]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/e1000e/ich8lan.c
e1000e: 82579 unaccounted missed packets
[net-next-2.6.git] / drivers / net / e1000e / ich8lan.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
451152d9 4 Copyright(c) 1999 - 2010 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
1605927f 30 * 82562G 10/100 Network Connection
bc7f75fa
AK
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
97ac8cae
BA
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
1605927f 44 * 82567V Gigabit Network Connection
97ac8cae
BA
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
f4187b56
BA
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
2f15f9d6 50 * 82567LM-4 Gigabit Network Connection
a4f58f54
BA
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
d3738bb8
BA
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
bc7f75fa
AK
57 */
58
bc7f75fa
AK
59#include "e1000.h"
60
61#define ICH_FLASH_GFPREG 0x0000
62#define ICH_FLASH_HSFSTS 0x0004
63#define ICH_FLASH_HSFCTL 0x0006
64#define ICH_FLASH_FADDR 0x0008
65#define ICH_FLASH_FDATA0 0x0010
4a770358 66#define ICH_FLASH_PR0 0x0074
bc7f75fa
AK
67
68#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
73
74#define ICH_CYCLE_READ 0
75#define ICH_CYCLE_WRITE 2
76#define ICH_CYCLE_ERASE 3
77
78#define FLASH_GFPREG_BASE_MASK 0x1FFF
79#define FLASH_SECTOR_ADDR_SHIFT 12
80
81#define ICH_FLASH_SEG_SIZE_256 256
82#define ICH_FLASH_SEG_SIZE_4K 4096
83#define ICH_FLASH_SEG_SIZE_8K 8192
84#define ICH_FLASH_SEG_SIZE_64K 65536
85
86
87#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
6dfaa769
BA
88/* FW established a valid mode */
89#define E1000_ICH_FWSM_FW_VALID 0x00008000
bc7f75fa
AK
90
91#define E1000_ICH_MNG_IAMT_MODE 0x2
92
93#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
96 (ID_LED_DEF1_DEF2))
97
98#define E1000_ICH_NVM_SIG_WORD 0x13
99#define E1000_ICH_NVM_SIG_MASK 0xC000
e243455d
BA
100#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101#define E1000_ICH_NVM_SIG_VALUE 0x80
bc7f75fa
AK
102
103#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
104
105#define E1000_FEXTNVM_SW_CONFIG 1
106#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107
831bd2e6
BA
108#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
109#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
110#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
111
bc7f75fa
AK
112#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
113
114#define E1000_ICH_RAR_ENTRIES 7
115
116#define PHY_PAGE_SHIFT 5
117#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 ((reg) & MAX_PHY_REG_ADDRESS))
119#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
120#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
121
122#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
123#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
125
a4f58f54
BA
126#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
127
53ac5a88
BA
128#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
129
f523d211
BA
130/* SMBus Address Phy Register */
131#define HV_SMB_ADDR PHY_REG(768, 26)
8395ae83 132#define HV_SMB_ADDR_MASK 0x007F
f523d211
BA
133#define HV_SMB_ADDR_PEC_EN 0x0200
134#define HV_SMB_ADDR_VALID 0x0080
135
d3738bb8
BA
136/* PHY Power Management Control */
137#define HV_PM_CTRL PHY_REG(770, 17)
138
e52997f9
BA
139/* PHY Low Power Idle Control */
140#define I82579_LPI_CTRL PHY_REG(772, 20)
141#define I82579_LPI_CTRL_ENABLE_MASK 0x6000
142
f523d211
BA
143/* Strapping Option Register - RO */
144#define E1000_STRAP 0x0000C
145#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
146#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
147
fa2ce13c
BA
148/* OEM Bits Phy Register */
149#define HV_OEM_BITS PHY_REG(768, 25)
150#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
f523d211 151#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
fa2ce13c
BA
152#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
153
1d5846b9
BA
154#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
155#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
156
fddaa1af
BA
157/* KMRN Mode Control */
158#define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
159#define HV_KMRN_MDIO_SLOW 0x0400
160
bc7f75fa
AK
161/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
162/* Offset 04h HSFSTS */
163union ich8_hws_flash_status {
164 struct ich8_hsfsts {
165 u16 flcdone :1; /* bit 0 Flash Cycle Done */
166 u16 flcerr :1; /* bit 1 Flash Cycle Error */
167 u16 dael :1; /* bit 2 Direct Access error Log */
168 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
169 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
170 u16 reserved1 :2; /* bit 13:6 Reserved */
171 u16 reserved2 :6; /* bit 13:6 Reserved */
172 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
173 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
174 } hsf_status;
175 u16 regval;
176};
177
178/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
179/* Offset 06h FLCTL */
180union ich8_hws_flash_ctrl {
181 struct ich8_hsflctl {
182 u16 flcgo :1; /* 0 Flash Cycle Go */
183 u16 flcycle :2; /* 2:1 Flash Cycle */
184 u16 reserved :5; /* 7:3 Reserved */
185 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
186 u16 flockdn :6; /* 15:10 Reserved */
187 } hsf_ctrl;
188 u16 regval;
189};
190
191/* ICH Flash Region Access Permissions */
192union ich8_hws_flash_regacc {
193 struct ich8_flracc {
194 u32 grra :8; /* 0:7 GbE region Read Access */
195 u32 grwa :8; /* 8:15 GbE region Write Access */
196 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
197 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
198 } hsf_flregacc;
199 u16 regval;
200};
201
4a770358
BA
202/* ICH Flash Protected Region */
203union ich8_flash_protected_range {
204 struct ich8_pr {
205 u32 base:13; /* 0:12 Protected Range Base */
206 u32 reserved1:2; /* 13:14 Reserved */
207 u32 rpe:1; /* 15 Read Protection Enable */
208 u32 limit:13; /* 16:28 Protected Range Limit */
209 u32 reserved2:2; /* 29:30 Reserved */
210 u32 wpe:1; /* 31 Write Protection Enable */
211 } range;
212 u32 regval;
213};
214
bc7f75fa
AK
215static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
216static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
217static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
bc7f75fa
AK
218static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
219static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
220 u32 offset, u8 byte);
f4187b56
BA
221static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
222 u8 *data);
bc7f75fa
AK
223static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
224 u16 *data);
225static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
226 u8 size, u16 *data);
227static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
228static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
f4187b56 229static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
a4f58f54
BA
230static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
231static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
232static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
233static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
234static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
235static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
236static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
237static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
fa2ce13c 238static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
17f208de 239static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
f523d211 240static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
1d5846b9 241static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
fddaa1af 242static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
eb7700dc
BA
243static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
244static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
831bd2e6 245static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
bc7f75fa
AK
246
247static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
248{
249 return readw(hw->flash_address + reg);
250}
251
252static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
253{
254 return readl(hw->flash_address + reg);
255}
256
257static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
258{
259 writew(val, hw->flash_address + reg);
260}
261
262static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
263{
264 writel(val, hw->flash_address + reg);
265}
266
267#define er16flash(reg) __er16flash(hw, (reg))
268#define er32flash(reg) __er32flash(hw, (reg))
269#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
270#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
271
a4f58f54
BA
272/**
273 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
274 * @hw: pointer to the HW structure
275 *
276 * Initialize family-specific PHY parameters and function pointers.
277 **/
278static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
279{
280 struct e1000_phy_info *phy = &hw->phy;
6dfaa769 281 u32 ctrl;
a4f58f54
BA
282 s32 ret_val = 0;
283
284 phy->addr = 1;
285 phy->reset_delay_us = 100;
286
94d8186a
BA
287 phy->ops.read_reg = e1000_read_phy_reg_hv;
288 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
fa2ce13c
BA
289 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
290 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
94d8186a
BA
291 phy->ops.write_reg = e1000_write_phy_reg_hv;
292 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
17f208de
BA
293 phy->ops.power_up = e1000_power_up_phy_copper;
294 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
a4f58f54
BA
295 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
296
d3738bb8
BA
297 /*
298 * The MAC-PHY interconnect may still be in SMBus mode
299 * after Sx->S0. If the manageability engine (ME) is
300 * disabled, then toggle the LANPHYPC Value bit to force
301 * the interconnect to PCIe mode.
302 */
6dfaa769 303 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
6dfaa769
BA
304 ctrl = er32(CTRL);
305 ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
306 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
307 ew32(CTRL, ctrl);
308 udelay(10);
309 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
310 ew32(CTRL, ctrl);
311 msleep(50);
312 }
313
627c8a04
BA
314 /*
315 * Reset the PHY before any acccess to it. Doing so, ensures that
316 * the PHY is in a known good state before we read/write PHY registers.
317 * The generic reset is sufficient here, because we haven't determined
318 * the PHY type yet.
319 */
320 ret_val = e1000e_phy_hw_reset_generic(hw);
321 if (ret_val)
322 goto out;
323
a4f58f54 324 phy->id = e1000_phy_unknown;
fddaa1af
BA
325 ret_val = e1000e_get_phy_id(hw);
326 if (ret_val)
327 goto out;
328 if ((phy->id == 0) || (phy->id == PHY_REVISION_MASK)) {
329 /*
330 * In case the PHY needs to be in mdio slow mode (eg. 82577),
331 * set slow mode and try to get the PHY id again.
332 */
333 ret_val = e1000_set_mdio_slow_mode_hv(hw);
334 if (ret_val)
335 goto out;
336 ret_val = e1000e_get_phy_id(hw);
337 if (ret_val)
338 goto out;
339 }
a4f58f54
BA
340 phy->type = e1000e_get_phy_type_from_id(phy->id);
341
0be84010
BA
342 switch (phy->type) {
343 case e1000_phy_82577:
d3738bb8 344 case e1000_phy_82579:
a4f58f54
BA
345 phy->ops.check_polarity = e1000_check_polarity_82577;
346 phy->ops.force_speed_duplex =
347 e1000_phy_force_speed_duplex_82577;
0be84010 348 phy->ops.get_cable_length = e1000_get_cable_length_82577;
94d8186a
BA
349 phy->ops.get_info = e1000_get_phy_info_82577;
350 phy->ops.commit = e1000e_phy_sw_reset;
eab50ffb 351 break;
0be84010
BA
352 case e1000_phy_82578:
353 phy->ops.check_polarity = e1000_check_polarity_m88;
354 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
355 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
356 phy->ops.get_info = e1000e_get_phy_info_m88;
357 break;
358 default:
359 ret_val = -E1000_ERR_PHY;
360 break;
a4f58f54
BA
361 }
362
fddaa1af 363out:
a4f58f54
BA
364 return ret_val;
365}
366
bc7f75fa
AK
367/**
368 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
369 * @hw: pointer to the HW structure
370 *
371 * Initialize family-specific PHY parameters and function pointers.
372 **/
373static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
374{
375 struct e1000_phy_info *phy = &hw->phy;
376 s32 ret_val;
377 u16 i = 0;
378
379 phy->addr = 1;
380 phy->reset_delay_us = 100;
381
17f208de
BA
382 phy->ops.power_up = e1000_power_up_phy_copper;
383 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
384
97ac8cae
BA
385 /*
386 * We may need to do this twice - once for IGP and if that fails,
387 * we'll set BM func pointers and try again
388 */
389 ret_val = e1000e_determine_phy_address(hw);
390 if (ret_val) {
94d8186a
BA
391 phy->ops.write_reg = e1000e_write_phy_reg_bm;
392 phy->ops.read_reg = e1000e_read_phy_reg_bm;
97ac8cae 393 ret_val = e1000e_determine_phy_address(hw);
9b71b419
BA
394 if (ret_val) {
395 e_dbg("Cannot determine PHY addr. Erroring out\n");
97ac8cae 396 return ret_val;
9b71b419 397 }
97ac8cae
BA
398 }
399
bc7f75fa
AK
400 phy->id = 0;
401 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
402 (i++ < 100)) {
403 msleep(1);
404 ret_val = e1000e_get_phy_id(hw);
405 if (ret_val)
406 return ret_val;
407 }
408
409 /* Verify phy id */
410 switch (phy->id) {
411 case IGP03E1000_E_PHY_ID:
412 phy->type = e1000_phy_igp_3;
413 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
414 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
415 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
0be84010
BA
416 phy->ops.get_info = e1000e_get_phy_info_igp;
417 phy->ops.check_polarity = e1000_check_polarity_igp;
418 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
bc7f75fa
AK
419 break;
420 case IFE_E_PHY_ID:
421 case IFE_PLUS_E_PHY_ID:
422 case IFE_C_E_PHY_ID:
423 phy->type = e1000_phy_ife;
424 phy->autoneg_mask = E1000_ALL_NOT_GIG;
0be84010
BA
425 phy->ops.get_info = e1000_get_phy_info_ife;
426 phy->ops.check_polarity = e1000_check_polarity_ife;
427 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
bc7f75fa 428 break;
97ac8cae
BA
429 case BME1000_E_PHY_ID:
430 phy->type = e1000_phy_bm;
431 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
432 phy->ops.read_reg = e1000e_read_phy_reg_bm;
433 phy->ops.write_reg = e1000e_write_phy_reg_bm;
434 phy->ops.commit = e1000e_phy_sw_reset;
0be84010
BA
435 phy->ops.get_info = e1000e_get_phy_info_m88;
436 phy->ops.check_polarity = e1000_check_polarity_m88;
437 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
97ac8cae 438 break;
bc7f75fa
AK
439 default:
440 return -E1000_ERR_PHY;
441 break;
442 }
443
444 return 0;
445}
446
447/**
448 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
449 * @hw: pointer to the HW structure
450 *
451 * Initialize family-specific NVM parameters and function
452 * pointers.
453 **/
454static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
455{
456 struct e1000_nvm_info *nvm = &hw->nvm;
457 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
148675a7 458 u32 gfpreg, sector_base_addr, sector_end_addr;
bc7f75fa
AK
459 u16 i;
460
ad68076e 461 /* Can't read flash registers if the register set isn't mapped. */
bc7f75fa 462 if (!hw->flash_address) {
3bb99fe2 463 e_dbg("ERROR: Flash registers not mapped\n");
bc7f75fa
AK
464 return -E1000_ERR_CONFIG;
465 }
466
467 nvm->type = e1000_nvm_flash_sw;
468
469 gfpreg = er32flash(ICH_FLASH_GFPREG);
470
ad68076e
BA
471 /*
472 * sector_X_addr is a "sector"-aligned address (4096 bytes)
bc7f75fa 473 * Add 1 to sector_end_addr since this sector is included in
ad68076e
BA
474 * the overall size.
475 */
bc7f75fa
AK
476 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
477 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
478
479 /* flash_base_addr is byte-aligned */
480 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
481
ad68076e
BA
482 /*
483 * find total size of the NVM, then cut in half since the total
484 * size represents two separate NVM banks.
485 */
bc7f75fa
AK
486 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
487 << FLASH_SECTOR_ADDR_SHIFT;
488 nvm->flash_bank_size /= 2;
489 /* Adjust to word count */
490 nvm->flash_bank_size /= sizeof(u16);
491
492 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
493
494 /* Clear shadow ram */
495 for (i = 0; i < nvm->word_size; i++) {
564ea9bb 496 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
497 dev_spec->shadow_ram[i].value = 0xFFFF;
498 }
499
500 return 0;
501}
502
503/**
504 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
505 * @hw: pointer to the HW structure
506 *
507 * Initialize family-specific MAC parameters and function
508 * pointers.
