]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/e1000e/82571.c
e1000e: provide comment for 82571 workaround
[net-next-2.6.git] / drivers / net / e1000e / 82571.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
c7e54b1b 4 Copyright(c) 1999 - 2009 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82571EB Gigabit Ethernet Controller
1605927f 31 * 82571EB Gigabit Ethernet Controller (Copper)
bc7f75fa 32 * 82571EB Gigabit Ethernet Controller (Fiber)
ad68076e
BA
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
bc7f75fa
AK
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
4662e82b 42 * 82574L Gigabit Network Connection
8c81c9c3 43 * 82583V Gigabit Network Connection
bc7f75fa
AK
44 */
45
bc7f75fa
AK
46#include "e1000.h"
47
48#define ID_LED_RESERVED_F746 0xF746
49#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
53
54#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55
4662e82b
BA
56#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
57
bc7f75fa
AK
58static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
59static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
60static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
c9523379 61static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
bc7f75fa
AK
62static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
63 u16 words, u16 *data);
64static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
65static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
66static s32 e1000_setup_link_82571(struct e1000_hw *hw);
67static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
4662e82b
BA
68static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
69static s32 e1000_led_on_82574(struct e1000_hw *hw);
23a2d1b2 70static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
bc7f75fa
AK
71
72/**
73 * e1000_init_phy_params_82571 - Init PHY func ptrs.
74 * @hw: pointer to the HW structure
bc7f75fa
AK
75 **/
76static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
77{
78 struct e1000_phy_info *phy = &hw->phy;
79 s32 ret_val;
80
318a94d6 81 if (hw->phy.media_type != e1000_media_type_copper) {
bc7f75fa
AK
82 phy->type = e1000_phy_none;
83 return 0;
84 }
85
86 phy->addr = 1;
87 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
88 phy->reset_delay_us = 100;
89
90 switch (hw->mac.type) {
91 case e1000_82571:
92 case e1000_82572:
93 phy->type = e1000_phy_igp_2;
94 break;
95 case e1000_82573:
96 phy->type = e1000_phy_m88;
97 break;
4662e82b 98 case e1000_82574:
8c81c9c3 99 case e1000_82583:
4662e82b
BA
100 phy->type = e1000_phy_bm;
101 break;
bc7f75fa
AK
102 default:
103 return -E1000_ERR_PHY;
104 break;
105 }
106
107 /* This can only be done after all function pointers are setup. */
108 ret_val = e1000_get_phy_id_82571(hw);
109
110 /* Verify phy id */
111 switch (hw->mac.type) {
112 case e1000_82571:
113 case e1000_82572:
114 if (phy->id != IGP01E1000_I_PHY_ID)
115 return -E1000_ERR_PHY;
116 break;
117 case e1000_82573:
118 if (phy->id != M88E1111_I_PHY_ID)
119 return -E1000_ERR_PHY;
120 break;
4662e82b 121 case e1000_82574:
8c81c9c3 122 case e1000_82583:
4662e82b
BA
123 if (phy->id != BME1000_E_PHY_ID_R2)
124 return -E1000_ERR_PHY;
125 break;
bc7f75fa
AK
126 default:
127 return -E1000_ERR_PHY;
128 break;
129 }
130
131 return 0;
132}
133
134/**
135 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
136 * @hw: pointer to the HW structure
bc7f75fa
AK
137 **/
138static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
139{
140 struct e1000_nvm_info *nvm = &hw->nvm;
141 u32 eecd = er32(EECD);
142 u16 size;
143
144 nvm->opcode_bits = 8;
145 nvm->delay_usec = 1;
146 switch (nvm->override) {
147 case e1000_nvm_override_spi_large:
148 nvm->page_size = 32;
149 nvm->address_bits = 16;
150 break;
151 case e1000_nvm_override_spi_small:
152 nvm->page_size = 8;
153 nvm->address_bits = 8;
154 break;
155 default:
156 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
157 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
158 break;
159 }
160
161 switch (hw->mac.type) {
162 case e1000_82573:
4662e82b 163 case e1000_82574:
8c81c9c3 164 case e1000_82583:
bc7f75fa
AK
165 if (((eecd >> 15) & 0x3) == 0x3) {
166 nvm->type = e1000_nvm_flash_hw;
167 nvm->word_size = 2048;
ad68076e
BA
168 /*
169 * Autonomous Flash update bit must be cleared due
bc7f75fa
AK
170 * to Flash update issue.
171 */
172 eecd &= ~E1000_EECD_AUPDEN;
173 ew32(EECD, eecd);
174 break;
175 }
176 /* Fall Through */
177 default:
ad68076e 178 nvm->type = e1000_nvm_eeprom_spi;
bc7f75fa
AK
179 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
180 E1000_EECD_SIZE_EX_SHIFT);
ad68076e
BA
181 /*
182 * Added to a constant, "size" becomes the left-shift value
bc7f75fa
AK
183 * for setting word_size.
184 */
185 size += NVM_WORD_SIZE_BASE_SHIFT;
8d7c294c
JK
186
187 /* EEPROM access above 16k is unsupported */
188 if (size > 14)
189 size = 14;
bc7f75fa
AK
190 nvm->word_size = 1 << size;
191 break;
192 }
193
194 return 0;
195}
196
197/**
198 * e1000_init_mac_params_82571 - Init MAC func ptrs.
199 * @hw: pointer to the HW structure
bc7f75fa
AK
200 **/
201static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
202{
203 struct e1000_hw *hw = &adapter->hw;
204 struct e1000_mac_info *mac = &hw->mac;
205 struct e1000_mac_operations *func = &mac->ops;
23a2d1b2
DG
206 u32 swsm = 0;
207 u32 swsm2 = 0;
208 bool force_clear_smbi = false;
bc7f75fa
AK
209
210 /* Set media type */
211 switch (adapter->pdev->device) {
212 case E1000_DEV_ID_82571EB_FIBER:
213 case E1000_DEV_ID_82572EI_FIBER:
214 case E1000_DEV_ID_82571EB_QUAD_FIBER:
318a94d6 215 hw->phy.media_type = e1000_media_type_fiber;
bc7f75fa
AK
216 break;
217 case E1000_DEV_ID_82571EB_SERDES:
218 case E1000_DEV_ID_82572EI_SERDES:
040babf9
AK
219 case E1000_DEV_ID_82571EB_SERDES_DUAL:
220 case E1000_DEV_ID_82571EB_SERDES_QUAD:
318a94d6 221 hw->phy.media_type = e1000_media_type_internal_serdes;
bc7f75fa
AK
222 break;
223 default:
318a94d6 224 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
225 break;
226 }
227
228 /* Set mta register count */
229 mac->mta_reg_count = 128;
230 /* Set rar entry count */
231 mac->rar_entry_count = E1000_RAR_ENTRIES;
232 /* Set if manageability features are enabled. */
ad68076e 233 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
bc7f75fa
AK
234
235 /* check for link */
318a94d6 236 switch (hw->phy.media_type) {
bc7f75fa
AK
237 case e1000_media_type_copper:
238 func->setup_physical_interface = e1000_setup_copper_link_82571;
239 func->check_for_link = e1000e_check_for_copper_link;
240 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
241 break;
242 case e1000_media_type_fiber:
ad68076e
BA
243 func->setup_physical_interface =
244 e1000_setup_fiber_serdes_link_82571;
bc7f75fa 245 func->check_for_link = e1000e_check_for_fiber_link;
ad68076e
BA
246 func->get_link_up_info =
247 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
248 break;
249 case e1000_media_type_internal_serdes:
ad68076e
BA
250 func->setup_physical_interface =
251 e1000_setup_fiber_serdes_link_82571;
c9523379 252 func->check_for_link = e1000_check_for_serdes_link_82571;
ad68076e
BA
253 func->get_link_up_info =
254 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
255 break;
256 default:
257 return -E1000_ERR_CONFIG;
258 break;
259 }
260
4662e82b
BA
261 switch (hw->mac.type) {
262 case e1000_82574:
8c81c9c3 263 case e1000_82583:
4662e82b
BA
264 func->check_mng_mode = e1000_check_mng_mode_82574;
265 func->led_on = e1000_led_on_82574;
266 break;
267 default:
268 func->check_mng_mode = e1000e_check_mng_mode_generic;
269 func->led_on = e1000e_led_on_generic;
270 break;
271 }
272
23a2d1b2
DG
273 /*
274 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
275 * first NVM or PHY acess. This should be done for single-port
276 * devices, and for one port only on dual-port devices so that
277 * for those devices we can still use the SMBI lock to synchronize
278 * inter-port accesses to the PHY & NVM.
