcf3d3 641 mac->serdes_has_link = true;
3bb99fe2 642 e_dbg("SERDES: Link up - forced.\n");
bc7f75fa
AK
643 }
644 } else {
63dcf3d3 645 mac->serdes_has_link = false;
3bb99fe2 646 e_dbg("SERDES: Link down - force failed.\n");
bc7f75fa
AK
647 }
648 }
649
650 if (E1000_TXCW_ANE & er32(TXCW)) {
651 status = er32(STATUS);
63dcf3d3
BA
652 if (status & E1000_STATUS_LU) {
653 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
654 udelay(10);
655 rxcw = er32(RXCW);
656 if (rxcw & E1000_RXCW_SYNCH) {
657 if (!(rxcw & E1000_RXCW_IV)) {
658 mac->serdes_has_link = true;
3bb99fe2 659 e_dbg("SERDES: Link up - autoneg "
3ad2f3fb 660 "completed successfully.\n");
63dcf3d3
BA
661 } else {
662 mac->serdes_has_link = false;
3bb99fe2 663 e_dbg("SERDES: Link down - invalid"
63dcf3d3
BA
664 "codewords detected in autoneg.\n");
665 }
666 } else {
667 mac->serdes_has_link = false;
3bb99fe2 668 e_dbg("SERDES: Link down - no sync.\n");
63dcf3d3
BA
669 }
670 } else {
671 mac->serdes_has_link = false;
3bb99fe2 672 e_dbg("SERDES: Link down - autoneg failed\n");
63dcf3d3 673 }
bc7f75fa
AK
674 }
675
676 return 0;
677}
678
679/**
680 * e1000_set_default_fc_generic - Set flow control default values
681 * @hw: pointer to the HW structure
682 *
683 * Read the EEPROM for the default values for flow control and store the
684 * values.
685 **/
686static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
687{
bc7f75fa
AK
688 s32 ret_val;
689 u16 nvm_data;
690
ad68076e
BA
691 /*
692 * Read and store word 0x0F of the EEPROM. This word contains bits
bc7f75fa
AK
693 * that determine the hardware's default PAUSE (flow control) mode,
694 * a bit that determines whether the HW defaults to enabling or
695 * disabling auto-negotiation, and the direction of the
696 * SW defined pins. If there is no SW over-ride of the flow
697 * control setting, then the variable hw->fc will
698 * be initialized based on a value in the EEPROM.
699 */
700 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
701
702 if (ret_val) {
3bb99fe2 703 e_dbg("NVM Read Error\n");
bc7f75fa
AK
704 return ret_val;
705 }
706
707 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
5c48ef3e 708 hw->fc.requested_mode = e1000_fc_none;
bc7f75fa
AK
709 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
710 NVM_WORD0F_ASM_DIR)
5c48ef3e 711 hw->fc.requested_mode = e1000_fc_tx_pause;
bc7f75fa 712 else
5c48ef3e 713 hw->fc.requested_mode = e1000_fc_full;
bc7f75fa
AK
714
715 return 0;
716}
717
718/**
719 * e1000e_setup_link - Setup flow control and link settings
720 * @hw: pointer to the HW structure
721 *
722 * Determines which flow control settings to use, then configures flow
723 * control. Calls the appropriate media-specific link configuration
724 * function. Assuming the adapter has a valid link partner, a valid link
725 * should be established. Assumes the hardware has previously been reset
726 * and the transmitter and receiver are not enabled.
727 **/
728s32 e1000e_setup_link(struct e1000_hw *hw)
729{
730 struct e1000_mac_info *mac = &hw->mac;
731 s32 ret_val;
732
ad68076e
BA
733 /*
734 * In the case of the phy reset being blocked, we already have a link.
bc7f75fa
AK
735 * We do not need to set it up again.
736 */
737 if (e1000_check_reset_block(hw))
738 return 0;
739
309af40b 740 /*
5c48ef3e
BA
741 * If requested flow control is set to default, set flow control
742 * based on the EEPROM flow control settings.
309af40b 743 */
5c48ef3e 744 if (hw->fc.requested_mode == e1000_fc_default) {
309af40b
AK
745 ret_val = e1000_set_default_fc_generic(hw);
746 if (ret_val)
747 return ret_val;
748 }
bc7f75fa 749
ad68076e 750 /*
5c48ef3e
BA
751 * Save off the requested flow control mode for use later. Depending
752 * on the link partner's capabilities, we may or may not use this mode.
bc7f75fa 753 */
5c48ef3e 754 hw->fc.current_mode = hw->fc.requested_mode;
bc7f75fa 755
3bb99fe2 756 e_dbg("After fix-ups FlowControl is now = %x\n",
5c48ef3e 757 hw->fc.current_mode);
bc7f75fa
AK
758
759 /* Call the necessary media_type subroutine to configure the link. */
760 ret_val = mac->ops.setup_physical_interface(hw);
761 if (ret_val)
762 return ret_val;
763
ad68076e
BA
764 /*
765 * Initialize the flow control address, type, and PAUSE timer
bc7f75fa
AK
766 * registers to their default values. This is done even if flow
767 * control is disabled, because it does not hurt anything to
768 * initialize these registers.
769 */
3bb99fe2 770 e_dbg("Initializing the Flow Control address, type and timer regs\n");
bc7f75fa
AK
771 ew32(FCT, FLOW_CONTROL_TYPE);
772 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
773 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
774
318a94d6 775 ew32(FCTTV, hw->fc.pause_time);
bc7f75fa
AK
776
777 return e1000e_set_fc_watermarks(hw);
778}
779
780/**
781 * e1000_commit_fc_settings_generic - Configure flow control
782 * @hw: pointer to the HW structure
783 *
784 * Write the flow control settings to the Transmit Config Word Register (TXCW)
785 * base on the flow control settings in e1000_mac_info.
786 **/
787static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
788{
789 struct e1000_mac_info *mac = &hw->mac;
790 u32 txcw;
791
ad68076e
BA
792 /*
793 * Check for a software override of the flow control settings, and
bc7f75fa
AK
794 * setup the device accordingly. If auto-negotiation is enabled, then
795 * software will have to set the "PAUSE" bits to the correct value in
796 * the Transmit Config Word Register (TXCW) and re-start auto-
797 * negotiation. However, if auto-negotiation is disabled, then
798 * software will have to manually configure the two flow control enable
799 * bits in the CTRL register.
800 *
801 * The possible values of the "fc" parameter are:
802 * 0: Flow control is completely disabled
803 * 1: Rx flow control is enabled (we can receive pause frames,
804 * but not send pause frames).
805 * 2: Tx flow control is enabled (we can send pause frames but we
806 * do not support receiving pause frames).
ad68076e 807 * 3: Both Rx and Tx flow control (symmetric) are enabled.
bc7f75fa 808 */
5c48ef3e 809 switch (hw->fc.current_mode) {
bc7f75fa
AK
810 case e1000_fc_none:
811 /* Flow control completely disabled by a software over-ride. */
812 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
813 break;
814 case e1000_fc_rx_pause:
ad68076e
BA
815 /*
816 * Rx Flow control is enabled and Tx Flow control is disabled
bc7f75fa 817 * by a software over-ride. Since there really isn't a way to
ad68076e
BA
818 * advertise that we are capable of Rx Pause ONLY, we will
819 * advertise that we support both symmetric and asymmetric Rx
bc7f75fa
AK
820 * PAUSE. Later, we will disable the adapter's ability to send
821 * PAUSE frames.
822 */
823 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
824 break;
825 case e1000_fc_tx_pause:
ad68076e
BA
826 /*
827 * Tx Flow control is enabled, and Rx Flow control is disabled,
bc7f75fa
AK
828 * by a software over-ride.
829 */
830 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
831 break;
832 case e1000_fc_full:
ad68076e
BA
833 /*
834 * Flow control (both Rx and Tx) is enabled by a software
bc7f75fa
AK
835 * over-ride.
836 */
837 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
838 break;
839 default:
3bb99fe2 840 e_dbg("Flow control param set incorrectly\n");
bc7f75fa
AK
841 return -E1000_ERR_CONFIG;
842 break;
843 }
844
845 ew32(TXCW, txcw);
846 mac->txcw = txcw;
847
848 return 0;
849}
850
851/**
852 * e1000_poll_fiber_serdes_link_generic - Poll for link up
853 * @hw: pointer to the HW structure
854 *
855 * Polls for link up by reading the status register, if link fails to come
856 * up with auto-negotiation, then the link is forced if a signal is detected.
