]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/can/mcp251x.c
net: trans_start cleanups
[net-next-2.6.git] / drivers / net / can / mcp251x.c
CommitLineData
e0000163
CP
1/*
2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
3 *
4 * MCP2510 support and bug fixes by Christian Pellegrin
5 * <chripell@evolware.org>
6 *
7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8 *
9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10 * Written under contract by:
11 * Chris Elston, Katalix Systems, Ltd.
12 *
13 * Based on Microchip MCP251x CAN controller driver written by
14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15 *
16 * Based on CAN bus driver for the CCAN controller written by
17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18 * - Simon Kallweit, intefo AG
19 * Copyright 2007
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the version 2 of the GNU General Public License
23 * as published by the Free Software Foundation
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
33 *
34 *
35 *
36 * Your platform definition file should specify something like:
37 *
38 * static struct mcp251x_platform_data mcp251x_info = {
39 * .oscillator_frequency = 8000000,
40 * .board_specific_setup = &mcp251x_setup,
41 * .model = CAN_MCP251X_MCP2510,
42 * .power_enable = mcp251x_power_enable,
43 * .transceiver_enable = NULL,
44 * };
45 *
46 * static struct spi_board_info spi_board_info[] = {
47 * {
48 * .modalias = "mcp251x",
49 * .platform_data = &mcp251x_info,
50 * .irq = IRQ_EINT13,
51 * .max_speed_hz = 2*1000*1000,
52 * .chip_select = 2,
53 * },
54 * };
55 *
56 * Please see mcp251x.h for a description of the fields in
57 * struct mcp251x_platform_data.
58 *
59 */
60
e0000163
CP
61#include <linux/can/core.h>
62#include <linux/can/dev.h>
63#include <linux/can/platform/mcp251x.h>
64#include <linux/completion.h>
65#include <linux/delay.h>
66#include <linux/device.h>
67#include <linux/dma-mapping.h>
68#include <linux/freezer.h>
69#include <linux/interrupt.h>
70#include <linux/io.h>
71#include <linux/kernel.h>
72#include <linux/module.h>
73#include <linux/netdevice.h>
74#include <linux/platform_device.h>
5a0e3ad6 75#include <linux/slab.h>
e0000163
CP
76#include <linux/spi/spi.h>
77#include <linux/uaccess.h>
78
79/* SPI interface instruction set */
80#define INSTRUCTION_WRITE 0x02
81#define INSTRUCTION_READ 0x03
82#define INSTRUCTION_BIT_MODIFY 0x05
83#define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
84#define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
85#define INSTRUCTION_RESET 0xC0
86
87/* MPC251x registers */
88#define CANSTAT 0x0e
89#define CANCTRL 0x0f
90# define CANCTRL_REQOP_MASK 0xe0
91# define CANCTRL_REQOP_CONF 0x80
92# define CANCTRL_REQOP_LISTEN_ONLY 0x60
93# define CANCTRL_REQOP_LOOPBACK 0x40
94# define CANCTRL_REQOP_SLEEP 0x20
95# define CANCTRL_REQOP_NORMAL 0x00
96# define CANCTRL_OSM 0x08
97# define CANCTRL_ABAT 0x10
98#define TEC 0x1c
99#define REC 0x1d
100#define CNF1 0x2a
101# define CNF1_SJW_SHIFT 6
102#define CNF2 0x29
103# define CNF2_BTLMODE 0x80
104# define CNF2_SAM 0x40
105# define CNF2_PS1_SHIFT 3
106#define CNF3 0x28
107# define CNF3_SOF 0x08
108# define CNF3_WAKFIL 0x04
109# define CNF3_PHSEG2_MASK 0x07
110#define CANINTE 0x2b
111# define CANINTE_MERRE 0x80
112# define CANINTE_WAKIE 0x40
113# define CANINTE_ERRIE 0x20
114# define CANINTE_TX2IE 0x10
115# define CANINTE_TX1IE 0x08
116# define CANINTE_TX0IE 0x04
117# define CANINTE_RX1IE 0x02
118# define CANINTE_RX0IE 0x01
119#define CANINTF 0x2c
120# define CANINTF_MERRF 0x80
121# define CANINTF_WAKIF 0x40
122# define CANINTF_ERRIF 0x20
123# define CANINTF_TX2IF 0x10
124# define CANINTF_TX1IF 0x08
125# define CANINTF_TX0IF 0x04
126# define CANINTF_RX1IF 0x02
127# define CANINTF_RX0IF 0x01
128#define EFLG 0x2d
129# define EFLG_EWARN 0x01
130# define EFLG_RXWAR 0x02
131# define EFLG_TXWAR 0x04
132# define EFLG_RXEP 0x08
133# define EFLG_TXEP 0x10
134# define EFLG_TXBO 0x20
135# define EFLG_RX0OVR 0x40
136# define EFLG_RX1OVR 0x80
137#define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
138# define TXBCTRL_ABTF 0x40
139# define TXBCTRL_MLOA 0x20
140# define TXBCTRL_TXERR 0x10
141# define TXBCTRL_TXREQ 0x08
142#define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
143# define SIDH_SHIFT 3
144#define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
145# define SIDL_SID_MASK 7
