]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/e1000e/82571.c
e1000e: typo corrections
[net-next-2.6.git] / drivers / net / e1000e / 82571.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
c7e54b1b 4 Copyright(c) 1999 - 2009 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82571EB Gigabit Ethernet Controller
1605927f 31 * 82571EB Gigabit Ethernet Controller (Copper)
bc7f75fa 32 * 82571EB Gigabit Ethernet Controller (Fiber)
ad68076e
BA
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
bc7f75fa
AK
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
4662e82b 42 * 82574L Gigabit Network Connection
8c81c9c3 43 * 82583V Gigabit Network Connection
bc7f75fa
AK
44 */
45
bc7f75fa
AK
46#include "e1000.h"
47
48#define ID_LED_RESERVED_F746 0xF746
49#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
53
54#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55
4662e82b
BA
56#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
57
bc7f75fa
AK
58static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
59static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
60static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
c9523379 61static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
bc7f75fa
AK
62static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
63 u16 words, u16 *data);
64static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
65static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
66static s32 e1000_setup_link_82571(struct e1000_hw *hw);
67static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
caaddaf8 68static void e1000_clear_vfta_82571(struct e1000_hw *hw);
4662e82b
BA
69static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
70static s32 e1000_led_on_82574(struct e1000_hw *hw);
23a2d1b2 71static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
17f208de 72static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
bc7f75fa
AK
73
74/**
75 * e1000_init_phy_params_82571 - Init PHY func ptrs.
76 * @hw: pointer to the HW structure
bc7f75fa
AK
77 **/
78static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
79{
80 struct e1000_phy_info *phy = &hw->phy;
81 s32 ret_val;
82
318a94d6 83 if (hw->phy.media_type != e1000_media_type_copper) {
bc7f75fa
AK
84 phy->type = e1000_phy_none;
85 return 0;
86 }
87
88 phy->addr = 1;
89 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
90 phy->reset_delay_us = 100;
91
17f208de
BA
92 phy->ops.power_up = e1000_power_up_phy_copper;
93 phy->ops.power_down = e1000_power_down_phy_copper_82571;
94
bc7f75fa
AK
95 switch (hw->mac.type) {
96 case e1000_82571:
97 case e1000_82572:
98 phy->type = e1000_phy_igp_2;
99 break;
100 case e1000_82573:
101 phy->type = e1000_phy_m88;
102 break;
4662e82b 103 case e1000_82574:
8c81c9c3 104 case e1000_82583:
4662e82b
BA
105 phy->type = e1000_phy_bm;
106 break;
bc7f75fa
AK
107 default:
108 return -E1000_ERR_PHY;
109 break;
110 }
111
112 /* This can only be done after all function pointers are setup. */
113 ret_val = e1000_get_phy_id_82571(hw);
114
115 /* Verify phy id */
116 switch (hw->mac.type) {
117 case e1000_82571:
118 case e1000_82572:
119 if (phy->id != IGP01E1000_I_PHY_ID)
120 return -E1000_ERR_PHY;
121 break;
122 case e1000_82573:
123 if (phy->id != M88E1111_I_PHY_ID)
124 return -E1000_ERR_PHY;
125 break;
4662e82b 126 case e1000_82574:
8c81c9c3 127 case e1000_82583:
4662e82b
BA
128 if (phy->id != BME1000_E_PHY_ID_R2)
129 return -E1000_ERR_PHY;
130 break;
bc7f75fa
AK
131 default:
132 return -E1000_ERR_PHY;
133 break;
134 }
135
136 return 0;
137}
138
139/**
140 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
141 * @hw: pointer to the HW structure
bc7f75fa
AK
142 **/
143static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
144{
145 struct e1000_nvm_info *nvm = &hw->nvm;
146 u32 eecd = er32(EECD);
147 u16 size;
148
149 nvm->opcode_bits = 8;
150 nvm->delay_usec = 1;
151 switch (nvm->override) {
152 case e1000_nvm_override_spi_large:
153 nvm->page_size = 32;
154 nvm->address_bits = 16;
155 break;
156 case e1000_nvm_override_spi_small:
157 nvm->page_size = 8;
158 nvm->address_bits = 8;
159 break;
160 default:
161 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
162 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
163 break;
164 }
165
166 switch (hw->mac.type) {
167 case e1000_82573:
4662e82b 168 case e1000_82574:
8c81c9c3 169 case e1000_82583:
bc7f75fa
AK
170 if (((eecd >> 15) & 0x3) == 0x3) {
171 nvm->type = e1000_nvm_flash_hw;
172 nvm->word_size = 2048;
ad68076e
BA
173 /*
174 * Autonomous Flash update bit must be cleared due
bc7f75fa
AK
175 * to Flash update issue.
176 */
177 eecd &= ~E1000_EECD_AUPDEN;
178 ew32(EECD, eecd);
179 break;
180 }
181 /* Fall Through */
182 default:
ad68076e 183 nvm->type = e1000_nvm_eeprom_spi;
bc7f75fa
AK
184 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
185 E1000_EECD_SIZE_EX_SHIFT);
ad68076e
BA
186 /*
187 * Added to a constant, "size" becomes the left-shift value
bc7f75fa
AK
188 * for setting word_size.
189 */
190 size += NVM_WORD_SIZE_BASE_SHIFT;
8d7c294c
JK
191
192 /* EEPROM access above 16k is unsupported */
193 if (size > 14)
194 size = 14;
bc7f75fa
AK
195 nvm->word_size = 1 << size;
196 break;
197 }
198
199 return 0;
200}
201
202/**
203 * e1000_init_mac_params_82571 - Init MAC func ptrs.
204 * @hw: pointer to the HW structure
bc7f75fa
AK
205 **/
206static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
207{
208 struct e1000_hw *hw = &adapter->hw;
209 struct e1000_mac_info *mac = &hw->mac;
210 struct e1000_mac_operations *func = &mac->ops;
23a2d1b2
DG
211 u32 swsm = 0;
212 u32 swsm2 = 0;
213 bool force_clear_smbi = false;
bc7f75fa
AK
214
215 /* Set media type */
216 switch (adapter->pdev->device) {
217 case E1000_DEV_ID_82571EB_FIBER:
218 case E1000_DEV_ID_82572EI_FIBER:
219 case E1000_DEV_ID_82571EB_QUAD_FIBER:
318a94d6 220 hw->phy.media_type = e1000_media_type_fiber;
bc7f75fa
AK
221 break;
222 case E1000_DEV_ID_82571EB_SERDES:
223 case E1000_DEV_ID_82572EI_SERDES:
040babf9
AK
224 case E1000_DEV_ID_82571EB_SERDES_DUAL:
225 case E1000_DEV_ID_82571EB_SERDES_QUAD:
318a94d6 226 hw->phy.media_type = e1000_media_type_internal_serdes;
bc7f75fa
AK
227 break;
228 default:
318a94d6 229 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
230 break;
231 }
232
233 /* Set mta register count */
234 mac->mta_reg_count = 128;
235 /* Set rar entry count */
236 mac->rar_entry_count = E1000_RAR_ENTRIES;
237 /* Set if manageability features are enabled. */
564ea9bb
BA
238 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
239 ? true : false;
f464ba87
BA
240 /* Adaptive IFS supported */
241 mac->adaptive_ifs = true;
bc7f75fa
AK
242
243 /* check for link */
318a94d6 244 switch (hw->phy.media_type) {
bc7f75fa
AK
245 case e1000_media_type_copper:
246 func->setup_physical_interface = e1000_setup_copper_link_82571;
247 func->check_for_link = e1000e_check_for_copper_link;
248 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
249 break;
250 case e1000_media_type_fiber:
ad68076e
BA
251 func->setup_physical_interface =
252 e1000_setup_fiber_serdes_link_82571;
bc7f75fa 253 func->check_for_link = e1000e_check_for_fiber_link;
ad68076e
BA
254 func->get_link_up_info =
255 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
256 break;
257 case e1000_media_type_internal_serdes:
ad68076e
BA
258 func->setup_physical_interface =
259 e1000_setup_fiber_serdes_link_82571;
c9523379 260 func->check_for_link = e1000_check_for_serdes_link_82571;
ad68076e
BA
261 func->get_link_up_info =
262 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
263 break;
264 default:
265 return -E1000_ERR_CONFIG;
266 break;
267 }
268
4662e82b 269 switch (hw->mac.type) {
f4d2dd4c
BA
270 case e1000_82573:
271 func->set_lan_id = e1000_set_lan_id_single_port;
272 func->check_mng_mode = e1000e_check_mng_mode_generic;
273 func->led_on = e1000e_led_on_generic;
274 break;
4662e82b 275 case e1000_82574:
8c81c9c3 276 case e1000_82583:
f4d2dd4c 277 func->set_lan_id = e1000_set_lan_id_single_port;
4662e82b
BA
278 func->check_mng_mode = e1000_check_mng_mode_82574;
279 func->led_on = e1000_led_on_82574;
280 break;
281 default:
282 func->check_mng_mode = e1000e_check_mng_mode_generic;
283 func->led_on = e1000e_led_on_generic;
284 break;
285 }
286
23a2d1b2
DG
287 /*
288 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
289 * first NVM or PHY acess. This should be done for single-port
290 * devices, and for one port only on dual-port devices so that
291 * for those devices we can still use the SMBI lock to synchronize
292 * inter-port accesses to the PHY & NVM.