857 **/
858static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
859{
860 struct e1000_mac_info *mac = &hw->mac;
861 u32 i, status;
862 s32 ret_val;
863
ad68076e
BA
864 /*
865 * If we have a signal (the cable is plugged in, or assumed true for
bc7f75fa
AK
866 * serdes media) then poll for a "Link-Up" indication in the Device
867 * Status Register. Time-out if a link isn't seen in 500 milliseconds
868 * seconds (Auto-negotiation should complete in less than 500
869 * milliseconds even if the other end is doing it in SW).
870 */
871 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
872 msleep(10);
873 status = er32(STATUS);
874 if (status & E1000_STATUS_LU)
875 break;
876 }
877 if (i == FIBER_LINK_UP_LIMIT) {
3bb99fe2 878 e_dbg("Never got a valid link from auto-neg!!!\n");
bc7f75fa 879 mac->autoneg_failed = 1;
ad68076e
BA
880 /*
881 * AutoNeg failed to achieve a link, so we'll call
bc7f75fa
AK
882 * mac->check_for_link. This routine will force the
883 * link up if we detect a signal. This will allow us to
884 * communicate with non-autonegotiating link partners.
885 */
886 ret_val = mac->ops.check_for_link(hw);
887 if (ret_val) {
3bb99fe2 888 e_dbg("Error while checking for link\n");
bc7f75fa
AK
889 return ret_val;
890 }
891 mac->autoneg_failed = 0;
892 } else {
893 mac->autoneg_failed = 0;
3bb99fe2 894 e_dbg("Valid Link Found\n");
bc7f75fa
AK
895 }
896
897 return 0;
898}
899
900/**
901 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
902 * @hw: pointer to the HW structure
903 *
904 * Configures collision distance and flow control for fiber and serdes
905 * links. Upon successful setup, poll for link.
906 **/
907s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
908{
909 u32 ctrl;
910 s32 ret_val;
911
912 ctrl = er32(CTRL);
913
914 /* Take the link out of reset */
915 ctrl &= ~E1000_CTRL_LRST;
916
917 e1000e_config_collision_dist(hw);
918
919 ret_val = e1000_commit_fc_settings_generic(hw);
920 if (ret_val)
921 return ret_val;
922
ad68076e
BA
923 /*
924 * Since auto-negotiation is enabled, take the link out of reset (the
bc7f75fa
AK
925 * link will be in reset, because we previously reset the chip). This
926 * will restart auto-negotiation. If auto-negotiation is successful
927 * then the link-up status bit will be set and the flow control enable
928 * bits (RFCE and TFCE) will be set according to their negotiated value.
929 */
3bb99fe2 930 e_dbg("Auto-negotiation enabled\n");
bc7f75fa
AK
931
932 ew32(CTRL, ctrl);
933 e1e_flush();
934 msleep(1);
935
ad68076e
BA
936 /*
937 * For these adapters, the SW definable pin 1 is set when the optics
bc7f75fa
AK
938 * detect a signal. If we have a signal, then poll for a "Link-Up"
939 * indication.
940 */
318a94d6 941 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
bc7f75fa
AK
942 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
943 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
944 } else {
3bb99fe2 945 e_dbg("No signal detected\n");
bc7f75fa
AK
946 }
947
948 return 0;
949}
950
951/**
952 * e1000e_config_collision_dist - Configure collision distance
953 * @hw: pointer to the HW structure
954 *
955 * Configures the collision distance to the default value and is used
956 * during link setup. Currently no func pointer exists and all
957 * implementations are handled in the generic version of this function.
958 **/
959void e1000e_config_collision_dist(struct e1000_hw *hw)
960{
961 u32 tctl;
962
963 tctl = er32(TCTL);
964
965 tctl &= ~E1000_TCTL_COLD;
966 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
967
968 ew32(TCTL, tctl);
969 e1e_flush();
970}
971
972/**
973 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
974 * @hw: pointer to the HW structure
975 *
976 * Sets the flow control high/low threshold (watermark) registers. If
977 * flow control XON frame transmission is enabled, then set XON frame
ad68076e 978 * transmission as well.
bc7f75fa
AK
979 **/
980s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
981{
bc7f75fa
AK
982 u32 fcrtl = 0, fcrth = 0;
983
ad68076e
BA
984 /*
985 * Set the flow control receive threshold registers. Normally,
bc7f75fa
AK
986 * these registers will be set to a default threshold that may be
987 * adjusted later by the driver's runtime code. However, if the
988 * ability to transmit pause frames is not enabled, then these
989 * registers will be set to 0.
990 */
5c48ef3e 991 if (hw->fc.current_mode & e1000_fc_tx_pause) {
ad68076e
BA
992 /*
993 * We need to set up the Receive Threshold high and low water
bc7f75fa
AK
994 * marks as well as (optionally) enabling the transmission of
995 * XON frames.
996 */
318a94d6 997 fcrtl = hw->fc.low_water;
bc7f75fa 998 fcrtl |= E1000_FCRTL_XONE;
318a94d6 999 fcrth = hw->fc.high_water;
bc7f75fa
AK
1000 }
1001 ew32(FCRTL, fcrtl);
1002 ew32(FCRTH, fcrth);
1003
1004 return 0;
1005}
1006
1007/**
1008 * e1000e_force_mac_fc - Force the MAC's flow control settings
1009 * @hw: pointer to the HW structure
1010 *
1011 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
1012 * device control register to reflect the adapter settings. TFCE and RFCE
1013 * need to be explicitly set by software when a copper PHY is used because
1014 * autonegotiation is managed by the PHY rather than the MAC. Software must
1015 * also configure these bits when link is forced on a fiber connection.
1016 **/
1017s32 e1000e_force_mac_fc(struct e1000_hw *hw)
1018{
bc7f75fa
AK
1019 u32 ctrl;
1020
1021 ctrl = er32(CTRL);
1022
ad68076e
BA
1023 /*
1024 * Because we didn't get link via the internal auto-negotiation
bc7f75fa
AK
1025 * mechanism (we either forced link or we got link via PHY
1026 * auto-neg), we have to manually enable/disable transmit an
1027 * receive flow control.
1028 *
1029 * The "Case" statement below enables/disable flow control
5c48ef3e 1030 * according to the "hw->fc.current_mode" parameter.
bc7f75fa
AK
1031 *
1032 * The possible values of the "fc" parameter are:
1033 * 0: Flow control is completely disabled
1034 * 1: Rx flow control is enabled (we can receive pause
1035 * frames but not send pause frames).
1036 * 2: Tx flow control is enabled (we can send pause frames
1037 * frames but we do not receive pause frames).
ad68076e 1038 * 3: Both Rx and Tx flow control (symmetric) is enabled.
bc7f75fa
AK
1039 * other: No other values should be possible at this point.
1040 */
3bb99fe2 1041 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
bc7f75fa 1042
5c48ef3e 1043 switch (hw->fc.current_mode) {
bc7f75fa
AK
1044 case e1000_fc_none:
1045 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1046 break;
1047 case e1000_fc_rx_pause:
1048 ctrl &= (~E1000_CTRL_TFCE);
1049 ctrl |= E1000_CTRL_RFCE;
1050 break;
1051 case e1000_fc_tx_pause:
1052 ctrl &= (~E1000_CTRL_RFCE);
1053 ctrl |= E1000_CTRL_TFCE;
1054 break;
1055 case e1000_fc_full:
1056 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1057 break;
1058 default:
3bb99fe2 1059 e_dbg("Flow control param set incorrectly\n");
bc7f75fa
AK
1060 return -E1000_ERR_CONFIG;
1061 }
1062
1063 ew32(CTRL, ctrl);
1064
1065 return 0;
1066}
1067
1068/**
1069 * e1000e_config_fc_after_link_up - Configures flow control after link
1070 * @hw: pointer to the HW structure
1071 *
1072 * Checks the status of auto-negotiation after link up to ensure that the
1073 * speed and duplex were not forced. If the link needed to be forced, then
1074 * flow control needs to be forced also. If auto-negotiation is enabled
1075 * and did not fail, then we configure flow control based on our link
1076 * partner.
