]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/mtd/ubi/wl.c
UBI: fix and clean-up error paths in WL worker
[net-next-2.6.git] / drivers / mtd / ubi / wl.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19 */
20
21/*
85c6e6e2 22 * UBI wear-leveling sub-system.
801c135c 23 *
85c6e6e2 24 * This sub-system is responsible for wear-leveling. It works in terms of
7b6c32da 25 * physical eraseblocks and erase counters and knows nothing about logical
85c6e6e2
AB
26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
801c135c
AB
30 *
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
85c6e6e2 32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
801c135c 33 *
85c6e6e2 34 * When physical eraseblocks are returned to the WL sub-system by means of the
801c135c
AB
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
85c6e6e2 37 * which is also managed by the WL sub-system.
801c135c
AB
38 *
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
42 *
43 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44 * an "optimal" physical eraseblock. For example, when it is known that the
45 * physical eraseblock will be "put" soon because it contains short-term data,
85c6e6e2
AB
46 * the WL sub-system may pick a free physical eraseblock with low erase
47 * counter, and so forth.
801c135c 48 *
85c6e6e2
AB
49 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
50 * bad.
801c135c 51 *
85c6e6e2
AB
52 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
53 * in a physical eraseblock, it has to be moved. Technically this is the same
54 * as moving it for wear-leveling reasons.
801c135c 55 *
85c6e6e2
AB
56 * As it was said, for the UBI sub-system all physical eraseblocks are either
57 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
7b6c32da
XX
58 * used eraseblocks are kept in @wl->used or @wl->scrub RB-trees, or
59 * (temporarily) in the @wl->pq queue.
60 *
61 * When the WL sub-system returns a physical eraseblock, the physical
62 * eraseblock is protected from being moved for some "time". For this reason,
63 * the physical eraseblock is not directly moved from the @wl->free tree to the
64 * @wl->used tree. There is a protection queue in between where this
65 * physical eraseblock is temporarily stored (@wl->pq).
66 *
67 * All this protection stuff is needed because:
68 * o we don't want to move physical eraseblocks just after we have given them
69 * to the user; instead, we first want to let users fill them up with data;
70 *
71 * o there is a chance that the user will put the physical eraseblock very
72 * soon, so it makes sense not to move it for some time, but wait; this is
73 * especially important in case of "short term" physical eraseblocks.
74 *
75 * Physical eraseblocks stay protected only for limited time. But the "time" is
76 * measured in erase cycles in this case. This is implemented with help of the
77 * protection queue. Eraseblocks are put to the tail of this queue when they
78 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
79 * head of the queue on each erase operation (for any eraseblock). So the
80 * length of the queue defines how may (global) erase cycles PEBs are protected.
81 *
82 * To put it differently, each physical eraseblock has 2 main states: free and
83 * used. The former state corresponds to the @wl->free tree. The latter state
84 * is split up on several sub-states:
85 * o the WL movement is allowed (@wl->used tree);
86 * o the WL movement is temporarily prohibited (@wl->pq queue);
87 * o scrubbing is needed (@wl->scrub tree).
88 *
89 * Depending on the sub-state, wear-leveling entries of the used physical
90 * eraseblocks may be kept in one of those structures.
801c135c
AB
91 *
92 * Note, in this implementation, we keep a small in-RAM object for each physical
93 * eraseblock. This is surely not a scalable solution. But it appears to be good
94 * enough for moderately large flashes and it is simple. In future, one may
85c6e6e2 95 * re-work this sub-system and make it more scalable.
801c135c 96 *
85c6e6e2
AB
97 * At the moment this sub-system does not utilize the sequence number, which
98 * was introduced relatively recently. But it would be wise to do this because
99 * the sequence number of a logical eraseblock characterizes how old is it. For
801c135c
AB
100 * example, when we move a PEB with low erase counter, and we need to pick the
101 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
102 * pick target PEB with an average EC if our PEB is not very "old". This is a
85c6e6e2 103 * room for future re-works of the WL sub-system.
801c135c
AB
104 */
105
106#include <linux/slab.h>
107#include <linux/crc32.h>
108#include <linux/freezer.h>
109#include <linux/kthread.h>
110#include "ubi.h"
111
112/* Number of physical eraseblocks reserved for wear-leveling purposes */
113#define WL_RESERVED_PEBS 1
114
801c135c
AB
115/*
116 * Maximum difference between two erase counters. If this threshold is
85c6e6e2
AB
117 * exceeded, the WL sub-system starts moving data from used physical
118 * eraseblocks with low erase counter to free physical eraseblocks with high
119 * erase counter.
801c135c
AB
120 */
121#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
122
123/*
85c6e6e2 124 * When a physical eraseblock is moved, the WL sub-system has to pick the target
801c135c
AB
125 * physical eraseblock to move to. The simplest way would be just to pick the
126 * one with the highest erase counter. But in certain workloads this could lead
127 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
128 * situation when the picked physical eraseblock is constantly erased after the
129 * data is written to it. So, we have a constant which limits the highest erase
85c6e6e2 130 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
025dfdaf 131 * does not pick eraseblocks with erase counter greater than the lowest erase
801c135c
AB
132 * counter plus %WL_FREE_MAX_DIFF.
133 */
134#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
135
136/*
137 * Maximum number of consecutive background thread failures which is enough to
138 * switch to read-only mode.
139 */
140#define WL_MAX_FAILURES 32
141
801c135c
AB
142/**
143 * struct ubi_work - UBI work description data structure.
144 * @list: a link in the list of pending works
145 * @func: worker function
801c135c
AB
146 * @e: physical eraseblock to erase
147 * @torture: if the physical eraseblock has to be tortured
148 *
149 * The @func pointer points to the worker function. If the @cancel argument is
150 * not zero, the worker has to free the resources and exit immediately. The
151 * worker has to return zero in case of success and a negative error code in
152 * case of failure.
153 */
154struct ubi_work {
155 struct list_head list;
156 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
157 /* The below fields are only relevant to erasure works */
158 struct ubi_wl_entry *e;
159 int torture;
160};
161
162#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
e88d6e10 163static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
801c135c
AB
164static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
165 struct rb_root *root);
7b6c32da 166static int paranoid_check_in_pq(struct ubi_device *ubi, struct ubi_wl_entry *e);
801c135c
AB
167#else
168#define paranoid_check_ec(ubi, pnum, ec) 0
169#define paranoid_check_in_wl_tree(e, root)
7b6c32da 170#define paranoid_check_in_pq(ubi, e) 0
801c135c
AB
171#endif
172
801c135c
AB
173/**
174 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
175 * @e: the wear-leveling entry to add
176 * @root: the root of the tree
177 *
178 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
179 * the @ubi->used and @ubi->free RB-trees.