279 */
280 switch (hw->mac.type) {
281 case e1000_82571:
282 case e1000_82572:
283 swsm2 = er32(SWSM2);
284
285 if (!(swsm2 & E1000_SWSM2_LOCK)) {
286 /* Only do this for the first interface on this card */
287 ew32(SWSM2,
288 swsm2 | E1000_SWSM2_LOCK);
289 force_clear_smbi = true;
290 } else
291 force_clear_smbi = false;
292 break;
293 default:
294 force_clear_smbi = true;
295 break;
296 }
297
298 if (force_clear_smbi) {
299 /* Make sure SWSM.SMBI is clear */
300 swsm = er32(SWSM);
301 if (swsm & E1000_SWSM_SMBI) {
302 /* This bit should not be set on a first interface, and
303 * indicates that the bootagent or EFI code has
304 * improperly left this bit enabled
305 */
3bb99fe2 306 e_dbg("Please update your 82571 Bootagent\n");
23a2d1b2
DG
307 }
308 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
309 }
310
311 /*
312 * Initialze device specific counter of SMBI acquisition
313 * timeouts.
314 */
315 hw->dev_spec.e82571.smb_counter = 0;
316
bc7f75fa
AK
317 return 0;
318}
319
69e3fd8c 320static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
bc7f75fa
AK
321{
322 struct e1000_hw *hw = &adapter->hw;
323 static int global_quad_port_a; /* global port a indication */
324 struct pci_dev *pdev = adapter->pdev;
325 u16 eeprom_data = 0;
326 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
327 s32 rc;
328
329 rc = e1000_init_mac_params_82571(adapter);
330 if (rc)
331 return rc;
332
333 rc = e1000_init_nvm_params_82571(hw);
334 if (rc)
335 return rc;
336
337 rc = e1000_init_phy_params_82571(hw);
338 if (rc)
339 return rc;
340
341 /* tag quad port adapters first, it's used below */
342 switch (pdev->device) {
343 case E1000_DEV_ID_82571EB_QUAD_COPPER:
344 case E1000_DEV_ID_82571EB_QUAD_FIBER:
345 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
040babf9 346 case E1000_DEV_ID_82571PT_QUAD_COPPER:
bc7f75fa
AK
347 adapter->flags |= FLAG_IS_QUAD_PORT;
348 /* mark the first port */
349 if (global_quad_port_a == 0)
350 adapter->flags |= FLAG_IS_QUAD_PORT_A;
351 /* Reset for multiple quad port adapters */
352 global_quad_port_a++;
353 if (global_quad_port_a == 4)
354 global_quad_port_a = 0;
355 break;
356 default:
357 break;
358 }
359
360 switch (adapter->hw.mac.type) {
361 case e1000_82571:
362 /* these dual ports don't have WoL on port B at all */
363 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
364 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
365 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
366 (is_port_b))
367 adapter->flags &= ~FLAG_HAS_WOL;
368 /* quad ports only support WoL on port A */
369 if (adapter->flags & FLAG_IS_QUAD_PORT &&
6e4ca80d 370 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
bc7f75fa 371 adapter->flags &= ~FLAG_HAS_WOL;
040babf9
AK
372 /* Does not support WoL on any port */
373 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
374 adapter->flags &= ~FLAG_HAS_WOL;
bc7f75fa
AK
375 break;
376
377 case e1000_82573:
378 if (pdev->device == E1000_DEV_ID_82573L) {
e243455d
BA
379 if (e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
380 &eeprom_data) < 0)
381 break;
2adc55c9
BA
382 if (!(eeprom_data & NVM_WORD1A_ASPM_MASK)) {
383 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
384 adapter->max_hw_frame_size = DEFAULT_JUMBO;
385 }
bc7f75fa
AK
386 }
387 break;
388 default:
389 break;
390 }
391
392 return 0;
393}
394
395/**
396 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
397 * @hw: pointer to the HW structure
398 *
399 * Reads the PHY registers and stores the PHY ID and possibly the PHY
400 * revision in the hardware structure.
401 **/
402static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
403{
404 struct e1000_phy_info *phy = &hw->phy;
4662e82b
BA
405 s32 ret_val;
406 u16 phy_id = 0;
bc7f75fa
AK
407
408 switch (hw->mac.type) {
409 case e1000_82571:
410 case e1000_82572:
ad68076e
BA
411 /*
412 * The 82571 firmware may still be configuring the PHY.
bc7f75fa
AK
413 * In this case, we cannot access the PHY until the
414 * configuration is done. So we explicitly set the
ad68076e
BA
415 * PHY ID.
416 */
bc7f75fa
AK
417 phy->id = IGP01E1000_I_PHY_ID;
418 break;
419 case e1000_82573:
420 return e1000e_get_phy_id(hw);
421 break;
4662e82b 422 case e1000_82574:
8c81c9c3 423 case e1000_82583:
4662e82b
BA
424 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
425 if (ret_val)
426 return ret_val;
427
428 phy->id = (u32)(phy_id << 16);
429 udelay(20);
430 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
431 if (ret_val)
432 return ret_val;
433
434 phy->id |= (u32)(phy_id);
435 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
436 break;
bc7f75fa
AK
437 default:
438 return -E1000_ERR_PHY;
439 break;
440 }
441
442 return 0;
443}
444
445/**
446 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
447 * @hw: pointer to the HW structure
448 *
449 * Acquire the HW semaphore to access the PHY or NVM
450 **/
451static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
452{
453 u32 swsm;
23a2d1b2
DG
454 s32 sw_timeout = hw->nvm.word_size + 1;
455 s32 fw_timeout = hw->nvm.word_size + 1;
bc7f75fa
AK
456 s32 i = 0;
457
23a2d1b2
DG
458 /*
459 * If we have timedout 3 times on trying to acquire
460 * the inter-port SMBI semaphore, there is old code
461 * operating on the other port, and it is not
462 * releasing SMBI. Modify the number of times that
463 * we try for the semaphore to interwork with this
464 * older code.