1077 **/
1078s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1079{
1080 struct e1000_mac_info *mac = &hw->mac;
1081 s32 ret_val = 0;
1082 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1083 u16 speed, duplex;
1084
ad68076e
BA
1085 /*
1086 * Check for the case where we have fiber media and auto-neg failed
bc7f75fa
AK
1087 * so we had to force link. In this case, we need to force the
1088 * configuration of the MAC to match the "fc" parameter.
1089 */
1090 if (mac->autoneg_failed) {
318a94d6
JK
1091 if (hw->phy.media_type == e1000_media_type_fiber ||
1092 hw->phy.media_type == e1000_media_type_internal_serdes)
bc7f75fa
AK
1093 ret_val = e1000e_force_mac_fc(hw);
1094 } else {
318a94d6 1095 if (hw->phy.media_type == e1000_media_type_copper)
bc7f75fa
AK
1096 ret_val = e1000e_force_mac_fc(hw);
1097 }
1098
1099 if (ret_val) {
3bb99fe2 1100 e_dbg("Error forcing flow control settings\n");
bc7f75fa
AK
1101 return ret_val;
1102 }
1103
ad68076e
BA
1104 /*
1105 * Check for the case where we have copper media and auto-neg is
bc7f75fa
AK
1106 * enabled. In this case, we need to check and see if Auto-Neg
1107 * has completed, and if so, how the PHY and link partner has
1108 * flow control configured.
1109 */
318a94d6 1110 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
ad68076e
BA
1111 /*
1112 * Read the MII Status Register and check to see if AutoNeg
bc7f75fa
AK
1113 * has completed. We read this twice because this reg has
1114 * some "sticky" (latched) bits.
1115 */
1116 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1117 if (ret_val)
1118 return ret_val;
1119 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1120 if (ret_val)
1121 return ret_val;
1122
1123 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
3bb99fe2 1124 e_dbg("Copper PHY and Auto Neg "
bc7f75fa
AK
1125 "has not completed.\n");
1126 return ret_val;
1127 }
1128
ad68076e
BA
1129 /*
1130 * The AutoNeg process has completed, so we now need to
bc7f75fa
AK
1131 * read both the Auto Negotiation Advertisement
1132 * Register (Address 4) and the Auto_Negotiation Base
1133 * Page Ability Register (Address 5) to determine how
1134 * flow control was negotiated.
1135 */
1136 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1137 if (ret_val)
1138 return ret_val;
1139 ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1140 if (ret_val)
1141 return ret_val;
1142
ad68076e
BA
1143 /*
1144 * Two bits in the Auto Negotiation Advertisement Register
bc7f75fa
AK
1145 * (Address 4) and two bits in the Auto Negotiation Base
1146 * Page Ability Register (Address 5) determine flow control
1147 * for both the PHY and the link partner. The following
1148 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1149 * 1999, describes these PAUSE resolution bits and how flow
1150 * control is determined based upon these settings.
1151 * NOTE: DC = Don't Care
1152 *
1153 * LOCAL DEVICE | LINK PARTNER
1154 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1155 *-------|---------|-------|---------|--------------------
1156 * 0 | 0 | DC | DC | e1000_fc_none
1157 * 0 | 1 | 0 | DC | e1000_fc_none
1158 * 0 | 1 | 1 | 0 | e1000_fc_none
1159 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1160 * 1 | 0 | 0 | DC | e1000_fc_none
1161 * 1 | DC | 1 | DC | e1000_fc_full
1162 * 1 | 1 | 0 | 0 | e1000_fc_none
1163 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1164 *
ad68076e 1165 * Are both PAUSE bits set to 1? If so, this implies
bc7f75fa
AK
1166 * Symmetric Flow Control is enabled at both ends. The
1167 * ASM_DIR bits are irrelevant per the spec.
1168 *
1169 * For Symmetric Flow Control:
1170 *
1171 * LOCAL DEVICE | LINK PARTNER
1172 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1173 *-------|---------|-------|---------|--------------------
1174 * 1 | DC | 1 | DC | E1000_fc_full
1175 *
1176 */
1177 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1178 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
ad68076e
BA
1179 /*
1180 * Now we need to check if the user selected Rx ONLY
bc7f75fa 1181 * of pause frames. In this case, we had to advertise
ad68076e 1182 * FULL flow control because we could not advertise Rx
bc7f75fa
AK
1183 * ONLY. Hence, we must now check to see if we need to
1184 * turn OFF the TRANSMISSION of PAUSE frames.
1185 */
5c48ef3e
BA
1186 if (hw->fc.requested_mode == e1000_fc_full) {
1187 hw->fc.current_mode = e1000_fc_full;
3bb99fe2 1188 e_dbg("Flow Control = FULL.\r\n");
bc7f75fa 1189 } else {
5c48ef3e 1190 hw->fc.current_mode = e1000_fc_rx_pause;
3bb99fe2 1191 e_dbg("Flow Control = "
bc7f75fa
AK
1192 "RX PAUSE frames only.\r\n");
1193 }
1194 }
ad68076e
BA
1195 /*
1196 * For receiving PAUSE frames ONLY.
bc7f75fa
AK
1197 *
1198 * LOCAL DEVICE | LINK PARTNER
1199 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1200 *-------|---------|-------|---------|--------------------
1201 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
bc7f75fa
AK
1202 */
1203 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1204 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1205 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1206 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
5c48ef3e 1207 hw->fc.current_mode = e1000_fc_tx_pause;
3bb99fe2 1208 e_dbg("Flow Control = Tx PAUSE frames only.\r\n");
bc7f75fa 1209 }
ad68076e
BA
1210 /*
1211 * For transmitting PAUSE frames ONLY.
bc7f75fa
AK
1212 *
1213 * LOCAL DEVICE | LINK PARTNER
1214 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1215 *-------|---------|-------|---------|--------------------
1216 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
bc7f75fa
AK
1217 */
1218 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1219 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1220 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1221 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
5c48ef3e 1222 hw->fc.current_mode = e1000_fc_rx_pause;
3bb99fe2 1223 e_dbg("Flow Control = Rx PAUSE frames only.\r\n");
de92d84e
JB
1224 } else {
1225 /*
1226 * Per the IEEE spec, at this point flow control
1227 * should be disabled.
1228 */
5c48ef3e 1229 hw->fc.current_mode = e1000_fc_none;
3bb99fe2 1230 e_dbg("Flow Control = NONE.\r\n");
bc7f75fa
AK
1231 }
1232
ad68076e
BA
1233 /*
1234 * Now we need to do one last check... If we auto-
bc7f75fa
AK
1235 * negotiated to HALF DUPLEX, flow control should not be
1236 * enabled per IEEE 802.3 spec.
1237 */
1238 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1239 if (ret_val) {
3bb99fe2 1240 e_dbg("Error getting link speed and duplex\n");
bc7f75fa
AK
1241 return ret_val;
1242 }
1243
1244 if (duplex == HALF_DUPLEX)
5c48ef3e 1245 hw->fc.current_mode = e1000_fc_none;
bc7f75fa 1246
ad68076e
BA
1247 /*
1248 * Now we call a subroutine to actually force the MAC
bc7f75fa
AK
1249 * controller to use the correct flow control settings.
1250 */
1251 ret_val = e1000e_force_mac_fc(hw);
1252 if (ret_val) {
3bb99fe2 1253 e_dbg("Error forcing flow control settings\n");
bc7f75fa
AK
1254 return ret_val;
1255 }
1256 }
1257
1258 return 0;
1259}
1260
1261/**
489815ce 1262 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
bc7f75fa
AK
1263 * @hw: pointer to the HW structure
1264 * @speed: stores the current speed
1265 * @duplex: stores the current duplex
1266 *
1267 * Read the status register for the current speed/duplex and store the current
1268 * speed and duplex for copper connections.
1269 **/
1270s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1271{
1272 u32 status;
1273
1274 status = er32(STATUS);
2c73e1fe 1275 if (status & E1000_STATUS_SPEED_1000)
bc7f75fa 1276 *speed = SPEED_1000;
2c73e1fe 1277 else if (status & E1000_STATUS_SPEED_100)
bc7f75fa 1278 *speed = SPEED_100;
2c73e1fe 1279 else
bc7f75fa 1280 *speed = SPEED_10;
bc7f75fa 1281
2c73e1fe 1282 if (status & E1000_STATUS_FD)
bc7f75fa 1283 *duplex = FULL_DUPLEX;
2c73e1fe 1284 else
bc7f75fa 1285 *duplex = HALF_DUPLEX;
2c73e1fe
JP
1286
1287 e_dbg("%u Mbps, %s Duplex\n",
1288 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1289 *duplex == FULL_DUPLEX ? "Full" : "Half");
bc7f75fa
AK
1290
1291 return 0;
1292}
1293
1294/**
489815ce 1295 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
bc7f75fa
AK
1296 * @hw: pointer to the HW structure
1297 * @speed: stores the current speed
1298 * @duplex: stores the current duplex
1299 *
1300 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1301 * for fiber/serdes links.