293 */
294 switch (hw->mac.type) {
295 case e1000_82571:
296 case e1000_82572:
297 swsm2 = er32(SWSM2);
298
299 if (!(swsm2 & E1000_SWSM2_LOCK)) {
300 /* Only do this for the first interface on this card */
301 ew32(SWSM2,
302 swsm2 | E1000_SWSM2_LOCK);
303 force_clear_smbi = true;
304 } else
305 force_clear_smbi = false;
306 break;
307 default:
308 force_clear_smbi = true;
309 break;
310 }
311
312 if (force_clear_smbi) {
313 /* Make sure SWSM.SMBI is clear */
314 swsm = er32(SWSM);
315 if (swsm & E1000_SWSM_SMBI) {
316 /* This bit should not be set on a first interface, and
317 * indicates that the bootagent or EFI code has
318 * improperly left this bit enabled
319 */
3bb99fe2 320 e_dbg("Please update your 82571 Bootagent\n");
23a2d1b2
DG
321 }
322 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
323 }
324
325 /*
2c73e1fe 326 * Initialize device specific counter of SMBI acquisition
23a2d1b2
DG
327 * timeouts.
328 */
329 hw->dev_spec.e82571.smb_counter = 0;
330
bc7f75fa
AK
331 return 0;
332}
333
69e3fd8c 334static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
bc7f75fa
AK
335{
336 struct e1000_hw *hw = &adapter->hw;
337 static int global_quad_port_a; /* global port a indication */
338 struct pci_dev *pdev = adapter->pdev;
339 u16 eeprom_data = 0;
340 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
341 s32 rc;
342
343 rc = e1000_init_mac_params_82571(adapter);
344 if (rc)
345 return rc;
346
347 rc = e1000_init_nvm_params_82571(hw);
348 if (rc)
349 return rc;
350
351 rc = e1000_init_phy_params_82571(hw);
352 if (rc)
353 return rc;
354
355 /* tag quad port adapters first, it's used below */
356 switch (pdev->device) {
357 case E1000_DEV_ID_82571EB_QUAD_COPPER:
358 case E1000_DEV_ID_82571EB_QUAD_FIBER:
359 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
040babf9 360 case E1000_DEV_ID_82571PT_QUAD_COPPER:
bc7f75fa
AK
361 adapter->flags |= FLAG_IS_QUAD_PORT;
362 /* mark the first port */
363 if (global_quad_port_a == 0)
364 adapter->flags |= FLAG_IS_QUAD_PORT_A;
365 /* Reset for multiple quad port adapters */
366 global_quad_port_a++;
367 if (global_quad_port_a == 4)
368 global_quad_port_a = 0;
369 break;
370 default:
371 break;
372 }
373
374 switch (adapter->hw.mac.type) {
375 case e1000_82571:
376 /* these dual ports don't have WoL on port B at all */
377 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
378 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
379 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
380 (is_port_b))
381 adapter->flags &= ~FLAG_HAS_WOL;
382 /* quad ports only support WoL on port A */
383 if (adapter->flags & FLAG_IS_QUAD_PORT &&
6e4ca80d 384 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
bc7f75fa 385 adapter->flags &= ~FLAG_HAS_WOL;
040babf9
AK
386 /* Does not support WoL on any port */
387 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
388 adapter->flags &= ~FLAG_HAS_WOL;
bc7f75fa
AK
389 break;
390
391 case e1000_82573:
392 if (pdev->device == E1000_DEV_ID_82573L) {
e243455d
BA
393 if (e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
394 &eeprom_data) < 0)
395 break;
2adc55c9
BA
396 if (!(eeprom_data & NVM_WORD1A_ASPM_MASK)) {
397 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
398 adapter->max_hw_frame_size = DEFAULT_JUMBO;
399 }
bc7f75fa
AK
400 }
401 break;
402 default:
403 break;
404 }
405
406 return 0;
407}
408
409/**
410 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
411 * @hw: pointer to the HW structure
412 *
413 * Reads the PHY registers and stores the PHY ID and possibly the PHY
414 * revision in the hardware structure.
415 **/
416static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
417{
418 struct e1000_phy_info *phy = &hw->phy;
4662e82b
BA
419 s32 ret_val;
420 u16 phy_id = 0;
bc7f75fa
AK
421
422 switch (hw->mac.type) {
423 case e1000_82571:
424 case e1000_82572:
ad68076e
BA
425 /*
426 * The 82571 firmware may still be configuring the PHY.
bc7f75fa
AK
427 * In this case, we cannot access the PHY until the
428 * configuration is done. So we explicitly set the
ad68076e
BA
429 * PHY ID.
430 */
bc7f75fa
AK
431 phy->id = IGP01E1000_I_PHY_ID;
432 break;
433 case e1000_82573:
434 return e1000e_get_phy_id(hw);
435 break;
4662e82b 436 case e1000_82574:
8c81c9c3 437 case e1000_82583:
4662e82b
BA
438 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
439 if (ret_val)
440 return ret_val;
441
442 phy->id = (u32)(phy_id << 16);
443 udelay(20);
444 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
445 if (ret_val)
446 return ret_val;
447
448 phy->id |= (u32)(phy_id);
449 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
450 break;
bc7f75fa
AK
451 default:
452 return -E1000_ERR_PHY;
453 break;
454 }
455
456 return 0;
457}
458
459/**
460 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
461 * @hw: pointer to the HW structure
462 *
463 * Acquire the HW semaphore to access the PHY or NVM
464 **/
465static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
466{
467 u32 swsm;
23a2d1b2
DG
468 s32 sw_timeout = hw->nvm.word_size + 1;
469 s32 fw_timeout = hw->nvm.word_size + 1;
bc7f75fa
AK
470 s32 i = 0;
471
23a2d1b2
DG
472 /*
473 * If we have timedout 3 times on trying to acquire
474 * the inter-port SMBI semaphore, there is old code
475 * operating on the other port, and it is not
476 * releasing SMBI. Modify the number of times that
477 * we try for the semaphore to interwork with this
478 * older code.
