]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/cxgb4vf/cxgb4vf_main.c
stmmac: update the driver version
[net-next-2.6.git] / drivers / net / cxgb4vf / cxgb4vf_main.c
CommitLineData
be839e39
CL
1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/version.h>
37#include <linux/module.h>
38#include <linux/moduleparam.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/dma-mapping.h>
42#include <linux/netdevice.h>
43#include <linux/etherdevice.h>
44#include <linux/debugfs.h>
45#include <linux/ethtool.h>
46
47#include "t4vf_common.h"
48#include "t4vf_defs.h"
49
50#include "../cxgb4/t4_regs.h"
51#include "../cxgb4/t4_msg.h"
52
53/*
54 * Generic information about the driver.
55 */
56#define DRV_VERSION "1.0.0"
57#define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
58
59/*
60 * Module Parameters.
61 * ==================
62 */
63
64/*
65 * Default ethtool "message level" for adapters.
66 */
67#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
68 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
69 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
70
71static int dflt_msg_enable = DFLT_MSG_ENABLE;
72
73module_param(dflt_msg_enable, int, 0644);
74MODULE_PARM_DESC(dflt_msg_enable,
75 "default adapter ethtool message level bitmap");
76
77/*
78 * The driver uses the best interrupt scheme available on a platform in the
79 * order MSI-X then MSI. This parameter determines which of these schemes the
80 * driver may consider as follows:
81 *
82 * msi = 2: choose from among MSI-X and MSI
83 * msi = 1: only consider MSI interrupts
84 *
85 * Note that unlike the Physical Function driver, this Virtual Function driver
86 * does _not_ support legacy INTx interrupts (this limitation is mandated by
87 * the PCI-E SR-IOV standard).
88 */
89#define MSI_MSIX 2
90#define MSI_MSI 1
91#define MSI_DEFAULT MSI_MSIX
92
93static int msi = MSI_DEFAULT;
94
95module_param(msi, int, 0644);
96MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
97
98/*
99 * Fundamental constants.
100 * ======================
101 */
102
103enum {
104 MAX_TXQ_ENTRIES = 16384,
105 MAX_RSPQ_ENTRIES = 16384,
106 MAX_RX_BUFFERS = 16384,
107
108 MIN_TXQ_ENTRIES = 32,
109 MIN_RSPQ_ENTRIES = 128,
110 MIN_FL_ENTRIES = 16,
111
112 /*
113 * For purposes of manipulating the Free List size we need to
114 * recognize that Free Lists are actually Egress Queues (the host
115 * produces free buffers which the hardware consumes), Egress Queues
116 * indices are all in units of Egress Context Units bytes, and free
117 * list entries are 64-bit PCI DMA addresses. And since the state of
118 * the Producer Index == the Consumer Index implies an EMPTY list, we
119 * always have at least one Egress Unit's worth of Free List entries
120 * unused. See sge.c for more details ...
121 */
122 EQ_UNIT = SGE_EQ_IDXSIZE,
123 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
124 MIN_FL_RESID = FL_PER_EQ_UNIT,
125};
126
127/*
128 * Global driver state.
129 * ====================
130 */
131
132static struct dentry *cxgb4vf_debugfs_root;
133
134/*
135 * OS "Callback" functions.
136 * ========================
137 */
138
139/*
140 * The link status has changed on the indicated "port" (Virtual Interface).
141 */
142void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
143{
144 struct net_device *dev = adapter->port[pidx];
145
146 /*
147 * If the port is disabled or the current recorded "link up"
148 * status matches the new status, just return.
149 */
150 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
151 return;
152
153 /*
154 * Tell the OS that the link status has changed and print a short
155 * informative message on the console about the event.
156 */
157 if (link_ok) {
158 const char *s;
159 const char *fc;
160 const struct port_info *pi = netdev_priv(dev);
161
162 netif_carrier_on(dev);
163
164 switch (pi->link_cfg.speed) {
165 case SPEED_10000:
166 s = "10Gbps";
167 break;
168
169 case SPEED_1000:
170 s = "1000Mbps";
171 break;
172
173 case SPEED_100:
174 s = "100Mbps";
175 break;
176
177 default:
178 s = "unknown";
179 break;
180 }
181
182 switch (pi->link_cfg.fc) {
183 case PAUSE_RX:
184 fc = "RX";
185 break;
186
187 case PAUSE_TX:
188 fc = "TX";
189 break;
190
191 case PAUSE_RX|PAUSE_TX:
192 fc = "RX/TX";
193 break;
194
195 default:
196 fc = "no";
197 break;
198 }
199
200 printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n",
201 dev->name, s, fc);
202 } else {
203 netif_carrier_off(dev);
204 printk(KERN_INFO "%s: link down\n", dev->name);
205 }
206}
207
208/*
209 * Net device operations.
210 * ======================
211 */
212
213/*
214 * Record our new VLAN Group and enable/disable hardware VLAN Tag extraction
215 * based on whether the specified VLAN Group pointer is NULL or not.
216 */
217static void cxgb4vf_vlan_rx_register(struct net_device *dev,
218 struct vlan_group *grp)
219{
220 struct port_info *pi = netdev_priv(dev);
221
222 pi->vlan_grp = grp;
223 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, grp != NULL, 0);
224}
225
226/*
227 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
228 * Interface).
229 */
230static int link_start(struct net_device *dev)
231{
232 int ret;
233 struct port_info *pi = netdev_priv(dev);
234
235 /*
236 * We do not set address filters and promiscuity here, the stack does
237 * that step explicitly.
238 */
239 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, -1,
240 true);
241 if (ret == 0) {
242 ret = t4vf_change_mac(pi->adapter, pi->viid,
243 pi->xact_addr_filt, dev->dev_addr, true);
244 if (ret >= 0) {
245 pi->xact_addr_filt = ret;
246 ret = 0;
247 }
248 }
249
250 /*
251 * We don't need to actually "start the link" itself since the
252 * firmware will do that for us when the first Virtual Interface
253 * is enabled on a port.
254 */
255 if (ret == 0)
256 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
257 return ret;
258}
259
260/*
261 * Name the MSI-X interrupts.
262 */
263static void name_msix_vecs(struct adapter *adapter)
264{
265 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
266 int pidx;
267
268 /*
269 * Firmware events.
270 */
271 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
272 "%s-FWeventq", adapter->name);
273 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
274
275 /*
276 * Ethernet queues.
277 */
278 for_each_port(adapter, pidx) {
279 struct net_device *dev = adapter->port[pidx];
280 const struct port_info *pi = netdev_priv(dev);
281 int qs, msi;
282
caedda35 283 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
be839e39
CL
284 snprintf(adapter->msix_info[msi].desc, namelen,
285 "%s-%d", dev->name, qs);
286 adapter->msix_info[msi].desc[namelen] = 0;
287 }
288 }
289}
290
291/*
292 * Request all of our MSI-X resources.
293 */
294static int request_msix_queue_irqs(struct adapter *adapter)
295{
296 struct sge *s = &adapter->sge;
297 int rxq, msi, err;
298
299 /*
300 * Firmware events.
301 */
302 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
303 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
304 if (err)
305 return err;
306
307 /*
308 * Ethernet queues.
309 */
caedda35 310 msi = MSIX_IQFLINT;
be839e39
CL
311 for_each_ethrxq(s, rxq) {
312 err = request_irq(adapter->msix_info[msi].vec,
313 t4vf_sge_intr_msix, 0,
314 adapter->msix_info[msi].desc,
315 &s->ethrxq[rxq].rspq);
316 if (err)
317 goto err_free_irqs;
318 msi++;
319 }
320 return 0;
321
322err_free_irqs:
323 while (--rxq >= 0)
324 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
325 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
326 return err;
327}
328
329/*
330 * Free our MSI-X resources.
331 */
332static void free_msix_queue_irqs(struct adapter *adapter)
333{
334 struct sge *s = &adapter->sge;
335 int rxq, msi;
336
337 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
caedda35 338 msi = MSIX_IQFLINT;
be839e39
CL
339 for_each_ethrxq(s, rxq)
340 free_irq(adapter->msix_info[msi++].vec,
341 &s->ethrxq[rxq].rspq);
342}
343
344/*
345 * Turn on NAPI and start up interrupts on a response queue.
346 */
347static void qenable(struct sge_rspq *rspq)
348{
349 napi_enable(&rspq->napi);
350
351 /*
352 * 0-increment the Going To Sleep register to start the timer and
353 * enable interrupts.
354 */
355 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
356 CIDXINC(0) |
357 SEINTARM(rspq->intr_params) |
358 INGRESSQID(rspq->cntxt_id));
359}
360
361/*
362 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
363 */
364static void enable_rx(struct adapter *adapter)
365{
366 int rxq;
367 struct sge *s = &adapter->sge;
368
369 for_each_ethrxq(s, rxq)
370 qenable(&s->ethrxq[rxq].rspq);
371 qenable(&s->fw_evtq);
372
373 /*
374 * The interrupt queue doesn't use NAPI so we do the 0-increment of
375 * its Going To Sleep register here to get it started.
376 */
377 if (adapter->flags & USING_MSI)
378 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
379 CIDXINC(0) |
380 SEINTARM(s->intrq.intr_params) |
381 INGRESSQID(s->intrq.cntxt_id));
382
383}
384
385/*
386 * Wait until all NAPI handlers are descheduled.
387 */
388static void quiesce_rx(struct adapter *adapter)
389{
390 struct sge *s = &adapter->sge;
391 int rxq;
392
393 for_each_ethrxq(s, rxq)
394 napi_disable(&s->ethrxq[rxq].rspq.napi);
395 napi_disable(&s->fw_evtq.napi);
396}
397
398/*
399 * Response queue handler for the firmware event queue.
400 */
401static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
402 const struct pkt_gl *gl)
403{
404 /*
405 * Extract response opcode and get pointer to CPL message body.
406 */
407 struct adapter *adapter = rspq->adapter;
408 u8 opcode = ((const struct rss_header *)rsp)->opcode;
409 void *cpl = (void *)(rsp + 1);
410
411 switch (opcode) {
412 case CPL_FW6_MSG: {
413 /*
414 * We've received an asynchronous message from the firmware.
415 */
416 const struct cpl_fw6_msg *fw_msg = cpl;
417 if (fw_msg->type == FW6_TYPE_CMD_RPL)
418 t4vf_handle_fw_rpl(adapter, fw_msg->data);
419 break;
420 }
421
422 case CPL_SGE_EGR_UPDATE: {
423 /*
7f9dd2fa
CL
424 * We've received an Egress Queue Status Update message. We
425 * get these, if the SGE is configured to send these when the
426 * firmware passes certain points in processing our TX
427 * Ethernet Queue or if we make an explicit request for one.