1302 **/
1303s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1304{
1305 *speed = SPEED_1000;
1306 *duplex = FULL_DUPLEX;
1307
1308 return 0;
1309}
1310
1311/**
1312 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1313 * @hw: pointer to the HW structure
1314 *
1315 * Acquire the HW semaphore to access the PHY or NVM
1316 **/
1317s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1318{
1319 u32 swsm;
1320 s32 timeout = hw->nvm.word_size + 1;
1321 s32 i = 0;
1322
1323 /* Get the SW semaphore */
1324 while (i < timeout) {
1325 swsm = er32(SWSM);
1326 if (!(swsm & E1000_SWSM_SMBI))
1327 break;
1328
1329 udelay(50);
1330 i++;
1331 }
1332
1333 if (i == timeout) {
3bb99fe2 1334 e_dbg("Driver can't access device - SMBI bit is set.\n");
bc7f75fa
AK
1335 return -E1000_ERR_NVM;
1336 }
1337
1338 /* Get the FW semaphore. */
1339 for (i = 0; i < timeout; i++) {
1340 swsm = er32(SWSM);
1341 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1342
1343 /* Semaphore acquired if bit latched */
1344 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1345 break;
1346
1347 udelay(50);
1348 }
1349
1350 if (i == timeout) {
1351 /* Release semaphores */
1352 e1000e_put_hw_semaphore(hw);
3bb99fe2 1353 e_dbg("Driver can't access the NVM\n");
bc7f75fa
AK
1354 return -E1000_ERR_NVM;
1355 }
1356
1357 return 0;
1358}
1359
1360/**
1361 * e1000e_put_hw_semaphore - Release hardware semaphore
1362 * @hw: pointer to the HW structure
1363 *
1364 * Release hardware semaphore used to access the PHY or NVM
1365 **/
1366void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1367{
1368 u32 swsm;
1369
1370 swsm = er32(SWSM);
1371 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1372 ew32(SWSM, swsm);
1373}
1374
1375/**
1376 * e1000e_get_auto_rd_done - Check for auto read completion
1377 * @hw: pointer to the HW structure
1378 *
1379 * Check EEPROM for Auto Read done bit.
1380 **/
1381s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1382{
1383 s32 i = 0;
1384
1385 while (i < AUTO_READ_DONE_TIMEOUT) {
1386 if (er32(EECD) & E1000_EECD_AUTO_RD)
1387 break;
1388 msleep(1);
1389 i++;
1390 }
1391
1392 if (i == AUTO_READ_DONE_TIMEOUT) {
3bb99fe2 1393 e_dbg("Auto read by HW from NVM has not completed.\n");
bc7f75fa
AK
1394 return -E1000_ERR_RESET;
1395 }
1396
1397 return 0;
1398}
1399
1400/**
1401 * e1000e_valid_led_default - Verify a valid default LED config
1402 * @hw: pointer to the HW structure
1403 * @data: pointer to the NVM (EEPROM)
1404 *
1405 * Read the EEPROM for the current default LED configuration. If the
1406 * LED configuration is not valid, set to a valid LED configuration.
1407 **/
1408s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1409{
1410 s32 ret_val;
1411
1412 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1413 if (ret_val) {
3bb99fe2 1414 e_dbg("NVM Read Error\n");
bc7f75fa
AK
1415 return ret_val;
1416 }
1417
1418 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1419 *data = ID_LED_DEFAULT;
1420
1421 return 0;
1422}
1423
1424/**
1425 * e1000e_id_led_init -
1426 * @hw: pointer to the HW structure
1427 *
1428 **/
1429s32 e1000e_id_led_init(struct e1000_hw *hw)
1430{
1431 struct e1000_mac_info *mac = &hw->mac;
1432 s32 ret_val;
1433 const u32 ledctl_mask = 0x000000FF;
1434 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1435 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1436 u16 data, i, temp;
1437 const u16 led_mask = 0x0F;
1438
1439 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1440 if (ret_val)
1441 return ret_val;
1442
1443 mac->ledctl_default = er32(LEDCTL);
1444 mac->ledctl_mode1 = mac->ledctl_default;
1445 mac->ledctl_mode2 = mac->ledctl_default;
1446
1447 for (i = 0; i < 4; i++) {
1448 temp = (data >> (i << 2)) & led_mask;
1449 switch (temp) {
1450 case ID_LED_ON1_DEF2:
1451 case ID_LED_ON1_ON2:
1452 case ID_LED_ON1_OFF2:
1453 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1454 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1455 break;
1456 case ID_LED_OFF1_DEF2:
1457 case ID_LED_OFF1_ON2:
1458 case ID_LED_OFF1_OFF2:
1459 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1460 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1461 break;
1462 default:
1463 /* Do nothing */
1464 break;
1465 }
1466 switch (temp) {
1467 case ID_LED_DEF1_ON2:
1468 case ID_LED_ON1_ON2:
1469 case ID_LED_OFF1_ON2:
1470 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1471 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1472 break;
1473 case ID_LED_DEF1_OFF2:
1474 case ID_LED_ON1_OFF2:
1475 case ID_LED_OFF1_OFF2:
1476 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1477 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1478 break;
1479 default:
1480 /* Do nothing */
1481 break;
1482 }
1483 }
1484
1485 return 0;
1486}
1487
a4f58f54
BA
1488/**
1489 * e1000e_setup_led_generic - Configures SW controllable LED
1490 * @hw: pointer to the HW structure
1491 *
1492 * This prepares the SW controllable LED for use and saves the current state
1493 * of the LED so it can be later restored.
1494 **/
1495s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1496{
1497 u32 ledctl;
1498
1499 if (hw->mac.ops.setup_led != e1000e_setup_led_generic) {
1500 return -E1000_ERR_CONFIG;
1501 }
1502
1503 if (hw->phy.media_type == e1000_media_type_fiber) {
1504 ledctl = er32(LEDCTL);
1505 hw->mac.ledctl_default = ledctl;
1506 /* Turn off LED0 */
1507 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
1508 E1000_LEDCTL_LED0_BLINK |
1509 E1000_LEDCTL_LED0_MODE_MASK);
1510 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1511 E1000_LEDCTL_LED0_MODE_SHIFT);
1512 ew32(LEDCTL, ledctl);
1513 } else if (hw->phy.media_type == e1000_media_type_copper) {
1514 ew32(LEDCTL, hw->mac.ledctl_mode1);
1515 }
1516
1517 return 0;
1518}
1519
bc7f75fa
AK
1520/**
1521 * e1000e_cleanup_led_generic - Set LED config to default operation
1522 * @hw: pointer to the HW structure
1523 *
1524 * Remove the current LED configuration and set the LED configuration
1525 * to the default value, saved from the EEPROM.
1526 **/
1527s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1528{
1529 ew32(LEDCTL, hw->mac.ledctl_default);
1530 return 0;
1531}
1532
1533/**
1534 * e1000e_blink_led - Blink LED
1535 * @hw: pointer to the HW structure
1536 *
489815ce 1537 * Blink the LEDs which are set to be on.
bc7f75fa
AK
1538 **/
1539s32 e1000e_blink_led(struct e1000_hw *hw)
1540{
1541 u32 ledctl_blink = 0;
1542 u32 i;
1543
318a94d6 1544 if (hw->phy.media_type == e1000_media_type_fiber) {
bc7f75fa
AK
1545 /* always blink LED0 for PCI-E fiber */
1546 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1547 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1548 } else {
ad68076e
BA
1549 /*
1550 * set the blink bit for each LED that's "on" (0x0E)
1551 * in ledctl_mode2
1552 */
bc7f75fa
AK
1553 ledctl_blink = hw->mac.ledctl_mode2;
1554 for (i = 0; i < 4; i++)
1555 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1556 E1000_LEDCTL_MODE_LED_ON)
1557 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1558 (i * 8));
1559 }
1560
1561 ew32(LEDCTL, ledctl_blink);
1562
1563 return 0;
1564}
1565
1566/**
1567 * e1000e_led_on_generic - Turn LED on
1568 * @hw: pointer to the HW structure
1569 *
1570 * Turn LED on.
