]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/e1000e/82571.c
e1000e: remove redundant might_sleep()
[net-next-2.6.git] / drivers / net / e1000e / 82571.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
c7e54b1b 4 Copyright(c) 1999 - 2009 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82571EB Gigabit Ethernet Controller
1605927f 31 * 82571EB Gigabit Ethernet Controller (Copper)
bc7f75fa 32 * 82571EB Gigabit Ethernet Controller (Fiber)
ad68076e
BA
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
bc7f75fa
AK
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
4662e82b 42 * 82574L Gigabit Network Connection
8c81c9c3 43 * 82583V Gigabit Network Connection
bc7f75fa
AK
44 */
45
bc7f75fa
AK
46#include "e1000.h"
47
48#define ID_LED_RESERVED_F746 0xF746
49#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
53
54#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55
4662e82b
BA
56#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
57
bc7f75fa
AK
58static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
59static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
60static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
c9523379 61static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
bc7f75fa
AK
62static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
63 u16 words, u16 *data);
64static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
65static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
66static s32 e1000_setup_link_82571(struct e1000_hw *hw);
67static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
4662e82b
BA
68static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
69static s32 e1000_led_on_82574(struct e1000_hw *hw);
23a2d1b2 70static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
bc7f75fa
AK
71
72/**
73 * e1000_init_phy_params_82571 - Init PHY func ptrs.
74 * @hw: pointer to the HW structure
bc7f75fa
AK
75 **/
76static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
77{
78 struct e1000_phy_info *phy = &hw->phy;
79 s32 ret_val;
80
318a94d6 81 if (hw->phy.media_type != e1000_media_type_copper) {
bc7f75fa
AK
82 phy->type = e1000_phy_none;
83 return 0;
84 }
85
86 phy->addr = 1;
87 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
88 phy->reset_delay_us = 100;
89
90 switch (hw->mac.type) {
91 case e1000_82571:
92 case e1000_82572:
93 phy->type = e1000_phy_igp_2;
94 break;
95 case e1000_82573:
96 phy->type = e1000_phy_m88;
97 break;
4662e82b 98 case e1000_82574:
8c81c9c3 99 case e1000_82583:
4662e82b
BA
100 phy->type = e1000_phy_bm;
101 break;
bc7f75fa
AK
102 default:
103 return -E1000_ERR_PHY;
104 break;
105 }
106
107 /* This can only be done after all function pointers are setup. */
108 ret_val = e1000_get_phy_id_82571(hw);
109
110 /* Verify phy id */
111 switch (hw->mac.type) {
112 case e1000_82571:
113 case e1000_82572:
114 if (phy->id != IGP01E1000_I_PHY_ID)
115 return -E1000_ERR_PHY;
116 break;
117 case e1000_82573:
118 if (phy->id != M88E1111_I_PHY_ID)
119 return -E1000_ERR_PHY;
120 break;
4662e82b 121 case e1000_82574:
8c81c9c3 122 case e1000_82583:
4662e82b
BA
123 if (phy->id != BME1000_E_PHY_ID_R2)
124 return -E1000_ERR_PHY;
125 break;
bc7f75fa
AK
126 default:
127 return -E1000_ERR_PHY;
128 break;
129 }
130
131 return 0;
132}
133
134/**
135 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
136 * @hw: pointer to the HW structure
bc7f75fa
AK
137 **/
138static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
139{
140 struct e1000_nvm_info *nvm = &hw->nvm;
141 u32 eecd = er32(EECD);
142 u16 size;
143
144 nvm->opcode_bits = 8;
145 nvm->delay_usec = 1;
146 switch (nvm->override) {
147 case e1000_nvm_override_spi_large:
148 nvm->page_size = 32;
149 nvm->address_bits = 16;
150 break;
151 case e1000_nvm_override_spi_small:
152 nvm->page_size = 8;
153 nvm->address_bits = 8;
154 break;
155 default:
156 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
157 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
158 break;
159 }
160
161 switch (hw->mac.type) {
162 case e1000_82573:
4662e82b 163 case e1000_82574:
8c81c9c3 164 case e1000_82583:
bc7f75fa
AK
165 if (((eecd >> 15) & 0x3) == 0x3) {
166 nvm->type = e1000_nvm_flash_hw;
167 nvm->word_size = 2048;
ad68076e
BA
168 /*
169 * Autonomous Flash update bit must be cleared due
bc7f75fa
AK
170 * to Flash update issue.
171 */
172 eecd &= ~E1000_EECD_AUPDEN;
173 ew32(EECD, eecd);
174 break;
175 }
176 /* Fall Through */
177 default:
ad68076e 178 nvm->type = e1000_nvm_eeprom_spi;
bc7f75fa
AK
179 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
180 E1000_EECD_SIZE_EX_SHIFT);
ad68076e
BA
181 /*
182 * Added to a constant, "size" becomes the left-shift value
bc7f75fa
AK
183 * for setting word_size.
184 */
185 size += NVM_WORD_SIZE_BASE_SHIFT;
8d7c294c
JK
186
187 /* EEPROM access above 16k is unsupported */
188 if (size > 14)
189 size = 14;
bc7f75fa
AK
190 nvm->word_size = 1 << size;
191 break;
192 }
193
194 return 0;
195}
196
197/**
198 * e1000_init_mac_params_82571 - Init MAC func ptrs.
199 * @hw: pointer to the HW structure
bc7f75fa
AK
200 **/
201static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
202{
203 struct e1000_hw *hw = &adapter->hw;
204 struct e1000_mac_info *mac = &hw->mac;
205 struct e1000_mac_operations *func = &mac->ops;
23a2d1b2
DG
206 u32 swsm = 0;
207 u32 swsm2 = 0;
208 bool force_clear_smbi = false;
bc7f75fa
AK
209
210 /* Set media type */
211 switch (adapter->pdev->device) {
212 case E1000_DEV_ID_82571EB_FIBER:
213 case E1000_DEV_ID_82572EI_FIBER:
214 case E1000_DEV_ID_82571EB_QUAD_FIBER:
318a94d6 215 hw->phy.media_type = e1000_media_type_fiber;
bc7f75fa
AK
216 break;
217 case E1000_DEV_ID_82571EB_SERDES:
218 case E1000_DEV_ID_82572EI_SERDES:
040babf9
AK
219 case E1000_DEV_ID_82571EB_SERDES_DUAL:
220 case E1000_DEV_ID_82571EB_SERDES_QUAD:
318a94d6 221 hw->phy.media_type = e1000_media_type_internal_serdes;
bc7f75fa
AK
222 break;
223 default:
318a94d6 224 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
225 break;
226 }
227
228 /* Set mta register count */
229 mac->mta_reg_count = 128;
230 /* Set rar entry count */
231 mac->rar_entry_count = E1000_RAR_ENTRIES;
232 /* Set if manageability features are enabled. */
564ea9bb
BA
233 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
234 ? true : false;
bc7f75fa
AK
235
236 /* check for link */
318a94d6 237 switch (hw->phy.media_type) {
bc7f75fa
AK
238 case e1000_media_type_copper:
239 func->setup_physical_interface = e1000_setup_copper_link_82571;
240 func->check_for_link = e1000e_check_for_copper_link;
241 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
242 break;
243 case e1000_media_type_fiber:
ad68076e
BA
244 func->setup_physical_interface =
245 e1000_setup_fiber_serdes_link_82571;
bc7f75fa 246 func->check_for_link = e1000e_check_for_fiber_link;
ad68076e
BA
247 func->get_link_up_info =
248 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
249 break;
250 case e1000_media_type_internal_serdes:
ad68076e
BA
251 func->setup_physical_interface =
252 e1000_setup_fiber_serdes_link_82571;
c9523379 253 func->check_for_link = e1000_check_for_serdes_link_82571;
ad68076e
BA
254 func->get_link_up_info =
255 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
256 break;
257 default:
258 return -E1000_ERR_CONFIG;
259 break;
260 }
261
4662e82b
BA
262 switch (hw->mac.type) {
263 case e1000_82574:
8c81c9c3 264 case e1000_82583:
4662e82b
BA
265 func->check_mng_mode = e1000_check_mng_mode_82574;
266 func->led_on = e1000_led_on_82574;
267 break;
268 default:
269 func->check_mng_mode = e1000e_check_mng_mode_generic;
270 func->led_on = e1000e_led_on_generic;
271 break;
272 }
273
23a2d1b2
DG
274 /*
275 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
276 * first NVM or PHY acess. This should be done for single-port
277 * devices, and for one port only on dual-port devices so that
278 * for those devices we can still use the SMBI lock to synchronize
279 * inter-port accesses to the PHY & NVM.