180 */
181static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
182{
183 struct rb_node **p, *parent = NULL;
184
185 p = &root->rb_node;
186 while (*p) {
187 struct ubi_wl_entry *e1;
188
189 parent = *p;
23553b2c 190 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
801c135c
AB
191
192 if (e->ec < e1->ec)
193 p = &(*p)->rb_left;
194 else if (e->ec > e1->ec)
195 p = &(*p)->rb_right;
196 else {
197 ubi_assert(e->pnum != e1->pnum);
198 if (e->pnum < e1->pnum)
199 p = &(*p)->rb_left;
200 else
201 p = &(*p)->rb_right;
202 }
203 }
204
23553b2c
XX
205 rb_link_node(&e->u.rb, parent, p);
206 rb_insert_color(&e->u.rb, root);
801c135c
AB
207}
208
801c135c
AB
209/**
210 * do_work - do one pending work.
211 * @ubi: UBI device description object
212 *
213 * This function returns zero in case of success and a negative error code in
214 * case of failure.
215 */
216static int do_work(struct ubi_device *ubi)
217{
218 int err;
219 struct ubi_work *wrk;
220
43f9b25a
AB
221 cond_resched();
222
593dd33c
AB
223 /*
224 * @ubi->work_sem is used to synchronize with the workers. Workers take
225 * it in read mode, so many of them may be doing works at a time. But
226 * the queue flush code has to be sure the whole queue of works is
227 * done, and it takes the mutex in write mode.
228 */
229 down_read(&ubi->work_sem);
801c135c 230 spin_lock(&ubi->wl_lock);
801c135c
AB
231 if (list_empty(&ubi->works)) {
232 spin_unlock(&ubi->wl_lock);
593dd33c 233 up_read(&ubi->work_sem);
801c135c
AB
234 return 0;
235 }
236
237 wrk = list_entry(ubi->works.next, struct ubi_work, list);
238 list_del(&wrk->list);
16f557ec
AB
239 ubi->works_count -= 1;
240 ubi_assert(ubi->works_count >= 0);
801c135c
AB
241 spin_unlock(&ubi->wl_lock);
242
243 /*
244 * Call the worker function. Do not touch the work structure
245 * after this call as it will have been freed or reused by that
246 * time by the worker function.
247 */
248 err = wrk->func(ubi, wrk, 0);
249 if (err)
250 ubi_err("work failed with error code %d", err);
593dd33c 251 up_read(&ubi->work_sem);
16f557ec 252
801c135c
AB
253 return err;
254}
255
256/**
257 * produce_free_peb - produce a free physical eraseblock.
258 * @ubi: UBI device description object
259 *
260 * This function tries to make a free PEB by means of synchronous execution of
261 * pending works. This may be needed if, for example the background thread is
262 * disabled. Returns zero in case of success and a negative error code in case
263 * of failure.
264 */
265static int produce_free_peb(struct ubi_device *ubi)
266{
267 int err;
268
269 spin_lock(&ubi->wl_lock);
5abde384 270 while (!ubi->free.rb_node) {
801c135c
AB
271 spin_unlock(&ubi->wl_lock);
272
273 dbg_wl("do one work synchronously");
274 err = do_work(ubi);
275 if (err)
276 return err;
277
278 spin_lock(&ubi->wl_lock);
279 }
280 spin_unlock(&ubi->wl_lock);
281
282 return 0;
283}
284
285/**
286 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
287 * @e: the wear-leveling entry to check
288 * @root: the root of the tree
289 *
290 * This function returns non-zero if @e is in the @root RB-tree and zero if it
291 * is not.
292 */
293static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
294{
295 struct rb_node *p;
296
297 p = root->rb_node;
298 while (p) {
299 struct ubi_wl_entry *e1;
300
23553b2c 301 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
801c135c
AB
302
303 if (e->pnum == e1->pnum) {
304 ubi_assert(e == e1);
305 return 1;
306 }
307
308 if (e->ec < e1->ec)
309 p = p->rb_left;
310 else if (e->ec > e1->ec)
311 p = p->rb_right;
312 else {
313 ubi_assert(e->pnum != e1->pnum);
314 if (e->pnum < e1->pnum)
315 p = p->rb_left;
316 else
317 p = p->rb_right;
318 }
319 }
320
321 return 0;
322}
323
324/**
7b6c32da 325 * prot_queue_add - add physical eraseblock to the protection queue.
801c135c
AB
326 * @ubi: UBI device description object
327 * @e: the physical eraseblock to add
801c135c 328 *
7b6c32da
XX
329 * This function adds @e to the tail of the protection queue @ubi->pq, where
330 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
331 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
332 * be locked.
801c135c 333 */
7b6c32da 334static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
801c135c 335{
7b6c32da 336 int pq_tail = ubi->pq_head - 1;
801c135c 337
7b6c32da
XX
338 if (pq_tail < 0)
339 pq_tail = UBI_PROT_QUEUE_LEN - 1;
340 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
341 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
342 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
801c135c
AB
343}
344
345/**
346 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
347 * @root: the RB-tree where to look for
348 * @max: highest possible erase counter
349 *
350 * This function looks for a wear leveling entry with erase counter closest to
351 * @max and less then @max.
352 */
353static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
354{
355 struct rb_node *p;
356 struct ubi_wl_entry *e;
357
23553b2c 358 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
801c135c
AB
359 max += e->ec;
360
361 p = root->rb_node;
362 while (p) {
363 struct ubi_wl_entry *e1;
364
23553b2c 365 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
801c135c
AB
366 if (e1->ec >= max)
367 p = p->rb_left;
368 else {
369 p = p->rb_right;
370 e = e1;
371 }
372 }
373
374 return e;
375}
376
377/**
378 * ubi_wl_get_peb - get a physical eraseblock.
379 * @ubi: UBI device description object
380 * @dtype: type of data which will be stored in this physical eraseblock
381 *
382 * This function returns a physical eraseblock in case of success and a
383 * negative error code in case of failure. Might sleep.
384 */
385int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
386{
7b6c32da 387 int err, medium_ec;
801c135c 388 struct ubi_wl_entry *e, *first, *last;
801c135c
AB
389
390 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
391 dtype == UBI_UNKNOWN);
392
801c135c
AB
393retry:
394 spin_lock(&ubi->wl_lock);
5abde384 395 if (!ubi->free.rb_node) {
801c135c
AB
396 if (ubi->works_count == 0) {
397 ubi_assert(list_empty(&ubi->works));
398 ubi_err("no free eraseblocks");
399 spin_unlock(&ubi->wl_lock);
801c135c
AB
400 return -ENOSPC;
401 }
402 spin_unlock(&ubi->wl_lock);
403
404 err = produce_free_peb(ubi);
7b6c32da 405 if (err < 0)
801c135c 406 return err;
801c135c
AB
407 goto retry;
408 }
409
410 switch (dtype) {
9c9ec147
AB
411 case UBI_LONGTERM:
412 /*
413 * For long term data we pick a physical eraseblock with high
414 * erase counter. But the highest erase counter we can pick is
415 * bounded by the the lowest erase counter plus
416 * %WL_FREE_MAX_DIFF.