465 */
466 if (hw->dev_spec.e82571.smb_counter > 2)
467 sw_timeout = 1;
468
469 /* Get the SW semaphore */
470 while (i < sw_timeout) {
471 swsm = er32(SWSM);
472 if (!(swsm & E1000_SWSM_SMBI))
473 break;
474
475 udelay(50);
476 i++;
477 }
478
479 if (i == sw_timeout) {
3bb99fe2 480 e_dbg("Driver can't access device - SMBI bit is set.\n");
23a2d1b2
DG
481 hw->dev_spec.e82571.smb_counter++;
482 }
bc7f75fa 483 /* Get the FW semaphore. */
23a2d1b2 484 for (i = 0; i < fw_timeout; i++) {
bc7f75fa
AK
485 swsm = er32(SWSM);
486 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
487
488 /* Semaphore acquired if bit latched */
489 if (er32(SWSM) & E1000_SWSM_SWESMBI)
490 break;
491
492 udelay(50);
493 }
494
23a2d1b2 495 if (i == fw_timeout) {
bc7f75fa 496 /* Release semaphores */
23a2d1b2 497 e1000_put_hw_semaphore_82571(hw);
3bb99fe2 498 e_dbg("Driver can't access the NVM\n");
bc7f75fa
AK
499 return -E1000_ERR_NVM;
500 }
501
502 return 0;
503}
504
505/**
506 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
507 * @hw: pointer to the HW structure
508 *
509 * Release hardware semaphore used to access the PHY or NVM
510 **/
511static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
512{
513 u32 swsm;
514
515 swsm = er32(SWSM);
23a2d1b2 516 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
bc7f75fa
AK
517 ew32(SWSM, swsm);
518}
519
520/**
521 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
522 * @hw: pointer to the HW structure
523 *
524 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
525 * Then for non-82573 hardware, set the EEPROM access request bit and wait
526 * for EEPROM access grant bit. If the access grant bit is not set, release
527 * hardware semaphore.
528 **/
529static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
530{
531 s32 ret_val;
532
533 ret_val = e1000_get_hw_semaphore_82571(hw);
534 if (ret_val)
535 return ret_val;
536
8c81c9c3
AD
537 switch (hw->mac.type) {
538 case e1000_82573:
539 case e1000_82574:
540 case e1000_82583:
541 break;
542 default:
bc7f75fa 543 ret_val = e1000e_acquire_nvm(hw);
8c81c9c3
AD
544 break;
545 }
bc7f75fa
AK
546
547 if (ret_val)
548 e1000_put_hw_semaphore_82571(hw);
549
550 return ret_val;
551}
552
553/**
554 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
555 * @hw: pointer to the HW structure
556 *
557 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
558 **/
559static void e1000_release_nvm_82571(struct e1000_hw *hw)
560{
561 e1000e_release_nvm(hw);
562 e1000_put_hw_semaphore_82571(hw);
563}
564
565/**
566 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
567 * @hw: pointer to the HW structure
568 * @offset: offset within the EEPROM to be written to
569 * @words: number of words to write
570 * @data: 16 bit word(s) to be written to the EEPROM
571 *
572 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
573 *
574 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 575 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
576 **/
577static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
578 u16 *data)
579{
580 s32 ret_val;
581
582 switch (hw->mac.type) {
583 case e1000_82573:
4662e82b 584 case e1000_82574:
8c81c9c3 585 case e1000_82583:
bc7f75fa
AK
586 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
587 break;
588 case e1000_82571:
589 case e1000_82572:
590 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
591 break;
592 default:
593 ret_val = -E1000_ERR_NVM;
594 break;
595 }
596
597 return ret_val;
598}
599
600/**
601 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
602 * @hw: pointer to the HW structure
603 *
604 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
605 * up to the checksum. Then calculates the EEPROM checksum and writes the
606 * value to the EEPROM.
607 **/
608static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
609{
610 u32 eecd;
611 s32 ret_val;
612 u16 i;
613
614 ret_val = e1000e_update_nvm_checksum_generic(hw);
615 if (ret_val)
616 return ret_val;
617
ad68076e
BA
618 /*
619 * If our nvm is an EEPROM, then we're done
620 * otherwise, commit the checksum to the flash NVM.
621 */
bc7f75fa
AK
622 if (hw->nvm.type != e1000_nvm_flash_hw)
623 return ret_val;
624
625 /* Check for pending operations. */
626 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
627 msleep(1);
628 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
629 break;
630 }
631
632 if (i == E1000_FLASH_UPDATES)
633 return -E1000_ERR_NVM;
634
635 /* Reset the firmware if using STM opcode. */
636 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
ad68076e
BA
637 /*
638 * The enabling of and the actual reset must be done
bc7f75fa
AK
639 * in two write cycles.
640 */
641 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
642 e1e_flush();
643 ew32(HICR, E1000_HICR_FW_RESET);
644 }
645
646 /* Commit the write to flash */
647 eecd = er32(EECD) | E1000_EECD_FLUPD;
648 ew32(EECD, eecd);
649
650 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
651 msleep(1);
652 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
653 break;
654 }
655
656 if (i == E1000_FLASH_UPDATES)
657 return -E1000_ERR_NVM;
658
659 return 0;
660}
661
662/**
663 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
664 * @hw: pointer to the HW structure
665 *
666 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
667 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
668 **/
669static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
670{
671 if (hw->nvm.type == e1000_nvm_flash_hw)
672 e1000_fix_nvm_checksum_82571(hw);
673
674 return e1000e_validate_nvm_checksum_generic(hw);
675}
676
677/**
678 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
679 * @hw: pointer to the HW structure
680 * @offset: offset within the EEPROM to be written to
681 * @words: number of words to write
682 * @data: 16 bit word(s) to be written to the EEPROM
683 *
684 * After checking for invalid values, poll the EEPROM to ensure the previous
685 * command has completed before trying to write the next word. After write
686 * poll for completion.
687 *
688 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 689 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
690 **/
691static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
692 u16 words, u16 *data)
693{
694 struct e1000_nvm_info *nvm = &hw->nvm;
695 u32 i;
696 u32 eewr = 0;
697 s32 ret_val = 0;
698
ad68076e
BA
699 /*
700 * A check for invalid values: offset too large, too many words,
701 * and not enough words.
702 */
bc7f75fa
AK
703 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
704 (words == 0)) {
3bb99fe2 705 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
706 return -E1000_ERR_NVM;
707 }
708
709 for (i = 0; i < words; i++) {
710 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
711 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
712 E1000_NVM_RW_REG_START;
713
714 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
715 if (ret_val)
716 break;
717
718 ew32(EEWR, eewr);
719
720 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
721 if (ret_val)
722 break;
723 }
724
725 return ret_val;
726}
727
728/**
729 * e1000_get_cfg_done_82571 - Poll for configuration done
730 * @hw: pointer to the HW structure
731 *
732 * Reads the management control register for the config done bit to be set.
733 **/
734static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
735{
736 s32 timeout = PHY_CFG_TIMEOUT;
737
738 while (timeout) {
739 if (er32(EEMNGCTL) &
740 E1000_NVM_CFG_DONE_PORT_0)
741 break;
742 msleep(1);
743 timeout--;
744 }
745 if (!timeout) {
3bb99fe2 746 e_dbg("MNG configuration cycle has not completed.\n");
bc7f75fa
AK
747 return -E1000_ERR_RESET;
748 }
749
750 return 0;
751}
752
753/**
754 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
755 * @hw: pointer to the HW structure
756 * @active: TRUE to enable LPLU, FALSE to disable
757 *
758 * Sets the LPLU D0 state according to the active flag. When activating LPLU
759 * this function also disables smart speed and vice versa. LPLU will not be
760 * activated unless the device autonegotiation advertisement meets standards
761 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
762 * pointer entry point only called by PHY setup routines.
