]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/e1000e/ich8lan.c
e1000e: 82579 do not gate auto config of PHY by hardware during nominal use
[net-next-2.6.git] / drivers / net / e1000e / ich8lan.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
451152d9 4 Copyright(c) 1999 - 2010 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
1605927f 30 * 82562G 10/100 Network Connection
bc7f75fa
AK
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
97ac8cae
BA
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
1605927f 44 * 82567V Gigabit Network Connection
97ac8cae
BA
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
f4187b56
BA
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
2f15f9d6 50 * 82567LM-4 Gigabit Network Connection
a4f58f54
BA
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
d3738bb8
BA
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
bc7f75fa
AK
57 */
58
bc7f75fa
AK
59#include "e1000.h"
60
61#define ICH_FLASH_GFPREG 0x0000
62#define ICH_FLASH_HSFSTS 0x0004
63#define ICH_FLASH_HSFCTL 0x0006
64#define ICH_FLASH_FADDR 0x0008
65#define ICH_FLASH_FDATA0 0x0010
4a770358 66#define ICH_FLASH_PR0 0x0074
bc7f75fa
AK
67
68#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
73
74#define ICH_CYCLE_READ 0
75#define ICH_CYCLE_WRITE 2
76#define ICH_CYCLE_ERASE 3
77
78#define FLASH_GFPREG_BASE_MASK 0x1FFF
79#define FLASH_SECTOR_ADDR_SHIFT 12
80
81#define ICH_FLASH_SEG_SIZE_256 256
82#define ICH_FLASH_SEG_SIZE_4K 4096
83#define ICH_FLASH_SEG_SIZE_8K 8192
84#define ICH_FLASH_SEG_SIZE_64K 65536
85
86
87#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
6dfaa769
BA
88/* FW established a valid mode */
89#define E1000_ICH_FWSM_FW_VALID 0x00008000
bc7f75fa
AK
90
91#define E1000_ICH_MNG_IAMT_MODE 0x2
92
93#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
96 (ID_LED_DEF1_DEF2))
97
98#define E1000_ICH_NVM_SIG_WORD 0x13
99#define E1000_ICH_NVM_SIG_MASK 0xC000
e243455d
BA
100#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101#define E1000_ICH_NVM_SIG_VALUE 0x80
bc7f75fa
AK
102
103#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
104
105#define E1000_FEXTNVM_SW_CONFIG 1
106#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107
831bd2e6
BA
108#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
109#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
110#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
111
bc7f75fa
AK
112#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
113
114#define E1000_ICH_RAR_ENTRIES 7
115
116#define PHY_PAGE_SHIFT 5
117#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 ((reg) & MAX_PHY_REG_ADDRESS))
119#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
120#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
121
122#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
123#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
125
a4f58f54
BA
126#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
127
53ac5a88
BA
128#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
129
f523d211
BA
130/* SMBus Address Phy Register */
131#define HV_SMB_ADDR PHY_REG(768, 26)
8395ae83 132#define HV_SMB_ADDR_MASK 0x007F
f523d211
BA
133#define HV_SMB_ADDR_PEC_EN 0x0200
134#define HV_SMB_ADDR_VALID 0x0080
135
d3738bb8
BA
136/* PHY Power Management Control */
137#define HV_PM_CTRL PHY_REG(770, 17)
138
e52997f9
BA
139/* PHY Low Power Idle Control */
140#define I82579_LPI_CTRL PHY_REG(772, 20)
141#define I82579_LPI_CTRL_ENABLE_MASK 0x6000
142
f523d211
BA
143/* Strapping Option Register - RO */
144#define E1000_STRAP 0x0000C
145#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
146#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
147
fa2ce13c
BA
148/* OEM Bits Phy Register */
149#define HV_OEM_BITS PHY_REG(768, 25)
150#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
f523d211 151#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
fa2ce13c
BA
152#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
153
1d5846b9
BA
154#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
155#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
156
fddaa1af
BA
157/* KMRN Mode Control */
158#define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
159#define HV_KMRN_MDIO_SLOW 0x0400
160
bc7f75fa
AK
161/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
162/* Offset 04h HSFSTS */
163union ich8_hws_flash_status {
164 struct ich8_hsfsts {
165 u16 flcdone :1; /* bit 0 Flash Cycle Done */
166 u16 flcerr :1; /* bit 1 Flash Cycle Error */
167 u16 dael :1; /* bit 2 Direct Access error Log */
168 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
169 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
170 u16 reserved1 :2; /* bit 13:6 Reserved */
171 u16 reserved2 :6; /* bit 13:6 Reserved */
172 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
173 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
174 } hsf_status;
175 u16 regval;
176};
177
178/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
179/* Offset 06h FLCTL */
180union ich8_hws_flash_ctrl {
181 struct ich8_hsflctl {
182 u16 flcgo :1; /* 0 Flash Cycle Go */
183 u16 flcycle :2; /* 2:1 Flash Cycle */
184 u16 reserved :5; /* 7:3 Reserved */
185 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
186 u16 flockdn :6; /* 15:10 Reserved */
187 } hsf_ctrl;
188 u16 regval;
189};
190
191/* ICH Flash Region Access Permissions */
192union ich8_hws_flash_regacc {
193 struct ich8_flracc {
194 u32 grra :8; /* 0:7 GbE region Read Access */
195 u32 grwa :8; /* 8:15 GbE region Write Access */
196 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
197 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
198 } hsf_flregacc;
199 u16 regval;
200};
201
4a770358
BA
202/* ICH Flash Protected Region */
203union ich8_flash_protected_range {
204 struct ich8_pr {
205 u32 base:13; /* 0:12 Protected Range Base */
206 u32 reserved1:2; /* 13:14 Reserved */
207 u32 rpe:1; /* 15 Read Protection Enable */
208 u32 limit:13; /* 16:28 Protected Range Limit */
209 u32 reserved2:2; /* 29:30 Reserved */
210 u32 wpe:1; /* 31 Write Protection Enable */
211 } range;
212 u32 regval;
213};
214
bc7f75fa
AK
215static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
216static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
217static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
bc7f75fa
AK
218static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
219static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
220 u32 offset, u8 byte);
f4187b56
BA
221static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
222 u8 *data);
bc7f75fa
AK
223static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
224 u16 *data);
225static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
226 u8 size, u16 *data);
227static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
228static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
f4187b56 229static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
a4f58f54
BA
230static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
231static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
232static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
233static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
234static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
235static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
236static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
237static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
fa2ce13c 238static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
17f208de 239static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
f523d211 240static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
1d5846b9 241static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
fddaa1af 242static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
eb7700dc
BA
243static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
244static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
831bd2e6 245static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
605c82ba 246static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
bc7f75fa
AK
247
248static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
249{
250 return readw(hw->flash_address + reg);
251}
252
253static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
254{
255 return readl(hw->flash_address + reg);
256}
257
258static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
259{
260 writew(val, hw->flash_address + reg);
261}
262
263static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
264{
265 writel(val, hw->flash_address + reg);
266}
267
268#define er16flash(reg) __er16flash(hw, (reg))
269#define er32flash(reg) __er32flash(hw, (reg))
270#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
271#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
272
a4f58f54
BA
273/**
274 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
275 * @hw: pointer to the HW structure
276 *
277 * Initialize family-specific PHY parameters and function pointers.
278 **/
279static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
280{
281 struct e1000_phy_info *phy = &hw->phy;
605c82ba 282 u32 ctrl, fwsm;
a4f58f54
BA
283 s32 ret_val = 0;
284
285 phy->addr = 1;
286 phy->reset_delay_us = 100;
287
94d8186a
BA
288 phy->ops.read_reg = e1000_read_phy_reg_hv;
289 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
fa2ce13c
BA
290 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
291 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
94d8186a
BA
292 phy->ops.write_reg = e1000_write_phy_reg_hv;
293 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
17f208de
BA
294 phy->ops.power_up = e1000_power_up_phy_copper;
295 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
a4f58f54
BA
296 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
297
d3738bb8
BA
298 /*
299 * The MAC-PHY interconnect may still be in SMBus mode
300 * after Sx->S0. If the manageability engine (ME) is
301 * disabled, then toggle the LANPHYPC Value bit to force
302 * the interconnect to PCIe mode.
303 */
605c82ba
BA
304 fwsm = er32(FWSM);
305 if (!(fwsm & E1000_ICH_FWSM_FW_VALID)) {
6dfaa769
BA
306 ctrl = er32(CTRL);
307 ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
308 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
309 ew32(CTRL, ctrl);
310 udelay(10);
311 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
312 ew32(CTRL, ctrl);
313 msleep(50);
605c82ba
BA
314
315 /*
316 * Gate automatic PHY configuration by hardware on
317 * non-managed 82579
318 */
319 if (hw->mac.type == e1000_pch2lan)
320 e1000_gate_hw_phy_config_ich8lan(hw, true);
6dfaa769
BA
321 }
322
627c8a04
BA
323 /*
324 * Reset the PHY before any acccess to it. Doing so, ensures that
325 * the PHY is in a known good state before we read/write PHY registers.
326 * The generic reset is sufficient here, because we haven't determined
327 * the PHY type yet.
328 */
329 ret_val = e1000e_phy_hw_reset_generic(hw);
330 if (ret_val)
331 goto out;
332
605c82ba
BA
333 /* Ungate automatic PHY configuration on non-managed 82579 */
334 if ((hw->mac.type == e1000_pch2lan) &&
335 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
336 msleep(10);
337 e1000_gate_hw_phy_config_ich8lan(hw, false);
338 }
339
a4f58f54 340 phy->id = e1000_phy_unknown;
fddaa1af
BA
341 ret_val = e1000e_get_phy_id(hw);
342 if (ret_val)
343 goto out;
344 if ((phy->id == 0) || (phy->id == PHY_REVISION_MASK)) {
345 /*
346 * In case the PHY needs to be in mdio slow mode (eg. 82577),
347 * set slow mode and try to get the PHY id again.
348 */
349 ret_val = e1000_set_mdio_slow_mode_hv(hw);
350 if (ret_val)
351 goto out;
352 ret_val = e1000e_get_phy_id(hw);
353 if (ret_val)
354 goto out;
355 }
a4f58f54
BA
356 phy->type = e1000e_get_phy_type_from_id(phy->id);
357
0be84010
BA
358 switch (phy->type) {
359 case e1000_phy_82577:
d3738bb8 360 case e1000_phy_82579:
a4f58f54
BA
361 phy->ops.check_polarity = e1000_check_polarity_82577;
362 phy->ops.force_speed_duplex =
363 e1000_phy_force_speed_duplex_82577;
0be84010 364 phy->ops.get_cable_length = e1000_get_cable_length_82577;
94d8186a
BA
365 phy->ops.get_info = e1000_get_phy_info_82577;
366 phy->ops.commit = e1000e_phy_sw_reset;
eab50ffb 367 break;
0be84010
BA
368 case e1000_phy_82578:
369 phy->ops.check_polarity = e1000_check_polarity_m88;
370 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
371 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
372 phy->ops.get_info = e1000e_get_phy_info_m88;
373 break;
374 default:
375 ret_val = -E1000_ERR_PHY;
376 break;
a4f58f54
BA
377 }
378
fddaa1af 379out:
a4f58f54
BA
380 return ret_val;
381}
382
bc7f75fa
AK
383/**
384 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
385 * @hw: pointer to the HW structure
386 *
387 * Initialize family-specific PHY parameters and function pointers.
388 **/
389static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
390{
391 struct e1000_phy_info *phy = &hw->phy;
392 s32 ret_val;
393 u16 i = 0;
394
395 phy->addr = 1;
396 phy->reset_delay_us = 100;
397
17f208de
BA
398 phy->ops.power_up = e1000_power_up_phy_copper;
399 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
400
97ac8cae
BA
401 /*
402 * We may need to do this twice - once for IGP and if that fails,
403 * we'll set BM func pointers and try again
404 */
405 ret_val = e1000e_determine_phy_address(hw);
406 if (ret_val) {
94d8186a
BA
407 phy->ops.write_reg = e1000e_write_phy_reg_bm;
408 phy->ops.read_reg = e1000e_read_phy_reg_bm;
97ac8cae 409 ret_val = e1000e_determine_phy_address(hw);
9b71b419
BA
410 if (ret_val) {
411 e_dbg("Cannot determine PHY addr. Erroring out\n");
97ac8cae 412 return ret_val;
9b71b419 413 }
97ac8cae
BA
414 }
415
bc7f75fa
AK
416 phy->id = 0;
417 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
418 (i++ < 100)) {
419 msleep(1);
420 ret_val = e1000e_get_phy_id(hw);
421 if (ret_val)
422 return ret_val;
423 }
424
425 /* Verify phy id */
426 switch (phy->id) {
427 case IGP03E1000_E_PHY_ID:
428 phy->type = e1000_phy_igp_3;
429 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
430 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
431 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
0be84010
BA
432 phy->ops.get_info = e1000e_get_phy_info_igp;
433 phy->ops.check_polarity = e1000_check_polarity_igp;
434 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
bc7f75fa
AK
435 break;
436 case IFE_E_PHY_ID:
437 case IFE_PLUS_E_PHY_ID:
438 case IFE_C_E_PHY_ID:
439 phy->type = e1000_phy_ife;
440 phy->autoneg_mask = E1000_ALL_NOT_GIG;
0be84010
BA
441 phy->ops.get_info = e1000_get_phy_info_ife;
442 phy->ops.check_polarity = e1000_check_polarity_ife;
443 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
bc7f75fa 444 break;
97ac8cae
BA
445 case BME1000_E_PHY_ID:
446 phy->type = e1000_phy_bm;
447 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
448 phy->ops.read_reg = e1000e_read_phy_reg_bm;
449 phy->ops.write_reg = e1000e_write_phy_reg_bm;
450 phy->ops.commit = e1000e_phy_sw_reset;
0be84010
BA
451 phy->ops.get_info = e1000e_get_phy_info_m88;
452 phy->ops.check_polarity = e1000_check_polarity_m88;
453 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
97ac8cae 454 break;
bc7f75fa
AK
455 default:
456 return -E1000_ERR_PHY;
457 break;
458 }
459
460 return 0;
461}
462
463/**
464 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
465 * @hw: pointer to the HW structure
466 *
467 * Initialize family-specific NVM parameters and function
468 * pointers.
469 **/
470static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
471{
472 struct e1000_nvm_info *nvm = &hw->nvm;
473 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
148675a7 474 u32 gfpreg, sector_base_addr, sector_end_addr;
bc7f75fa
AK
475 u16 i;
476
ad68076e 477 /* Can't read flash registers if the register set isn't mapped. */
bc7f75fa 478 if (!hw->flash_address) {
3bb99fe2 479 e_dbg("ERROR: Flash registers not mapped\n");
bc7f75fa
AK
480 return -E1000_ERR_CONFIG;
481 }
482
483 nvm->type = e1000_nvm_flash_sw;
484
485 gfpreg = er32flash(ICH_FLASH_GFPREG);
486
ad68076e
BA
487 /*
488 * sector_X_addr is a "sector"-aligned address (4096 bytes)
bc7f75fa 489 * Add 1 to sector_end_addr since this sector is included in
ad68076e
BA
490 * the overall size.
491 */
bc7f75fa
AK
492 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
493 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
494
495 /* flash_base_addr is byte-aligned */
496 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
497
ad68076e
BA
498 /*
499 * find total size of the NVM, then cut in half since the total
500 * size represents two separate NVM banks.
501 */
bc7f75fa
AK
502 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
503 << FLASH_SECTOR_ADDR_SHIFT;
504 nvm->flash_bank_size /= 2;
505 /* Adjust to word count */
506 nvm->flash_bank_size /= sizeof(u16);
507
508 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
509
510 /* Clear shadow ram */
511 for (i = 0; i < nvm->word_size; i++) {
564ea9bb 512 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
513 dev_spec->shadow_ram[i].value = 0xFFFF;
514 }
515
516 return 0;
517}
518
519/**
520 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
521 * @hw: pointer to the HW structure
522 *
523 * Initialize family-specific MAC parameters and function
524 * pointers.