417 */
418 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
9c9ec147
AB
419 break;
420 case UBI_UNKNOWN:
421 /*
422 * For unknown data we pick a physical eraseblock with medium
423 * erase counter. But we by no means can pick a physical
424 * eraseblock with erase counter greater or equivalent than the
425 * lowest erase counter plus %WL_FREE_MAX_DIFF.
426 */
23553b2c
XX
427 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry,
428 u.rb);
429 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
801c135c 430
9c9ec147
AB
431 if (last->ec - first->ec < WL_FREE_MAX_DIFF)
432 e = rb_entry(ubi->free.rb_node,
23553b2c 433 struct ubi_wl_entry, u.rb);
9c9ec147
AB
434 else {
435 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
436 e = find_wl_entry(&ubi->free, medium_ec);
437 }
9c9ec147
AB
438 break;
439 case UBI_SHORTTERM:
440 /*
441 * For short term data we pick a physical eraseblock with the
442 * lowest erase counter as we expect it will be erased soon.
443 */
23553b2c 444 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
9c9ec147
AB
445 break;
446 default:
9c9ec147 447 BUG();
801c135c
AB
448 }
449
7b6c32da
XX
450 paranoid_check_in_wl_tree(e, &ubi->free);
451
801c135c 452 /*
7b6c32da 453 * Move the physical eraseblock to the protection queue where it will
801c135c
AB
454 * be protected from being moved for some time.
455 */
23553b2c 456 rb_erase(&e->u.rb, &ubi->free);
7b6c32da
XX
457 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
458 prot_queue_add(ubi, e);
801c135c 459 spin_unlock(&ubi->wl_lock);
801c135c
AB
460 return e->pnum;
461}
462
463/**
7b6c32da 464 * prot_queue_del - remove a physical eraseblock from the protection queue.
801c135c
AB
465 * @ubi: UBI device description object
466 * @pnum: the physical eraseblock to remove
43f9b25a 467 *
7b6c32da
XX
468 * This function deletes PEB @pnum from the protection queue and returns zero
469 * in case of success and %-ENODEV if the PEB was not found.
801c135c 470 */
7b6c32da 471static int prot_queue_del(struct ubi_device *ubi, int pnum)
801c135c 472{
7b6c32da 473 struct ubi_wl_entry *e;
801c135c 474
7b6c32da
XX
475 e = ubi->lookuptbl[pnum];
476 if (!e)
477 return -ENODEV;
801c135c 478
7b6c32da
XX
479 if (paranoid_check_in_pq(ubi, e))
480 return -ENODEV;
43f9b25a 481
7b6c32da
XX
482 list_del(&e->u.list);
483 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
43f9b25a 484 return 0;
801c135c
AB
485}
486
487/**
488 * sync_erase - synchronously erase a physical eraseblock.
489 * @ubi: UBI device description object
490 * @e: the the physical eraseblock to erase
491 * @torture: if the physical eraseblock has to be tortured
492 *
493 * This function returns zero in case of success and a negative error code in
494 * case of failure.
495 */
9c9ec147
AB
496static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
497 int torture)
801c135c
AB
498{
499 int err;
500 struct ubi_ec_hdr *ec_hdr;
501 unsigned long long ec = e->ec;
502
503 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
504
505 err = paranoid_check_ec(ubi, e->pnum, e->ec);
506 if (err > 0)
507 return -EINVAL;
508
33818bbb 509 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
510 if (!ec_hdr)
511 return -ENOMEM;
512
513 err = ubi_io_sync_erase(ubi, e->pnum, torture);
514 if (err < 0)
515 goto out_free;
516
517 ec += err;
518 if (ec > UBI_MAX_ERASECOUNTER) {
519 /*
520 * Erase counter overflow. Upgrade UBI and use 64-bit
521 * erase counters internally.
522 */
523 ubi_err("erase counter overflow at PEB %d, EC %llu",
524 e->pnum, ec);
525 err = -EINVAL;
526 goto out_free;
527 }
528
529 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
530
3261ebd7 531 ec_hdr->ec = cpu_to_be64(ec);
801c135c
AB
532
533 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
534 if (err)
535 goto out_free;
536
537 e->ec = ec;
538 spin_lock(&ubi->wl_lock);
539 if (e->ec > ubi->max_ec)
540 ubi->max_ec = e->ec;
541 spin_unlock(&ubi->wl_lock);
542
543out_free:
544 kfree(ec_hdr);
545 return err;
546}
547
548/**
7b6c32da 549 * serve_prot_queue - check if it is time to stop protecting PEBs.
801c135c
AB
550 * @ubi: UBI device description object
551 *
7b6c32da
XX
552 * This function is called after each erase operation and removes PEBs from the
553 * tail of the protection queue. These PEBs have been protected for long enough
554 * and should be moved to the used tree.
801c135c 555 */
7b6c32da 556static void serve_prot_queue(struct ubi_device *ubi)
801c135c 557{
7b6c32da
XX
558 struct ubi_wl_entry *e, *tmp;
559 int count;
801c135c
AB
560
561 /*
562 * There may be several protected physical eraseblock to remove,
563 * process them all.
564 */
7b6c32da
XX
565repeat:
566 count = 0;
567 spin_lock(&ubi->wl_lock);
568 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
569 dbg_wl("PEB %d EC %d protection over, move to used tree",
570 e->pnum, e->ec);
801c135c 571
7b6c32da
XX
572 list_del(&e->u.list);
573 wl_tree_add(e, &ubi->used);
574 if (count++ > 32) {
575 /*
576 * Let's be nice and avoid holding the spinlock for
577 * too long.
578 */
801c135c 579 spin_unlock(&ubi->wl_lock);
7b6c32da
XX
580 cond_resched();
581 goto repeat;
801c135c 582 }
801c135c 583 }
7b6c32da
XX
584
585 ubi->pq_head += 1;
586 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
587 ubi->pq_head = 0;
588 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
589 spin_unlock(&ubi->wl_lock);
801c135c
AB
590}
591
592/**
593 * schedule_ubi_work - schedule a work.
594 * @ubi: UBI device description object
595 * @wrk: the work to schedule
596 *
7b6c32da
XX
597 * This function adds a work defined by @wrk to the tail of the pending works
598 * list.
801c135c
AB
599 */
600static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
601{
602 spin_lock(&ubi->wl_lock);
603 list_add_tail(&wrk->list, &ubi->works);
604 ubi_assert(ubi->works_count >= 0);
605 ubi->works_count += 1;
606 if (ubi->thread_enabled)
607 wake_up_process(ubi->bgt_thread);
608 spin_unlock(&ubi->wl_lock);
609}
610
611static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
612 int cancel);
613
614/**
615 * schedule_erase - schedule an erase work.
616 * @ubi: UBI device description object
617 * @e: the WL entry of the physical eraseblock to erase
618 * @torture: if the physical eraseblock has to be tortured
619 *
620 * This function returns zero in case of success and a %-ENOMEM in case of
621 * failure.