428 * We use these updates to determine when we may need to
429 * restart a TX Ethernet Queue which was stopped for lack of
430 * free TX Queue Descriptors ...
be839e39
CL
431 */
432 const struct cpl_sge_egr_update *p = (void *)cpl;
433 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
434 struct sge *s = &adapter->sge;
435 struct sge_txq *tq;
436 struct sge_eth_txq *txq;
437 unsigned int eq_idx;
be839e39
CL
438
439 /*
440 * Perform sanity checking on the Queue ID to make sure it
441 * really refers to one of our TX Ethernet Egress Queues which
442 * is active and matches the queue's ID. None of these error
443 * conditions should ever happen so we may want to either make
444 * them fatal and/or conditionalized under DEBUG.
445 */
446 eq_idx = EQ_IDX(s, qid);
447 if (unlikely(eq_idx >= MAX_EGRQ)) {
448 dev_err(adapter->pdev_dev,
449 "Egress Update QID %d out of range\n", qid);
450 break;
451 }
452 tq = s->egr_map[eq_idx];
453 if (unlikely(tq == NULL)) {
454 dev_err(adapter->pdev_dev,
455 "Egress Update QID %d TXQ=NULL\n", qid);
456 break;
457 }
458 txq = container_of(tq, struct sge_eth_txq, q);
459 if (unlikely(tq->abs_id != qid)) {
460 dev_err(adapter->pdev_dev,
461 "Egress Update QID %d refers to TXQ %d\n",
462 qid, tq->abs_id);
463 break;
464 }
465
be839e39
CL
466 /*
467 * Restart a stopped TX Queue which has less than half of its
468 * TX ring in use ...
469 */
470 txq->q.restarts++;
471 netif_tx_wake_queue(txq->txq);
472 break;
473 }
474
475 default:
476 dev_err(adapter->pdev_dev,
477 "unexpected CPL %#x on FW event queue\n", opcode);
478 }
479
480 return 0;
481}
482
483/*
484 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
485 * to use and initializes them. We support multiple "Queue Sets" per port if
486 * we have MSI-X, otherwise just one queue set per port.
487 */
488static int setup_sge_queues(struct adapter *adapter)
489{
490 struct sge *s = &adapter->sge;
491 int err, pidx, msix;
492
493 /*
494 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
495 * state.
496 */
497 bitmap_zero(s->starving_fl, MAX_EGRQ);
498
499 /*
500 * If we're using MSI interrupt mode we need to set up a "forwarded
501 * interrupt" queue which we'll set up with our MSI vector. The rest
502 * of the ingress queues will be set up to forward their interrupts to
503 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
504 * the intrq's queue ID as the interrupt forwarding queue for the
505 * subsequent calls ...
506 */
507 if (adapter->flags & USING_MSI) {
508 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
509 adapter->port[0], 0, NULL, NULL);
510 if (err)
511 goto err_free_queues;
512 }
513
514 /*
515 * Allocate our ingress queue for asynchronous firmware messages.
516 */
517 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
518 MSIX_FW, NULL, fwevtq_handler);
519 if (err)
520 goto err_free_queues;
521
522 /*
523 * Allocate each "port"'s initial Queue Sets. These can be changed
524 * later on ... up to the point where any interface on the adapter is
525 * brought up at which point lots of things get nailed down
526 * permanently ...
527 */
caedda35 528 msix = MSIX_IQFLINT;
be839e39
CL
529 for_each_port(adapter, pidx) {
530 struct net_device *dev = adapter->port[pidx];
531 struct port_info *pi = netdev_priv(dev);
532 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
533 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
534 int qs;
535
c8639a82 536 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
537 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
538 dev, msix++,
539 &rxq->fl, t4vf_ethrx_handler);
540 if (err)
541 goto err_free_queues;
542
543 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
544 netdev_get_tx_queue(dev, qs),
545 s->fw_evtq.cntxt_id);
546 if (err)
547 goto err_free_queues;
548
549 rxq->rspq.idx = qs;
550 memset(&rxq->stats, 0, sizeof(rxq->stats));
551 }
552 }
553
554 /*
555 * Create the reverse mappings for the queues.
556 */
557 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
558 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
559 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
560 for_each_port(adapter, pidx) {
561 struct net_device *dev = adapter->port[pidx];
562 struct port_info *pi = netdev_priv(dev);
563 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
564 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
565 int qs;
566
c8639a82 567 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
568 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
569 EQ_MAP(s, txq->q.abs_id) = &txq->q;
570
571 /*
572 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
573 * for Free Lists but since all of the Egress Queues
574 * (including Free Lists) have Relative Queue IDs
575 * which are computed as Absolute - Base Queue ID, we
576 * can synthesize the Absolute Queue IDs for the Free
577 * Lists. This is useful for debugging purposes when
578 * we want to dump Queue Contexts via the PF Driver.
579 */
580 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
581 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
582 }
583 }
584 return 0;
585
586err_free_queues:
587 t4vf_free_sge_resources(adapter);
588 return err;
589}
590
591/*
592 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
593 * queues. We configure the RSS CPU lookup table to distribute to the number
594 * of HW receive queues, and the response queue lookup table to narrow that
595 * down to the response queues actually configured for each "port" (Virtual
596 * Interface). We always configure the RSS mapping for all ports since the
597 * mapping table has plenty of entries.
598 */
599static int setup_rss(struct adapter *adapter)
600{
601 int pidx;
602
603 for_each_port(adapter, pidx) {
604 struct port_info *pi = adap2pinfo(adapter, pidx);
605 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
606 u16 rss[MAX_PORT_QSETS];
607 int qs, err;
608
609 for (qs = 0; qs < pi->nqsets; qs++)
610 rss[qs] = rxq[qs].rspq.abs_id;
611
612 err = t4vf_config_rss_range(adapter, pi->viid,
613 0, pi->rss_size, rss, pi->nqsets);
614 if (err)
615 return err;
616
617 /*
618 * Perform Global RSS Mode-specific initialization.
619 */
620 switch (adapter->params.rss.mode) {
621 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
622 /*
623 * If Tunnel All Lookup isn't specified in the global
624 * RSS Configuration, then we need to specify a
625 * default Ingress Queue for any ingress packets which
626 * aren't hashed. We'll use our first ingress queue
627 * ...
628 */
629 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
630 union rss_vi_config config;
631 err = t4vf_read_rss_vi_config(adapter,
632 pi->viid,
633 &config);
634 if (err)
635 return err;
636 config.basicvirtual.defaultq =
637 rxq[0].rspq.abs_id;
638 err = t4vf_write_rss_vi_config(adapter,
639 pi->viid,
640 &config);
641 if (err)
642 return err;
643 }
644 break;
645 }
646 }
647
648 return 0;
649}
650
651/*
652 * Bring the adapter up. Called whenever we go from no "ports" open to having
653 * one open. This function performs the actions necessary to make an adapter
654 * operational, such as completing the initialization of HW modules, and
655 * enabling interrupts. Must be called with the rtnl lock held. (Note that
656 * this is called "cxgb_up" in the PF Driver.)
657 */
658static int adapter_up(struct adapter *adapter)
659{
660 int err;
661
662 /*
663 * If this is the first time we've been called, perform basic
664 * adapter setup. Once we've done this, many of our adapter
665 * parameters can no longer be changed ...
666 */
667 if ((adapter->flags & FULL_INIT_DONE) == 0) {
668 err = setup_sge_queues(adapter);
669 if (err)
670 return err;
671 err = setup_rss(adapter);
672 if (err) {
673 t4vf_free_sge_resources(adapter);
674 return err;
675 }
676
677 if (adapter->flags & USING_MSIX)
678 name_msix_vecs(adapter);
679 adapter->flags |= FULL_INIT_DONE;
680 }
681
682 /*
683 * Acquire our interrupt resources. We only support MSI-X and MSI.
684 */
685 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
686 if (adapter->flags & USING_MSIX)
687 err = request_msix_queue_irqs(adapter);
688 else
689 err = request_irq(adapter->pdev->irq,
690 t4vf_intr_handler(adapter), 0,
691 adapter->name, adapter);
692 if (err) {
693 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
694 err);
695 return err;
696 }
697
698 /*
699 * Enable NAPI ingress processing and return success.
700 */
701 enable_rx(adapter);
702 t4vf_sge_start(adapter);
703 return 0;
704}
705
706/*
707 * Bring the adapter down. Called whenever the last "port" (Virtual
708 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
709 * Driver.)
710 */
711static void adapter_down(struct adapter *adapter)
712{
713 /*
714 * Free interrupt resources.
715 */
716 if (adapter->flags & USING_MSIX)
717 free_msix_queue_irqs(adapter);
718 else
719 free_irq(adapter->pdev->irq, adapter);
720
721 /*
722 * Wait for NAPI handlers to finish.
723 */
724 quiesce_rx(adapter);
725}
726
727/*
728 * Start up a net device.
729 */
730static int cxgb4vf_open(struct net_device *dev)
731{
732 int err;
733 struct port_info *pi = netdev_priv(dev);
734 struct adapter *adapter = pi->adapter;
735
736 /*
737 * If this is the first interface that we're opening on the "adapter",
738 * bring the "adapter" up now.
739 */
740 if (adapter->open_device_map == 0) {
741 err = adapter_up(adapter);
742 if (err)
743 return err;
744 }
745
746 /*
747 * Note that this interface is up and start everything up ...
748 */
003ab674
BH
749 netif_set_real_num_tx_queues(dev, pi->nqsets);
750 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
751 if (err)
752 return err;
be839e39 753 set_bit(pi->port_id, &adapter->open_device_map);
e7a3795f
CL
754 err = link_start(dev);
755 if (err)
756 return err;
be839e39
CL
757 netif_tx_start_all_queues(dev);
758 return 0;
759}
760
761/*
762 * Shut down a net device. This routine is called "cxgb_close" in the PF
763 * Driver ...
764 */
765static int cxgb4vf_stop(struct net_device *dev)
766{
767 int ret;
768 struct port_info *pi = netdev_priv(dev);
769 struct adapter *adapter = pi->adapter;
770
771 netif_tx_stop_all_queues(dev);
772 netif_carrier_off(dev);
773 ret = t4vf_enable_vi(adapter, pi->viid, false, false);
774 pi->link_cfg.link_ok = 0;
775
776 clear_bit(pi->port_id, &adapter->open_device_map);
777 if (adapter->open_device_map == 0)
778 adapter_down(adapter);
779 return 0;
780}
781
782/*
783 * Translate our basic statistics into the standard "ifconfig" statistics.
784 */
785static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
786{
787 struct t4vf_port_stats stats;
788 struct port_info *pi = netdev2pinfo(dev);
789 struct adapter *adapter = pi->adapter;
790 struct net_device_stats *ns = &dev->stats;
791 int err;
792
793 spin_lock(&adapter->stats_lock);
794 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
795 spin_unlock(&adapter->stats_lock);
796
797 memset(ns, 0, sizeof(*ns));
798 if (err)
799 return ns;
800
801 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
802 stats.tx_ucast_bytes + stats.tx_offload_bytes);
803 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
804 stats.tx_ucast_frames + stats.tx_offload_frames);
805 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
806 stats.rx_ucast_bytes);
807 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
808 stats.rx_ucast_frames);
809 ns->multicast = stats.rx_mcast_frames;
810 ns->tx_errors = stats.tx_drop_frames;
811 ns->rx_errors = stats.rx_err_frames;
812
813 return ns;
814}
815
816/*
817 * Collect up to maxaddrs worth of a netdevice's unicast addresses into an
818 * array of addrss pointers and return the number collected.