1571 **/
1572s32 e1000e_led_on_generic(struct e1000_hw *hw)
1573{
1574 u32 ctrl;
1575
318a94d6 1576 switch (hw->phy.media_type) {
bc7f75fa
AK
1577 case e1000_media_type_fiber:
1578 ctrl = er32(CTRL);
1579 ctrl &= ~E1000_CTRL_SWDPIN0;
1580 ctrl |= E1000_CTRL_SWDPIO0;
1581 ew32(CTRL, ctrl);
1582 break;
1583 case e1000_media_type_copper:
1584 ew32(LEDCTL, hw->mac.ledctl_mode2);
1585 break;
1586 default:
1587 break;
1588 }
1589
1590 return 0;
1591}
1592
1593/**
1594 * e1000e_led_off_generic - Turn LED off
1595 * @hw: pointer to the HW structure
1596 *
1597 * Turn LED off.
1598 **/
1599s32 e1000e_led_off_generic(struct e1000_hw *hw)
1600{
1601 u32 ctrl;
1602
318a94d6 1603 switch (hw->phy.media_type) {
bc7f75fa
AK
1604 case e1000_media_type_fiber:
1605 ctrl = er32(CTRL);
1606 ctrl |= E1000_CTRL_SWDPIN0;
1607 ctrl |= E1000_CTRL_SWDPIO0;
1608 ew32(CTRL, ctrl);
1609 break;
1610 case e1000_media_type_copper:
1611 ew32(LEDCTL, hw->mac.ledctl_mode1);
1612 break;
1613 default:
1614 break;
1615 }
1616
1617 return 0;
1618}
1619
1620/**
1621 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1622 * @hw: pointer to the HW structure
1623 * @no_snoop: bitmap of snoop events
1624 *
1625 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1626 **/
1627void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1628{
1629 u32 gcr;
1630
1631 if (no_snoop) {
1632 gcr = er32(GCR);
1633 gcr &= ~(PCIE_NO_SNOOP_ALL);
1634 gcr |= no_snoop;
1635 ew32(GCR, gcr);
1636 }
1637}
1638
1639/**
1640 * e1000e_disable_pcie_master - Disables PCI-express master access
1641 * @hw: pointer to the HW structure
1642 *
1643 * Returns 0 if successful, else returns -10
489815ce 1644 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
bc7f75fa
AK
1645 * the master requests to be disabled.
1646 *
1647 * Disables PCI-Express master access and verifies there are no pending
1648 * requests.
1649 **/
1650s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1651{
1652 u32 ctrl;
1653 s32 timeout = MASTER_DISABLE_TIMEOUT;
1654
1655 ctrl = er32(CTRL);
1656 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1657 ew32(CTRL, ctrl);
1658
1659 while (timeout) {
1660 if (!(er32(STATUS) &
1661 E1000_STATUS_GIO_MASTER_ENABLE))
1662 break;
1663 udelay(100);
1664 timeout--;
1665 }
1666
1667 if (!timeout) {
3bb99fe2 1668 e_dbg("Master requests are pending.\n");
bc7f75fa
AK
1669 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1670 }
1671
1672 return 0;
1673}
1674
1675/**
1676 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1677 * @hw: pointer to the HW structure
1678 *
1679 * Reset the Adaptive Interframe Spacing throttle to default values.
1680 **/
1681void e1000e_reset_adaptive(struct e1000_hw *hw)
1682{
1683 struct e1000_mac_info *mac = &hw->mac;
1684
f464ba87
BA
1685 if (!mac->adaptive_ifs) {
1686 e_dbg("Not in Adaptive IFS mode!\n");
1687 goto out;
1688 }
1689
bc7f75fa
AK
1690 mac->current_ifs_val = 0;
1691 mac->ifs_min_val = IFS_MIN;
1692 mac->ifs_max_val = IFS_MAX;
1693 mac->ifs_step_size = IFS_STEP;
1694 mac->ifs_ratio = IFS_RATIO;
1695
564ea9bb 1696 mac->in_ifs_mode = false;
bc7f75fa 1697 ew32(AIT, 0);
f464ba87
BA
1698out:
1699 return;
bc7f75fa
AK
1700}
1701
1702/**
1703 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1704 * @hw: pointer to the HW structure
1705 *
1706 * Update the Adaptive Interframe Spacing Throttle value based on the
1707 * time between transmitted packets and time between collisions.
1708 **/
1709void e1000e_update_adaptive(struct e1000_hw *hw)
1710{
1711 struct e1000_mac_info *mac = &hw->mac;
1712
f464ba87
BA
1713 if (!mac->adaptive_ifs) {
1714 e_dbg("Not in Adaptive IFS mode!\n");
1715 goto out;
1716 }
1717
bc7f75fa
AK
1718 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1719 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
564ea9bb 1720 mac->in_ifs_mode = true;
bc7f75fa
AK
1721 if (mac->current_ifs_val < mac->ifs_max_val) {
1722 if (!mac->current_ifs_val)
1723 mac->current_ifs_val = mac->ifs_min_val;
1724 else
1725 mac->current_ifs_val +=
1726 mac->ifs_step_size;
ad68076e 1727 ew32(AIT, mac->current_ifs_val);
bc7f75fa
AK
1728 }
1729 }
1730 } else {
1731 if (mac->in_ifs_mode &&
1732 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1733 mac->current_ifs_val = 0;
564ea9bb 1734 mac->in_ifs_mode = false;
bc7f75fa
AK
1735 ew32(AIT, 0);
1736 }
1737 }
f464ba87
BA
1738out:
1739 return;
bc7f75fa
AK
1740}
1741
1742/**
1743 * e1000_raise_eec_clk - Raise EEPROM clock
1744 * @hw: pointer to the HW structure
1745 * @eecd: pointer to the EEPROM
1746 *
1747 * Enable/Raise the EEPROM clock bit.
1748 **/
1749static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
1750{
1751 *eecd = *eecd | E1000_EECD_SK;
1752 ew32(EECD, *eecd);
1753 e1e_flush();
1754 udelay(hw->nvm.delay_usec);
1755}
1756
1757/**
1758 * e1000_lower_eec_clk - Lower EEPROM clock
1759 * @hw: pointer to the HW structure
1760 * @eecd: pointer to the EEPROM
1761 *
1762 * Clear/Lower the EEPROM clock bit.
1763 **/
1764static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
1765{
1766 *eecd = *eecd & ~E1000_EECD_SK;
1767 ew32(EECD, *eecd);
1768 e1e_flush();
1769 udelay(hw->nvm.delay_usec);
1770}
1771
1772/**
1773 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
1774 * @hw: pointer to the HW structure
1775 * @data: data to send to the EEPROM
1776 * @count: number of bits to shift out
1777 *
1778 * We need to shift 'count' bits out to the EEPROM. So, the value in the
1779 * "data" parameter will be shifted out to the EEPROM one bit at a time.
1780 * In order to do this, "data" must be broken down into bits.
1781 **/
1782static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
1783{
1784 struct e1000_nvm_info *nvm = &hw->nvm;
1785 u32 eecd = er32(EECD);
1786 u32 mask;
1787
1788 mask = 0x01 << (count - 1);
1789 if (nvm->type == e1000_nvm_eeprom_spi)
1790 eecd |= E1000_EECD_DO;
1791
1792 do {
1793 eecd &= ~E1000_EECD_DI;
1794
1795 if (data & mask)
1796 eecd |= E1000_EECD_DI;
1797
1798 ew32(EECD, eecd);
1799 e1e_flush();
1800
1801 udelay(nvm->delay_usec);
1802
1803 e1000_raise_eec_clk(hw, &eecd);
1804 e1000_lower_eec_clk(hw, &eecd);
1805
1806 mask >>= 1;
1807 } while (mask);
1808
1809 eecd &= ~E1000_EECD_DI;
1810 ew32(EECD, eecd);
1811}
1812
1813/**
1814 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
1815 * @hw: pointer to the HW structure
1816 * @count: number of bits to shift in
1817 *
1818 * In order to read a register from the EEPROM, we need to shift 'count' bits
1819 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
1820 * the EEPROM (setting the SK bit), and then reading the value of the data out
1821 * "DO" bit. During this "shifting in" process the data in "DI" bit should
1822 * always be clear.