280 */
281 switch (hw->mac.type) {
282 case e1000_82571:
283 case e1000_82572:
284 swsm2 = er32(SWSM2);
285
286 if (!(swsm2 & E1000_SWSM2_LOCK)) {
287 /* Only do this for the first interface on this card */
288 ew32(SWSM2,
289 swsm2 | E1000_SWSM2_LOCK);
290 force_clear_smbi = true;
291 } else
292 force_clear_smbi = false;
293 break;
294 default:
295 force_clear_smbi = true;
296 break;
297 }
298
299 if (force_clear_smbi) {
300 /* Make sure SWSM.SMBI is clear */
301 swsm = er32(SWSM);
302 if (swsm & E1000_SWSM_SMBI) {
303 /* This bit should not be set on a first interface, and
304 * indicates that the bootagent or EFI code has
305 * improperly left this bit enabled
306 */
3bb99fe2 307 e_dbg("Please update your 82571 Bootagent\n");
23a2d1b2
DG
308 }
309 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
310 }
311
312 /*
313 * Initialze device specific counter of SMBI acquisition
314 * timeouts.
315 */
316 hw->dev_spec.e82571.smb_counter = 0;
317
bc7f75fa
AK
318 return 0;
319}
320
69e3fd8c 321static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
bc7f75fa
AK
322{
323 struct e1000_hw *hw = &adapter->hw;
324 static int global_quad_port_a; /* global port a indication */
325 struct pci_dev *pdev = adapter->pdev;
326 u16 eeprom_data = 0;
327 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
328 s32 rc;
329
330 rc = e1000_init_mac_params_82571(adapter);
331 if (rc)
332 return rc;
333
334 rc = e1000_init_nvm_params_82571(hw);
335 if (rc)
336 return rc;
337
338 rc = e1000_init_phy_params_82571(hw);
339 if (rc)
340 return rc;
341
342 /* tag quad port adapters first, it's used below */
343 switch (pdev->device) {
344 case E1000_DEV_ID_82571EB_QUAD_COPPER:
345 case E1000_DEV_ID_82571EB_QUAD_FIBER:
346 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
040babf9 347 case E1000_DEV_ID_82571PT_QUAD_COPPER:
bc7f75fa
AK
348 adapter->flags |= FLAG_IS_QUAD_PORT;
349 /* mark the first port */
350 if (global_quad_port_a == 0)
351 adapter->flags |= FLAG_IS_QUAD_PORT_A;
352 /* Reset for multiple quad port adapters */
353 global_quad_port_a++;
354 if (global_quad_port_a == 4)
355 global_quad_port_a = 0;
356 break;
357 default:
358 break;
359 }
360
361 switch (adapter->hw.mac.type) {
362 case e1000_82571:
363 /* these dual ports don't have WoL on port B at all */
364 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
365 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
366 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
367 (is_port_b))
368 adapter->flags &= ~FLAG_HAS_WOL;
369 /* quad ports only support WoL on port A */
370 if (adapter->flags & FLAG_IS_QUAD_PORT &&
6e4ca80d 371 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
bc7f75fa 372 adapter->flags &= ~FLAG_HAS_WOL;
040babf9
AK
373 /* Does not support WoL on any port */
374 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
375 adapter->flags &= ~FLAG_HAS_WOL;
bc7f75fa
AK
376 break;
377
378 case e1000_82573:
379 if (pdev->device == E1000_DEV_ID_82573L) {
e243455d
BA
380 if (e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
381 &eeprom_data) < 0)
382 break;
2adc55c9
BA
383 if (!(eeprom_data & NVM_WORD1A_ASPM_MASK)) {
384 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
385 adapter->max_hw_frame_size = DEFAULT_JUMBO;
386 }
bc7f75fa
AK
387 }
388 break;
389 default:
390 break;
391 }
392
393 return 0;
394}
395
396/**
397 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
398 * @hw: pointer to the HW structure
399 *
400 * Reads the PHY registers and stores the PHY ID and possibly the PHY
401 * revision in the hardware structure.
402 **/
403static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
404{
405 struct e1000_phy_info *phy = &hw->phy;
4662e82b
BA
406 s32 ret_val;
407 u16 phy_id = 0;
bc7f75fa
AK
408
409 switch (hw->mac.type) {
410 case e1000_82571:
411 case e1000_82572:
ad68076e
BA
412 /*
413 * The 82571 firmware may still be configuring the PHY.
bc7f75fa
AK
414 * In this case, we cannot access the PHY until the
415 * configuration is done. So we explicitly set the
ad68076e
BA
416 * PHY ID.
417 */
bc7f75fa
AK
418 phy->id = IGP01E1000_I_PHY_ID;
419 break;
420 case e1000_82573:
421 return e1000e_get_phy_id(hw);
422 break;
4662e82b 423 case e1000_82574:
8c81c9c3 424 case e1000_82583:
4662e82b
BA
425 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
426 if (ret_val)
427 return ret_val;
428
429 phy->id = (u32)(phy_id << 16);
430 udelay(20);
431 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
432 if (ret_val)
433 return ret_val;
434
435 phy->id |= (u32)(phy_id);
436 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
437 break;
bc7f75fa
AK
438 default:
439 return -E1000_ERR_PHY;
440 break;
441 }
442
443 return 0;
444}
445
446/**
447 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
448 * @hw: pointer to the HW structure
449 *
450 * Acquire the HW semaphore to access the PHY or NVM
451 **/
452static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
453{
454 u32 swsm;
23a2d1b2
DG
455 s32 sw_timeout = hw->nvm.word_size + 1;
456 s32 fw_timeout = hw->nvm.word_size + 1;
bc7f75fa
AK
457 s32 i = 0;
458
23a2d1b2
DG
459 /*
460 * If we have timedout 3 times on trying to acquire
461 * the inter-port SMBI semaphore, there is old code
462 * operating on the other port, and it is not
463 * releasing SMBI. Modify the number of times that
464 * we try for the semaphore to interwork with this
465 * older code.