763 **/
764static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
765{
766 struct e1000_phy_info *phy = &hw->phy;
767 s32 ret_val;
768 u16 data;
769
770 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
771 if (ret_val)
772 return ret_val;
773
774 if (active) {
775 data |= IGP02E1000_PM_D0_LPLU;
776 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
777 if (ret_val)
778 return ret_val;
779
780 /* When LPLU is enabled, we should disable SmartSpeed */
781 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
782 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
783 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
784 if (ret_val)
785 return ret_val;
786 } else {
787 data &= ~IGP02E1000_PM_D0_LPLU;
788 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
ad68076e
BA
789 /*
790 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
791 * during Dx states where the power conservation is most
792 * important. During driver activity we should enable
ad68076e
BA
793 * SmartSpeed, so performance is maintained.
794 */
bc7f75fa
AK
795 if (phy->smart_speed == e1000_smart_speed_on) {
796 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 797 &data);
bc7f75fa
AK
798 if (ret_val)
799 return ret_val;
800
801 data |= IGP01E1000_PSCFR_SMART_SPEED;
802 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 803 data);
bc7f75fa
AK
804 if (ret_val)
805 return ret_val;
806 } else if (phy->smart_speed == e1000_smart_speed_off) {
807 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 808 &data);
bc7f75fa
AK
809 if (ret_val)
810 return ret_val;
811
812 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
813 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 814 data);
bc7f75fa
AK
815 if (ret_val)
816 return ret_val;
817 }
818 }
819
820 return 0;
821}
822
823/**
824 * e1000_reset_hw_82571 - Reset hardware
825 * @hw: pointer to the HW structure
826 *
fe401674 827 * This resets the hardware into a known state.
bc7f75fa
AK
828 **/
829static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
830{
831 u32 ctrl;
832 u32 extcnf_ctrl;
833 u32 ctrl_ext;
834 u32 icr;
835 s32 ret_val;
836 u16 i = 0;
837
ad68076e
BA
838 /*
839 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
840 * on the last TLP read/write transaction when MAC is reset.
841 */
842 ret_val = e1000e_disable_pcie_master(hw);
843 if (ret_val)
3bb99fe2 844 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 845
3bb99fe2 846 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
847 ew32(IMC, 0xffffffff);
848
849 ew32(RCTL, 0);
850 ew32(TCTL, E1000_TCTL_PSP);
851 e1e_flush();
852
853 msleep(10);
854
ad68076e
BA
855 /*
856 * Must acquire the MDIO ownership before MAC reset.
857 * Ownership defaults to firmware after a reset.
858 */
8c81c9c3
AD
859 switch (hw->mac.type) {
860 case e1000_82573:
861 case e1000_82574:
862 case e1000_82583:
bc7f75fa
AK
863 extcnf_ctrl = er32(EXTCNF_CTRL);
864 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
865
866 do {
867 ew32(EXTCNF_CTRL, extcnf_ctrl);
868 extcnf_ctrl = er32(EXTCNF_CTRL);
869
870 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
871 break;
872
873 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
874
875 msleep(2);
876 i++;
877 } while (i < MDIO_OWNERSHIP_TIMEOUT);
8c81c9c3
AD
878 break;
879 default:
880 break;
bc7f75fa
AK
881 }
882
883 ctrl = er32(CTRL);
884
3bb99fe2 885 e_dbg("Issuing a global reset to MAC\n");
bc7f75fa
AK
886 ew32(CTRL, ctrl | E1000_CTRL_RST);
887
888 if (hw->nvm.type == e1000_nvm_flash_hw) {
889 udelay(10);
890 ctrl_ext = er32(CTRL_EXT);
891 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
892 ew32(CTRL_EXT, ctrl_ext);
893 e1e_flush();
894 }
895
896 ret_val = e1000e_get_auto_rd_done(hw);
897 if (ret_val)
898 /* We don't want to continue accessing MAC registers. */
899 return ret_val;
900
ad68076e
BA
901 /*
902 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
bc7f75fa
AK
903 * Need to wait for Phy configuration completion before accessing
904 * NVM and Phy.
905 */
8c81c9c3
AD
906
907 switch (hw->mac.type) {
908 case e1000_82573:
909 case e1000_82574:
910 case e1000_82583:
bc7f75fa 911 msleep(25);
8c81c9c3
AD
912 break;
913 default:
914 break;
915 }
bc7f75fa
AK
916
917 /* Clear any pending interrupt events. */
918 ew32(IMC, 0xffffffff);
919 icr = er32(ICR);
920
93ca1610
BH
921 if (hw->mac.type == e1000_82571 &&
922 hw->dev_spec.e82571.alt_mac_addr_is_present)
923 e1000e_set_laa_state_82571(hw, true);
924
c9523379 925 /* Reinitialize the 82571 serdes link state machine */
926 if (hw->phy.media_type == e1000_media_type_internal_serdes)
927 hw->mac.serdes_link_state = e1000_serdes_link_down;
928
bc7f75fa
AK
929 return 0;
930}
931
932/**
933 * e1000_init_hw_82571 - Initialize hardware
934 * @hw: pointer to the HW structure
935 *
936 * This inits the hardware readying it for operation.
937 **/
938static s32 e1000_init_hw_82571(struct e1000_hw *hw)
939{
940 struct e1000_mac_info *mac = &hw->mac;
941 u32 reg_data;
942 s32 ret_val;
943 u16 i;
944 u16 rar_count = mac->rar_entry_count;
945
946 e1000_initialize_hw_bits_82571(hw);
947
948 /* Initialize identification LED */
949 ret_val = e1000e_id_led_init(hw);
950 if (ret_val) {
3bb99fe2 951 e_dbg("Error initializing identification LED\n");
bc7f75fa
AK
952 return ret_val;
953 }
954
955 /* Disabling VLAN filtering */
3bb99fe2 956 e_dbg("Initializing the IEEE VLAN\n");
bc7f75fa
AK
957 e1000e_clear_vfta(hw);
958
959 /* Setup the receive address. */
ad68076e
BA
960 /*
961 * If, however, a locally administered address was assigned to the
bc7f75fa
AK
962 * 82571, we must reserve a RAR for it to work around an issue where
963 * resetting one port will reload the MAC on the other port.
964 */
965 if (e1000e_get_laa_state_82571(hw))
966 rar_count--;
967 e1000e_init_rx_addrs(hw, rar_count);
968
969 /* Zero out the Multicast HASH table */
3bb99fe2 970 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
971 for (i = 0; i < mac->mta_reg_count; i++)
972 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
973
974 /* Setup link and flow control */
975 ret_val = e1000_setup_link_82571(hw);
976
977 /* Set the transmit descriptor write-back policy */
e9ec2c0f 978 reg_data = er32(TXDCTL(0));
bc7f75fa
AK
979 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
980 E1000_TXDCTL_FULL_TX_DESC_WB |
981 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 982 ew32(TXDCTL(0), reg_data);
bc7f75fa
AK
983
984 /* ...for both queues. */
8c81c9c3
AD
985 switch (mac->type) {
986 case e1000_82573:
987 case e1000_82574:
988 case e1000_82583:
989 e1000e_enable_tx_pkt_filtering(hw);
990 reg_data = er32(GCR);
991 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
992 ew32(GCR, reg_data);
993 break;
994 default:
e9ec2c0f 995 reg_data = er32(TXDCTL(1));
bc7f75fa
AK
996 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
997 E1000_TXDCTL_FULL_TX_DESC_WB |
998 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 999 ew32(TXDCTL(1), reg_data);
8c81c9c3 1000 break;
bc7f75fa
AK
1001 }
1002
ad68076e
BA
1003 /*
1004 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
1005 * important that we do this after we have tried to establish link
1006 * because the symbol error count will increment wildly if there
1007 * is no link.