819 */
820static inline int collect_netdev_uc_list_addrs(const struct net_device *dev,
821 const u8 **addr,
822 unsigned int maxaddrs)
823{
824 unsigned int naddr = 0;
825 const struct netdev_hw_addr *ha;
826
827 for_each_dev_addr(dev, ha) {
828 addr[naddr++] = ha->addr;
829 if (naddr >= maxaddrs)
830 break;
831 }
832 return naddr;
833}
834
835/*
836 * Collect up to maxaddrs worth of a netdevice's multicast addresses into an
837 * array of addrss pointers and return the number collected.
838 */
839static inline int collect_netdev_mc_list_addrs(const struct net_device *dev,
840 const u8 **addr,
841 unsigned int maxaddrs)
842{
843 unsigned int naddr = 0;
844 const struct netdev_hw_addr *ha;
845
846 netdev_for_each_mc_addr(ha, dev) {
847 addr[naddr++] = ha->addr;
848 if (naddr >= maxaddrs)
849 break;
850 }
851 return naddr;
852}
853
854/*
855 * Configure the exact and hash address filters to handle a port's multicast
856 * and secondary unicast MAC addresses.
857 */
858static int set_addr_filters(const struct net_device *dev, bool sleep)
859{
860 u64 mhash = 0;
861 u64 uhash = 0;
862 bool free = true;
863 u16 filt_idx[7];
864 const u8 *addr[7];
865 int ret, naddr = 0;
866 const struct port_info *pi = netdev_priv(dev);
867
868 /* first do the secondary unicast addresses */
869 naddr = collect_netdev_uc_list_addrs(dev, addr, ARRAY_SIZE(addr));
870 if (naddr > 0) {
871 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
872 naddr, addr, filt_idx, &uhash, sleep);
873 if (ret < 0)
874 return ret;
875
876 free = false;
877 }
878
879 /* next set up the multicast addresses */
880 naddr = collect_netdev_mc_list_addrs(dev, addr, ARRAY_SIZE(addr));
881 if (naddr > 0) {
882 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
883 naddr, addr, filt_idx, &mhash, sleep);
884 if (ret < 0)
885 return ret;
886 }
887
888 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
889 uhash | mhash, sleep);
890}
891
892/*
893 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
894 * If @mtu is -1 it is left unchanged.
895 */
896static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
897{
898 int ret;
899 struct port_info *pi = netdev_priv(dev);
900
901 ret = set_addr_filters(dev, sleep_ok);
902 if (ret == 0)
903 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
904 (dev->flags & IFF_PROMISC) != 0,
905 (dev->flags & IFF_ALLMULTI) != 0,
906 1, -1, sleep_ok);
907 return ret;
908}
909
910/*
911 * Set the current receive modes on the device.
912 */
913static void cxgb4vf_set_rxmode(struct net_device *dev)
914{
915 /* unfortunately we can't return errors to the stack */
916 set_rxmode(dev, -1, false);
917}
918
919/*
920 * Find the entry in the interrupt holdoff timer value array which comes
921 * closest to the specified interrupt holdoff value.
922 */
923static int closest_timer(const struct sge *s, int us)
924{
925 int i, timer_idx = 0, min_delta = INT_MAX;
926
927 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
928 int delta = us - s->timer_val[i];
929 if (delta < 0)
930 delta = -delta;
931 if (delta < min_delta) {
932 min_delta = delta;
933 timer_idx = i;
934 }
935 }
936 return timer_idx;
937}
938
939static int closest_thres(const struct sge *s, int thres)
940{
941 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
942
943 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
944 delta = thres - s->counter_val[i];
945 if (delta < 0)
946 delta = -delta;
947 if (delta < min_delta) {
948 min_delta = delta;
949 pktcnt_idx = i;
950 }
951 }
952 return pktcnt_idx;
953}
954
955/*
956 * Return a queue's interrupt hold-off time in us. 0 means no timer.
957 */
958static unsigned int qtimer_val(const struct adapter *adapter,
959 const struct sge_rspq *rspq)
960{
961 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
962
963 return timer_idx < SGE_NTIMERS
964 ? adapter->sge.timer_val[timer_idx]
965 : 0;
966}
967
968/**
969 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
970 * @adapter: the adapter
971 * @rspq: the RX response queue
972 * @us: the hold-off time in us, or 0 to disable timer
973 * @cnt: the hold-off packet count, or 0 to disable counter
974 *
975 * Sets an RX response queue's interrupt hold-off time and packet count.
976 * At least one of the two needs to be enabled for the queue to generate
977 * interrupts.
978 */
979static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
980 unsigned int us, unsigned int cnt)
981{
982 unsigned int timer_idx;
983
984 /*
985 * If both the interrupt holdoff timer and count are specified as
986 * zero, default to a holdoff count of 1 ...
987 */
988 if ((us | cnt) == 0)
989 cnt = 1;
990
991 /*
992 * If an interrupt holdoff count has been specified, then find the
993 * closest configured holdoff count and use that. If the response
994 * queue has already been created, then update its queue context
995 * parameters ...
996 */
997 if (cnt) {
998 int err;
999 u32 v, pktcnt_idx;
1000
1001 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1002 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1003 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1004 FW_PARAMS_PARAM_X(
1005 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1006 FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1007 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1008 if (err)
1009 return err;
1010 }
1011 rspq->pktcnt_idx = pktcnt_idx;
1012 }
1013
1014 /*
1015 * Compute the closest holdoff timer index from the supplied holdoff
1016 * timer value.
1017 */
1018 timer_idx = (us == 0
1019 ? SGE_TIMER_RSTRT_CNTR
1020 : closest_timer(&adapter->sge, us));
1021
1022 /*
1023 * Update the response queue's interrupt coalescing parameters and
1024 * return success.
1025 */
1026 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1027 (cnt > 0 ? QINTR_CNT_EN : 0));
1028 return 0;
1029}
1030
1031/*
1032 * Return a version number to identify the type of adapter. The scheme is:
1033 * - bits 0..9: chip version
1034 * - bits 10..15: chip revision
1035 */
1036static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1037{
1038 /*
1039 * Chip version 4, revision 0x3f (cxgb4vf).
1040 */
1041 return 4 | (0x3f << 10);
1042}
1043
1044/*
1045 * Execute the specified ioctl command.
1046 */
1047static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1048{
1049 int ret = 0;
1050
1051 switch (cmd) {
1052 /*
1053 * The VF Driver doesn't have access to any of the other
1054 * common Ethernet device ioctl()'s (like reading/writing
1055 * PHY registers, etc.
1056 */
1057
1058 default:
1059 ret = -EOPNOTSUPP;
1060 break;
1061 }
1062 return ret;
1063}
1064
1065/*
1066 * Change the device's MTU.
1067 */
1068static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1069{
1070 int ret;
1071 struct port_info *pi = netdev_priv(dev);
1072
1073 /* accommodate SACK */
1074 if (new_mtu < 81)
1075 return -EINVAL;
1076
1077 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1078 -1, -1, -1, -1, true);
1079 if (!ret)
1080 dev->mtu = new_mtu;
1081 return ret;
1082}
1083
1084/*
1085 * Change the devices MAC address.
1086 */
1087static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1088{
1089 int ret;
1090 struct sockaddr *addr = _addr;
1091 struct port_info *pi = netdev_priv(dev);
1092
1093 if (!is_valid_ether_addr(addr->sa_data))
1094 return -EINVAL;
1095
1096 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1097 addr->sa_data, true);
1098 if (ret < 0)
1099 return ret;
1100
1101 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1102 pi->xact_addr_filt = ret;
1103 return 0;
1104}
1105
be839e39
CL
1106#ifdef CONFIG_NET_POLL_CONTROLLER
1107/*
1108 * Poll all of our receive queues. This is called outside of normal interrupt
1109 * context.
1110 */
1111static void cxgb4vf_poll_controller(struct net_device *dev)
1112{
1113 struct port_info *pi = netdev_priv(dev);
1114 struct adapter *adapter = pi->adapter;
1115
1116 if (adapter->flags & USING_MSIX) {
1117 struct sge_eth_rxq *rxq;
1118 int nqsets;
1119
1120 rxq = &adapter->sge.ethrxq[pi->first_qset];
1121 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1122 t4vf_sge_intr_msix(0, &rxq->rspq);
1123 rxq++;
1124 }
1125 } else
1126 t4vf_intr_handler(adapter)(0, adapter);
1127}
1128#endif
1129
1130/*
1131 * Ethtool operations.
1132 * ===================
1133 *
1134 * Note that we don't support any ethtool operations which change the physical
1135 * state of the port to which we're linked.
1136 */
1137
1138/*
1139 * Return current port link settings.
1140 */
1141static int cxgb4vf_get_settings(struct net_device *dev,
1142 struct ethtool_cmd *cmd)
1143{
1144 const struct port_info *pi = netdev_priv(dev);
1145
1146 cmd->supported = pi->link_cfg.supported;
1147 cmd->advertising = pi->link_cfg.advertising;
1148 cmd->speed = netif_carrier_ok(dev) ? pi->link_cfg.speed : -1;
1149 cmd->duplex = DUPLEX_FULL;
1150
1151 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1152 cmd->phy_address = pi->port_id;
1153 cmd->transceiver = XCVR_EXTERNAL;
1154 cmd->autoneg = pi->link_cfg.autoneg;
1155 cmd->maxtxpkt = 0;
1156 cmd->maxrxpkt = 0;
1157 return 0;
1158}
1159
1160/*
1161 * Return our driver information.
1162 */
1163static void cxgb4vf_get_drvinfo(struct net_device *dev,
1164 struct ethtool_drvinfo *drvinfo)
1165{
1166 struct adapter *adapter = netdev2adap(dev);
1167
1168 strcpy(drvinfo->driver, KBUILD_MODNAME);
1169 strcpy(drvinfo->version, DRV_VERSION);
1170 strcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)));
1171 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1172 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1173 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1174 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1175 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1176 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1177 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1178 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1179 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1180 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1181}
1182
1183/*
1184 * Return current adapter message level.
1185 */
1186static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1187{
1188 return netdev2adap(dev)->msg_enable;
1189}
1190
1191/*
1192 * Set current adapter message level.
1193 */
1194static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1195{
1196 netdev2adap(dev)->msg_enable = msglevel;
1197}
1198
1199/*
1200 * Return the device's current Queue Set ring size parameters along with the
1201 * allowed maximum values. Since ethtool doesn't understand the concept of
1202 * multi-queue devices, we just return the current values associated with the
1203 * first Queue Set.