466 */
467 if (hw->dev_spec.e82571.smb_counter > 2)
468 sw_timeout = 1;
469
470 /* Get the SW semaphore */
471 while (i < sw_timeout) {
472 swsm = er32(SWSM);
473 if (!(swsm & E1000_SWSM_SMBI))
474 break;
475
476 udelay(50);
477 i++;
478 }
479
480 if (i == sw_timeout) {
3bb99fe2 481 e_dbg("Driver can't access device - SMBI bit is set.\n");
23a2d1b2
DG
482 hw->dev_spec.e82571.smb_counter++;
483 }
bc7f75fa 484 /* Get the FW semaphore. */
23a2d1b2 485 for (i = 0; i < fw_timeout; i++) {
bc7f75fa
AK
486 swsm = er32(SWSM);
487 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
488
489 /* Semaphore acquired if bit latched */
490 if (er32(SWSM) & E1000_SWSM_SWESMBI)
491 break;
492
493 udelay(50);
494 }
495
23a2d1b2 496 if (i == fw_timeout) {
bc7f75fa 497 /* Release semaphores */
23a2d1b2 498 e1000_put_hw_semaphore_82571(hw);
3bb99fe2 499 e_dbg("Driver can't access the NVM\n");
bc7f75fa
AK
500 return -E1000_ERR_NVM;
501 }
502
503 return 0;
504}
505
506/**
507 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
508 * @hw: pointer to the HW structure
509 *
510 * Release hardware semaphore used to access the PHY or NVM
511 **/
512static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
513{
514 u32 swsm;
515
516 swsm = er32(SWSM);
23a2d1b2 517 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
bc7f75fa
AK
518 ew32(SWSM, swsm);
519}
520
521/**
522 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
523 * @hw: pointer to the HW structure
524 *
525 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
526 * Then for non-82573 hardware, set the EEPROM access request bit and wait
527 * for EEPROM access grant bit. If the access grant bit is not set, release
528 * hardware semaphore.
529 **/
530static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
531{
532 s32 ret_val;
533
534 ret_val = e1000_get_hw_semaphore_82571(hw);
535 if (ret_val)
536 return ret_val;
537
8c81c9c3
AD
538 switch (hw->mac.type) {
539 case e1000_82573:
540 case e1000_82574:
541 case e1000_82583:
542 break;
543 default:
bc7f75fa 544 ret_val = e1000e_acquire_nvm(hw);
8c81c9c3
AD
545 break;
546 }
bc7f75fa
AK
547
548 if (ret_val)
549 e1000_put_hw_semaphore_82571(hw);
550
551 return ret_val;
552}
553
554/**
555 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
556 * @hw: pointer to the HW structure
557 *
558 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
559 **/
560static void e1000_release_nvm_82571(struct e1000_hw *hw)
561{
562 e1000e_release_nvm(hw);
563 e1000_put_hw_semaphore_82571(hw);
564}
565
566/**
567 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
568 * @hw: pointer to the HW structure
569 * @offset: offset within the EEPROM to be written to
570 * @words: number of words to write
571 * @data: 16 bit word(s) to be written to the EEPROM
572 *
573 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
574 *
575 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 576 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
577 **/
578static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
579 u16 *data)
580{
581 s32 ret_val;
582
583 switch (hw->mac.type) {
584 case e1000_82573:
4662e82b 585 case e1000_82574:
8c81c9c3 586 case e1000_82583:
bc7f75fa
AK
587 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
588 break;
589 case e1000_82571:
590 case e1000_82572:
591 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
592 break;
593 default:
594 ret_val = -E1000_ERR_NVM;
595 break;
596 }
597
598 return ret_val;
599}
600
601/**
602 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
603 * @hw: pointer to the HW structure
604 *
605 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
606 * up to the checksum. Then calculates the EEPROM checksum and writes the
607 * value to the EEPROM.
608 **/
609static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
610{
611 u32 eecd;
612 s32 ret_val;
613 u16 i;
614
615 ret_val = e1000e_update_nvm_checksum_generic(hw);
616 if (ret_val)
617 return ret_val;
618
ad68076e
BA
619 /*
620 * If our nvm is an EEPROM, then we're done
621 * otherwise, commit the checksum to the flash NVM.
622 */
bc7f75fa
AK
623 if (hw->nvm.type != e1000_nvm_flash_hw)
624 return ret_val;
625
626 /* Check for pending operations. */
627 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
628 msleep(1);
629 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
630 break;
631 }
632
633 if (i == E1000_FLASH_UPDATES)
634 return -E1000_ERR_NVM;
635
636 /* Reset the firmware if using STM opcode. */
637 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
ad68076e
BA
638 /*
639 * The enabling of and the actual reset must be done
bc7f75fa
AK
640 * in two write cycles.
641 */
642 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
643 e1e_flush();
644 ew32(HICR, E1000_HICR_FW_RESET);
645 }
646
647 /* Commit the write to flash */
648 eecd = er32(EECD) | E1000_EECD_FLUPD;
649 ew32(EECD, eecd);
650
651 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
652 msleep(1);
653 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
654 break;
655 }
656
657 if (i == E1000_FLASH_UPDATES)
658 return -E1000_ERR_NVM;
659
660 return 0;
661}
662
663/**
664 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
665 * @hw: pointer to the HW structure
666 *
667 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
668 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
669 **/
670static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
671{
672 if (hw->nvm.type == e1000_nvm_flash_hw)
673 e1000_fix_nvm_checksum_82571(hw);
674
675 return e1000e_validate_nvm_checksum_generic(hw);
676}
677
678/**
679 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
680 * @hw: pointer to the HW structure
681 * @offset: offset within the EEPROM to be written to
682 * @words: number of words to write
683 * @data: 16 bit word(s) to be written to the EEPROM
684 *
685 * After checking for invalid values, poll the EEPROM to ensure the previous
686 * command has completed before trying to write the next word. After write
687 * poll for completion.
688 *
689 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 690 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
691 **/
692static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
693 u16 words, u16 *data)
694{
695 struct e1000_nvm_info *nvm = &hw->nvm;
696 u32 i;
697 u32 eewr = 0;
698 s32 ret_val = 0;
699
ad68076e
BA
700 /*
701 * A check for invalid values: offset too large, too many words,
702 * and not enough words.
703 */
bc7f75fa
AK
704 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
705 (words == 0)) {
3bb99fe2 706 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
707 return -E1000_ERR_NVM;
708 }
709
710 for (i = 0; i < words; i++) {
711 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
712 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
713 E1000_NVM_RW_REG_START;
714
715 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
716 if (ret_val)
717 break;
718
719 ew32(EEWR, eewr);
720
721 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
722 if (ret_val)
723 break;
724 }
725
726 return ret_val;
727}
728
729/**
730 * e1000_get_cfg_done_82571 - Poll for configuration done
731 * @hw: pointer to the HW structure
732 *
733 * Reads the management control register for the config done bit to be set.
734 **/
735static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
736{
737 s32 timeout = PHY_CFG_TIMEOUT;
738
739 while (timeout) {
740 if (er32(EEMNGCTL) &
741 E1000_NVM_CFG_DONE_PORT_0)
742 break;
743 msleep(1);
744 timeout--;
745 }
746 if (!timeout) {
3bb99fe2 747 e_dbg("MNG configuration cycle has not completed.\n");
bc7f75fa
AK
748 return -E1000_ERR_RESET;
749 }
750
751 return 0;
752}
753
754/**
755 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
756 * @hw: pointer to the HW structure
564ea9bb 757 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
758 *
759 * Sets the LPLU D0 state according to the active flag. When activating LPLU
760 * this function also disables smart speed and vice versa. LPLU will not be
761 * activated unless the device autonegotiation advertisement meets standards
762 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
763 * pointer entry point only called by PHY setup routines.