1823 **/
1824static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
1825{
1826 u32 eecd;
1827 u32 i;
1828 u16 data;
1829
1830 eecd = er32(EECD);
1831
1832 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
1833 data = 0;
1834
1835 for (i = 0; i < count; i++) {
1836 data <<= 1;
1837 e1000_raise_eec_clk(hw, &eecd);
1838
1839 eecd = er32(EECD);
1840
1841 eecd &= ~E1000_EECD_DI;
1842 if (eecd & E1000_EECD_DO)
1843 data |= 1;
1844
1845 e1000_lower_eec_clk(hw, &eecd);
1846 }
1847
1848 return data;
1849}
1850
1851/**
1852 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
1853 * @hw: pointer to the HW structure
1854 * @ee_reg: EEPROM flag for polling
1855 *
1856 * Polls the EEPROM status bit for either read or write completion based
1857 * upon the value of 'ee_reg'.
1858 **/
1859s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
1860{
1861 u32 attempts = 100000;
1862 u32 i, reg = 0;
1863
1864 for (i = 0; i < attempts; i++) {
1865 if (ee_reg == E1000_NVM_POLL_READ)
1866 reg = er32(EERD);
1867 else
1868 reg = er32(EEWR);
1869
1870 if (reg & E1000_NVM_RW_REG_DONE)
1871 return 0;
1872
1873 udelay(5);
1874 }
1875
1876 return -E1000_ERR_NVM;
1877}
1878
1879/**
1880 * e1000e_acquire_nvm - Generic request for access to EEPROM
1881 * @hw: pointer to the HW structure
1882 *
1883 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1884 * Return successful if access grant bit set, else clear the request for
1885 * EEPROM access and return -E1000_ERR_NVM (-1).
1886 **/
1887s32 e1000e_acquire_nvm(struct e1000_hw *hw)
1888{
1889 u32 eecd = er32(EECD);
1890 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
1891
1892 ew32(EECD, eecd | E1000_EECD_REQ);
1893 eecd = er32(EECD);
1894
1895 while (timeout) {
1896 if (eecd & E1000_EECD_GNT)
1897 break;
1898 udelay(5);
1899 eecd = er32(EECD);
1900 timeout--;
1901 }
1902
1903 if (!timeout) {
1904 eecd &= ~E1000_EECD_REQ;
1905 ew32(EECD, eecd);
3bb99fe2 1906 e_dbg("Could not acquire NVM grant\n");
bc7f75fa
AK
1907 return -E1000_ERR_NVM;
1908 }
1909
1910 return 0;
1911}
1912
1913/**
1914 * e1000_standby_nvm - Return EEPROM to standby state
1915 * @hw: pointer to the HW structure
1916 *
1917 * Return the EEPROM to a standby state.
1918 **/
1919static void e1000_standby_nvm(struct e1000_hw *hw)
1920{
1921 struct e1000_nvm_info *nvm = &hw->nvm;
1922 u32 eecd = er32(EECD);
1923
1924 if (nvm->type == e1000_nvm_eeprom_spi) {
1925 /* Toggle CS to flush commands */
1926 eecd |= E1000_EECD_CS;
1927 ew32(EECD, eecd);
1928 e1e_flush();
1929 udelay(nvm->delay_usec);
1930 eecd &= ~E1000_EECD_CS;
1931 ew32(EECD, eecd);
1932 e1e_flush();
1933 udelay(nvm->delay_usec);
1934 }
1935}
1936
1937/**
1938 * e1000_stop_nvm - Terminate EEPROM command
1939 * @hw: pointer to the HW structure
1940 *
1941 * Terminates the current command by inverting the EEPROM's chip select pin.
1942 **/
1943static void e1000_stop_nvm(struct e1000_hw *hw)
1944{
1945 u32 eecd;
1946
1947 eecd = er32(EECD);
1948 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
1949 /* Pull CS high */
1950 eecd |= E1000_EECD_CS;
1951 e1000_lower_eec_clk(hw, &eecd);
1952 }
1953}
1954
1955/**
1956 * e1000e_release_nvm - Release exclusive access to EEPROM
1957 * @hw: pointer to the HW structure
1958 *
1959 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
1960 **/
1961void e1000e_release_nvm(struct e1000_hw *hw)
1962{
1963 u32 eecd;
1964
1965 e1000_stop_nvm(hw);
1966
1967 eecd = er32(EECD);
1968 eecd &= ~E1000_EECD_REQ;
1969 ew32(EECD, eecd);
1970}
1971
1972/**
1973 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
1974 * @hw: pointer to the HW structure
1975 *
1976 * Setups the EEPROM for reading and writing.
1977 **/
1978static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
1979{
1980 struct e1000_nvm_info *nvm = &hw->nvm;
1981 u32 eecd = er32(EECD);
1982 u16 timeout = 0;
1983 u8 spi_stat_reg;
1984
1985 if (nvm->type == e1000_nvm_eeprom_spi) {
1986 /* Clear SK and CS */
1987 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
1988 ew32(EECD, eecd);
1989 udelay(1);
1990 timeout = NVM_MAX_RETRY_SPI;
1991
ad68076e
BA
1992 /*
1993 * Read "Status Register" repeatedly until the LSB is cleared.
bc7f75fa
AK
1994 * The EEPROM will signal that the command has been completed
1995 * by clearing bit 0 of the internal status register. If it's
ad68076e
BA
1996 * not cleared within 'timeout', then error out.
1997 */
bc7f75fa
AK
1998 while (timeout) {
1999 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
2000 hw->nvm.opcode_bits);
2001 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
2002 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
2003 break;
2004
2005 udelay(5);
2006 e1000_standby_nvm(hw);
2007 timeout--;
2008 }
2009
2010 if (!timeout) {
3bb99fe2 2011 e_dbg("SPI NVM Status error\n");
bc7f75fa
AK
2012 return -E1000_ERR_NVM;
2013 }
2014 }
2015
2016 return 0;
2017}
2018
bc7f75fa
AK
2019/**
2020 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
2021 * @hw: pointer to the HW structure
2022 * @offset: offset of word in the EEPROM to read
2023 * @words: number of words to read
2024 * @data: word read from the EEPROM
2025 *
2026 * Reads a 16 bit word from the EEPROM using the EERD register.
2027 **/
2028s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
2029{
2030 struct e1000_nvm_info *nvm = &hw->nvm;
2031 u32 i, eerd = 0;
2032 s32 ret_val = 0;
2033
ad68076e
BA
2034 /*
2035 * A check for invalid values: offset too large, too many words,
2036 * too many words for the offset, and not enough words.
2037 */
bc7f75fa
AK
2038 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
2039 (words == 0)) {
3bb99fe2 2040 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
2041 return -E1000_ERR_NVM;
2042 }
2043
2044 for (i = 0; i < words; i++) {
2045 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
2046 E1000_NVM_RW_REG_START;
2047
2048 ew32(EERD, eerd);
2049 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
2050 if (ret_val)
2051 break;
2052
ad68076e 2053 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
bc7f75fa
AK
2054 }
2055
2056 return ret_val;
2057}
2058
2059/**
2060 * e1000e_write_nvm_spi - Write to EEPROM using SPI
2061 * @hw: pointer to the HW structure
2062 * @offset: offset within the EEPROM to be written to
2063 * @words: number of words to write
2064 * @data: 16 bit word(s) to be written to the EEPROM
2065 *
2066 * Writes data to EEPROM at offset using SPI interface.
2067 *
2068 * If e1000e_update_nvm_checksum is not called after this function , the
489815ce 2069 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
2070 **/
2071s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
2072{
2073 struct e1000_nvm_info *nvm = &hw->nvm;
2074 s32 ret_val;
2075 u16 widx = 0;
2076
ad68076e
BA
2077 /*
2078 * A check for invalid values: offset too large, too many words,
2079 * and not enough words.