1204 */
1205static void cxgb4vf_get_ringparam(struct net_device *dev,
1206 struct ethtool_ringparam *rp)
1207{
1208 const struct port_info *pi = netdev_priv(dev);
1209 const struct sge *s = &pi->adapter->sge;
1210
1211 rp->rx_max_pending = MAX_RX_BUFFERS;
1212 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1213 rp->rx_jumbo_max_pending = 0;
1214 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1215
1216 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1217 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1218 rp->rx_jumbo_pending = 0;
1219 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1220}
1221
1222/*
1223 * Set the Queue Set ring size parameters for the device. Again, since
1224 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1225 * apply these new values across all of the Queue Sets associated with the
1226 * device -- after vetting them of course!
1227 */
1228static int cxgb4vf_set_ringparam(struct net_device *dev,
1229 struct ethtool_ringparam *rp)
1230{
1231 const struct port_info *pi = netdev_priv(dev);
1232 struct adapter *adapter = pi->adapter;
1233 struct sge *s = &adapter->sge;
1234 int qs;
1235
1236 if (rp->rx_pending > MAX_RX_BUFFERS ||
1237 rp->rx_jumbo_pending ||
1238 rp->tx_pending > MAX_TXQ_ENTRIES ||
1239 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1240 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1241 rp->rx_pending < MIN_FL_ENTRIES ||
1242 rp->tx_pending < MIN_TXQ_ENTRIES)
1243 return -EINVAL;
1244
1245 if (adapter->flags & FULL_INIT_DONE)
1246 return -EBUSY;
1247
1248 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1249 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1250 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1251 s->ethtxq[qs].q.size = rp->tx_pending;
1252 }
1253 return 0;
1254}
1255
1256/*
1257 * Return the interrupt holdoff timer and count for the first Queue Set on the
1258 * device. Our extension ioctl() (the cxgbtool interface) allows the
1259 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1260 */
1261static int cxgb4vf_get_coalesce(struct net_device *dev,
1262 struct ethtool_coalesce *coalesce)
1263{
1264 const struct port_info *pi = netdev_priv(dev);
1265 const struct adapter *adapter = pi->adapter;
1266 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1267
1268 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1269 coalesce->rx_max_coalesced_frames =
1270 ((rspq->intr_params & QINTR_CNT_EN)
1271 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1272 : 0);
1273 return 0;
1274}
1275
1276/*
1277 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1278 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1279 * the interrupt holdoff timer on any of the device's Queue Sets.
1280 */
1281static int cxgb4vf_set_coalesce(struct net_device *dev,
1282 struct ethtool_coalesce *coalesce)
1283{
1284 const struct port_info *pi = netdev_priv(dev);
1285 struct adapter *adapter = pi->adapter;
1286
1287 return set_rxq_intr_params(adapter,
1288 &adapter->sge.ethrxq[pi->first_qset].rspq,
1289 coalesce->rx_coalesce_usecs,
1290 coalesce->rx_max_coalesced_frames);
1291}
1292
1293/*
1294 * Report current port link pause parameter settings.
1295 */
1296static void cxgb4vf_get_pauseparam(struct net_device *dev,
1297 struct ethtool_pauseparam *pauseparam)
1298{
1299 struct port_info *pi = netdev_priv(dev);
1300
1301 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1302 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1303 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1304}
1305
1306/*
1307 * Return whether RX Checksum Offloading is currently enabled for the device.
1308 */
1309static u32 cxgb4vf_get_rx_csum(struct net_device *dev)
1310{
1311 struct port_info *pi = netdev_priv(dev);
1312
1313 return (pi->rx_offload & RX_CSO) != 0;
1314}
1315
1316/*
1317 * Turn RX Checksum Offloading on or off for the device.
1318 */
1319static int cxgb4vf_set_rx_csum(struct net_device *dev, u32 csum)
1320{
1321 struct port_info *pi = netdev_priv(dev);
1322
1323 if (csum)
1324 pi->rx_offload |= RX_CSO;
1325 else
1326 pi->rx_offload &= ~RX_CSO;
1327 return 0;
1328}
1329
1330/*
1331 * Identify the port by blinking the port's LED.
1332 */
1333static int cxgb4vf_phys_id(struct net_device *dev, u32 id)
1334{
1335 struct port_info *pi = netdev_priv(dev);
1336
1337 return t4vf_identify_port(pi->adapter, pi->viid, 5);
1338}
1339
1340/*
1341 * Port stats maintained per queue of the port.
1342 */
1343struct queue_port_stats {
1344 u64 tso;
1345 u64 tx_csum;
1346 u64 rx_csum;
1347 u64 vlan_ex;
1348 u64 vlan_ins;
f12fe353
CL
1349 u64 lro_pkts;
1350 u64 lro_merged;
be839e39
CL
1351};
1352
1353/*
1354 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1355 * these need to match the order of statistics returned by
1356 * t4vf_get_port_stats().
1357 */
1358static const char stats_strings[][ETH_GSTRING_LEN] = {
1359 /*
1360 * These must match the layout of the t4vf_port_stats structure.
1361 */
1362 "TxBroadcastBytes ",
1363 "TxBroadcastFrames ",
1364 "TxMulticastBytes ",
1365 "TxMulticastFrames ",
1366 "TxUnicastBytes ",
1367 "TxUnicastFrames ",
1368 "TxDroppedFrames ",
1369 "TxOffloadBytes ",
1370 "TxOffloadFrames ",
1371 "RxBroadcastBytes ",
1372 "RxBroadcastFrames ",
1373 "RxMulticastBytes ",
1374 "RxMulticastFrames ",
1375 "RxUnicastBytes ",
1376 "RxUnicastFrames ",
1377 "RxErrorFrames ",
1378
1379 /*
1380 * These are accumulated per-queue statistics and must match the
1381 * order of the fields in the queue_port_stats structure.
1382 */
1383 "TSO ",
1384 "TxCsumOffload ",
1385 "RxCsumGood ",
1386 "VLANextractions ",
1387 "VLANinsertions ",
f12fe353
CL
1388 "GROPackets ",
1389 "GROMerged ",
be839e39
CL
1390};
1391
1392/*
1393 * Return the number of statistics in the specified statistics set.
1394 */
1395static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1396{
1397 switch (sset) {
1398 case ETH_SS_STATS:
1399 return ARRAY_SIZE(stats_strings);
1400 default:
1401 return -EOPNOTSUPP;
1402 }
1403 /*NOTREACHED*/
1404}
1405
1406/*
1407 * Return the strings for the specified statistics set.
1408 */
1409static void cxgb4vf_get_strings(struct net_device *dev,
1410 u32 sset,
1411 u8 *data)
1412{
1413 switch (sset) {
1414 case ETH_SS_STATS:
1415 memcpy(data, stats_strings, sizeof(stats_strings));
1416 break;
1417 }
1418}
1419
1420/*
1421 * Small utility routine to accumulate queue statistics across the queues of
1422 * a "port".
1423 */
1424static void collect_sge_port_stats(const struct adapter *adapter,
1425 const struct port_info *pi,
1426 struct queue_port_stats *stats)
1427{
1428 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1429 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1430 int qs;
1431
1432 memset(stats, 0, sizeof(*stats));
1433 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1434 stats->tso += txq->tso;
1435 stats->tx_csum += txq->tx_cso;
1436 stats->rx_csum += rxq->stats.rx_cso;
1437 stats->vlan_ex += rxq->stats.vlan_ex;
1438 stats->vlan_ins += txq->vlan_ins;
f12fe353
CL
1439 stats->lro_pkts += rxq->stats.lro_pkts;
1440 stats->lro_merged += rxq->stats.lro_merged;
be839e39
CL
1441 }
1442}
1443
1444/*
1445 * Return the ETH_SS_STATS statistics set.
1446 */
1447static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1448 struct ethtool_stats *stats,
1449 u64 *data)
1450{
1451 struct port_info *pi = netdev2pinfo(dev);
1452 struct adapter *adapter = pi->adapter;
1453 int err = t4vf_get_port_stats(adapter, pi->pidx,
1454 (struct t4vf_port_stats *)data);
1455 if (err)
1456 memset(data, 0, sizeof(struct t4vf_port_stats));
1457
1458 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1459 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1460}
1461
1462/*
1463 * Return the size of our register map.
1464 */
1465static int cxgb4vf_get_regs_len(struct net_device *dev)
1466{
1467 return T4VF_REGMAP_SIZE;
1468}
1469
1470/*
1471 * Dump a block of registers, start to end inclusive, into a buffer.
1472 */
1473static void reg_block_dump(struct adapter *adapter, void *regbuf,
1474 unsigned int start, unsigned int end)
1475{
1476 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1477
1478 for ( ; start <= end; start += sizeof(u32)) {
1479 /*
1480 * Avoid reading the Mailbox Control register since that
1481 * can trigger a Mailbox Ownership Arbitration cycle and
1482 * interfere with communication with the firmware.
1483 */
1484 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1485 *bp++ = 0xffff;
1486 else
1487 *bp++ = t4_read_reg(adapter, start);
1488 }
1489}
1490
1491/*
1492 * Copy our entire register map into the provided buffer.
1493 */
1494static void cxgb4vf_get_regs(struct net_device *dev,
1495 struct ethtool_regs *regs,
1496 void *regbuf)
1497{
1498 struct adapter *adapter = netdev2adap(dev);
1499
1500 regs->version = mk_adap_vers(adapter);
1501
1502 /*
1503 * Fill in register buffer with our register map.
1504 */
1505 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1506
1507 reg_block_dump(adapter, regbuf,
1508 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1509 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1510 reg_block_dump(adapter, regbuf,
1511 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1512 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1513 reg_block_dump(adapter, regbuf,
1514 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1515 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1516 reg_block_dump(adapter, regbuf,
1517 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1518 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1519
1520 reg_block_dump(adapter, regbuf,
1521 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1522 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1523}
1524
1525/*
1526 * Report current Wake On LAN settings.
1527 */
1528static void cxgb4vf_get_wol(struct net_device *dev,
1529 struct ethtool_wolinfo *wol)
1530{
1531 wol->supported = 0;
1532 wol->wolopts = 0;
1533 memset(&wol->sopass, 0, sizeof(wol->sopass));
1534}
1535
410989f6
CL
1536/*
1537 * TCP Segmentation Offload flags which we support.
1538 */
1539#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1540
be839e39
CL
1541/*
1542 * Set TCP Segmentation Offloading feature capabilities.