1008 */
1009 e1000_clear_hw_cntrs_82571(hw);
1010
1011 return ret_val;
1012}
1013
1014/**
1015 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1016 * @hw: pointer to the HW structure
1017 *
1018 * Initializes required hardware-dependent bits needed for normal operation.
1019 **/
1020static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1021{
1022 u32 reg;
1023
1024 /* Transmit Descriptor Control 0 */
e9ec2c0f 1025 reg = er32(TXDCTL(0));
bc7f75fa 1026 reg |= (1 << 22);
e9ec2c0f 1027 ew32(TXDCTL(0), reg);
bc7f75fa
AK
1028
1029 /* Transmit Descriptor Control 1 */
e9ec2c0f 1030 reg = er32(TXDCTL(1));
bc7f75fa 1031 reg |= (1 << 22);
e9ec2c0f 1032 ew32(TXDCTL(1), reg);
bc7f75fa
AK
1033
1034 /* Transmit Arbitration Control 0 */
e9ec2c0f 1035 reg = er32(TARC(0));
bc7f75fa
AK
1036 reg &= ~(0xF << 27); /* 30:27 */
1037 switch (hw->mac.type) {
1038 case e1000_82571:
1039 case e1000_82572:
1040 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1041 break;
1042 default:
1043 break;
1044 }
e9ec2c0f 1045 ew32(TARC(0), reg);
bc7f75fa
AK
1046
1047 /* Transmit Arbitration Control 1 */
e9ec2c0f 1048 reg = er32(TARC(1));
bc7f75fa
AK
1049 switch (hw->mac.type) {
1050 case e1000_82571:
1051 case e1000_82572:
1052 reg &= ~((1 << 29) | (1 << 30));
1053 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1054 if (er32(TCTL) & E1000_TCTL_MULR)
1055 reg &= ~(1 << 28);
1056 else
1057 reg |= (1 << 28);
e9ec2c0f 1058 ew32(TARC(1), reg);
bc7f75fa
AK
1059 break;
1060 default:
1061 break;
1062 }
1063
1064 /* Device Control */
8c81c9c3
AD
1065 switch (hw->mac.type) {
1066 case e1000_82573:
1067 case e1000_82574:
1068 case e1000_82583:
bc7f75fa
AK
1069 reg = er32(CTRL);
1070 reg &= ~(1 << 29);
1071 ew32(CTRL, reg);
8c81c9c3
AD
1072 break;
1073 default:
1074 break;
bc7f75fa
AK
1075 }
1076
1077 /* Extended Device Control */
8c81c9c3
AD
1078 switch (hw->mac.type) {
1079 case e1000_82573:
1080 case e1000_82574:
1081 case e1000_82583:
bc7f75fa
AK
1082 reg = er32(CTRL_EXT);
1083 reg &= ~(1 << 23);
1084 reg |= (1 << 22);
1085 ew32(CTRL_EXT, reg);
8c81c9c3
AD
1086 break;
1087 default:
1088 break;
bc7f75fa 1089 }
4662e82b 1090
6ea7ae1d
AD
1091 if (hw->mac.type == e1000_82571) {
1092 reg = er32(PBA_ECC);
1093 reg |= E1000_PBA_ECC_CORR_EN;
1094 ew32(PBA_ECC, reg);
1095 }
5df3f0ea 1096 /*
1097 * Workaround for hardware errata.
1098 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1099 */
1100
1101 if ((hw->mac.type == e1000_82571) ||
1102 (hw->mac.type == e1000_82572)) {
1103 reg = er32(CTRL_EXT);
1104 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1105 ew32(CTRL_EXT, reg);
1106 }
1107
6ea7ae1d 1108
78272bba 1109 /* PCI-Ex Control Registers */
8c81c9c3
AD
1110 switch (hw->mac.type) {
1111 case e1000_82574:
1112 case e1000_82583:
4662e82b
BA
1113 reg = er32(GCR);
1114 reg |= (1 << 22);
1115 ew32(GCR, reg);
78272bba 1116
84efb7b9
BA
1117 /*
1118 * Workaround for hardware errata.
1119 * apply workaround for hardware errata documented in errata
1120 * docs Fixes issue where some error prone or unreliable PCIe
1121 * completions are occurring, particularly with ASPM enabled.
1122 * Without fix, issue can cause tx timeouts.
1123 */
78272bba
JB
1124 reg = er32(GCR2);
1125 reg |= 1;
1126 ew32(GCR2, reg);
8c81c9c3
AD
1127 break;
1128 default:
1129 break;
4662e82b
BA
1130 }
1131
1132 return;
bc7f75fa
AK
1133}
1134
1135/**
1136 * e1000e_clear_vfta - Clear VLAN filter table
1137 * @hw: pointer to the HW structure
1138 *
1139 * Clears the register array which contains the VLAN filter table by
1140 * setting all the values to 0.
1141 **/
1142void e1000e_clear_vfta(struct e1000_hw *hw)
1143{
1144 u32 offset;
1145 u32 vfta_value = 0;
1146 u32 vfta_offset = 0;
1147 u32 vfta_bit_in_reg = 0;
1148
8c81c9c3
AD
1149 switch (hw->mac.type) {
1150 case e1000_82573:
1151 case e1000_82574:
1152 case e1000_82583:
bc7f75fa 1153 if (hw->mng_cookie.vlan_id != 0) {
ad68076e
BA
1154 /*
1155 * The VFTA is a 4096b bit-field, each identifying
bc7f75fa
AK
1156 * a single VLAN ID. The following operations
1157 * determine which 32b entry (i.e. offset) into the
1158 * array we want to set the VLAN ID (i.e. bit) of
1159 * the manageability unit.
1160 */
1161 vfta_offset = (hw->mng_cookie.vlan_id >>
1162 E1000_VFTA_ENTRY_SHIFT) &
1163 E1000_VFTA_ENTRY_MASK;
1164 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1165 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1166 }
8c81c9c3
AD
1167 break;
1168 default:
1169 break;
bc7f75fa
AK
1170 }
1171 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
ad68076e
BA
1172 /*
1173 * If the offset we want to clear is the same offset of the
bc7f75fa
AK
1174 * manageability VLAN ID, then clear all bits except that of
1175 * the manageability unit.
1176 */
1177 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1178 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1179 e1e_flush();
1180 }
1181}
1182
4662e82b
BA
1183/**
1184 * e1000_check_mng_mode_82574 - Check manageability is enabled
1185 * @hw: pointer to the HW structure
1186 *
1187 * Reads the NVM Initialization Control Word 2 and returns true
1188 * (>0) if any manageability is enabled, else false (0).
1189 **/
1190static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1191{
1192 u16 data;
1193
1194 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1195 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1196}
1197
1198/**
1199 * e1000_led_on_82574 - Turn LED on
1200 * @hw: pointer to the HW structure
1201 *
1202 * Turn LED on.
1203 **/
1204static s32 e1000_led_on_82574(struct e1000_hw *hw)
1205{
1206 u32 ctrl;
1207 u32 i;
1208
1209 ctrl = hw->mac.ledctl_mode2;
1210 if (!(E1000_STATUS_LU & er32(STATUS))) {
1211 /*
1212 * If no link, then turn LED on by setting the invert bit
1213 * for each LED that's "on" (0x0E) in ledctl_mode2.