525 **/
526static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
527{
528 struct e1000_hw *hw = &adapter->hw;
529 struct e1000_mac_info *mac = &hw->mac;
530
531 /* Set media type function pointer */
318a94d6 532 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
533
534 /* Set mta register count */
535 mac->mta_reg_count = 32;
536 /* Set rar entry count */
537 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
538 if (mac->type == e1000_ich8lan)
539 mac->rar_entry_count--;
a65a4a0d
BA
540 /* FWSM register */
541 mac->has_fwsm = true;
542 /* ARC subsystem not supported */
543 mac->arc_subsystem_valid = false;
f464ba87
BA
544 /* Adaptive IFS supported */
545 mac->adaptive_ifs = true;
bc7f75fa 546
a4f58f54
BA
547 /* LED operations */
548 switch (mac->type) {
549 case e1000_ich8lan:
550 case e1000_ich9lan:
551 case e1000_ich10lan:
eb7700dc
BA
552 /* check management mode */
553 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
a4f58f54
BA
554 /* ID LED init */
555 mac->ops.id_led_init = e1000e_id_led_init;
556 /* setup LED */
557 mac->ops.setup_led = e1000e_setup_led_generic;
558 /* cleanup LED */
559 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
560 /* turn on/off LED */
561 mac->ops.led_on = e1000_led_on_ich8lan;
562 mac->ops.led_off = e1000_led_off_ich8lan;
563 break;
564 case e1000_pchlan:
d3738bb8 565 case e1000_pch2lan:
eb7700dc
BA
566 /* check management mode */
567 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
a4f58f54
BA
568 /* ID LED init */
569 mac->ops.id_led_init = e1000_id_led_init_pchlan;
570 /* setup LED */
571 mac->ops.setup_led = e1000_setup_led_pchlan;
572 /* cleanup LED */
573 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
574 /* turn on/off LED */
575 mac->ops.led_on = e1000_led_on_pchlan;
576 mac->ops.led_off = e1000_led_off_pchlan;
577 break;
578 default:
579 break;
580 }
581
bc7f75fa
AK
582 /* Enable PCS Lock-loss workaround for ICH8 */
583 if (mac->type == e1000_ich8lan)
564ea9bb 584 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
bc7f75fa 585
605c82ba
BA
586 /* Gate automatic PHY configuration by hardware on managed 82579 */
587 if ((mac->type == e1000_pch2lan) &&
588 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
589 e1000_gate_hw_phy_config_ich8lan(hw, true);
d3738bb8 590
bc7f75fa
AK
591 return 0;
592}
593
e52997f9
BA
594/**
595 * e1000_set_eee_pchlan - Enable/disable EEE support
596 * @hw: pointer to the HW structure
597 *
598 * Enable/disable EEE based on setting in dev_spec structure. The bits in
599 * the LPI Control register will remain set only if/when link is up.
600 **/
601static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
602{
603 s32 ret_val = 0;
604 u16 phy_reg;
605
606 if (hw->phy.type != e1000_phy_82579)
607 goto out;
608
609 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
610 if (ret_val)
611 goto out;
612
613 if (hw->dev_spec.ich8lan.eee_disable)
614 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
615 else
616 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
617
618 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
619out:
620 return ret_val;
621}
622
7d3cabbc
BA
623/**
624 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
625 * @hw: pointer to the HW structure
626 *
627 * Checks to see of the link status of the hardware has changed. If a
628 * change in link status has been detected, then we read the PHY registers
629 * to get the current speed/duplex if link exists.
630 **/
631static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
632{
633 struct e1000_mac_info *mac = &hw->mac;
634 s32 ret_val;
635 bool link;
636
637 /*
638 * We only want to go out to the PHY registers to see if Auto-Neg
639 * has completed and/or if our link status has changed. The
640 * get_link_status flag is set upon receiving a Link Status
641 * Change or Rx Sequence Error interrupt.
642 */
643 if (!mac->get_link_status) {
644 ret_val = 0;
645 goto out;
646 }
647
7d3cabbc
BA
648 /*
649 * First we want to see if the MII Status Register reports
650 * link. If so, then we want to get the current speed/duplex
651 * of the PHY.
652 */
653 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
654 if (ret_val)
655 goto out;
656
1d5846b9
BA
657 if (hw->mac.type == e1000_pchlan) {
658 ret_val = e1000_k1_gig_workaround_hv(hw, link);
659 if (ret_val)
660 goto out;
661 }
662
7d3cabbc
BA
663 if (!link)
664 goto out; /* No link detected */
665
666 mac->get_link_status = false;
667
668 if (hw->phy.type == e1000_phy_82578) {
669 ret_val = e1000_link_stall_workaround_hv(hw);
670 if (ret_val)
671 goto out;
672 }
673
831bd2e6
BA
674 if (hw->mac.type == e1000_pch2lan) {
675 ret_val = e1000_k1_workaround_lv(hw);
676 if (ret_val)
677 goto out;
678 }
679
7d3cabbc
BA
680 /*
681 * Check if there was DownShift, must be checked
682 * immediately after link-up
683 */
684 e1000e_check_downshift(hw);
685
e52997f9
BA
686 /* Enable/Disable EEE after link up */
687 ret_val = e1000_set_eee_pchlan(hw);
688 if (ret_val)
689 goto out;
690
7d3cabbc
BA
691 /*
692 * If we are forcing speed/duplex, then we simply return since
693 * we have already determined whether we have link or not.
694 */
695 if (!mac->autoneg) {
696 ret_val = -E1000_ERR_CONFIG;
697 goto out;
698 }
699
700 /*
701 * Auto-Neg is enabled. Auto Speed Detection takes care
702 * of MAC speed/duplex configuration. So we only need to
703 * configure Collision Distance in the MAC.
704 */
705 e1000e_config_collision_dist(hw);
706
707 /*
708 * Configure Flow Control now that Auto-Neg has completed.
709 * First, we need to restore the desired flow control
710 * settings because we may have had to re-autoneg with a
711 * different link partner.
712 */
713 ret_val = e1000e_config_fc_after_link_up(hw);
714 if (ret_val)
3bb99fe2 715 e_dbg("Error configuring flow control\n");
7d3cabbc
BA
716
717out:
718 return ret_val;
719}
720
69e3fd8c 721static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
bc7f75fa
AK
722{
723 struct e1000_hw *hw = &adapter->hw;
724 s32 rc;
725
726 rc = e1000_init_mac_params_ich8lan(adapter);
727 if (rc)
728 return rc;
729
730 rc = e1000_init_nvm_params_ich8lan(hw);
731 if (rc)
732 return rc;
733
d3738bb8
BA
734 switch (hw->mac.type) {
735 case e1000_ich8lan:
736 case e1000_ich9lan:
737 case e1000_ich10lan:
a4f58f54 738 rc = e1000_init_phy_params_ich8lan(hw);
d3738bb8
BA
739 break;
740 case e1000_pchlan:
741 case e1000_pch2lan:
742 rc = e1000_init_phy_params_pchlan(hw);
743 break;
744 default:
745 break;
746 }
bc7f75fa
AK
747 if (rc)
748 return rc;
749
2adc55c9
BA
750 if (adapter->hw.phy.type == e1000_phy_ife) {
751 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
752 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
753 }
754
bc7f75fa
AK
755 if ((adapter->hw.mac.type == e1000_ich8lan) &&
756 (adapter->hw.phy.type == e1000_phy_igp_3))
757 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
758
5a86f28f
BA
759 /* Disable EEE by default until IEEE802.3az spec is finalized */
760 if (adapter->flags2 & FLAG2_HAS_EEE)
761 adapter->hw.dev_spec.ich8lan.eee_disable = true;
762
bc7f75fa
AK
763 return 0;
764}
765
717d438d 766static DEFINE_MUTEX(nvm_mutex);
717d438d 767
ca15df58
BA
768/**
769 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
770 * @hw: pointer to the HW structure
771 *
772 * Acquires the mutex for performing NVM operations.
773 **/
774static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
775{
776 mutex_lock(&nvm_mutex);
777
778 return 0;
779}
780
781/**
782 * e1000_release_nvm_ich8lan - Release NVM mutex
783 * @hw: pointer to the HW structure
784 *
785 * Releases the mutex used while performing NVM operations.
786 **/
787static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
788{
789 mutex_unlock(&nvm_mutex);
ca15df58
BA
790}
791
792static DEFINE_MUTEX(swflag_mutex);
793
bc7f75fa
AK
794/**
795 * e1000_acquire_swflag_ich8lan - Acquire software control flag
796 * @hw: pointer to the HW structure
797 *
ca15df58
BA
798 * Acquires the software control flag for performing PHY and select
799 * MAC CSR accesses.
bc7f75fa
AK
800 **/
801static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
802{
373a88d7
BA
803 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
804 s32 ret_val = 0;
bc7f75fa 805
ca15df58 806 mutex_lock(&swflag_mutex);
717d438d 807
bc7f75fa
AK
808 while (timeout) {
809 extcnf_ctrl = er32(EXTCNF_CTRL);
373a88d7
BA
810 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
811 break;
bc7f75fa 812
373a88d7
BA
813 mdelay(1);
814 timeout--;
815 }
816
817 if (!timeout) {
3bb99fe2 818 e_dbg("SW/FW/HW has locked the resource for too long.\n");
373a88d7
BA
819 ret_val = -E1000_ERR_CONFIG;
820 goto out;
821 }
822
53ac5a88 823 timeout = SW_FLAG_TIMEOUT;
373a88d7
BA
824
825 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
826 ew32(EXTCNF_CTRL, extcnf_ctrl);
827
828 while (timeout) {
829 extcnf_ctrl = er32(EXTCNF_CTRL);
830 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
831 break;
a4f58f54 832
bc7f75fa
AK
833 mdelay(1);
834 timeout--;
835 }
836
837 if (!timeout) {
3bb99fe2 838 e_dbg("Failed to acquire the semaphore.\n");
2e2e8d53
BA
839 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
840 ew32(EXTCNF_CTRL, extcnf_ctrl);
373a88d7
BA
841 ret_val = -E1000_ERR_CONFIG;
842 goto out;
bc7f75fa
AK
843 }
844
373a88d7
BA
845out:
846 if (ret_val)
ca15df58 847 mutex_unlock(&swflag_mutex);
373a88d7
BA
848
849 return ret_val;
bc7f75fa
AK
850}
851
852/**
853 * e1000_release_swflag_ich8lan - Release software control flag
854 * @hw: pointer to the HW structure
855 *
ca15df58
BA
856 * Releases the software control flag for performing PHY and select
857 * MAC CSR accesses.
bc7f75fa
AK
858 **/
859static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
860{
861 u32 extcnf_ctrl;
862
863 extcnf_ctrl = er32(EXTCNF_CTRL);
864 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
865 ew32(EXTCNF_CTRL, extcnf_ctrl);
717d438d 866
ca15df58 867 mutex_unlock(&swflag_mutex);
bc7f75fa
AK
868}
869
4662e82b
BA
870/**
871 * e1000_check_mng_mode_ich8lan - Checks management mode
872 * @hw: pointer to the HW structure
873 *
eb7700dc 874 * This checks if the adapter has any manageability enabled.
4662e82b
BA
875 * This is a function pointer entry point only called by read/write
876 * routines for the PHY and NVM parts.
877 **/
878static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
879{
a708dd88
BA
880 u32 fwsm;
881
882 fwsm = er32(FWSM);
eb7700dc
BA
883 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
884 ((fwsm & E1000_FWSM_MODE_MASK) ==
885 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
886}
4662e82b 887
eb7700dc
BA
888/**
889 * e1000_check_mng_mode_pchlan - Checks management mode
890 * @hw: pointer to the HW structure
891 *
892 * This checks if the adapter has iAMT enabled.
893 * This is a function pointer entry point only called by read/write
894 * routines for the PHY and NVM parts.
895 **/
896static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
897{
898 u32 fwsm;
899
900 fwsm = er32(FWSM);
901 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
902 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
4662e82b
BA
903}
904
bc7f75fa
AK
905/**
906 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
907 * @hw: pointer to the HW structure
908 *
909 * Checks if firmware is blocking the reset of the PHY.
910 * This is a function pointer entry point only called by
911 * reset routines.
912 **/
913static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
914{
915 u32 fwsm;
916
917 fwsm = er32(FWSM);
918
919 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
920}
921
8395ae83
BA
922/**
923 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
924 * @hw: pointer to the HW structure
925 *
926 * Assumes semaphore already acquired.
927 *
928 **/
929static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
930{
931 u16 phy_data;
932 u32 strap = er32(STRAP);
933 s32 ret_val = 0;
934
935 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
936
937 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
938 if (ret_val)
939 goto out;
940
941 phy_data &= ~HV_SMB_ADDR_MASK;
942 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
943 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
944 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
945
946out:
947 return ret_val;
948}
949
f523d211
BA
950/**
951 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
952 * @hw: pointer to the HW structure
953 *
954 * SW should configure the LCD from the NVM extended configuration region
955 * as a workaround for certain parts.
956 **/
957static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
958{
959 struct e1000_phy_info *phy = &hw->phy;
960 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
8b802a7e 961 s32 ret_val = 0;
f523d211
BA
962 u16 word_addr, reg_data, reg_addr, phy_page = 0;
963
f523d211
BA
964 /*
965 * Initialize the PHY from the NVM on ICH platforms. This
966 * is needed due to an issue where the NVM configuration is
967 * not properly autoloaded after power transitions.
968 * Therefore, after each PHY reset, we will load the
969 * configuration data out of the NVM manually.
970 */
3f0c16e8
BA
971 switch (hw->mac.type) {
972 case e1000_ich8lan:
973 if (phy->type != e1000_phy_igp_3)
974 return ret_val;
975
5f3eed6f
BA
976 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
977 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
3f0c16e8
BA
978 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
979 break;
980 }
981 /* Fall-thru */
982 case e1000_pchlan:
d3738bb8 983 case e1000_pch2lan:
8b802a7e 984 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
3f0c16e8
BA
985 break;
986 default:
987 return ret_val;
988 }
989
990 ret_val = hw->phy.ops.acquire(hw);
991 if (ret_val)
992 return ret_val;
8b802a7e
BA
993
994 data = er32(FEXTNVM);
995 if (!(data & sw_cfg_mask))
996 goto out;
f523d211 997
8b802a7e
BA
998 /*
999 * Make sure HW does not configure LCD from PHY
1000 * extended configuration before SW configuration
1001 */
1002 data = er32(EXTCNF_CTRL);
d3738bb8
BA
1003 if (!(hw->mac.type == e1000_pch2lan)) {
1004 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1005 goto out;
1006 }
8b802a7e
BA
1007
1008 cnf_size = er32(EXTCNF_SIZE);
1009 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1010 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1011 if (!cnf_size)
1012 goto out;
1013
1014 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1015 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1016
87fb7410
BA
1017 if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1018 (hw->mac.type == e1000_pchlan)) ||
1019 (hw->mac.type == e1000_pch2lan)) {
f523d211 1020 /*
8b802a7e
BA
1021 * HW configures the SMBus address and LEDs when the
1022 * OEM and LCD Write Enable bits are set in the NVM.
1023 * When both NVM bits are cleared, SW will configure
1024 * them instead.
f523d211 1025 */
8395ae83 1026 ret_val = e1000_write_smbus_addr(hw);
8b802a7e 1027 if (ret_val)
f523d211
BA
1028 goto out;
1029
8b802a7e
BA
1030 data = er32(LEDCTL);
1031 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1032 (u16)data);
1033 if (ret_val)
f523d211 1034 goto out;
8b802a7e 1035 }
f523d211 1036
8b802a7e
BA
1037 /* Configure LCD from extended configuration region. */
1038
1039 /* cnf_base_addr is in DWORD */
1040 word_addr = (u16)(cnf_base_addr << 1);
1041
1042 for (i = 0; i < cnf_size; i++) {
1043 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1044 &reg_data);
1045 if (ret_val)
1046 goto out;
1047
1048 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1049 1, &reg_addr);
1050 if (ret_val)
1051 goto out;
1052
1053 /* Save off the PHY page for future writes. */
1054 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1055 phy_page = reg_data;
1056 continue;
f523d211 1057 }
8b802a7e
BA
1058
1059 reg_addr &= PHY_REG_MASK;
1060 reg_addr |= phy_page;
1061
1062 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1063 reg_data);
1064 if (ret_val)
1065 goto out;
f523d211
BA
1066 }
1067
1068out:
94d8186a 1069 hw->phy.ops.release(hw);
f523d211
BA
1070 return ret_val;
1071}
1072
1d5846b9
BA
1073/**
1074 * e1000_k1_gig_workaround_hv - K1 Si workaround
1075 * @hw: pointer to the HW structure
1076 * @link: link up bool flag
1077 *
1078 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1079 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1080 * If link is down, the function will restore the default K1 setting located
1081 * in the NVM.