509 **/
510static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
511{
512 struct e1000_hw *hw = &adapter->hw;
513 struct e1000_mac_info *mac = &hw->mac;
514
515 /* Set media type function pointer */
318a94d6 516 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
517
518 /* Set mta register count */
519 mac->mta_reg_count = 32;
520 /* Set rar entry count */
521 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
522 if (mac->type == e1000_ich8lan)
523 mac->rar_entry_count--;
a65a4a0d
BA
524 /* FWSM register */
525 mac->has_fwsm = true;
526 /* ARC subsystem not supported */
527 mac->arc_subsystem_valid = false;
f464ba87
BA
528 /* Adaptive IFS supported */
529 mac->adaptive_ifs = true;
bc7f75fa 530
a4f58f54
BA
531 /* LED operations */
532 switch (mac->type) {
533 case e1000_ich8lan:
534 case e1000_ich9lan:
535 case e1000_ich10lan:
eb7700dc
BA
536 /* check management mode */
537 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
a4f58f54
BA
538 /* ID LED init */
539 mac->ops.id_led_init = e1000e_id_led_init;
540 /* setup LED */
541 mac->ops.setup_led = e1000e_setup_led_generic;
542 /* cleanup LED */
543 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
544 /* turn on/off LED */
545 mac->ops.led_on = e1000_led_on_ich8lan;
546 mac->ops.led_off = e1000_led_off_ich8lan;
547 break;
548 case e1000_pchlan:
d3738bb8 549 case e1000_pch2lan:
eb7700dc
BA
550 /* check management mode */
551 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
a4f58f54
BA
552 /* ID LED init */
553 mac->ops.id_led_init = e1000_id_led_init_pchlan;
554 /* setup LED */
555 mac->ops.setup_led = e1000_setup_led_pchlan;
556 /* cleanup LED */
557 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
558 /* turn on/off LED */
559 mac->ops.led_on = e1000_led_on_pchlan;
560 mac->ops.led_off = e1000_led_off_pchlan;
561 break;
562 default:
563 break;
564 }
565
bc7f75fa
AK
566 /* Enable PCS Lock-loss workaround for ICH8 */
567 if (mac->type == e1000_ich8lan)
564ea9bb 568 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
bc7f75fa 569
d3738bb8
BA
570 /* Disable PHY configuration by hardware, config by software */
571 if (mac->type == e1000_pch2lan) {
572 u32 extcnf_ctrl = er32(EXTCNF_CTRL);
573
574 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
575 ew32(EXTCNF_CTRL, extcnf_ctrl);
576 }
577
bc7f75fa
AK
578 return 0;
579}
580
e52997f9
BA
581/**
582 * e1000_set_eee_pchlan - Enable/disable EEE support
583 * @hw: pointer to the HW structure
584 *
585 * Enable/disable EEE based on setting in dev_spec structure. The bits in
586 * the LPI Control register will remain set only if/when link is up.
587 **/
588static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
589{
590 s32 ret_val = 0;
591 u16 phy_reg;
592
593 if (hw->phy.type != e1000_phy_82579)
594 goto out;
595
596 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
597 if (ret_val)
598 goto out;
599
600 if (hw->dev_spec.ich8lan.eee_disable)
601 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
602 else
603 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
604
605 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
606out:
607 return ret_val;
608}
609
7d3cabbc
BA
610/**
611 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
612 * @hw: pointer to the HW structure
613 *
614 * Checks to see of the link status of the hardware has changed. If a
615 * change in link status has been detected, then we read the PHY registers
616 * to get the current speed/duplex if link exists.
617 **/
618static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
619{
620 struct e1000_mac_info *mac = &hw->mac;
621 s32 ret_val;
622 bool link;
623
624 /*
625 * We only want to go out to the PHY registers to see if Auto-Neg
626 * has completed and/or if our link status has changed. The
627 * get_link_status flag is set upon receiving a Link Status
628 * Change or Rx Sequence Error interrupt.
629 */
630 if (!mac->get_link_status) {
631 ret_val = 0;
632 goto out;
633 }
634
7d3cabbc
BA
635 /*
636 * First we want to see if the MII Status Register reports
637 * link. If so, then we want to get the current speed/duplex
638 * of the PHY.
639 */
640 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
641 if (ret_val)
642 goto out;
643
1d5846b9
BA
644 if (hw->mac.type == e1000_pchlan) {
645 ret_val = e1000_k1_gig_workaround_hv(hw, link);
646 if (ret_val)
647 goto out;
648 }
649
7d3cabbc
BA
650 if (!link)
651 goto out; /* No link detected */
652
653 mac->get_link_status = false;
654
655 if (hw->phy.type == e1000_phy_82578) {
656 ret_val = e1000_link_stall_workaround_hv(hw);
657 if (ret_val)
658 goto out;
659 }
660
831bd2e6
BA
661 if (hw->mac.type == e1000_pch2lan) {
662 ret_val = e1000_k1_workaround_lv(hw);
663 if (ret_val)
664 goto out;
665 }
666
7d3cabbc
BA
667 /*
668 * Check if there was DownShift, must be checked
669 * immediately after link-up
670 */
671 e1000e_check_downshift(hw);
672
e52997f9
BA
673 /* Enable/Disable EEE after link up */
674 ret_val = e1000_set_eee_pchlan(hw);
675 if (ret_val)
676 goto out;
677
7d3cabbc
BA
678 /*
679 * If we are forcing speed/duplex, then we simply return since
680 * we have already determined whether we have link or not.
681 */
682 if (!mac->autoneg) {
683 ret_val = -E1000_ERR_CONFIG;
684 goto out;
685 }
686
687 /*
688 * Auto-Neg is enabled. Auto Speed Detection takes care
689 * of MAC speed/duplex configuration. So we only need to
690 * configure Collision Distance in the MAC.
691 */
692 e1000e_config_collision_dist(hw);
693
694 /*
695 * Configure Flow Control now that Auto-Neg has completed.
696 * First, we need to restore the desired flow control
697 * settings because we may have had to re-autoneg with a
698 * different link partner.
699 */
700 ret_val = e1000e_config_fc_after_link_up(hw);
701 if (ret_val)
3bb99fe2 702 e_dbg("Error configuring flow control\n");
7d3cabbc
BA
703
704out:
705 return ret_val;
706}
707
69e3fd8c 708static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
bc7f75fa
AK
709{
710 struct e1000_hw *hw = &adapter->hw;
711 s32 rc;
712
713 rc = e1000_init_mac_params_ich8lan(adapter);
714 if (rc)
715 return rc;
716
717 rc = e1000_init_nvm_params_ich8lan(hw);
718 if (rc)
719 return rc;
720
d3738bb8
BA
721 switch (hw->mac.type) {
722 case e1000_ich8lan:
723 case e1000_ich9lan:
724 case e1000_ich10lan:
a4f58f54 725 rc = e1000_init_phy_params_ich8lan(hw);
d3738bb8
BA
726 break;
727 case e1000_pchlan:
728 case e1000_pch2lan:
729 rc = e1000_init_phy_params_pchlan(hw);
730 break;
731 default:
732 break;
733 }
bc7f75fa
AK
734 if (rc)
735 return rc;
736
2adc55c9
BA
737 if (adapter->hw.phy.type == e1000_phy_ife) {
738 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
739 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
740 }
741
bc7f75fa
AK
742 if ((adapter->hw.mac.type == e1000_ich8lan) &&
743 (adapter->hw.phy.type == e1000_phy_igp_3))
744 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
745
5a86f28f
BA
746 /* Disable EEE by default until IEEE802.3az spec is finalized */
747 if (adapter->flags2 & FLAG2_HAS_EEE)
748 adapter->hw.dev_spec.ich8lan.eee_disable = true;
749
bc7f75fa
AK
750 return 0;
751}
752
717d438d 753static DEFINE_MUTEX(nvm_mutex);
717d438d 754
ca15df58
BA
755/**
756 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
757 * @hw: pointer to the HW structure
758 *
759 * Acquires the mutex for performing NVM operations.
760 **/
761static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
762{
763 mutex_lock(&nvm_mutex);
764
765 return 0;
766}
767
768/**
769 * e1000_release_nvm_ich8lan - Release NVM mutex
770 * @hw: pointer to the HW structure
771 *
772 * Releases the mutex used while performing NVM operations.
773 **/
774static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
775{
776 mutex_unlock(&nvm_mutex);
ca15df58
BA
777}
778
779static DEFINE_MUTEX(swflag_mutex);
780
bc7f75fa
AK
781/**
782 * e1000_acquire_swflag_ich8lan - Acquire software control flag
783 * @hw: pointer to the HW structure
784 *
ca15df58
BA
785 * Acquires the software control flag for performing PHY and select
786 * MAC CSR accesses.
bc7f75fa
AK
787 **/
788static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
789{
373a88d7
BA
790 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
791 s32 ret_val = 0;
bc7f75fa 792
ca15df58 793 mutex_lock(&swflag_mutex);
717d438d 794
bc7f75fa
AK
795 while (timeout) {
796 extcnf_ctrl = er32(EXTCNF_CTRL);
373a88d7
BA
797 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
798 break;
bc7f75fa 799
373a88d7
BA
800 mdelay(1);
801 timeout--;
802 }
803
804 if (!timeout) {
3bb99fe2 805 e_dbg("SW/FW/HW has locked the resource for too long.\n");
373a88d7
BA
806 ret_val = -E1000_ERR_CONFIG;
807 goto out;
808 }
809
53ac5a88 810 timeout = SW_FLAG_TIMEOUT;
373a88d7
BA
811
812 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
813 ew32(EXTCNF_CTRL, extcnf_ctrl);
814
815 while (timeout) {
816 extcnf_ctrl = er32(EXTCNF_CTRL);
817 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
818 break;
a4f58f54 819
bc7f75fa
AK
820 mdelay(1);
821 timeout--;
822 }
823
824 if (!timeout) {
3bb99fe2 825 e_dbg("Failed to acquire the semaphore.\n");
2e2e8d53
BA
826 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
827 ew32(EXTCNF_CTRL, extcnf_ctrl);
373a88d7
BA
828 ret_val = -E1000_ERR_CONFIG;
829 goto out;
bc7f75fa
AK
830 }
831
373a88d7
BA
832out:
833 if (ret_val)
ca15df58 834 mutex_unlock(&swflag_mutex);
373a88d7
BA
835
836 return ret_val;
bc7f75fa
AK
837}
838
839/**
840 * e1000_release_swflag_ich8lan - Release software control flag
841 * @hw: pointer to the HW structure
842 *
ca15df58
BA
843 * Releases the software control flag for performing PHY and select
844 * MAC CSR accesses.
bc7f75fa
AK
845 **/
846static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
847{
848 u32 extcnf_ctrl;
849
850 extcnf_ctrl = er32(EXTCNF_CTRL);
851 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
852 ew32(EXTCNF_CTRL, extcnf_ctrl);
717d438d 853
ca15df58 854 mutex_unlock(&swflag_mutex);
bc7f75fa
AK
855}
856
4662e82b
BA
857/**
858 * e1000_check_mng_mode_ich8lan - Checks management mode
859 * @hw: pointer to the HW structure
860 *
eb7700dc 861 * This checks if the adapter has any manageability enabled.
4662e82b
BA
862 * This is a function pointer entry point only called by read/write
863 * routines for the PHY and NVM parts.
864 **/
865static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
866{
a708dd88
BA
867 u32 fwsm;
868
869 fwsm = er32(FWSM);
eb7700dc
BA
870 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
871 ((fwsm & E1000_FWSM_MODE_MASK) ==
872 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
873}
4662e82b 874
eb7700dc
BA
875/**
876 * e1000_check_mng_mode_pchlan - Checks management mode
877 * @hw: pointer to the HW structure
878 *
879 * This checks if the adapter has iAMT enabled.
880 * This is a function pointer entry point only called by read/write
881 * routines for the PHY and NVM parts.
882 **/
883static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
884{
885 u32 fwsm;
886
887 fwsm = er32(FWSM);
888 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
889 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
4662e82b
BA
890}
891
bc7f75fa
AK
892/**
893 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
894 * @hw: pointer to the HW structure
895 *
896 * Checks if firmware is blocking the reset of the PHY.
897 * This is a function pointer entry point only called by
898 * reset routines.
899 **/
900static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
901{
902 u32 fwsm;
903
904 fwsm = er32(FWSM);
905
906 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
907}
908
8395ae83
BA
909/**
910 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
911 * @hw: pointer to the HW structure
912 *
913 * Assumes semaphore already acquired.
914 *
915 **/
916static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
917{
918 u16 phy_data;
919 u32 strap = er32(STRAP);
920 s32 ret_val = 0;
921
922 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
923
924 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
925 if (ret_val)
926 goto out;
927
928 phy_data &= ~HV_SMB_ADDR_MASK;
929 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
930 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
931 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
932
933out:
934 return ret_val;
935}
936
f523d211
BA
937/**
938 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
939 * @hw: pointer to the HW structure
940 *
941 * SW should configure the LCD from the NVM extended configuration region
942 * as a workaround for certain parts.
943 **/
944static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
945{
946 struct e1000_phy_info *phy = &hw->phy;
947 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
8b802a7e 948 s32 ret_val = 0;
f523d211
BA
949 u16 word_addr, reg_data, reg_addr, phy_page = 0;
950
f523d211
BA
951 /*
952 * Initialize the PHY from the NVM on ICH platforms. This
953 * is needed due to an issue where the NVM configuration is
954 * not properly autoloaded after power transitions.
955 * Therefore, after each PHY reset, we will load the
956 * configuration data out of the NVM manually.
957 */
3f0c16e8
BA
958 switch (hw->mac.type) {
959 case e1000_ich8lan:
960 if (phy->type != e1000_phy_igp_3)
961 return ret_val;
962
5f3eed6f
BA
963 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
964 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
3f0c16e8
BA
965 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
966 break;
967 }
968 /* Fall-thru */
969 case e1000_pchlan:
d3738bb8 970 case e1000_pch2lan:
8b802a7e 971 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
3f0c16e8
BA
972 break;
973 default:
974 return ret_val;
975 }
976
977 ret_val = hw->phy.ops.acquire(hw);
978 if (ret_val)
979 return ret_val;
8b802a7e
BA
980
981 data = er32(FEXTNVM);
982 if (!(data & sw_cfg_mask))
983 goto out;
f523d211 984
8b802a7e
BA
985 /*
986 * Make sure HW does not configure LCD from PHY
987 * extended configuration before SW configuration
988 */
989 data = er32(EXTCNF_CTRL);
d3738bb8
BA
990 if (!(hw->mac.type == e1000_pch2lan)) {
991 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
992 goto out;
993 }
8b802a7e
BA
994
995 cnf_size = er32(EXTCNF_SIZE);
996 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
997 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
998 if (!cnf_size)
999 goto out;
1000
1001 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1002 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1003
87fb7410
BA
1004 if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1005 (hw->mac.type == e1000_pchlan)) ||
1006 (hw->mac.type == e1000_pch2lan)) {
f523d211 1007 /*
8b802a7e
BA
1008 * HW configures the SMBus address and LEDs when the
1009 * OEM and LCD Write Enable bits are set in the NVM.
1010 * When both NVM bits are cleared, SW will configure
1011 * them instead.
f523d211 1012 */
8395ae83 1013 ret_val = e1000_write_smbus_addr(hw);
8b802a7e 1014 if (ret_val)
f523d211
BA
1015 goto out;
1016
8b802a7e
BA
1017 data = er32(LEDCTL);
1018 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1019 (u16)data);
1020 if (ret_val)
f523d211 1021 goto out;
8b802a7e 1022 }
f523d211 1023
8b802a7e
BA
1024 /* Configure LCD from extended configuration region. */
1025
1026 /* cnf_base_addr is in DWORD */
1027 word_addr = (u16)(cnf_base_addr << 1);
1028
1029 for (i = 0; i < cnf_size; i++) {
1030 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1031 &reg_data);
1032 if (ret_val)
1033 goto out;
1034
1035 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1036 1, &reg_addr);
1037 if (ret_val)
1038 goto out;
1039
1040 /* Save off the PHY page for future writes. */
1041 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1042 phy_page = reg_data;
1043 continue;
f523d211 1044 }
8b802a7e
BA
1045
1046 reg_addr &= PHY_REG_MASK;
1047 reg_addr |= phy_page;
1048
1049 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1050 reg_data);
1051 if (ret_val)
1052 goto out;
f523d211
BA
1053 }
1054
1055out:
94d8186a 1056 hw->phy.ops.release(hw);
f523d211
BA
1057 return ret_val;
1058}
1059
1d5846b9
BA
1060/**
1061 * e1000_k1_gig_workaround_hv - K1 Si workaround
1062 * @hw: pointer to the HW structure
1063 * @link: link up bool flag
1064 *
1065 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1066 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1067 * If link is down, the function will restore the default K1 setting located
1068 * in the NVM.