764 **/
765static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
766{
767 struct e1000_phy_info *phy = &hw->phy;
768 s32 ret_val;
769 u16 data;
770
771 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
772 if (ret_val)
773 return ret_val;
774
775 if (active) {
776 data |= IGP02E1000_PM_D0_LPLU;
777 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
778 if (ret_val)
779 return ret_val;
780
781 /* When LPLU is enabled, we should disable SmartSpeed */
782 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
783 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
784 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
785 if (ret_val)
786 return ret_val;
787 } else {
788 data &= ~IGP02E1000_PM_D0_LPLU;
789 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
ad68076e
BA
790 /*
791 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
792 * during Dx states where the power conservation is most
793 * important. During driver activity we should enable
ad68076e
BA
794 * SmartSpeed, so performance is maintained.
795 */
bc7f75fa
AK
796 if (phy->smart_speed == e1000_smart_speed_on) {
797 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 798 &data);
bc7f75fa
AK
799 if (ret_val)
800 return ret_val;
801
802 data |= IGP01E1000_PSCFR_SMART_SPEED;
803 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 804 data);
bc7f75fa
AK
805 if (ret_val)
806 return ret_val;
807 } else if (phy->smart_speed == e1000_smart_speed_off) {
808 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 809 &data);
bc7f75fa
AK
810 if (ret_val)
811 return ret_val;
812
813 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
814 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 815 data);
bc7f75fa
AK
816 if (ret_val)
817 return ret_val;
818 }
819 }
820
821 return 0;
822}
823
824/**
825 * e1000_reset_hw_82571 - Reset hardware
826 * @hw: pointer to the HW structure
827 *
fe401674 828 * This resets the hardware into a known state.
bc7f75fa
AK
829 **/
830static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
831{
832 u32 ctrl;
833 u32 extcnf_ctrl;
834 u32 ctrl_ext;
835 u32 icr;
836 s32 ret_val;
837 u16 i = 0;
838
ad68076e
BA
839 /*
840 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
841 * on the last TLP read/write transaction when MAC is reset.
842 */
843 ret_val = e1000e_disable_pcie_master(hw);
844 if (ret_val)
3bb99fe2 845 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 846
3bb99fe2 847 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
848 ew32(IMC, 0xffffffff);
849
850 ew32(RCTL, 0);
851 ew32(TCTL, E1000_TCTL_PSP);
852 e1e_flush();
853
854 msleep(10);
855
ad68076e
BA
856 /*
857 * Must acquire the MDIO ownership before MAC reset.
858 * Ownership defaults to firmware after a reset.
859 */
8c81c9c3
AD
860 switch (hw->mac.type) {
861 case e1000_82573:
862 case e1000_82574:
863 case e1000_82583:
bc7f75fa
AK
864 extcnf_ctrl = er32(EXTCNF_CTRL);
865 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
866
867 do {
868 ew32(EXTCNF_CTRL, extcnf_ctrl);
869 extcnf_ctrl = er32(EXTCNF_CTRL);
870
871 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
872 break;
873
874 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
875
876 msleep(2);
877 i++;
878 } while (i < MDIO_OWNERSHIP_TIMEOUT);
8c81c9c3
AD
879 break;
880 default:
881 break;
bc7f75fa
AK
882 }
883
884 ctrl = er32(CTRL);
885
3bb99fe2 886 e_dbg("Issuing a global reset to MAC\n");
bc7f75fa
AK
887 ew32(CTRL, ctrl | E1000_CTRL_RST);
888
889 if (hw->nvm.type == e1000_nvm_flash_hw) {
890 udelay(10);
891 ctrl_ext = er32(CTRL_EXT);
892 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
893 ew32(CTRL_EXT, ctrl_ext);
894 e1e_flush();
895 }
896
897 ret_val = e1000e_get_auto_rd_done(hw);
898 if (ret_val)
899 /* We don't want to continue accessing MAC registers. */
900 return ret_val;
901
ad68076e
BA
902 /*
903 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
bc7f75fa
AK
904 * Need to wait for Phy configuration completion before accessing
905 * NVM and Phy.
906 */
8c81c9c3
AD
907
908 switch (hw->mac.type) {
909 case e1000_82573:
910 case e1000_82574:
911 case e1000_82583:
bc7f75fa 912 msleep(25);
8c81c9c3
AD
913 break;
914 default:
915 break;
916 }
bc7f75fa
AK
917
918 /* Clear any pending interrupt events. */
919 ew32(IMC, 0xffffffff);
920 icr = er32(ICR);
921
93ca1610
BH
922 if (hw->mac.type == e1000_82571 &&
923 hw->dev_spec.e82571.alt_mac_addr_is_present)
924 e1000e_set_laa_state_82571(hw, true);
925
c9523379 926 /* Reinitialize the 82571 serdes link state machine */
927 if (hw->phy.media_type == e1000_media_type_internal_serdes)
928 hw->mac.serdes_link_state = e1000_serdes_link_down;
929
bc7f75fa
AK
930 return 0;
931}
932
933/**
934 * e1000_init_hw_82571 - Initialize hardware
935 * @hw: pointer to the HW structure
936 *
937 * This inits the hardware readying it for operation.
938 **/
939static s32 e1000_init_hw_82571(struct e1000_hw *hw)
940{
941 struct e1000_mac_info *mac = &hw->mac;
942 u32 reg_data;
943 s32 ret_val;
944 u16 i;
945 u16 rar_count = mac->rar_entry_count;
946
947 e1000_initialize_hw_bits_82571(hw);
948
949 /* Initialize identification LED */
950 ret_val = e1000e_id_led_init(hw);
de39b752 951 if (ret_val)
3bb99fe2 952 e_dbg("Error initializing identification LED\n");
de39b752 953 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
954
955 /* Disabling VLAN filtering */
3bb99fe2 956 e_dbg("Initializing the IEEE VLAN\n");
bc7f75fa
AK
957 e1000e_clear_vfta(hw);
958
959 /* Setup the receive address. */
ad68076e
BA
960 /*
961 * If, however, a locally administered address was assigned to the
bc7f75fa
AK
962 * 82571, we must reserve a RAR for it to work around an issue where
963 * resetting one port will reload the MAC on the other port.
964 */
965 if (e1000e_get_laa_state_82571(hw))
966 rar_count--;
967 e1000e_init_rx_addrs(hw, rar_count);
968
969 /* Zero out the Multicast HASH table */
3bb99fe2 970 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
971 for (i = 0; i < mac->mta_reg_count; i++)
972 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
973
974 /* Setup link and flow control */
975 ret_val = e1000_setup_link_82571(hw);
976
977 /* Set the transmit descriptor write-back policy */
e9ec2c0f 978 reg_data = er32(TXDCTL(0));
bc7f75fa
AK
979 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
980 E1000_TXDCTL_FULL_TX_DESC_WB |
981 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 982 ew32(TXDCTL(0), reg_data);
bc7f75fa
AK
983
984 /* ...for both queues. */
8c81c9c3
AD
985 switch (mac->type) {
986 case e1000_82573:
987 case e1000_82574:
988 case e1000_82583:
989 e1000e_enable_tx_pkt_filtering(hw);
990 reg_data = er32(GCR);
991 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
992 ew32(GCR, reg_data);
993 break;
994 default:
e9ec2c0f 995 reg_data = er32(TXDCTL(1));
bc7f75fa
AK
996 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
997 E1000_TXDCTL_FULL_TX_DESC_WB |
998 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 999 ew32(TXDCTL(1), reg_data);
8c81c9c3 1000 break;
bc7f75fa
AK
1001 }
1002
ad68076e
BA
1003 /*
1004 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
1005 * important that we do this after we have tried to establish link
1006 * because the symbol error count will increment wildly if there
1007 * is no link.