1082 **/
1083static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1084{
1085 s32 ret_val = 0;
1086 u16 status_reg = 0;
1087 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1088
1089 if (hw->mac.type != e1000_pchlan)
1090 goto out;
1091
1092 /* Wrap the whole flow with the sw flag */
94d8186a 1093 ret_val = hw->phy.ops.acquire(hw);
1d5846b9
BA
1094 if (ret_val)
1095 goto out;
1096
1097 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1098 if (link) {
1099 if (hw->phy.type == e1000_phy_82578) {
94d8186a 1100 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1d5846b9
BA
1101 &status_reg);
1102 if (ret_val)
1103 goto release;
1104
1105 status_reg &= BM_CS_STATUS_LINK_UP |
1106 BM_CS_STATUS_RESOLVED |
1107 BM_CS_STATUS_SPEED_MASK;
1108
1109 if (status_reg == (BM_CS_STATUS_LINK_UP |
1110 BM_CS_STATUS_RESOLVED |
1111 BM_CS_STATUS_SPEED_1000))
1112 k1_enable = false;
1113 }
1114
1115 if (hw->phy.type == e1000_phy_82577) {
94d8186a 1116 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1d5846b9
BA
1117 &status_reg);
1118 if (ret_val)
1119 goto release;
1120
1121 status_reg &= HV_M_STATUS_LINK_UP |
1122 HV_M_STATUS_AUTONEG_COMPLETE |
1123 HV_M_STATUS_SPEED_MASK;
1124
1125 if (status_reg == (HV_M_STATUS_LINK_UP |
1126 HV_M_STATUS_AUTONEG_COMPLETE |
1127 HV_M_STATUS_SPEED_1000))
1128 k1_enable = false;
1129 }
1130
1131 /* Link stall fix for link up */
94d8186a 1132 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1d5846b9
BA
1133 0x0100);
1134 if (ret_val)
1135 goto release;
1136
1137 } else {
1138 /* Link stall fix for link down */
94d8186a 1139 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1d5846b9
BA
1140 0x4100);
1141 if (ret_val)
1142 goto release;
1143 }
1144
1145 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1146
1147release:
94d8186a 1148 hw->phy.ops.release(hw);
1d5846b9
BA
1149out:
1150 return ret_val;
1151}
1152
1153/**
1154 * e1000_configure_k1_ich8lan - Configure K1 power state
1155 * @hw: pointer to the HW structure
1156 * @enable: K1 state to configure
1157 *
1158 * Configure the K1 power state based on the provided parameter.
1159 * Assumes semaphore already acquired.
1160 *
1161 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1162 **/
bb436b20 1163s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1d5846b9
BA
1164{
1165 s32 ret_val = 0;
1166 u32 ctrl_reg = 0;
1167 u32 ctrl_ext = 0;
1168 u32 reg = 0;
1169 u16 kmrn_reg = 0;
1170
1171 ret_val = e1000e_read_kmrn_reg_locked(hw,
1172 E1000_KMRNCTRLSTA_K1_CONFIG,
1173 &kmrn_reg);
1174 if (ret_val)
1175 goto out;
1176
1177 if (k1_enable)
1178 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1179 else
1180 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1181
1182 ret_val = e1000e_write_kmrn_reg_locked(hw,
1183 E1000_KMRNCTRLSTA_K1_CONFIG,
1184 kmrn_reg);
1185 if (ret_val)
1186 goto out;
1187
1188 udelay(20);
1189 ctrl_ext = er32(CTRL_EXT);
1190 ctrl_reg = er32(CTRL);
1191
1192 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1193 reg |= E1000_CTRL_FRCSPD;
1194 ew32(CTRL, reg);
1195
1196 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1197 udelay(20);
1198 ew32(CTRL, ctrl_reg);
1199 ew32(CTRL_EXT, ctrl_ext);
1200 udelay(20);
1201
1202out:
1203 return ret_val;
1204}
1205
f523d211
BA
1206/**
1207 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1208 * @hw: pointer to the HW structure
1209 * @d0_state: boolean if entering d0 or d3 device state
1210 *
1211 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1212 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1213 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1214 **/
1215static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1216{
1217 s32 ret_val = 0;
1218 u32 mac_reg;
1219 u16 oem_reg;
1220
d3738bb8 1221 if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
f523d211
BA
1222 return ret_val;
1223
94d8186a 1224 ret_val = hw->phy.ops.acquire(hw);
f523d211
BA
1225 if (ret_val)
1226 return ret_val;
1227
d3738bb8
BA
1228 if (!(hw->mac.type == e1000_pch2lan)) {
1229 mac_reg = er32(EXTCNF_CTRL);
1230 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1231 goto out;
1232 }
f523d211
BA
1233
1234 mac_reg = er32(FEXTNVM);
1235 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1236 goto out;
1237
1238 mac_reg = er32(PHY_CTRL);
1239
94d8186a 1240 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
f523d211
BA
1241 if (ret_val)
1242 goto out;
1243
1244 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1245
1246 if (d0_state) {
1247 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1248 oem_reg |= HV_OEM_BITS_GBE_DIS;
1249
1250 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1251 oem_reg |= HV_OEM_BITS_LPLU;
1252 } else {
1253 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1254 oem_reg |= HV_OEM_BITS_GBE_DIS;
1255
1256 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1257 oem_reg |= HV_OEM_BITS_LPLU;
1258 }
1259 /* Restart auto-neg to activate the bits */
818f3331
BA
1260 if (!e1000_check_reset_block(hw))
1261 oem_reg |= HV_OEM_BITS_RESTART_AN;
94d8186a 1262 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
f523d211
BA
1263
1264out:
94d8186a 1265 hw->phy.ops.release(hw);
f523d211
BA
1266
1267 return ret_val;
1268}
1269
1270
fddaa1af
BA
1271/**
1272 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1273 * @hw: pointer to the HW structure
1274 **/
1275static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1276{
1277 s32 ret_val;
1278 u16 data;
1279
1280 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1281 if (ret_val)
1282 return ret_val;
1283
1284 data |= HV_KMRN_MDIO_SLOW;
1285
1286 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1287
1288 return ret_val;
1289}
1290
a4f58f54
BA
1291/**
1292 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1293 * done after every PHY reset.
1294 **/
1295static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1296{
1297 s32 ret_val = 0;
baf86c9d 1298 u16 phy_data;
a4f58f54
BA
1299
1300 if (hw->mac.type != e1000_pchlan)
1301 return ret_val;
1302
fddaa1af
BA
1303 /* Set MDIO slow mode before any other MDIO access */
1304 if (hw->phy.type == e1000_phy_82577) {
1305 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1306 if (ret_val)
1307 goto out;
1308 }
1309
a4f58f54
BA
1310 if (((hw->phy.type == e1000_phy_82577) &&
1311 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1312 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1313 /* Disable generation of early preamble */
1314 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1315 if (ret_val)
1316 return ret_val;
1317
1318 /* Preamble tuning for SSC */
1319 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1320 if (ret_val)
1321 return ret_val;
1322 }
1323
1324 if (hw->phy.type == e1000_phy_82578) {
1325 /*
1326 * Return registers to default by doing a soft reset then
1327 * writing 0x3140 to the control register.
1328 */
1329 if (hw->phy.revision < 2) {
1330 e1000e_phy_sw_reset(hw);
1331 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1332 }
1333 }
1334
1335 /* Select page 0 */
94d8186a 1336 ret_val = hw->phy.ops.acquire(hw);
a4f58f54
BA
1337 if (ret_val)
1338 return ret_val;
1d5846b9 1339
a4f58f54 1340 hw->phy.addr = 1;
1d5846b9 1341 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
baf86c9d 1342 hw->phy.ops.release(hw);
1d5846b9
BA
1343 if (ret_val)
1344 goto out;
a4f58f54 1345
1d5846b9
BA
1346 /*
1347 * Configure the K1 Si workaround during phy reset assuming there is
1348 * link so that it disables K1 if link is in 1Gbps.
1349 */
1350 ret_val = e1000_k1_gig_workaround_hv(hw, true);
baf86c9d
BA
1351 if (ret_val)
1352 goto out;
1d5846b9 1353
baf86c9d
BA
1354 /* Workaround for link disconnects on a busy hub in half duplex */
1355 ret_val = hw->phy.ops.acquire(hw);
1356 if (ret_val)
1357 goto out;
1358 ret_val = hw->phy.ops.read_reg_locked(hw,
1359 PHY_REG(BM_PORT_CTRL_PAGE, 17),
1360 &phy_data);
1361 if (ret_val)
1362 goto release;
1363 ret_val = hw->phy.ops.write_reg_locked(hw,
1364 PHY_REG(BM_PORT_CTRL_PAGE, 17),
1365 phy_data & 0x00FF);
1366release:
1367 hw->phy.ops.release(hw);
1d5846b9 1368out:
a4f58f54
BA
1369 return ret_val;
1370}
1371
d3738bb8
BA
1372/**
1373 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1374 * @hw: pointer to the HW structure
1375 **/
1376void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1377{
1378 u32 mac_reg;
1379 u16 i;
1380
1381 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1382 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1383 mac_reg = er32(RAL(i));
1384 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
1385 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
1386 mac_reg = er32(RAH(i));
1387 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
1388 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0x8000));
1389 }
1390}
1391
1392static u32 e1000_calc_rx_da_crc(u8 mac[])
1393{
1394 u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */
1395 u32 i, j, mask, crc;
1396
1397 crc = 0xffffffff;
1398 for (i = 0; i < 6; i++) {
1399 crc = crc ^ mac[i];
1400 for (j = 8; j > 0; j--) {
1401 mask = (crc & 1) * (-1);
1402 crc = (crc >> 1) ^ (poly & mask);
1403 }
1404 }
1405 return ~crc;
1406}
1407
1408/**
1409 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1410 * with 82579 PHY
1411 * @hw: pointer to the HW structure
1412 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1413 **/
1414s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1415{
1416 s32 ret_val = 0;
1417 u16 phy_reg, data;
1418 u32 mac_reg;
1419 u16 i;
1420
1421 if (hw->mac.type != e1000_pch2lan)
1422 goto out;
1423
1424 /* disable Rx path while enabling/disabling workaround */
1425 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1426 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1427 if (ret_val)
1428 goto out;
1429
1430 if (enable) {
1431 /*
1432 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1433 * SHRAL/H) and initial CRC values to the MAC
1434 */
1435 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1436 u8 mac_addr[ETH_ALEN] = {0};
1437 u32 addr_high, addr_low;
1438
1439 addr_high = er32(RAH(i));
1440 if (!(addr_high & E1000_RAH_AV))
1441 continue;
1442 addr_low = er32(RAL(i));
1443 mac_addr[0] = (addr_low & 0xFF);
1444 mac_addr[1] = ((addr_low >> 8) & 0xFF);
1445 mac_addr[2] = ((addr_low >> 16) & 0xFF);
1446 mac_addr[3] = ((addr_low >> 24) & 0xFF);
1447 mac_addr[4] = (addr_high & 0xFF);
1448 mac_addr[5] = ((addr_high >> 8) & 0xFF);
1449
1450 ew32(PCH_RAICC(i),
1451 e1000_calc_rx_da_crc(mac_addr));
1452 }
1453
1454 /* Write Rx addresses to the PHY */
1455 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1456
1457 /* Enable jumbo frame workaround in the MAC */
1458 mac_reg = er32(FFLT_DBG);
1459 mac_reg &= ~(1 << 14);
1460 mac_reg |= (7 << 15);
1461 ew32(FFLT_DBG, mac_reg);
1462
1463 mac_reg = er32(RCTL);
1464 mac_reg |= E1000_RCTL_SECRC;
1465 ew32(RCTL, mac_reg);
1466
1467 ret_val = e1000e_read_kmrn_reg(hw,
1468 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1469 &data);
1470 if (ret_val)
1471 goto out;
1472 ret_val = e1000e_write_kmrn_reg(hw,
1473 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1474 data | (1 << 0));
1475 if (ret_val)
1476 goto out;
1477 ret_val = e1000e_read_kmrn_reg(hw,
1478 E1000_KMRNCTRLSTA_HD_CTRL,
1479 &data);
1480 if (ret_val)
1481 goto out;
1482 data &= ~(0xF << 8);
1483 data |= (0xB << 8);
1484 ret_val = e1000e_write_kmrn_reg(hw,
1485 E1000_KMRNCTRLSTA_HD_CTRL,
1486 data);
1487 if (ret_val)
1488 goto out;
1489
1490 /* Enable jumbo frame workaround in the PHY */
d3738bb8
BA
1491 e1e_rphy(hw, PHY_REG(769, 23), &data);
1492 data &= ~(0x7F << 5);
1493 data |= (0x37 << 5);
1494 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1495 if (ret_val)
1496 goto out;
1497 e1e_rphy(hw, PHY_REG(769, 16), &data);
1498 data &= ~(1 << 13);
d3738bb8
BA
1499 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1500 if (ret_val)
1501 goto out;
1502 e1e_rphy(hw, PHY_REG(776, 20), &data);
1503 data &= ~(0x3FF << 2);
1504 data |= (0x1A << 2);
1505 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1506 if (ret_val)
1507 goto out;
1508 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00);
1509 if (ret_val)
1510 goto out;
1511 e1e_rphy(hw, HV_PM_CTRL, &data);
1512 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1513 if (ret_val)
1514 goto out;
1515 } else {
1516 /* Write MAC register values back to h/w defaults */
1517 mac_reg = er32(FFLT_DBG);
1518 mac_reg &= ~(0xF << 14);
1519 ew32(FFLT_DBG, mac_reg);
1520
1521 mac_reg = er32(RCTL);
1522 mac_reg &= ~E1000_RCTL_SECRC;
a1ce6473 1523 ew32(RCTL, mac_reg);
d3738bb8
BA
1524
1525 ret_val = e1000e_read_kmrn_reg(hw,
1526 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1527 &data);
1528 if (ret_val)
1529 goto out;
1530 ret_val = e1000e_write_kmrn_reg(hw,
1531 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1532 data & ~(1 << 0));
1533 if (ret_val)
1534 goto out;
1535 ret_val = e1000e_read_kmrn_reg(hw,
1536 E1000_KMRNCTRLSTA_HD_CTRL,
1537 &data);
1538 if (ret_val)
1539 goto out;
1540 data &= ~(0xF << 8);
1541 data |= (0xB << 8);
1542 ret_val = e1000e_write_kmrn_reg(hw,
1543 E1000_KMRNCTRLSTA_HD_CTRL,
1544 data);
1545 if (ret_val)
1546 goto out;
1547
1548 /* Write PHY register values back to h/w defaults */
d3738bb8
BA
1549 e1e_rphy(hw, PHY_REG(769, 23), &data);
1550 data &= ~(0x7F << 5);
1551 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1552 if (ret_val)
1553 goto out;
1554 e1e_rphy(hw, PHY_REG(769, 16), &data);
d3738bb8
BA
1555 data |= (1 << 13);
1556 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1557 if (ret_val)
1558 goto out;
1559 e1e_rphy(hw, PHY_REG(776, 20), &data);
1560 data &= ~(0x3FF << 2);
1561 data |= (0x8 << 2);
1562 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1563 if (ret_val)
1564 goto out;
1565 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1566 if (ret_val)
1567 goto out;
1568 e1e_rphy(hw, HV_PM_CTRL, &data);
1569 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1570 if (ret_val)
1571 goto out;
1572 }
1573
1574 /* re-enable Rx path after enabling/disabling workaround */
1575 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1576
1577out:
1578 return ret_val;
1579}
1580
1581/**
1582 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1583 * done after every PHY reset.