146# define SIDL_SID_SHIFT 5
147# define SIDL_EXIDE_SHIFT 3
148# define SIDL_EID_SHIFT 16
149# define SIDL_EID_MASK 3
150#define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
151#define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
152#define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
153# define DLC_RTR_SHIFT 6
154#define TXBCTRL_OFF 0
155#define TXBSIDH_OFF 1
156#define TXBSIDL_OFF 2
157#define TXBEID8_OFF 3
158#define TXBEID0_OFF 4
159#define TXBDLC_OFF 5
160#define TXBDAT_OFF 6
161#define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
162# define RXBCTRL_BUKT 0x04
163# define RXBCTRL_RXM0 0x20
164# define RXBCTRL_RXM1 0x40
165#define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
166# define RXBSIDH_SHIFT 3
167#define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
168# define RXBSIDL_IDE 0x08
169# define RXBSIDL_EID 3
170# define RXBSIDL_SHIFT 5
171#define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
172#define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
173#define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
174# define RXBDLC_LEN_MASK 0x0f
175# define RXBDLC_RTR 0x40
176#define RXBCTRL_OFF 0
177#define RXBSIDH_OFF 1
178#define RXBSIDL_OFF 2
179#define RXBEID8_OFF 3
180#define RXBEID0_OFF 4
181#define RXBDLC_OFF 5
182#define RXBDAT_OFF 6
bf66f373
CP
183#define RXFSIDH(n) ((n) * 4)
184#define RXFSIDL(n) ((n) * 4 + 1)
185#define RXFEID8(n) ((n) * 4 + 2)
186#define RXFEID0(n) ((n) * 4 + 3)
187#define RXMSIDH(n) ((n) * 4 + 0x20)
188#define RXMSIDL(n) ((n) * 4 + 0x21)
189#define RXMEID8(n) ((n) * 4 + 0x22)
190#define RXMEID0(n) ((n) * 4 + 0x23)
e0000163
CP
191
192#define GET_BYTE(val, byte) \
193 (((val) >> ((byte) * 8)) & 0xff)
194#define SET_BYTE(val, byte) \
195 (((val) & 0xff) << ((byte) * 8))
196
197/*
198 * Buffer size required for the largest SPI transfer (i.e., reading a
199 * frame)
200 */
201#define CAN_FRAME_MAX_DATA_LEN 8
202#define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
203#define CAN_FRAME_MAX_BITS 128
204
205#define TX_ECHO_SKB_MAX 1
206
207#define DEVICE_NAME "mcp251x"
208
209static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
210module_param(mcp251x_enable_dma, int, S_IRUGO);
211MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
212
213static struct can_bittiming_const mcp251x_bittiming_const = {
214 .name = DEVICE_NAME,
215 .tseg1_min = 3,
216 .tseg1_max = 16,
217 .tseg2_min = 2,
218 .tseg2_max = 8,
219 .sjw_max = 4,
220 .brp_min = 1,
221 .brp_max = 64,
222 .brp_inc = 1,
223};
224
225struct mcp251x_priv {
226 struct can_priv can;
227 struct net_device *net;
228 struct spi_device *spi;
229
bf66f373
CP
230 struct mutex mcp_lock; /* SPI device lock */
231
e0000163
CP
232 u8 *spi_tx_buf;
233 u8 *spi_rx_buf;
234 dma_addr_t spi_tx_dma;
235 dma_addr_t spi_rx_dma;
236
237 struct sk_buff *tx_skb;
238 int tx_len;
bf66f373 239
e0000163
CP
240 struct workqueue_struct *wq;
241 struct work_struct tx_work;
bf66f373
CP
242 struct work_struct restart_work;
243
e0000163
CP
244 int force_quit;
245 int after_suspend;
246#define AFTER_SUSPEND_UP 1
247#define AFTER_SUSPEND_DOWN 2
248#define AFTER_SUSPEND_POWER 4
249#define AFTER_SUSPEND_RESTART 8
250 int restart_tx;
251};
252
253static void mcp251x_clean(struct net_device *net)
254{
255 struct mcp251x_priv *priv = netdev_priv(net);
256
bf66f373
CP
257 if (priv->tx_skb || priv->tx_len)
258 net->stats.tx_errors++;
e0000163
CP
259 if (priv->tx_skb)
260 dev_kfree_skb(priv->tx_skb);
261 if (priv->tx_len)
262 can_free_echo_skb(priv->net, 0);
263 priv->tx_skb = NULL;
264 priv->tx_len = 0;
265}
266
267/*
268 * Note about handling of error return of mcp251x_spi_trans: accessing
269 * registers via SPI is not really different conceptually than using
270 * normal I/O assembler instructions, although it's much more
271 * complicated from a practical POV. So it's not advisable to always
272 * check the return value of this function. Imagine that every
273 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
274 * error();", it would be a great mess (well there are some situation
275 * when exception handling C++ like could be useful after all). So we
276 * just check that transfers are OK at the beginning of our
277 * conversation with the chip and to avoid doing really nasty things
278 * (like injecting bogus packets in the network stack).