1008 */
1009 e1000_clear_hw_cntrs_82571(hw);
1010
1011 return ret_val;
1012}
1013
1014/**
1015 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1016 * @hw: pointer to the HW structure
1017 *
1018 * Initializes required hardware-dependent bits needed for normal operation.
1019 **/
1020static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1021{
1022 u32 reg;
1023
1024 /* Transmit Descriptor Control 0 */
e9ec2c0f 1025 reg = er32(TXDCTL(0));
bc7f75fa 1026 reg |= (1 << 22);
e9ec2c0f 1027 ew32(TXDCTL(0), reg);
bc7f75fa
AK
1028
1029 /* Transmit Descriptor Control 1 */
e9ec2c0f 1030 reg = er32(TXDCTL(1));
bc7f75fa 1031 reg |= (1 << 22);
e9ec2c0f 1032 ew32(TXDCTL(1), reg);
bc7f75fa
AK
1033
1034 /* Transmit Arbitration Control 0 */
e9ec2c0f 1035 reg = er32(TARC(0));
bc7f75fa
AK
1036 reg &= ~(0xF << 27); /* 30:27 */
1037 switch (hw->mac.type) {
1038 case e1000_82571:
1039 case e1000_82572:
1040 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1041 break;
1042 default:
1043 break;
1044 }
e9ec2c0f 1045 ew32(TARC(0), reg);
bc7f75fa
AK
1046
1047 /* Transmit Arbitration Control 1 */
e9ec2c0f 1048 reg = er32(TARC(1));
bc7f75fa
AK
1049 switch (hw->mac.type) {
1050 case e1000_82571:
1051 case e1000_82572:
1052 reg &= ~((1 << 29) | (1 << 30));
1053 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1054 if (er32(TCTL) & E1000_TCTL_MULR)
1055 reg &= ~(1 << 28);
1056 else
1057 reg |= (1 << 28);
e9ec2c0f 1058 ew32(TARC(1), reg);
bc7f75fa
AK
1059 break;
1060 default:
1061 break;
1062 }
1063
1064 /* Device Control */
8c81c9c3
AD
1065 switch (hw->mac.type) {
1066 case e1000_82573:
1067 case e1000_82574:
1068 case e1000_82583:
bc7f75fa
AK
1069 reg = er32(CTRL);
1070 reg &= ~(1 << 29);
1071 ew32(CTRL, reg);
8c81c9c3
AD
1072 break;
1073 default:
1074 break;
bc7f75fa
AK
1075 }
1076
1077 /* Extended Device Control */
8c81c9c3
AD
1078 switch (hw->mac.type) {
1079 case e1000_82573:
1080 case e1000_82574:
1081 case e1000_82583:
bc7f75fa
AK
1082 reg = er32(CTRL_EXT);
1083 reg &= ~(1 << 23);
1084 reg |= (1 << 22);
1085 ew32(CTRL_EXT, reg);
8c81c9c3
AD
1086 break;
1087 default:
1088 break;
bc7f75fa 1089 }
4662e82b 1090
6ea7ae1d
AD
1091 if (hw->mac.type == e1000_82571) {
1092 reg = er32(PBA_ECC);
1093 reg |= E1000_PBA_ECC_CORR_EN;
1094 ew32(PBA_ECC, reg);
1095 }
5df3f0ea 1096 /*
1097 * Workaround for hardware errata.
1098 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1099 */
1100
1101 if ((hw->mac.type == e1000_82571) ||
1102 (hw->mac.type == e1000_82572)) {
1103 reg = er32(CTRL_EXT);
1104 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1105 ew32(CTRL_EXT, reg);
1106 }
1107
6ea7ae1d 1108
78272bba 1109 /* PCI-Ex Control Registers */
8c81c9c3
AD
1110 switch (hw->mac.type) {
1111 case e1000_82574:
1112 case e1000_82583:
4662e82b
BA
1113 reg = er32(GCR);
1114 reg |= (1 << 22);
1115 ew32(GCR, reg);
78272bba 1116
84efb7b9
BA
1117 /*
1118 * Workaround for hardware errata.
1119 * apply workaround for hardware errata documented in errata
1120 * docs Fixes issue where some error prone or unreliable PCIe
1121 * completions are occurring, particularly with ASPM enabled.
1122 * Without fix, issue can cause tx timeouts.
1123 */
78272bba
JB
1124 reg = er32(GCR2);
1125 reg |= 1;
1126 ew32(GCR2, reg);
8c81c9c3
AD
1127 break;
1128 default:
1129 break;
4662e82b
BA
1130 }
1131
1132 return;
bc7f75fa
AK
1133}
1134
1135/**
1136 * e1000e_clear_vfta - Clear VLAN filter table
1137 * @hw: pointer to the HW structure
1138 *
1139 * Clears the register array which contains the VLAN filter table by
1140 * setting all the values to 0.
1141 **/
1142void e1000e_clear_vfta(struct e1000_hw *hw)
1143{
1144 u32 offset;
1145 u32 vfta_value = 0;
1146 u32 vfta_offset = 0;
1147 u32 vfta_bit_in_reg = 0;
1148
8c81c9c3
AD
1149 switch (hw->mac.type) {
1150 case e1000_82573:
1151 case e1000_82574:
1152 case e1000_82583:
bc7f75fa 1153 if (hw->mng_cookie.vlan_id != 0) {
ad68076e
BA
1154 /*
1155 * The VFTA is a 4096b bit-field, each identifying
bc7f75fa
AK
1156 * a single VLAN ID. The following operations
1157 * determine which 32b entry (i.e. offset) into the
1158 * array we want to set the VLAN ID (i.e. bit) of
1159 * the manageability unit.
1160 */
1161 vfta_offset = (hw->mng_cookie.vlan_id >>
1162 E1000_VFTA_ENTRY_SHIFT) &
1163 E1000_VFTA_ENTRY_MASK;
1164 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1165 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1166 }
8c81c9c3
AD
1167 break;
1168 default:
1169 break;
bc7f75fa
AK
1170 }
1171 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
ad68076e
BA
1172 /*
1173 * If the offset we want to clear is the same offset of the
bc7f75fa
AK
1174 * manageability VLAN ID, then clear all bits except that of
1175 * the manageability unit.
1176 */
1177 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1178 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1179 e1e_flush();
1180 }
1181}
1182
4662e82b
BA
1183/**
1184 * e1000_check_mng_mode_82574 - Check manageability is enabled
1185 * @hw: pointer to the HW structure
1186 *
1187 * Reads the NVM Initialization Control Word 2 and returns true
1188 * (>0) if any manageability is enabled, else false (0).
1189 **/
1190static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1191{
1192 u16 data;
1193
1194 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1195 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1196}
1197
1198/**
1199 * e1000_led_on_82574 - Turn LED on
1200 * @hw: pointer to the HW structure
1201 *
1202 * Turn LED on.
1203 **/
1204static s32 e1000_led_on_82574(struct e1000_hw *hw)
1205{
1206 u32 ctrl;
1207 u32 i;
1208
1209 ctrl = hw->mac.ledctl_mode2;
1210 if (!(E1000_STATUS_LU & er32(STATUS))) {
1211 /*
1212 * If no link, then turn LED on by setting the invert bit
1213 * for each LED that's "on" (0x0E) in ledctl_mode2.