1069 **/
1070static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1071{
1072 s32 ret_val = 0;
1073 u16 status_reg = 0;
1074 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1075
1076 if (hw->mac.type != e1000_pchlan)
1077 goto out;
1078
1079 /* Wrap the whole flow with the sw flag */
94d8186a 1080 ret_val = hw->phy.ops.acquire(hw);
1d5846b9
BA
1081 if (ret_val)
1082 goto out;
1083
1084 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1085 if (link) {
1086 if (hw->phy.type == e1000_phy_82578) {
94d8186a 1087 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1d5846b9
BA
1088 &status_reg);
1089 if (ret_val)
1090 goto release;
1091
1092 status_reg &= BM_CS_STATUS_LINK_UP |
1093 BM_CS_STATUS_RESOLVED |
1094 BM_CS_STATUS_SPEED_MASK;
1095
1096 if (status_reg == (BM_CS_STATUS_LINK_UP |
1097 BM_CS_STATUS_RESOLVED |
1098 BM_CS_STATUS_SPEED_1000))
1099 k1_enable = false;
1100 }
1101
1102 if (hw->phy.type == e1000_phy_82577) {
94d8186a 1103 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1d5846b9
BA
1104 &status_reg);
1105 if (ret_val)
1106 goto release;
1107
1108 status_reg &= HV_M_STATUS_LINK_UP |
1109 HV_M_STATUS_AUTONEG_COMPLETE |
1110 HV_M_STATUS_SPEED_MASK;
1111
1112 if (status_reg == (HV_M_STATUS_LINK_UP |
1113 HV_M_STATUS_AUTONEG_COMPLETE |
1114 HV_M_STATUS_SPEED_1000))
1115 k1_enable = false;
1116 }
1117
1118 /* Link stall fix for link up */
94d8186a 1119 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1d5846b9
BA
1120 0x0100);
1121 if (ret_val)
1122 goto release;
1123
1124 } else {
1125 /* Link stall fix for link down */
94d8186a 1126 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1d5846b9
BA
1127 0x4100);
1128 if (ret_val)
1129 goto release;
1130 }
1131
1132 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1133
1134release:
94d8186a 1135 hw->phy.ops.release(hw);
1d5846b9
BA
1136out:
1137 return ret_val;
1138}
1139
1140/**
1141 * e1000_configure_k1_ich8lan - Configure K1 power state
1142 * @hw: pointer to the HW structure
1143 * @enable: K1 state to configure
1144 *
1145 * Configure the K1 power state based on the provided parameter.
1146 * Assumes semaphore already acquired.
1147 *
1148 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1149 **/
bb436b20 1150s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1d5846b9
BA
1151{
1152 s32 ret_val = 0;
1153 u32 ctrl_reg = 0;
1154 u32 ctrl_ext = 0;
1155 u32 reg = 0;
1156 u16 kmrn_reg = 0;
1157
1158 ret_val = e1000e_read_kmrn_reg_locked(hw,
1159 E1000_KMRNCTRLSTA_K1_CONFIG,
1160 &kmrn_reg);
1161 if (ret_val)
1162 goto out;
1163
1164 if (k1_enable)
1165 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1166 else
1167 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1168
1169 ret_val = e1000e_write_kmrn_reg_locked(hw,
1170 E1000_KMRNCTRLSTA_K1_CONFIG,
1171 kmrn_reg);
1172 if (ret_val)
1173 goto out;
1174
1175 udelay(20);
1176 ctrl_ext = er32(CTRL_EXT);
1177 ctrl_reg = er32(CTRL);
1178
1179 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1180 reg |= E1000_CTRL_FRCSPD;
1181 ew32(CTRL, reg);
1182
1183 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1184 udelay(20);
1185 ew32(CTRL, ctrl_reg);
1186 ew32(CTRL_EXT, ctrl_ext);
1187 udelay(20);
1188
1189out:
1190 return ret_val;
1191}
1192
f523d211
BA
1193/**
1194 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1195 * @hw: pointer to the HW structure
1196 * @d0_state: boolean if entering d0 or d3 device state
1197 *
1198 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1199 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1200 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1201 **/
1202static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1203{
1204 s32 ret_val = 0;
1205 u32 mac_reg;
1206 u16 oem_reg;
1207
d3738bb8 1208 if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
f523d211
BA
1209 return ret_val;
1210
94d8186a 1211 ret_val = hw->phy.ops.acquire(hw);
f523d211
BA
1212 if (ret_val)
1213 return ret_val;
1214
d3738bb8
BA
1215 if (!(hw->mac.type == e1000_pch2lan)) {
1216 mac_reg = er32(EXTCNF_CTRL);
1217 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1218 goto out;
1219 }
f523d211
BA
1220
1221 mac_reg = er32(FEXTNVM);
1222 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1223 goto out;
1224
1225 mac_reg = er32(PHY_CTRL);
1226
94d8186a 1227 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
f523d211
BA
1228 if (ret_val)
1229 goto out;
1230
1231 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1232
1233 if (d0_state) {
1234 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1235 oem_reg |= HV_OEM_BITS_GBE_DIS;
1236
1237 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1238 oem_reg |= HV_OEM_BITS_LPLU;
1239 } else {
1240 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1241 oem_reg |= HV_OEM_BITS_GBE_DIS;
1242
1243 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1244 oem_reg |= HV_OEM_BITS_LPLU;
1245 }
1246 /* Restart auto-neg to activate the bits */
818f3331
BA
1247 if (!e1000_check_reset_block(hw))
1248 oem_reg |= HV_OEM_BITS_RESTART_AN;
94d8186a 1249 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
f523d211
BA
1250
1251out:
94d8186a 1252 hw->phy.ops.release(hw);
f523d211
BA
1253
1254 return ret_val;
1255}
1256
1257
fddaa1af
BA
1258/**
1259 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1260 * @hw: pointer to the HW structure
1261 **/
1262static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1263{
1264 s32 ret_val;
1265 u16 data;
1266
1267 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1268 if (ret_val)
1269 return ret_val;
1270
1271 data |= HV_KMRN_MDIO_SLOW;
1272
1273 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1274
1275 return ret_val;
1276}
1277
a4f58f54
BA
1278/**
1279 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1280 * done after every PHY reset.
1281 **/
1282static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1283{
1284 s32 ret_val = 0;
baf86c9d 1285 u16 phy_data;
a4f58f54
BA
1286
1287 if (hw->mac.type != e1000_pchlan)
1288 return ret_val;
1289
fddaa1af
BA
1290 /* Set MDIO slow mode before any other MDIO access */
1291 if (hw->phy.type == e1000_phy_82577) {
1292 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1293 if (ret_val)
1294 goto out;
1295 }
1296
a4f58f54
BA
1297 if (((hw->phy.type == e1000_phy_82577) &&
1298 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1299 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1300 /* Disable generation of early preamble */
1301 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1302 if (ret_val)
1303 return ret_val;
1304
1305 /* Preamble tuning for SSC */
1306 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1307 if (ret_val)
1308 return ret_val;
1309 }
1310
1311 if (hw->phy.type == e1000_phy_82578) {
1312 /*
1313 * Return registers to default by doing a soft reset then
1314 * writing 0x3140 to the control register.
1315 */
1316 if (hw->phy.revision < 2) {
1317 e1000e_phy_sw_reset(hw);
1318 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1319 }
1320 }
1321
1322 /* Select page 0 */
94d8186a 1323 ret_val = hw->phy.ops.acquire(hw);
a4f58f54
BA
1324 if (ret_val)
1325 return ret_val;
1d5846b9 1326
a4f58f54 1327 hw->phy.addr = 1;
1d5846b9 1328 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
baf86c9d 1329 hw->phy.ops.release(hw);
1d5846b9
BA
1330 if (ret_val)
1331 goto out;
a4f58f54 1332
1d5846b9
BA
1333 /*
1334 * Configure the K1 Si workaround during phy reset assuming there is
1335 * link so that it disables K1 if link is in 1Gbps.
1336 */
1337 ret_val = e1000_k1_gig_workaround_hv(hw, true);
baf86c9d
BA
1338 if (ret_val)
1339 goto out;
1d5846b9 1340
baf86c9d
BA
1341 /* Workaround for link disconnects on a busy hub in half duplex */
1342 ret_val = hw->phy.ops.acquire(hw);
1343 if (ret_val)
1344 goto out;
1345 ret_val = hw->phy.ops.read_reg_locked(hw,
1346 PHY_REG(BM_PORT_CTRL_PAGE, 17),
1347 &phy_data);
1348 if (ret_val)
1349 goto release;
1350 ret_val = hw->phy.ops.write_reg_locked(hw,
1351 PHY_REG(BM_PORT_CTRL_PAGE, 17),
1352 phy_data & 0x00FF);
1353release:
1354 hw->phy.ops.release(hw);
1d5846b9 1355out:
a4f58f54
BA
1356 return ret_val;
1357}
1358
d3738bb8
BA
1359/**
1360 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1361 * @hw: pointer to the HW structure
1362 **/
1363void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1364{
1365 u32 mac_reg;
1366 u16 i;
1367
1368 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1369 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1370 mac_reg = er32(RAL(i));
1371 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
1372 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
1373 mac_reg = er32(RAH(i));
1374 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
1375 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0x8000));
1376 }
1377}
1378
1379static u32 e1000_calc_rx_da_crc(u8 mac[])
1380{
1381 u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */
1382 u32 i, j, mask, crc;
1383
1384 crc = 0xffffffff;
1385 for (i = 0; i < 6; i++) {
1386 crc = crc ^ mac[i];
1387 for (j = 8; j > 0; j--) {
1388 mask = (crc & 1) * (-1);
1389 crc = (crc >> 1) ^ (poly & mask);
1390 }
1391 }
1392 return ~crc;
1393}
1394
1395/**
1396 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1397 * with 82579 PHY
1398 * @hw: pointer to the HW structure
1399 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1400 **/
1401s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1402{
1403 s32 ret_val = 0;
1404 u16 phy_reg, data;
1405 u32 mac_reg;
1406 u16 i;
1407
1408 if (hw->mac.type != e1000_pch2lan)
1409 goto out;
1410
1411 /* disable Rx path while enabling/disabling workaround */
1412 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1413 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1414 if (ret_val)
1415 goto out;
1416
1417 if (enable) {
1418 /*
1419 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1420 * SHRAL/H) and initial CRC values to the MAC
1421 */
1422 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1423 u8 mac_addr[ETH_ALEN] = {0};
1424 u32 addr_high, addr_low;
1425
1426 addr_high = er32(RAH(i));
1427 if (!(addr_high & E1000_RAH_AV))
1428 continue;
1429 addr_low = er32(RAL(i));
1430 mac_addr[0] = (addr_low & 0xFF);
1431 mac_addr[1] = ((addr_low >> 8) & 0xFF);
1432 mac_addr[2] = ((addr_low >> 16) & 0xFF);
1433 mac_addr[3] = ((addr_low >> 24) & 0xFF);
1434 mac_addr[4] = (addr_high & 0xFF);
1435 mac_addr[5] = ((addr_high >> 8) & 0xFF);
1436
1437 ew32(PCH_RAICC(i),
1438 e1000_calc_rx_da_crc(mac_addr));
1439 }
1440
1441 /* Write Rx addresses to the PHY */
1442 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1443
1444 /* Enable jumbo frame workaround in the MAC */
1445 mac_reg = er32(FFLT_DBG);
1446 mac_reg &= ~(1 << 14);
1447 mac_reg |= (7 << 15);
1448 ew32(FFLT_DBG, mac_reg);
1449
1450 mac_reg = er32(RCTL);
1451 mac_reg |= E1000_RCTL_SECRC;
1452 ew32(RCTL, mac_reg);
1453
1454 ret_val = e1000e_read_kmrn_reg(hw,
1455 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1456 &data);
1457 if (ret_val)
1458 goto out;
1459 ret_val = e1000e_write_kmrn_reg(hw,
1460 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1461 data | (1 << 0));
1462 if (ret_val)
1463 goto out;
1464 ret_val = e1000e_read_kmrn_reg(hw,
1465 E1000_KMRNCTRLSTA_HD_CTRL,
1466 &data);
1467 if (ret_val)
1468 goto out;
1469 data &= ~(0xF << 8);
1470 data |= (0xB << 8);
1471 ret_val = e1000e_write_kmrn_reg(hw,
1472 E1000_KMRNCTRLSTA_HD_CTRL,
1473 data);
1474 if (ret_val)
1475 goto out;
1476
1477 /* Enable jumbo frame workaround in the PHY */
1478 e1e_rphy(hw, PHY_REG(769, 20), &data);
1479 ret_val = e1e_wphy(hw, PHY_REG(769, 20), data & ~(1 << 14));
1480 if (ret_val)
1481 goto out;
1482 e1e_rphy(hw, PHY_REG(769, 23), &data);
1483 data &= ~(0x7F << 5);
1484 data |= (0x37 << 5);
1485 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1486 if (ret_val)
1487 goto out;
1488 e1e_rphy(hw, PHY_REG(769, 16), &data);
1489 data &= ~(1 << 13);
1490 data |= (1 << 12);
1491 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1492 if (ret_val)
1493 goto out;
1494 e1e_rphy(hw, PHY_REG(776, 20), &data);
1495 data &= ~(0x3FF << 2);
1496 data |= (0x1A << 2);
1497 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1498 if (ret_val)
1499 goto out;
1500 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00);
1501 if (ret_val)
1502 goto out;
1503 e1e_rphy(hw, HV_PM_CTRL, &data);
1504 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1505 if (ret_val)
1506 goto out;
1507 } else {
1508 /* Write MAC register values back to h/w defaults */
1509 mac_reg = er32(FFLT_DBG);
1510 mac_reg &= ~(0xF << 14);
1511 ew32(FFLT_DBG, mac_reg);
1512
1513 mac_reg = er32(RCTL);
1514 mac_reg &= ~E1000_RCTL_SECRC;
1515 ew32(FFLT_DBG, mac_reg);
1516
1517 ret_val = e1000e_read_kmrn_reg(hw,
1518 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1519 &data);
1520 if (ret_val)
1521 goto out;
1522 ret_val = e1000e_write_kmrn_reg(hw,
1523 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1524 data & ~(1 << 0));
1525 if (ret_val)
1526 goto out;
1527 ret_val = e1000e_read_kmrn_reg(hw,
1528 E1000_KMRNCTRLSTA_HD_CTRL,
1529 &data);
1530 if (ret_val)
1531 goto out;
1532 data &= ~(0xF << 8);
1533 data |= (0xB << 8);
1534 ret_val = e1000e_write_kmrn_reg(hw,
1535 E1000_KMRNCTRLSTA_HD_CTRL,
1536 data);
1537 if (ret_val)
1538 goto out;
1539
1540 /* Write PHY register values back to h/w defaults */
1541 e1e_rphy(hw, PHY_REG(769, 20), &data);
1542 ret_val = e1e_wphy(hw, PHY_REG(769, 20), data & ~(1 << 14));
1543 if (ret_val)
1544 goto out;
1545 e1e_rphy(hw, PHY_REG(769, 23), &data);
1546 data &= ~(0x7F << 5);
1547 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1548 if (ret_val)
1549 goto out;
1550 e1e_rphy(hw, PHY_REG(769, 16), &data);
1551 data &= ~(1 << 12);
1552 data |= (1 << 13);
1553 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1554 if (ret_val)
1555 goto out;
1556 e1e_rphy(hw, PHY_REG(776, 20), &data);
1557 data &= ~(0x3FF << 2);
1558 data |= (0x8 << 2);
1559 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1560 if (ret_val)
1561 goto out;
1562 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1563 if (ret_val)
1564 goto out;
1565 e1e_rphy(hw, HV_PM_CTRL, &data);
1566 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1567 if (ret_val)
1568 goto out;
1569 }
1570
1571 /* re-enable Rx path after enabling/disabling workaround */
1572 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1573
1574out:
1575 return ret_val;
1576}
1577
1578/**
1579 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1580 * done after every PHY reset.