1543 */
1544static int cxgb4vf_set_tso(struct net_device *dev, u32 tso)
1545{
1546 if (tso)
410989f6 1547 dev->features |= TSO_FLAGS;
be839e39 1548 else
410989f6 1549 dev->features &= ~TSO_FLAGS;
be839e39
CL
1550 return 0;
1551}
1552
1553static struct ethtool_ops cxgb4vf_ethtool_ops = {
1554 .get_settings = cxgb4vf_get_settings,
1555 .get_drvinfo = cxgb4vf_get_drvinfo,
1556 .get_msglevel = cxgb4vf_get_msglevel,
1557 .set_msglevel = cxgb4vf_set_msglevel,
1558 .get_ringparam = cxgb4vf_get_ringparam,
1559 .set_ringparam = cxgb4vf_set_ringparam,
1560 .get_coalesce = cxgb4vf_get_coalesce,
1561 .set_coalesce = cxgb4vf_set_coalesce,
1562 .get_pauseparam = cxgb4vf_get_pauseparam,
1563 .get_rx_csum = cxgb4vf_get_rx_csum,
1564 .set_rx_csum = cxgb4vf_set_rx_csum,
1565 .set_tx_csum = ethtool_op_set_tx_ipv6_csum,
1566 .set_sg = ethtool_op_set_sg,
1567 .get_link = ethtool_op_get_link,
1568 .get_strings = cxgb4vf_get_strings,
1569 .phys_id = cxgb4vf_phys_id,
1570 .get_sset_count = cxgb4vf_get_sset_count,
1571 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1572 .get_regs_len = cxgb4vf_get_regs_len,
1573 .get_regs = cxgb4vf_get_regs,
1574 .get_wol = cxgb4vf_get_wol,
1575 .set_tso = cxgb4vf_set_tso,
1576};
1577
1578/*
1579 * /sys/kernel/debug/cxgb4vf support code and data.
1580 * ================================================
1581 */
1582
1583/*
1584 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1585 */
1586#define QPL 4
1587
1588static int sge_qinfo_show(struct seq_file *seq, void *v)
1589{
1590 struct adapter *adapter = seq->private;
1591 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1592 int qs, r = (uintptr_t)v - 1;
1593
1594 if (r)
1595 seq_putc(seq, '\n');
1596
1597 #define S3(fmt_spec, s, v) \
1598 do {\
1599 seq_printf(seq, "%-12s", s); \
1600 for (qs = 0; qs < n; ++qs) \
1601 seq_printf(seq, " %16" fmt_spec, v); \
1602 seq_putc(seq, '\n'); \
1603 } while (0)
1604 #define S(s, v) S3("s", s, v)
1605 #define T(s, v) S3("u", s, txq[qs].v)
1606 #define R(s, v) S3("u", s, rxq[qs].v)
1607
1608 if (r < eth_entries) {
1609 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1610 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1611 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1612
1613 S("QType:", "Ethernet");
1614 S("Interface:",
1615 (rxq[qs].rspq.netdev
1616 ? rxq[qs].rspq.netdev->name
1617 : "N/A"));
1618 S3("d", "Port:",
1619 (rxq[qs].rspq.netdev
1620 ? ((struct port_info *)
1621 netdev_priv(rxq[qs].rspq.netdev))->port_id
1622 : -1));
1623 T("TxQ ID:", q.abs_id);
1624 T("TxQ size:", q.size);
1625 T("TxQ inuse:", q.in_use);
1626 T("TxQ PIdx:", q.pidx);
1627 T("TxQ CIdx:", q.cidx);
1628 R("RspQ ID:", rspq.abs_id);
1629 R("RspQ size:", rspq.size);
1630 R("RspQE size:", rspq.iqe_len);
1631 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1632 S3("u", "Intr pktcnt:",
1633 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1634 R("RspQ CIdx:", rspq.cidx);
1635 R("RspQ Gen:", rspq.gen);
1636 R("FL ID:", fl.abs_id);
1637 R("FL size:", fl.size - MIN_FL_RESID);
1638 R("FL avail:", fl.avail);
1639 R("FL PIdx:", fl.pidx);
1640 R("FL CIdx:", fl.cidx);
1641 return 0;
1642 }
1643
1644 r -= eth_entries;
1645 if (r == 0) {
1646 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1647
1648 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1649 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1650 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1651 qtimer_val(adapter, evtq));
1652 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1653 adapter->sge.counter_val[evtq->pktcnt_idx]);
1654 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1655 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1656 } else if (r == 1) {
1657 const struct sge_rspq *intrq = &adapter->sge.intrq;
1658
1659 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1660 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1661 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1662 qtimer_val(adapter, intrq));
1663 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1664 adapter->sge.counter_val[intrq->pktcnt_idx]);
1665 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1666 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1667 }
1668
1669 #undef R
1670 #undef T
1671 #undef S
1672 #undef S3
1673
1674 return 0;
1675}
1676
1677/*
1678 * Return the number of "entries" in our "file". We group the multi-Queue
1679 * sections with QPL Queue Sets per "entry". The sections of the output are:
1680 *
1681 * Ethernet RX/TX Queue Sets
1682 * Firmware Event Queue
1683 * Forwarded Interrupt Queue (if in MSI mode)
1684 */
1685static int sge_queue_entries(const struct adapter *adapter)
1686{
1687 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1688 ((adapter->flags & USING_MSI) != 0);
1689}
1690
1691static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1692{
1693 int entries = sge_queue_entries(seq->private);
1694
1695 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1696}
1697
1698static void sge_queue_stop(struct seq_file *seq, void *v)
1699{
1700}
1701
1702static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1703{
1704 int entries = sge_queue_entries(seq->private);
1705
1706 ++*pos;
1707 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1708}
1709
1710static const struct seq_operations sge_qinfo_seq_ops = {
1711 .start = sge_queue_start,
1712 .next = sge_queue_next,
1713 .stop = sge_queue_stop,
1714 .show = sge_qinfo_show
1715};
1716
1717static int sge_qinfo_open(struct inode *inode, struct file *file)
1718{
1719 int res = seq_open(file, &sge_qinfo_seq_ops);
1720
1721 if (!res) {
1722 struct seq_file *seq = file->private_data;
1723 seq->private = inode->i_private;
1724 }
1725 return res;
1726}
1727
1728static const struct file_operations sge_qinfo_debugfs_fops = {
1729 .owner = THIS_MODULE,
1730 .open = sge_qinfo_open,
1731 .read = seq_read,
1732 .llseek = seq_lseek,
1733 .release = seq_release,
1734};
1735
1736/*
1737 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1738 */
1739#define QPL 4
1740
1741static int sge_qstats_show(struct seq_file *seq, void *v)
1742{
1743 struct adapter *adapter = seq->private;
1744 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1745 int qs, r = (uintptr_t)v - 1;
1746
1747 if (r)
1748 seq_putc(seq, '\n');
1749
1750 #define S3(fmt, s, v) \
1751 do { \
1752 seq_printf(seq, "%-16s", s); \
1753 for (qs = 0; qs < n; ++qs) \
1754 seq_printf(seq, " %8" fmt, v); \
1755 seq_putc(seq, '\n'); \
1756 } while (0)
1757 #define S(s, v) S3("s", s, v)
1758
1759 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1760 #define T(s, v) T3("lu", s, v)
1761
1762 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1763 #define R(s, v) R3("lu", s, v)
1764
1765 if (r < eth_entries) {
1766 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1767 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1768 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1769
1770 S("QType:", "Ethernet");
1771 S("Interface:",
1772 (rxq[qs].rspq.netdev
1773 ? rxq[qs].rspq.netdev->name
1774 : "N/A"));
68dc9d36 1775 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
be839e39
CL
1776 R("RxPackets:", stats.pkts);
1777 R("RxCSO:", stats.rx_cso);
1778 R("VLANxtract:", stats.vlan_ex);
1779 R("LROmerged:", stats.lro_merged);
1780 R("LROpackets:", stats.lro_pkts);
1781 R("RxDrops:", stats.rx_drops);
1782 T("TSO:", tso);
1783 T("TxCSO:", tx_cso);
1784 T("VLANins:", vlan_ins);
1785 T("TxQFull:", q.stops);
1786 T("TxQRestarts:", q.restarts);
1787 T("TxMapErr:", mapping_err);
1788 R("FLAllocErr:", fl.alloc_failed);
1789 R("FLLrgAlcErr:", fl.large_alloc_failed);
1790 R("FLStarving:", fl.starving);
1791 return 0;
1792 }
1793
1794 r -= eth_entries;
1795 if (r == 0) {
1796 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1797
1798 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
68dc9d36
CL
1799 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1800 evtq->unhandled_irqs);
be839e39
CL
1801 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1802 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1803 } else if (r == 1) {
1804 const struct sge_rspq *intrq = &adapter->sge.intrq;
1805
1806 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
68dc9d36
CL
1807 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1808 intrq->unhandled_irqs);
be839e39
CL
1809 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1810 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1811 }
1812
1813 #undef R
1814 #undef T
1815 #undef S
1816 #undef R3
1817 #undef T3
1818 #undef S3
1819
1820 return 0;
1821}
1822
1823/*
1824 * Return the number of "entries" in our "file". We group the multi-Queue
1825 * sections with QPL Queue Sets per "entry". The sections of the output are:
1826 *
1827 * Ethernet RX/TX Queue Sets
1828 * Firmware Event Queue
1829 * Forwarded Interrupt Queue (if in MSI mode)
1830 */
1831static int sge_qstats_entries(const struct adapter *adapter)
1832{
1833 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1834 ((adapter->flags & USING_MSI) != 0);
1835}
1836
1837static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1838{
1839 int entries = sge_qstats_entries(seq->private);
1840
1841 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1842}
1843
1844static void sge_qstats_stop(struct seq_file *seq, void *v)
1845{
1846}
1847
1848static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1849{
1850 int entries = sge_qstats_entries(seq->private);
1851
1852 (*pos)++;
1853 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1854}
1855
1856static const struct seq_operations sge_qstats_seq_ops = {
1857 .start = sge_qstats_start,
1858 .next = sge_qstats_next,
1859 .stop = sge_qstats_stop,
1860 .show = sge_qstats_show
1861};
1862
1863static int sge_qstats_open(struct inode *inode, struct file *file)
1864{
1865 int res = seq_open(file, &sge_qstats_seq_ops);
1866
1867 if (res == 0) {
1868 struct seq_file *seq = file->private_data;
1869 seq->private = inode->i_private;
1870 }
1871 return res;
1872}
1873
1874static const struct file_operations sge_qstats_proc_fops = {
1875 .owner = THIS_MODULE,
1876 .open = sge_qstats_open,
1877 .read = seq_read,
1878 .llseek = seq_lseek,
1879 .release = seq_release,
1880};
1881
1882/*
1883 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1884 */
1885static int resources_show(struct seq_file *seq, void *v)
1886{
1887 struct adapter *adapter = seq->private;
1888 struct vf_resources *vfres = &adapter->params.vfres;
1889
1890 #define S(desc, fmt, var) \
1891 seq_printf(seq, "%-60s " fmt "\n", \
1892 desc " (" #var "):", vfres->var)
1893
1894 S("Virtual Interfaces", "%d", nvi);
1895 S("Egress Queues", "%d", neq);
1896 S("Ethernet Control", "%d", nethctrl);
1897 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1898 S("Ingress Queues", "%d", niq);
1899 S("Traffic Class", "%d", tc);
1900 S("Port Access Rights Mask", "%#x", pmask);
1901 S("MAC Address Filters", "%d", nexactf);
1902 S("Firmware Command Read Capabilities", "%#x", r_caps);
1903 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1904
1905 #undef S
1906
1907 return 0;
1908}
1909
1910static int resources_open(struct inode *inode, struct file *file)
1911{
1912 return single_open(file, resources_show, inode->i_private);
1913}
1914
1915static const struct file_operations resources_proc_fops = {
1916 .owner = THIS_MODULE,
1917 .open = resources_open,
1918 .read = seq_read,
1919 .llseek = seq_lseek,
1920 .release = single_release,
1921};
1922
1923/*
1924 * Show Virtual Interfaces.