1214 */
1215 for (i = 0; i < 4; i++)
1216 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1217 E1000_LEDCTL_MODE_LED_ON)
1218 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1219 }
1220 ew32(LEDCTL, ctrl);
1221
1222 return 0;
1223}
1224
bc7f75fa 1225/**
e2de3eb6 1226 * e1000_update_mc_addr_list_82571 - Update Multicast addresses
bc7f75fa
AK
1227 * @hw: pointer to the HW structure
1228 * @mc_addr_list: array of multicast addresses to program
1229 * @mc_addr_count: number of multicast addresses to program
1230 * @rar_used_count: the first RAR register free to program
1231 * @rar_count: total number of supported Receive Address Registers
1232 *
1233 * Updates the Receive Address Registers and Multicast Table Array.
1234 * The caller must have a packed mc_addr_list of multicast addresses.
1235 * The parameter rar_count will usually be hw->mac.rar_entry_count
1236 * unless there are workarounds that change this.
1237 **/
e2de3eb6 1238static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
bc7f75fa
AK
1239 u8 *mc_addr_list,
1240 u32 mc_addr_count,
1241 u32 rar_used_count,
1242 u32 rar_count)
1243{
1244 if (e1000e_get_laa_state_82571(hw))
1245 rar_count--;
1246
e2de3eb6
JK
1247 e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
1248 rar_used_count, rar_count);
bc7f75fa
AK
1249}
1250
1251/**
1252 * e1000_setup_link_82571 - Setup flow control and link settings
1253 * @hw: pointer to the HW structure
1254 *
1255 * Determines which flow control settings to use, then configures flow
1256 * control. Calls the appropriate media-specific link configuration
1257 * function. Assuming the adapter has a valid link partner, a valid link
1258 * should be established. Assumes the hardware has previously been reset
1259 * and the transmitter and receiver are not enabled.
1260 **/
1261static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1262{
ad68076e
BA
1263 /*
1264 * 82573 does not have a word in the NVM to determine
bc7f75fa
AK
1265 * the default flow control setting, so we explicitly
1266 * set it to full.
1267 */
8c81c9c3
AD
1268 switch (hw->mac.type) {
1269 case e1000_82573:
1270 case e1000_82574:
1271 case e1000_82583:
1272 if (hw->fc.requested_mode == e1000_fc_default)
1273 hw->fc.requested_mode = e1000_fc_full;
1274 break;
1275 default:
1276 break;
1277 }
bc7f75fa
AK
1278
1279 return e1000e_setup_link(hw);
1280}
1281
1282/**
1283 * e1000_setup_copper_link_82571 - Configure copper link settings
1284 * @hw: pointer to the HW structure
1285 *
1286 * Configures the link for auto-neg or forced speed and duplex. Then we check
1287 * for link, once link is established calls to configure collision distance
1288 * and flow control are called.
1289 **/
1290static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1291{
1292 u32 ctrl;
1293 u32 led_ctrl;
1294 s32 ret_val;
1295
1296 ctrl = er32(CTRL);
1297 ctrl |= E1000_CTRL_SLU;
1298 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1299 ew32(CTRL, ctrl);
1300
1301 switch (hw->phy.type) {
1302 case e1000_phy_m88:
4662e82b 1303 case e1000_phy_bm:
bc7f75fa
AK
1304 ret_val = e1000e_copper_link_setup_m88(hw);
1305 break;
1306 case e1000_phy_igp_2:
1307 ret_val = e1000e_copper_link_setup_igp(hw);
1308 /* Setup activity LED */
1309 led_ctrl = er32(LEDCTL);
1310 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1311 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1312 ew32(LEDCTL, led_ctrl);
1313 break;
1314 default:
1315 return -E1000_ERR_PHY;
1316 break;
1317 }
1318
1319 if (ret_val)
1320 return ret_val;
1321
1322 ret_val = e1000e_setup_copper_link(hw);
1323
1324 return ret_val;
1325}
1326
1327/**
1328 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1329 * @hw: pointer to the HW structure
1330 *
1331 * Configures collision distance and flow control for fiber and serdes links.
1332 * Upon successful setup, poll for link.
1333 **/
1334static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1335{
1336 switch (hw->mac.type) {
1337 case e1000_82571:
1338 case e1000_82572:
ad68076e
BA
1339 /*
1340 * If SerDes loopback mode is entered, there is no form
bc7f75fa
AK
1341 * of reset to take the adapter out of that mode. So we
1342 * have to explicitly take the adapter out of loopback
489815ce 1343 * mode. This prevents drivers from twiddling their thumbs
bc7f75fa
AK
1344 * if another tool failed to take it out of loopback mode.
1345 */
ad68076e 1346 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
bc7f75fa
AK
1347 break;
1348 default:
1349 break;
1350 }
1351
1352 return e1000e_setup_fiber_serdes_link(hw);
1353}
1354
c9523379 1355/**
1356 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1357 * @hw: pointer to the HW structure
1358 *
1359 * Checks for link up on the hardware. If link is not up and we have
1360 * a signal, then we need to force link up.
1361 **/
f6370117 1362static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
c9523379 1363{
1364 struct e1000_mac_info *mac = &hw->mac;
1365 u32 rxcw;
1366 u32 ctrl;
1367 u32 status;
1368 s32 ret_val = 0;
1369
1370 ctrl = er32(CTRL);
1371 status = er32(STATUS);
1372 rxcw = er32(RXCW);
1373
1374 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1375
1376 /* Receiver is synchronized with no invalid bits. */
1377 switch (mac->serdes_link_state) {
1378 case e1000_serdes_link_autoneg_complete:
1379 if (!(status & E1000_STATUS_LU)) {
1380 /*
1381 * We have lost link, retry autoneg before
1382 * reporting link failure
1383 */
1384 mac->serdes_link_state =
1385 e1000_serdes_link_autoneg_progress;
3bb99fe2 1386 e_dbg("AN_UP -> AN_PROG\n");
c9523379 1387 }
1388 break;
1389
1390 case e1000_serdes_link_forced_up:
1391 /*
1392 * If we are receiving /C/ ordered sets, re-enable
1393 * auto-negotiation in the TXCW register and disable
1394 * forced link in the Device Control register in an
1395 * attempt to auto-negotiate with our link partner.
1396 */
1397 if (rxcw & E1000_RXCW_C) {
1398 /* Enable autoneg, and unforce link up */
1399 ew32(TXCW, mac->txcw);
1400 ew32(CTRL,
1401 (ctrl & ~E1000_CTRL_SLU));
1402 mac->serdes_link_state =
1403 e1000_serdes_link_autoneg_progress;
3bb99fe2 1404 e_dbg("FORCED_UP -> AN_PROG\n");
c9523379 1405 }
1406 break;
1407
1408 case e1000_serdes_link_autoneg_progress:
1409 /*
1410 * If the LU bit is set in the STATUS register,
1411 * autoneg has completed sucessfully. If not,
1412 * try foring the link because the far end may be
1413 * available but not capable of autonegotiation.