279 */
280static int mcp251x_spi_trans(struct spi_device *spi, int len)
281{
282 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
283 struct spi_transfer t = {
284 .tx_buf = priv->spi_tx_buf,
285 .rx_buf = priv->spi_rx_buf,
286 .len = len,
287 .cs_change = 0,
288 };
289 struct spi_message m;
290 int ret;
291
292 spi_message_init(&m);
293
294 if (mcp251x_enable_dma) {
295 t.tx_dma = priv->spi_tx_dma;
296 t.rx_dma = priv->spi_rx_dma;
297 m.is_dma_mapped = 1;
298 }
299
300 spi_message_add_tail(&t, &m);
301
302 ret = spi_sync(spi, &m);
303 if (ret)
304 dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
305 return ret;
306}
307
308static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
309{
310 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
311 u8 val = 0;
312
e0000163
CP
313 priv->spi_tx_buf[0] = INSTRUCTION_READ;
314 priv->spi_tx_buf[1] = reg;
315
316 mcp251x_spi_trans(spi, 3);
317 val = priv->spi_rx_buf[2];
318
e0000163
CP
319 return val;
320}
321
322static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
323{
324 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
325
e0000163
CP
326 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
327 priv->spi_tx_buf[1] = reg;
328 priv->spi_tx_buf[2] = val;
329
330 mcp251x_spi_trans(spi, 3);
e0000163
CP
331}
332
333static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
334 u8 mask, uint8_t val)
335{
336 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
337
e0000163
CP
338 priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
339 priv->spi_tx_buf[1] = reg;
340 priv->spi_tx_buf[2] = mask;
341 priv->spi_tx_buf[3] = val;
342
343 mcp251x_spi_trans(spi, 4);
e0000163
CP
344}
345
346static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
347 int len, int tx_buf_idx)
348{
349 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
350 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
351
352 if (pdata->model == CAN_MCP251X_MCP2510) {
353 int i;
354
355 for (i = 1; i < TXBDAT_OFF + len; i++)
356 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
357 buf[i]);
358 } else {
e0000163
CP
359 memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
360 mcp251x_spi_trans(spi, TXBDAT_OFF + len);
e0000163
CP
361 }
362}
363
364static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
365 int tx_buf_idx)
366{
367 u32 sid, eid, exide, rtr;
368 u8 buf[SPI_TRANSFER_BUF_LEN];
369
370 exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
371 if (exide)
372 sid = (frame->can_id & CAN_EFF_MASK) >> 18;
373 else
374 sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
375 eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
376 rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
377
378 buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
379 buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
380 buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
381 (exide << SIDL_EXIDE_SHIFT) |
382 ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
383 buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
384 buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
385 buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
386 memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
387 mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
388 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
389}
390
391static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
392 int buf_idx)
393{
394 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
395 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
396
397 if (pdata->model == CAN_MCP251X_MCP2510) {
398 int i, len;
399
400 for (i = 1; i < RXBDAT_OFF; i++)
401 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
c7cd606f
OH
402
403 len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
e0000163
CP
404 for (; i < (RXBDAT_OFF + len); i++)
405 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
406 } else {
e0000163
CP
407 priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
408 mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
409 memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
e0000163
CP
410 }
411}
412
413static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
414{
415 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
416 struct sk_buff *skb;
417 struct can_frame *frame;
418 u8 buf[SPI_TRANSFER_BUF_LEN];
419
420 skb = alloc_can_skb(priv->net, &frame);