1214 */
1215 for (i = 0; i < 4; i++)
1216 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1217 E1000_LEDCTL_MODE_LED_ON)
1218 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1219 }
1220 ew32(LEDCTL, ctrl);
1221
1222 return 0;
1223}
1224
bc7f75fa 1225/**
e2de3eb6 1226 * e1000_update_mc_addr_list_82571 - Update Multicast addresses
bc7f75fa
AK
1227 * @hw: pointer to the HW structure
1228 * @mc_addr_list: array of multicast addresses to program
1229 * @mc_addr_count: number of multicast addresses to program
1230 * @rar_used_count: the first RAR register free to program
1231 * @rar_count: total number of supported Receive Address Registers
1232 *
1233 * Updates the Receive Address Registers and Multicast Table Array.
1234 * The caller must have a packed mc_addr_list of multicast addresses.
1235 * The parameter rar_count will usually be hw->mac.rar_entry_count
1236 * unless there are workarounds that change this.
1237 **/
e2de3eb6 1238static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
bc7f75fa
AK
1239 u8 *mc_addr_list,
1240 u32 mc_addr_count,
1241 u32 rar_used_count,
1242 u32 rar_count)
1243{
1244 if (e1000e_get_laa_state_82571(hw))
1245 rar_count--;
1246
e2de3eb6
JK
1247 e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
1248 rar_used_count, rar_count);
bc7f75fa
AK
1249}
1250
1251/**
1252 * e1000_setup_link_82571 - Setup flow control and link settings
1253 * @hw: pointer to the HW structure
1254 *
1255 * Determines which flow control settings to use, then configures flow
1256 * control. Calls the appropriate media-specific link configuration
1257 * function. Assuming the adapter has a valid link partner, a valid link
1258 * should be established. Assumes the hardware has previously been reset
1259 * and the transmitter and receiver are not enabled.
1260 **/
1261static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1262{
ad68076e
BA
1263 /*
1264 * 82573 does not have a word in the NVM to determine
bc7f75fa
AK
1265 * the default flow control setting, so we explicitly
1266 * set it to full.
1267 */
8c81c9c3
AD
1268 switch (hw->mac.type) {
1269 case e1000_82573:
1270 case e1000_82574:
1271 case e1000_82583:
1272 if (hw->fc.requested_mode == e1000_fc_default)
1273 hw->fc.requested_mode = e1000_fc_full;
1274 break;
1275 default:
1276 break;
1277 }
bc7f75fa
AK
1278
1279 return e1000e_setup_link(hw);
1280}
1281
1282/**
1283 * e1000_setup_copper_link_82571 - Configure copper link settings
1284 * @hw: pointer to the HW structure
1285 *
1286 * Configures the link for auto-neg or forced speed and duplex. Then we check
1287 * for link, once link is established calls to configure collision distance
1288 * and flow control are called.
1289 **/
1290static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1291{
1292 u32 ctrl;
1293 u32 led_ctrl;
1294 s32 ret_val;
1295
1296 ctrl = er32(CTRL);
1297 ctrl |= E1000_CTRL_SLU;
1298 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1299 ew32(CTRL, ctrl);
1300
1301 switch (hw->phy.type) {
1302 case e1000_phy_m88:
4662e82b 1303 case e1000_phy_bm:
bc7f75fa
AK
1304 ret_val = e1000e_copper_link_setup_m88(hw);
1305 break;
1306 case e1000_phy_igp_2:
1307 ret_val = e1000e_copper_link_setup_igp(hw);
1308 /* Setup activity LED */
1309 led_ctrl = er32(LEDCTL);
1310 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1311 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1312 ew32(LEDCTL, led_ctrl);
1313 break;
1314 default:
1315 return -E1000_ERR_PHY;
1316 break;
1317 }
1318
1319 if (ret_val)
1320 return ret_val;
1321
1322 ret_val = e1000e_setup_copper_link(hw);
1323
1324 return ret_val;
1325}
1326
1327/**
1328 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1329 * @hw: pointer to the HW structure
1330 *
1331 * Configures collision distance and flow control for fiber and serdes links.
1332 * Upon successful setup, poll for link.
1333 **/
1334static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1335{
1336 switch (hw->mac.type) {
1337 case e1000_82571:
1338 case e1000_82572:
ad68076e
BA
1339 /*
1340 * If SerDes loopback mode is entered, there is no form
bc7f75fa
AK
1341 * of reset to take the adapter out of that mode. So we
1342 * have to explicitly take the adapter out of loopback
489815ce 1343 * mode. This prevents drivers from twiddling their thumbs
bc7f75fa
AK
1344 * if another tool failed to take it out of loopback mode.
1345 */
ad68076e 1346 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
bc7f75fa
AK
1347 break;
1348 default:
1349 break;
1350 }
1351
1352 return e1000e_setup_fiber_serdes_link(hw);
1353}
1354
c9523379 1355/**
1356 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1357 * @hw: pointer to the HW structure
1358 *
1359 * Checks for link up on the hardware. If link is not up and we have
1360 * a signal, then we need to force link up.
1361 **/
f6370117 1362static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
c9523379 1363{
1364 struct e1000_mac_info *mac = &hw->mac;
1365 u32 rxcw;
1366 u32 ctrl;
1367 u32 status;
1368 s32 ret_val = 0;
1369
1370 ctrl = er32(CTRL);
1371 status = er32(STATUS);
1372 rxcw = er32(RXCW);
1373
1374 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1375
1376 /* Receiver is synchronized with no invalid bits. */
1377 switch (mac->serdes_link_state) {
1378 case e1000_serdes_link_autoneg_complete:
1379 if (!(status & E1000_STATUS_LU)) {
1380 /*
1381 * We have lost link, retry autoneg before
1382 * reporting link failure
1383 */
1384 mac->serdes_link_state =
1385 e1000_serdes_link_autoneg_progress;
3bb99fe2 1386 e_dbg("AN_UP -> AN_PROG\n");
c9523379 1387 }
1388 break;
1389
1390 case e1000_serdes_link_forced_up:
1391 /*
1392 * If we are receiving /C/ ordered sets, re-enable
1393 * auto-negotiation in the TXCW register and disable
1394 * forced link in the Device Control register in an
1395 * attempt to auto-negotiate with our link partner.
1396 */
1397 if (rxcw & E1000_RXCW_C) {
1398 /* Enable autoneg, and unforce link up */
1399 ew32(TXCW, mac->txcw);
1400 ew32(CTRL,
1401 (ctrl & ~E1000_CTRL_SLU));
1402 mac->serdes_link_state =
1403 e1000_serdes_link_autoneg_progress;
3bb99fe2 1404 e_dbg("FORCED_UP -> AN_PROG\n");
c9523379 1405 }
1406 break;
1407
1408 case e1000_serdes_link_autoneg_progress:
1409 /*
1410 * If the LU bit is set in the STATUS register,
1411 * autoneg has completed sucessfully. If not,
1412 * try foring the link because the far end may be
1413 * available but not capable of autonegotiation.