1584 **/
1585static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1586{
1587 s32 ret_val = 0;
1588
1589 if (hw->mac.type != e1000_pch2lan)
1590 goto out;
1591
1592 /* Set MDIO slow mode before any other MDIO access */
1593 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1594
1595out:
1596 return ret_val;
1597}
1598
831bd2e6
BA
1599/**
1600 * e1000_k1_gig_workaround_lv - K1 Si workaround
1601 * @hw: pointer to the HW structure
1602 *
1603 * Workaround to set the K1 beacon duration for 82579 parts
1604 **/
1605static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1606{
1607 s32 ret_val = 0;
1608 u16 status_reg = 0;
1609 u32 mac_reg;
1610
1611 if (hw->mac.type != e1000_pch2lan)
1612 goto out;
1613
1614 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1615 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1616 if (ret_val)
1617 goto out;
1618
1619 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1620 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1621 mac_reg = er32(FEXTNVM4);
1622 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1623
1624 if (status_reg & HV_M_STATUS_SPEED_1000)
1625 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1626 else
1627 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1628
1629 ew32(FEXTNVM4, mac_reg);
1630 }
1631
1632out:
1633 return ret_val;
1634}
1635
605c82ba
BA
1636/**
1637 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1638 * @hw: pointer to the HW structure
1639 * @gate: boolean set to true to gate, false to ungate
1640 *
1641 * Gate/ungate the automatic PHY configuration via hardware; perform
1642 * the configuration via software instead.
1643 **/
1644static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1645{
1646 u32 extcnf_ctrl;
1647
1648 if (hw->mac.type != e1000_pch2lan)
1649 return;
1650
1651 extcnf_ctrl = er32(EXTCNF_CTRL);
1652
1653 if (gate)
1654 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1655 else
1656 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1657
1658 ew32(EXTCNF_CTRL, extcnf_ctrl);
1659 return;
1660}
1661
fc0c7760
BA
1662/**
1663 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1664 * @hw: pointer to the HW structure
1665 *
1666 * Check the appropriate indication the MAC has finished configuring the
1667 * PHY after a software reset.
1668 **/
1669static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1670{
1671 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1672
1673 /* Wait for basic configuration completes before proceeding */
1674 do {
1675 data = er32(STATUS);
1676 data &= E1000_STATUS_LAN_INIT_DONE;
1677 udelay(100);
1678 } while ((!data) && --loop);
1679
1680 /*
1681 * If basic configuration is incomplete before the above loop
1682 * count reaches 0, loading the configuration from NVM will
1683 * leave the PHY in a bad state possibly resulting in no link.
1684 */
1685 if (loop == 0)
3bb99fe2 1686 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
fc0c7760
BA
1687
1688 /* Clear the Init Done bit for the next init event */
1689 data = er32(STATUS);
1690 data &= ~E1000_STATUS_LAN_INIT_DONE;
1691 ew32(STATUS, data);
1692}
1693
bc7f75fa 1694/**
e98cac44 1695 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
bc7f75fa 1696 * @hw: pointer to the HW structure
bc7f75fa 1697 **/
e98cac44 1698static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
bc7f75fa 1699{
f523d211
BA
1700 s32 ret_val = 0;
1701 u16 reg;
bc7f75fa 1702
e98cac44
BA
1703 if (e1000_check_reset_block(hw))
1704 goto out;
fc0c7760 1705
5f3eed6f
BA
1706 /* Allow time for h/w to get to quiescent state after reset */
1707 msleep(10);
1708
fddaa1af 1709 /* Perform any necessary post-reset workarounds */
e98cac44
BA
1710 switch (hw->mac.type) {
1711 case e1000_pchlan:
a4f58f54
BA
1712 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1713 if (ret_val)
e98cac44
BA
1714 goto out;
1715 break;
d3738bb8
BA
1716 case e1000_pch2lan:
1717 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1718 if (ret_val)
1719 goto out;
1720 break;
e98cac44
BA
1721 default:
1722 break;
a4f58f54
BA
1723 }
1724
db2932ec 1725 /* Dummy read to clear the phy wakeup bit after lcd reset */
d3738bb8 1726 if (hw->mac.type >= e1000_pchlan)
db2932ec
BA
1727 e1e_rphy(hw, BM_WUC, &reg);
1728
f523d211
BA
1729 /* Configure the LCD with the extended configuration region in NVM */
1730 ret_val = e1000_sw_lcd_config_ich8lan(hw);
1731 if (ret_val)
1732 goto out;
bc7f75fa 1733
f523d211 1734 /* Configure the LCD with the OEM bits in NVM */
e98cac44 1735 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
bc7f75fa 1736
605c82ba
BA
1737 /* Ungate automatic PHY configuration on non-managed 82579 */
1738 if ((hw->mac.type == e1000_pch2lan) &&
1739 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1740 msleep(10);
1741 e1000_gate_hw_phy_config_ich8lan(hw, false);
1742 }
1743
f523d211 1744out:
e98cac44
BA
1745 return ret_val;
1746}
1747
1748/**
1749 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1750 * @hw: pointer to the HW structure
1751 *
1752 * Resets the PHY
1753 * This is a function pointer entry point called by drivers
1754 * or other shared routines.
1755 **/
1756static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1757{
1758 s32 ret_val = 0;
1759
605c82ba
BA
1760 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1761 if ((hw->mac.type == e1000_pch2lan) &&
1762 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1763 e1000_gate_hw_phy_config_ich8lan(hw, true);
1764
e98cac44
BA
1765 ret_val = e1000e_phy_hw_reset_generic(hw);
1766 if (ret_val)
1767 goto out;
1768
1769 ret_val = e1000_post_phy_reset_ich8lan(hw);
1770
1771out:
1772 return ret_val;
bc7f75fa
AK
1773}
1774
fa2ce13c
BA
1775/**
1776 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1777 * @hw: pointer to the HW structure
1778 * @active: true to enable LPLU, false to disable
1779 *
1780 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1781 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1782 * the phy speed. This function will manually set the LPLU bit and restart
1783 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1784 * since it configures the same bit.
1785 **/
1786static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1787{
1788 s32 ret_val = 0;
1789 u16 oem_reg;
1790
1791 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1792 if (ret_val)
1793 goto out;
1794
1795 if (active)
1796 oem_reg |= HV_OEM_BITS_LPLU;
1797 else
1798 oem_reg &= ~HV_OEM_BITS_LPLU;
1799
1800 oem_reg |= HV_OEM_BITS_RESTART_AN;
1801 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1802
1803out:
1804 return ret_val;
1805}
1806
bc7f75fa
AK
1807/**
1808 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1809 * @hw: pointer to the HW structure
564ea9bb 1810 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
1811 *
1812 * Sets the LPLU D0 state according to the active flag. When
1813 * activating LPLU this function also disables smart speed
1814 * and vice versa. LPLU will not be activated unless the
1815 * device autonegotiation advertisement meets standards of
1816 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1817 * This is a function pointer entry point only called by
1818 * PHY setup routines.
1819 **/
1820static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1821{
1822 struct e1000_phy_info *phy = &hw->phy;
1823 u32 phy_ctrl;
1824 s32 ret_val = 0;
1825 u16 data;
1826
97ac8cae 1827 if (phy->type == e1000_phy_ife)
bc7f75fa
AK
1828 return ret_val;
1829
1830 phy_ctrl = er32(PHY_CTRL);
1831
1832 if (active) {
1833 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1834 ew32(PHY_CTRL, phy_ctrl);
1835
60f1292f
BA
1836 if (phy->type != e1000_phy_igp_3)
1837 return 0;
1838
ad68076e
BA
1839 /*
1840 * Call gig speed drop workaround on LPLU before accessing
1841 * any PHY registers
1842 */
60f1292f 1843 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
1844 e1000e_gig_downshift_workaround_ich8lan(hw);
1845
1846 /* When LPLU is enabled, we should disable SmartSpeed */
1847 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1848 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1849 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1850 if (ret_val)
1851 return ret_val;
1852 } else {
1853 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1854 ew32(PHY_CTRL, phy_ctrl);
1855
60f1292f
BA
1856 if (phy->type != e1000_phy_igp_3)
1857 return 0;
1858
ad68076e
BA
1859 /*
1860 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
1861 * during Dx states where the power conservation is most
1862 * important. During driver activity we should enable
ad68076e
BA
1863 * SmartSpeed, so performance is maintained.
1864 */
bc7f75fa
AK
1865 if (phy->smart_speed == e1000_smart_speed_on) {
1866 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1867 &data);
bc7f75fa
AK
1868 if (ret_val)
1869 return ret_val;
1870
1871 data |= IGP01E1000_PSCFR_SMART_SPEED;
1872 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1873 data);
bc7f75fa
AK
1874 if (ret_val)
1875 return ret_val;
1876 } else if (phy->smart_speed == e1000_smart_speed_off) {
1877 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1878 &data);
bc7f75fa
AK
1879 if (ret_val)
1880 return ret_val;
1881
1882 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1883 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1884 data);
bc7f75fa
AK
1885 if (ret_val)
1886 return ret_val;
1887 }
1888 }
1889
1890 return 0;
1891}
1892
1893/**
1894 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1895 * @hw: pointer to the HW structure
564ea9bb 1896 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
1897 *
1898 * Sets the LPLU D3 state according to the active flag. When
1899 * activating LPLU this function also disables smart speed
1900 * and vice versa. LPLU will not be activated unless the
1901 * device autonegotiation advertisement meets standards of
1902 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1903 * This is a function pointer entry point only called by
1904 * PHY setup routines.
1905 **/
1906static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1907{
1908 struct e1000_phy_info *phy = &hw->phy;
1909 u32 phy_ctrl;
1910 s32 ret_val;
1911 u16 data;
1912
1913 phy_ctrl = er32(PHY_CTRL);
1914
1915 if (!active) {
1916 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1917 ew32(PHY_CTRL, phy_ctrl);
60f1292f
BA
1918
1919 if (phy->type != e1000_phy_igp_3)
1920 return 0;
1921
ad68076e
BA
1922 /*
1923 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
1924 * during Dx states where the power conservation is most
1925 * important. During driver activity we should enable
ad68076e
BA
1926 * SmartSpeed, so performance is maintained.
1927 */
bc7f75fa 1928 if (phy->smart_speed == e1000_smart_speed_on) {
ad68076e
BA
1929 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1930 &data);
bc7f75fa
AK
1931 if (ret_val)
1932 return ret_val;
1933
1934 data |= IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
1935 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1936 data);
bc7f75fa
AK
1937 if (ret_val)
1938 return ret_val;
1939 } else if (phy->smart_speed == e1000_smart_speed_off) {
ad68076e
BA
1940 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1941 &data);
bc7f75fa
AK
1942 if (ret_val)
1943 return ret_val;
1944
1945 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
1946 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1947 data);
bc7f75fa
AK
1948 if (ret_val)
1949 return ret_val;
1950 }
1951 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1952 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1953 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1954 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1955 ew32(PHY_CTRL, phy_ctrl);
1956
60f1292f
BA
1957 if (phy->type != e1000_phy_igp_3)
1958 return 0;
1959
ad68076e
BA
1960 /*
1961 * Call gig speed drop workaround on LPLU before accessing
1962 * any PHY registers
1963 */
60f1292f 1964 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
1965 e1000e_gig_downshift_workaround_ich8lan(hw);
1966
1967 /* When LPLU is enabled, we should disable SmartSpeed */
ad68076e 1968 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
bc7f75fa
AK
1969 if (ret_val)
1970 return ret_val;
1971
1972 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e 1973 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
bc7f75fa
AK
1974 }
1975
1976 return 0;
1977}
1978
f4187b56
BA
1979/**
1980 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1981 * @hw: pointer to the HW structure
1982 * @bank: pointer to the variable that returns the active bank
1983 *
1984 * Reads signature byte from the NVM using the flash access registers.
e243455d 1985 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
f4187b56
BA
1986 **/
1987static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1988{
e243455d 1989 u32 eecd;
f4187b56 1990 struct e1000_nvm_info *nvm = &hw->nvm;
f4187b56
BA
1991 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1992 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
e243455d
BA
1993 u8 sig_byte = 0;
1994 s32 ret_val = 0;
f4187b56 1995
e243455d
BA
1996 switch (hw->mac.type) {
1997 case e1000_ich8lan:
1998 case e1000_ich9lan:
1999 eecd = er32(EECD);
2000 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2001 E1000_EECD_SEC1VAL_VALID_MASK) {
2002 if (eecd & E1000_EECD_SEC1VAL)
2003 *bank = 1;
2004 else
2005 *bank = 0;
2006
2007 return 0;
2008 }
3bb99fe2 2009 e_dbg("Unable to determine valid NVM bank via EEC - "
e243455d
BA
2010 "reading flash signature\n");
2011 /* fall-thru */
2012 default:
2013 /* set bank to 0 in case flash read fails */
2014 *bank = 0;
2015
2016 /* Check bank 0 */
2017 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2018 &sig_byte);
2019 if (ret_val)
2020 return ret_val;
2021 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2022 E1000_ICH_NVM_SIG_VALUE) {
f4187b56 2023 *bank = 0;
e243455d
BA
2024 return 0;
2025 }
f4187b56 2026
e243455d
BA
2027 /* Check bank 1 */
2028 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2029 bank1_offset,
2030 &sig_byte);
2031 if (ret_val)
2032 return ret_val;
2033 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2034 E1000_ICH_NVM_SIG_VALUE) {
2035 *bank = 1;
2036 return 0;
f4187b56 2037 }
e243455d 2038
3bb99fe2 2039 e_dbg("ERROR: No valid NVM bank present\n");
e243455d 2040 return -E1000_ERR_NVM;
f4187b56
BA
2041 }
2042
2043 return 0;
2044}
2045
bc7f75fa
AK
2046/**
2047 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2048 * @hw: pointer to the HW structure
2049 * @offset: The offset (in bytes) of the word(s) to read.
2050 * @words: Size of data to read in words
2051 * @data: Pointer to the word(s) to read at offset.
2052 *
2053 * Reads a word(s) from the NVM using the flash access registers.
2054 **/
2055static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2056 u16 *data)
2057{
2058 struct e1000_nvm_info *nvm = &hw->nvm;
2059 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2060 u32 act_offset;
148675a7 2061 s32 ret_val = 0;
f4187b56 2062 u32 bank = 0;
bc7f75fa
AK
2063 u16 i, word;
2064
2065 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2066 (words == 0)) {
3bb99fe2 2067 e_dbg("nvm parameter(s) out of bounds\n");
ca15df58
BA
2068 ret_val = -E1000_ERR_NVM;
2069 goto out;
bc7f75fa
AK
2070 }
2071
94d8186a 2072 nvm->ops.acquire(hw);
bc7f75fa 2073
f4187b56 2074 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
148675a7 2075 if (ret_val) {
3bb99fe2 2076 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7
BA
2077 bank = 0;
2078 }
f4187b56
BA
2079
2080 act_offset = (bank) ? nvm->flash_bank_size : 0;
bc7f75fa
AK
2081 act_offset += offset;
2082
148675a7 2083 ret_val = 0;
bc7f75fa
AK
2084 for (i = 0; i < words; i++) {
2085 if ((dev_spec->shadow_ram) &&
2086 (dev_spec->shadow_ram[offset+i].modified)) {
2087 data[i] = dev_spec->shadow_ram[offset+i].value;
2088 } else {
2089 ret_val = e1000_read_flash_word_ich8lan(hw,
2090 act_offset + i,
2091 &word);
2092 if (ret_val)
2093 break;
2094 data[i] = word;
2095 }
2096 }
2097
94d8186a 2098 nvm->ops.release(hw);
bc7f75fa 2099
e243455d
BA
2100out:
2101 if (ret_val)
3bb99fe2 2102 e_dbg("NVM read error: %d\n", ret_val);
e243455d 2103
bc7f75fa
AK
2104 return ret_val;
2105}
2106
2107/**
2108 * e1000_flash_cycle_init_ich8lan - Initialize flash
2109 * @hw: pointer to the HW structure
2110 *
2111 * This function does initial flash setup so that a new read/write/erase cycle
2112 * can be started.