1581 **/
1582static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1583{
1584 s32 ret_val = 0;
1585
1586 if (hw->mac.type != e1000_pch2lan)
1587 goto out;
1588
1589 /* Set MDIO slow mode before any other MDIO access */
1590 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1591
1592out:
1593 return ret_val;
1594}
1595
831bd2e6
BA
1596/**
1597 * e1000_k1_gig_workaround_lv - K1 Si workaround
1598 * @hw: pointer to the HW structure
1599 *
1600 * Workaround to set the K1 beacon duration for 82579 parts
1601 **/
1602static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1603{
1604 s32 ret_val = 0;
1605 u16 status_reg = 0;
1606 u32 mac_reg;
1607
1608 if (hw->mac.type != e1000_pch2lan)
1609 goto out;
1610
1611 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1612 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1613 if (ret_val)
1614 goto out;
1615
1616 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1617 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1618 mac_reg = er32(FEXTNVM4);
1619 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1620
1621 if (status_reg & HV_M_STATUS_SPEED_1000)
1622 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1623 else
1624 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1625
1626 ew32(FEXTNVM4, mac_reg);
1627 }
1628
1629out:
1630 return ret_val;
1631}
1632
fc0c7760
BA
1633/**
1634 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1635 * @hw: pointer to the HW structure
1636 *
1637 * Check the appropriate indication the MAC has finished configuring the
1638 * PHY after a software reset.
1639 **/
1640static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1641{
1642 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1643
1644 /* Wait for basic configuration completes before proceeding */
1645 do {
1646 data = er32(STATUS);
1647 data &= E1000_STATUS_LAN_INIT_DONE;
1648 udelay(100);
1649 } while ((!data) && --loop);
1650
1651 /*
1652 * If basic configuration is incomplete before the above loop
1653 * count reaches 0, loading the configuration from NVM will
1654 * leave the PHY in a bad state possibly resulting in no link.
1655 */
1656 if (loop == 0)
3bb99fe2 1657 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
fc0c7760
BA
1658
1659 /* Clear the Init Done bit for the next init event */
1660 data = er32(STATUS);
1661 data &= ~E1000_STATUS_LAN_INIT_DONE;
1662 ew32(STATUS, data);
1663}
1664
bc7f75fa 1665/**
e98cac44 1666 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
bc7f75fa 1667 * @hw: pointer to the HW structure
bc7f75fa 1668 **/
e98cac44 1669static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
bc7f75fa 1670{
f523d211
BA
1671 s32 ret_val = 0;
1672 u16 reg;
bc7f75fa 1673
e98cac44
BA
1674 if (e1000_check_reset_block(hw))
1675 goto out;
fc0c7760 1676
5f3eed6f
BA
1677 /* Allow time for h/w to get to quiescent state after reset */
1678 msleep(10);
1679
fddaa1af 1680 /* Perform any necessary post-reset workarounds */
e98cac44
BA
1681 switch (hw->mac.type) {
1682 case e1000_pchlan:
a4f58f54
BA
1683 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1684 if (ret_val)
e98cac44
BA
1685 goto out;
1686 break;
d3738bb8
BA
1687 case e1000_pch2lan:
1688 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1689 if (ret_val)
1690 goto out;
1691 break;
e98cac44
BA
1692 default:
1693 break;
a4f58f54
BA
1694 }
1695
db2932ec 1696 /* Dummy read to clear the phy wakeup bit after lcd reset */
d3738bb8 1697 if (hw->mac.type >= e1000_pchlan)
db2932ec
BA
1698 e1e_rphy(hw, BM_WUC, &reg);
1699
f523d211
BA
1700 /* Configure the LCD with the extended configuration region in NVM */
1701 ret_val = e1000_sw_lcd_config_ich8lan(hw);
1702 if (ret_val)
1703 goto out;
bc7f75fa 1704
f523d211 1705 /* Configure the LCD with the OEM bits in NVM */
e98cac44 1706 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
bc7f75fa 1707
f523d211 1708out:
e98cac44
BA
1709 return ret_val;
1710}
1711
1712/**
1713 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1714 * @hw: pointer to the HW structure
1715 *
1716 * Resets the PHY
1717 * This is a function pointer entry point called by drivers
1718 * or other shared routines.
1719 **/
1720static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1721{
1722 s32 ret_val = 0;
1723
1724 ret_val = e1000e_phy_hw_reset_generic(hw);
1725 if (ret_val)
1726 goto out;
1727
1728 ret_val = e1000_post_phy_reset_ich8lan(hw);
1729
1730out:
1731 return ret_val;
bc7f75fa
AK
1732}
1733
fa2ce13c
BA
1734/**
1735 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1736 * @hw: pointer to the HW structure
1737 * @active: true to enable LPLU, false to disable
1738 *
1739 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1740 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1741 * the phy speed. This function will manually set the LPLU bit and restart
1742 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1743 * since it configures the same bit.
1744 **/
1745static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1746{
1747 s32 ret_val = 0;
1748 u16 oem_reg;
1749
1750 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1751 if (ret_val)
1752 goto out;
1753
1754 if (active)
1755 oem_reg |= HV_OEM_BITS_LPLU;
1756 else
1757 oem_reg &= ~HV_OEM_BITS_LPLU;
1758
1759 oem_reg |= HV_OEM_BITS_RESTART_AN;
1760 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1761
1762out:
1763 return ret_val;
1764}
1765
bc7f75fa
AK
1766/**
1767 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1768 * @hw: pointer to the HW structure
564ea9bb 1769 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
1770 *
1771 * Sets the LPLU D0 state according to the active flag. When
1772 * activating LPLU this function also disables smart speed
1773 * and vice versa. LPLU will not be activated unless the
1774 * device autonegotiation advertisement meets standards of
1775 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1776 * This is a function pointer entry point only called by
1777 * PHY setup routines.
1778 **/
1779static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1780{
1781 struct e1000_phy_info *phy = &hw->phy;
1782 u32 phy_ctrl;
1783 s32 ret_val = 0;
1784 u16 data;
1785
97ac8cae 1786 if (phy->type == e1000_phy_ife)
bc7f75fa
AK
1787 return ret_val;
1788
1789 phy_ctrl = er32(PHY_CTRL);
1790
1791 if (active) {
1792 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1793 ew32(PHY_CTRL, phy_ctrl);
1794
60f1292f
BA
1795 if (phy->type != e1000_phy_igp_3)
1796 return 0;
1797
ad68076e
BA
1798 /*
1799 * Call gig speed drop workaround on LPLU before accessing
1800 * any PHY registers
1801 */
60f1292f 1802 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
1803 e1000e_gig_downshift_workaround_ich8lan(hw);
1804
1805 /* When LPLU is enabled, we should disable SmartSpeed */
1806 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1807 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1808 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1809 if (ret_val)
1810 return ret_val;
1811 } else {
1812 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1813 ew32(PHY_CTRL, phy_ctrl);
1814
60f1292f
BA
1815 if (phy->type != e1000_phy_igp_3)
1816 return 0;
1817
ad68076e
BA
1818 /*
1819 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
1820 * during Dx states where the power conservation is most
1821 * important. During driver activity we should enable
ad68076e
BA
1822 * SmartSpeed, so performance is maintained.
1823 */
bc7f75fa
AK
1824 if (phy->smart_speed == e1000_smart_speed_on) {
1825 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1826 &data);
bc7f75fa
AK
1827 if (ret_val)
1828 return ret_val;
1829
1830 data |= IGP01E1000_PSCFR_SMART_SPEED;
1831 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1832 data);
bc7f75fa
AK
1833 if (ret_val)
1834 return ret_val;
1835 } else if (phy->smart_speed == e1000_smart_speed_off) {
1836 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1837 &data);
bc7f75fa
AK
1838 if (ret_val)
1839 return ret_val;
1840
1841 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1842 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1843 data);
bc7f75fa
AK
1844 if (ret_val)
1845 return ret_val;
1846 }
1847 }
1848
1849 return 0;
1850}
1851
1852/**
1853 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1854 * @hw: pointer to the HW structure
564ea9bb 1855 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
1856 *
1857 * Sets the LPLU D3 state according to the active flag. When
1858 * activating LPLU this function also disables smart speed
1859 * and vice versa. LPLU will not be activated unless the
1860 * device autonegotiation advertisement meets standards of
1861 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1862 * This is a function pointer entry point only called by
1863 * PHY setup routines.
1864 **/
1865static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1866{
1867 struct e1000_phy_info *phy = &hw->phy;
1868 u32 phy_ctrl;
1869 s32 ret_val;
1870 u16 data;
1871
1872 phy_ctrl = er32(PHY_CTRL);
1873
1874 if (!active) {
1875 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1876 ew32(PHY_CTRL, phy_ctrl);
60f1292f
BA
1877
1878 if (phy->type != e1000_phy_igp_3)
1879 return 0;
1880
ad68076e
BA
1881 /*
1882 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
1883 * during Dx states where the power conservation is most
1884 * important. During driver activity we should enable
ad68076e
BA
1885 * SmartSpeed, so performance is maintained.
1886 */
bc7f75fa 1887 if (phy->smart_speed == e1000_smart_speed_on) {
ad68076e
BA
1888 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1889 &data);
bc7f75fa
AK
1890 if (ret_val)
1891 return ret_val;
1892
1893 data |= IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
1894 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1895 data);
bc7f75fa
AK
1896 if (ret_val)
1897 return ret_val;
1898 } else if (phy->smart_speed == e1000_smart_speed_off) {
ad68076e
BA
1899 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1900 &data);
bc7f75fa
AK
1901 if (ret_val)
1902 return ret_val;
1903
1904 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
1905 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1906 data);
bc7f75fa
AK
1907 if (ret_val)
1908 return ret_val;
1909 }
1910 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1911 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1912 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1913 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1914 ew32(PHY_CTRL, phy_ctrl);
1915
60f1292f
BA
1916 if (phy->type != e1000_phy_igp_3)
1917 return 0;
1918
ad68076e
BA
1919 /*
1920 * Call gig speed drop workaround on LPLU before accessing
1921 * any PHY registers
1922 */
60f1292f 1923 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
1924 e1000e_gig_downshift_workaround_ich8lan(hw);
1925
1926 /* When LPLU is enabled, we should disable SmartSpeed */
ad68076e 1927 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
bc7f75fa
AK
1928 if (ret_val)
1929 return ret_val;
1930
1931 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e 1932 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
bc7f75fa
AK
1933 }
1934
1935 return 0;
1936}
1937
f4187b56
BA
1938/**
1939 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1940 * @hw: pointer to the HW structure
1941 * @bank: pointer to the variable that returns the active bank
1942 *
1943 * Reads signature byte from the NVM using the flash access registers.
e243455d 1944 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
f4187b56
BA
1945 **/
1946static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1947{
e243455d 1948 u32 eecd;
f4187b56 1949 struct e1000_nvm_info *nvm = &hw->nvm;
f4187b56
BA
1950 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1951 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
e243455d
BA
1952 u8 sig_byte = 0;
1953 s32 ret_val = 0;
f4187b56 1954
e243455d
BA
1955 switch (hw->mac.type) {
1956 case e1000_ich8lan:
1957 case e1000_ich9lan:
1958 eecd = er32(EECD);
1959 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1960 E1000_EECD_SEC1VAL_VALID_MASK) {
1961 if (eecd & E1000_EECD_SEC1VAL)
1962 *bank = 1;
1963 else
1964 *bank = 0;
1965
1966 return 0;
1967 }
3bb99fe2 1968 e_dbg("Unable to determine valid NVM bank via EEC - "
e243455d
BA
1969 "reading flash signature\n");
1970 /* fall-thru */
1971 default:
1972 /* set bank to 0 in case flash read fails */
1973 *bank = 0;
1974
1975 /* Check bank 0 */
1976 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1977 &sig_byte);
1978 if (ret_val)
1979 return ret_val;
1980 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1981 E1000_ICH_NVM_SIG_VALUE) {
f4187b56 1982 *bank = 0;
e243455d
BA
1983 return 0;
1984 }
f4187b56 1985
e243455d
BA
1986 /* Check bank 1 */
1987 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1988 bank1_offset,
1989 &sig_byte);
1990 if (ret_val)
1991 return ret_val;
1992 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1993 E1000_ICH_NVM_SIG_VALUE) {
1994 *bank = 1;
1995 return 0;
f4187b56 1996 }
e243455d 1997
3bb99fe2 1998 e_dbg("ERROR: No valid NVM bank present\n");
e243455d 1999 return -E1000_ERR_NVM;
f4187b56
BA
2000 }
2001
2002 return 0;
2003}
2004
bc7f75fa
AK
2005/**
2006 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2007 * @hw: pointer to the HW structure
2008 * @offset: The offset (in bytes) of the word(s) to read.
2009 * @words: Size of data to read in words
2010 * @data: Pointer to the word(s) to read at offset.
2011 *
2012 * Reads a word(s) from the NVM using the flash access registers.
2013 **/
2014static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2015 u16 *data)
2016{
2017 struct e1000_nvm_info *nvm = &hw->nvm;
2018 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2019 u32 act_offset;
148675a7 2020 s32 ret_val = 0;
f4187b56 2021 u32 bank = 0;
bc7f75fa
AK
2022 u16 i, word;
2023
2024 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2025 (words == 0)) {
3bb99fe2 2026 e_dbg("nvm parameter(s) out of bounds\n");
ca15df58
BA
2027 ret_val = -E1000_ERR_NVM;
2028 goto out;
bc7f75fa
AK
2029 }
2030
94d8186a 2031 nvm->ops.acquire(hw);
bc7f75fa 2032
f4187b56 2033 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
148675a7 2034 if (ret_val) {
3bb99fe2 2035 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7
BA
2036 bank = 0;
2037 }
f4187b56
BA
2038
2039 act_offset = (bank) ? nvm->flash_bank_size : 0;
bc7f75fa
AK
2040 act_offset += offset;
2041
148675a7 2042 ret_val = 0;
bc7f75fa
AK
2043 for (i = 0; i < words; i++) {
2044 if ((dev_spec->shadow_ram) &&
2045 (dev_spec->shadow_ram[offset+i].modified)) {
2046 data[i] = dev_spec->shadow_ram[offset+i].value;
2047 } else {
2048 ret_val = e1000_read_flash_word_ich8lan(hw,
2049 act_offset + i,
2050 &word);
2051 if (ret_val)
2052 break;
2053 data[i] = word;
2054 }
2055 }
2056
94d8186a 2057 nvm->ops.release(hw);
bc7f75fa 2058
e243455d
BA
2059out:
2060 if (ret_val)
3bb99fe2 2061 e_dbg("NVM read error: %d\n", ret_val);
e243455d 2062
bc7f75fa
AK
2063 return ret_val;
2064}
2065
2066/**
2067 * e1000_flash_cycle_init_ich8lan - Initialize flash
2068 * @hw: pointer to the HW structure
2069 *
2070 * This function does initial flash setup so that a new read/write/erase cycle
2071 * can be started.
2072 **/
2073static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2074{
2075 union ich8_hws_flash_status hsfsts;
2076 s32 ret_val = -E1000_ERR_NVM;
2077 s32 i = 0;
2078
2079 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2080
2081 /* Check if the flash descriptor is valid */
2082 if (hsfsts.hsf_status.fldesvalid == 0) {
3bb99fe2 2083 e_dbg("Flash descriptor invalid. "
2c73e1fe 2084 "SW Sequencing must be used.\n");
bc7f75fa
AK
2085 return -E1000_ERR_NVM;
2086 }
2087
2088 /* Clear FCERR and DAEL in hw status by writing 1 */
2089 hsfsts.hsf_status.flcerr = 1;
2090 hsfsts.hsf_status.dael = 1;
2091
2092 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2093
ad68076e
BA
2094 /*
2095 * Either we should have a hardware SPI cycle in progress
bc7f75fa
AK
2096 * bit to check against, in order to start a new cycle or
2097 * FDONE bit should be changed in the hardware so that it
489815ce 2098 * is 1 after hardware reset, which can then be used as an
bc7f75fa
AK
2099 * indication whether a cycle is in progress or has been
2100 * completed.