1925 */
1926static int interfaces_show(struct seq_file *seq, void *v)
1927{
1928 if (v == SEQ_START_TOKEN) {
1929 seq_puts(seq, "Interface Port VIID\n");
1930 } else {
1931 struct adapter *adapter = seq->private;
1932 int pidx = (uintptr_t)v - 2;
1933 struct net_device *dev = adapter->port[pidx];
1934 struct port_info *pi = netdev_priv(dev);
1935
1936 seq_printf(seq, "%9s %4d %#5x\n",
1937 dev->name, pi->port_id, pi->viid);
1938 }
1939 return 0;
1940}
1941
1942static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1943{
1944 return pos <= adapter->params.nports
1945 ? (void *)(uintptr_t)(pos + 1)
1946 : NULL;
1947}
1948
1949static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1950{
1951 return *pos
1952 ? interfaces_get_idx(seq->private, *pos)
1953 : SEQ_START_TOKEN;
1954}
1955
1956static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1957{
1958 (*pos)++;
1959 return interfaces_get_idx(seq->private, *pos);
1960}
1961
1962static void interfaces_stop(struct seq_file *seq, void *v)
1963{
1964}
1965
1966static const struct seq_operations interfaces_seq_ops = {
1967 .start = interfaces_start,
1968 .next = interfaces_next,
1969 .stop = interfaces_stop,
1970 .show = interfaces_show
1971};
1972
1973static int interfaces_open(struct inode *inode, struct file *file)
1974{
1975 int res = seq_open(file, &interfaces_seq_ops);
1976
1977 if (res == 0) {
1978 struct seq_file *seq = file->private_data;
1979 seq->private = inode->i_private;
1980 }
1981 return res;
1982}
1983
1984static const struct file_operations interfaces_proc_fops = {
1985 .owner = THIS_MODULE,
1986 .open = interfaces_open,
1987 .read = seq_read,
1988 .llseek = seq_lseek,
1989 .release = seq_release,
1990};
1991
1992/*
1993 * /sys/kernel/debugfs/cxgb4vf/ files list.
1994 */
1995struct cxgb4vf_debugfs_entry {
1996 const char *name; /* name of debugfs node */
1997 mode_t mode; /* file system mode */
1998 const struct file_operations *fops;
1999};
2000
2001static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2002 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
2003 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2004 { "resources", S_IRUGO, &resources_proc_fops },
2005 { "interfaces", S_IRUGO, &interfaces_proc_fops },
2006};
2007
2008/*
2009 * Module and device initialization and cleanup code.
2010 * ==================================================
2011 */
2012
2013/*
2014 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2015 * directory (debugfs_root) has already been set up.
2016 */
2017static int __devinit setup_debugfs(struct adapter *adapter)
2018{
2019 int i;
2020
2021 BUG_ON(adapter->debugfs_root == NULL);
2022
2023 /*
2024 * Debugfs support is best effort.
2025 */
2026 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2027 (void)debugfs_create_file(debugfs_files[i].name,
2028 debugfs_files[i].mode,
2029 adapter->debugfs_root,
2030 (void *)adapter,
2031 debugfs_files[i].fops);
2032
2033 return 0;
2034}
2035
2036/*
2037 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2038 * it to our caller to tear down the directory (debugfs_root).
2039 */
4204875d 2040static void cleanup_debugfs(struct adapter *adapter)
be839e39
CL
2041{
2042 BUG_ON(adapter->debugfs_root == NULL);
2043
2044 /*
2045 * Unlike our sister routine cleanup_proc(), we don't need to remove
2046 * individual entries because a call will be made to
2047 * debugfs_remove_recursive(). We just need to clean up any ancillary
2048 * persistent state.
2049 */
2050 /* nothing to do */
2051}
2052
2053/*
2054 * Perform early "adapter" initialization. This is where we discover what
2055 * adapter parameters we're going to be using and initialize basic adapter
2056 * hardware support.
2057 */
4204875d 2058static int __devinit adap_init0(struct adapter *adapter)
be839e39
CL
2059{
2060 struct vf_resources *vfres = &adapter->params.vfres;
2061 struct sge_params *sge_params = &adapter->params.sge;
2062 struct sge *s = &adapter->sge;
2063 unsigned int ethqsets;
2064 int err;
2065
2066 /*
2067 * Wait for the device to become ready before proceeding ...
2068 */
2069 err = t4vf_wait_dev_ready(adapter);
2070 if (err) {
2071 dev_err(adapter->pdev_dev, "device didn't become ready:"
2072 " err=%d\n", err);
2073 return err;
2074 }
2075
e68e6133
CL
2076 /*
2077 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2078 * 2.6.31 and later we can't call pci_reset_function() in order to
2079 * issue an FLR because of a self- deadlock on the device semaphore.
2080 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2081 * cases where they're needed -- for instance, some versions of KVM
2082 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2083 * use the firmware based reset in order to reset any per function
2084 * state.
2085 */
2086 err = t4vf_fw_reset(adapter);
2087 if (err < 0) {
2088 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2089 return err;
2090 }
2091
be839e39
CL
2092 /*
2093 * Grab basic operational parameters. These will predominantly have
2094 * been set up by the Physical Function Driver or will be hard coded
2095 * into the adapter. We just have to live with them ... Note that
2096 * we _must_ get our VPD parameters before our SGE parameters because
2097 * we need to know the adapter's core clock from the VPD in order to
2098 * properly decode the SGE Timer Values.
2099 */
2100 err = t4vf_get_dev_params(adapter);
2101 if (err) {
2102 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2103 " device parameters: err=%d\n", err);
2104 return err;
2105 }
2106 err = t4vf_get_vpd_params(adapter);
2107 if (err) {
2108 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2109 " VPD parameters: err=%d\n", err);
2110 return err;
2111 }
2112 err = t4vf_get_sge_params(adapter);
2113 if (err) {
2114 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2115 " SGE parameters: err=%d\n", err);
2116 return err;
2117 }
2118 err = t4vf_get_rss_glb_config(adapter);
2119 if (err) {
2120 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2121 " RSS parameters: err=%d\n", err);
2122 return err;
2123 }
2124 if (adapter->params.rss.mode !=
2125 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2126 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2127 " mode %d\n", adapter->params.rss.mode);
2128 return -EINVAL;
2129 }
2130 err = t4vf_sge_init(adapter);
2131 if (err) {
2132 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2133 " err=%d\n", err);
2134 return err;
2135 }
2136
2137 /*
2138 * Retrieve our RX interrupt holdoff timer values and counter
2139 * threshold values from the SGE parameters.
2140 */
2141 s->timer_val[0] = core_ticks_to_us(adapter,
2142 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2143 s->timer_val[1] = core_ticks_to_us(adapter,
2144 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2145 s->timer_val[2] = core_ticks_to_us(adapter,
2146 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2147 s->timer_val[3] = core_ticks_to_us(adapter,
2148 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2149 s->timer_val[4] = core_ticks_to_us(adapter,
2150 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2151 s->timer_val[5] = core_ticks_to_us(adapter,
2152 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2153
2154 s->counter_val[0] =
2155 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2156 s->counter_val[1] =
2157 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2158 s->counter_val[2] =
2159 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2160 s->counter_val[3] =
2161 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2162
2163 /*
2164 * Grab our Virtual Interface resource allocation, extract the
2165 * features that we're interested in and do a bit of sanity testing on
2166 * what we discover.
2167 */
2168 err = t4vf_get_vfres(adapter);
2169 if (err) {
2170 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2171 " resources: err=%d\n", err);
2172 return err;
2173 }
2174
2175 /*
2176 * The number of "ports" which we support is equal to the number of
2177 * Virtual Interfaces with which we've been provisioned.
2178 */
2179 adapter->params.nports = vfres->nvi;
2180 if (adapter->params.nports > MAX_NPORTS) {
2181 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2182 " virtual interfaces\n", MAX_NPORTS,
2183 adapter->params.nports);
2184 adapter->params.nports = MAX_NPORTS;
2185 }
2186
2187 /*
2188 * We need to reserve a number of the ingress queues with Free List
2189 * and Interrupt capabilities for special interrupt purposes (like
2190 * asynchronous firmware messages, or forwarded interrupts if we're
2191 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2192 * matched up one-for-one with Ethernet/Control egress queues in order
2193 * to form "Queue Sets" which will be aportioned between the "ports".
2194 * For each Queue Set, we'll need the ability to allocate two Egress
2195 * Contexts -- one for the Ingress Queue Free List and one for the TX
2196 * Ethernet Queue.
2197 */
2198 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2199 if (vfres->nethctrl != ethqsets) {
2200 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2201 " ingress/egress queues (%d/%d); using minimum for"
2202 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2203 ethqsets = min(vfres->nethctrl, ethqsets);
2204 }
2205 if (vfres->neq < ethqsets*2) {
2206 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2207 " to support Queue Sets (%d); reducing allowed Queue"
2208 " Sets\n", vfres->neq, ethqsets);
2209 ethqsets = vfres->neq/2;
2210 }
2211 if (ethqsets > MAX_ETH_QSETS) {
2212 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2213 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2214 ethqsets = MAX_ETH_QSETS;
2215 }
2216 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2217 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2218 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2219 }
2220 adapter->sge.max_ethqsets = ethqsets;
2221
2222 /*
2223 * Check for various parameter sanity issues. Most checks simply
2224 * result in us using fewer resources than our provissioning but we
2225 * do need at least one "port" with which to work ...
2226 */
2227 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2228 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2229 " virtual interfaces (too few Queue Sets)\n",
2230 adapter->sge.max_ethqsets, adapter->params.nports);
2231 adapter->params.nports = adapter->sge.max_ethqsets;
2232 }
2233 if (adapter->params.nports == 0) {
2234 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2235 "usable!\n");
2236 return -EINVAL;
2237 }
2238 return 0;
2239}
2240
2241static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2242 u8 pkt_cnt_idx, unsigned int size,
2243 unsigned int iqe_size)
2244{
2245 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2246 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2247 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2248 ? pkt_cnt_idx
2249 : 0);
2250 rspq->iqe_len = iqe_size;
2251 rspq->size = size;
2252}
2253
2254/*
2255 * Perform default configuration of DMA queues depending on the number and
2256 * type of ports we found and the number of available CPUs. Most settings can
2257 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2258 * being brought up for the first time.
2259 */
2260static void __devinit cfg_queues(struct adapter *adapter)
2261{
2262 struct sge *s = &adapter->sge;
2263 int q10g, n10g, qidx, pidx, qs;
2264
2265 /*
2266 * We should not be called till we know how many Queue Sets we can
2267 * support. In particular, this means that we need to know what kind
2268 * of interrupts we'll be using ...