622 */
623static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
624 int torture)
625{
626 struct ubi_work *wl_wrk;
627
628 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
629 e->pnum, e->ec, torture);
630
33818bbb 631 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
801c135c
AB
632 if (!wl_wrk)
633 return -ENOMEM;
634
635 wl_wrk->func = &erase_worker;
636 wl_wrk->e = e;
637 wl_wrk->torture = torture;
638
639 schedule_ubi_work(ubi, wl_wrk);
640 return 0;
641}
642
643/**
644 * wear_leveling_worker - wear-leveling worker function.
645 * @ubi: UBI device description object
646 * @wrk: the work object
647 * @cancel: non-zero if the worker has to free memory and exit
648 *
649 * This function copies a more worn out physical eraseblock to a less worn out
650 * one. Returns zero in case of success and a negative error code in case of
651 * failure.
652 */
653static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
654 int cancel)
655{
87960c0b 656 int err, scrubbing = 0, torture = 0, protect = 0;
801c135c
AB
657 struct ubi_wl_entry *e1, *e2;
658 struct ubi_vid_hdr *vid_hdr;
659
660 kfree(wrk);
801c135c
AB
661 if (cancel)
662 return 0;
663
33818bbb 664 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
665 if (!vid_hdr)
666 return -ENOMEM;
667
43f9b25a 668 mutex_lock(&ubi->move_mutex);
801c135c 669 spin_lock(&ubi->wl_lock);
43f9b25a
AB
670 ubi_assert(!ubi->move_from && !ubi->move_to);
671 ubi_assert(!ubi->move_to_put);
801c135c 672
43f9b25a 673 if (!ubi->free.rb_node ||
5abde384 674 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
801c135c 675 /*
43f9b25a
AB
676 * No free physical eraseblocks? Well, they must be waiting in
677 * the queue to be erased. Cancel movement - it will be
678 * triggered again when a free physical eraseblock appears.
801c135c
AB
679 *
680 * No used physical eraseblocks? They must be temporarily
681 * protected from being moved. They will be moved to the
682 * @ubi->used tree later and the wear-leveling will be
683 * triggered again.
684 */
685 dbg_wl("cancel WL, a list is empty: free %d, used %d",
5abde384 686 !ubi->free.rb_node, !ubi->used.rb_node);
43f9b25a 687 goto out_cancel;
801c135c
AB
688 }
689
5abde384 690 if (!ubi->scrub.rb_node) {
801c135c
AB
691 /*
692 * Now pick the least worn-out used physical eraseblock and a
693 * highly worn-out free physical eraseblock. If the erase
694 * counters differ much enough, start wear-leveling.
695 */
23553b2c 696 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
801c135c
AB
697 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
698
699 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
700 dbg_wl("no WL needed: min used EC %d, max free EC %d",
701 e1->ec, e2->ec);
43f9b25a 702 goto out_cancel;
801c135c 703 }
5abde384 704 paranoid_check_in_wl_tree(e1, &ubi->used);
23553b2c 705 rb_erase(&e1->u.rb, &ubi->used);
801c135c
AB
706 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
707 e1->pnum, e1->ec, e2->pnum, e2->ec);
708 } else {
43f9b25a
AB
709 /* Perform scrubbing */
710 scrubbing = 1;
23553b2c 711 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
801c135c 712 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
5abde384 713 paranoid_check_in_wl_tree(e1, &ubi->scrub);
23553b2c 714 rb_erase(&e1->u.rb, &ubi->scrub);
801c135c
AB
715 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
716 }
717
5abde384 718 paranoid_check_in_wl_tree(e2, &ubi->free);
23553b2c 719 rb_erase(&e2->u.rb, &ubi->free);
801c135c
AB
720 ubi->move_from = e1;
721 ubi->move_to = e2;
722 spin_unlock(&ubi->wl_lock);
723
724 /*
725 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
726 * We so far do not know which logical eraseblock our physical
727 * eraseblock (@e1) belongs to. We have to read the volume identifier
728 * header first.
43f9b25a
AB
729 *
730 * Note, we are protected from this PEB being unmapped and erased. The
731 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
732 * which is being moved was unmapped.
801c135c
AB
733 */
734
735 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
736 if (err && err != UBI_IO_BITFLIPS) {
737 if (err == UBI_IO_PEB_FREE) {
738 /*
739 * We are trying to move PEB without a VID header. UBI
740 * always write VID headers shortly after the PEB was
87960c0b
AB
741 * given, so we have a situation when it has not yet
742 * had a chance to write it, because it was preempted.
743 * So add this PEB to the protection queue so far,
744 * because presubably more data will be written there
745 * (including the missin VID header), and then we'll
746 * move it.
801c135c
AB
747 */
748 dbg_wl("PEB %d has no VID header", e1->pnum);
87960c0b 749 protect = 1;
43f9b25a 750 goto out_not_moved;
801c135c 751 }
43f9b25a
AB
752
753 ubi_err("error %d while reading VID header from PEB %d",
754 err, e1->pnum);
43f9b25a 755 goto out_error;
801c135c
AB
756 }
757
758 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
759 if (err) {
87960c0b
AB
760 if (err == MOVE_CANCEL_RACE) {
761 /*
762 * The LEB has not been moved because the volume is
763 * being deleted or the PEB has been put meanwhile. We
764 * should prevent this PEB from being selected for
765 * wear-leveling movement again, so put it to the
766 * protection queue.
767 */
768 protect = 1;
769 goto out_not_moved;
770 }
771
90bf0265
AB
772 if (err == MOVE_CANCEL_BITFLIPS ||
773 err == MOVE_TARGET_WR_ERR) {
774 /* Target PEB bit-flips or write error, torture it */
6fa6f5bb 775 torture = 1;
43f9b25a 776 goto out_not_moved;
6fa6f5bb 777 }
87960c0b 778
90bf0265
AB
779 if (err < 0)
780 goto out_error;
43f9b25a 781
87960c0b 782 ubi_assert(0);
801c135c
AB
783 }
784
6a8f483f 785 /* The PEB has been successfully moved */
801c135c 786 ubi_free_vid_hdr(ubi, vid_hdr);
6a8f483f 787 if (scrubbing)
8c1e6ee1
AB
788 ubi_msg("scrubbed PEB %d, data moved to PEB %d",
789 e1->pnum, e2->pnum);
790
801c135c 791 spin_lock(&ubi->wl_lock);
3c98b0a0 792 if (!ubi->move_to_put) {
5abde384 793 wl_tree_add(e2, &ubi->used);
3c98b0a0
AB
794 e2 = NULL;
795 }
801c135c 796 ubi->move_from = ubi->move_to = NULL;
43f9b25a 797 ubi->move_to_put = ubi->wl_scheduled = 0;
801c135c
AB
798 spin_unlock(&ubi->wl_lock);
799
6a8f483f 800 err = schedule_erase(ubi, e1, 0);
3c98b0a0 801 if (err) {
87960c0b
AB
802 kmem_cache_free(ubi_wl_entry_slab, e1);
803 kmem_cache_free(ubi_wl_entry_slab, e2);
804 goto out_ro;
3c98b0a0 805 }
6a8f483f 806
3c98b0a0 807 if (e2) {
801c135c
AB
808 /*
809 * Well, the target PEB was put meanwhile, schedule it for
810 * erasure.