2101 */
2102
2103 if (hsfsts.hsf_status.flcinprog == 0) {
ad68076e
BA
2104 /*
2105 * There is no cycle running at present,
5ff5b664 2106 * so we can start a cycle.
ad68076e
BA
2107 * Begin by setting Flash Cycle Done.
2108 */
bc7f75fa
AK
2109 hsfsts.hsf_status.flcdone = 1;
2110 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2111 ret_val = 0;
2112 } else {
ad68076e 2113 /*
5ff5b664 2114 * Otherwise poll for sometime so the current
ad68076e
BA
2115 * cycle has a chance to end before giving up.
2116 */
bc7f75fa
AK
2117 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2118 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
2119 if (hsfsts.hsf_status.flcinprog == 0) {
2120 ret_val = 0;
2121 break;
2122 }
2123 udelay(1);
2124 }
2125 if (ret_val == 0) {
ad68076e
BA
2126 /*
2127 * Successful in waiting for previous cycle to timeout,
2128 * now set the Flash Cycle Done.
2129 */
bc7f75fa
AK
2130 hsfsts.hsf_status.flcdone = 1;
2131 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2132 } else {
2c73e1fe 2133 e_dbg("Flash controller busy, cannot get access\n");
bc7f75fa
AK
2134 }
2135 }
2136
2137 return ret_val;
2138}
2139
2140/**
2141 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2142 * @hw: pointer to the HW structure
2143 * @timeout: maximum time to wait for completion
2144 *
2145 * This function starts a flash cycle and waits for its completion.
2146 **/
2147static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2148{
2149 union ich8_hws_flash_ctrl hsflctl;
2150 union ich8_hws_flash_status hsfsts;
2151 s32 ret_val = -E1000_ERR_NVM;
2152 u32 i = 0;
2153
2154 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2155 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2156 hsflctl.hsf_ctrl.flcgo = 1;
2157 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2158
2159 /* wait till FDONE bit is set to 1 */
2160 do {
2161 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2162 if (hsfsts.hsf_status.flcdone == 1)
2163 break;
2164 udelay(1);
2165 } while (i++ < timeout);
2166
2167 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2168 return 0;
2169
2170 return ret_val;
2171}
2172
2173/**
2174 * e1000_read_flash_word_ich8lan - Read word from flash
2175 * @hw: pointer to the HW structure
2176 * @offset: offset to data location
2177 * @data: pointer to the location for storing the data
2178 *
2179 * Reads the flash word at offset into data. Offset is converted
2180 * to bytes before read.
2181 **/
2182static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2183 u16 *data)
2184{
2185 /* Must convert offset into bytes. */
2186 offset <<= 1;
2187
2188 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2189}
2190
f4187b56
BA
2191/**
2192 * e1000_read_flash_byte_ich8lan - Read byte from flash
2193 * @hw: pointer to the HW structure
2194 * @offset: The offset of the byte to read.
2195 * @data: Pointer to a byte to store the value read.
2196 *
2197 * Reads a single byte from the NVM using the flash access registers.
2198 **/
2199static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2200 u8 *data)
2201{
2202 s32 ret_val;
2203 u16 word = 0;
2204
2205 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2206 if (ret_val)
2207 return ret_val;
2208
2209 *data = (u8)word;
2210
2211 return 0;
2212}
2213
bc7f75fa
AK
2214/**
2215 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2216 * @hw: pointer to the HW structure
2217 * @offset: The offset (in bytes) of the byte or word to read.
2218 * @size: Size of data to read, 1=byte 2=word
2219 * @data: Pointer to the word to store the value read.
2220 *
2221 * Reads a byte or word from the NVM using the flash access registers.
2222 **/
2223static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2224 u8 size, u16 *data)
2225{
2226 union ich8_hws_flash_status hsfsts;
2227 union ich8_hws_flash_ctrl hsflctl;
2228 u32 flash_linear_addr;
2229 u32 flash_data = 0;
2230 s32 ret_val = -E1000_ERR_NVM;
2231 u8 count = 0;
2232
2233 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2234 return -E1000_ERR_NVM;
2235
2236 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2237 hw->nvm.flash_base_addr;
2238
2239 do {
2240 udelay(1);
2241 /* Steps */
2242 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2243 if (ret_val != 0)
2244 break;
2245
2246 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2247 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2248 hsflctl.hsf_ctrl.fldbcount = size - 1;
2249 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2250 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2251
2252 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2253
2254 ret_val = e1000_flash_cycle_ich8lan(hw,
2255 ICH_FLASH_READ_COMMAND_TIMEOUT);
2256
ad68076e
BA
2257 /*
2258 * Check if FCERR is set to 1, if set to 1, clear it
bc7f75fa
AK
2259 * and try the whole sequence a few more times, else
2260 * read in (shift in) the Flash Data0, the order is
ad68076e
BA
2261 * least significant byte first msb to lsb
2262 */
bc7f75fa
AK
2263 if (ret_val == 0) {
2264 flash_data = er32flash(ICH_FLASH_FDATA0);
2265 if (size == 1) {
2266 *data = (u8)(flash_data & 0x000000FF);
2267 } else if (size == 2) {
2268 *data = (u16)(flash_data & 0x0000FFFF);
2269 }
2270 break;
2271 } else {
ad68076e
BA
2272 /*
2273 * If we've gotten here, then things are probably
bc7f75fa
AK
2274 * completely hosed, but if the error condition is
2275 * detected, it won't hurt to give it another try...
2276 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2277 */
2278 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2279 if (hsfsts.hsf_status.flcerr == 1) {
2280 /* Repeat for some time before giving up. */
2281 continue;
2282 } else if (hsfsts.hsf_status.flcdone == 0) {
3bb99fe2 2283 e_dbg("Timeout error - flash cycle "
2c73e1fe 2284 "did not complete.\n");
bc7f75fa
AK
2285 break;
2286 }
2287 }
2288 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2289
2290 return ret_val;
2291}
2292
2293/**
2294 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2295 * @hw: pointer to the HW structure
2296 * @offset: The offset (in bytes) of the word(s) to write.
2297 * @words: Size of data to write in words
2298 * @data: Pointer to the word(s) to write at offset.
2299 *
2300 * Writes a byte or word to the NVM using the flash access registers.
2301 **/
2302static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2303 u16 *data)
2304{
2305 struct e1000_nvm_info *nvm = &hw->nvm;
2306 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
bc7f75fa
AK
2307 u16 i;
2308
2309 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2310 (words == 0)) {
3bb99fe2 2311 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
2312 return -E1000_ERR_NVM;
2313 }
2314
94d8186a 2315 nvm->ops.acquire(hw);
ca15df58 2316
bc7f75fa 2317 for (i = 0; i < words; i++) {
564ea9bb 2318 dev_spec->shadow_ram[offset+i].modified = true;
bc7f75fa
AK
2319 dev_spec->shadow_ram[offset+i].value = data[i];
2320 }
2321
94d8186a 2322 nvm->ops.release(hw);
ca15df58 2323
bc7f75fa
AK
2324 return 0;
2325}
2326
2327/**
2328 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2329 * @hw: pointer to the HW structure
2330 *
2331 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2332 * which writes the checksum to the shadow ram. The changes in the shadow
2333 * ram are then committed to the EEPROM by processing each bank at a time
2334 * checking for the modified bit and writing only the pending changes.
489815ce 2335 * After a successful commit, the shadow ram is cleared and is ready for
bc7f75fa
AK
2336 * future writes.
2337 **/
2338static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2339{
2340 struct e1000_nvm_info *nvm = &hw->nvm;
2341 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
f4187b56 2342 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
bc7f75fa
AK
2343 s32 ret_val;
2344 u16 data;
2345
2346 ret_val = e1000e_update_nvm_checksum_generic(hw);
2347 if (ret_val)
e243455d 2348 goto out;
bc7f75fa
AK
2349
2350 if (nvm->type != e1000_nvm_flash_sw)
e243455d 2351 goto out;
bc7f75fa 2352
94d8186a 2353 nvm->ops.acquire(hw);
bc7f75fa 2354
ad68076e
BA
2355 /*
2356 * We're writing to the opposite bank so if we're on bank 1,
bc7f75fa 2357 * write to bank 0 etc. We also need to erase the segment that
ad68076e
BA
2358 * is going to be written
2359 */
f4187b56 2360 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
e243455d 2361 if (ret_val) {
3bb99fe2 2362 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7 2363 bank = 0;
e243455d 2364 }
f4187b56
BA
2365
2366 if (bank == 0) {
bc7f75fa
AK
2367 new_bank_offset = nvm->flash_bank_size;
2368 old_bank_offset = 0;
e243455d 2369 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
9c5e209d
BA
2370 if (ret_val)
2371 goto release;
bc7f75fa
AK
2372 } else {
2373 old_bank_offset = nvm->flash_bank_size;
2374 new_bank_offset = 0;
e243455d 2375 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
9c5e209d
BA
2376 if (ret_val)
2377 goto release;
bc7f75fa
AK
2378 }
2379
2380 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
ad68076e
BA
2381 /*
2382 * Determine whether to write the value stored
bc7f75fa 2383 * in the other NVM bank or a modified value stored
ad68076e
BA
2384 * in the shadow RAM
2385 */
bc7f75fa
AK
2386 if (dev_spec->shadow_ram[i].modified) {
2387 data = dev_spec->shadow_ram[i].value;
2388 } else {
e243455d
BA
2389 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2390 old_bank_offset,
2391 &data);
2392 if (ret_val)
2393 break;
bc7f75fa
AK
2394 }
2395
ad68076e
BA
2396 /*
2397 * If the word is 0x13, then make sure the signature bits
bc7f75fa
AK
2398 * (15:14) are 11b until the commit has completed.
2399 * This will allow us to write 10b which indicates the
2400 * signature is valid. We want to do this after the write
2401 * has completed so that we don't mark the segment valid
ad68076e
BA
2402 * while the write is still in progress
2403 */
bc7f75fa
AK
2404 if (i == E1000_ICH_NVM_SIG_WORD)
2405 data |= E1000_ICH_NVM_SIG_MASK;
2406
2407 /* Convert offset to bytes. */
2408 act_offset = (i + new_bank_offset) << 1;
2409
2410 udelay(100);
2411 /* Write the bytes to the new bank. */
2412 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2413 act_offset,
2414 (u8)data);
2415 if (ret_val)
2416 break;
2417
2418 udelay(100);
2419 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2420 act_offset + 1,
2421 (u8)(data >> 8));
2422 if (ret_val)
2423 break;
2424 }
2425
ad68076e
BA
2426 /*
2427 * Don't bother writing the segment valid bits if sector
2428 * programming failed.
2429 */
bc7f75fa 2430 if (ret_val) {
4a770358 2431 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3bb99fe2 2432 e_dbg("Flash commit failed.\n");
9c5e209d 2433 goto release;
bc7f75fa
AK
2434 }
2435
ad68076e
BA
2436 /*
2437 * Finally validate the new segment by setting bit 15:14
bc7f75fa
AK
2438 * to 10b in word 0x13 , this can be done without an
2439 * erase as well since these bits are 11 to start with
ad68076e
BA
2440 * and we need to change bit 14 to 0b
2441 */
bc7f75fa 2442 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
e243455d 2443 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
9c5e209d
BA
2444 if (ret_val)
2445 goto release;
2446
bc7f75fa
AK
2447 data &= 0xBFFF;
2448 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2449 act_offset * 2 + 1,
2450 (u8)(data >> 8));
9c5e209d
BA
2451 if (ret_val)
2452 goto release;
bc7f75fa 2453
ad68076e
BA
2454 /*
2455 * And invalidate the previously valid segment by setting
bc7f75fa
AK
2456 * its signature word (0x13) high_byte to 0b. This can be
2457 * done without an erase because flash erase sets all bits
ad68076e
BA
2458 * to 1's. We can write 1's to 0's without an erase
2459 */
bc7f75fa
AK
2460 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2461 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
9c5e209d
BA
2462 if (ret_val)
2463 goto release;
bc7f75fa
AK
2464
2465 /* Great! Everything worked, we can now clear the cached entries. */
2466 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
564ea9bb 2467 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
2468 dev_spec->shadow_ram[i].value = 0xFFFF;
2469 }
2470
9c5e209d 2471release:
94d8186a 2472 nvm->ops.release(hw);
bc7f75fa 2473
ad68076e
BA
2474 /*
2475 * Reload the EEPROM, or else modifications will not appear
bc7f75fa
AK
2476 * until after the next adapter reset.
2477 */
9c5e209d
BA
2478 if (!ret_val) {
2479 e1000e_reload_nvm(hw);
2480 msleep(10);
2481 }
bc7f75fa 2482
e243455d
BA
2483out:
2484 if (ret_val)
3bb99fe2 2485 e_dbg("NVM update error: %d\n", ret_val);
e243455d 2486
bc7f75fa
AK
2487 return ret_val;
2488}
2489
2490/**
2491 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2492 * @hw: pointer to the HW structure
2493 *
2494 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2495 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2496 * calculated, in which case we need to calculate the checksum and set bit 6.
2497 **/
2498static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2499{
2500 s32 ret_val;
2501 u16 data;
2502
ad68076e
BA
2503 /*
2504 * Read 0x19 and check bit 6. If this bit is 0, the checksum
bc7f75fa
AK
2505 * needs to be fixed. This bit is an indication that the NVM
2506 * was prepared by OEM software and did not calculate the
2507 * checksum...a likely scenario.
2508 */
2509 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2510 if (ret_val)
2511 return ret_val;
2512
2513 if ((data & 0x40) == 0) {
2514 data |= 0x40;
2515 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2516 if (ret_val)
2517 return ret_val;
2518 ret_val = e1000e_update_nvm_checksum(hw);
2519 if (ret_val)
2520 return ret_val;
2521 }
2522
2523 return e1000e_validate_nvm_checksum_generic(hw);
2524}
2525
4a770358
BA
2526/**
2527 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2528 * @hw: pointer to the HW structure
2529 *
2530 * To prevent malicious write/erase of the NVM, set it to be read-only
2531 * so that the hardware ignores all write/erase cycles of the NVM via
2532 * the flash control registers. The shadow-ram copy of the NVM will
2533 * still be updated, however any updates to this copy will not stick
2534 * across driver reloads.
2535 **/
2536void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2537{
ca15df58 2538 struct e1000_nvm_info *nvm = &hw->nvm;
4a770358
BA
2539 union ich8_flash_protected_range pr0;
2540 union ich8_hws_flash_status hsfsts;
2541 u32 gfpreg;
4a770358 2542
94d8186a 2543 nvm->ops.acquire(hw);
4a770358
BA
2544
2545 gfpreg = er32flash(ICH_FLASH_GFPREG);
2546
2547 /* Write-protect GbE Sector of NVM */
2548 pr0.regval = er32flash(ICH_FLASH_PR0);
2549 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2550 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2551 pr0.range.wpe = true;
2552 ew32flash(ICH_FLASH_PR0, pr0.regval);
2553
2554 /*
2555 * Lock down a subset of GbE Flash Control Registers, e.g.
2556 * PR0 to prevent the write-protection from being lifted.
2557 * Once FLOCKDN is set, the registers protected by it cannot
2558 * be written until FLOCKDN is cleared by a hardware reset.
2559 */
2560 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2561 hsfsts.hsf_status.flockdn = true;
2562 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2563
94d8186a 2564 nvm->ops.release(hw);
4a770358
BA
2565}
2566
bc7f75fa
AK
2567/**
2568 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2569 * @hw: pointer to the HW structure
2570 * @offset: The offset (in bytes) of the byte/word to read.
2571 * @size: Size of data to read, 1=byte 2=word
2572 * @data: The byte(s) to write to the NVM.
2573 *
2574 * Writes one/two bytes to the NVM using the flash access registers.