2080 */
bc7f75fa
AK
2081 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
2082 (words == 0)) {
3bb99fe2 2083 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
2084 return -E1000_ERR_NVM;
2085 }
2086
94d8186a 2087 ret_val = nvm->ops.acquire(hw);
bc7f75fa
AK
2088 if (ret_val)
2089 return ret_val;
2090
2091 msleep(10);
2092
2093 while (widx < words) {
2094 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
2095
2096 ret_val = e1000_ready_nvm_eeprom(hw);
2097 if (ret_val) {
94d8186a 2098 nvm->ops.release(hw);
bc7f75fa
AK
2099 return ret_val;
2100 }
2101
2102 e1000_standby_nvm(hw);
2103
2104 /* Send the WRITE ENABLE command (8 bit opcode) */
2105 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
2106 nvm->opcode_bits);
2107
2108 e1000_standby_nvm(hw);
2109
ad68076e
BA
2110 /*
2111 * Some SPI eeproms use the 8th address bit embedded in the
2112 * opcode
2113 */
bc7f75fa
AK
2114 if ((nvm->address_bits == 8) && (offset >= 128))
2115 write_opcode |= NVM_A8_OPCODE_SPI;
2116
2117 /* Send the Write command (8-bit opcode + addr) */
2118 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
2119 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
2120 nvm->address_bits);
2121
2122 /* Loop to allow for up to whole page write of eeprom */
2123 while (widx < words) {
2124 u16 word_out = data[widx];
2125 word_out = (word_out >> 8) | (word_out << 8);
2126 e1000_shift_out_eec_bits(hw, word_out, 16);
2127 widx++;
2128
2129 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
2130 e1000_standby_nvm(hw);
2131 break;
2132 }
2133 }
2134 }
2135
2136 msleep(10);
94d8186a 2137 nvm->ops.release(hw);
bc7f75fa
AK
2138 return 0;
2139}
2140
2141/**
608f8a0d 2142 * e1000_read_mac_addr_generic - Read device MAC address
bc7f75fa
AK
2143 * @hw: pointer to the HW structure
2144 *
2145 * Reads the device MAC address from the EEPROM and stores the value.
2146 * Since devices with two ports use the same EEPROM, we increment the
2147 * last bit in the MAC address for the second port.
2148 **/
608f8a0d 2149s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
bc7f75fa 2150{
608f8a0d
BA
2151 u32 rar_high;
2152 u32 rar_low;
2153 u16 i;
93ca1610 2154
608f8a0d
BA
2155 rar_high = er32(RAH(0));
2156 rar_low = er32(RAL(0));
bc7f75fa 2157
608f8a0d
BA
2158 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
2159 hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
bc7f75fa 2160
608f8a0d
BA
2161 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
2162 hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
bc7f75fa
AK
2163
2164 for (i = 0; i < ETH_ALEN; i++)
2165 hw->mac.addr[i] = hw->mac.perm_addr[i];
2166
2167 return 0;
2168}
2169
2170/**
2171 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
2172 * @hw: pointer to the HW structure
2173 *
2174 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2175 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2176 **/
2177s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
2178{
2179 s32 ret_val;
2180 u16 checksum = 0;
2181 u16 i, nvm_data;
2182
2183 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
2184 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2185 if (ret_val) {
3bb99fe2 2186 e_dbg("NVM Read Error\n");
bc7f75fa
AK
2187 return ret_val;
2188 }
2189 checksum += nvm_data;
2190 }
2191
2192 if (checksum != (u16) NVM_SUM) {
3bb99fe2 2193 e_dbg("NVM Checksum Invalid\n");
bc7f75fa
AK
2194 return -E1000_ERR_NVM;
2195 }
2196
2197 return 0;
2198}
2199
2200/**
2201 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
2202 * @hw: pointer to the HW structure
2203 *
2204 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2205 * up to the checksum. Then calculates the EEPROM checksum and writes the
2206 * value to the EEPROM.
2207 **/
2208s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
2209{
2210 s32 ret_val;
2211 u16 checksum = 0;
2212 u16 i, nvm_data;
2213
2214 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
2215 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2216 if (ret_val) {
3bb99fe2 2217 e_dbg("NVM Read Error while updating checksum.\n");
bc7f75fa
AK
2218 return ret_val;
2219 }
2220 checksum += nvm_data;
2221 }
2222 checksum = (u16) NVM_SUM - checksum;
2223 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
2224 if (ret_val)
3bb99fe2 2225 e_dbg("NVM Write Error while updating checksum.\n");
bc7f75fa
AK
2226
2227 return ret_val;
2228}
2229
2230/**
2231 * e1000e_reload_nvm - Reloads EEPROM
2232 * @hw: pointer to the HW structure
2233 *
2234 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
2235 * extended control register.
2236 **/
2237void e1000e_reload_nvm(struct e1000_hw *hw)
2238{
2239 u32 ctrl_ext;
2240
2241 udelay(10);
2242 ctrl_ext = er32(CTRL_EXT);
2243 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
2244 ew32(CTRL_EXT, ctrl_ext);
2245 e1e_flush();
2246}
2247
2248/**
2249 * e1000_calculate_checksum - Calculate checksum for buffer
2250 * @buffer: pointer to EEPROM
2251 * @length: size of EEPROM to calculate a checksum for
2252 *
2253 * Calculates the checksum for some buffer on a specified length. The
2254 * checksum calculated is returned.
2255 **/
2256static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
2257{
2258 u32 i;
2259 u8 sum = 0;
2260
2261 if (!buffer)
2262 return 0;
2263
2264 for (i = 0; i < length; i++)
2265 sum += buffer[i];
2266
2267 return (u8) (0 - sum);
2268}
2269
2270/**
2271 * e1000_mng_enable_host_if - Checks host interface is enabled
2272 * @hw: pointer to the HW structure
2273 *
2274 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
2275 *
489815ce 2276 * This function checks whether the HOST IF is enabled for command operation
bc7f75fa
AK
2277 * and also checks whether the previous command is completed. It busy waits
2278 * in case of previous command is not completed.
2279 **/
2280static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
2281{
2282 u32 hicr;
2283 u8 i;
2284
a65a4a0d
BA
2285 if (!(hw->mac.arc_subsystem_valid)) {
2286 e_dbg("ARC subsystem not valid.\n");
2287 return -E1000_ERR_HOST_INTERFACE_COMMAND;
2288 }
2289
bc7f75fa
AK
2290 /* Check that the host interface is enabled. */
2291 hicr = er32(HICR);
2292 if ((hicr & E1000_HICR_EN) == 0) {
3bb99fe2 2293 e_dbg("E1000_HOST_EN bit disabled.\n");
bc7f75fa
AK
2294 return -E1000_ERR_HOST_INTERFACE_COMMAND;
2295 }
2296 /* check the previous command is completed */
2297 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
2298 hicr = er32(HICR);
2299 if (!(hicr & E1000_HICR_C))
2300 break;
2301 mdelay(1);
2302 }
2303
2304 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
3bb99fe2 2305 e_dbg("Previous command timeout failed .\n");
bc7f75fa
AK
2306 return -E1000_ERR_HOST_INTERFACE_COMMAND;
2307 }
2308
2309 return 0;
2310}
2311
2312/**
4662e82b 2313 * e1000e_check_mng_mode_generic - check management mode
bc7f75fa
AK
2314 * @hw: pointer to the HW structure
2315 *
2316 * Reads the firmware semaphore register and returns true (>0) if
2317 * manageability is enabled, else false (0).
2318 **/
4662e82b 2319bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
bc7f75fa
AK
2320{
2321 u32 fwsm = er32(FWSM);
2322
4662e82b
BA
2323 return (fwsm & E1000_FWSM_MODE_MASK) ==
2324 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
bc7f75fa
AK
2325}
2326
2327/**
ad68076e 2328 * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
bc7f75fa
AK
2329 * @hw: pointer to the HW structure
2330 *
2331 * Enables packet filtering on transmit packets if manageability is enabled
2332 * and host interface is enabled.
2333 **/
2334bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
2335{
2336 struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
2337 u32 *buffer = (u32 *)&hw->mng_cookie;
2338 u32 offset;
2339 s32 ret_val, hdr_csum, csum;
2340 u8 i, len;
2341
ca777f9c
BA
2342 hw->mac.tx_pkt_filtering = true;
2343
bc7f75fa
AK
2344 /* No manageability, no filtering */
2345 if (!e1000e_check_mng_mode(hw)) {
564ea9bb 2346 hw->mac.tx_pkt_filtering = false;
ca777f9c 2347 goto out;
bc7f75fa
AK
2348 }
2349
ad68076e
BA
2350 /*
2351 * If we can't read from the host interface for whatever
bc7f75fa
AK
2352 * reason, disable filtering.