811 */
812 dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
813 err = schedule_erase(ubi, e2, 0);
87960c0b
AB
814 if (err) {
815 kmem_cache_free(ubi_wl_entry_slab, e2);
816 goto out_ro;
817 }
801c135c
AB
818 }
819
801c135c 820 dbg_wl("done");
43f9b25a
AB
821 mutex_unlock(&ubi->move_mutex);
822 return 0;
801c135c
AB
823
824 /*
43f9b25a
AB
825 * For some reasons the LEB was not moved, might be an error, might be
826 * something else. @e1 was not changed, so return it back. @e2 might
6fa6f5bb 827 * have been changed, schedule it for erasure.
801c135c 828 */
43f9b25a 829out_not_moved:
87960c0b
AB
830 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
831 e1->pnum, e2->pnum, err);
801c135c 832 spin_lock(&ubi->wl_lock);
87960c0b
AB
833 if (protect)
834 prot_queue_add(ubi, e1);
835 else if (scrubbing)
43f9b25a 836 wl_tree_add(e1, &ubi->scrub);
801c135c 837 else
5abde384 838 wl_tree_add(e1, &ubi->used);
6fa6f5bb 839 ubi_assert(!ubi->move_to_put);
801c135c 840 ubi->move_from = ubi->move_to = NULL;
6fa6f5bb 841 ubi->wl_scheduled = 0;
801c135c
AB
842 spin_unlock(&ubi->wl_lock);
843
87960c0b 844 ubi_free_vid_hdr(ubi, vid_hdr);
6fa6f5bb 845 err = schedule_erase(ubi, e2, torture);
87960c0b
AB
846 if (err) {
847 kmem_cache_free(ubi_wl_entry_slab, e2);
848 goto out_ro;
849 }
43f9b25a
AB
850 mutex_unlock(&ubi->move_mutex);
851 return 0;
852
853out_error:
854 ubi_err("error %d while moving PEB %d to PEB %d",
855 err, e1->pnum, e2->pnum);
43f9b25a
AB
856 spin_lock(&ubi->wl_lock);
857 ubi->move_from = ubi->move_to = NULL;
858 ubi->move_to_put = ubi->wl_scheduled = 0;
859 spin_unlock(&ubi->wl_lock);
860
87960c0b
AB
861 ubi_free_vid_hdr(ubi, vid_hdr);
862 kmem_cache_free(ubi_wl_entry_slab, e1);
863 kmem_cache_free(ubi_wl_entry_slab, e2);
43f9b25a 864
87960c0b
AB
865out_ro:
866 ubi_ro_mode(ubi);
43f9b25a 867 mutex_unlock(&ubi->move_mutex);
87960c0b
AB
868 ubi_assert(err != 0);
869 return err < 0 ? err : -EIO;
43f9b25a
AB
870
871out_cancel:
872 ubi->wl_scheduled = 0;
873 spin_unlock(&ubi->wl_lock);
874 mutex_unlock(&ubi->move_mutex);
875 ubi_free_vid_hdr(ubi, vid_hdr);
876 return 0;
801c135c
AB
877}
878
879/**
880 * ensure_wear_leveling - schedule wear-leveling if it is needed.
881 * @ubi: UBI device description object
882 *
883 * This function checks if it is time to start wear-leveling and schedules it
884 * if yes. This function returns zero in case of success and a negative error
885 * code in case of failure.
886 */
887static int ensure_wear_leveling(struct ubi_device *ubi)
888{
889 int err = 0;
890 struct ubi_wl_entry *e1;
891 struct ubi_wl_entry *e2;
892 struct ubi_work *wrk;
893
894 spin_lock(&ubi->wl_lock);
895 if (ubi->wl_scheduled)
896 /* Wear-leveling is already in the work queue */
897 goto out_unlock;
898
899 /*
900 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
901 * the WL worker has to be scheduled anyway.
902 */
5abde384
AB
903 if (!ubi->scrub.rb_node) {
904 if (!ubi->used.rb_node || !ubi->free.rb_node)
801c135c
AB
905 /* No physical eraseblocks - no deal */
906 goto out_unlock;
907
908 /*
909 * We schedule wear-leveling only if the difference between the
910 * lowest erase counter of used physical eraseblocks and a high
025dfdaf 911 * erase counter of free physical eraseblocks is greater than
801c135c
AB
912 * %UBI_WL_THRESHOLD.
913 */
23553b2c 914 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
801c135c
AB
915 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
916
917 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
918 goto out_unlock;
919 dbg_wl("schedule wear-leveling");
920 } else
921 dbg_wl("schedule scrubbing");
922
923 ubi->wl_scheduled = 1;
924 spin_unlock(&ubi->wl_lock);
925
33818bbb 926 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
801c135c
AB
927 if (!wrk) {
928 err = -ENOMEM;
929 goto out_cancel;
930 }
931
932 wrk->func = &wear_leveling_worker;
933 schedule_ubi_work(ubi, wrk);
934 return err;
935
936out_cancel:
937 spin_lock(&ubi->wl_lock);
938 ubi->wl_scheduled = 0;
939out_unlock:
940 spin_unlock(&ubi->wl_lock);
941 return err;
942}
943
944/**
945 * erase_worker - physical eraseblock erase worker function.
946 * @ubi: UBI device description object
947 * @wl_wrk: the work object
948 * @cancel: non-zero if the worker has to free memory and exit
949 *
950 * This function erases a physical eraseblock and perform torture testing if
951 * needed. It also takes care about marking the physical eraseblock bad if
952 * needed. Returns zero in case of success and a negative error code in case of
953 * failure.
954 */
955static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
956 int cancel)
957{
801c135c 958 struct ubi_wl_entry *e = wl_wrk->e;
784c1454 959 int pnum = e->pnum, err, need;
801c135c
AB
960
961 if (cancel) {
962 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
963 kfree(wl_wrk);
06b68ba1 964 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
965 return 0;
966 }
967
968 dbg_wl("erase PEB %d EC %d", pnum, e->ec);
969
970 err = sync_erase(ubi, e, wl_wrk->torture);
971 if (!err) {
972 /* Fine, we've erased it successfully */
973 kfree(wl_wrk);
974
975 spin_lock(&ubi->wl_lock);
5abde384 976 wl_tree_add(e, &ubi->free);
801c135c
AB
977 spin_unlock(&ubi->wl_lock);
978
979 /*
9c9ec147
AB
980 * One more erase operation has happened, take care about
981 * protected physical eraseblocks.