479 */
480 if (hw->dev_spec.e82571.smb_counter > 2)
481 sw_timeout = 1;
482
483 /* Get the SW semaphore */
484 while (i < sw_timeout) {
485 swsm = er32(SWSM);
486 if (!(swsm & E1000_SWSM_SMBI))
487 break;
488
489 udelay(50);
490 i++;
491 }
492
493 if (i == sw_timeout) {
3bb99fe2 494 e_dbg("Driver can't access device - SMBI bit is set.\n");
23a2d1b2
DG
495 hw->dev_spec.e82571.smb_counter++;
496 }
bc7f75fa 497 /* Get the FW semaphore. */
23a2d1b2 498 for (i = 0; i < fw_timeout; i++) {
bc7f75fa
AK
499 swsm = er32(SWSM);
500 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
501
502 /* Semaphore acquired if bit latched */
503 if (er32(SWSM) & E1000_SWSM_SWESMBI)
504 break;
505
506 udelay(50);
507 }
508
23a2d1b2 509 if (i == fw_timeout) {
bc7f75fa 510 /* Release semaphores */
23a2d1b2 511 e1000_put_hw_semaphore_82571(hw);
3bb99fe2 512 e_dbg("Driver can't access the NVM\n");
bc7f75fa
AK
513 return -E1000_ERR_NVM;
514 }
515
516 return 0;
517}
518
519/**
520 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
521 * @hw: pointer to the HW structure
522 *
523 * Release hardware semaphore used to access the PHY or NVM
524 **/
525static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
526{
527 u32 swsm;
528
529 swsm = er32(SWSM);
23a2d1b2 530 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
bc7f75fa
AK
531 ew32(SWSM, swsm);
532}
533
534/**
535 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
536 * @hw: pointer to the HW structure
537 *
538 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
539 * Then for non-82573 hardware, set the EEPROM access request bit and wait
540 * for EEPROM access grant bit. If the access grant bit is not set, release
541 * hardware semaphore.
542 **/
543static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
544{
545 s32 ret_val;
546
547 ret_val = e1000_get_hw_semaphore_82571(hw);
548 if (ret_val)
549 return ret_val;
550
8c81c9c3
AD
551 switch (hw->mac.type) {
552 case e1000_82573:
553 case e1000_82574:
554 case e1000_82583:
555 break;
556 default:
bc7f75fa 557 ret_val = e1000e_acquire_nvm(hw);
8c81c9c3
AD
558 break;
559 }
bc7f75fa
AK
560
561 if (ret_val)
562 e1000_put_hw_semaphore_82571(hw);
563
564 return ret_val;
565}
566
567/**
568 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
569 * @hw: pointer to the HW structure
570 *
571 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
572 **/
573static void e1000_release_nvm_82571(struct e1000_hw *hw)
574{
575 e1000e_release_nvm(hw);
576 e1000_put_hw_semaphore_82571(hw);
577}
578
579/**
580 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
581 * @hw: pointer to the HW structure
582 * @offset: offset within the EEPROM to be written to
583 * @words: number of words to write
584 * @data: 16 bit word(s) to be written to the EEPROM
585 *
586 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
587 *
588 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 589 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
590 **/
591static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
592 u16 *data)
593{
594 s32 ret_val;
595
596 switch (hw->mac.type) {
597 case e1000_82573:
4662e82b 598 case e1000_82574:
8c81c9c3 599 case e1000_82583:
bc7f75fa
AK
600 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
601 break;
602 case e1000_82571:
603 case e1000_82572:
604 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
605 break;
606 default:
607 ret_val = -E1000_ERR_NVM;
608 break;
609 }
610
611 return ret_val;
612}
613
614/**
615 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
616 * @hw: pointer to the HW structure
617 *
618 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
619 * up to the checksum. Then calculates the EEPROM checksum and writes the
620 * value to the EEPROM.
621 **/
622static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
623{
624 u32 eecd;
625 s32 ret_val;
626 u16 i;
627
628 ret_val = e1000e_update_nvm_checksum_generic(hw);
629 if (ret_val)
630 return ret_val;
631
ad68076e
BA
632 /*
633 * If our nvm is an EEPROM, then we're done
634 * otherwise, commit the checksum to the flash NVM.
635 */
bc7f75fa
AK
636 if (hw->nvm.type != e1000_nvm_flash_hw)
637 return ret_val;
638
639 /* Check for pending operations. */
640 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
641 msleep(1);
642 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
643 break;
644 }
645
646 if (i == E1000_FLASH_UPDATES)
647 return -E1000_ERR_NVM;
648
649 /* Reset the firmware if using STM opcode. */
650 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
ad68076e
BA
651 /*
652 * The enabling of and the actual reset must be done
bc7f75fa
AK
653 * in two write cycles.
654 */
655 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
656 e1e_flush();
657 ew32(HICR, E1000_HICR_FW_RESET);
658 }
659
660 /* Commit the write to flash */
661 eecd = er32(EECD) | E1000_EECD_FLUPD;
662 ew32(EECD, eecd);
663
664 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
665 msleep(1);
666 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
667 break;
668 }
669
670 if (i == E1000_FLASH_UPDATES)
671 return -E1000_ERR_NVM;
672
673 return 0;
674}
675
676/**
677 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
678 * @hw: pointer to the HW structure
679 *
680 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
681 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
682 **/
683static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
684{
685 if (hw->nvm.type == e1000_nvm_flash_hw)
686 e1000_fix_nvm_checksum_82571(hw);
687
688 return e1000e_validate_nvm_checksum_generic(hw);
689}
690
691/**
692 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
693 * @hw: pointer to the HW structure
694 * @offset: offset within the EEPROM to be written to
695 * @words: number of words to write
696 * @data: 16 bit word(s) to be written to the EEPROM
697 *
698 * After checking for invalid values, poll the EEPROM to ensure the previous
699 * command has completed before trying to write the next word. After write
700 * poll for completion.
701 *
702 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 703 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
704 **/
705static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
706 u16 words, u16 *data)
707{
708 struct e1000_nvm_info *nvm = &hw->nvm;
a708dd88 709 u32 i, eewr = 0;
bc7f75fa
AK
710 s32 ret_val = 0;
711
ad68076e
BA
712 /*
713 * A check for invalid values: offset too large, too many words,
714 * and not enough words.
715 */
bc7f75fa
AK
716 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
717 (words == 0)) {
3bb99fe2 718 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
719 return -E1000_ERR_NVM;
720 }
721
722 for (i = 0; i < words; i++) {
723 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
724 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
725 E1000_NVM_RW_REG_START;
726
727 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
728 if (ret_val)
729 break;
730
731 ew32(EEWR, eewr);
732
733 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
734 if (ret_val)
735 break;
736 }
737
738 return ret_val;
739}
740
741/**
742 * e1000_get_cfg_done_82571 - Poll for configuration done
743 * @hw: pointer to the HW structure
744 *
745 * Reads the management control register for the config done bit to be set.
746 **/
747static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
748{
749 s32 timeout = PHY_CFG_TIMEOUT;
750
751 while (timeout) {
752 if (er32(EEMNGCTL) &
753 E1000_NVM_CFG_DONE_PORT_0)
754 break;
755 msleep(1);
756 timeout--;
757 }
758 if (!timeout) {
3bb99fe2 759 e_dbg("MNG configuration cycle has not completed.\n");
bc7f75fa
AK
760 return -E1000_ERR_RESET;
761 }
762
763 return 0;
764}
765
766/**
767 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
768 * @hw: pointer to the HW structure
564ea9bb 769 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
770 *
771 * Sets the LPLU D0 state according to the active flag. When activating LPLU
772 * this function also disables smart speed and vice versa. LPLU will not be
773 * activated unless the device autonegotiation advertisement meets standards
774 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
775 * pointer entry point only called by PHY setup routines.