421 if (!skb) {
422 dev_err(&spi->dev, "cannot allocate RX skb\n");
423 priv->net->stats.rx_dropped++;
424 return;
425 }
426
427 mcp251x_hw_rx_frame(spi, buf, buf_idx);
428 if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
429 /* Extended ID format */
430 frame->can_id = CAN_EFF_FLAG;
431 frame->can_id |=
432 /* Extended ID part */
433 SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
434 SET_BYTE(buf[RXBEID8_OFF], 1) |
435 SET_BYTE(buf[RXBEID0_OFF], 0) |
436 /* Standard ID part */
437 (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
438 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
439 /* Remote transmission request */
440 if (buf[RXBDLC_OFF] & RXBDLC_RTR)
441 frame->can_id |= CAN_RTR_FLAG;
442 } else {
443 /* Standard ID format */
444 frame->can_id =
445 (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
446 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
447 }
448 /* Data length */
c7cd606f 449 frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
e0000163
CP
450 memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
451
452 priv->net->stats.rx_packets++;
453 priv->net->stats.rx_bytes += frame->can_dlc;
454 netif_rx(skb);
455}
456
457static void mcp251x_hw_sleep(struct spi_device *spi)
458{
459 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
460}
461
e0000163
CP
462static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
463 struct net_device *net)
464{
465 struct mcp251x_priv *priv = netdev_priv(net);
466 struct spi_device *spi = priv->spi;
467
468 if (priv->tx_skb || priv->tx_len) {
469 dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
e0000163
CP
470 return NETDEV_TX_BUSY;
471 }
472
3ccd4c61 473 if (can_dropped_invalid_skb(net, skb))
e0000163 474 return NETDEV_TX_OK;
e0000163
CP
475
476 netif_stop_queue(net);
477 priv->tx_skb = skb;
e0000163
CP
478 queue_work(priv->wq, &priv->tx_work);
479
480 return NETDEV_TX_OK;
481}
482
483static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
484{
485 struct mcp251x_priv *priv = netdev_priv(net);
486
487 switch (mode) {
488 case CAN_MODE_START:
bf66f373 489 mcp251x_clean(net);
e0000163
CP
490 /* We have to delay work since SPI I/O may sleep */
491 priv->can.state = CAN_STATE_ERROR_ACTIVE;
492 priv->restart_tx = 1;
493 if (priv->can.restart_ms == 0)
494 priv->after_suspend = AFTER_SUSPEND_RESTART;
bf66f373 495 queue_work(priv->wq, &priv->restart_work);
e0000163
CP
496 break;
497 default:
498 return -EOPNOTSUPP;
499 }
500
501 return 0;
502}
503
bf66f373 504static int mcp251x_set_normal_mode(struct spi_device *spi)
e0000163
CP
505{
506 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
507 unsigned long timeout;
508
509 /* Enable interrupts */
510 mcp251x_write_reg(spi, CANINTE,
511 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
bf66f373 512 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
e0000163
CP
513
514 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
515 /* Put device into loopback mode */
516 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
ad72c347
CP
517 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
518 /* Put device into listen-only mode */
519 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
e0000163
CP
520 } else {
521 /* Put device into normal mode */
bf66f373 522 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
e0000163
CP
523
524 /* Wait for the device to enter normal mode */
525 timeout = jiffies + HZ;
526 while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
527 schedule();
528 if (time_after(jiffies, timeout)) {
529 dev_err(&spi->dev, "MCP251x didn't"
530 " enter in normal mode\n");
bf66f373 531 return -EBUSY;
e0000163
CP
532 }
533 }
534 }
535 priv->can.state = CAN_STATE_ERROR_ACTIVE;
bf66f373 536 return 0;
e0000163
CP
537}
538
539static int mcp251x_do_set_bittiming(struct net_device *net)
540{
541 struct mcp251x_priv *priv = netdev_priv(net);
542 struct can_bittiming *bt = &priv->can.bittiming;
543 struct spi_device *spi = priv->spi;
544
545 mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
546 (bt->brp - 1));
547 mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
548 (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
549 CNF2_SAM : 0) |
550 ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
551 (bt->prop_seg - 1));
552 mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
553 (bt->phase_seg2 - 1));