2269 */
2270 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2271
2272 /*
2273 * Count the number of 10GbE Virtual Interfaces that we have.
2274 */
2275 n10g = 0;
2276 for_each_port(adapter, pidx)
2277 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2278
2279 /*
2280 * We default to 1 queue per non-10G port and up to # of cores queues
2281 * per 10G port.
2282 */
2283 if (n10g == 0)
2284 q10g = 0;
2285 else {
2286 int n1g = (adapter->params.nports - n10g);
2287 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2288 if (q10g > num_online_cpus())
2289 q10g = num_online_cpus();
2290 }
2291
2292 /*
2293 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2294 * The layout will be established in setup_sge_queues() when the
2295 * adapter is brough up for the first time.
2296 */
2297 qidx = 0;
2298 for_each_port(adapter, pidx) {
2299 struct port_info *pi = adap2pinfo(adapter, pidx);
2300
2301 pi->first_qset = qidx;
2302 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2303 qidx += pi->nqsets;
2304 }
2305 s->ethqsets = qidx;
2306
2307 /*
2308 * Set up default Queue Set parameters ... Start off with the
2309 * shortest interrupt holdoff timer.
2310 */
2311 for (qs = 0; qs < s->max_ethqsets; qs++) {
2312 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2313 struct sge_eth_txq *txq = &s->ethtxq[qs];
2314
2315 init_rspq(&rxq->rspq, 0, 0, 1024, L1_CACHE_BYTES);
2316 rxq->fl.size = 72;
2317 txq->q.size = 1024;
2318 }
2319
2320 /*
2321 * The firmware event queue is used for link state changes and
2322 * notifications of TX DMA completions.
2323 */
2324 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512,
2325 L1_CACHE_BYTES);
2326
2327 /*
2328 * The forwarded interrupt queue is used when we're in MSI interrupt
2329 * mode. In this mode all interrupts associated with RX queues will
2330 * be forwarded to a single queue which we'll associate with our MSI
2331 * interrupt vector. The messages dropped in the forwarded interrupt
2332 * queue will indicate which ingress queue needs servicing ... This
2333 * queue needs to be large enough to accommodate all of the ingress
2334 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2335 * from equalling the CIDX if every ingress queue has an outstanding
2336 * interrupt). The queue doesn't need to be any larger because no
2337 * ingress queue will ever have more than one outstanding interrupt at
2338 * any time ...
2339 */
2340 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2341 L1_CACHE_BYTES);
2342}
2343
2344/*
2345 * Reduce the number of Ethernet queues across all ports to at most n.
2346 * n provides at least one queue per port.
2347 */
2348static void __devinit reduce_ethqs(struct adapter *adapter, int n)
2349{
2350 int i;
2351 struct port_info *pi;
2352
2353 /*
2354 * While we have too many active Ether Queue Sets, interate across the
2355 * "ports" and reduce their individual Queue Set allocations.
2356 */
2357 BUG_ON(n < adapter->params.nports);
2358 while (n < adapter->sge.ethqsets)
2359 for_each_port(adapter, i) {
2360 pi = adap2pinfo(adapter, i);
2361 if (pi->nqsets > 1) {
2362 pi->nqsets--;
2363 adapter->sge.ethqsets--;
2364 if (adapter->sge.ethqsets <= n)
2365 break;
2366 }
2367 }
2368
2369 /*
2370 * Reassign the starting Queue Sets for each of the "ports" ...
2371 */
2372 n = 0;
2373 for_each_port(adapter, i) {
2374 pi = adap2pinfo(adapter, i);
2375 pi->first_qset = n;
2376 n += pi->nqsets;
2377 }
2378}
2379
2380/*
2381 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2382 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2383 * need. Minimally we need one for every Virtual Interface plus those needed
2384 * for our "extras". Note that this process may lower the maximum number of
2385 * allowed Queue Sets ...
2386 */
2387static int __devinit enable_msix(struct adapter *adapter)
2388{
2389 int i, err, want, need;
2390 struct msix_entry entries[MSIX_ENTRIES];
2391 struct sge *s = &adapter->sge;
2392
2393 for (i = 0; i < MSIX_ENTRIES; ++i)
2394 entries[i].entry = i;
2395
2396 /*
2397 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2398 * plus those needed for our "extras" (for example, the firmware
2399 * message queue). We _need_ at least one "Queue Set" per Virtual
2400 * Interface plus those needed for our "extras". So now we get to see
2401 * if the song is right ...
2402 */
2403 want = s->max_ethqsets + MSIX_EXTRAS;
2404 need = adapter->params.nports + MSIX_EXTRAS;
2405 while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2406 want = err;
2407
2408 if (err == 0) {
2409 int nqsets = want - MSIX_EXTRAS;
2410 if (nqsets < s->max_ethqsets) {
2411 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2412 " for %d Queue Sets\n", nqsets);
2413 s->max_ethqsets = nqsets;
2414 if (nqsets < s->ethqsets)
2415 reduce_ethqs(adapter, nqsets);
2416 }
2417 for (i = 0; i < want; ++i)
2418 adapter->msix_info[i].vec = entries[i].vector;
2419 } else if (err > 0) {
2420 pci_disable_msix(adapter->pdev);
2421 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2422 " not using MSI-X\n", err);
2423 }
2424 return err;
2425}
2426
2427#ifdef HAVE_NET_DEVICE_OPS
2428static const struct net_device_ops cxgb4vf_netdev_ops = {
2429 .ndo_open = cxgb4vf_open,
2430 .ndo_stop = cxgb4vf_stop,
2431 .ndo_start_xmit = t4vf_eth_xmit,
2432 .ndo_get_stats = cxgb4vf_get_stats,
2433 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2434 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
be839e39
CL
2435 .ndo_validate_addr = eth_validate_addr,
2436 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2437 .ndo_change_mtu = cxgb4vf_change_mtu,
2438 .ndo_vlan_rx_register = cxgb4vf_vlan_rx_register,
2439#ifdef CONFIG_NET_POLL_CONTROLLER
2440 .ndo_poll_controller = cxgb4vf_poll_controller,
2441#endif
2442};
2443#endif
2444
2445/*
2446 * "Probe" a device: initialize a device and construct all kernel and driver
2447 * state needed to manage the device. This routine is called "init_one" in
2448 * the PF Driver ...
2449 */
2450static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev,
2451 const struct pci_device_id *ent)
2452{
2453 static int version_printed;
2454
2455 int pci_using_dac;
2456 int err, pidx;
2457 unsigned int pmask;
2458 struct adapter *adapter;
2459 struct port_info *pi;
2460 struct net_device *netdev;
2461
2462 /*
2463 * Vet our module parameters.
2464 */
2465 if (msi != MSI_MSIX && msi != MSI_MSI) {
2466 dev_err(&pdev->dev, "bad module parameter msi=%d; must be %d"
2467 " (MSI-X or MSI) or %d (MSI)\n", msi, MSI_MSIX,
2468 MSI_MSI);
2469 err = -EINVAL;
2470 goto err_out;
2471 }
2472
2473 /*
2474 * Print our driver banner the first time we're called to initialize a
2475 * device.
2476 */
2477 if (version_printed == 0) {
2478 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2479 version_printed = 1;
2480 }
2481
2482 /*
7a0c2029 2483 * Initialize generic PCI device state.
be839e39 2484 */
7a0c2029 2485 err = pci_enable_device(pdev);
be839e39 2486 if (err) {
7a0c2029 2487 dev_err(&pdev->dev, "cannot enable PCI device\n");
be839e39
CL
2488 return err;
2489 }
2490
2491 /*
7a0c2029
KV
2492 * Reserve PCI resources for the device. If we can't get them some
2493 * other driver may have already claimed the device ...
be839e39 2494 */
7a0c2029 2495 err = pci_request_regions(pdev, KBUILD_MODNAME);
be839e39 2496 if (err) {
7a0c2029
KV
2497 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2498 goto err_disable_device;
be839e39
CL
2499 }
2500
2501 /*
2502 * Set up our DMA mask: try for 64-bit address masking first and
2503 * fall back to 32-bit if we can't get 64 bits ...
2504 */
2505 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2506 if (err == 0) {
2507 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2508 if (err) {
2509 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2510 " coherent allocations\n");
7a0c2029 2511 goto err_release_regions;
be839e39
CL
2512 }
2513 pci_using_dac = 1;
2514 } else {
2515 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2516 if (err != 0) {
2517 dev_err(&pdev->dev, "no usable DMA configuration\n");
7a0c2029 2518 goto err_release_regions;
be839e39
CL
2519 }
2520 pci_using_dac = 0;
2521 }
2522
2523 /*
2524 * Enable bus mastering for the device ...
2525 */
2526 pci_set_master(pdev);
2527
2528 /*
2529 * Allocate our adapter data structure and attach it to the device.
2530 */
2531 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2532 if (!adapter) {
2533 err = -ENOMEM;
7a0c2029 2534 goto err_release_regions;
be839e39
CL
2535 }
2536 pci_set_drvdata(pdev, adapter);
2537 adapter->pdev = pdev;
2538 adapter->pdev_dev = &pdev->dev;
2539
2540 /*
2541 * Initialize SMP data synchronization resources.
2542 */
2543 spin_lock_init(&adapter->stats_lock);
2544
2545 /*
2546 * Map our I/O registers in BAR0.
2547 */
2548 adapter->regs = pci_ioremap_bar(pdev, 0);
2549 if (!adapter->regs) {
2550 dev_err(&pdev->dev, "cannot map device registers\n");
2551 err = -ENOMEM;
2552 goto err_free_adapter;
2553 }
2554
2555 /*
2556 * Initialize adapter level features.
2557 */
2558 adapter->name = pci_name(pdev);
2559 adapter->msg_enable = dflt_msg_enable;
2560 err = adap_init0(adapter);
2561 if (err)
2562 goto err_unmap_bar;
2563
2564 /*
2565 * Allocate our "adapter ports" and stitch everything together.
2566 */
2567 pmask = adapter->params.vfres.pmask;
2568 for_each_port(adapter, pidx) {
2569 int port_id, viid;
2570
2571 /*
2572 * We simplistically allocate our virtual interfaces
2573 * sequentially across the port numbers to which we have
2574 * access rights. This should be configurable in some manner
2575 * ...
2576 */
2577 if (pmask == 0)
2578 break;
2579 port_id = ffs(pmask) - 1;
2580 pmask &= ~(1 << port_id);
2581 viid = t4vf_alloc_vi(adapter, port_id);
2582 if (viid < 0) {
2583 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2584 " err=%d\n", port_id, viid);
2585 err = viid;
2586 goto err_free_dev;
2587 }
2588
2589 /*
2590 * Allocate our network device and stitch things together.