776 **/
777static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
778{
779 struct e1000_phy_info *phy = &hw->phy;
780 s32 ret_val;
781 u16 data;
782
783 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
784 if (ret_val)
785 return ret_val;
786
787 if (active) {
788 data |= IGP02E1000_PM_D0_LPLU;
789 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
790 if (ret_val)
791 return ret_val;
792
793 /* When LPLU is enabled, we should disable SmartSpeed */
794 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
795 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
796 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
797 if (ret_val)
798 return ret_val;
799 } else {
800 data &= ~IGP02E1000_PM_D0_LPLU;
801 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
ad68076e
BA
802 /*
803 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
804 * during Dx states where the power conservation is most
805 * important. During driver activity we should enable
ad68076e
BA
806 * SmartSpeed, so performance is maintained.
807 */
bc7f75fa
AK
808 if (phy->smart_speed == e1000_smart_speed_on) {
809 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 810 &data);
bc7f75fa
AK
811 if (ret_val)
812 return ret_val;
813
814 data |= IGP01E1000_PSCFR_SMART_SPEED;
815 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 816 data);
bc7f75fa
AK
817 if (ret_val)
818 return ret_val;
819 } else if (phy->smart_speed == e1000_smart_speed_off) {
820 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 821 &data);
bc7f75fa
AK
822 if (ret_val)
823 return ret_val;
824
825 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
826 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 827 data);
bc7f75fa
AK
828 if (ret_val)
829 return ret_val;
830 }
831 }
832
833 return 0;
834}
835
836/**
837 * e1000_reset_hw_82571 - Reset hardware
838 * @hw: pointer to the HW structure
839 *
fe401674 840 * This resets the hardware into a known state.
bc7f75fa
AK
841 **/
842static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
843{
a708dd88 844 u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
bc7f75fa
AK
845 s32 ret_val;
846 u16 i = 0;
847
ad68076e
BA
848 /*
849 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
850 * on the last TLP read/write transaction when MAC is reset.
851 */
852 ret_val = e1000e_disable_pcie_master(hw);
853 if (ret_val)
3bb99fe2 854 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 855
3bb99fe2 856 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
857 ew32(IMC, 0xffffffff);
858
859 ew32(RCTL, 0);
860 ew32(TCTL, E1000_TCTL_PSP);
861 e1e_flush();
862
863 msleep(10);
864
ad68076e
BA
865 /*
866 * Must acquire the MDIO ownership before MAC reset.
867 * Ownership defaults to firmware after a reset.
868 */
8c81c9c3
AD
869 switch (hw->mac.type) {
870 case e1000_82573:
871 case e1000_82574:
872 case e1000_82583:
bc7f75fa
AK
873 extcnf_ctrl = er32(EXTCNF_CTRL);
874 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
875
876 do {
877 ew32(EXTCNF_CTRL, extcnf_ctrl);
878 extcnf_ctrl = er32(EXTCNF_CTRL);
879
880 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
881 break;
882
883 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
884
885 msleep(2);
886 i++;
887 } while (i < MDIO_OWNERSHIP_TIMEOUT);
8c81c9c3
AD
888 break;
889 default:
890 break;
bc7f75fa
AK
891 }
892
893 ctrl = er32(CTRL);
894
3bb99fe2 895 e_dbg("Issuing a global reset to MAC\n");
bc7f75fa
AK
896 ew32(CTRL, ctrl | E1000_CTRL_RST);
897
898 if (hw->nvm.type == e1000_nvm_flash_hw) {
899 udelay(10);
900 ctrl_ext = er32(CTRL_EXT);
901 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
902 ew32(CTRL_EXT, ctrl_ext);
903 e1e_flush();
904 }
905
906 ret_val = e1000e_get_auto_rd_done(hw);
907 if (ret_val)
908 /* We don't want to continue accessing MAC registers. */
909 return ret_val;
910
ad68076e
BA
911 /*
912 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
bc7f75fa
AK
913 * Need to wait for Phy configuration completion before accessing
914 * NVM and Phy.
915 */
8c81c9c3
AD
916
917 switch (hw->mac.type) {
918 case e1000_82573:
919 case e1000_82574:
920 case e1000_82583:
bc7f75fa 921 msleep(25);
8c81c9c3
AD
922 break;
923 default:
924 break;
925 }
bc7f75fa
AK
926
927 /* Clear any pending interrupt events. */
928 ew32(IMC, 0xffffffff);
929 icr = er32(ICR);
930
608f8a0d
BA
931 /* Install any alternate MAC address into RAR0 */
932 ret_val = e1000_check_alt_mac_addr_generic(hw);
933 if (ret_val)
934 return ret_val;
935
936 e1000e_set_laa_state_82571(hw, true);
93ca1610 937
c9523379 938 /* Reinitialize the 82571 serdes link state machine */
939 if (hw->phy.media_type == e1000_media_type_internal_serdes)
940 hw->mac.serdes_link_state = e1000_serdes_link_down;
941
bc7f75fa
AK
942 return 0;
943}
944
945/**
946 * e1000_init_hw_82571 - Initialize hardware
947 * @hw: pointer to the HW structure
948 *
949 * This inits the hardware readying it for operation.
950 **/
951static s32 e1000_init_hw_82571(struct e1000_hw *hw)
952{
953 struct e1000_mac_info *mac = &hw->mac;
954 u32 reg_data;
955 s32 ret_val;
a708dd88 956 u16 i, rar_count = mac->rar_entry_count;
bc7f75fa
AK
957
958 e1000_initialize_hw_bits_82571(hw);
959
960 /* Initialize identification LED */
961 ret_val = e1000e_id_led_init(hw);
de39b752 962 if (ret_val)
3bb99fe2 963 e_dbg("Error initializing identification LED\n");
de39b752 964 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
965
966 /* Disabling VLAN filtering */
3bb99fe2 967 e_dbg("Initializing the IEEE VLAN\n");
caaddaf8 968 mac->ops.clear_vfta(hw);
bc7f75fa
AK
969
970 /* Setup the receive address. */
ad68076e
BA
971 /*
972 * If, however, a locally administered address was assigned to the
bc7f75fa
AK
973 * 82571, we must reserve a RAR for it to work around an issue where
974 * resetting one port will reload the MAC on the other port.
975 */
976 if (e1000e_get_laa_state_82571(hw))
977 rar_count--;
978 e1000e_init_rx_addrs(hw, rar_count);
979
980 /* Zero out the Multicast HASH table */
3bb99fe2 981 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
982 for (i = 0; i < mac->mta_reg_count; i++)
983 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
984
985 /* Setup link and flow control */
986 ret_val = e1000_setup_link_82571(hw);
987
988 /* Set the transmit descriptor write-back policy */
e9ec2c0f 989 reg_data = er32(TXDCTL(0));
bc7f75fa
AK
990 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
991 E1000_TXDCTL_FULL_TX_DESC_WB |
992 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 993 ew32(TXDCTL(0), reg_data);
bc7f75fa
AK
994
995 /* ...for both queues. */
8c81c9c3
AD
996 switch (mac->type) {
997 case e1000_82573:
998 case e1000_82574:
999 case e1000_82583:
1000 e1000e_enable_tx_pkt_filtering(hw);
1001 reg_data = er32(GCR);
1002 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1003 ew32(GCR, reg_data);
1004 break;
1005 default:
e9ec2c0f 1006 reg_data = er32(TXDCTL(1));
bc7f75fa
AK
1007 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1008 E1000_TXDCTL_FULL_TX_DESC_WB |
1009 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 1010 ew32(TXDCTL(1), reg_data);
8c81c9c3 1011 break;
bc7f75fa
AK
1012 }
1013
ad68076e
BA
1014 /*
1015 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
1016 * important that we do this after we have tried to establish link
1017 * because the symbol error count will increment wildly if there
1018 * is no link.
1019 */
1020 e1000_clear_hw_cntrs_82571(hw);
1021
1022 return ret_val;
1023}
1024
1025/**
1026 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1027 * @hw: pointer to the HW structure
1028 *
1029 * Initializes required hardware-dependent bits needed for normal operation.