554 dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
555 mcp251x_read_reg(spi, CNF1),
556 mcp251x_read_reg(spi, CNF2),
557 mcp251x_read_reg(spi, CNF3));
558
559 return 0;
560}
561
562static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
563 struct spi_device *spi)
564{
615534bc 565 mcp251x_do_set_bittiming(net);
e0000163 566
bf66f373
CP
567 mcp251x_write_reg(spi, RXBCTRL(0),
568 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
569 mcp251x_write_reg(spi, RXBCTRL(1),
570 RXBCTRL_RXM0 | RXBCTRL_RXM1);
e0000163
CP
571 return 0;
572}
573
bf66f373 574static int mcp251x_hw_reset(struct spi_device *spi)
e0000163
CP
575{
576 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
577 int ret;
bf66f373 578 unsigned long timeout;
e0000163
CP
579
580 priv->spi_tx_buf[0] = INSTRUCTION_RESET;
e0000163 581 ret = spi_write(spi, priv->spi_tx_buf, 1);
bf66f373 582 if (ret) {
e0000163 583 dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
bf66f373
CP
584 return -EIO;
585 }
586
e0000163 587 /* Wait for reset to finish */
bf66f373 588 timeout = jiffies + HZ;
e0000163 589 mdelay(10);
bf66f373
CP
590 while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
591 != CANCTRL_REQOP_CONF) {
592 schedule();
593 if (time_after(jiffies, timeout)) {
594 dev_err(&spi->dev, "MCP251x didn't"
595 " enter in conf mode after reset\n");
596 return -EBUSY;
597 }
598 }
599 return 0;
e0000163
CP
600}
601
602static int mcp251x_hw_probe(struct spi_device *spi)
603{
604 int st1, st2;
605
606 mcp251x_hw_reset(spi);
607
608 /*
609 * Please note that these are "magic values" based on after
610 * reset defaults taken from data sheet which allows us to see
611 * if we really have a chip on the bus (we avoid common all
612 * zeroes or all ones situations)
613 */
614 st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
615 st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
616
617 dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
618
619 /* Check for power up default values */
620 return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
621}
622
bf66f373 623static void mcp251x_open_clean(struct net_device *net)
e0000163
CP
624{
625 struct mcp251x_priv *priv = netdev_priv(net);
626 struct spi_device *spi = priv->spi;
627 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
615534bc 628
bf66f373
CP
629 free_irq(spi->irq, priv);
630 mcp251x_hw_sleep(spi);
e0000163 631 if (pdata->transceiver_enable)
bf66f373
CP
632 pdata->transceiver_enable(0);
633 close_candev(net);
e0000163
CP
634}
635
636static int mcp251x_stop(struct net_device *net)
637{
638 struct mcp251x_priv *priv = netdev_priv(net);
639 struct spi_device *spi = priv->spi;
640 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
641
642 close_candev(net);
643
bf66f373
CP
644 priv->force_quit = 1;
645 free_irq(spi->irq, priv);
646 destroy_workqueue(priv->wq);
647 priv->wq = NULL;
648
649 mutex_lock(&priv->mcp_lock);
650
e0000163
CP
651 /* Disable and clear pending interrupts */
652 mcp251x_write_reg(spi, CANINTE, 0x00);
653 mcp251x_write_reg(spi, CANINTF, 0x00);
654
e0000163 655 mcp251x_write_reg(spi, TXBCTRL(0), 0);
bf66f373 656 mcp251x_clean(net);
e0000163
CP
657
658 mcp251x_hw_sleep(spi);
659
660 if (pdata->transceiver_enable)
661 pdata->transceiver_enable(0);
662
663 priv->can.state = CAN_STATE_STOPPED;
664
bf66f373
CP
665 mutex_unlock(&priv->mcp_lock);
666
e0000163
CP
667 return 0;
668}
669
bf66f373
CP
670static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
671{
672 struct sk_buff *skb;
673 struct can_frame *frame;
674
675 skb = alloc_can_err_skb(net, &frame);
676 if (skb) {
677 frame->can_id = can_id;
678 frame->data[1] = data1;
679 netif_rx(skb);
680 } else {
681 dev_err(&net->dev,
682 "cannot allocate error skb\n");
683 }
684}
685
e0000163
CP
686static void mcp251x_tx_work_handler(struct work_struct *ws)
687{
688 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
689 tx_work);
690 struct spi_device *spi = priv->spi;
691 struct net_device *net = priv->net;
692 struct can_frame *frame;
693
bf66f373 694 mutex_lock(&priv->mcp_lock);
e0000163 695 if (priv->tx_skb) {
e0000163
CP
696 if (priv->can.state == CAN_STATE_BUS_OFF) {
697 mcp251x_clean(net);
bf66f373
CP
698 } else {
699 frame = (struct can_frame *)priv->tx_skb->data;
700
701 if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
702 frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
703 mcp251x_hw_tx(spi, frame, 0);