801c135c 982 */
7b6c32da 983 serve_prot_queue(ubi);
801c135c
AB
984
985 /* And take care about wear-leveling */
986 err = ensure_wear_leveling(ubi);
987 return err;
988 }
989
8d2d4011 990 ubi_err("failed to erase PEB %d, error %d", pnum, err);
801c135c 991 kfree(wl_wrk);
06b68ba1 992 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c 993
784c1454
AB
994 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
995 err == -EBUSY) {
996 int err1;
997
998 /* Re-schedule the LEB for erasure */
999 err1 = schedule_erase(ubi, e, 0);
1000 if (err1) {
1001 err = err1;
1002 goto out_ro;
1003 }
1004 return err;
1005 } else if (err != -EIO) {
801c135c
AB
1006 /*
1007 * If this is not %-EIO, we have no idea what to do. Scheduling
1008 * this physical eraseblock for erasure again would cause
1009 * errors again and again. Well, lets switch to RO mode.
1010 */
784c1454 1011 goto out_ro;
801c135c
AB
1012 }
1013
1014 /* It is %-EIO, the PEB went bad */
1015
1016 if (!ubi->bad_allowed) {
1017 ubi_err("bad physical eraseblock %d detected", pnum);
784c1454
AB
1018 goto out_ro;
1019 }
801c135c 1020
784c1454
AB
1021 spin_lock(&ubi->volumes_lock);
1022 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1023 if (need > 0) {
1024 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1025 ubi->avail_pebs -= need;
1026 ubi->rsvd_pebs += need;
1027 ubi->beb_rsvd_pebs += need;
1028 if (need > 0)
1029 ubi_msg("reserve more %d PEBs", need);
1030 }
801c135c 1031
784c1454 1032 if (ubi->beb_rsvd_pebs == 0) {
801c135c 1033 spin_unlock(&ubi->volumes_lock);
784c1454
AB
1034 ubi_err("no reserved physical eraseblocks");
1035 goto out_ro;
1036 }
801c135c 1037
784c1454
AB
1038 spin_unlock(&ubi->volumes_lock);
1039 ubi_msg("mark PEB %d as bad", pnum);
801c135c 1040
784c1454
AB
1041 err = ubi_io_mark_bad(ubi, pnum);
1042 if (err)
1043 goto out_ro;
1044
1045 spin_lock(&ubi->volumes_lock);
1046 ubi->beb_rsvd_pebs -= 1;
1047 ubi->bad_peb_count += 1;
1048 ubi->good_peb_count -= 1;
1049 ubi_calculate_reserved(ubi);
1050 if (ubi->beb_rsvd_pebs == 0)
1051 ubi_warn("last PEB from the reserved pool was used");
1052 spin_unlock(&ubi->volumes_lock);
1053
1054 return err;
801c135c 1055
784c1454
AB
1056out_ro:
1057 ubi_ro_mode(ubi);
801c135c
AB
1058 return err;
1059}
1060
1061/**
85c6e6e2 1062 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
801c135c
AB
1063 * @ubi: UBI device description object
1064 * @pnum: physical eraseblock to return
1065 * @torture: if this physical eraseblock has to be tortured
1066 *
1067 * This function is called to return physical eraseblock @pnum to the pool of
1068 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1069 * occurred to this @pnum and it has to be tested. This function returns zero
43f9b25a 1070 * in case of success, and a negative error code in case of failure.
801c135c
AB
1071 */
1072int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1073{
1074 int err;
1075 struct ubi_wl_entry *e;
1076
1077 dbg_wl("PEB %d", pnum);
1078 ubi_assert(pnum >= 0);
1079 ubi_assert(pnum < ubi->peb_count);
1080
43f9b25a 1081retry:
801c135c 1082 spin_lock(&ubi->wl_lock);
801c135c
AB
1083 e = ubi->lookuptbl[pnum];
1084 if (e == ubi->move_from) {
1085 /*
1086 * User is putting the physical eraseblock which was selected to
1087 * be moved. It will be scheduled for erasure in the
1088 * wear-leveling worker.
1089 */
43f9b25a 1090 dbg_wl("PEB %d is being moved, wait", pnum);
801c135c 1091 spin_unlock(&ubi->wl_lock);
43f9b25a
AB
1092
1093 /* Wait for the WL worker by taking the @ubi->move_mutex */
1094 mutex_lock(&ubi->move_mutex);
1095 mutex_unlock(&ubi->move_mutex);
1096 goto retry;
801c135c
AB
1097 } else if (e == ubi->move_to) {
1098 /*
1099 * User is putting the physical eraseblock which was selected
1100 * as the target the data is moved to. It may happen if the EBA
85c6e6e2
AB
1101 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1102 * but the WL sub-system has not put the PEB to the "used" tree
1103 * yet, but it is about to do this. So we just set a flag which
1104 * will tell the WL worker that the PEB is not needed anymore
1105 * and should be scheduled for erasure.
801c135c
AB
1106 */
1107 dbg_wl("PEB %d is the target of data moving", pnum);
1108 ubi_assert(!ubi->move_to_put);
1109 ubi->move_to_put = 1;
1110 spin_unlock(&ubi->wl_lock);
1111 return 0;
1112 } else {
5abde384
AB
1113 if (in_wl_tree(e, &ubi->used)) {
1114 paranoid_check_in_wl_tree(e, &ubi->used);
23553b2c 1115 rb_erase(&e->u.rb, &ubi->used);
5abde384
AB
1116 } else if (in_wl_tree(e, &ubi->scrub)) {
1117 paranoid_check_in_wl_tree(e, &ubi->scrub);
23553b2c 1118 rb_erase(&e->u.rb, &ubi->scrub);
43f9b25a 1119 } else {
7b6c32da 1120 err = prot_queue_del(ubi, e->pnum);
43f9b25a
AB
1121 if (err) {
1122 ubi_err("PEB %d not found", pnum);
1123 ubi_ro_mode(ubi);
1124 spin_unlock(&ubi->wl_lock);
1125 return err;
1126 }
1127 }
801c135c
AB
1128 }
1129 spin_unlock(&ubi->wl_lock);
1130
1131 err = schedule_erase(ubi, e, torture);
1132 if (err) {
1133 spin_lock(&ubi->wl_lock);
5abde384 1134 wl_tree_add(e, &ubi->used);
801c135c
AB
1135 spin_unlock(&ubi->wl_lock);
1136 }
1137
1138 return err;
1139}
1140
1141/**
1142 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1143 * @ubi: UBI device description object
1144 * @pnum: the physical eraseblock to schedule
1145 *
1146 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1147 * needs scrubbing. This function schedules a physical eraseblock for
1148 * scrubbing which is done in background. This function returns zero in case of
1149 * success and a negative error code in case of failure.
1150 */
1151int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1152{
1153 struct ubi_wl_entry *e;
1154
8c1e6ee1 1155 dbg_msg("schedule PEB %d for scrubbing", pnum);
801c135c
AB
1156
1157retry:
1158 spin_lock(&ubi->wl_lock);
1159 e = ubi->lookuptbl[pnum];
1160 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1161 spin_unlock(&ubi->wl_lock);
1162 return 0;
1163 }
1164
1165 if (e == ubi->move_to) {
1166 /*
1167 * This physical eraseblock was used to move data to. The data
1168 * was moved but the PEB was not yet inserted to the proper
1169 * tree. We should just wait a little and let the WL worker
1170 * proceed.