1030 **/
1031static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1032{
1033 u32 reg;
1034
1035 /* Transmit Descriptor Control 0 */
e9ec2c0f 1036 reg = er32(TXDCTL(0));
bc7f75fa 1037 reg |= (1 << 22);
e9ec2c0f 1038 ew32(TXDCTL(0), reg);
bc7f75fa
AK
1039
1040 /* Transmit Descriptor Control 1 */
e9ec2c0f 1041 reg = er32(TXDCTL(1));
bc7f75fa 1042 reg |= (1 << 22);
e9ec2c0f 1043 ew32(TXDCTL(1), reg);
bc7f75fa
AK
1044
1045 /* Transmit Arbitration Control 0 */
e9ec2c0f 1046 reg = er32(TARC(0));
bc7f75fa
AK
1047 reg &= ~(0xF << 27); /* 30:27 */
1048 switch (hw->mac.type) {
1049 case e1000_82571:
1050 case e1000_82572:
1051 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1052 break;
1053 default:
1054 break;
1055 }
e9ec2c0f 1056 ew32(TARC(0), reg);
bc7f75fa
AK
1057
1058 /* Transmit Arbitration Control 1 */
e9ec2c0f 1059 reg = er32(TARC(1));
bc7f75fa
AK
1060 switch (hw->mac.type) {
1061 case e1000_82571:
1062 case e1000_82572:
1063 reg &= ~((1 << 29) | (1 << 30));
1064 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1065 if (er32(TCTL) & E1000_TCTL_MULR)
1066 reg &= ~(1 << 28);
1067 else
1068 reg |= (1 << 28);
e9ec2c0f 1069 ew32(TARC(1), reg);
bc7f75fa
AK
1070 break;
1071 default:
1072 break;
1073 }
1074
1075 /* Device Control */
8c81c9c3
AD
1076 switch (hw->mac.type) {
1077 case e1000_82573:
1078 case e1000_82574:
1079 case e1000_82583:
bc7f75fa
AK
1080 reg = er32(CTRL);
1081 reg &= ~(1 << 29);
1082 ew32(CTRL, reg);
8c81c9c3
AD
1083 break;
1084 default:
1085 break;
bc7f75fa
AK
1086 }
1087
1088 /* Extended Device Control */
8c81c9c3
AD
1089 switch (hw->mac.type) {
1090 case e1000_82573:
1091 case e1000_82574:
1092 case e1000_82583:
bc7f75fa
AK
1093 reg = er32(CTRL_EXT);
1094 reg &= ~(1 << 23);
1095 reg |= (1 << 22);
1096 ew32(CTRL_EXT, reg);
8c81c9c3
AD
1097 break;
1098 default:
1099 break;
bc7f75fa 1100 }
4662e82b 1101
6ea7ae1d
AD
1102 if (hw->mac.type == e1000_82571) {
1103 reg = er32(PBA_ECC);
1104 reg |= E1000_PBA_ECC_CORR_EN;
1105 ew32(PBA_ECC, reg);
1106 }
5df3f0ea 1107 /*
1108 * Workaround for hardware errata.
1109 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1110 */
1111
1112 if ((hw->mac.type == e1000_82571) ||
1113 (hw->mac.type == e1000_82572)) {
1114 reg = er32(CTRL_EXT);
1115 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1116 ew32(CTRL_EXT, reg);
1117 }
1118
6ea7ae1d 1119
78272bba 1120 /* PCI-Ex Control Registers */
8c81c9c3
AD
1121 switch (hw->mac.type) {
1122 case e1000_82574:
1123 case e1000_82583:
4662e82b
BA
1124 reg = er32(GCR);
1125 reg |= (1 << 22);
1126 ew32(GCR, reg);
78272bba 1127
84efb7b9
BA
1128 /*
1129 * Workaround for hardware errata.
1130 * apply workaround for hardware errata documented in errata
1131 * docs Fixes issue where some error prone or unreliable PCIe
1132 * completions are occurring, particularly with ASPM enabled.
1133 * Without fix, issue can cause tx timeouts.
1134 */
78272bba
JB
1135 reg = er32(GCR2);
1136 reg |= 1;
1137 ew32(GCR2, reg);
8c81c9c3
AD
1138 break;
1139 default:
1140 break;
4662e82b
BA
1141 }
1142
1143 return;
bc7f75fa
AK
1144}
1145
1146/**
caaddaf8 1147 * e1000_clear_vfta_82571 - Clear VLAN filter table
bc7f75fa
AK
1148 * @hw: pointer to the HW structure
1149 *
1150 * Clears the register array which contains the VLAN filter table by
1151 * setting all the values to 0.
1152 **/
caaddaf8 1153static void e1000_clear_vfta_82571(struct e1000_hw *hw)
bc7f75fa
AK
1154{
1155 u32 offset;
1156 u32 vfta_value = 0;
1157 u32 vfta_offset = 0;
1158 u32 vfta_bit_in_reg = 0;
1159
8c81c9c3
AD
1160 switch (hw->mac.type) {
1161 case e1000_82573:
1162 case e1000_82574:
1163 case e1000_82583:
bc7f75fa 1164 if (hw->mng_cookie.vlan_id != 0) {
ad68076e
BA
1165 /*
1166 * The VFTA is a 4096b bit-field, each identifying
bc7f75fa
AK
1167 * a single VLAN ID. The following operations
1168 * determine which 32b entry (i.e. offset) into the
1169 * array we want to set the VLAN ID (i.e. bit) of
1170 * the manageability unit.
1171 */
1172 vfta_offset = (hw->mng_cookie.vlan_id >>
1173 E1000_VFTA_ENTRY_SHIFT) &
1174 E1000_VFTA_ENTRY_MASK;
1175 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1176 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1177 }
8c81c9c3
AD
1178 break;
1179 default:
1180 break;
bc7f75fa
AK
1181 }
1182 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
ad68076e
BA
1183 /*
1184 * If the offset we want to clear is the same offset of the
bc7f75fa
AK
1185 * manageability VLAN ID, then clear all bits except that of
1186 * the manageability unit.
1187 */
1188 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1189 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1190 e1e_flush();
1191 }
1192}
1193
4662e82b
BA
1194/**
1195 * e1000_check_mng_mode_82574 - Check manageability is enabled
1196 * @hw: pointer to the HW structure
1197 *
1198 * Reads the NVM Initialization Control Word 2 and returns true
1199 * (>0) if any manageability is enabled, else false (0).
1200 **/
1201static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1202{
1203 u16 data;
1204
1205 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1206 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1207}
1208
1209/**
1210 * e1000_led_on_82574 - Turn LED on
1211 * @hw: pointer to the HW structure
1212 *
1213 * Turn LED on.
1214 **/
1215static s32 e1000_led_on_82574(struct e1000_hw *hw)
1216{
1217 u32 ctrl;
1218 u32 i;
1219
1220 ctrl = hw->mac.ledctl_mode2;
1221 if (!(E1000_STATUS_LU & er32(STATUS))) {
1222 /*
1223 * If no link, then turn LED on by setting the invert bit
1224 * for each LED that's "on" (0x0E) in ledctl_mode2.
1225 */
1226 for (i = 0; i < 4; i++)
1227 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1228 E1000_LEDCTL_MODE_LED_ON)
1229 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1230 }
1231 ew32(LEDCTL, ctrl);
1232
1233 return 0;
1234}
1235
bc7f75fa
AK
1236/**
1237 * e1000_setup_link_82571 - Setup flow control and link settings
1238 * @hw: pointer to the HW structure
1239 *
1240 * Determines which flow control settings to use, then configures flow
1241 * control. Calls the appropriate media-specific link configuration
1242 * function. Assuming the adapter has a valid link partner, a valid link
1243 * should be established. Assumes the hardware has previously been reset
1244 * and the transmitter and receiver are not enabled.