704 priv->tx_len = 1 + frame->can_dlc;
705 can_put_echo_skb(priv->tx_skb, net, 0);
706 priv->tx_skb = NULL;
e0000163 707 }
e0000163 708 }
bf66f373 709 mutex_unlock(&priv->mcp_lock);
e0000163
CP
710}
711
bf66f373 712static void mcp251x_restart_work_handler(struct work_struct *ws)
e0000163
CP
713{
714 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
bf66f373 715 restart_work);
e0000163
CP
716 struct spi_device *spi = priv->spi;
717 struct net_device *net = priv->net;
e0000163 718
bf66f373 719 mutex_lock(&priv->mcp_lock);
e0000163
CP
720 if (priv->after_suspend) {
721 mdelay(10);
722 mcp251x_hw_reset(spi);
723 mcp251x_setup(net, priv, spi);
724 if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
725 mcp251x_set_normal_mode(spi);
726 } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
727 netif_device_attach(net);
bf66f373 728 mcp251x_clean(net);
e0000163 729 mcp251x_set_normal_mode(spi);
bf66f373 730 netif_wake_queue(net);
e0000163
CP
731 } else {
732 mcp251x_hw_sleep(spi);
733 }
734 priv->after_suspend = 0;
bf66f373 735 priv->force_quit = 0;
e0000163
CP
736 }
737
bf66f373
CP
738 if (priv->restart_tx) {
739 priv->restart_tx = 0;
740 mcp251x_write_reg(spi, TXBCTRL(0), 0);
741 mcp251x_clean(net);
742 netif_wake_queue(net);
743 mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
744 }
745 mutex_unlock(&priv->mcp_lock);
746}
e0000163 747
bf66f373
CP
748static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
749{
750 struct mcp251x_priv *priv = dev_id;
751 struct spi_device *spi = priv->spi;
752 struct net_device *net = priv->net;
e0000163 753
bf66f373
CP
754 mutex_lock(&priv->mcp_lock);
755 while (!priv->force_quit) {
756 enum can_state new_state;
757 u8 intf = mcp251x_read_reg(spi, CANINTF);
758 u8 eflag;
759 int can_id = 0, data1 = 0;
e0000163 760
bf66f373
CP
761 if (intf & CANINTF_RX0IF) {
762 mcp251x_hw_rx(spi, 0);
763 /* Free one buffer ASAP */
764 mcp251x_write_bits(spi, CANINTF, intf & CANINTF_RX0IF,
765 0x00);
e0000163
CP
766 }
767
bf66f373
CP
768 if (intf & CANINTF_RX1IF)
769 mcp251x_hw_rx(spi, 1);
e0000163 770
e0000163
CP
771 mcp251x_write_bits(spi, CANINTF, intf, 0x00);
772
bf66f373
CP
773 eflag = mcp251x_read_reg(spi, EFLG);
774 mcp251x_write_reg(spi, EFLG, 0x00);
775
e0000163
CP
776 /* Update can state */
777 if (eflag & EFLG_TXBO) {
778 new_state = CAN_STATE_BUS_OFF;
779 can_id |= CAN_ERR_BUSOFF;
780 } else if (eflag & EFLG_TXEP) {
781 new_state = CAN_STATE_ERROR_PASSIVE;
782 can_id |= CAN_ERR_CRTL;
783 data1 |= CAN_ERR_CRTL_TX_PASSIVE;
784 } else if (eflag & EFLG_RXEP) {
785 new_state = CAN_STATE_ERROR_PASSIVE;
786 can_id |= CAN_ERR_CRTL;
787 data1 |= CAN_ERR_CRTL_RX_PASSIVE;
788 } else if (eflag & EFLG_TXWAR) {
789 new_state = CAN_STATE_ERROR_WARNING;
790 can_id |= CAN_ERR_CRTL;
791 data1 |= CAN_ERR_CRTL_TX_WARNING;
792 } else if (eflag & EFLG_RXWAR) {
793 new_state = CAN_STATE_ERROR_WARNING;
794 can_id |= CAN_ERR_CRTL;
795 data1 |= CAN_ERR_CRTL_RX_WARNING;
796 } else {
797 new_state = CAN_STATE_ERROR_ACTIVE;
798 }
799
800 /* Update can state statistics */
801 switch (priv->can.state) {
802 case CAN_STATE_ERROR_ACTIVE:
803 if (new_state >= CAN_STATE_ERROR_WARNING &&
804 new_state <= CAN_STATE_BUS_OFF)
805 priv->can.can_stats.error_warning++;
806 case CAN_STATE_ERROR_WARNING: /* fallthrough */
807 if (new_state >= CAN_STATE_ERROR_PASSIVE &&
808 new_state <= CAN_STATE_BUS_OFF)
809 priv->can.can_stats.error_passive++;
810 break;
811 default:
812 break;
813 }
814 priv->can.state = new_state;
815
bf66f373
CP
816 if (intf & CANINTF_ERRIF) {
817 /* Handle overflow counters */
818 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
819 if (eflag & EFLG_RX0OVR)
820 net->stats.rx_over_errors++;
821 if (eflag & EFLG_RX1OVR)
822 net->stats.rx_over_errors++;
823 can_id |= CAN_ERR_CRTL;
824 data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
e0000163 825 }
bf66f373 826 mcp251x_error_skb(net, can_id, data1);
e0000163
CP
827 }
828
829 if (priv->can.state == CAN_STATE_BUS_OFF) {
830 if (priv->can.restart_ms == 0) {
bf66f373 831 priv->force_quit = 1;
e0000163
CP
832 can_bus_off(net);
833 mcp251x_hw_sleep(spi);
bf66f373 834 break;
e0000163
CP
835 }
836 }
837
838 if (intf == 0)
839 break;
840
e0000163
CP
841 if (intf & (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)) {
842 net->stats.tx_packets++;
843 net->stats.tx_bytes += priv->tx_len - 1;
844 if (priv->tx_len) {
845 can_get_echo_skb(net, 0);