2591 */
2592 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2593 MAX_PORT_QSETS);
2594 if (netdev == NULL) {
2595 dev_err(&pdev->dev, "cannot allocate netdev for"
2596 " port %d\n", port_id);
2597 t4vf_free_vi(adapter, viid);
2598 err = -ENOMEM;
2599 goto err_free_dev;
2600 }
2601 adapter->port[pidx] = netdev;
2602 SET_NETDEV_DEV(netdev, &pdev->dev);
2603 pi = netdev_priv(netdev);
2604 pi->adapter = adapter;
2605 pi->pidx = pidx;
2606 pi->port_id = port_id;
2607 pi->viid = viid;
2608
2609 /*
2610 * Initialize the starting state of our "port" and register
2611 * it.
2612 */
2613 pi->xact_addr_filt = -1;
2614 pi->rx_offload = RX_CSO;
2615 netif_carrier_off(netdev);
be839e39
CL
2616 netdev->irq = pdev->irq;
2617
410989f6 2618 netdev->features = (NETIF_F_SG | TSO_FLAGS |
be839e39
CL
2619 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2620 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2621 NETIF_F_GRO);
2622 if (pci_using_dac)
2623 netdev->features |= NETIF_F_HIGHDMA;
2624 netdev->vlan_features =
2625 (netdev->features &
2626 ~(NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX));
2627
2628#ifdef HAVE_NET_DEVICE_OPS
2629 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2630#else
2631 netdev->vlan_rx_register = cxgb4vf_vlan_rx_register;
2632 netdev->open = cxgb4vf_open;
2633 netdev->stop = cxgb4vf_stop;
2634 netdev->hard_start_xmit = t4vf_eth_xmit;
2635 netdev->get_stats = cxgb4vf_get_stats;
2636 netdev->set_rx_mode = cxgb4vf_set_rxmode;
2637 netdev->do_ioctl = cxgb4vf_do_ioctl;
2638 netdev->change_mtu = cxgb4vf_change_mtu;
2639 netdev->set_mac_address = cxgb4vf_set_mac_addr;
be839e39
CL
2640#ifdef CONFIG_NET_POLL_CONTROLLER
2641 netdev->poll_controller = cxgb4vf_poll_controller;
2642#endif
2643#endif
2644 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2645
2646 /*
2647 * Initialize the hardware/software state for the port.
2648 */
2649 err = t4vf_port_init(adapter, pidx);
2650 if (err) {
2651 dev_err(&pdev->dev, "cannot initialize port %d\n",
2652 pidx);
2653 goto err_free_dev;
2654 }
2655 }
2656
2657 /*
2658 * The "card" is now ready to go. If any errors occur during device
2659 * registration we do not fail the whole "card" but rather proceed
2660 * only with the ports we manage to register successfully. However we
2661 * must register at least one net device.
2662 */
2663 for_each_port(adapter, pidx) {
2664 netdev = adapter->port[pidx];
2665 if (netdev == NULL)
2666 continue;
2667
2668 err = register_netdev(netdev);
2669 if (err) {
2670 dev_warn(&pdev->dev, "cannot register net device %s,"
2671 " skipping\n", netdev->name);
2672 continue;
2673 }
2674
2675 set_bit(pidx, &adapter->registered_device_map);
2676 }
2677 if (adapter->registered_device_map == 0) {
2678 dev_err(&pdev->dev, "could not register any net devices\n");
2679 goto err_free_dev;
2680 }
2681
2682 /*
2683 * Set up our debugfs entries.
2684 */
2685 if (cxgb4vf_debugfs_root) {
2686 adapter->debugfs_root =
2687 debugfs_create_dir(pci_name(pdev),
2688 cxgb4vf_debugfs_root);
2689 if (adapter->debugfs_root == NULL)
2690 dev_warn(&pdev->dev, "could not create debugfs"
2691 " directory");
2692 else
2693 setup_debugfs(adapter);
2694 }
2695
2696 /*
2697 * See what interrupts we'll be using. If we've been configured to
2698 * use MSI-X interrupts, try to enable them but fall back to using
2699 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2700 * get MSI interrupts we bail with the error.
2701 */
2702 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2703 adapter->flags |= USING_MSIX;
2704 else {
2705 err = pci_enable_msi(pdev);
2706 if (err) {
2707 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2708 " err=%d\n",
2709 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2710 goto err_free_debugfs;
2711 }
2712 adapter->flags |= USING_MSI;
2713 }
2714
2715 /*
2716 * Now that we know how many "ports" we have and what their types are,
2717 * and how many Queue Sets we can support, we can configure our queue
2718 * resources.
2719 */
2720 cfg_queues(adapter);
2721
2722 /*
2723 * Print a short notice on the existance and configuration of the new
2724 * VF network device ...
2725 */
2726 for_each_port(adapter, pidx) {
2727 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2728 adapter->port[pidx]->name,
2729 (adapter->flags & USING_MSIX) ? "MSI-X" :
2730 (adapter->flags & USING_MSI) ? "MSI" : "");
2731 }
2732
2733 /*
2734 * Return success!
2735 */
2736 return 0;
2737
2738 /*
2739 * Error recovery and exit code. Unwind state that's been created
2740 * so far and return the error.
2741 */
2742
2743err_free_debugfs:
2744 if (adapter->debugfs_root) {
2745 cleanup_debugfs(adapter);
2746 debugfs_remove_recursive(adapter->debugfs_root);
2747 }
2748
2749err_free_dev:
2750 for_each_port(adapter, pidx) {
2751 netdev = adapter->port[pidx];
2752 if (netdev == NULL)
2753 continue;
2754 pi = netdev_priv(netdev);
2755 t4vf_free_vi(adapter, pi->viid);
2756 if (test_bit(pidx, &adapter->registered_device_map))
2757 unregister_netdev(netdev);
2758 free_netdev(netdev);
2759 }
2760
2761err_unmap_bar:
2762 iounmap(adapter->regs);
2763
2764err_free_adapter:
2765 kfree(adapter);
2766 pci_set_drvdata(pdev, NULL);
2767
be839e39
CL
2768err_release_regions:
2769 pci_release_regions(pdev);
2770 pci_set_drvdata(pdev, NULL);
7a0c2029
KV
2771 pci_clear_master(pdev);
2772
2773err_disable_device:
2774 pci_disable_device(pdev);
be839e39
CL
2775
2776err_out:
2777 return err;
2778}
2779
2780/*
2781 * "Remove" a device: tear down all kernel and driver state created in the
2782 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2783 * that this is called "remove_one" in the PF Driver.)
2784 */
2785static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev)
2786{
2787 struct adapter *adapter = pci_get_drvdata(pdev);
2788
2789 /*
2790 * Tear down driver state associated with device.
2791 */
2792 if (adapter) {
2793 int pidx;
2794
2795 /*
2796 * Stop all of our activity. Unregister network port,
2797 * disable interrupts, etc.
2798 */
2799 for_each_port(adapter, pidx)
2800 if (test_bit(pidx, &adapter->registered_device_map))
2801 unregister_netdev(adapter->port[pidx]);
2802 t4vf_sge_stop(adapter);
2803 if (adapter->flags & USING_MSIX) {
2804 pci_disable_msix(adapter->pdev);
2805 adapter->flags &= ~USING_MSIX;
2806 } else if (adapter->flags & USING_MSI) {
2807 pci_disable_msi(adapter->pdev);
2808 adapter->flags &= ~USING_MSI;
2809 }
2810
2811 /*
2812 * Tear down our debugfs entries.
2813 */
2814 if (adapter->debugfs_root) {
2815 cleanup_debugfs(adapter);
2816 debugfs_remove_recursive(adapter->debugfs_root);
2817 }
2818
2819 /*
2820 * Free all of the various resources which we've acquired ...
2821 */
2822 t4vf_free_sge_resources(adapter);
2823 for_each_port(adapter, pidx) {
2824 struct net_device *netdev = adapter->port[pidx];
2825 struct port_info *pi;
2826
2827 if (netdev == NULL)
2828 continue;
2829
2830 pi = netdev_priv(netdev);
2831 t4vf_free_vi(adapter, pi->viid);
2832 free_netdev(netdev);
2833 }
2834 iounmap(adapter->regs);
2835 kfree(adapter);
2836 pci_set_drvdata(pdev, NULL);
2837 }
2838
2839 /*
2840 * Disable the device and release its PCI resources.
2841 */
2842 pci_disable_device(pdev);
2843 pci_clear_master(pdev);
2844 pci_release_regions(pdev);
2845}
2846
2847/*
2848 * PCI Device registration data structures.
2849 */
2850#define CH_DEVICE(devid, idx) \
2851 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2852
2853static struct pci_device_id cxgb4vf_pci_tbl[] = {
2854 CH_DEVICE(0xb000, 0), /* PE10K FPGA */
2855 CH_DEVICE(0x4800, 0), /* T440-dbg */
2856 CH_DEVICE(0x4801, 0), /* T420-cr */
2857 CH_DEVICE(0x4802, 0), /* T422-cr */
8b6edf87
CL
2858 CH_DEVICE(0x4803, 0), /* T440-cr */
2859 CH_DEVICE(0x4804, 0), /* T420-bch */
2860 CH_DEVICE(0x4805, 0), /* T440-bch */
2861 CH_DEVICE(0x4806, 0), /* T460-ch */
2862 CH_DEVICE(0x4807, 0), /* T420-so */
2863 CH_DEVICE(0x4808, 0), /* T420-cx */
2864 CH_DEVICE(0x4809, 0), /* T420-bt */
2865 CH_DEVICE(0x480a, 0), /* T404-bt */
be839e39
CL
2866 { 0, }
2867};
2868
2869MODULE_DESCRIPTION(DRV_DESC);
2870MODULE_AUTHOR("Chelsio Communications");
2871MODULE_LICENSE("Dual BSD/GPL");
2872MODULE_VERSION(DRV_VERSION);
2873MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2874
2875static struct pci_driver cxgb4vf_driver = {
2876 .name = KBUILD_MODNAME,
2877 .id_table = cxgb4vf_pci_tbl,
2878 .probe = cxgb4vf_pci_probe,
2879 .remove = __devexit_p(cxgb4vf_pci_remove),
2880};
2881
2882/*
2883 * Initialize global driver state.
2884 */
2885static int __init cxgb4vf_module_init(void)
2886{
2887 int ret;
2888
2889 /* Debugfs support is optional, just warn if this fails */
2890 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2891 if (!cxgb4vf_debugfs_root)
2892 printk(KERN_WARNING KBUILD_MODNAME ": could not create"
2893 " debugfs entry, continuing\n");
2894
2895 ret = pci_register_driver(&cxgb4vf_driver);
2896 if (ret < 0)
2897 debugfs_remove(cxgb4vf_debugfs_root);
2898 return ret;
2899}
2900
2901/*
2902 * Tear down global driver state.
2903 */
2904static void __exit cxgb4vf_module_exit(void)
2905{
2906 pci_unregister_driver(&cxgb4vf_driver);
2907 debugfs_remove(cxgb4vf_debugfs_root);
2908}
2909
2910module_init(cxgb4vf_module_init);
2911module_exit(cxgb4vf_module_exit);