2575 **/
2576static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2577 u8 size, u16 data)
2578{
2579 union ich8_hws_flash_status hsfsts;
2580 union ich8_hws_flash_ctrl hsflctl;
2581 u32 flash_linear_addr;
2582 u32 flash_data = 0;
2583 s32 ret_val;
2584 u8 count = 0;
2585
2586 if (size < 1 || size > 2 || data > size * 0xff ||
2587 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2588 return -E1000_ERR_NVM;
2589
2590 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2591 hw->nvm.flash_base_addr;
2592
2593 do {
2594 udelay(1);
2595 /* Steps */
2596 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2597 if (ret_val)
2598 break;
2599
2600 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2601 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2602 hsflctl.hsf_ctrl.fldbcount = size -1;
2603 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2604 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2605
2606 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2607
2608 if (size == 1)
2609 flash_data = (u32)data & 0x00FF;
2610 else
2611 flash_data = (u32)data;
2612
2613 ew32flash(ICH_FLASH_FDATA0, flash_data);
2614
ad68076e
BA
2615 /*
2616 * check if FCERR is set to 1 , if set to 1, clear it
2617 * and try the whole sequence a few more times else done
2618 */
bc7f75fa
AK
2619 ret_val = e1000_flash_cycle_ich8lan(hw,
2620 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2621 if (!ret_val)
2622 break;
2623
ad68076e
BA
2624 /*
2625 * If we're here, then things are most likely
bc7f75fa
AK
2626 * completely hosed, but if the error condition
2627 * is detected, it won't hurt to give it another
2628 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2629 */
2630 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2631 if (hsfsts.hsf_status.flcerr == 1)
2632 /* Repeat for some time before giving up. */
2633 continue;
2634 if (hsfsts.hsf_status.flcdone == 0) {
3bb99fe2 2635 e_dbg("Timeout error - flash cycle "
bc7f75fa
AK
2636 "did not complete.");
2637 break;
2638 }
2639 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2640
2641 return ret_val;
2642}
2643
2644/**
2645 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2646 * @hw: pointer to the HW structure
2647 * @offset: The index of the byte to read.
2648 * @data: The byte to write to the NVM.
2649 *
2650 * Writes a single byte to the NVM using the flash access registers.
2651 **/
2652static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2653 u8 data)
2654{
2655 u16 word = (u16)data;
2656
2657 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2658}
2659
2660/**
2661 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2662 * @hw: pointer to the HW structure
2663 * @offset: The offset of the byte to write.
2664 * @byte: The byte to write to the NVM.
2665 *
2666 * Writes a single byte to the NVM using the flash access registers.
2667 * Goes through a retry algorithm before giving up.
2668 **/
2669static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2670 u32 offset, u8 byte)
2671{
2672 s32 ret_val;
2673 u16 program_retries;
2674
2675 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2676 if (!ret_val)
2677 return ret_val;
2678
2679 for (program_retries = 0; program_retries < 100; program_retries++) {
3bb99fe2 2680 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
bc7f75fa
AK
2681 udelay(100);
2682 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2683 if (!ret_val)
2684 break;
2685 }
2686 if (program_retries == 100)
2687 return -E1000_ERR_NVM;
2688
2689 return 0;
2690}
2691
2692/**
2693 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2694 * @hw: pointer to the HW structure
2695 * @bank: 0 for first bank, 1 for second bank, etc.
2696 *
2697 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2698 * bank N is 4096 * N + flash_reg_addr.
2699 **/
2700static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2701{
2702 struct e1000_nvm_info *nvm = &hw->nvm;
2703 union ich8_hws_flash_status hsfsts;
2704 union ich8_hws_flash_ctrl hsflctl;
2705 u32 flash_linear_addr;
2706 /* bank size is in 16bit words - adjust to bytes */
2707 u32 flash_bank_size = nvm->flash_bank_size * 2;
2708 s32 ret_val;
2709 s32 count = 0;
a708dd88 2710 s32 j, iteration, sector_size;
bc7f75fa
AK
2711
2712 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2713
ad68076e
BA
2714 /*
2715 * Determine HW Sector size: Read BERASE bits of hw flash status
2716 * register
2717 * 00: The Hw sector is 256 bytes, hence we need to erase 16
bc7f75fa
AK
2718 * consecutive sectors. The start index for the nth Hw sector
2719 * can be calculated as = bank * 4096 + n * 256
2720 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2721 * The start index for the nth Hw sector can be calculated
2722 * as = bank * 4096
2723 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2724 * (ich9 only, otherwise error condition)
2725 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2726 */
2727 switch (hsfsts.hsf_status.berasesz) {
2728 case 0:
2729 /* Hw sector size 256 */
2730 sector_size = ICH_FLASH_SEG_SIZE_256;
2731 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2732 break;
2733 case 1:
2734 sector_size = ICH_FLASH_SEG_SIZE_4K;
28c9195a 2735 iteration = 1;
bc7f75fa
AK
2736 break;
2737 case 2:
148675a7
BA
2738 sector_size = ICH_FLASH_SEG_SIZE_8K;
2739 iteration = 1;
bc7f75fa
AK
2740 break;
2741 case 3:
2742 sector_size = ICH_FLASH_SEG_SIZE_64K;
28c9195a 2743 iteration = 1;
bc7f75fa
AK
2744 break;
2745 default:
2746 return -E1000_ERR_NVM;
2747 }
2748
2749 /* Start with the base address, then add the sector offset. */
2750 flash_linear_addr = hw->nvm.flash_base_addr;
148675a7 2751 flash_linear_addr += (bank) ? flash_bank_size : 0;
bc7f75fa
AK
2752
2753 for (j = 0; j < iteration ; j++) {
2754 do {
2755 /* Steps */
2756 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2757 if (ret_val)
2758 return ret_val;
2759
ad68076e
BA
2760 /*
2761 * Write a value 11 (block Erase) in Flash
2762 * Cycle field in hw flash control
2763 */
bc7f75fa
AK
2764 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2765 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2766 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2767
ad68076e
BA
2768 /*
2769 * Write the last 24 bits of an index within the
bc7f75fa
AK
2770 * block into Flash Linear address field in Flash
2771 * Address.
2772 */
2773 flash_linear_addr += (j * sector_size);
2774 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2775
2776 ret_val = e1000_flash_cycle_ich8lan(hw,
2777 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2778 if (ret_val == 0)
2779 break;
2780
ad68076e
BA
2781 /*
2782 * Check if FCERR is set to 1. If 1,
bc7f75fa 2783 * clear it and try the whole sequence
ad68076e
BA
2784 * a few more times else Done
2785 */
bc7f75fa
AK
2786 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2787 if (hsfsts.hsf_status.flcerr == 1)
ad68076e 2788 /* repeat for some time before giving up */
bc7f75fa
AK
2789 continue;
2790 else if (hsfsts.hsf_status.flcdone == 0)
2791 return ret_val;
2792 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2793 }
2794
2795 return 0;
2796}
2797
2798/**
2799 * e1000_valid_led_default_ich8lan - Set the default LED settings
2800 * @hw: pointer to the HW structure
2801 * @data: Pointer to the LED settings
2802 *
2803 * Reads the LED default settings from the NVM to data. If the NVM LED
2804 * settings is all 0's or F's, set the LED default to a valid LED default
2805 * setting.
2806 **/
2807static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2808{
2809 s32 ret_val;
2810
2811 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2812 if (ret_val) {
3bb99fe2 2813 e_dbg("NVM Read Error\n");
bc7f75fa
AK
2814 return ret_val;
2815 }
2816
2817 if (*data == ID_LED_RESERVED_0000 ||
2818 *data == ID_LED_RESERVED_FFFF)
2819 *data = ID_LED_DEFAULT_ICH8LAN;
2820
2821 return 0;
2822}
2823
a4f58f54
BA
2824/**
2825 * e1000_id_led_init_pchlan - store LED configurations
2826 * @hw: pointer to the HW structure
2827 *
2828 * PCH does not control LEDs via the LEDCTL register, rather it uses
2829 * the PHY LED configuration register.
2830 *
2831 * PCH also does not have an "always on" or "always off" mode which
2832 * complicates the ID feature. Instead of using the "on" mode to indicate
2833 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2834 * use "link_up" mode. The LEDs will still ID on request if there is no
2835 * link based on logic in e1000_led_[on|off]_pchlan().
2836 **/
2837static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2838{
2839 struct e1000_mac_info *mac = &hw->mac;
2840 s32 ret_val;
2841 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2842 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2843 u16 data, i, temp, shift;
2844
2845 /* Get default ID LED modes */
2846 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2847 if (ret_val)
2848 goto out;
2849
2850 mac->ledctl_default = er32(LEDCTL);
2851 mac->ledctl_mode1 = mac->ledctl_default;
2852 mac->ledctl_mode2 = mac->ledctl_default;
2853
2854 for (i = 0; i < 4; i++) {
2855 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2856 shift = (i * 5);
2857 switch (temp) {
2858 case ID_LED_ON1_DEF2:
2859 case ID_LED_ON1_ON2:
2860 case ID_LED_ON1_OFF2:
2861 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2862 mac->ledctl_mode1 |= (ledctl_on << shift);
2863 break;
2864 case ID_LED_OFF1_DEF2:
2865 case ID_LED_OFF1_ON2:
2866 case ID_LED_OFF1_OFF2:
2867 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2868 mac->ledctl_mode1 |= (ledctl_off << shift);
2869 break;
2870 default:
2871 /* Do nothing */
2872 break;
2873 }
2874 switch (temp) {
2875 case ID_LED_DEF1_ON2:
2876 case ID_LED_ON1_ON2:
2877 case ID_LED_OFF1_ON2:
2878 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2879 mac->ledctl_mode2 |= (ledctl_on << shift);
2880 break;
2881 case ID_LED_DEF1_OFF2:
2882 case ID_LED_ON1_OFF2:
2883 case ID_LED_OFF1_OFF2:
2884 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2885 mac->ledctl_mode2 |= (ledctl_off << shift);
2886 break;
2887 default:
2888 /* Do nothing */
2889 break;
2890 }
2891 }
2892
2893out:
2894 return ret_val;
2895}
2896
bc7f75fa
AK
2897/**
2898 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2899 * @hw: pointer to the HW structure
2900 *
2901 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2902 * register, so the the bus width is hard coded.
2903 **/
2904static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2905{
2906 struct e1000_bus_info *bus = &hw->bus;
2907 s32 ret_val;
2908
2909 ret_val = e1000e_get_bus_info_pcie(hw);
2910
ad68076e
BA
2911 /*
2912 * ICH devices are "PCI Express"-ish. They have
bc7f75fa
AK
2913 * a configuration space, but do not contain
2914 * PCI Express Capability registers, so bus width
2915 * must be hardcoded.
2916 */
2917 if (bus->width == e1000_bus_width_unknown)
2918 bus->width = e1000_bus_width_pcie_x1;
2919
2920 return ret_val;
2921}
2922
2923/**
2924 * e1000_reset_hw_ich8lan - Reset the hardware
2925 * @hw: pointer to the HW structure
2926 *
2927 * Does a full reset of the hardware which includes a reset of the PHY and
2928 * MAC.
2929 **/
2930static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2931{
1d5846b9 2932 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
db2932ec 2933 u16 reg;
bc7f75fa
AK
2934 u32 ctrl, icr, kab;
2935 s32 ret_val;
2936
ad68076e
BA
2937 /*
2938 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
2939 * on the last TLP read/write transaction when MAC is reset.
2940 */
2941 ret_val = e1000e_disable_pcie_master(hw);
e98cac44 2942 if (ret_val)
3bb99fe2 2943 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 2944
3bb99fe2 2945 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
2946 ew32(IMC, 0xffffffff);
2947
ad68076e
BA
2948 /*
2949 * Disable the Transmit and Receive units. Then delay to allow
bc7f75fa
AK
2950 * any pending transactions to complete before we hit the MAC
2951 * with the global reset.
2952 */
2953 ew32(RCTL, 0);
2954 ew32(TCTL, E1000_TCTL_PSP);
2955 e1e_flush();
2956
2957 msleep(10);
2958
2959 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2960 if (hw->mac.type == e1000_ich8lan) {
2961 /* Set Tx and Rx buffer allocation to 8k apiece. */
2962 ew32(PBA, E1000_PBA_8K);
2963 /* Set Packet Buffer Size to 16k. */
2964 ew32(PBS, E1000_PBS_16K);
2965 }
2966
1d5846b9
BA
2967 if (hw->mac.type == e1000_pchlan) {
2968 /* Save the NVM K1 bit setting*/
2969 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
2970 if (ret_val)
2971 return ret_val;
2972
2973 if (reg & E1000_NVM_K1_ENABLE)
2974 dev_spec->nvm_k1_enabled = true;
2975 else
2976 dev_spec->nvm_k1_enabled = false;
2977 }
2978
bc7f75fa
AK
2979 ctrl = er32(CTRL);
2980
2981 if (!e1000_check_reset_block(hw)) {
ad68076e 2982 /*
e98cac44 2983 * Full-chip reset requires MAC and PHY reset at the same
bc7f75fa
AK
2984 * time to make sure the interface between MAC and the
2985 * external PHY is reset.
2986 */
2987 ctrl |= E1000_CTRL_PHY_RST;
2988 }
2989 ret_val = e1000_acquire_swflag_ich8lan(hw);
3bb99fe2 2990 e_dbg("Issuing a global reset to ich8lan\n");
bc7f75fa
AK
2991 ew32(CTRL, (ctrl | E1000_CTRL_RST));
2992 msleep(20);
2993
fc0c7760 2994 if (!ret_val)
30bb0e0d 2995 e1000_release_swflag_ich8lan(hw);
37f40239 2996
e98cac44 2997 if (ctrl & E1000_CTRL_PHY_RST) {
fc0c7760 2998 ret_val = hw->phy.ops.get_cfg_done(hw);
e98cac44
BA
2999 if (ret_val)
3000 goto out;
fc0c7760 3001
e98cac44 3002 ret_val = e1000_post_phy_reset_ich8lan(hw);
f523d211
BA
3003 if (ret_val)
3004 goto out;
3005 }
e98cac44 3006
7d3cabbc
BA
3007 /*
3008 * For PCH, this write will make sure that any noise
3009 * will be detected as a CRC error and be dropped rather than show up
3010 * as a bad packet to the DMA engine.
3011 */
3012 if (hw->mac.type == e1000_pchlan)
3013 ew32(CRC_OFFSET, 0x65656565);
3014
bc7f75fa
AK
3015 ew32(IMC, 0xffffffff);
3016 icr = er32(ICR);
3017
3018 kab = er32(KABGTXD);
3019 kab |= E1000_KABGTXD_BGSQLBIAS;
3020 ew32(KABGTXD, kab);
3021
f523d211 3022out:
bc7f75fa
AK
3023 return ret_val;
3024}
3025
3026/**
3027 * e1000_init_hw_ich8lan - Initialize the hardware
3028 * @hw: pointer to the HW structure
3029 *
3030 * Prepares the hardware for transmit and receive by doing the following:
3031 * - initialize hardware bits
3032 * - initialize LED identification
3033 * - setup receive address registers
3034 * - setup flow control
489815ce 3035 * - setup transmit descriptors
bc7f75fa
AK
3036 * - clear statistics
3037 **/
3038static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3039{
3040 struct e1000_mac_info *mac = &hw->mac;
3041 u32 ctrl_ext, txdctl, snoop;
3042 s32 ret_val;
3043 u16 i;
3044
3045 e1000_initialize_hw_bits_ich8lan(hw);
3046
3047 /* Initialize identification LED */
a4f58f54 3048 ret_val = mac->ops.id_led_init(hw);
de39b752 3049 if (ret_val)
3bb99fe2 3050 e_dbg("Error initializing identification LED\n");
de39b752 3051 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
3052
3053 /* Setup the receive address. */
3054 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3055
3056 /* Zero out the Multicast HASH table */
3bb99fe2 3057 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
3058 for (i = 0; i < mac->mta_reg_count; i++)
3059 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3060
fc0c7760
BA
3061 /*
3062 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3063 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
3064 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3065 */
3066 if (hw->phy.type == e1000_phy_82578) {
94d8186a 3067 hw->phy.ops.read_reg(hw, BM_WUC, &i);
fc0c7760
BA
3068 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3069 if (ret_val)
3070 return ret_val;
3071 }
3072
bc7f75fa
AK
3073 /* Setup link and flow control */
3074 ret_val = e1000_setup_link_ich8lan(hw);
3075
3076 /* Set the transmit descriptor write-back policy for both queues */
e9ec2c0f 3077 txdctl = er32(TXDCTL(0));
bc7f75fa
AK
3078 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3079 E1000_TXDCTL_FULL_TX_DESC_WB;
3080 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3081 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f
JK
3082 ew32(TXDCTL(0), txdctl);
3083 txdctl = er32(TXDCTL(1));
bc7f75fa
AK
3084 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3085 E1000_TXDCTL_FULL_TX_DESC_WB;
3086 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3087 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f 3088 ew32(TXDCTL(1), txdctl);
bc7f75fa 3089
ad68076e
BA
3090 /*
3091 * ICH8 has opposite polarity of no_snoop bits.