846 priv->tx_len = 0;
847 }
848 netif_wake_queue(net);
849 }
850
bf66f373
CP
851 }
852 mutex_unlock(&priv->mcp_lock);
853 return IRQ_HANDLED;
854}
e0000163 855
bf66f373
CP
856static int mcp251x_open(struct net_device *net)
857{
858 struct mcp251x_priv *priv = netdev_priv(net);
859 struct spi_device *spi = priv->spi;
860 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
861 int ret;
862
863 ret = open_candev(net);
864 if (ret) {
865 dev_err(&spi->dev, "unable to set initial baudrate!\n");
866 return ret;
867 }
868
869 mutex_lock(&priv->mcp_lock);
870 if (pdata->transceiver_enable)
871 pdata->transceiver_enable(1);
872
873 priv->force_quit = 0;
874 priv->tx_skb = NULL;
875 priv->tx_len = 0;
876
877 ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
878 IRQF_TRIGGER_FALLING, DEVICE_NAME, priv);
879 if (ret) {
880 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
881 if (pdata->transceiver_enable)
882 pdata->transceiver_enable(0);
883 close_candev(net);
884 goto open_unlock;
885 }
886
887 priv->wq = create_freezeable_workqueue("mcp251x_wq");
888 INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
889 INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
890
891 ret = mcp251x_hw_reset(spi);
892 if (ret) {
893 mcp251x_open_clean(net);
894 goto open_unlock;
895 }
896 ret = mcp251x_setup(net, priv, spi);
897 if (ret) {
898 mcp251x_open_clean(net);
899 goto open_unlock;
e0000163 900 }
bf66f373
CP
901 ret = mcp251x_set_normal_mode(spi);
902 if (ret) {
903 mcp251x_open_clean(net);
904 goto open_unlock;
905 }
906 netif_wake_queue(net);
907
908open_unlock:
909 mutex_unlock(&priv->mcp_lock);
910 return ret;
e0000163
CP
911}
912
913static const struct net_device_ops mcp251x_netdev_ops = {
914 .ndo_open = mcp251x_open,
915 .ndo_stop = mcp251x_stop,
916 .ndo_start_xmit = mcp251x_hard_start_xmit,
917};
918
919static int __devinit mcp251x_can_probe(struct spi_device *spi)
920{
921 struct net_device *net;
922 struct mcp251x_priv *priv;
923 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
e446630c 924 int model = spi_get_device_id(spi)->driver_data;
e0000163
CP
925 int ret = -ENODEV;
926
927 if (!pdata)
928 /* Platform data is required for osc freq */
929 goto error_out;
930
e446630c
MZ
931 if (model)
932 pdata->model = model;
933
e0000163
CP
934 /* Allocate can/net device */
935 net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
936 if (!net) {
937 ret = -ENOMEM;
938 goto error_alloc;
939 }
940
941 net->netdev_ops = &mcp251x_netdev_ops;
942 net->flags |= IFF_ECHO;
943
944 priv = netdev_priv(net);
945 priv->can.bittiming_const = &mcp251x_bittiming_const;
946 priv->can.do_set_mode = mcp251x_do_set_mode;
947 priv->can.clock.freq = pdata->oscillator_frequency / 2;
ad72c347
CP
948 priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
949 CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
e0000163
CP
950 priv->net = net;
951 dev_set_drvdata(&spi->dev, priv);
952
953 priv->spi = spi;
bf66f373 954 mutex_init(&priv->mcp_lock);
e0000163
CP
955
956 /* If requested, allocate DMA buffers */
957 if (mcp251x_enable_dma) {
958 spi->dev.coherent_dma_mask = ~0;
959
960 /*
961 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
962 * that much and share it between Tx and Rx DMA buffers.
963 */
964 priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
965 PAGE_SIZE,
966 &priv->spi_tx_dma,
967 GFP_DMA);
968
969 if (priv->spi_tx_buf) {
970 priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
971 (PAGE_SIZE / 2));
972 priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
973 (PAGE_SIZE / 2));
974 } else {
975 /* Fall back to non-DMA */
976 mcp251x_enable_dma = 0;
977 }
978 }
979
980 /* Allocate non-DMA buffers */
981 if (!mcp251x_enable_dma) {
982 priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
983 if (!priv->spi_tx_buf) {
984 ret = -ENOMEM;
985 goto error_tx_buf;
986 }
987 priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
ce739b47 988 if (!priv->spi_rx_buf) {
e0000163
CP
989 ret = -ENOMEM;
990 goto error_rx_buf;
991 }
992 }
993
994 if (pdata->power_enable)
995 pdata->power_enable(1);
996
997 /* Call out to platform specific setup */
998 if (pdata->board_specific_setup)
999 pdata->board_specific_setup(spi);
1000
1001 SET_NETDEV_DEV(net, &spi->dev);
1002
e0000163
CP
1003 /* Configure the SPI bus */
1004 spi->mode = SPI_MODE_0;
1005 spi->bits_per_word = 8;
1006 spi_setup(spi);