2113 **/
2114static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2115{
2116 union ich8_hws_flash_status hsfsts;
2117 s32 ret_val = -E1000_ERR_NVM;
2118 s32 i = 0;
2119
2120 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2121
2122 /* Check if the flash descriptor is valid */
2123 if (hsfsts.hsf_status.fldesvalid == 0) {
3bb99fe2 2124 e_dbg("Flash descriptor invalid. "
2c73e1fe 2125 "SW Sequencing must be used.\n");
bc7f75fa
AK
2126 return -E1000_ERR_NVM;
2127 }
2128
2129 /* Clear FCERR and DAEL in hw status by writing 1 */
2130 hsfsts.hsf_status.flcerr = 1;
2131 hsfsts.hsf_status.dael = 1;
2132
2133 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2134
ad68076e
BA
2135 /*
2136 * Either we should have a hardware SPI cycle in progress
bc7f75fa
AK
2137 * bit to check against, in order to start a new cycle or
2138 * FDONE bit should be changed in the hardware so that it
489815ce 2139 * is 1 after hardware reset, which can then be used as an
bc7f75fa
AK
2140 * indication whether a cycle is in progress or has been
2141 * completed.
2142 */
2143
2144 if (hsfsts.hsf_status.flcinprog == 0) {
ad68076e
BA
2145 /*
2146 * There is no cycle running at present,
5ff5b664 2147 * so we can start a cycle.
ad68076e
BA
2148 * Begin by setting Flash Cycle Done.
2149 */
bc7f75fa
AK
2150 hsfsts.hsf_status.flcdone = 1;
2151 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2152 ret_val = 0;
2153 } else {
ad68076e 2154 /*
5ff5b664 2155 * Otherwise poll for sometime so the current
ad68076e
BA
2156 * cycle has a chance to end before giving up.
2157 */
bc7f75fa
AK
2158 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2159 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
2160 if (hsfsts.hsf_status.flcinprog == 0) {
2161 ret_val = 0;
2162 break;
2163 }
2164 udelay(1);
2165 }
2166 if (ret_val == 0) {
ad68076e
BA
2167 /*
2168 * Successful in waiting for previous cycle to timeout,
2169 * now set the Flash Cycle Done.
2170 */
bc7f75fa
AK
2171 hsfsts.hsf_status.flcdone = 1;
2172 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2173 } else {
2c73e1fe 2174 e_dbg("Flash controller busy, cannot get access\n");
bc7f75fa
AK
2175 }
2176 }
2177
2178 return ret_val;
2179}
2180
2181/**
2182 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2183 * @hw: pointer to the HW structure
2184 * @timeout: maximum time to wait for completion
2185 *
2186 * This function starts a flash cycle and waits for its completion.
2187 **/
2188static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2189{
2190 union ich8_hws_flash_ctrl hsflctl;
2191 union ich8_hws_flash_status hsfsts;
2192 s32 ret_val = -E1000_ERR_NVM;
2193 u32 i = 0;
2194
2195 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2196 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2197 hsflctl.hsf_ctrl.flcgo = 1;
2198 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2199
2200 /* wait till FDONE bit is set to 1 */
2201 do {
2202 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2203 if (hsfsts.hsf_status.flcdone == 1)
2204 break;
2205 udelay(1);
2206 } while (i++ < timeout);
2207
2208 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2209 return 0;
2210
2211 return ret_val;
2212}
2213
2214/**
2215 * e1000_read_flash_word_ich8lan - Read word from flash
2216 * @hw: pointer to the HW structure
2217 * @offset: offset to data location
2218 * @data: pointer to the location for storing the data
2219 *
2220 * Reads the flash word at offset into data. Offset is converted
2221 * to bytes before read.
2222 **/
2223static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2224 u16 *data)
2225{
2226 /* Must convert offset into bytes. */
2227 offset <<= 1;
2228
2229 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2230}
2231
f4187b56
BA
2232/**
2233 * e1000_read_flash_byte_ich8lan - Read byte from flash
2234 * @hw: pointer to the HW structure
2235 * @offset: The offset of the byte to read.
2236 * @data: Pointer to a byte to store the value read.
2237 *
2238 * Reads a single byte from the NVM using the flash access registers.
2239 **/
2240static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2241 u8 *data)
2242{
2243 s32 ret_val;
2244 u16 word = 0;
2245
2246 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2247 if (ret_val)
2248 return ret_val;
2249
2250 *data = (u8)word;
2251
2252 return 0;
2253}
2254
bc7f75fa
AK
2255/**
2256 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2257 * @hw: pointer to the HW structure
2258 * @offset: The offset (in bytes) of the byte or word to read.
2259 * @size: Size of data to read, 1=byte 2=word
2260 * @data: Pointer to the word to store the value read.
2261 *
2262 * Reads a byte or word from the NVM using the flash access registers.
2263 **/
2264static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2265 u8 size, u16 *data)
2266{
2267 union ich8_hws_flash_status hsfsts;
2268 union ich8_hws_flash_ctrl hsflctl;
2269 u32 flash_linear_addr;
2270 u32 flash_data = 0;
2271 s32 ret_val = -E1000_ERR_NVM;
2272 u8 count = 0;
2273
2274 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2275 return -E1000_ERR_NVM;
2276
2277 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2278 hw->nvm.flash_base_addr;
2279
2280 do {
2281 udelay(1);
2282 /* Steps */
2283 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2284 if (ret_val != 0)
2285 break;
2286
2287 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2288 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2289 hsflctl.hsf_ctrl.fldbcount = size - 1;
2290 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2291 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2292
2293 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2294
2295 ret_val = e1000_flash_cycle_ich8lan(hw,
2296 ICH_FLASH_READ_COMMAND_TIMEOUT);
2297
ad68076e
BA
2298 /*
2299 * Check if FCERR is set to 1, if set to 1, clear it
bc7f75fa
AK
2300 * and try the whole sequence a few more times, else
2301 * read in (shift in) the Flash Data0, the order is
ad68076e
BA
2302 * least significant byte first msb to lsb
2303 */
bc7f75fa
AK
2304 if (ret_val == 0) {
2305 flash_data = er32flash(ICH_FLASH_FDATA0);
2306 if (size == 1) {
2307 *data = (u8)(flash_data & 0x000000FF);
2308 } else if (size == 2) {
2309 *data = (u16)(flash_data & 0x0000FFFF);
2310 }
2311 break;
2312 } else {
ad68076e
BA
2313 /*
2314 * If we've gotten here, then things are probably
bc7f75fa
AK
2315 * completely hosed, but if the error condition is
2316 * detected, it won't hurt to give it another try...
2317 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2318 */
2319 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2320 if (hsfsts.hsf_status.flcerr == 1) {
2321 /* Repeat for some time before giving up. */
2322 continue;
2323 } else if (hsfsts.hsf_status.flcdone == 0) {
3bb99fe2 2324 e_dbg("Timeout error - flash cycle "
2c73e1fe 2325 "did not complete.\n");
bc7f75fa
AK
2326 break;
2327 }
2328 }
2329 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2330
2331 return ret_val;
2332}
2333
2334/**
2335 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2336 * @hw: pointer to the HW structure
2337 * @offset: The offset (in bytes) of the word(s) to write.
2338 * @words: Size of data to write in words
2339 * @data: Pointer to the word(s) to write at offset.
2340 *
2341 * Writes a byte or word to the NVM using the flash access registers.
2342 **/
2343static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2344 u16 *data)
2345{
2346 struct e1000_nvm_info *nvm = &hw->nvm;
2347 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
bc7f75fa
AK
2348 u16 i;
2349
2350 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2351 (words == 0)) {
3bb99fe2 2352 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
2353 return -E1000_ERR_NVM;
2354 }
2355
94d8186a 2356 nvm->ops.acquire(hw);
ca15df58 2357
bc7f75fa 2358 for (i = 0; i < words; i++) {
564ea9bb 2359 dev_spec->shadow_ram[offset+i].modified = true;
bc7f75fa
AK
2360 dev_spec->shadow_ram[offset+i].value = data[i];
2361 }
2362
94d8186a 2363 nvm->ops.release(hw);
ca15df58 2364
bc7f75fa
AK
2365 return 0;
2366}
2367
2368/**
2369 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2370 * @hw: pointer to the HW structure
2371 *
2372 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2373 * which writes the checksum to the shadow ram. The changes in the shadow
2374 * ram are then committed to the EEPROM by processing each bank at a time
2375 * checking for the modified bit and writing only the pending changes.
489815ce 2376 * After a successful commit, the shadow ram is cleared and is ready for
bc7f75fa
AK
2377 * future writes.
2378 **/
2379static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2380{
2381 struct e1000_nvm_info *nvm = &hw->nvm;
2382 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
f4187b56 2383 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
bc7f75fa
AK
2384 s32 ret_val;
2385 u16 data;
2386
2387 ret_val = e1000e_update_nvm_checksum_generic(hw);
2388 if (ret_val)
e243455d 2389 goto out;
bc7f75fa
AK
2390
2391 if (nvm->type != e1000_nvm_flash_sw)
e243455d 2392 goto out;
bc7f75fa 2393
94d8186a 2394 nvm->ops.acquire(hw);
bc7f75fa 2395
ad68076e
BA
2396 /*
2397 * We're writing to the opposite bank so if we're on bank 1,
bc7f75fa 2398 * write to bank 0 etc. We also need to erase the segment that
ad68076e
BA
2399 * is going to be written
2400 */
f4187b56 2401 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
e243455d 2402 if (ret_val) {
3bb99fe2 2403 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7 2404 bank = 0;
e243455d 2405 }
f4187b56
BA
2406
2407 if (bank == 0) {
bc7f75fa
AK
2408 new_bank_offset = nvm->flash_bank_size;
2409 old_bank_offset = 0;
e243455d 2410 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
9c5e209d
BA
2411 if (ret_val)
2412 goto release;
bc7f75fa
AK
2413 } else {
2414 old_bank_offset = nvm->flash_bank_size;
2415 new_bank_offset = 0;
e243455d 2416 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
9c5e209d
BA
2417 if (ret_val)
2418 goto release;
bc7f75fa
AK
2419 }
2420
2421 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
ad68076e
BA
2422 /*
2423 * Determine whether to write the value stored
bc7f75fa 2424 * in the other NVM bank or a modified value stored
ad68076e
BA
2425 * in the shadow RAM
2426 */
bc7f75fa
AK
2427 if (dev_spec->shadow_ram[i].modified) {
2428 data = dev_spec->shadow_ram[i].value;
2429 } else {
e243455d
BA
2430 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2431 old_bank_offset,
2432 &data);
2433 if (ret_val)
2434 break;
bc7f75fa
AK
2435 }
2436
ad68076e
BA
2437 /*
2438 * If the word is 0x13, then make sure the signature bits
bc7f75fa
AK
2439 * (15:14) are 11b until the commit has completed.
2440 * This will allow us to write 10b which indicates the
2441 * signature is valid. We want to do this after the write
2442 * has completed so that we don't mark the segment valid
ad68076e
BA
2443 * while the write is still in progress
2444 */
bc7f75fa
AK
2445 if (i == E1000_ICH_NVM_SIG_WORD)
2446 data |= E1000_ICH_NVM_SIG_MASK;
2447
2448 /* Convert offset to bytes. */
2449 act_offset = (i + new_bank_offset) << 1;
2450
2451 udelay(100);
2452 /* Write the bytes to the new bank. */
2453 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2454 act_offset,
2455 (u8)data);
2456 if (ret_val)
2457 break;
2458
2459 udelay(100);
2460 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2461 act_offset + 1,
2462 (u8)(data >> 8));
2463 if (ret_val)
2464 break;
2465 }
2466
ad68076e
BA
2467 /*
2468 * Don't bother writing the segment valid bits if sector
2469 * programming failed.
2470 */
bc7f75fa 2471 if (ret_val) {
4a770358 2472 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3bb99fe2 2473 e_dbg("Flash commit failed.\n");
9c5e209d 2474 goto release;
bc7f75fa
AK
2475 }
2476
ad68076e
BA
2477 /*
2478 * Finally validate the new segment by setting bit 15:14
bc7f75fa
AK
2479 * to 10b in word 0x13 , this can be done without an
2480 * erase as well since these bits are 11 to start with
ad68076e
BA
2481 * and we need to change bit 14 to 0b
2482 */
bc7f75fa 2483 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
e243455d 2484 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
9c5e209d
BA
2485 if (ret_val)
2486 goto release;
2487
bc7f75fa
AK
2488 data &= 0xBFFF;
2489 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2490 act_offset * 2 + 1,
2491 (u8)(data >> 8));
9c5e209d
BA
2492 if (ret_val)
2493 goto release;
bc7f75fa 2494
ad68076e
BA
2495 /*
2496 * And invalidate the previously valid segment by setting
bc7f75fa
AK
2497 * its signature word (0x13) high_byte to 0b. This can be
2498 * done without an erase because flash erase sets all bits
ad68076e
BA
2499 * to 1's. We can write 1's to 0's without an erase
2500 */
bc7f75fa
AK
2501 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2502 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
9c5e209d
BA
2503 if (ret_val)
2504 goto release;
bc7f75fa
AK
2505
2506 /* Great! Everything worked, we can now clear the cached entries. */
2507 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
564ea9bb 2508 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
2509 dev_spec->shadow_ram[i].value = 0xFFFF;
2510 }
2511
9c5e209d 2512release:
94d8186a 2513 nvm->ops.release(hw);
bc7f75fa 2514
ad68076e
BA
2515 /*
2516 * Reload the EEPROM, or else modifications will not appear
bc7f75fa
AK
2517 * until after the next adapter reset.
2518 */
9c5e209d
BA
2519 if (!ret_val) {
2520 e1000e_reload_nvm(hw);
2521 msleep(10);
2522 }
bc7f75fa 2523
e243455d
BA
2524out:
2525 if (ret_val)
3bb99fe2 2526 e_dbg("NVM update error: %d\n", ret_val);
e243455d 2527
bc7f75fa
AK
2528 return ret_val;
2529}
2530
2531/**
2532 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2533 * @hw: pointer to the HW structure
2534 *
2535 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2536 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2537 * calculated, in which case we need to calculate the checksum and set bit 6.
2538 **/
2539static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2540{
2541 s32 ret_val;
2542 u16 data;
2543
ad68076e
BA
2544 /*
2545 * Read 0x19 and check bit 6. If this bit is 0, the checksum
bc7f75fa
AK
2546 * needs to be fixed. This bit is an indication that the NVM
2547 * was prepared by OEM software and did not calculate the
2548 * checksum...a likely scenario.
2549 */
2550 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2551 if (ret_val)
2552 return ret_val;
2553
2554 if ((data & 0x40) == 0) {
2555 data |= 0x40;
2556 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2557 if (ret_val)
2558 return ret_val;
2559 ret_val = e1000e_update_nvm_checksum(hw);
2560 if (ret_val)
2561 return ret_val;
2562 }
2563
2564 return e1000e_validate_nvm_checksum_generic(hw);
2565}
2566
4a770358
BA
2567/**
2568 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2569 * @hw: pointer to the HW structure
2570 *
2571 * To prevent malicious write/erase of the NVM, set it to be read-only
2572 * so that the hardware ignores all write/erase cycles of the NVM via
2573 * the flash control registers. The shadow-ram copy of the NVM will
2574 * still be updated, however any updates to this copy will not stick
2575 * across driver reloads.
2576 **/
2577void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2578{
ca15df58 2579 struct e1000_nvm_info *nvm = &hw->nvm;
4a770358
BA
2580 union ich8_flash_protected_range pr0;
2581 union ich8_hws_flash_status hsfsts;
2582 u32 gfpreg;
4a770358 2583
94d8186a 2584 nvm->ops.acquire(hw);
4a770358
BA
2585
2586 gfpreg = er32flash(ICH_FLASH_GFPREG);
2587
2588 /* Write-protect GbE Sector of NVM */
2589 pr0.regval = er32flash(ICH_FLASH_PR0);
2590 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2591 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2592 pr0.range.wpe = true;
2593 ew32flash(ICH_FLASH_PR0, pr0.regval);
2594
2595 /*
2596 * Lock down a subset of GbE Flash Control Registers, e.g.
2597 * PR0 to prevent the write-protection from being lifted.
2598 * Once FLOCKDN is set, the registers protected by it cannot
2599 * be written until FLOCKDN is cleared by a hardware reset.