1414 */
1415 if (status & E1000_STATUS_LU) {
1416 mac->serdes_link_state =
1417 e1000_serdes_link_autoneg_complete;
3bb99fe2 1418 e_dbg("AN_PROG -> AN_UP\n");
c9523379 1419 } else {
1420 /*
1421 * Disable autoneg, force link up and
1422 * full duplex, and change state to forced
1423 */
1424 ew32(TXCW,
1425 (mac->txcw & ~E1000_TXCW_ANE));
1426 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1427 ew32(CTRL, ctrl);
1428
1429 /* Configure Flow Control after link up. */
1430 ret_val =
1431 e1000e_config_fc_after_link_up(hw);
1432 if (ret_val) {
3bb99fe2 1433 e_dbg("Error config flow control\n");
c9523379 1434 break;
1435 }
1436 mac->serdes_link_state =
1437 e1000_serdes_link_forced_up;
3bb99fe2 1438 e_dbg("AN_PROG -> FORCED_UP\n");
c9523379 1439 }
1440 mac->serdes_has_link = true;
1441 break;
1442
1443 case e1000_serdes_link_down:
1444 default:
1445 /* The link was down but the receiver has now gained
1446 * valid sync, so lets see if we can bring the link
1447 * up. */
1448 ew32(TXCW, mac->txcw);
1449 ew32(CTRL,
1450 (ctrl & ~E1000_CTRL_SLU));
1451 mac->serdes_link_state =
1452 e1000_serdes_link_autoneg_progress;
3bb99fe2 1453 e_dbg("DOWN -> AN_PROG\n");
c9523379 1454 break;
1455 }
1456 } else {
1457 if (!(rxcw & E1000_RXCW_SYNCH)) {
1458 mac->serdes_has_link = false;
1459 mac->serdes_link_state = e1000_serdes_link_down;
3bb99fe2 1460 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1461 } else {
1462 /*
1463 * We have sync, and can tolerate one
1464 * invalid (IV) codeword before declaring
1465 * link down, so reread to look again
1466 */
1467 udelay(10);
1468 rxcw = er32(RXCW);
1469 if (rxcw & E1000_RXCW_IV) {
1470 mac->serdes_link_state = e1000_serdes_link_down;
1471 mac->serdes_has_link = false;
3bb99fe2 1472 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1473 }
1474 }
1475 }
1476
1477 return ret_val;
1478}
1479
bc7f75fa
AK
1480/**
1481 * e1000_valid_led_default_82571 - Verify a valid default LED config
1482 * @hw: pointer to the HW structure
1483 * @data: pointer to the NVM (EEPROM)
1484 *
1485 * Read the EEPROM for the current default LED configuration. If the
1486 * LED configuration is not valid, set to a valid LED configuration.
1487 **/
1488static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1489{
1490 s32 ret_val;
1491
1492 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1493 if (ret_val) {
3bb99fe2 1494 e_dbg("NVM Read Error\n");
bc7f75fa
AK
1495 return ret_val;
1496 }
1497
8c81c9c3
AD
1498 switch (hw->mac.type) {
1499 case e1000_82573:
1500 case e1000_82574:
1501 case e1000_82583:
1502 if (*data == ID_LED_RESERVED_F746)
1503 *data = ID_LED_DEFAULT_82573;
1504 break;
1505 default:
1506 if (*data == ID_LED_RESERVED_0000 ||
1507 *data == ID_LED_RESERVED_FFFF)
1508 *data = ID_LED_DEFAULT;
1509 break;
1510 }
bc7f75fa
AK
1511
1512 return 0;
1513}
1514
1515/**
1516 * e1000e_get_laa_state_82571 - Get locally administered address state
1517 * @hw: pointer to the HW structure
1518 *
489815ce 1519 * Retrieve and return the current locally administered address state.
bc7f75fa
AK
1520 **/
1521bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1522{
1523 if (hw->mac.type != e1000_82571)
1524 return 0;
1525
1526 return hw->dev_spec.e82571.laa_is_present;
1527}
1528
1529/**
1530 * e1000e_set_laa_state_82571 - Set locally administered address state
1531 * @hw: pointer to the HW structure
1532 * @state: enable/disable locally administered address
1533 *
489815ce 1534 * Enable/Disable the current locally administers address state.
bc7f75fa
AK
1535 **/
1536void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1537{
1538 if (hw->mac.type != e1000_82571)
1539 return;
1540
1541 hw->dev_spec.e82571.laa_is_present = state;
1542
1543 /* If workaround is activated... */
1544 if (state)
ad68076e
BA
1545 /*
1546 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
1547 * between the time RAR[0] gets clobbered and the time it
1548 * gets fixed, the actual LAA is in one of the RARs and no
1549 * incoming packets directed to this port are dropped.
1550 * Eventually the LAA will be in RAR[0] and RAR[14].
1551 */
1552 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1553}
1554
1555/**
1556 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1557 * @hw: pointer to the HW structure
1558 *
1559 * Verifies that the EEPROM has completed the update. After updating the
1560 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1561 * the checksum fix is not implemented, we need to set the bit and update
1562 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1563 * we need to return bad checksum.
1564 **/
1565static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1566{
1567 struct e1000_nvm_info *nvm = &hw->nvm;
1568 s32 ret_val;
1569 u16 data;
1570
1571 if (nvm->type != e1000_nvm_flash_hw)
1572 return 0;
1573
ad68076e
BA
1574 /*
1575 * Check bit 4 of word 10h. If it is 0, firmware is done updating
bc7f75fa
AK
1576 * 10h-12h. Checksum may need to be fixed.
1577 */
1578 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1579 if (ret_val)
1580 return ret_val;
1581
1582 if (!(data & 0x10)) {
ad68076e
BA
1583 /*
1584 * Read 0x23 and check bit 15. This bit is a 1
bc7f75fa
AK
1585 * when the checksum has already been fixed. If
1586 * the checksum is still wrong and this bit is a
1587 * 1, we need to return bad checksum. Otherwise,
1588 * we need to set this bit to a 1 and update the
1589 * checksum.
1590 */
1591 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1592 if (ret_val)
1593 return ret_val;
1594
1595 if (!(data & 0x8000)) {
1596 data |= 0x8000;
1597 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1598 if (ret_val)
1599 return ret_val;
1600 ret_val = e1000e_update_nvm_checksum(hw);
1601 }
1602 }
1603
1604 return 0;
1605}
1606
1607/**
1608 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1609 * @hw: pointer to the HW structure
1610 *
1611 * Clears the hardware counters by reading the counter registers.
1612 **/
1613static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1614{
1615 u32 temp;
1616
1617 e1000e_clear_hw_cntrs_base(hw);
1618
1619 temp = er32(PRC64);
1620 temp = er32(PRC127);
1621 temp = er32(PRC255);
1622 temp = er32(PRC511);
1623 temp = er32(PRC1023);
1624 temp = er32(PRC1522);
1625 temp = er32(PTC64);
1626 temp = er32(PTC127);
1627 temp = er32(PTC255);
1628 temp = er32(PTC511);
1629 temp = er32(PTC1023);
1630 temp = er32(PTC1522);
1631
1632 temp = er32(ALGNERRC);
1633 temp = er32(RXERRC);
1634 temp = er32(TNCRS);
1635 temp = er32(CEXTERR);
1636 temp = er32(TSCTC);
1637 temp = er32(TSCTFC);
1638
1639 temp = er32(MGTPRC);
1640 temp = er32(MGTPDC);
1641 temp = er32(MGTPTC);
1642
1643 temp = er32(IAC);
1644 temp = er32(ICRXOC);
1645
1646 temp = er32(ICRXPTC);
1647 temp = er32(ICRXATC);
1648 temp = er32(ICTXPTC);
1649 temp = er32(ICTXATC);
1650 temp = er32(ICTXQEC);
1651 temp = er32(ICTXQMTC);
1652 temp = er32(ICRXDMTC);
1653}
1654
1655static struct e1000_mac_operations e82571_mac_ops = {
4662e82b 1656 /* .check_mng_mode: mac type dependent */
bc7f75fa 1657 /* .check_for_link: media type dependent */
a4f58f54 1658 .id_led_init = e1000e_id_led_init,
bc7f75fa
AK
1659 .cleanup_led = e1000e_cleanup_led_generic,
1660 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1661 .get_bus_info = e1000e_get_bus_info_pcie,
1662 /* .get_link_up_info: media type dependent */
4662e82b 1663 /* .led_on: mac type dependent */
bc7f75fa 1664 .led_off = e1000e_led_off_generic,
e2de3eb6 1665 .update_mc_addr_list = e1000_update_mc_addr_list_82571,
bc7f75fa
AK
1666 .reset_hw = e1000_reset_hw_82571,
1667 .init_hw = e1000_init_hw_82571,
1668 .setup_link = e1000_setup_link_82571,
1669 /* .setup_physical_interface: media type dependent */
a4f58f54 1670 .setup_led = e1000e_setup_led_generic,
bc7f75fa
AK
1671};
1672
1673static struct e1000_phy_operations e82_phy_ops_igp = {
94d8186a 1674 .acquire = e1000_get_hw_semaphore_82571,
bc7f75fa 1675 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1676 .commit = NULL,
bc7f75fa
AK
1677 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1678 .get_cfg_done = e1000_get_cfg_done_82571,
1679 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
1680 .get_info = e1000e_get_phy_info_igp,
1681 .read_reg = e1000e_read_phy_reg_igp,
1682 .release = e1000_put_hw_semaphore_82571,
1683 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1684 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1685 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1686 .write_reg = e1000e_write_phy_reg_igp,
75eb0fad 1687 .cfg_on_link_up = NULL,
bc7f75fa
AK
1688};
1689
1690static struct e1000_phy_operations e82_phy_ops_m88 = {
94d8186a 1691 .acquire = e1000_get_hw_semaphore_82571,
bc7f75fa 1692 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1693 .commit = e1000e_phy_sw_reset,
bc7f75fa
AK
1694 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1695 .get_cfg_done = e1000e_get_cfg_done,
1696 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1697 .get_info = e1000e_get_phy_info_m88,
1698 .read_reg = e1000e_read_phy_reg_m88,
1699 .release = e1000_put_hw_semaphore_82571,
1700 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1701 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1702 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1703 .write_reg = e1000e_write_phy_reg_m88,
75eb0fad 1704 .cfg_on_link_up = NULL,
bc7f75fa
AK
1705};
1706
4662e82b 1707static struct e1000_phy_operations e82_phy_ops_bm = {
94d8186a 1708 .acquire = e1000_get_hw_semaphore_82571,
4662e82b 1709 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1710 .commit = e1000e_phy_sw_reset,
4662e82b
BA
1711 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1712 .get_cfg_done = e1000e_get_cfg_done,
1713 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1714 .get_info = e1000e_get_phy_info_m88,
1715 .read_reg = e1000e_read_phy_reg_bm2,
1716 .release = e1000_put_hw_semaphore_82571,
1717 .reset = e1000e_phy_hw_reset_generic,
4662e82b
BA
1718 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1719 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1720 .write_reg = e1000e_write_phy_reg_bm2,
75eb0fad 1721 .cfg_on_link_up = NULL,
4662e82b
BA
1722};
1723
bc7f75fa 1724static struct e1000_nvm_operations e82571_nvm_ops = {
94d8186a
BA
1725 .acquire = e1000_acquire_nvm_82571,
1726 .read = e1000e_read_nvm_eerd,
1727 .release = e1000_release_nvm_82571,
1728 .update = e1000_update_nvm_checksum_82571,
bc7f75fa 1729 .valid_led_default = e1000_valid_led_default_82571,
94d8186a
BA
1730 .validate = e1000_validate_nvm_checksum_82571,
1731 .write = e1000_write_nvm_82571,
bc7f75fa
AK
1732};
1733
1734struct e1000_info e1000_82571_info = {
1735 .mac = e1000_82571,
1736 .flags = FLAG_HAS_HW_VLAN_FILTER
1737 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1738 | FLAG_HAS_WOL
1739 | FLAG_APME_IN_CTRL3
1740 | FLAG_RX_CSUM_ENABLED
1741 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1742 | FLAG_HAS_SMART_POWER_DOWN
1743 | FLAG_RESET_OVERWRITES_LAA /* errata */
1744 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1745 | FLAG_APME_CHECK_PORT_B,
1746 .pba = 38,
2adc55c9 1747 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1748 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1749 .mac_ops = &e82571_mac_ops,
1750 .phy_ops = &e82_phy_ops_igp,
1751 .nvm_ops = &e82571_nvm_ops,
1752};
1753
1754struct e1000_info e1000_82572_info = {
1755 .mac = e1000_82572,
1756 .flags = FLAG_HAS_HW_VLAN_FILTER
1757 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1758 | FLAG_HAS_WOL
1759 | FLAG_APME_IN_CTRL3
1760 | FLAG_RX_CSUM_ENABLED
1761 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1762 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1763 .pba = 38,
2adc55c9 1764 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1765 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1766 .mac_ops = &e82571_mac_ops,
1767 .phy_ops = &e82_phy_ops_igp,
1768 .nvm_ops = &e82571_nvm_ops,
1769};
1770
1771struct e1000_info e1000_82573_info = {
1772 .mac = e1000_82573,
1773 .flags = FLAG_HAS_HW_VLAN_FILTER
1774 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1775 | FLAG_HAS_WOL
1776 | FLAG_APME_IN_CTRL3
1777 | FLAG_RX_CSUM_ENABLED
bc7f75fa
AK
1778 | FLAG_HAS_SMART_POWER_DOWN
1779 | FLAG_HAS_AMT
bc7f75fa
AK
1780 | FLAG_HAS_ERT
1781 | FLAG_HAS_SWSM_ON_LOAD,
1782 .pba = 20,
2adc55c9 1783 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 1784 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1785 .mac_ops = &e82571_mac_ops,
1786 .phy_ops = &e82_phy_ops_m88,
31f8c4fe 1787 .nvm_ops = &e82571_nvm_ops,
bc7f75fa
AK
1788};
1789
4662e82b
BA
1790struct e1000_info e1000_82574_info = {
1791 .mac = e1000_82574,
1792 .flags = FLAG_HAS_HW_VLAN_FILTER
1793 | FLAG_HAS_MSIX
1794 | FLAG_HAS_JUMBO_FRAMES
1795 | FLAG_HAS_WOL
1796 | FLAG_APME_IN_CTRL3
1797 | FLAG_RX_CSUM_ENABLED
1798 | FLAG_HAS_SMART_POWER_DOWN
1799 | FLAG_HAS_AMT
1800 | FLAG_HAS_CTRLEXT_ON_LOAD,
1801 .pba = 20,
a825e00c 1802 .max_hw_frame_size = DEFAULT_JUMBO,
4662e82b
BA
1803 .get_variants = e1000_get_variants_82571,
1804 .mac_ops = &e82571_mac_ops,
1805 .phy_ops = &e82_phy_ops_bm,
1806 .nvm_ops = &e82571_nvm_ops,
1807};
1808
8c81c9c3
AD
1809struct e1000_info e1000_82583_info = {
1810 .mac = e1000_82583,
1811 .flags = FLAG_HAS_HW_VLAN_FILTER
1812 | FLAG_HAS_WOL
1813 | FLAG_APME_IN_CTRL3
1814 | FLAG_RX_CSUM_ENABLED
1815 | FLAG_HAS_SMART_POWER_DOWN
1816 | FLAG_HAS_AMT
1817 | FLAG_HAS_CTRLEXT_ON_LOAD,
1818 .pba = 20,
a825e00c 1819 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
8c81c9c3
AD
1820 .get_variants = e1000_get_variants_82571,
1821 .mac_ops = &e82571_mac_ops,
1822 .phy_ops = &e82_phy_ops_bm,
1823 .nvm_ops = &e82571_nvm_ops,
1824};
1825