1007
bf66f373 1008 /* Here is OK to not lock the MCP, no one knows about it yet */
e0000163
CP
1009 if (!mcp251x_hw_probe(spi)) {
1010 dev_info(&spi->dev, "Probe failed\n");
1011 goto error_probe;
1012 }
1013 mcp251x_hw_sleep(spi);
1014
1015 if (pdata->transceiver_enable)
1016 pdata->transceiver_enable(0);
1017
1018 ret = register_candev(net);
1019 if (!ret) {
1020 dev_info(&spi->dev, "probed\n");
1021 return ret;
1022 }
1023error_probe:
1024 if (!mcp251x_enable_dma)
1025 kfree(priv->spi_rx_buf);
1026error_rx_buf:
1027 if (!mcp251x_enable_dma)
1028 kfree(priv->spi_tx_buf);
1029error_tx_buf:
1030 free_candev(net);
1031 if (mcp251x_enable_dma)
1032 dma_free_coherent(&spi->dev, PAGE_SIZE,
1033 priv->spi_tx_buf, priv->spi_tx_dma);
1034error_alloc:
1035 if (pdata->power_enable)
1036 pdata->power_enable(0);
1037 dev_err(&spi->dev, "probe failed\n");
1038error_out:
1039 return ret;
1040}
1041
1042static int __devexit mcp251x_can_remove(struct spi_device *spi)
1043{
1044 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1045 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1046 struct net_device *net = priv->net;
1047
1048 unregister_candev(net);
1049 free_candev(net);
1050
e0000163
CP
1051 if (mcp251x_enable_dma) {
1052 dma_free_coherent(&spi->dev, PAGE_SIZE,
1053 priv->spi_tx_buf, priv->spi_tx_dma);
1054 } else {
1055 kfree(priv->spi_tx_buf);
1056 kfree(priv->spi_rx_buf);
1057 }
1058
1059 if (pdata->power_enable)
1060 pdata->power_enable(0);
1061
1062 return 0;
1063}
1064
1065#ifdef CONFIG_PM
1066static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
1067{
1068 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1069 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1070 struct net_device *net = priv->net;
1071
bf66f373
CP
1072 priv->force_quit = 1;
1073 disable_irq(spi->irq);
1074 /*
1075 * Note: at this point neither IST nor workqueues are running.
1076 * open/stop cannot be called anyway so locking is not needed
1077 */
e0000163
CP
1078 if (netif_running(net)) {
1079 netif_device_detach(net);
1080
1081 mcp251x_hw_sleep(spi);
1082 if (pdata->transceiver_enable)
1083 pdata->transceiver_enable(0);
1084 priv->after_suspend = AFTER_SUSPEND_UP;
1085 } else {
1086 priv->after_suspend = AFTER_SUSPEND_DOWN;
1087 }
1088
1089 if (pdata->power_enable) {
1090 pdata->power_enable(0);
1091 priv->after_suspend |= AFTER_SUSPEND_POWER;
1092 }
1093
1094 return 0;
1095}
1096
1097static int mcp251x_can_resume(struct spi_device *spi)
1098{
1099 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1100 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1101
1102 if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1103 pdata->power_enable(1);
bf66f373 1104 queue_work(priv->wq, &priv->restart_work);
e0000163
CP
1105 } else {
1106 if (priv->after_suspend & AFTER_SUSPEND_UP) {
1107 if (pdata->transceiver_enable)
1108 pdata->transceiver_enable(1);
bf66f373 1109 queue_work(priv->wq, &priv->restart_work);
e0000163
CP
1110 } else {
1111 priv->after_suspend = 0;
1112 }
1113 }
bf66f373
CP
1114 priv->force_quit = 0;
1115 enable_irq(spi->irq);
e0000163
CP
1116 return 0;
1117}
1118#else
1119#define mcp251x_can_suspend NULL
1120#define mcp251x_can_resume NULL
1121#endif
1122
e446630c
MZ
1123static struct spi_device_id mcp251x_id_table[] = {
1124 { "mcp251x", 0 /* Use pdata.model */ },
1125 { "mcp2510", CAN_MCP251X_MCP2510 },
1126 { "mcp2515", CAN_MCP251X_MCP2515 },
1127 { },
1128};
1129
1130MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1131
e0000163
CP
1132static struct spi_driver mcp251x_can_driver = {
1133 .driver = {
1134 .name = DEVICE_NAME,
1135 .bus = &spi_bus_type,
1136 .owner = THIS_MODULE,
1137 },
1138
e446630c 1139 .id_table = mcp251x_id_table,
e0000163
CP
1140 .probe = mcp251x_can_probe,
1141 .remove = __devexit_p(mcp251x_can_remove),
1142 .suspend = mcp251x_can_suspend,
1143 .resume = mcp251x_can_resume,
1144};
1145
1146static int __init mcp251x_can_init(void)
1147{
1148 return spi_register_driver(&mcp251x_can_driver);
1149}
1150
1151static void __exit mcp251x_can_exit(void)
1152{
1153 spi_unregister_driver(&mcp251x_can_driver);
1154}
1155
1156module_init(mcp251x_can_init);
1157module_exit(mcp251x_can_exit);
1158
1159MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1160 "Christian Pellegrin <chripell@evolware.org>");
1161MODULE_DESCRIPTION("Microchip 251x CAN driver");
1162MODULE_LICENSE("GPL v2");