2600 */
2601 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2602 hsfsts.hsf_status.flockdn = true;
2603 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2604
94d8186a 2605 nvm->ops.release(hw);
4a770358
BA
2606}
2607
bc7f75fa
AK
2608/**
2609 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2610 * @hw: pointer to the HW structure
2611 * @offset: The offset (in bytes) of the byte/word to read.
2612 * @size: Size of data to read, 1=byte 2=word
2613 * @data: The byte(s) to write to the NVM.
2614 *
2615 * Writes one/two bytes to the NVM using the flash access registers.
2616 **/
2617static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2618 u8 size, u16 data)
2619{
2620 union ich8_hws_flash_status hsfsts;
2621 union ich8_hws_flash_ctrl hsflctl;
2622 u32 flash_linear_addr;
2623 u32 flash_data = 0;
2624 s32 ret_val;
2625 u8 count = 0;
2626
2627 if (size < 1 || size > 2 || data > size * 0xff ||
2628 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2629 return -E1000_ERR_NVM;
2630
2631 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2632 hw->nvm.flash_base_addr;
2633
2634 do {
2635 udelay(1);
2636 /* Steps */
2637 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2638 if (ret_val)
2639 break;
2640
2641 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2642 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2643 hsflctl.hsf_ctrl.fldbcount = size -1;
2644 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2645 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2646
2647 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2648
2649 if (size == 1)
2650 flash_data = (u32)data & 0x00FF;
2651 else
2652 flash_data = (u32)data;
2653
2654 ew32flash(ICH_FLASH_FDATA0, flash_data);
2655
ad68076e
BA
2656 /*
2657 * check if FCERR is set to 1 , if set to 1, clear it
2658 * and try the whole sequence a few more times else done
2659 */
bc7f75fa
AK
2660 ret_val = e1000_flash_cycle_ich8lan(hw,
2661 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2662 if (!ret_val)
2663 break;
2664
ad68076e
BA
2665 /*
2666 * If we're here, then things are most likely
bc7f75fa
AK
2667 * completely hosed, but if the error condition
2668 * is detected, it won't hurt to give it another
2669 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2670 */
2671 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2672 if (hsfsts.hsf_status.flcerr == 1)
2673 /* Repeat for some time before giving up. */
2674 continue;
2675 if (hsfsts.hsf_status.flcdone == 0) {
3bb99fe2 2676 e_dbg("Timeout error - flash cycle "
bc7f75fa
AK
2677 "did not complete.");
2678 break;
2679 }
2680 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2681
2682 return ret_val;
2683}
2684
2685/**
2686 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2687 * @hw: pointer to the HW structure
2688 * @offset: The index of the byte to read.
2689 * @data: The byte to write to the NVM.
2690 *
2691 * Writes a single byte to the NVM using the flash access registers.
2692 **/
2693static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2694 u8 data)
2695{
2696 u16 word = (u16)data;
2697
2698 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2699}
2700
2701/**
2702 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2703 * @hw: pointer to the HW structure
2704 * @offset: The offset of the byte to write.
2705 * @byte: The byte to write to the NVM.
2706 *
2707 * Writes a single byte to the NVM using the flash access registers.
2708 * Goes through a retry algorithm before giving up.
2709 **/
2710static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2711 u32 offset, u8 byte)
2712{
2713 s32 ret_val;
2714 u16 program_retries;
2715
2716 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2717 if (!ret_val)
2718 return ret_val;
2719
2720 for (program_retries = 0; program_retries < 100; program_retries++) {
3bb99fe2 2721 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
bc7f75fa
AK
2722 udelay(100);
2723 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2724 if (!ret_val)
2725 break;
2726 }
2727 if (program_retries == 100)
2728 return -E1000_ERR_NVM;
2729
2730 return 0;
2731}
2732
2733/**
2734 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2735 * @hw: pointer to the HW structure
2736 * @bank: 0 for first bank, 1 for second bank, etc.
2737 *
2738 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2739 * bank N is 4096 * N + flash_reg_addr.
2740 **/
2741static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2742{
2743 struct e1000_nvm_info *nvm = &hw->nvm;
2744 union ich8_hws_flash_status hsfsts;
2745 union ich8_hws_flash_ctrl hsflctl;
2746 u32 flash_linear_addr;
2747 /* bank size is in 16bit words - adjust to bytes */
2748 u32 flash_bank_size = nvm->flash_bank_size * 2;
2749 s32 ret_val;
2750 s32 count = 0;
a708dd88 2751 s32 j, iteration, sector_size;
bc7f75fa
AK
2752
2753 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2754
ad68076e
BA
2755 /*
2756 * Determine HW Sector size: Read BERASE bits of hw flash status
2757 * register
2758 * 00: The Hw sector is 256 bytes, hence we need to erase 16
bc7f75fa
AK
2759 * consecutive sectors. The start index for the nth Hw sector
2760 * can be calculated as = bank * 4096 + n * 256
2761 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2762 * The start index for the nth Hw sector can be calculated
2763 * as = bank * 4096
2764 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2765 * (ich9 only, otherwise error condition)
2766 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2767 */
2768 switch (hsfsts.hsf_status.berasesz) {
2769 case 0:
2770 /* Hw sector size 256 */
2771 sector_size = ICH_FLASH_SEG_SIZE_256;
2772 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2773 break;
2774 case 1:
2775 sector_size = ICH_FLASH_SEG_SIZE_4K;
28c9195a 2776 iteration = 1;
bc7f75fa
AK
2777 break;
2778 case 2:
148675a7
BA
2779 sector_size = ICH_FLASH_SEG_SIZE_8K;
2780 iteration = 1;
bc7f75fa
AK
2781 break;
2782 case 3:
2783 sector_size = ICH_FLASH_SEG_SIZE_64K;
28c9195a 2784 iteration = 1;
bc7f75fa
AK
2785 break;
2786 default:
2787 return -E1000_ERR_NVM;
2788 }
2789
2790 /* Start with the base address, then add the sector offset. */
2791 flash_linear_addr = hw->nvm.flash_base_addr;
148675a7 2792 flash_linear_addr += (bank) ? flash_bank_size : 0;
bc7f75fa
AK
2793
2794 for (j = 0; j < iteration ; j++) {
2795 do {
2796 /* Steps */
2797 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2798 if (ret_val)
2799 return ret_val;
2800
ad68076e
BA
2801 /*
2802 * Write a value 11 (block Erase) in Flash
2803 * Cycle field in hw flash control
2804 */
bc7f75fa
AK
2805 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2806 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2807 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2808
ad68076e
BA
2809 /*
2810 * Write the last 24 bits of an index within the
bc7f75fa
AK
2811 * block into Flash Linear address field in Flash
2812 * Address.
2813 */
2814 flash_linear_addr += (j * sector_size);
2815 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2816
2817 ret_val = e1000_flash_cycle_ich8lan(hw,
2818 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2819 if (ret_val == 0)
2820 break;
2821
ad68076e
BA
2822 /*
2823 * Check if FCERR is set to 1. If 1,
bc7f75fa 2824 * clear it and try the whole sequence
ad68076e
BA
2825 * a few more times else Done
2826 */
bc7f75fa
AK
2827 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2828 if (hsfsts.hsf_status.flcerr == 1)
ad68076e 2829 /* repeat for some time before giving up */
bc7f75fa
AK
2830 continue;
2831 else if (hsfsts.hsf_status.flcdone == 0)
2832 return ret_val;
2833 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2834 }
2835
2836 return 0;
2837}
2838
2839/**
2840 * e1000_valid_led_default_ich8lan - Set the default LED settings
2841 * @hw: pointer to the HW structure
2842 * @data: Pointer to the LED settings
2843 *
2844 * Reads the LED default settings from the NVM to data. If the NVM LED
2845 * settings is all 0's or F's, set the LED default to a valid LED default
2846 * setting.
2847 **/
2848static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2849{
2850 s32 ret_val;
2851
2852 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2853 if (ret_val) {
3bb99fe2 2854 e_dbg("NVM Read Error\n");
bc7f75fa
AK
2855 return ret_val;
2856 }
2857
2858 if (*data == ID_LED_RESERVED_0000 ||
2859 *data == ID_LED_RESERVED_FFFF)
2860 *data = ID_LED_DEFAULT_ICH8LAN;
2861
2862 return 0;
2863}
2864
a4f58f54
BA
2865/**
2866 * e1000_id_led_init_pchlan - store LED configurations
2867 * @hw: pointer to the HW structure
2868 *
2869 * PCH does not control LEDs via the LEDCTL register, rather it uses
2870 * the PHY LED configuration register.
2871 *
2872 * PCH also does not have an "always on" or "always off" mode which
2873 * complicates the ID feature. Instead of using the "on" mode to indicate
2874 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2875 * use "link_up" mode. The LEDs will still ID on request if there is no
2876 * link based on logic in e1000_led_[on|off]_pchlan().
2877 **/
2878static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2879{
2880 struct e1000_mac_info *mac = &hw->mac;
2881 s32 ret_val;
2882 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2883 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2884 u16 data, i, temp, shift;
2885
2886 /* Get default ID LED modes */
2887 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2888 if (ret_val)
2889 goto out;
2890
2891 mac->ledctl_default = er32(LEDCTL);
2892 mac->ledctl_mode1 = mac->ledctl_default;
2893 mac->ledctl_mode2 = mac->ledctl_default;
2894
2895 for (i = 0; i < 4; i++) {
2896 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2897 shift = (i * 5);
2898 switch (temp) {
2899 case ID_LED_ON1_DEF2:
2900 case ID_LED_ON1_ON2:
2901 case ID_LED_ON1_OFF2:
2902 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2903 mac->ledctl_mode1 |= (ledctl_on << shift);
2904 break;
2905 case ID_LED_OFF1_DEF2:
2906 case ID_LED_OFF1_ON2:
2907 case ID_LED_OFF1_OFF2:
2908 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2909 mac->ledctl_mode1 |= (ledctl_off << shift);
2910 break;
2911 default:
2912 /* Do nothing */
2913 break;
2914 }
2915 switch (temp) {
2916 case ID_LED_DEF1_ON2:
2917 case ID_LED_ON1_ON2:
2918 case ID_LED_OFF1_ON2:
2919 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2920 mac->ledctl_mode2 |= (ledctl_on << shift);
2921 break;
2922 case ID_LED_DEF1_OFF2:
2923 case ID_LED_ON1_OFF2:
2924 case ID_LED_OFF1_OFF2:
2925 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2926 mac->ledctl_mode2 |= (ledctl_off << shift);
2927 break;
2928 default:
2929 /* Do nothing */
2930 break;
2931 }
2932 }
2933
2934out:
2935 return ret_val;
2936}
2937
bc7f75fa
AK
2938/**
2939 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2940 * @hw: pointer to the HW structure
2941 *
2942 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2943 * register, so the the bus width is hard coded.
2944 **/
2945static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2946{
2947 struct e1000_bus_info *bus = &hw->bus;
2948 s32 ret_val;
2949
2950 ret_val = e1000e_get_bus_info_pcie(hw);
2951
ad68076e
BA
2952 /*
2953 * ICH devices are "PCI Express"-ish. They have
bc7f75fa
AK
2954 * a configuration space, but do not contain
2955 * PCI Express Capability registers, so bus width
2956 * must be hardcoded.
2957 */
2958 if (bus->width == e1000_bus_width_unknown)
2959 bus->width = e1000_bus_width_pcie_x1;
2960
2961 return ret_val;
2962}
2963
2964/**
2965 * e1000_reset_hw_ich8lan - Reset the hardware
2966 * @hw: pointer to the HW structure
2967 *
2968 * Does a full reset of the hardware which includes a reset of the PHY and
2969 * MAC.
2970 **/
2971static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2972{
1d5846b9 2973 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
db2932ec 2974 u16 reg;
bc7f75fa
AK
2975 u32 ctrl, icr, kab;
2976 s32 ret_val;
2977
ad68076e
BA
2978 /*
2979 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
2980 * on the last TLP read/write transaction when MAC is reset.
2981 */
2982 ret_val = e1000e_disable_pcie_master(hw);
e98cac44 2983 if (ret_val)
3bb99fe2 2984 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 2985
3bb99fe2 2986 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
2987 ew32(IMC, 0xffffffff);
2988
ad68076e
BA
2989 /*
2990 * Disable the Transmit and Receive units. Then delay to allow
bc7f75fa
AK
2991 * any pending transactions to complete before we hit the MAC
2992 * with the global reset.
2993 */
2994 ew32(RCTL, 0);
2995 ew32(TCTL, E1000_TCTL_PSP);
2996 e1e_flush();
2997
2998 msleep(10);
2999
3000 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3001 if (hw->mac.type == e1000_ich8lan) {
3002 /* Set Tx and Rx buffer allocation to 8k apiece. */
3003 ew32(PBA, E1000_PBA_8K);
3004 /* Set Packet Buffer Size to 16k. */
3005 ew32(PBS, E1000_PBS_16K);
3006 }
3007
1d5846b9
BA
3008 if (hw->mac.type == e1000_pchlan) {
3009 /* Save the NVM K1 bit setting*/
3010 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3011 if (ret_val)
3012 return ret_val;
3013
3014 if (reg & E1000_NVM_K1_ENABLE)
3015 dev_spec->nvm_k1_enabled = true;
3016 else
3017 dev_spec->nvm_k1_enabled = false;
3018 }
3019
bc7f75fa
AK
3020 ctrl = er32(CTRL);
3021
3022 if (!e1000_check_reset_block(hw)) {
ad68076e 3023 /*
e98cac44 3024 * Full-chip reset requires MAC and PHY reset at the same
bc7f75fa
AK
3025 * time to make sure the interface between MAC and the
3026 * external PHY is reset.
3027 */
3028 ctrl |= E1000_CTRL_PHY_RST;
605c82ba
BA
3029
3030 /*
3031 * Gate automatic PHY configuration by hardware on
3032 * non-managed 82579
3033 */
3034 if ((hw->mac.type == e1000_pch2lan) &&
3035 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3036 e1000_gate_hw_phy_config_ich8lan(hw, true);
bc7f75fa
AK
3037 }
3038 ret_val = e1000_acquire_swflag_ich8lan(hw);
3bb99fe2 3039 e_dbg("Issuing a global reset to ich8lan\n");
bc7f75fa
AK
3040 ew32(CTRL, (ctrl | E1000_CTRL_RST));
3041 msleep(20);
3042
fc0c7760 3043 if (!ret_val)
30bb0e0d 3044 e1000_release_swflag_ich8lan(hw);
37f40239 3045
e98cac44 3046 if (ctrl & E1000_CTRL_PHY_RST) {
fc0c7760 3047 ret_val = hw->phy.ops.get_cfg_done(hw);
e98cac44
BA
3048 if (ret_val)
3049 goto out;
fc0c7760 3050
e98cac44 3051 ret_val = e1000_post_phy_reset_ich8lan(hw);
f523d211
BA
3052 if (ret_val)
3053 goto out;
3054 }
e98cac44 3055
7d3cabbc
BA
3056 /*
3057 * For PCH, this write will make sure that any noise
3058 * will be detected as a CRC error and be dropped rather than show up
3059 * as a bad packet to the DMA engine.