1414 */
1415 if (status & E1000_STATUS_LU) {
1416 mac->serdes_link_state =
1417 e1000_serdes_link_autoneg_complete;
3bb99fe2 1418 e_dbg("AN_PROG -> AN_UP\n");
c9523379 1419 } else {
1420 /*
1421 * Disable autoneg, force link up and
1422 * full duplex, and change state to forced
1423 */
1424 ew32(TXCW,
1425 (mac->txcw & ~E1000_TXCW_ANE));
1426 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1427 ew32(CTRL, ctrl);
1428
1429 /* Configure Flow Control after link up. */
1430 ret_val =
1431 e1000e_config_fc_after_link_up(hw);
1432 if (ret_val) {
3bb99fe2 1433 e_dbg("Error config flow control\n");
c9523379 1434 break;
1435 }
1436 mac->serdes_link_state =
1437 e1000_serdes_link_forced_up;
3bb99fe2 1438 e_dbg("AN_PROG -> FORCED_UP\n");
c9523379 1439 }
1440 mac->serdes_has_link = true;
1441 break;
1442
1443 case e1000_serdes_link_down:
1444 default:
1445 /* The link was down but the receiver has now gained
1446 * valid sync, so lets see if we can bring the link
1447 * up. */
1448 ew32(TXCW, mac->txcw);
1449 ew32(CTRL,
1450 (ctrl & ~E1000_CTRL_SLU));
1451 mac->serdes_link_state =
1452 e1000_serdes_link_autoneg_progress;
3bb99fe2 1453 e_dbg("DOWN -> AN_PROG\n");
c9523379 1454 break;
1455 }
1456 } else {
1457 if (!(rxcw & E1000_RXCW_SYNCH)) {
1458 mac->serdes_has_link = false;
1459 mac->serdes_link_state = e1000_serdes_link_down;
3bb99fe2 1460 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1461 } else {
1462 /*
1463 * We have sync, and can tolerate one
1464 * invalid (IV) codeword before declaring
1465 * link down, so reread to look again
1466 */
1467 udelay(10);
1468 rxcw = er32(RXCW);
1469 if (rxcw & E1000_RXCW_IV) {
1470 mac->serdes_link_state = e1000_serdes_link_down;
1471 mac->serdes_has_link = false;
3bb99fe2 1472 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1473 }
1474 }
1475 }
1476
1477 return ret_val;
1478}
1479
bc7f75fa
AK
1480/**
1481 * e1000_valid_led_default_82571 - Verify a valid default LED config
1482 * @hw: pointer to the HW structure
1483 * @data: pointer to the NVM (EEPROM)
1484 *
1485 * Read the EEPROM for the current default LED configuration. If the
1486 * LED configuration is not valid, set to a valid LED configuration.
1487 **/
1488static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1489{
1490 s32 ret_val;
1491
1492 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1493 if (ret_val) {
3bb99fe2 1494 e_dbg("NVM Read Error\n");
bc7f75fa
AK
1495 return ret_val;
1496 }
1497
8c81c9c3
AD
1498 switch (hw->mac.type) {
1499 case e1000_82573:
1500 case e1000_82574:
1501 case e1000_82583:
1502 if (*data == ID_LED_RESERVED_F746)
1503 *data = ID_LED_DEFAULT_82573;
1504 break;
1505 default:
1506 if (*data == ID_LED_RESERVED_0000 ||
1507 *data == ID_LED_RESERVED_FFFF)
1508 *data = ID_LED_DEFAULT;
1509 break;
1510 }
bc7f75fa
AK
1511
1512 return 0;
1513}
1514
1515/**
1516 * e1000e_get_laa_state_82571 - Get locally administered address state
1517 * @hw: pointer to the HW structure
1518 *
489815ce 1519 * Retrieve and return the current locally administered address state.
bc7f75fa
AK
1520 **/
1521bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1522{
1523 if (hw->mac.type != e1000_82571)
564ea9bb 1524 return false;
bc7f75fa
AK
1525
1526 return hw->dev_spec.e82571.laa_is_present;
1527}
1528
1529/**
1530 * e1000e_set_laa_state_82571 - Set locally administered address state
1531 * @hw: pointer to the HW structure
1532 * @state: enable/disable locally administered address
1533 *
489815ce 1534 * Enable/Disable the current locally administers address state.
bc7f75fa
AK
1535 **/
1536void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1537{
1538 if (hw->mac.type != e1000_82571)
1539 return;
1540
1541 hw->dev_spec.e82571.laa_is_present = state;
1542
1543 /* If workaround is activated... */
1544 if (state)
ad68076e
BA
1545 /*
1546 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
1547 * between the time RAR[0] gets clobbered and the time it
1548 * gets fixed, the actual LAA is in one of the RARs and no
1549 * incoming packets directed to this port are dropped.
1550 * Eventually the LAA will be in RAR[0] and RAR[14].
1551 */
1552 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1553}
1554
1555/**
1556 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1557 * @hw: pointer to the HW structure
1558 *
1559 * Verifies that the EEPROM has completed the update. After updating the
1560 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1561 * the checksum fix is not implemented, we need to set the bit and update
1562 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1563 * we need to return bad checksum.
1564 **/
1565static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1566{
1567 struct e1000_nvm_info *nvm = &hw->nvm;
1568 s32 ret_val;
1569 u16 data;
1570
1571 if (nvm->type != e1000_nvm_flash_hw)
1572 return 0;
1573
ad68076e
BA
1574 /*
1575 * Check bit 4 of word 10h. If it is 0, firmware is done updating
bc7f75fa
AK
1576 * 10h-12h. Checksum may need to be fixed.
1577 */
1578 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1579 if (ret_val)
1580 return ret_val;
1581
1582 if (!(data & 0x10)) {
ad68076e
BA
1583 /*
1584 * Read 0x23 and check bit 15. This bit is a 1
bc7f75fa
AK
1585 * when the checksum has already been fixed. If
1586 * the checksum is still wrong and this bit is a
1587 * 1, we need to return bad checksum. Otherwise,
1588 * we need to set this bit to a 1 and update the
1589 * checksum.
1590 */
1591 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1592 if (ret_val)
1593 return ret_val;
1594
1595 if (!(data & 0x8000)) {
1596 data |= 0x8000;
1597 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1598 if (ret_val)
1599 return ret_val;
1600 ret_val = e1000e_update_nvm_checksum(hw);
1601 }
1602 }
1603
1604 return 0;
1605}
1606
1607/**
1608 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1609 * @hw: pointer to the HW structure
1610 *
1611 * Clears the hardware counters by reading the counter registers.