1171 */
1172 spin_unlock(&ubi->wl_lock);
1173 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1174 yield();
1175 goto retry;
1176 }
1177
5abde384
AB
1178 if (in_wl_tree(e, &ubi->used)) {
1179 paranoid_check_in_wl_tree(e, &ubi->used);
23553b2c 1180 rb_erase(&e->u.rb, &ubi->used);
43f9b25a
AB
1181 } else {
1182 int err;
1183
7b6c32da 1184 err = prot_queue_del(ubi, e->pnum);
43f9b25a
AB
1185 if (err) {
1186 ubi_err("PEB %d not found", pnum);
1187 ubi_ro_mode(ubi);
1188 spin_unlock(&ubi->wl_lock);
1189 return err;
1190 }
1191 }
801c135c 1192
5abde384 1193 wl_tree_add(e, &ubi->scrub);
801c135c
AB
1194 spin_unlock(&ubi->wl_lock);
1195
1196 /*
1197 * Technically scrubbing is the same as wear-leveling, so it is done
1198 * by the WL worker.
1199 */
1200 return ensure_wear_leveling(ubi);
1201}
1202
1203/**
1204 * ubi_wl_flush - flush all pending works.
1205 * @ubi: UBI device description object
1206 *
1207 * This function returns zero in case of success and a negative error code in
1208 * case of failure.
1209 */
1210int ubi_wl_flush(struct ubi_device *ubi)
1211{
593dd33c 1212 int err;
801c135c
AB
1213
1214 /*
7b6c32da 1215 * Erase while the pending works queue is not empty, but not more than
801c135c
AB
1216 * the number of currently pending works.
1217 */
593dd33c
AB
1218 dbg_wl("flush (%d pending works)", ubi->works_count);
1219 while (ubi->works_count) {
1220 err = do_work(ubi);
1221 if (err)
1222 return err;
1223 }
1224
1225 /*
1226 * Make sure all the works which have been done in parallel are
1227 * finished.
1228 */
1229 down_write(&ubi->work_sem);
1230 up_write(&ubi->work_sem);
1231
1232 /*
6fa6f5bb 1233 * And in case last was the WL worker and it canceled the LEB
593dd33c
AB
1234 * movement, flush again.
1235 */
1236 while (ubi->works_count) {
1237 dbg_wl("flush more (%d pending works)", ubi->works_count);
801c135c
AB
1238 err = do_work(ubi);
1239 if (err)
1240 return err;
1241 }
1242
1243 return 0;
1244}
1245
1246/**
1247 * tree_destroy - destroy an RB-tree.
1248 * @root: the root of the tree to destroy
1249 */
1250static void tree_destroy(struct rb_root *root)
1251{
1252 struct rb_node *rb;
1253 struct ubi_wl_entry *e;
1254
1255 rb = root->rb_node;
1256 while (rb) {
1257 if (rb->rb_left)
1258 rb = rb->rb_left;
1259 else if (rb->rb_right)
1260 rb = rb->rb_right;
1261 else {
23553b2c 1262 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
801c135c
AB
1263
1264 rb = rb_parent(rb);
1265 if (rb) {
23553b2c 1266 if (rb->rb_left == &e->u.rb)
801c135c
AB
1267 rb->rb_left = NULL;
1268 else
1269 rb->rb_right = NULL;
1270 }
1271
06b68ba1 1272 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
1273 }
1274 }
1275}
1276
1277/**
1278 * ubi_thread - UBI background thread.
1279 * @u: the UBI device description object pointer
1280 */
cdfa788a 1281int ubi_thread(void *u)
801c135c
AB
1282{
1283 int failures = 0;
1284 struct ubi_device *ubi = u;
1285
1286 ubi_msg("background thread \"%s\" started, PID %d",
ba25f9dc 1287 ubi->bgt_name, task_pid_nr(current));
801c135c 1288
83144186 1289 set_freezable();
801c135c
AB
1290 for (;;) {
1291 int err;
1292
1293 if (kthread_should_stop())
cadb40cc 1294 break;
801c135c
AB
1295
1296 if (try_to_freeze())
1297 continue;
1298
1299 spin_lock(&ubi->wl_lock);
1300 if (list_empty(&ubi->works) || ubi->ro_mode ||
1301 !ubi->thread_enabled) {
1302 set_current_state(TASK_INTERRUPTIBLE);
1303 spin_unlock(&ubi->wl_lock);
1304 schedule();
1305 continue;
1306 }
1307 spin_unlock(&ubi->wl_lock);
1308
1309 err = do_work(ubi);
1310 if (err) {
1311 ubi_err("%s: work failed with error code %d",
1312 ubi->bgt_name, err);
1313 if (failures++ > WL_MAX_FAILURES) {
1314 /*
1315 * Too many failures, disable the thread and
1316 * switch to read-only mode.
1317 */
1318 ubi_msg("%s: %d consecutive failures",
1319 ubi->bgt_name, WL_MAX_FAILURES);
1320 ubi_ro_mode(ubi);
2ad49887
VG
1321 ubi->thread_enabled = 0;
1322 continue;
801c135c
AB
1323 }
1324 } else
1325 failures = 0;
1326
1327 cond_resched();
1328 }
1329
801c135c
AB
1330 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1331 return 0;
1332}
1333
1334/**
1335 * cancel_pending - cancel all pending works.
1336 * @ubi: UBI device description object
1337 */
1338static void cancel_pending(struct ubi_device *ubi)
1339{
1340 while (!list_empty(&ubi->works)) {
1341 struct ubi_work *wrk;
1342
1343 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1344 list_del(&wrk->list);
1345 wrk->func(ubi, wrk, 1);
1346 ubi->works_count -= 1;
1347 ubi_assert(ubi->works_count >= 0);
1348 }
1349}
1350
1351/**
85c6e6e2 1352 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
801c135c
AB
1353 * @ubi: UBI device description object
1354 * @si: scanning information
1355 *
1356 * This function returns zero in case of success, and a negative error code in
1357 * case of failure.