3060 */
3061 if (hw->mac.type == e1000_pchlan)
3062 ew32(CRC_OFFSET, 0x65656565);
3063
bc7f75fa
AK
3064 ew32(IMC, 0xffffffff);
3065 icr = er32(ICR);
3066
3067 kab = er32(KABGTXD);
3068 kab |= E1000_KABGTXD_BGSQLBIAS;
3069 ew32(KABGTXD, kab);
3070
f523d211 3071out:
bc7f75fa
AK
3072 return ret_val;
3073}
3074
3075/**
3076 * e1000_init_hw_ich8lan - Initialize the hardware
3077 * @hw: pointer to the HW structure
3078 *
3079 * Prepares the hardware for transmit and receive by doing the following:
3080 * - initialize hardware bits
3081 * - initialize LED identification
3082 * - setup receive address registers
3083 * - setup flow control
489815ce 3084 * - setup transmit descriptors
bc7f75fa
AK
3085 * - clear statistics
3086 **/
3087static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3088{
3089 struct e1000_mac_info *mac = &hw->mac;
3090 u32 ctrl_ext, txdctl, snoop;
3091 s32 ret_val;
3092 u16 i;
3093
3094 e1000_initialize_hw_bits_ich8lan(hw);
3095
3096 /* Initialize identification LED */
a4f58f54 3097 ret_val = mac->ops.id_led_init(hw);
de39b752 3098 if (ret_val)
3bb99fe2 3099 e_dbg("Error initializing identification LED\n");
de39b752 3100 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
3101
3102 /* Setup the receive address. */
3103 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3104
3105 /* Zero out the Multicast HASH table */
3bb99fe2 3106 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
3107 for (i = 0; i < mac->mta_reg_count; i++)
3108 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3109
fc0c7760
BA
3110 /*
3111 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3112 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
3113 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3114 */
3115 if (hw->phy.type == e1000_phy_82578) {
94d8186a 3116 hw->phy.ops.read_reg(hw, BM_WUC, &i);
fc0c7760
BA
3117 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3118 if (ret_val)
3119 return ret_val;
3120 }
3121
bc7f75fa
AK
3122 /* Setup link and flow control */
3123 ret_val = e1000_setup_link_ich8lan(hw);
3124
3125 /* Set the transmit descriptor write-back policy for both queues */
e9ec2c0f 3126 txdctl = er32(TXDCTL(0));
bc7f75fa
AK
3127 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3128 E1000_TXDCTL_FULL_TX_DESC_WB;
3129 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3130 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f
JK
3131 ew32(TXDCTL(0), txdctl);
3132 txdctl = er32(TXDCTL(1));
bc7f75fa
AK
3133 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3134 E1000_TXDCTL_FULL_TX_DESC_WB;
3135 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3136 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f 3137 ew32(TXDCTL(1), txdctl);
bc7f75fa 3138
ad68076e
BA
3139 /*
3140 * ICH8 has opposite polarity of no_snoop bits.
3141 * By default, we should use snoop behavior.
3142 */
bc7f75fa
AK
3143 if (mac->type == e1000_ich8lan)
3144 snoop = PCIE_ICH8_SNOOP_ALL;
3145 else
3146 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3147 e1000e_set_pcie_no_snoop(hw, snoop);
3148
3149 ctrl_ext = er32(CTRL_EXT);
3150 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3151 ew32(CTRL_EXT, ctrl_ext);
3152
ad68076e
BA
3153 /*
3154 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
3155 * important that we do this after we have tried to establish link
3156 * because the symbol error count will increment wildly if there
3157 * is no link.
3158 */
3159 e1000_clear_hw_cntrs_ich8lan(hw);
3160
3161 return 0;
3162}
3163/**
3164 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3165 * @hw: pointer to the HW structure
3166 *
3167 * Sets/Clears required hardware bits necessary for correctly setting up the
3168 * hardware for transmit and receive.
3169 **/
3170static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3171{
3172 u32 reg;
3173
3174 /* Extended Device Control */
3175 reg = er32(CTRL_EXT);
3176 reg |= (1 << 22);
a4f58f54
BA
3177 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3178 if (hw->mac.type >= e1000_pchlan)
3179 reg |= E1000_CTRL_EXT_PHYPDEN;
bc7f75fa
AK
3180 ew32(CTRL_EXT, reg);
3181
3182 /* Transmit Descriptor Control 0 */
e9ec2c0f 3183 reg = er32(TXDCTL(0));
bc7f75fa 3184 reg |= (1 << 22);
e9ec2c0f 3185 ew32(TXDCTL(0), reg);
bc7f75fa
AK
3186
3187 /* Transmit Descriptor Control 1 */
e9ec2c0f 3188 reg = er32(TXDCTL(1));
bc7f75fa 3189 reg |= (1 << 22);
e9ec2c0f 3190 ew32(TXDCTL(1), reg);
bc7f75fa
AK
3191
3192 /* Transmit Arbitration Control 0 */
e9ec2c0f 3193 reg = er32(TARC(0));
bc7f75fa
AK
3194 if (hw->mac.type == e1000_ich8lan)
3195 reg |= (1 << 28) | (1 << 29);
3196 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
e9ec2c0f 3197 ew32(TARC(0), reg);
bc7f75fa
AK
3198
3199 /* Transmit Arbitration Control 1 */
e9ec2c0f 3200 reg = er32(TARC(1));
bc7f75fa
AK
3201 if (er32(TCTL) & E1000_TCTL_MULR)
3202 reg &= ~(1 << 28);
3203 else
3204 reg |= (1 << 28);
3205 reg |= (1 << 24) | (1 << 26) | (1 << 30);
e9ec2c0f 3206 ew32(TARC(1), reg);
bc7f75fa
AK
3207
3208 /* Device Status */
3209 if (hw->mac.type == e1000_ich8lan) {
3210 reg = er32(STATUS);
3211 reg &= ~(1 << 31);
3212 ew32(STATUS, reg);
3213 }
a80483d3
JB
3214
3215 /*
3216 * work-around descriptor data corruption issue during nfs v2 udp
3217 * traffic, just disable the nfs filtering capability
3218 */
3219 reg = er32(RFCTL);
3220 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3221 ew32(RFCTL, reg);
bc7f75fa
AK
3222}
3223
3224/**
3225 * e1000_setup_link_ich8lan - Setup flow control and link settings
3226 * @hw: pointer to the HW structure
3227 *
3228 * Determines which flow control settings to use, then configures flow
3229 * control. Calls the appropriate media-specific link configuration
3230 * function. Assuming the adapter has a valid link partner, a valid link
3231 * should be established. Assumes the hardware has previously been reset
3232 * and the transmitter and receiver are not enabled.
3233 **/
3234static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3235{
bc7f75fa
AK
3236 s32 ret_val;
3237
3238 if (e1000_check_reset_block(hw))
3239 return 0;
3240
ad68076e
BA
3241 /*
3242 * ICH parts do not have a word in the NVM to determine
bc7f75fa
AK
3243 * the default flow control setting, so we explicitly
3244 * set it to full.
3245 */
37289d9c
BA
3246 if (hw->fc.requested_mode == e1000_fc_default) {
3247 /* Workaround h/w hang when Tx flow control enabled */
3248 if (hw->mac.type == e1000_pchlan)
3249 hw->fc.requested_mode = e1000_fc_rx_pause;
3250 else
3251 hw->fc.requested_mode = e1000_fc_full;
3252 }
bc7f75fa 3253
5c48ef3e
BA
3254 /*
3255 * Save off the requested flow control mode for use later. Depending
3256 * on the link partner's capabilities, we may or may not use this mode.
3257 */
3258 hw->fc.current_mode = hw->fc.requested_mode;
bc7f75fa 3259
3bb99fe2 3260 e_dbg("After fix-ups FlowControl is now = %x\n",
5c48ef3e 3261 hw->fc.current_mode);
bc7f75fa
AK
3262
3263 /* Continue to configure the copper link. */
3264 ret_val = e1000_setup_copper_link_ich8lan(hw);
3265 if (ret_val)
3266 return ret_val;
3267
318a94d6 3268 ew32(FCTTV, hw->fc.pause_time);
a4f58f54 3269 if ((hw->phy.type == e1000_phy_82578) ||
d3738bb8 3270 (hw->phy.type == e1000_phy_82579) ||
a4f58f54 3271 (hw->phy.type == e1000_phy_82577)) {
a305595b
BA
3272 ew32(FCRTV_PCH, hw->fc.refresh_time);
3273
94d8186a 3274 ret_val = hw->phy.ops.write_reg(hw,
a4f58f54
BA
3275 PHY_REG(BM_PORT_CTRL_PAGE, 27),
3276 hw->fc.pause_time);
3277 if (ret_val)
3278 return ret_val;
3279 }
bc7f75fa
AK
3280
3281 return e1000e_set_fc_watermarks(hw);
3282}
3283
3284/**
3285 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3286 * @hw: pointer to the HW structure
3287 *
3288 * Configures the kumeran interface to the PHY to wait the appropriate time
3289 * when polling the PHY, then call the generic setup_copper_link to finish
3290 * configuring the copper link.
3291 **/
3292static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3293{
3294 u32 ctrl;
3295 s32 ret_val;
3296 u16 reg_data;
3297
3298 ctrl = er32(CTRL);
3299 ctrl |= E1000_CTRL_SLU;
3300 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3301 ew32(CTRL, ctrl);
3302
ad68076e
BA
3303 /*
3304 * Set the mac to wait the maximum time between each iteration
bc7f75fa 3305 * and increase the max iterations when polling the phy;
ad68076e
BA
3306 * this fixes erroneous timeouts at 10Mbps.
3307 */
07818950 3308 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
bc7f75fa
AK
3309 if (ret_val)
3310 return ret_val;
07818950
BA
3311 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3312 &reg_data);
bc7f75fa
AK
3313 if (ret_val)
3314 return ret_val;
3315 reg_data |= 0x3F;
07818950
BA
3316 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3317 reg_data);
bc7f75fa
AK
3318 if (ret_val)
3319 return ret_val;
3320
a4f58f54
BA
3321 switch (hw->phy.type) {
3322 case e1000_phy_igp_3:
bc7f75fa
AK
3323 ret_val = e1000e_copper_link_setup_igp(hw);
3324 if (ret_val)
3325 return ret_val;
a4f58f54
BA
3326 break;
3327 case e1000_phy_bm:
3328 case e1000_phy_82578:
97ac8cae
BA
3329 ret_val = e1000e_copper_link_setup_m88(hw);
3330 if (ret_val)
3331 return ret_val;
a4f58f54
BA
3332 break;
3333 case e1000_phy_82577:
d3738bb8 3334 case e1000_phy_82579:
a4f58f54
BA
3335 ret_val = e1000_copper_link_setup_82577(hw);
3336 if (ret_val)
3337 return ret_val;
3338 break;
3339 case e1000_phy_ife:
94d8186a 3340 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
a4f58f54 3341 &reg_data);
97ac8cae
BA
3342 if (ret_val)
3343 return ret_val;
3344
3345 reg_data &= ~IFE_PMC_AUTO_MDIX;
3346
3347 switch (hw->phy.mdix) {
3348 case 1:
3349 reg_data &= ~IFE_PMC_FORCE_MDIX;
3350 break;
3351 case 2:
3352 reg_data |= IFE_PMC_FORCE_MDIX;
3353 break;
3354 case 0:
3355 default:
3356 reg_data |= IFE_PMC_AUTO_MDIX;
3357 break;
3358 }
94d8186a 3359 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
a4f58f54 3360 reg_data);
97ac8cae
BA
3361 if (ret_val)
3362 return ret_val;
a4f58f54
BA
3363 break;
3364 default:
3365 break;
97ac8cae 3366 }
bc7f75fa
AK
3367 return e1000e_setup_copper_link(hw);
3368}
3369
3370/**
3371 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3372 * @hw: pointer to the HW structure
3373 * @speed: pointer to store current link speed
3374 * @duplex: pointer to store the current link duplex
3375 *
ad68076e 3376 * Calls the generic get_speed_and_duplex to retrieve the current link
bc7f75fa
AK
3377 * information and then calls the Kumeran lock loss workaround for links at
3378 * gigabit speeds.
3379 **/
3380static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3381 u16 *duplex)
3382{
3383 s32 ret_val;
3384
3385 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3386 if (ret_val)
3387 return ret_val;
3388
3389 if ((hw->mac.type == e1000_ich8lan) &&
3390 (hw->phy.type == e1000_phy_igp_3) &&
3391 (*speed == SPEED_1000)) {
3392 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3393 }
3394
3395 return ret_val;
3396}
3397
3398/**
3399 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3400 * @hw: pointer to the HW structure
3401 *
3402 * Work-around for 82566 Kumeran PCS lock loss:
3403 * On link status change (i.e. PCI reset, speed change) and link is up and
3404 * speed is gigabit-
3405 * 0) if workaround is optionally disabled do nothing
3406 * 1) wait 1ms for Kumeran link to come up
3407 * 2) check Kumeran Diagnostic register PCS lock loss bit
3408 * 3) if not set the link is locked (all is good), otherwise...
3409 * 4) reset the PHY
3410 * 5) repeat up to 10 times
3411 * Note: this is only called for IGP3 copper when speed is 1gb.
3412 **/
3413static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3414{
3415 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3416 u32 phy_ctrl;
3417 s32 ret_val;
3418 u16 i, data;
3419 bool link;
3420
3421 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3422 return 0;
3423
ad68076e
BA
3424 /*
3425 * Make sure link is up before proceeding. If not just return.
bc7f75fa 3426 * Attempting this while link is negotiating fouled up link
ad68076e
BA
3427 * stability
3428 */
bc7f75fa
AK
3429 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3430 if (!link)
3431 return 0;
3432
3433 for (i = 0; i < 10; i++) {
3434 /* read once to clear */
3435 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3436 if (ret_val)
3437 return ret_val;
3438 /* and again to get new status */
3439 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3440 if (ret_val)
3441 return ret_val;
3442
3443 /* check for PCS lock */
3444 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3445 return 0;
3446
3447 /* Issue PHY reset */
3448 e1000_phy_hw_reset(hw);
3449 mdelay(5);
3450 }
3451 /* Disable GigE link negotiation */
3452 phy_ctrl = er32(PHY_CTRL);
3453 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3454 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3455 ew32(PHY_CTRL, phy_ctrl);
3456
ad68076e
BA
3457 /*
3458 * Call gig speed drop workaround on Gig disable before accessing
3459 * any PHY registers
3460 */
bc7f75fa
AK
3461 e1000e_gig_downshift_workaround_ich8lan(hw);
3462
3463 /* unable to acquire PCS lock */
3464 return -E1000_ERR_PHY;
3465}
3466
3467/**
ad68076e 3468 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
bc7f75fa 3469 * @hw: pointer to the HW structure
489815ce 3470 * @state: boolean value used to set the current Kumeran workaround state
bc7f75fa 3471 *
564ea9bb
BA
3472 * If ICH8, set the current Kumeran workaround state (enabled - true
3473 * /disabled - false).
bc7f75fa
AK
3474 **/
3475void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3476 bool state)
3477{
3478 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3479
3480 if (hw->mac.type != e1000_ich8lan) {
3bb99fe2 3481 e_dbg("Workaround applies to ICH8 only.\n");
bc7f75fa
AK
3482 return;
3483 }
3484
3485 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3486}
3487
3488/**
3489 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3490 * @hw: pointer to the HW structure
3491 *
3492 * Workaround for 82566 power-down on D3 entry:
3493 * 1) disable gigabit link
3494 * 2) write VR power-down enable
3495 * 3) read it back
3496 * Continue if successful, else issue LCD reset and repeat
3497 **/
3498void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3499{
3500 u32 reg;
3501 u16 data;
3502 u8 retry = 0;
3503
3504 if (hw->phy.type != e1000_phy_igp_3)
3505 return;
3506
3507 /* Try the workaround twice (if needed) */
3508 do {
3509 /* Disable link */
3510 reg = er32(PHY_CTRL);
3511 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3512 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3513 ew32(PHY_CTRL, reg);
3514
ad68076e
BA
3515 /*
3516 * Call gig speed drop workaround on Gig disable before
3517 * accessing any PHY registers
3518 */
bc7f75fa
AK
3519 if (hw->mac.type == e1000_ich8lan)
3520 e1000e_gig_downshift_workaround_ich8lan(hw);
3521
3522 /* Write VR power-down enable */
3523 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3524 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3525 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3526
3527 /* Read it back and test */
3528 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3529 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3530 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3531 break;
3532
3533 /* Issue PHY reset and repeat at most one more time */
3534 reg = er32(CTRL);
3535 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3536 retry++;
3537 } while (retry);
3538}
3539
3540/**
3541 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3542 * @hw: pointer to the HW structure
3543 *
3544 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
489815ce 3545 * LPLU, Gig disable, MDIC PHY reset):
bc7f75fa
AK
3546 * 1) Set Kumeran Near-end loopback
3547 * 2) Clear Kumeran Near-end loopback
3548 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3549 **/
3550void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3551{
3552 s32 ret_val;
3553 u16 reg_data;
3554
3555 if ((hw->mac.type != e1000_ich8lan) ||
3556 (hw->phy.type != e1000_phy_igp_3))
3557 return;
3558
3559 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3560 &reg_data);
3561 if (ret_val)
3562 return;
3563 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3564 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3565 reg_data);
3566 if (ret_val)
3567 return;
3568 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3569 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3570 reg_data);
3571}
3572
97ac8cae
BA
3573/**
3574 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3575 * @hw: pointer to the HW structure
3576 *
3577 * During S0 to Sx transition, it is possible the link remains at gig
3578 * instead of negotiating to a lower speed. Before going to Sx, set
3579 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3580 * to a lower speed.