3092 * By default, we should use snoop behavior.
3093 */
bc7f75fa
AK
3094 if (mac->type == e1000_ich8lan)
3095 snoop = PCIE_ICH8_SNOOP_ALL;
3096 else
3097 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3098 e1000e_set_pcie_no_snoop(hw, snoop);
3099
3100 ctrl_ext = er32(CTRL_EXT);
3101 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3102 ew32(CTRL_EXT, ctrl_ext);
3103
ad68076e
BA
3104 /*
3105 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
3106 * important that we do this after we have tried to establish link
3107 * because the symbol error count will increment wildly if there
3108 * is no link.
3109 */
3110 e1000_clear_hw_cntrs_ich8lan(hw);
3111
3112 return 0;
3113}
3114/**
3115 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3116 * @hw: pointer to the HW structure
3117 *
3118 * Sets/Clears required hardware bits necessary for correctly setting up the
3119 * hardware for transmit and receive.
3120 **/
3121static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3122{
3123 u32 reg;
3124
3125 /* Extended Device Control */
3126 reg = er32(CTRL_EXT);
3127 reg |= (1 << 22);
a4f58f54
BA
3128 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3129 if (hw->mac.type >= e1000_pchlan)
3130 reg |= E1000_CTRL_EXT_PHYPDEN;
bc7f75fa
AK
3131 ew32(CTRL_EXT, reg);
3132
3133 /* Transmit Descriptor Control 0 */
e9ec2c0f 3134 reg = er32(TXDCTL(0));
bc7f75fa 3135 reg |= (1 << 22);
e9ec2c0f 3136 ew32(TXDCTL(0), reg);
bc7f75fa
AK
3137
3138 /* Transmit Descriptor Control 1 */
e9ec2c0f 3139 reg = er32(TXDCTL(1));
bc7f75fa 3140 reg |= (1 << 22);
e9ec2c0f 3141 ew32(TXDCTL(1), reg);
bc7f75fa
AK
3142
3143 /* Transmit Arbitration Control 0 */
e9ec2c0f 3144 reg = er32(TARC(0));
bc7f75fa
AK
3145 if (hw->mac.type == e1000_ich8lan)
3146 reg |= (1 << 28) | (1 << 29);
3147 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
e9ec2c0f 3148 ew32(TARC(0), reg);
bc7f75fa
AK
3149
3150 /* Transmit Arbitration Control 1 */
e9ec2c0f 3151 reg = er32(TARC(1));
bc7f75fa
AK
3152 if (er32(TCTL) & E1000_TCTL_MULR)
3153 reg &= ~(1 << 28);
3154 else
3155 reg |= (1 << 28);
3156 reg |= (1 << 24) | (1 << 26) | (1 << 30);
e9ec2c0f 3157 ew32(TARC(1), reg);
bc7f75fa
AK
3158
3159 /* Device Status */
3160 if (hw->mac.type == e1000_ich8lan) {
3161 reg = er32(STATUS);
3162 reg &= ~(1 << 31);
3163 ew32(STATUS, reg);
3164 }
a80483d3
JB
3165
3166 /*
3167 * work-around descriptor data corruption issue during nfs v2 udp
3168 * traffic, just disable the nfs filtering capability
3169 */
3170 reg = er32(RFCTL);
3171 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3172 ew32(RFCTL, reg);
bc7f75fa
AK
3173}
3174
3175/**
3176 * e1000_setup_link_ich8lan - Setup flow control and link settings
3177 * @hw: pointer to the HW structure
3178 *
3179 * Determines which flow control settings to use, then configures flow
3180 * control. Calls the appropriate media-specific link configuration
3181 * function. Assuming the adapter has a valid link partner, a valid link
3182 * should be established. Assumes the hardware has previously been reset
3183 * and the transmitter and receiver are not enabled.
3184 **/
3185static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3186{
bc7f75fa
AK
3187 s32 ret_val;
3188
3189 if (e1000_check_reset_block(hw))
3190 return 0;
3191
ad68076e
BA
3192 /*
3193 * ICH parts do not have a word in the NVM to determine
bc7f75fa
AK
3194 * the default flow control setting, so we explicitly
3195 * set it to full.
3196 */
37289d9c
BA
3197 if (hw->fc.requested_mode == e1000_fc_default) {
3198 /* Workaround h/w hang when Tx flow control enabled */
3199 if (hw->mac.type == e1000_pchlan)
3200 hw->fc.requested_mode = e1000_fc_rx_pause;
3201 else
3202 hw->fc.requested_mode = e1000_fc_full;
3203 }
bc7f75fa 3204
5c48ef3e
BA
3205 /*
3206 * Save off the requested flow control mode for use later. Depending
3207 * on the link partner's capabilities, we may or may not use this mode.
3208 */
3209 hw->fc.current_mode = hw->fc.requested_mode;
bc7f75fa 3210
3bb99fe2 3211 e_dbg("After fix-ups FlowControl is now = %x\n",
5c48ef3e 3212 hw->fc.current_mode);
bc7f75fa
AK
3213
3214 /* Continue to configure the copper link. */
3215 ret_val = e1000_setup_copper_link_ich8lan(hw);
3216 if (ret_val)
3217 return ret_val;
3218
318a94d6 3219 ew32(FCTTV, hw->fc.pause_time);
a4f58f54 3220 if ((hw->phy.type == e1000_phy_82578) ||
d3738bb8 3221 (hw->phy.type == e1000_phy_82579) ||
a4f58f54 3222 (hw->phy.type == e1000_phy_82577)) {
a305595b
BA
3223 ew32(FCRTV_PCH, hw->fc.refresh_time);
3224
94d8186a 3225 ret_val = hw->phy.ops.write_reg(hw,
a4f58f54
BA
3226 PHY_REG(BM_PORT_CTRL_PAGE, 27),
3227 hw->fc.pause_time);
3228 if (ret_val)
3229 return ret_val;
3230 }
bc7f75fa
AK
3231
3232 return e1000e_set_fc_watermarks(hw);
3233}
3234
3235/**
3236 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3237 * @hw: pointer to the HW structure
3238 *
3239 * Configures the kumeran interface to the PHY to wait the appropriate time
3240 * when polling the PHY, then call the generic setup_copper_link to finish
3241 * configuring the copper link.
3242 **/
3243static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3244{
3245 u32 ctrl;
3246 s32 ret_val;
3247 u16 reg_data;
3248
3249 ctrl = er32(CTRL);
3250 ctrl |= E1000_CTRL_SLU;
3251 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3252 ew32(CTRL, ctrl);
3253
ad68076e
BA
3254 /*
3255 * Set the mac to wait the maximum time between each iteration
bc7f75fa 3256 * and increase the max iterations when polling the phy;
ad68076e
BA
3257 * this fixes erroneous timeouts at 10Mbps.
3258 */
07818950 3259 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
bc7f75fa
AK
3260 if (ret_val)
3261 return ret_val;
07818950
BA
3262 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3263 &reg_data);
bc7f75fa
AK
3264 if (ret_val)
3265 return ret_val;
3266 reg_data |= 0x3F;
07818950
BA
3267 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3268 reg_data);
bc7f75fa
AK
3269 if (ret_val)
3270 return ret_val;
3271
a4f58f54
BA
3272 switch (hw->phy.type) {
3273 case e1000_phy_igp_3:
bc7f75fa
AK
3274 ret_val = e1000e_copper_link_setup_igp(hw);
3275 if (ret_val)
3276 return ret_val;
a4f58f54
BA
3277 break;
3278 case e1000_phy_bm:
3279 case e1000_phy_82578:
97ac8cae
BA
3280 ret_val = e1000e_copper_link_setup_m88(hw);
3281 if (ret_val)
3282 return ret_val;
a4f58f54
BA
3283 break;
3284 case e1000_phy_82577:
d3738bb8 3285 case e1000_phy_82579:
a4f58f54
BA
3286 ret_val = e1000_copper_link_setup_82577(hw);
3287 if (ret_val)
3288 return ret_val;
3289 break;
3290 case e1000_phy_ife:
94d8186a 3291 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
a4f58f54 3292 &reg_data);
97ac8cae
BA
3293 if (ret_val)
3294 return ret_val;
3295
3296 reg_data &= ~IFE_PMC_AUTO_MDIX;
3297
3298 switch (hw->phy.mdix) {
3299 case 1:
3300 reg_data &= ~IFE_PMC_FORCE_MDIX;
3301 break;
3302 case 2:
3303 reg_data |= IFE_PMC_FORCE_MDIX;
3304 break;
3305 case 0:
3306 default:
3307 reg_data |= IFE_PMC_AUTO_MDIX;
3308 break;
3309 }
94d8186a 3310 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
a4f58f54 3311 reg_data);
97ac8cae
BA
3312 if (ret_val)
3313 return ret_val;
a4f58f54
BA
3314 break;
3315 default:
3316 break;
97ac8cae 3317 }
bc7f75fa
AK
3318 return e1000e_setup_copper_link(hw);
3319}
3320
3321/**
3322 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3323 * @hw: pointer to the HW structure
3324 * @speed: pointer to store current link speed
3325 * @duplex: pointer to store the current link duplex
3326 *
ad68076e 3327 * Calls the generic get_speed_and_duplex to retrieve the current link
bc7f75fa
AK
3328 * information and then calls the Kumeran lock loss workaround for links at
3329 * gigabit speeds.
3330 **/
3331static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3332 u16 *duplex)
3333{
3334 s32 ret_val;
3335
3336 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3337 if (ret_val)
3338 return ret_val;
3339
3340 if ((hw->mac.type == e1000_ich8lan) &&
3341 (hw->phy.type == e1000_phy_igp_3) &&
3342 (*speed == SPEED_1000)) {
3343 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3344 }
3345
3346 return ret_val;
3347}
3348
3349/**
3350 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3351 * @hw: pointer to the HW structure
3352 *
3353 * Work-around for 82566 Kumeran PCS lock loss:
3354 * On link status change (i.e. PCI reset, speed change) and link is up and
3355 * speed is gigabit-
3356 * 0) if workaround is optionally disabled do nothing
3357 * 1) wait 1ms for Kumeran link to come up
3358 * 2) check Kumeran Diagnostic register PCS lock loss bit
3359 * 3) if not set the link is locked (all is good), otherwise...
3360 * 4) reset the PHY
3361 * 5) repeat up to 10 times
3362 * Note: this is only called for IGP3 copper when speed is 1gb.
3363 **/
3364static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3365{
3366 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3367 u32 phy_ctrl;
3368 s32 ret_val;
3369 u16 i, data;
3370 bool link;
3371
3372 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3373 return 0;
3374
ad68076e
BA
3375 /*
3376 * Make sure link is up before proceeding. If not just return.
bc7f75fa 3377 * Attempting this while link is negotiating fouled up link
ad68076e
BA
3378 * stability
3379 */
bc7f75fa
AK
3380 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3381 if (!link)
3382 return 0;
3383
3384 for (i = 0; i < 10; i++) {
3385 /* read once to clear */
3386 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3387 if (ret_val)
3388 return ret_val;
3389 /* and again to get new status */
3390 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3391 if (ret_val)
3392 return ret_val;
3393
3394 /* check for PCS lock */
3395 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3396 return 0;
3397
3398 /* Issue PHY reset */
3399 e1000_phy_hw_reset(hw);
3400 mdelay(5);
3401 }
3402 /* Disable GigE link negotiation */
3403 phy_ctrl = er32(PHY_CTRL);
3404 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3405 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3406 ew32(PHY_CTRL, phy_ctrl);
3407
ad68076e
BA
3408 /*
3409 * Call gig speed drop workaround on Gig disable before accessing
3410 * any PHY registers
3411 */
bc7f75fa
AK
3412 e1000e_gig_downshift_workaround_ich8lan(hw);
3413
3414 /* unable to acquire PCS lock */
3415 return -E1000_ERR_PHY;
3416}
3417
3418/**
ad68076e 3419 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
bc7f75fa 3420 * @hw: pointer to the HW structure
489815ce 3421 * @state: boolean value used to set the current Kumeran workaround state
bc7f75fa 3422 *
564ea9bb
BA
3423 * If ICH8, set the current Kumeran workaround state (enabled - true
3424 * /disabled - false).
bc7f75fa
AK
3425 **/
3426void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3427 bool state)
3428{
3429 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3430
3431 if (hw->mac.type != e1000_ich8lan) {
3bb99fe2 3432 e_dbg("Workaround applies to ICH8 only.\n");
bc7f75fa
AK
3433 return;
3434 }
3435
3436 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3437}
3438
3439/**
3440 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3441 * @hw: pointer to the HW structure
3442 *
3443 * Workaround for 82566 power-down on D3 entry:
3444 * 1) disable gigabit link
3445 * 2) write VR power-down enable
3446 * 3) read it back
3447 * Continue if successful, else issue LCD reset and repeat
3448 **/
3449void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3450{
3451 u32 reg;
3452 u16 data;
3453 u8 retry = 0;
3454
3455 if (hw->phy.type != e1000_phy_igp_3)
3456 return;
3457
3458 /* Try the workaround twice (if needed) */
3459 do {
3460 /* Disable link */
3461 reg = er32(PHY_CTRL);
3462 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3463 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3464 ew32(PHY_CTRL, reg);
3465
ad68076e
BA
3466 /*
3467 * Call gig speed drop workaround on Gig disable before
3468 * accessing any PHY registers
3469 */
bc7f75fa
AK
3470 if (hw->mac.type == e1000_ich8lan)
3471 e1000e_gig_downshift_workaround_ich8lan(hw);
3472
3473 /* Write VR power-down enable */
3474 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3475 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3476 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3477
3478 /* Read it back and test */
3479 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3480 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3481 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3482 break;
3483
3484 /* Issue PHY reset and repeat at most one more time */
3485 reg = er32(CTRL);
3486 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3487 retry++;
3488 } while (retry);
3489}
3490
3491/**
3492 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3493 * @hw: pointer to the HW structure
3494 *
3495 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
489815ce 3496 * LPLU, Gig disable, MDIC PHY reset):
bc7f75fa
AK
3497 * 1) Set Kumeran Near-end loopback
3498 * 2) Clear Kumeran Near-end loopback
3499 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3500 **/
3501void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3502{
3503 s32 ret_val;
3504 u16 reg_data;
3505
3506 if ((hw->mac.type != e1000_ich8lan) ||
3507 (hw->phy.type != e1000_phy_igp_3))
3508 return;
3509
3510 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3511 &reg_data);
3512 if (ret_val)
3513 return;
3514 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3515 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3516 reg_data);
3517 if (ret_val)
3518 return;
3519 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3520 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3521 reg_data);
3522}
3523
97ac8cae
BA
3524/**
3525 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3526 * @hw: pointer to the HW structure
3527 *
3528 * During S0 to Sx transition, it is possible the link remains at gig
3529 * instead of negotiating to a lower speed. Before going to Sx, set
3530 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3531 * to a lower speed.