2353 */
2354 ret_val = e1000_mng_enable_host_if(hw);
ca777f9c 2355 if (ret_val) {
564ea9bb 2356 hw->mac.tx_pkt_filtering = false;
ca777f9c 2357 goto out;
bc7f75fa
AK
2358 }
2359
2360 /* Read in the header. Length and offset are in dwords. */
2361 len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
2362 offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
2363 for (i = 0; i < len; i++)
2364 *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
2365 hdr_csum = hdr->checksum;
2366 hdr->checksum = 0;
2367 csum = e1000_calculate_checksum((u8 *)hdr,
2368 E1000_MNG_DHCP_COOKIE_LENGTH);
ad68076e
BA
2369 /*
2370 * If either the checksums or signature don't match, then
bc7f75fa
AK
2371 * the cookie area isn't considered valid, in which case we
2372 * take the safe route of assuming Tx filtering is enabled.
2373 */
2374 if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
564ea9bb 2375 hw->mac.tx_pkt_filtering = true;
ca777f9c 2376 goto out;
bc7f75fa
AK
2377 }
2378
2379 /* Cookie area is valid, make the final check for filtering. */
2380 if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
564ea9bb 2381 hw->mac.tx_pkt_filtering = false;
ca777f9c 2382 goto out;
bc7f75fa
AK
2383 }
2384
ca777f9c
BA
2385out:
2386 return hw->mac.tx_pkt_filtering;
bc7f75fa
AK
2387}
2388
2389/**
2390 * e1000_mng_write_cmd_header - Writes manageability command header
2391 * @hw: pointer to the HW structure
2392 * @hdr: pointer to the host interface command header
2393 *
2394 * Writes the command header after does the checksum calculation.
2395 **/
2396static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
2397 struct e1000_host_mng_command_header *hdr)
2398{
2399 u16 i, length = sizeof(struct e1000_host_mng_command_header);
2400
2401 /* Write the whole command header structure with new checksum. */
2402
2403 hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
2404
2405 length >>= 2;
2406 /* Write the relevant command block into the ram area. */
2407 for (i = 0; i < length; i++) {
2408 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
2409 *((u32 *) hdr + i));
2410 e1e_flush();
2411 }
2412
2413 return 0;
2414}
2415
2416/**
5ff5b664 2417 * e1000_mng_host_if_write - Write to the manageability host interface
bc7f75fa
AK
2418 * @hw: pointer to the HW structure
2419 * @buffer: pointer to the host interface buffer
2420 * @length: size of the buffer
2421 * @offset: location in the buffer to write to
2422 * @sum: sum of the data (not checksum)
2423 *
2424 * This function writes the buffer content at the offset given on the host if.
2425 * It also does alignment considerations to do the writes in most efficient
2426 * way. Also fills up the sum of the buffer in *buffer parameter.
2427 **/
2428static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
2429 u16 length, u16 offset, u8 *sum)
2430{
2431 u8 *tmp;
2432 u8 *bufptr = buffer;
2433 u32 data = 0;
2434 u16 remaining, i, j, prev_bytes;
2435
2436 /* sum = only sum of the data and it is not checksum */
2437
2438 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
2439 return -E1000_ERR_PARAM;
2440
2441 tmp = (u8 *)&data;
2442 prev_bytes = offset & 0x3;
2443 offset >>= 2;
2444
2445 if (prev_bytes) {
2446 data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
2447 for (j = prev_bytes; j < sizeof(u32); j++) {
2448 *(tmp + j) = *bufptr++;
2449 *sum += *(tmp + j);
2450 }
2451 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
2452 length -= j - prev_bytes;
2453 offset++;
2454 }
2455
2456 remaining = length & 0x3;
2457 length -= remaining;
2458
2459 /* Calculate length in DWORDs */
2460 length >>= 2;
2461
ad68076e
BA
2462 /*
2463 * The device driver writes the relevant command block into the
2464 * ram area.
2465 */
bc7f75fa
AK
2466 for (i = 0; i < length; i++) {
2467 for (j = 0; j < sizeof(u32); j++) {
2468 *(tmp + j) = *bufptr++;
2469 *sum += *(tmp + j);
2470 }
2471
2472 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2473 }
2474 if (remaining) {
2475 for (j = 0; j < sizeof(u32); j++) {
2476 if (j < remaining)
2477 *(tmp + j) = *bufptr++;
2478 else
2479 *(tmp + j) = 0;
2480
2481 *sum += *(tmp + j);
2482 }
2483 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2484 }
2485
2486 return 0;
2487}
2488
2489/**
2490 * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
2491 * @hw: pointer to the HW structure
2492 * @buffer: pointer to the host interface
2493 * @length: size of the buffer
2494 *
2495 * Writes the DHCP information to the host interface.
2496 **/
2497s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
2498{
2499 struct e1000_host_mng_command_header hdr;
2500 s32 ret_val;
2501 u32 hicr;
2502
2503 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
2504 hdr.command_length = length;
2505 hdr.reserved1 = 0;
2506 hdr.reserved2 = 0;
2507 hdr.checksum = 0;
2508
2509 /* Enable the host interface */
2510 ret_val = e1000_mng_enable_host_if(hw);
2511 if (ret_val)
2512 return ret_val;
2513
2514 /* Populate the host interface with the contents of "buffer". */
2515 ret_val = e1000_mng_host_if_write(hw, buffer, length,
2516 sizeof(hdr), &(hdr.checksum));
2517 if (ret_val)
2518 return ret_val;
2519
2520 /* Write the manageability command header */
2521 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
2522 if (ret_val)
2523 return ret_val;
2524
2525 /* Tell the ARC a new command is pending. */
2526 hicr = er32(HICR);
2527 ew32(HICR, hicr | E1000_HICR_C);
2528
2529 return 0;
2530}
2531
2532/**
757c5304 2533 * e1000e_enable_mng_pass_thru - Check if management passthrough is needed
bc7f75fa
AK
2534 * @hw: pointer to the HW structure
2535 *
757c5304
BA
2536 * Verifies the hardware needs to leave interface enabled so that frames can
2537 * be directed to and from the management interface.
bc7f75fa
AK
2538 **/
2539bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
2540{
2541 u32 manc;
2542 u32 fwsm, factps;
564ea9bb 2543 bool ret_val = false;
bc7f75fa
AK
2544
2545 manc = er32(MANC);
2546
757c5304 2547 if (!(manc & E1000_MANC_RCV_TCO_EN))
a65a4a0d 2548 goto out;
bc7f75fa 2549
a65a4a0d 2550 if (hw->mac.has_fwsm) {
bc7f75fa
AK
2551 fwsm = er32(FWSM);
2552 factps = er32(FACTPS);
2553
2554 if (!(factps & E1000_FACTPS_MNGCG) &&
2555 ((fwsm & E1000_FWSM_MODE_MASK) ==
2556 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
564ea9bb 2557 ret_val = true;
a65a4a0d 2558 goto out;
bc7f75fa 2559 }
a65a4a0d
BA
2560 } else if ((hw->mac.type == e1000_82574) ||
2561 (hw->mac.type == e1000_82583)) {
2562 u16 data;
2563
2564 factps = er32(FACTPS);
2565 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
2566
2567 if (!(factps & E1000_FACTPS_MNGCG) &&
2568 ((data & E1000_NVM_INIT_CTRL2_MNGM) ==
2569 (e1000_mng_mode_pt << 13))) {
564ea9bb 2570 ret_val = true;
a65a4a0d 2571 goto out;
bc7f75fa 2572 }
a65a4a0d
BA
2573 } else if ((manc & E1000_MANC_SMBUS_EN) &&
2574 !(manc & E1000_MANC_ASF_EN)) {
2575 ret_val = true;
2576 goto out;
bc7f75fa
AK
2577 }
2578
a65a4a0d 2579out:
bc7f75fa
AK
2580 return ret_val;
2581}
2582
69e3fd8c 2583s32 e1000e_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
bc7f75fa
AK
2584{
2585 s32 ret_val;
2586 u16 nvm_data;
2587
2588 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
2589 if (ret_val) {
3bb99fe2 2590 e_dbg("NVM Read Error\n");
bc7f75fa
AK
2591 return ret_val;
2592 }
69e3fd8c 2593 *pba_num = (u32)(nvm_data << 16);
bc7f75fa
AK
2594
2595 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
2596 if (ret_val) {
3bb99fe2 2597 e_dbg("NVM Read Error\n");
bc7f75fa
AK
2598 return ret_val;
2599 }
69e3fd8c 2600 *pba_num |= nvm_data;
bc7f75fa
AK
2601
2602 return 0;
2603}