1612 **/
1613static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1614{
bc7f75fa
AK
1615 e1000e_clear_hw_cntrs_base(hw);
1616
99673d9b
BA
1617 er32(PRC64);
1618 er32(PRC127);
1619 er32(PRC255);
1620 er32(PRC511);
1621 er32(PRC1023);
1622 er32(PRC1522);
1623 er32(PTC64);
1624 er32(PTC127);
1625 er32(PTC255);
1626 er32(PTC511);
1627 er32(PTC1023);
1628 er32(PTC1522);
1629
1630 er32(ALGNERRC);
1631 er32(RXERRC);
1632 er32(TNCRS);
1633 er32(CEXTERR);
1634 er32(TSCTC);
1635 er32(TSCTFC);
1636
1637 er32(MGTPRC);
1638 er32(MGTPDC);
1639 er32(MGTPTC);
1640
1641 er32(IAC);
1642 er32(ICRXOC);
1643
1644 er32(ICRXPTC);
1645 er32(ICRXATC);
1646 er32(ICTXPTC);
1647 er32(ICTXATC);
1648 er32(ICTXQEC);
1649 er32(ICTXQMTC);
1650 er32(ICRXDMTC);
bc7f75fa
AK
1651}
1652
1653static struct e1000_mac_operations e82571_mac_ops = {
4662e82b 1654 /* .check_mng_mode: mac type dependent */
bc7f75fa 1655 /* .check_for_link: media type dependent */
a4f58f54 1656 .id_led_init = e1000e_id_led_init,
bc7f75fa
AK
1657 .cleanup_led = e1000e_cleanup_led_generic,
1658 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1659 .get_bus_info = e1000e_get_bus_info_pcie,
1660 /* .get_link_up_info: media type dependent */
4662e82b 1661 /* .led_on: mac type dependent */
bc7f75fa 1662 .led_off = e1000e_led_off_generic,
e2de3eb6 1663 .update_mc_addr_list = e1000_update_mc_addr_list_82571,
bc7f75fa
AK
1664 .reset_hw = e1000_reset_hw_82571,
1665 .init_hw = e1000_init_hw_82571,
1666 .setup_link = e1000_setup_link_82571,
1667 /* .setup_physical_interface: media type dependent */
a4f58f54 1668 .setup_led = e1000e_setup_led_generic,
bc7f75fa
AK
1669};
1670
1671static struct e1000_phy_operations e82_phy_ops_igp = {
94d8186a 1672 .acquire = e1000_get_hw_semaphore_82571,
bc7f75fa 1673 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1674 .commit = NULL,
bc7f75fa
AK
1675 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1676 .get_cfg_done = e1000_get_cfg_done_82571,
1677 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
1678 .get_info = e1000e_get_phy_info_igp,
1679 .read_reg = e1000e_read_phy_reg_igp,
1680 .release = e1000_put_hw_semaphore_82571,
1681 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1682 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1683 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1684 .write_reg = e1000e_write_phy_reg_igp,
75eb0fad 1685 .cfg_on_link_up = NULL,
bc7f75fa
AK
1686};
1687
1688static struct e1000_phy_operations e82_phy_ops_m88 = {
94d8186a 1689 .acquire = e1000_get_hw_semaphore_82571,
bc7f75fa 1690 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1691 .commit = e1000e_phy_sw_reset,
bc7f75fa
AK
1692 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1693 .get_cfg_done = e1000e_get_cfg_done,
1694 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1695 .get_info = e1000e_get_phy_info_m88,
1696 .read_reg = e1000e_read_phy_reg_m88,
1697 .release = e1000_put_hw_semaphore_82571,
1698 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1699 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1700 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1701 .write_reg = e1000e_write_phy_reg_m88,
75eb0fad 1702 .cfg_on_link_up = NULL,
bc7f75fa
AK
1703};
1704
4662e82b 1705static struct e1000_phy_operations e82_phy_ops_bm = {
94d8186a 1706 .acquire = e1000_get_hw_semaphore_82571,
4662e82b 1707 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1708 .commit = e1000e_phy_sw_reset,
4662e82b
BA
1709 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1710 .get_cfg_done = e1000e_get_cfg_done,
1711 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1712 .get_info = e1000e_get_phy_info_m88,
1713 .read_reg = e1000e_read_phy_reg_bm2,
1714 .release = e1000_put_hw_semaphore_82571,
1715 .reset = e1000e_phy_hw_reset_generic,
4662e82b
BA
1716 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1717 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1718 .write_reg = e1000e_write_phy_reg_bm2,
75eb0fad 1719 .cfg_on_link_up = NULL,
4662e82b
BA
1720};
1721
bc7f75fa 1722static struct e1000_nvm_operations e82571_nvm_ops = {
94d8186a
BA
1723 .acquire = e1000_acquire_nvm_82571,
1724 .read = e1000e_read_nvm_eerd,
1725 .release = e1000_release_nvm_82571,
1726 .update = e1000_update_nvm_checksum_82571,
bc7f75fa 1727 .valid_led_default = e1000_valid_led_default_82571,
94d8186a
BA
1728 .validate = e1000_validate_nvm_checksum_82571,
1729 .write = e1000_write_nvm_82571,
bc7f75fa
AK
1730};
1731
1732struct e1000_info e1000_82571_info = {
1733 .mac = e1000_82571,
1734 .flags = FLAG_HAS_HW_VLAN_FILTER
1735 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1736 | FLAG_HAS_WOL
1737 | FLAG_APME_IN_CTRL3
1738 | FLAG_RX_CSUM_ENABLED
1739 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1740 | FLAG_HAS_SMART_POWER_DOWN
1741 | FLAG_RESET_OVERWRITES_LAA /* errata */
1742 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1743 | FLAG_APME_CHECK_PORT_B,
1744 .pba = 38,
2adc55c9 1745 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1746 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1747 .mac_ops = &e82571_mac_ops,
1748 .phy_ops = &e82_phy_ops_igp,
1749 .nvm_ops = &e82571_nvm_ops,
1750};
1751
1752struct e1000_info e1000_82572_info = {
1753 .mac = e1000_82572,
1754 .flags = FLAG_HAS_HW_VLAN_FILTER
1755 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1756 | FLAG_HAS_WOL
1757 | FLAG_APME_IN_CTRL3
1758 | FLAG_RX_CSUM_ENABLED
1759 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1760 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1761 .pba = 38,
2adc55c9 1762 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1763 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1764 .mac_ops = &e82571_mac_ops,
1765 .phy_ops = &e82_phy_ops_igp,
1766 .nvm_ops = &e82571_nvm_ops,
1767};
1768
1769struct e1000_info e1000_82573_info = {
1770 .mac = e1000_82573,
1771 .flags = FLAG_HAS_HW_VLAN_FILTER
1772 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1773 | FLAG_HAS_WOL
1774 | FLAG_APME_IN_CTRL3
1775 | FLAG_RX_CSUM_ENABLED
bc7f75fa
AK
1776 | FLAG_HAS_SMART_POWER_DOWN
1777 | FLAG_HAS_AMT
bc7f75fa
AK
1778 | FLAG_HAS_ERT
1779 | FLAG_HAS_SWSM_ON_LOAD,
1780 .pba = 20,
2adc55c9 1781 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 1782 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1783 .mac_ops = &e82571_mac_ops,
1784 .phy_ops = &e82_phy_ops_m88,
31f8c4fe 1785 .nvm_ops = &e82571_nvm_ops,
bc7f75fa
AK
1786};
1787
4662e82b
BA
1788struct e1000_info e1000_82574_info = {
1789 .mac = e1000_82574,
1790 .flags = FLAG_HAS_HW_VLAN_FILTER
1791 | FLAG_HAS_MSIX
1792 | FLAG_HAS_JUMBO_FRAMES
1793 | FLAG_HAS_WOL
1794 | FLAG_APME_IN_CTRL3
1795 | FLAG_RX_CSUM_ENABLED
1796 | FLAG_HAS_SMART_POWER_DOWN
1797 | FLAG_HAS_AMT
1798 | FLAG_HAS_CTRLEXT_ON_LOAD,
1799 .pba = 20,
a825e00c 1800 .max_hw_frame_size = DEFAULT_JUMBO,
4662e82b
BA
1801 .get_variants = e1000_get_variants_82571,
1802 .mac_ops = &e82571_mac_ops,
1803 .phy_ops = &e82_phy_ops_bm,
1804 .nvm_ops = &e82571_nvm_ops,
1805};
1806
8c81c9c3
AD
1807struct e1000_info e1000_82583_info = {
1808 .mac = e1000_82583,
1809 .flags = FLAG_HAS_HW_VLAN_FILTER
1810 | FLAG_HAS_WOL
1811 | FLAG_APME_IN_CTRL3
1812 | FLAG_RX_CSUM_ENABLED
1813 | FLAG_HAS_SMART_POWER_DOWN
1814 | FLAG_HAS_AMT
1815 | FLAG_HAS_CTRLEXT_ON_LOAD,
1816 .pba = 20,
a825e00c 1817 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
8c81c9c3
AD
1818 .get_variants = e1000_get_variants_82571,
1819 .mac_ops = &e82571_mac_ops,
1820 .phy_ops = &e82_phy_ops_bm,
1821 .nvm_ops = &e82571_nvm_ops,
1822};
1823