3532 *
a4f58f54 3533 * Should only be called for applicable parts.
97ac8cae
BA
3534 **/
3535void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3536{
3537 u32 phy_ctrl;
8395ae83 3538 s32 ret_val;
97ac8cae 3539
17f085df
BA
3540 phy_ctrl = er32(PHY_CTRL);
3541 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
3542 ew32(PHY_CTRL, phy_ctrl);
a4f58f54 3543
8395ae83
BA
3544 if (hw->mac.type >= e1000_pchlan) {
3545 e1000_oem_bits_config_ich8lan(hw, true);
3546 ret_val = hw->phy.ops.acquire(hw);
3547 if (ret_val)
3548 return;
3549 e1000_write_smbus_addr(hw);
3550 hw->phy.ops.release(hw);
3551 }
97ac8cae
BA
3552}
3553
bc7f75fa
AK
3554/**
3555 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3556 * @hw: pointer to the HW structure
3557 *
3558 * Return the LED back to the default configuration.
3559 **/
3560static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3561{
3562 if (hw->phy.type == e1000_phy_ife)
3563 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3564
3565 ew32(LEDCTL, hw->mac.ledctl_default);
3566 return 0;
3567}
3568
3569/**
489815ce 3570 * e1000_led_on_ich8lan - Turn LEDs on
bc7f75fa
AK
3571 * @hw: pointer to the HW structure
3572 *
489815ce 3573 * Turn on the LEDs.
bc7f75fa
AK
3574 **/
3575static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3576{
3577 if (hw->phy.type == e1000_phy_ife)
3578 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3579 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3580
3581 ew32(LEDCTL, hw->mac.ledctl_mode2);
3582 return 0;
3583}
3584
3585/**
489815ce 3586 * e1000_led_off_ich8lan - Turn LEDs off
bc7f75fa
AK
3587 * @hw: pointer to the HW structure
3588 *
489815ce 3589 * Turn off the LEDs.
bc7f75fa
AK
3590 **/
3591static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3592{
3593 if (hw->phy.type == e1000_phy_ife)
3594 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3595 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3596
3597 ew32(LEDCTL, hw->mac.ledctl_mode1);
3598 return 0;
3599}
3600
a4f58f54
BA
3601/**
3602 * e1000_setup_led_pchlan - Configures SW controllable LED
3603 * @hw: pointer to the HW structure
3604 *
3605 * This prepares the SW controllable LED for use.
3606 **/
3607static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3608{
94d8186a 3609 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
a4f58f54
BA
3610 (u16)hw->mac.ledctl_mode1);
3611}
3612
3613/**
3614 * e1000_cleanup_led_pchlan - Restore the default LED operation
3615 * @hw: pointer to the HW structure
3616 *
3617 * Return the LED back to the default configuration.
3618 **/
3619static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3620{
94d8186a 3621 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
a4f58f54
BA
3622 (u16)hw->mac.ledctl_default);
3623}
3624
3625/**
3626 * e1000_led_on_pchlan - Turn LEDs on
3627 * @hw: pointer to the HW structure
3628 *
3629 * Turn on the LEDs.
3630 **/
3631static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3632{
3633 u16 data = (u16)hw->mac.ledctl_mode2;
3634 u32 i, led;
3635
3636 /*
3637 * If no link, then turn LED on by setting the invert bit
3638 * for each LED that's mode is "link_up" in ledctl_mode2.
3639 */
3640 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3641 for (i = 0; i < 3; i++) {
3642 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3643 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3644 E1000_LEDCTL_MODE_LINK_UP)
3645 continue;
3646 if (led & E1000_PHY_LED0_IVRT)
3647 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3648 else
3649 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3650 }
3651 }
3652
94d8186a 3653 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
a4f58f54
BA
3654}
3655
3656/**
3657 * e1000_led_off_pchlan - Turn LEDs off
3658 * @hw: pointer to the HW structure
3659 *
3660 * Turn off the LEDs.
3661 **/
3662static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3663{
3664 u16 data = (u16)hw->mac.ledctl_mode1;
3665 u32 i, led;
3666
3667 /*
3668 * If no link, then turn LED off by clearing the invert bit
3669 * for each LED that's mode is "link_up" in ledctl_mode1.
3670 */
3671 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3672 for (i = 0; i < 3; i++) {
3673 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3674 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3675 E1000_LEDCTL_MODE_LINK_UP)
3676 continue;
3677 if (led & E1000_PHY_LED0_IVRT)
3678 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3679 else
3680 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3681 }
3682 }
3683
94d8186a 3684 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
a4f58f54
BA
3685}
3686
f4187b56 3687/**
e98cac44 3688 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
f4187b56
BA
3689 * @hw: pointer to the HW structure
3690 *
e98cac44
BA
3691 * Read appropriate register for the config done bit for completion status
3692 * and configure the PHY through s/w for EEPROM-less parts.
3693 *
3694 * NOTE: some silicon which is EEPROM-less will fail trying to read the
3695 * config done bit, so only an error is logged and continues. If we were
3696 * to return with error, EEPROM-less silicon would not be able to be reset
3697 * or change link.
f4187b56
BA
3698 **/
3699static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3700{
e98cac44 3701 s32 ret_val = 0;
f4187b56 3702 u32 bank = 0;
e98cac44 3703 u32 status;
f4187b56 3704
e98cac44 3705 e1000e_get_cfg_done(hw);
fc0c7760 3706
e98cac44
BA
3707 /* Wait for indication from h/w that it has completed basic config */
3708 if (hw->mac.type >= e1000_ich10lan) {
3709 e1000_lan_init_done_ich8lan(hw);
3710 } else {
3711 ret_val = e1000e_get_auto_rd_done(hw);
3712 if (ret_val) {
3713 /*
3714 * When auto config read does not complete, do not
3715 * return with an error. This can happen in situations
3716 * where there is no eeprom and prevents getting link.
3717 */
3718 e_dbg("Auto Read Done did not complete\n");
3719 ret_val = 0;
3720 }
fc0c7760
BA
3721 }
3722
e98cac44
BA
3723 /* Clear PHY Reset Asserted bit */
3724 status = er32(STATUS);
3725 if (status & E1000_STATUS_PHYRA)
3726 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3727 else
3728 e_dbg("PHY Reset Asserted not set - needs delay\n");
f4187b56
BA
3729
3730 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
e98cac44 3731 if (hw->mac.type <= e1000_ich9lan) {
f4187b56
BA
3732 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3733 (hw->phy.type == e1000_phy_igp_3)) {
3734 e1000e_phy_init_script_igp3(hw);
3735 }
3736 } else {
3737 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3738 /* Maybe we should do a basic PHY config */
3bb99fe2 3739 e_dbg("EEPROM not present\n");
e98cac44 3740 ret_val = -E1000_ERR_CONFIG;
f4187b56
BA
3741 }
3742 }
3743
e98cac44 3744 return ret_val;
f4187b56
BA
3745}
3746
17f208de
BA
3747/**
3748 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3749 * @hw: pointer to the HW structure
3750 *
3751 * In the case of a PHY power down to save power, or to turn off link during a
3752 * driver unload, or wake on lan is not enabled, remove the link.
3753 **/
3754static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3755{
3756 /* If the management interface is not enabled, then power down */
3757 if (!(hw->mac.ops.check_mng_mode(hw) ||
3758 hw->phy.ops.check_reset_block(hw)))
3759 e1000_power_down_phy_copper(hw);
17f208de
BA
3760}
3761
bc7f75fa
AK
3762/**
3763 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3764 * @hw: pointer to the HW structure
3765 *
3766 * Clears hardware counters specific to the silicon family and calls
3767 * clear_hw_cntrs_generic to clear all general purpose counters.
3768 **/
3769static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3770{
a4f58f54 3771 u16 phy_data;
bc7f75fa
AK
3772
3773 e1000e_clear_hw_cntrs_base(hw);
3774
99673d9b
BA
3775 er32(ALGNERRC);
3776 er32(RXERRC);
3777 er32(TNCRS);
3778 er32(CEXTERR);
3779 er32(TSCTC);
3780 er32(TSCTFC);
bc7f75fa 3781
99673d9b
BA
3782 er32(MGTPRC);
3783 er32(MGTPDC);
3784 er32(MGTPTC);
bc7f75fa 3785
99673d9b
BA
3786 er32(IAC);
3787 er32(ICRXOC);
bc7f75fa 3788
a4f58f54
BA
3789 /* Clear PHY statistics registers */
3790 if ((hw->phy.type == e1000_phy_82578) ||
d3738bb8 3791 (hw->phy.type == e1000_phy_82579) ||
a4f58f54 3792 (hw->phy.type == e1000_phy_82577)) {
94d8186a
BA
3793 hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
3794 hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
3795 hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
3796 hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
3797 hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
3798 hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
3799 hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
3800 hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
3801 hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
3802 hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
3803 hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
3804 hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
3805 hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
3806 hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
a4f58f54 3807 }
bc7f75fa
AK
3808}
3809
3810static struct e1000_mac_operations ich8_mac_ops = {
a4f58f54 3811 .id_led_init = e1000e_id_led_init,
eb7700dc 3812 /* check_mng_mode dependent on mac type */
7d3cabbc 3813 .check_for_link = e1000_check_for_copper_link_ich8lan,
a4f58f54 3814 /* cleanup_led dependent on mac type */
bc7f75fa
AK
3815 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
3816 .get_bus_info = e1000_get_bus_info_ich8lan,
f4d2dd4c 3817 .set_lan_id = e1000_set_lan_id_single_port,
bc7f75fa 3818 .get_link_up_info = e1000_get_link_up_info_ich8lan,
a4f58f54
BA
3819 /* led_on dependent on mac type */
3820 /* led_off dependent on mac type */
e2de3eb6 3821 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
bc7f75fa
AK
3822 .reset_hw = e1000_reset_hw_ich8lan,
3823 .init_hw = e1000_init_hw_ich8lan,
3824 .setup_link = e1000_setup_link_ich8lan,
3825 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
a4f58f54 3826 /* id_led_init dependent on mac type */
bc7f75fa
AK
3827};
3828
3829static struct e1000_phy_operations ich8_phy_ops = {
94d8186a 3830 .acquire = e1000_acquire_swflag_ich8lan,
bc7f75fa 3831 .check_reset_block = e1000_check_reset_block_ich8lan,
94d8186a 3832 .commit = NULL,
f4187b56 3833 .get_cfg_done = e1000_get_cfg_done_ich8lan,
bc7f75fa 3834 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
3835 .read_reg = e1000e_read_phy_reg_igp,
3836 .release = e1000_release_swflag_ich8lan,
3837 .reset = e1000_phy_hw_reset_ich8lan,
bc7f75fa
AK
3838 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
3839 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
94d8186a 3840 .write_reg = e1000e_write_phy_reg_igp,
bc7f75fa
AK
3841};
3842
3843static struct e1000_nvm_operations ich8_nvm_ops = {
94d8186a
BA
3844 .acquire = e1000_acquire_nvm_ich8lan,
3845 .read = e1000_read_nvm_ich8lan,
3846 .release = e1000_release_nvm_ich8lan,
3847 .update = e1000_update_nvm_checksum_ich8lan,
bc7f75fa 3848 .valid_led_default = e1000_valid_led_default_ich8lan,
94d8186a
BA
3849 .validate = e1000_validate_nvm_checksum_ich8lan,
3850 .write = e1000_write_nvm_ich8lan,
bc7f75fa
AK
3851};
3852
3853struct e1000_info e1000_ich8_info = {
3854 .mac = e1000_ich8lan,
3855 .flags = FLAG_HAS_WOL
97ac8cae 3856 | FLAG_IS_ICH
bc7f75fa
AK
3857 | FLAG_RX_CSUM_ENABLED
3858 | FLAG_HAS_CTRLEXT_ON_LOAD
3859 | FLAG_HAS_AMT
3860 | FLAG_HAS_FLASH
3861 | FLAG_APME_IN_WUC,
3862 .pba = 8,
2adc55c9 3863 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 3864 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
3865 .mac_ops = &ich8_mac_ops,
3866 .phy_ops = &ich8_phy_ops,
3867 .nvm_ops = &ich8_nvm_ops,
3868};
3869
3870struct e1000_info e1000_ich9_info = {
3871 .mac = e1000_ich9lan,
3872 .flags = FLAG_HAS_JUMBO_FRAMES
97ac8cae 3873 | FLAG_IS_ICH
bc7f75fa
AK
3874 | FLAG_HAS_WOL
3875 | FLAG_RX_CSUM_ENABLED
3876 | FLAG_HAS_CTRLEXT_ON_LOAD
3877 | FLAG_HAS_AMT
3878 | FLAG_HAS_ERT
3879 | FLAG_HAS_FLASH
3880 | FLAG_APME_IN_WUC,
3881 .pba = 10,
2adc55c9 3882 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 3883 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
3884 .mac_ops = &ich8_mac_ops,
3885 .phy_ops = &ich8_phy_ops,
3886 .nvm_ops = &ich8_nvm_ops,
3887};
3888
f4187b56
BA
3889struct e1000_info e1000_ich10_info = {
3890 .mac = e1000_ich10lan,
3891 .flags = FLAG_HAS_JUMBO_FRAMES
3892 | FLAG_IS_ICH
3893 | FLAG_HAS_WOL
3894 | FLAG_RX_CSUM_ENABLED
3895 | FLAG_HAS_CTRLEXT_ON_LOAD
3896 | FLAG_HAS_AMT
3897 | FLAG_HAS_ERT
3898 | FLAG_HAS_FLASH
3899 | FLAG_APME_IN_WUC,
3900 .pba = 10,
2adc55c9 3901 .max_hw_frame_size = DEFAULT_JUMBO,
f4187b56
BA
3902 .get_variants = e1000_get_variants_ich8lan,
3903 .mac_ops = &ich8_mac_ops,
3904 .phy_ops = &ich8_phy_ops,
3905 .nvm_ops = &ich8_nvm_ops,
3906};
a4f58f54
BA
3907
3908struct e1000_info e1000_pch_info = {
3909 .mac = e1000_pchlan,
3910 .flags = FLAG_IS_ICH
3911 | FLAG_HAS_WOL
3912 | FLAG_RX_CSUM_ENABLED
3913 | FLAG_HAS_CTRLEXT_ON_LOAD
3914 | FLAG_HAS_AMT
3915 | FLAG_HAS_FLASH
3916 | FLAG_HAS_JUMBO_FRAMES
38eb394e 3917 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
a4f58f54 3918 | FLAG_APME_IN_WUC,
8c7bbb92 3919 .flags2 = FLAG2_HAS_PHY_STATS,
a4f58f54
BA
3920 .pba = 26,
3921 .max_hw_frame_size = 4096,
3922 .get_variants = e1000_get_variants_ich8lan,
3923 .mac_ops = &ich8_mac_ops,
3924 .phy_ops = &ich8_phy_ops,
3925 .nvm_ops = &ich8_nvm_ops,
3926};
d3738bb8
BA
3927
3928struct e1000_info e1000_pch2_info = {
3929 .mac = e1000_pch2lan,
3930 .flags = FLAG_IS_ICH
3931 | FLAG_HAS_WOL
3932 | FLAG_RX_CSUM_ENABLED
3933 | FLAG_HAS_CTRLEXT_ON_LOAD
3934 | FLAG_HAS_AMT
3935 | FLAG_HAS_FLASH
3936 | FLAG_HAS_JUMBO_FRAMES
3937 | FLAG_APME_IN_WUC,
e52997f9
BA
3938 .flags2 = FLAG2_HAS_PHY_STATS
3939 | FLAG2_HAS_EEE,
d3738bb8
BA
3940 .pba = 18,
3941 .max_hw_frame_size = DEFAULT_JUMBO,
3942 .get_variants = e1000_get_variants_ich8lan,
3943 .mac_ops = &ich8_mac_ops,
3944 .phy_ops = &ich8_phy_ops,
3945 .nvm_ops = &ich8_nvm_ops,
3946};