3581 *
a4f58f54 3582 * Should only be called for applicable parts.
97ac8cae
BA
3583 **/
3584void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3585{
3586 u32 phy_ctrl;
8395ae83 3587 s32 ret_val;
97ac8cae 3588
17f085df
BA
3589 phy_ctrl = er32(PHY_CTRL);
3590 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
3591 ew32(PHY_CTRL, phy_ctrl);
a4f58f54 3592
8395ae83
BA
3593 if (hw->mac.type >= e1000_pchlan) {
3594 e1000_oem_bits_config_ich8lan(hw, true);
3595 ret_val = hw->phy.ops.acquire(hw);
3596 if (ret_val)
3597 return;
3598 e1000_write_smbus_addr(hw);
3599 hw->phy.ops.release(hw);
3600 }
97ac8cae
BA
3601}
3602
bc7f75fa
AK
3603/**
3604 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3605 * @hw: pointer to the HW structure
3606 *
3607 * Return the LED back to the default configuration.
3608 **/
3609static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3610{
3611 if (hw->phy.type == e1000_phy_ife)
3612 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3613
3614 ew32(LEDCTL, hw->mac.ledctl_default);
3615 return 0;
3616}
3617
3618/**
489815ce 3619 * e1000_led_on_ich8lan - Turn LEDs on
bc7f75fa
AK
3620 * @hw: pointer to the HW structure
3621 *
489815ce 3622 * Turn on the LEDs.
bc7f75fa
AK
3623 **/
3624static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3625{
3626 if (hw->phy.type == e1000_phy_ife)
3627 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3628 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3629
3630 ew32(LEDCTL, hw->mac.ledctl_mode2);
3631 return 0;
3632}
3633
3634/**
489815ce 3635 * e1000_led_off_ich8lan - Turn LEDs off
bc7f75fa
AK
3636 * @hw: pointer to the HW structure
3637 *
489815ce 3638 * Turn off the LEDs.
bc7f75fa
AK
3639 **/
3640static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3641{
3642 if (hw->phy.type == e1000_phy_ife)
3643 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3644 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3645
3646 ew32(LEDCTL, hw->mac.ledctl_mode1);
3647 return 0;
3648}
3649
a4f58f54
BA
3650/**
3651 * e1000_setup_led_pchlan - Configures SW controllable LED
3652 * @hw: pointer to the HW structure
3653 *
3654 * This prepares the SW controllable LED for use.
3655 **/
3656static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3657{
94d8186a 3658 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
a4f58f54
BA
3659 (u16)hw->mac.ledctl_mode1);
3660}
3661
3662/**
3663 * e1000_cleanup_led_pchlan - Restore the default LED operation
3664 * @hw: pointer to the HW structure
3665 *
3666 * Return the LED back to the default configuration.
3667 **/
3668static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3669{
94d8186a 3670 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
a4f58f54
BA
3671 (u16)hw->mac.ledctl_default);
3672}
3673
3674/**
3675 * e1000_led_on_pchlan - Turn LEDs on
3676 * @hw: pointer to the HW structure
3677 *
3678 * Turn on the LEDs.
3679 **/
3680static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3681{
3682 u16 data = (u16)hw->mac.ledctl_mode2;
3683 u32 i, led;
3684
3685 /*
3686 * If no link, then turn LED on by setting the invert bit
3687 * for each LED that's mode is "link_up" in ledctl_mode2.
3688 */
3689 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3690 for (i = 0; i < 3; i++) {
3691 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3692 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3693 E1000_LEDCTL_MODE_LINK_UP)
3694 continue;
3695 if (led & E1000_PHY_LED0_IVRT)
3696 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3697 else
3698 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3699 }
3700 }
3701
94d8186a 3702 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
a4f58f54
BA
3703}
3704
3705/**
3706 * e1000_led_off_pchlan - Turn LEDs off
3707 * @hw: pointer to the HW structure
3708 *
3709 * Turn off the LEDs.
3710 **/
3711static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3712{
3713 u16 data = (u16)hw->mac.ledctl_mode1;
3714 u32 i, led;
3715
3716 /*
3717 * If no link, then turn LED off by clearing the invert bit
3718 * for each LED that's mode is "link_up" in ledctl_mode1.
3719 */
3720 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3721 for (i = 0; i < 3; i++) {
3722 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3723 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3724 E1000_LEDCTL_MODE_LINK_UP)
3725 continue;
3726 if (led & E1000_PHY_LED0_IVRT)
3727 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3728 else
3729 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3730 }
3731 }
3732
94d8186a 3733 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
a4f58f54
BA
3734}
3735
f4187b56 3736/**
e98cac44 3737 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
f4187b56
BA
3738 * @hw: pointer to the HW structure
3739 *
e98cac44
BA
3740 * Read appropriate register for the config done bit for completion status
3741 * and configure the PHY through s/w for EEPROM-less parts.
3742 *
3743 * NOTE: some silicon which is EEPROM-less will fail trying to read the
3744 * config done bit, so only an error is logged and continues. If we were
3745 * to return with error, EEPROM-less silicon would not be able to be reset
3746 * or change link.
f4187b56
BA
3747 **/
3748static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3749{
e98cac44 3750 s32 ret_val = 0;
f4187b56 3751 u32 bank = 0;
e98cac44 3752 u32 status;
f4187b56 3753
e98cac44 3754 e1000e_get_cfg_done(hw);
fc0c7760 3755
e98cac44
BA
3756 /* Wait for indication from h/w that it has completed basic config */
3757 if (hw->mac.type >= e1000_ich10lan) {
3758 e1000_lan_init_done_ich8lan(hw);
3759 } else {
3760 ret_val = e1000e_get_auto_rd_done(hw);
3761 if (ret_val) {
3762 /*
3763 * When auto config read does not complete, do not
3764 * return with an error. This can happen in situations
3765 * where there is no eeprom and prevents getting link.
3766 */
3767 e_dbg("Auto Read Done did not complete\n");
3768 ret_val = 0;
3769 }
fc0c7760
BA
3770 }
3771
e98cac44
BA
3772 /* Clear PHY Reset Asserted bit */
3773 status = er32(STATUS);
3774 if (status & E1000_STATUS_PHYRA)
3775 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3776 else
3777 e_dbg("PHY Reset Asserted not set - needs delay\n");
f4187b56
BA
3778
3779 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
e98cac44 3780 if (hw->mac.type <= e1000_ich9lan) {
f4187b56
BA
3781 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3782 (hw->phy.type == e1000_phy_igp_3)) {
3783 e1000e_phy_init_script_igp3(hw);
3784 }
3785 } else {
3786 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3787 /* Maybe we should do a basic PHY config */
3bb99fe2 3788 e_dbg("EEPROM not present\n");
e98cac44 3789 ret_val = -E1000_ERR_CONFIG;
f4187b56
BA
3790 }
3791 }
3792
e98cac44 3793 return ret_val;
f4187b56
BA
3794}
3795
17f208de
BA
3796/**
3797 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3798 * @hw: pointer to the HW structure
3799 *
3800 * In the case of a PHY power down to save power, or to turn off link during a
3801 * driver unload, or wake on lan is not enabled, remove the link.
3802 **/
3803static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3804{
3805 /* If the management interface is not enabled, then power down */
3806 if (!(hw->mac.ops.check_mng_mode(hw) ||
3807 hw->phy.ops.check_reset_block(hw)))
3808 e1000_power_down_phy_copper(hw);
17f208de
BA
3809}
3810
bc7f75fa
AK
3811/**
3812 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3813 * @hw: pointer to the HW structure
3814 *
3815 * Clears hardware counters specific to the silicon family and calls
3816 * clear_hw_cntrs_generic to clear all general purpose counters.
3817 **/
3818static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3819{
a4f58f54 3820 u16 phy_data;
bc7f75fa
AK
3821
3822 e1000e_clear_hw_cntrs_base(hw);
3823
99673d9b
BA
3824 er32(ALGNERRC);
3825 er32(RXERRC);
3826 er32(TNCRS);
3827 er32(CEXTERR);
3828 er32(TSCTC);
3829 er32(TSCTFC);
bc7f75fa 3830
99673d9b
BA
3831 er32(MGTPRC);
3832 er32(MGTPDC);
3833 er32(MGTPTC);
bc7f75fa 3834
99673d9b
BA
3835 er32(IAC);
3836 er32(ICRXOC);
bc7f75fa 3837
a4f58f54
BA
3838 /* Clear PHY statistics registers */
3839 if ((hw->phy.type == e1000_phy_82578) ||
d3738bb8 3840 (hw->phy.type == e1000_phy_82579) ||
a4f58f54 3841 (hw->phy.type == e1000_phy_82577)) {
94d8186a
BA
3842 hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
3843 hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
3844 hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
3845 hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
3846 hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
3847 hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
3848 hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
3849 hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
3850 hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
3851 hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
3852 hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
3853 hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
3854 hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
3855 hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
a4f58f54 3856 }
bc7f75fa
AK
3857}
3858
3859static struct e1000_mac_operations ich8_mac_ops = {
a4f58f54 3860 .id_led_init = e1000e_id_led_init,
eb7700dc 3861 /* check_mng_mode dependent on mac type */
7d3cabbc 3862 .check_for_link = e1000_check_for_copper_link_ich8lan,
a4f58f54 3863 /* cleanup_led dependent on mac type */
bc7f75fa
AK
3864 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
3865 .get_bus_info = e1000_get_bus_info_ich8lan,
f4d2dd4c 3866 .set_lan_id = e1000_set_lan_id_single_port,
bc7f75fa 3867 .get_link_up_info = e1000_get_link_up_info_ich8lan,
a4f58f54
BA
3868 /* led_on dependent on mac type */
3869 /* led_off dependent on mac type */
e2de3eb6 3870 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
bc7f75fa
AK
3871 .reset_hw = e1000_reset_hw_ich8lan,
3872 .init_hw = e1000_init_hw_ich8lan,
3873 .setup_link = e1000_setup_link_ich8lan,
3874 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
a4f58f54 3875 /* id_led_init dependent on mac type */
bc7f75fa
AK
3876};
3877
3878static struct e1000_phy_operations ich8_phy_ops = {
94d8186a 3879 .acquire = e1000_acquire_swflag_ich8lan,
bc7f75fa 3880 .check_reset_block = e1000_check_reset_block_ich8lan,
94d8186a 3881 .commit = NULL,
f4187b56 3882 .get_cfg_done = e1000_get_cfg_done_ich8lan,
bc7f75fa 3883 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
3884 .read_reg = e1000e_read_phy_reg_igp,
3885 .release = e1000_release_swflag_ich8lan,
3886 .reset = e1000_phy_hw_reset_ich8lan,
bc7f75fa
AK
3887 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
3888 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
94d8186a 3889 .write_reg = e1000e_write_phy_reg_igp,
bc7f75fa
AK
3890};
3891
3892static struct e1000_nvm_operations ich8_nvm_ops = {
94d8186a
BA
3893 .acquire = e1000_acquire_nvm_ich8lan,
3894 .read = e1000_read_nvm_ich8lan,
3895 .release = e1000_release_nvm_ich8lan,
3896 .update = e1000_update_nvm_checksum_ich8lan,
bc7f75fa 3897 .valid_led_default = e1000_valid_led_default_ich8lan,
94d8186a
BA
3898 .validate = e1000_validate_nvm_checksum_ich8lan,
3899 .write = e1000_write_nvm_ich8lan,
bc7f75fa
AK
3900};
3901
3902struct e1000_info e1000_ich8_info = {
3903 .mac = e1000_ich8lan,
3904 .flags = FLAG_HAS_WOL
97ac8cae 3905 | FLAG_IS_ICH
bc7f75fa
AK
3906 | FLAG_RX_CSUM_ENABLED
3907 | FLAG_HAS_CTRLEXT_ON_LOAD
3908 | FLAG_HAS_AMT
3909 | FLAG_HAS_FLASH
3910 | FLAG_APME_IN_WUC,
3911 .pba = 8,
2adc55c9 3912 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 3913 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
3914 .mac_ops = &ich8_mac_ops,
3915 .phy_ops = &ich8_phy_ops,
3916 .nvm_ops = &ich8_nvm_ops,
3917};
3918
3919struct e1000_info e1000_ich9_info = {
3920 .mac = e1000_ich9lan,
3921 .flags = FLAG_HAS_JUMBO_FRAMES
97ac8cae 3922 | FLAG_IS_ICH
bc7f75fa
AK
3923 | FLAG_HAS_WOL
3924 | FLAG_RX_CSUM_ENABLED
3925 | FLAG_HAS_CTRLEXT_ON_LOAD
3926 | FLAG_HAS_AMT
3927 | FLAG_HAS_ERT
3928 | FLAG_HAS_FLASH
3929 | FLAG_APME_IN_WUC,
3930 .pba = 10,
2adc55c9 3931 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 3932 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
3933 .mac_ops = &ich8_mac_ops,
3934 .phy_ops = &ich8_phy_ops,
3935 .nvm_ops = &ich8_nvm_ops,
3936};
3937
f4187b56
BA
3938struct e1000_info e1000_ich10_info = {
3939 .mac = e1000_ich10lan,
3940 .flags = FLAG_HAS_JUMBO_FRAMES
3941 | FLAG_IS_ICH
3942 | FLAG_HAS_WOL
3943 | FLAG_RX_CSUM_ENABLED
3944 | FLAG_HAS_CTRLEXT_ON_LOAD
3945 | FLAG_HAS_AMT
3946 | FLAG_HAS_ERT
3947 | FLAG_HAS_FLASH
3948 | FLAG_APME_IN_WUC,
3949 .pba = 10,
2adc55c9 3950 .max_hw_frame_size = DEFAULT_JUMBO,
f4187b56
BA
3951 .get_variants = e1000_get_variants_ich8lan,
3952 .mac_ops = &ich8_mac_ops,
3953 .phy_ops = &ich8_phy_ops,
3954 .nvm_ops = &ich8_nvm_ops,
3955};
a4f58f54
BA
3956
3957struct e1000_info e1000_pch_info = {
3958 .mac = e1000_pchlan,
3959 .flags = FLAG_IS_ICH
3960 | FLAG_HAS_WOL
3961 | FLAG_RX_CSUM_ENABLED
3962 | FLAG_HAS_CTRLEXT_ON_LOAD
3963 | FLAG_HAS_AMT
3964 | FLAG_HAS_FLASH
3965 | FLAG_HAS_JUMBO_FRAMES
38eb394e 3966 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
a4f58f54 3967 | FLAG_APME_IN_WUC,
8c7bbb92 3968 .flags2 = FLAG2_HAS_PHY_STATS,
a4f58f54
BA
3969 .pba = 26,
3970 .max_hw_frame_size = 4096,
3971 .get_variants = e1000_get_variants_ich8lan,
3972 .mac_ops = &ich8_mac_ops,
3973 .phy_ops = &ich8_phy_ops,
3974 .nvm_ops = &ich8_nvm_ops,
3975};
d3738bb8
BA
3976
3977struct e1000_info e1000_pch2_info = {
3978 .mac = e1000_pch2lan,
3979 .flags = FLAG_IS_ICH
3980 | FLAG_HAS_WOL
3981 | FLAG_RX_CSUM_ENABLED
3982 | FLAG_HAS_CTRLEXT_ON_LOAD
3983 | FLAG_HAS_AMT
3984 | FLAG_HAS_FLASH
3985 | FLAG_HAS_JUMBO_FRAMES
3986 | FLAG_APME_IN_WUC,
e52997f9
BA
3987 .flags2 = FLAG2_HAS_PHY_STATS
3988 | FLAG2_HAS_EEE,
d3738bb8
BA
3989 .pba = 18,
3990 .max_hw_frame_size = DEFAULT_JUMBO,
3991 .get_variants = e1000_get_variants_ich8lan,
3992 .mac_ops = &ich8_mac_ops,
3993 .phy_ops = &ich8_phy_ops,
3994 .nvm_ops = &ich8_nvm_ops,
3995};