1245 **/
1246static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1247{
ad68076e
BA
1248 /*
1249 * 82573 does not have a word in the NVM to determine
bc7f75fa
AK
1250 * the default flow control setting, so we explicitly
1251 * set it to full.
1252 */
8c81c9c3
AD
1253 switch (hw->mac.type) {
1254 case e1000_82573:
1255 case e1000_82574:
1256 case e1000_82583:
1257 if (hw->fc.requested_mode == e1000_fc_default)
1258 hw->fc.requested_mode = e1000_fc_full;
1259 break;
1260 default:
1261 break;
1262 }
bc7f75fa
AK
1263
1264 return e1000e_setup_link(hw);
1265}
1266
1267/**
1268 * e1000_setup_copper_link_82571 - Configure copper link settings
1269 * @hw: pointer to the HW structure
1270 *
1271 * Configures the link for auto-neg or forced speed and duplex. Then we check
1272 * for link, once link is established calls to configure collision distance
1273 * and flow control are called.
1274 **/
1275static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1276{
1277 u32 ctrl;
bc7f75fa
AK
1278 s32 ret_val;
1279
1280 ctrl = er32(CTRL);
1281 ctrl |= E1000_CTRL_SLU;
1282 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1283 ew32(CTRL, ctrl);
1284
1285 switch (hw->phy.type) {
1286 case e1000_phy_m88:
4662e82b 1287 case e1000_phy_bm:
bc7f75fa
AK
1288 ret_val = e1000e_copper_link_setup_m88(hw);
1289 break;
1290 case e1000_phy_igp_2:
1291 ret_val = e1000e_copper_link_setup_igp(hw);
bc7f75fa
AK
1292 break;
1293 default:
1294 return -E1000_ERR_PHY;
1295 break;
1296 }
1297
1298 if (ret_val)
1299 return ret_val;
1300
1301 ret_val = e1000e_setup_copper_link(hw);
1302
1303 return ret_val;
1304}
1305
1306/**
1307 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1308 * @hw: pointer to the HW structure
1309 *
1310 * Configures collision distance and flow control for fiber and serdes links.
1311 * Upon successful setup, poll for link.
1312 **/
1313static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1314{
1315 switch (hw->mac.type) {
1316 case e1000_82571:
1317 case e1000_82572:
ad68076e
BA
1318 /*
1319 * If SerDes loopback mode is entered, there is no form
bc7f75fa
AK
1320 * of reset to take the adapter out of that mode. So we
1321 * have to explicitly take the adapter out of loopback
489815ce 1322 * mode. This prevents drivers from twiddling their thumbs
bc7f75fa
AK
1323 * if another tool failed to take it out of loopback mode.
1324 */
ad68076e 1325 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
bc7f75fa
AK
1326 break;
1327 default:
1328 break;
1329 }
1330
1331 return e1000e_setup_fiber_serdes_link(hw);
1332}
1333
c9523379 1334/**
1335 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1336 * @hw: pointer to the HW structure
1337 *
1a40d5c1
BA
1338 * Reports the link state as up or down.
1339 *
1340 * If autonegotiation is supported by the link partner, the link state is
1341 * determined by the result of autonegotiation. This is the most likely case.
1342 * If autonegotiation is not supported by the link partner, and the link
1343 * has a valid signal, force the link up.
1344 *
1345 * The link state is represented internally here by 4 states:
1346 *
1347 * 1) down
1348 * 2) autoneg_progress
3ad2f3fb 1349 * 3) autoneg_complete (the link successfully autonegotiated)
1a40d5c1
BA
1350 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1351 *
c9523379 1352 **/
f6370117 1353static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
c9523379 1354{
1355 struct e1000_mac_info *mac = &hw->mac;
1356 u32 rxcw;
1357 u32 ctrl;
1358 u32 status;
1359 s32 ret_val = 0;
1360
1361 ctrl = er32(CTRL);
1362 status = er32(STATUS);
1363 rxcw = er32(RXCW);
1364
1365 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1366
1367 /* Receiver is synchronized with no invalid bits. */
1368 switch (mac->serdes_link_state) {
1369 case e1000_serdes_link_autoneg_complete:
1370 if (!(status & E1000_STATUS_LU)) {
1371 /*
1372 * We have lost link, retry autoneg before
1373 * reporting link failure
1374 */
1375 mac->serdes_link_state =
1376 e1000_serdes_link_autoneg_progress;
1a40d5c1 1377 mac->serdes_has_link = false;
3bb99fe2 1378 e_dbg("AN_UP -> AN_PROG\n");
c9523379 1379 }
1380 break;
1381
1382 case e1000_serdes_link_forced_up:
1383 /*
1384 * If we are receiving /C/ ordered sets, re-enable
1385 * auto-negotiation in the TXCW register and disable
1386 * forced link in the Device Control register in an
1387 * attempt to auto-negotiate with our link partner.
1388 */
1389 if (rxcw & E1000_RXCW_C) {
1390 /* Enable autoneg, and unforce link up */
1391 ew32(TXCW, mac->txcw);
1a40d5c1 1392 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1393 mac->serdes_link_state =
1394 e1000_serdes_link_autoneg_progress;
1a40d5c1 1395 mac->serdes_has_link = false;
3bb99fe2 1396 e_dbg("FORCED_UP -> AN_PROG\n");
c9523379 1397 }
1398 break;
1399
1400 case e1000_serdes_link_autoneg_progress:
1a40d5c1
BA
1401 if (rxcw & E1000_RXCW_C) {
1402 /*
1403 * We received /C/ ordered sets, meaning the
1404 * link partner has autonegotiated, and we can
1405 * trust the Link Up (LU) status bit.
1406 */
1407 if (status & E1000_STATUS_LU) {
1408 mac->serdes_link_state =
1409 e1000_serdes_link_autoneg_complete;
1410 e_dbg("AN_PROG -> AN_UP\n");
1411 mac->serdes_has_link = true;
1412 } else {
1413 /* Autoneg completed, but failed. */
1414 mac->serdes_link_state =
1415 e1000_serdes_link_down;
1416 e_dbg("AN_PROG -> DOWN\n");
1417 }
c9523379 1418 } else {
1419 /*
1a40d5c1
BA
1420 * The link partner did not autoneg.
1421 * Force link up and full duplex, and change
1422 * state to forced.
c9523379 1423 */
1a40d5c1 1424 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
c9523379 1425 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1426 ew32(CTRL, ctrl);
1427
1428 /* Configure Flow Control after link up. */
1a40d5c1 1429 ret_val = e1000e_config_fc_after_link_up(hw);
c9523379 1430 if (ret_val) {
3bb99fe2 1431 e_dbg("Error config flow control\n");
c9523379 1432 break;
1433 }
1434 mac->serdes_link_state =
1435 e1000_serdes_link_forced_up;
1a40d5c1 1436 mac->serdes_has_link = true;
3bb99fe2 1437 e_dbg("AN_PROG -> FORCED_UP\n");
c9523379 1438 }
c9523379 1439 break;
1440
1441 case e1000_serdes_link_down:
1442 default:
1a40d5c1
BA
1443 /*
1444 * The link was down but the receiver has now gained
c9523379 1445 * valid sync, so lets see if we can bring the link
1a40d5c1
BA
1446 * up.
1447 */
c9523379 1448 ew32(TXCW, mac->txcw);
1a40d5c1 1449 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1450 mac->serdes_link_state =
1451 e1000_serdes_link_autoneg_progress;
3bb99fe2 1452 e_dbg("DOWN -> AN_PROG\n");
c9523379 1453 break;
1454 }
1455 } else {
1456 if (!(rxcw & E1000_RXCW_SYNCH)) {
1457 mac->serdes_has_link = false;
1458 mac->serdes_link_state = e1000_serdes_link_down;
3bb99fe2 1459 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1460 } else {
1461 /*
1a40d5c1
BA
1462 * We have sync, and can tolerate one invalid (IV)
1463 * codeword before declaring link down, so reread
1464 * to look again.
c9523379 1465 */
1466 udelay(10);
1467 rxcw = er32(RXCW);
1468 if (rxcw & E1000_RXCW_IV) {
1469 mac->serdes_link_state = e1000_serdes_link_down;
1470 mac->serdes_has_link = false;
3bb99fe2 1471 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1472 }
1473 }
1474 }
1475
1476 return ret_val;
1477}
1478
bc7f75fa
AK
1479/**
1480 * e1000_valid_led_default_82571 - Verify a valid default LED config
1481 * @hw: pointer to the HW structure
1482 * @data: pointer to the NVM (EEPROM)
1483 *
1484 * Read the EEPROM for the current default LED configuration. If the
1485 * LED configuration is not valid, set to a valid LED configuration.
1486 **/
1487static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1488{
1489 s32 ret_val;
1490
1491 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1492 if (ret_val) {
3bb99fe2 1493 e_dbg("NVM Read Error\n");
bc7f75fa
AK
1494 return ret_val;
1495 }
1496
8c81c9c3
AD
1497 switch (hw->mac.type) {
1498 case e1000_82573:
1499 case e1000_82574:
1500 case e1000_82583:
1501 if (*data == ID_LED_RESERVED_F746)
1502 *data = ID_LED_DEFAULT_82573;
1503 break;
1504 default:
1505 if (*data == ID_LED_RESERVED_0000 ||
1506 *data == ID_LED_RESERVED_FFFF)
1507 *data = ID_LED_DEFAULT;
1508 break;
1509 }
bc7f75fa
AK
1510
1511 return 0;
1512}
1513
1514/**
1515 * e1000e_get_laa_state_82571 - Get locally administered address state
1516 * @hw: pointer to the HW structure
1517 *
489815ce 1518 * Retrieve and return the current locally administered address state.
bc7f75fa
AK
1519 **/
1520bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1521{
1522 if (hw->mac.type != e1000_82571)
564ea9bb 1523 return false;
bc7f75fa
AK
1524
1525 return hw->dev_spec.e82571.laa_is_present;
1526}
1527
1528/**
1529 * e1000e_set_laa_state_82571 - Set locally administered address state
1530 * @hw: pointer to the HW structure
1531 * @state: enable/disable locally administered address
1532 *
5ff5b664 1533 * Enable/Disable the current locally administered address state.
bc7f75fa
AK
1534 **/
1535void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1536{
1537 if (hw->mac.type != e1000_82571)
1538 return;
1539
1540 hw->dev_spec.e82571.laa_is_present = state;
1541
1542 /* If workaround is activated... */
1543 if (state)
ad68076e
BA
1544 /*
1545 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
1546 * between the time RAR[0] gets clobbered and the time it
1547 * gets fixed, the actual LAA is in one of the RARs and no
1548 * incoming packets directed to this port are dropped.
1549 * Eventually the LAA will be in RAR[0] and RAR[14].
1550 */
1551 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1552}
1553
1554/**
1555 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1556 * @hw: pointer to the HW structure
1557 *
1558 * Verifies that the EEPROM has completed the update. After updating the
1559 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1560 * the checksum fix is not implemented, we need to set the bit and update
1561 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1562 * we need to return bad checksum.
1563 **/
1564static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1565{
1566 struct e1000_nvm_info *nvm = &hw->nvm;
1567 s32 ret_val;
1568 u16 data;
1569
1570 if (nvm->type != e1000_nvm_flash_hw)
1571 return 0;
1572
ad68076e
BA
1573 /*
1574 * Check bit 4 of word 10h. If it is 0, firmware is done updating
bc7f75fa
AK
1575 * 10h-12h. Checksum may need to be fixed.
1576 */
1577 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1578 if (ret_val)
1579 return ret_val;
1580
1581 if (!(data & 0x10)) {
ad68076e
BA
1582 /*
1583 * Read 0x23 and check bit 15. This bit is a 1
bc7f75fa
AK
1584 * when the checksum has already been fixed. If
1585 * the checksum is still wrong and this bit is a
1586 * 1, we need to return bad checksum. Otherwise,
1587 * we need to set this bit to a 1 and update the
1588 * checksum.
1589 */
1590 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1591 if (ret_val)
1592 return ret_val;
1593
1594 if (!(data & 0x8000)) {
1595 data |= 0x8000;
1596 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1597 if (ret_val)
1598 return ret_val;
1599 ret_val = e1000e_update_nvm_checksum(hw);
1600 }
1601 }
1602
1603 return 0;
1604}
1605
608f8a0d
BA
1606/**
1607 * e1000_read_mac_addr_82571 - Read device MAC address
1608 * @hw: pointer to the HW structure
1609 **/
1610static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1611{
1612 s32 ret_val = 0;
1613
1614 /*
1615 * If there's an alternate MAC address place it in RAR0
1616 * so that it will override the Si installed default perm
1617 * address.
1618 */
1619 ret_val = e1000_check_alt_mac_addr_generic(hw);
1620 if (ret_val)
1621 goto out;
1622
1623 ret_val = e1000_read_mac_addr_generic(hw);
1624
1625out:
1626 return ret_val;
1627}
1628
17f208de
BA
1629/**
1630 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1631 * @hw: pointer to the HW structure
1632 *
1633 * In the case of a PHY power down to save power, or to turn off link during a
1634 * driver unload, or wake on lan is not enabled, remove the link.
1635 **/
1636static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1637{
1638 struct e1000_phy_info *phy = &hw->phy;
1639 struct e1000_mac_info *mac = &hw->mac;
1640
1641 if (!(phy->ops.check_reset_block))
1642 return;
1643
1644 /* If the management interface is not enabled, then power down */
1645 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1646 e1000_power_down_phy_copper(hw);
1647
1648 return;
1649}
1650
bc7f75fa
AK
1651/**
1652 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1653 * @hw: pointer to the HW structure
1654 *
1655 * Clears the hardware counters by reading the counter registers.
1656 **/
1657static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1658{
bc7f75fa
AK
1659 e1000e_clear_hw_cntrs_base(hw);
1660
99673d9b
BA
1661 er32(PRC64);
1662 er32(PRC127);
1663 er32(PRC255);
1664 er32(PRC511);
1665 er32(PRC1023);
1666 er32(PRC1522);
1667 er32(PTC64);
1668 er32(PTC127);
1669 er32(PTC255);
1670 er32(PTC511);
1671 er32(PTC1023);
1672 er32(PTC1522);
1673
1674 er32(ALGNERRC);
1675 er32(RXERRC);
1676 er32(TNCRS);
1677 er32(CEXTERR);
1678 er32(TSCTC);
1679 er32(TSCTFC);
1680
1681 er32(MGTPRC);
1682 er32(MGTPDC);
1683 er32(MGTPTC);
1684
1685 er32(IAC);
1686 er32(ICRXOC);
1687
1688 er32(ICRXPTC);
1689 er32(ICRXATC);
1690 er32(ICTXPTC);
1691 er32(ICTXATC);
1692 er32(ICTXQEC);
1693 er32(ICTXQMTC);
1694 er32(ICRXDMTC);
bc7f75fa
AK
1695}
1696
1697static struct e1000_mac_operations e82571_mac_ops = {
4662e82b 1698 /* .check_mng_mode: mac type dependent */
bc7f75fa 1699 /* .check_for_link: media type dependent */
a4f58f54 1700 .id_led_init = e1000e_id_led_init,
bc7f75fa
AK
1701 .cleanup_led = e1000e_cleanup_led_generic,
1702 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1703 .get_bus_info = e1000e_get_bus_info_pcie,
f4d2dd4c 1704 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
bc7f75fa 1705 /* .get_link_up_info: media type dependent */
4662e82b 1706 /* .led_on: mac type dependent */
bc7f75fa 1707 .led_off = e1000e_led_off_generic,
ab8932f3 1708 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
caaddaf8
BA
1709 .write_vfta = e1000_write_vfta_generic,
1710 .clear_vfta = e1000_clear_vfta_82571,
bc7f75fa
AK
1711 .reset_hw = e1000_reset_hw_82571,
1712 .init_hw = e1000_init_hw_82571,
1713 .setup_link = e1000_setup_link_82571,
1714 /* .setup_physical_interface: media type dependent */
a4f58f54 1715 .setup_led = e1000e_setup_led_generic,
608f8a0d 1716 .read_mac_addr = e1000_read_mac_addr_82571,
bc7f75fa
AK
1717};
1718
1719static struct e1000_phy_operations e82_phy_ops_igp = {
94d8186a 1720 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1721 .check_polarity = e1000_check_polarity_igp,
bc7f75fa 1722 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1723 .commit = NULL,
bc7f75fa
AK
1724 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1725 .get_cfg_done = e1000_get_cfg_done_82571,
1726 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
1727 .get_info = e1000e_get_phy_info_igp,
1728 .read_reg = e1000e_read_phy_reg_igp,
1729 .release = e1000_put_hw_semaphore_82571,
1730 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1731 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1732 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1733 .write_reg = e1000e_write_phy_reg_igp,
75eb0fad 1734 .cfg_on_link_up = NULL,
bc7f75fa
AK
1735};
1736
1737static struct e1000_phy_operations e82_phy_ops_m88 = {
94d8186a 1738 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1739 .check_polarity = e1000_check_polarity_m88,
bc7f75fa 1740 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1741 .commit = e1000e_phy_sw_reset,
bc7f75fa
AK
1742 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1743 .get_cfg_done = e1000e_get_cfg_done,
1744 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1745 .get_info = e1000e_get_phy_info_m88,
1746 .read_reg = e1000e_read_phy_reg_m88,
1747 .release = e1000_put_hw_semaphore_82571,
1748 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1749 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1750 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1751 .write_reg = e1000e_write_phy_reg_m88,
75eb0fad 1752 .cfg_on_link_up = NULL,
bc7f75fa
AK
1753};
1754
4662e82b 1755static struct e1000_phy_operations e82_phy_ops_bm = {
94d8186a 1756 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1757 .check_polarity = e1000_check_polarity_m88,
4662e82b 1758 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1759 .commit = e1000e_phy_sw_reset,
4662e82b
BA
1760 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1761 .get_cfg_done = e1000e_get_cfg_done,
1762 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1763 .get_info = e1000e_get_phy_info_m88,
1764 .read_reg = e1000e_read_phy_reg_bm2,
1765 .release = e1000_put_hw_semaphore_82571,
1766 .reset = e1000e_phy_hw_reset_generic,
4662e82b
BA
1767 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1768 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1769 .write_reg = e1000e_write_phy_reg_bm2,
75eb0fad 1770 .cfg_on_link_up = NULL,
4662e82b
BA
1771};
1772
bc7f75fa 1773static struct e1000_nvm_operations e82571_nvm_ops = {
94d8186a
BA
1774 .acquire = e1000_acquire_nvm_82571,
1775 .read = e1000e_read_nvm_eerd,
1776 .release = e1000_release_nvm_82571,
1777 .update = e1000_update_nvm_checksum_82571,
bc7f75fa 1778 .valid_led_default = e1000_valid_led_default_82571,
94d8186a
BA
1779 .validate = e1000_validate_nvm_checksum_82571,
1780 .write = e1000_write_nvm_82571,
bc7f75fa
AK
1781};
1782
1783struct e1000_info e1000_82571_info = {
1784 .mac = e1000_82571,
1785 .flags = FLAG_HAS_HW_VLAN_FILTER
1786 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1787 | FLAG_HAS_WOL
1788 | FLAG_APME_IN_CTRL3
1789 | FLAG_RX_CSUM_ENABLED
1790 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1791 | FLAG_HAS_SMART_POWER_DOWN
1792 | FLAG_RESET_OVERWRITES_LAA /* errata */
1793 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1794 | FLAG_APME_CHECK_PORT_B,
1795 .pba = 38,
2adc55c9 1796 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1797 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1798 .mac_ops = &e82571_mac_ops,
1799 .phy_ops = &e82_phy_ops_igp,
1800 .nvm_ops = &e82571_nvm_ops,
1801};
1802
1803struct e1000_info e1000_82572_info = {
1804 .mac = e1000_82572,
1805 .flags = FLAG_HAS_HW_VLAN_FILTER
1806 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1807 | FLAG_HAS_WOL
1808 | FLAG_APME_IN_CTRL3
1809 | FLAG_RX_CSUM_ENABLED
1810 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1811 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1812 .pba = 38,
2adc55c9 1813 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1814 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1815 .mac_ops = &e82571_mac_ops,
1816 .phy_ops = &e82_phy_ops_igp,
1817 .nvm_ops = &e82571_nvm_ops,
1818};
1819
1820struct e1000_info e1000_82573_info = {
1821 .mac = e1000_82573,
1822 .flags = FLAG_HAS_HW_VLAN_FILTER
1823 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1824 | FLAG_HAS_WOL
1825 | FLAG_APME_IN_CTRL3
1826 | FLAG_RX_CSUM_ENABLED
bc7f75fa
AK
1827 | FLAG_HAS_SMART_POWER_DOWN
1828 | FLAG_HAS_AMT
bc7f75fa
AK
1829 | FLAG_HAS_ERT
1830 | FLAG_HAS_SWSM_ON_LOAD,
1831 .pba = 20,
2adc55c9 1832 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 1833 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1834 .mac_ops = &e82571_mac_ops,
1835 .phy_ops = &e82_phy_ops_m88,
31f8c4fe 1836 .nvm_ops = &e82571_nvm_ops,
bc7f75fa
AK
1837};
1838
4662e82b
BA
1839struct e1000_info e1000_82574_info = {
1840 .mac = e1000_82574,
1841 .flags = FLAG_HAS_HW_VLAN_FILTER
1842 | FLAG_HAS_MSIX
1843 | FLAG_HAS_JUMBO_FRAMES
1844 | FLAG_HAS_WOL
1845 | FLAG_APME_IN_CTRL3
1846 | FLAG_RX_CSUM_ENABLED
1847 | FLAG_HAS_SMART_POWER_DOWN
1848 | FLAG_HAS_AMT
1849 | FLAG_HAS_CTRLEXT_ON_LOAD,
1850 .pba = 20,
a825e00c 1851 .max_hw_frame_size = DEFAULT_JUMBO,
4662e82b
BA
1852 .get_variants = e1000_get_variants_82571,
1853 .mac_ops = &e82571_mac_ops,
1854 .phy_ops = &e82_phy_ops_bm,
1855 .nvm_ops = &e82571_nvm_ops,
1856};
1857
8c81c9c3
AD
1858struct e1000_info e1000_82583_info = {
1859 .mac = e1000_82583,
1860 .flags = FLAG_HAS_HW_VLAN_FILTER
1861 | FLAG_HAS_WOL
1862 | FLAG_APME_IN_CTRL3
1863 | FLAG_RX_CSUM_ENABLED
1864 | FLAG_HAS_SMART_POWER_DOWN
1865 | FLAG_HAS_AMT
1866 | FLAG_HAS_CTRLEXT_ON_LOAD,
1867 .pba = 20,
a825e00c 1868 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
8c81c9c3
AD
1869 .get_variants = e1000_get_variants_82571,
1870 .mac_ops = &e82571_mac_ops,
1871 .phy_ops = &e82_phy_ops_bm,
1872 .nvm_ops = &e82571_nvm_ops,
1873};
1874