1358 */
1359int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1360{
7b6c32da 1361 int err, i;
801c135c
AB
1362 struct rb_node *rb1, *rb2;
1363 struct ubi_scan_volume *sv;
1364 struct ubi_scan_leb *seb, *tmp;
1365 struct ubi_wl_entry *e;
1366
801c135c 1367 ubi->used = ubi->free = ubi->scrub = RB_ROOT;
801c135c 1368 spin_lock_init(&ubi->wl_lock);
43f9b25a 1369 mutex_init(&ubi->move_mutex);
593dd33c 1370 init_rwsem(&ubi->work_sem);
801c135c
AB
1371 ubi->max_ec = si->max_ec;
1372 INIT_LIST_HEAD(&ubi->works);
1373
1374 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1375
801c135c
AB
1376 err = -ENOMEM;
1377 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1378 if (!ubi->lookuptbl)
cdfa788a 1379 return err;
801c135c 1380
7b6c32da
XX
1381 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1382 INIT_LIST_HEAD(&ubi->pq[i]);
1383 ubi->pq_head = 0;
1384
801c135c
AB
1385 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1386 cond_resched();
1387
06b68ba1 1388 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1389 if (!e)
1390 goto out_free;
1391
1392 e->pnum = seb->pnum;
1393 e->ec = seb->ec;
1394 ubi->lookuptbl[e->pnum] = e;
1395 if (schedule_erase(ubi, e, 0)) {
06b68ba1 1396 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
1397 goto out_free;
1398 }
1399 }
1400
1401 list_for_each_entry(seb, &si->free, u.list) {
1402 cond_resched();
1403
06b68ba1 1404 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1405 if (!e)
1406 goto out_free;
1407
1408 e->pnum = seb->pnum;
1409 e->ec = seb->ec;
1410 ubi_assert(e->ec >= 0);
5abde384 1411 wl_tree_add(e, &ubi->free);
801c135c
AB
1412 ubi->lookuptbl[e->pnum] = e;
1413 }
1414
1415 list_for_each_entry(seb, &si->corr, u.list) {
1416 cond_resched();
1417
06b68ba1 1418 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1419 if (!e)
1420 goto out_free;
1421
1422 e->pnum = seb->pnum;
1423 e->ec = seb->ec;
1424 ubi->lookuptbl[e->pnum] = e;
1425 if (schedule_erase(ubi, e, 0)) {
06b68ba1 1426 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
1427 goto out_free;
1428 }
1429 }
1430
1431 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1432 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1433 cond_resched();
1434
06b68ba1 1435 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1436 if (!e)
1437 goto out_free;
1438
1439 e->pnum = seb->pnum;
1440 e->ec = seb->ec;
1441 ubi->lookuptbl[e->pnum] = e;
1442 if (!seb->scrub) {
1443 dbg_wl("add PEB %d EC %d to the used tree",
1444 e->pnum, e->ec);
5abde384 1445 wl_tree_add(e, &ubi->used);
801c135c
AB
1446 } else {
1447 dbg_wl("add PEB %d EC %d to the scrub tree",
1448 e->pnum, e->ec);
5abde384 1449 wl_tree_add(e, &ubi->scrub);
801c135c
AB
1450 }
1451 }
1452 }
1453
5abde384 1454 if (ubi->avail_pebs < WL_RESERVED_PEBS) {
801c135c
AB
1455 ubi_err("no enough physical eraseblocks (%d, need %d)",
1456 ubi->avail_pebs, WL_RESERVED_PEBS);
1457 goto out_free;
1458 }
1459 ubi->avail_pebs -= WL_RESERVED_PEBS;
1460 ubi->rsvd_pebs += WL_RESERVED_PEBS;
1461
1462 /* Schedule wear-leveling if needed */
1463 err = ensure_wear_leveling(ubi);
1464 if (err)
1465 goto out_free;
1466
1467 return 0;
1468
1469out_free:
1470 cancel_pending(ubi);
1471 tree_destroy(&ubi->used);
1472 tree_destroy(&ubi->free);
1473 tree_destroy(&ubi->scrub);
1474 kfree(ubi->lookuptbl);
801c135c
AB
1475 return err;
1476}
1477
1478/**
7b6c32da 1479 * protection_queue_destroy - destroy the protection queue.
801c135c
AB
1480 * @ubi: UBI device description object
1481 */
7b6c32da 1482static void protection_queue_destroy(struct ubi_device *ubi)
801c135c 1483{
7b6c32da
XX
1484 int i;
1485 struct ubi_wl_entry *e, *tmp;
801c135c 1486
7b6c32da
XX
1487 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1488 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1489 list_del(&e->u.list);
1490 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
1491 }
1492 }
1493}
1494
1495/**
85c6e6e2 1496 * ubi_wl_close - close the wear-leveling sub-system.
801c135c
AB
1497 * @ubi: UBI device description object
1498 */
1499void ubi_wl_close(struct ubi_device *ubi)
1500{
85c6e6e2 1501 dbg_wl("close the WL sub-system");
801c135c 1502 cancel_pending(ubi);
7b6c32da 1503 protection_queue_destroy(ubi);
801c135c
AB
1504 tree_destroy(&ubi->used);
1505 tree_destroy(&ubi->free);
1506 tree_destroy(&ubi->scrub);
1507 kfree(ubi->lookuptbl);
801c135c
AB
1508}
1509
1510#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1511
1512/**
ebaaf1af 1513 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
801c135c
AB
1514 * @ubi: UBI device description object
1515 * @pnum: the physical eraseblock number to check
1516 * @ec: the erase counter to check
1517 *
1518 * This function returns zero if the erase counter of physical eraseblock @pnum
1519 * is equivalent to @ec, %1 if not, and a negative error code if an error
1520 * occurred.
1521 */
e88d6e10 1522static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
801c135c
AB
1523{
1524 int err;
1525 long long read_ec;
1526 struct ubi_ec_hdr *ec_hdr;
1527
33818bbb 1528 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
1529 if (!ec_hdr)
1530 return -ENOMEM;
1531
1532 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1533 if (err && err != UBI_IO_BITFLIPS) {
1534 /* The header does not have to exist */
1535 err = 0;
1536 goto out_free;
1537 }
1538
3261ebd7 1539 read_ec = be64_to_cpu(ec_hdr->ec);
801c135c
AB
1540 if (ec != read_ec) {
1541 ubi_err("paranoid check failed for PEB %d", pnum);
1542 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1543 ubi_dbg_dump_stack();
1544 err = 1;
1545 } else
1546 err = 0;
1547
1548out_free:
1549 kfree(ec_hdr);
1550 return err;
1551}
1552
1553/**
ebaaf1af 1554 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
801c135c
AB
1555 * @e: the wear-leveling entry to check
1556 * @root: the root of the tree
1557 *
ebaaf1af
AB
1558 * This function returns zero if @e is in the @root RB-tree and %1 if it is
1559 * not.
801c135c
AB
1560 */
1561static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1562 struct rb_root *root)
1563{
1564 if (in_wl_tree(e, root))
1565 return 0;
1566
1567 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1568 e->pnum, e->ec, root);
1569 ubi_dbg_dump_stack();
1570 return 1;
1571}
1572
7b6c32da
XX
1573/**
1574 * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1575 * queue.
1576 * @ubi: UBI device description object
1577 * @e: the wear-leveling entry to check
1578 *
1579 * This function returns zero if @e is in @ubi->pq and %1 if it is not.
1580 */
1581static int paranoid_check_in_pq(struct ubi_device *ubi, struct ubi_wl_entry *e)
1582{
1583 struct ubi_wl_entry *p;
1584 int i;
1585
1586 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1587 list_for_each_entry(p, &ubi->pq[i], u.list)
1588 if (p == e)
1589 return 0;
1590
1591 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1592 e->pnum, e->ec);
1593 ubi_dbg_dump_stack();
1594 return 1;
1595}
801c135c 1596#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */