]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/mtd/ubi/scan.c
Merge branch 'for-rmk' of git://git.pengutronix.de/git/imx/linux-2.6
[net-next-2.6.git] / drivers / mtd / ubi / scan.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
85c6e6e2 22 * UBI scanning sub-system.
801c135c 23 *
85c6e6e2 24 * This sub-system is responsible for scanning the flash media, checking UBI
801c135c
AB
25 * headers and providing complete information about the UBI flash image.
26 *
78d87c95 27 * The scanning information is represented by a &struct ubi_scan_info' object.
801c135c
AB
28 * Information about found volumes is represented by &struct ubi_scan_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
31 *
32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33 * These objects are kept in per-volume RB-trees with the root at the
34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35 * an RB-tree of per-volume objects and each of these objects is the root of
36 * RB-tree of per-eraseblock objects.
37 *
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
41 */
42
43#include <linux/err.h>
5a0e3ad6 44#include <linux/slab.h>
801c135c 45#include <linux/crc32.h>
3013ee31 46#include <linux/math64.h>
095751a6 47#include <linux/random.h>
801c135c
AB
48#include "ubi.h"
49
50#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
e88d6e10 51static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
801c135c
AB
52#else
53#define paranoid_check_si(ubi, si) 0
54#endif
55
56/* Temporary variables used during scanning */
57static struct ubi_ec_hdr *ech;
58static struct ubi_vid_hdr *vidh;
59
941dfb07 60/**
78d87c95
AB
61 * add_to_list - add physical eraseblock to a list.
62 * @si: scanning information
63 * @pnum: physical eraseblock number to add
64 * @ec: erase counter of the physical eraseblock
65 * @list: the list to add to
66 *
67 * This function adds physical eraseblock @pnum to free, erase, corrupted or
68 * alien lists. Returns zero in case of success and a negative error code in
69 * case of failure.
70 */
71static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
72 struct list_head *list)
801c135c
AB
73{
74 struct ubi_scan_leb *seb;
75
33789fb9 76 if (list == &si->free) {
801c135c 77 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
33789fb9
AB
78 si->free_peb_count += 1;
79 } else if (list == &si->erase) {
801c135c 80 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
33789fb9
AB
81 si->erase_peb_count += 1;
82 } else if (list == &si->corr) {
801c135c 83 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
33789fb9
AB
84 si->corr_peb_count += 1;
85 } else if (list == &si->alien) {
801c135c 86 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
33789fb9
AB
87 si->alien_peb_count += 1;
88 } else
801c135c
AB
89 BUG();
90
91 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
92 if (!seb)
93 return -ENOMEM;
94
95 seb->pnum = pnum;
96 seb->ec = ec;
97 list_add_tail(&seb->u.list, list);
98 return 0;
99}
100
801c135c 101/**
ebaaf1af 102 * validate_vid_hdr - check volume identifier header.
801c135c
AB
103 * @vid_hdr: the volume identifier header to check
104 * @sv: information about the volume this logical eraseblock belongs to
105 * @pnum: physical eraseblock number the VID header came from
106 *
107 * This function checks that data stored in @vid_hdr is consistent. Returns
108 * non-zero if an inconsistency was found and zero if not.
109 *
110 * Note, UBI does sanity check of everything it reads from the flash media.
85c6e6e2 111 * Most of the checks are done in the I/O sub-system. Here we check that the
801c135c
AB
112 * information in the VID header is consistent to the information in other VID
113 * headers of the same volume.
114 */
115static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
116 const struct ubi_scan_volume *sv, int pnum)
117{
118 int vol_type = vid_hdr->vol_type;
3261ebd7
CH
119 int vol_id = be32_to_cpu(vid_hdr->vol_id);
120 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
121 int data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c
AB
122
123 if (sv->leb_count != 0) {
124 int sv_vol_type;
125
126 /*
127 * This is not the first logical eraseblock belonging to this
128 * volume. Ensure that the data in its VID header is consistent
129 * to the data in previous logical eraseblock headers.
130 */
131
132 if (vol_id != sv->vol_id) {
133 dbg_err("inconsistent vol_id");
134 goto bad;
135 }
136
137 if (sv->vol_type == UBI_STATIC_VOLUME)
138 sv_vol_type = UBI_VID_STATIC;
139 else
140 sv_vol_type = UBI_VID_DYNAMIC;
141
142 if (vol_type != sv_vol_type) {
143 dbg_err("inconsistent vol_type");
144 goto bad;
145 }
146
147 if (used_ebs != sv->used_ebs) {
148 dbg_err("inconsistent used_ebs");
149 goto bad;
150 }
151
152 if (data_pad != sv->data_pad) {
153 dbg_err("inconsistent data_pad");
154 goto bad;
155 }
156 }
157
158 return 0;
159
160bad:
161 ubi_err("inconsistent VID header at PEB %d", pnum);
162 ubi_dbg_dump_vid_hdr(vid_hdr);
163 ubi_dbg_dump_sv(sv);
164 return -EINVAL;
165}
166
167/**
168 * add_volume - add volume to the scanning information.
169 * @si: scanning information
170 * @vol_id: ID of the volume to add
171 * @pnum: physical eraseblock number
172 * @vid_hdr: volume identifier header
173 *
174 * If the volume corresponding to the @vid_hdr logical eraseblock is already
175 * present in the scanning information, this function does nothing. Otherwise
176 * it adds corresponding volume to the scanning information. Returns a pointer
177 * to the scanning volume object in case of success and a negative error code
178 * in case of failure.
179 */
180static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
181 int pnum,
182 const struct ubi_vid_hdr *vid_hdr)
183{
184 struct ubi_scan_volume *sv;
185 struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
186
3261ebd7 187 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
801c135c
AB
188
189 /* Walk the volume RB-tree to look if this volume is already present */
190 while (*p) {
191 parent = *p;
192 sv = rb_entry(parent, struct ubi_scan_volume, rb);
193
194 if (vol_id == sv->vol_id)
195 return sv;
196
197 if (vol_id > sv->vol_id)
198 p = &(*p)->rb_left;
199 else
200 p = &(*p)->rb_right;
201 }
202
203 /* The volume is absent - add it */
204 sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
205 if (!sv)
206 return ERR_PTR(-ENOMEM);
207
208 sv->highest_lnum = sv->leb_count = 0;
801c135c
AB
209 sv->vol_id = vol_id;
210 sv->root = RB_ROOT;
3261ebd7
CH
211 sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
212 sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c
AB
213 sv->compat = vid_hdr->compat;
214 sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
215 : UBI_STATIC_VOLUME;
216 if (vol_id > si->highest_vol_id)
217 si->highest_vol_id = vol_id;
218
219 rb_link_node(&sv->rb, parent, p);
220 rb_insert_color(&sv->rb, &si->volumes);
221 si->vols_found += 1;
222 dbg_bld("added volume %d", vol_id);
223 return sv;
224}
225
226/**
227 * compare_lebs - find out which logical eraseblock is newer.
228 * @ubi: UBI device description object
229 * @seb: first logical eraseblock to compare
230 * @pnum: physical eraseblock number of the second logical eraseblock to
231 * compare
232 * @vid_hdr: volume identifier header of the second logical eraseblock
233 *
234 * This function compares 2 copies of a LEB and informs which one is newer. In
235 * case of success this function returns a positive value, in case of failure, a
236 * negative error code is returned. The success return codes use the following
237 * bits:
3f502622 238 * o bit 0 is cleared: the first PEB (described by @seb) is newer than the
801c135c
AB
239 * second PEB (described by @pnum and @vid_hdr);
240 * o bit 0 is set: the second PEB is newer;
241 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
242 * o bit 1 is set: bit-flips were detected in the newer LEB;
243 * o bit 2 is cleared: the older LEB is not corrupted;
244 * o bit 2 is set: the older LEB is corrupted.
245 */
e88d6e10
AB
246static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
247 int pnum, const struct ubi_vid_hdr *vid_hdr)
801c135c
AB
248{
249 void *buf;
250 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
251 uint32_t data_crc, crc;
8bc22961 252 struct ubi_vid_hdr *vh = NULL;
3261ebd7 253 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
801c135c 254
9869cd80 255 if (sqnum2 == seb->sqnum) {
801c135c 256 /*
9869cd80
AB
257 * This must be a really ancient UBI image which has been
258 * created before sequence numbers support has been added. At
259 * that times we used 32-bit LEB versions stored in logical
260 * eraseblocks. That was before UBI got into mainline. We do not
261 * support these images anymore. Well, those images will work
262 * still work, but only if no unclean reboots happened.
801c135c 263 */
9869cd80
AB
264 ubi_err("unsupported on-flash UBI format\n");
265 return -EINVAL;
266 }
64203195 267
9869cd80
AB
268 /* Obviously the LEB with lower sequence counter is older */
269 second_is_newer = !!(sqnum2 > seb->sqnum);
801c135c
AB
270
271 /*
272 * Now we know which copy is newer. If the copy flag of the PEB with
273 * newer version is not set, then we just return, otherwise we have to
274 * check data CRC. For the second PEB we already have the VID header,
275 * for the first one - we'll need to re-read it from flash.
276 *
9869cd80 277 * Note: this may be optimized so that we wouldn't read twice.
801c135c
AB
278 */
279
280 if (second_is_newer) {
281 if (!vid_hdr->copy_flag) {
282 /* It is not a copy, so it is newer */
283 dbg_bld("second PEB %d is newer, copy_flag is unset",
284 pnum);
285 return 1;
286 }
287 } else {
288 pnum = seb->pnum;
289
33818bbb 290 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
8bc22961 291 if (!vh)
801c135c
AB
292 return -ENOMEM;
293
8bc22961 294 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
801c135c
AB
295 if (err) {
296 if (err == UBI_IO_BITFLIPS)
297 bitflips = 1;
298 else {
299 dbg_err("VID of PEB %d header is bad, but it "
300 "was OK earlier", pnum);
301 if (err > 0)
302 err = -EIO;
303
304 goto out_free_vidh;
305 }
306 }
307
8bc22961 308 if (!vh->copy_flag) {
801c135c
AB
309 /* It is not a copy, so it is newer */
310 dbg_bld("first PEB %d is newer, copy_flag is unset",
311 pnum);
312 err = bitflips << 1;
313 goto out_free_vidh;
314 }
315
8bc22961 316 vid_hdr = vh;
801c135c
AB
317 }
318
319 /* Read the data of the copy and check the CRC */
320
3261ebd7 321 len = be32_to_cpu(vid_hdr->data_size);
92ad8f37 322 buf = vmalloc(len);
801c135c
AB
323 if (!buf) {
324 err = -ENOMEM;
325 goto out_free_vidh;
326 }
327
328 err = ubi_io_read_data(ubi, buf, pnum, 0, len);
b77bcb07 329 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
801c135c
AB
330 goto out_free_buf;
331
3261ebd7 332 data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
333 crc = crc32(UBI_CRC32_INIT, buf, len);
334 if (crc != data_crc) {
335 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
336 pnum, crc, data_crc);
337 corrupted = 1;
338 bitflips = 0;
339 second_is_newer = !second_is_newer;
340 } else {
341 dbg_bld("PEB %d CRC is OK", pnum);
342 bitflips = !!err;
343 }
344
92ad8f37 345 vfree(buf);
8bc22961 346 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
347
348 if (second_is_newer)
349 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
350 else
351 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
352
353 return second_is_newer | (bitflips << 1) | (corrupted << 2);
354
355out_free_buf:
92ad8f37 356 vfree(buf);
801c135c 357out_free_vidh:
8bc22961 358 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
359 return err;
360}
361
362/**
ebaaf1af 363 * ubi_scan_add_used - add physical eraseblock to the scanning information.
801c135c
AB
364 * @ubi: UBI device description object
365 * @si: scanning information
366 * @pnum: the physical eraseblock number
367 * @ec: erase counter
368 * @vid_hdr: the volume identifier header
369 * @bitflips: if bit-flips were detected when this physical eraseblock was read
370 *
79b510c0
AB
371 * This function adds information about a used physical eraseblock to the
372 * 'used' tree of the corresponding volume. The function is rather complex
373 * because it has to handle cases when this is not the first physical
374 * eraseblock belonging to the same logical eraseblock, and the newer one has
375 * to be picked, while the older one has to be dropped. This function returns
376 * zero in case of success and a negative error code in case of failure.
801c135c 377 */
e88d6e10 378int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
801c135c
AB
379 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
380 int bitflips)
381{
382 int err, vol_id, lnum;
801c135c
AB
383 unsigned long long sqnum;
384 struct ubi_scan_volume *sv;
385 struct ubi_scan_leb *seb;
386 struct rb_node **p, *parent = NULL;
387
3261ebd7
CH
388 vol_id = be32_to_cpu(vid_hdr->vol_id);
389 lnum = be32_to_cpu(vid_hdr->lnum);
390 sqnum = be64_to_cpu(vid_hdr->sqnum);
801c135c 391
9869cd80
AB
392 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
393 pnum, vol_id, lnum, ec, sqnum, bitflips);
801c135c
AB
394
395 sv = add_volume(si, vol_id, pnum, vid_hdr);
0e4a008a 396 if (IS_ERR(sv))
801c135c
AB
397 return PTR_ERR(sv);
398
76eafe47
BS
399 if (si->max_sqnum < sqnum)
400 si->max_sqnum = sqnum;
401
801c135c
AB
402 /*
403 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
404 * if this is the first instance of this logical eraseblock or not.
405 */
406 p = &sv->root.rb_node;
407 while (*p) {
408 int cmp_res;
409
410 parent = *p;
411 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
412 if (lnum != seb->lnum) {
413 if (lnum < seb->lnum)
414 p = &(*p)->rb_left;
415 else
416 p = &(*p)->rb_right;
417 continue;
418 }
419
420 /*
421 * There is already a physical eraseblock describing the same
422 * logical eraseblock present.
423 */
424
425 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
9869cd80 426 "EC %d", seb->pnum, seb->sqnum, seb->ec);
801c135c
AB
427
428 /*
429 * Make sure that the logical eraseblocks have different
430 * sequence numbers. Otherwise the image is bad.
431 *
9869cd80
AB
432 * However, if the sequence number is zero, we assume it must
433 * be an ancient UBI image from the era when UBI did not have
434 * sequence numbers. We still can attach these images, unless
435 * there is a need to distinguish between old and new
436 * eraseblocks, in which case we'll refuse the image in
437 * 'compare_lebs()'. In other words, we attach old clean
438 * images, but refuse attaching old images with duplicated
439 * logical eraseblocks because there was an unclean reboot.
801c135c
AB
440 */
441 if (seb->sqnum == sqnum && sqnum != 0) {
442 ubi_err("two LEBs with same sequence number %llu",
443 sqnum);
444 ubi_dbg_dump_seb(seb, 0);
445 ubi_dbg_dump_vid_hdr(vid_hdr);
446 return -EINVAL;
447 }
448
449 /*
450 * Now we have to drop the older one and preserve the newer
451 * one.
452 */
453 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
454 if (cmp_res < 0)
455 return cmp_res;
456
457 if (cmp_res & 1) {
458 /*
3f502622 459 * This logical eraseblock is newer than the one
801c135c
AB
460 * found earlier.
461 */
462 err = validate_vid_hdr(vid_hdr, sv, pnum);
463 if (err)
464 return err;
465
466 if (cmp_res & 4)
78d87c95
AB
467 err = add_to_list(si, seb->pnum, seb->ec,
468 &si->corr);
801c135c 469 else
78d87c95
AB
470 err = add_to_list(si, seb->pnum, seb->ec,
471 &si->erase);
801c135c
AB
472 if (err)
473 return err;
474
475 seb->ec = ec;
476 seb->pnum = pnum;
477 seb->scrub = ((cmp_res & 2) || bitflips);
478 seb->sqnum = sqnum;
801c135c
AB
479
480 if (sv->highest_lnum == lnum)
481 sv->last_data_size =
3261ebd7 482 be32_to_cpu(vid_hdr->data_size);
801c135c
AB
483
484 return 0;
485 } else {
486 /*
025dfdaf 487 * This logical eraseblock is older than the one found
801c135c
AB
488 * previously.
489 */
490 if (cmp_res & 4)
78d87c95 491 return add_to_list(si, pnum, ec, &si->corr);
801c135c 492 else
78d87c95 493 return add_to_list(si, pnum, ec, &si->erase);
801c135c
AB
494 }
495 }
496
497 /*
498 * We've met this logical eraseblock for the first time, add it to the
499 * scanning information.
500 */
501
502 err = validate_vid_hdr(vid_hdr, sv, pnum);
503 if (err)
504 return err;
505
506 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
507 if (!seb)
508 return -ENOMEM;
509
510 seb->ec = ec;
511 seb->pnum = pnum;
512 seb->lnum = lnum;
513 seb->sqnum = sqnum;
514 seb->scrub = bitflips;
801c135c
AB
515
516 if (sv->highest_lnum <= lnum) {
517 sv->highest_lnum = lnum;
3261ebd7 518 sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
801c135c
AB
519 }
520
801c135c
AB
521 sv->leb_count += 1;
522 rb_link_node(&seb->u.rb, parent, p);
523 rb_insert_color(&seb->u.rb, &sv->root);
33789fb9 524 si->used_peb_count += 1;
801c135c
AB
525 return 0;
526}
527
528/**
ebaaf1af 529 * ubi_scan_find_sv - find volume in the scanning information.
801c135c
AB
530 * @si: scanning information
531 * @vol_id: the requested volume ID
532 *
533 * This function returns a pointer to the volume description or %NULL if there
534 * are no data about this volume in the scanning information.
535 */
536struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
537 int vol_id)
538{
539 struct ubi_scan_volume *sv;
540 struct rb_node *p = si->volumes.rb_node;
541
542 while (p) {
543 sv = rb_entry(p, struct ubi_scan_volume, rb);
544
545 if (vol_id == sv->vol_id)
546 return sv;
547
548 if (vol_id > sv->vol_id)
549 p = p->rb_left;
550 else
551 p = p->rb_right;
552 }
553
554 return NULL;
555}
556
557/**
ebaaf1af 558 * ubi_scan_find_seb - find LEB in the volume scanning information.
801c135c
AB
559 * @sv: a pointer to the volume scanning information
560 * @lnum: the requested logical eraseblock
561 *
562 * This function returns a pointer to the scanning logical eraseblock or %NULL
563 * if there are no data about it in the scanning volume information.
564 */
565struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
566 int lnum)
567{
568 struct ubi_scan_leb *seb;
569 struct rb_node *p = sv->root.rb_node;
570
571 while (p) {
572 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
573
574 if (lnum == seb->lnum)
575 return seb;
576
577 if (lnum > seb->lnum)
578 p = p->rb_left;
579 else
580 p = p->rb_right;
581 }
582
583 return NULL;
584}
585
586/**
587 * ubi_scan_rm_volume - delete scanning information about a volume.
588 * @si: scanning information
589 * @sv: the volume scanning information to delete
590 */
591void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
592{
593 struct rb_node *rb;
594 struct ubi_scan_leb *seb;
595
596 dbg_bld("remove scanning information about volume %d", sv->vol_id);
597
598 while ((rb = rb_first(&sv->root))) {
599 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
600 rb_erase(&seb->u.rb, &sv->root);
601 list_add_tail(&seb->u.list, &si->erase);
602 }
603
604 rb_erase(&sv->rb, &si->volumes);
605 kfree(sv);
606 si->vols_found -= 1;
607}
608
609/**
610 * ubi_scan_erase_peb - erase a physical eraseblock.
611 * @ubi: UBI device description object
612 * @si: scanning information
613 * @pnum: physical eraseblock number to erase;
614 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
615 *
616 * This function erases physical eraseblock 'pnum', and writes the erase
617 * counter header to it. This function should only be used on UBI device
85c6e6e2
AB
618 * initialization stages, when the EBA sub-system had not been yet initialized.
619 * This function returns zero in case of success and a negative error code in
620 * case of failure.
801c135c 621 */
e88d6e10
AB
622int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
623 int pnum, int ec)
801c135c
AB
624{
625 int err;
626 struct ubi_ec_hdr *ec_hdr;
627
801c135c
AB
628 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
629 /*
630 * Erase counter overflow. Upgrade UBI and use 64-bit
631 * erase counters internally.
632 */
633 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
634 return -EINVAL;
635 }
636
dcec4c3b
FM
637 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
638 if (!ec_hdr)
639 return -ENOMEM;
640
3261ebd7 641 ec_hdr->ec = cpu_to_be64(ec);
801c135c
AB
642
643 err = ubi_io_sync_erase(ubi, pnum, 0);
644 if (err < 0)
645 goto out_free;
646
647 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
648
649out_free:
650 kfree(ec_hdr);
651 return err;
652}
653
654/**
655 * ubi_scan_get_free_peb - get a free physical eraseblock.
656 * @ubi: UBI device description object
657 * @si: scanning information
658 *
659 * This function returns a free physical eraseblock. It is supposed to be
85c6e6e2
AB
660 * called on the UBI initialization stages when the wear-leveling sub-system is
661 * not initialized yet. This function picks a physical eraseblocks from one of
662 * the lists, writes the EC header if it is needed, and removes it from the
663 * list.
801c135c
AB
664 *
665 * This function returns scanning physical eraseblock information in case of
666 * success and an error code in case of failure.
667 */
e88d6e10 668struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
801c135c
AB
669 struct ubi_scan_info *si)
670{
671 int err = 0, i;
672 struct ubi_scan_leb *seb;
673
674 if (!list_empty(&si->free)) {
675 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
676 list_del(&seb->u.list);
677 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
678 return seb;
679 }
680
681 for (i = 0; i < 2; i++) {
682 struct list_head *head;
683 struct ubi_scan_leb *tmp_seb;
684
685 if (i == 0)
686 head = &si->erase;
687 else
688 head = &si->corr;
689
690 /*
691 * We try to erase the first physical eraseblock from the @head
692 * list and pick it if we succeed, or try to erase the
693 * next one if not. And so forth. We don't want to take care
694 * about bad eraseblocks here - they'll be handled later.
695 */
696 list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
697 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
698 seb->ec = si->mean_ec;
699
700 err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
701 if (err)
702 continue;
703
704 seb->ec += 1;
705 list_del(&seb->u.list);
706 dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
707 return seb;
708 }
709 }
710
711 ubi_err("no eraseblocks found");
712 return ERR_PTR(-ENOSPC);
713}
714
715/**
ebaaf1af 716 * process_eb - read, check UBI headers, and add them to scanning information.
801c135c
AB
717 * @ubi: UBI device description object
718 * @si: scanning information
719 * @pnum: the physical eraseblock number
720 *
78d87c95 721 * This function returns a zero if the physical eraseblock was successfully
801c135c
AB
722 * handled and a negative error code in case of failure.
723 */
9c9ec147
AB
724static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si,
725 int pnum)
801c135c 726{
c18a8418 727 long long uninitialized_var(ec);
801c135c
AB
728 int err, bitflips = 0, vol_id, ec_corr = 0;
729
730 dbg_bld("scan PEB %d", pnum);
731
732 /* Skip bad physical eraseblocks */
733 err = ubi_io_is_bad(ubi, pnum);
734 if (err < 0)
735 return err;
736 else if (err) {
737 /*
85c6e6e2
AB
738 * FIXME: this is actually duty of the I/O sub-system to
739 * initialize this, but MTD does not provide enough
740 * information.
801c135c
AB
741 */
742 si->bad_peb_count += 1;
743 return 0;
744 }
745
746 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
747 if (err < 0)
748 return err;
749 else if (err == UBI_IO_BITFLIPS)
750 bitflips = 1;
751 else if (err == UBI_IO_PEB_EMPTY)
78d87c95 752 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
eb89580e 753 else if (err == UBI_IO_BAD_HDR_READ || err == UBI_IO_BAD_HDR) {
801c135c
AB
754 /*
755 * We have to also look at the VID header, possibly it is not
756 * corrupted. Set %bitflips flag in order to make this PEB be
757 * moved and EC be re-created.
758 */
33789fb9 759 ec_corr = err;
801c135c
AB
760 ec = UBI_SCAN_UNKNOWN_EC;
761 bitflips = 1;
762 }
763
801c135c 764 if (!ec_corr) {
fe96efc1
AB
765 int image_seq;
766
801c135c
AB
767 /* Make sure UBI version is OK */
768 if (ech->version != UBI_VERSION) {
769 ubi_err("this UBI version is %d, image version is %d",
770 UBI_VERSION, (int)ech->version);
771 return -EINVAL;
772 }
773
3261ebd7 774 ec = be64_to_cpu(ech->ec);
801c135c
AB
775 if (ec > UBI_MAX_ERASECOUNTER) {
776 /*
777 * Erase counter overflow. The EC headers have 64 bits
778 * reserved, but we anyway make use of only 31 bit
779 * values, as this seems to be enough for any existing
780 * flash. Upgrade UBI and use 64-bit erase counters
781 * internally.
782 */
783 ubi_err("erase counter overflow, max is %d",
784 UBI_MAX_ERASECOUNTER);
785 ubi_dbg_dump_ec_hdr(ech);
786 return -EINVAL;
787 }
fe96efc1 788
32bc4820
AH
789 /*
790 * Make sure that all PEBs have the same image sequence number.
791 * This allows us to detect situations when users flash UBI
792 * images incorrectly, so that the flash has the new UBI image
793 * and leftovers from the old one. This feature was added
794 * relatively recently, and the sequence number was always
795 * zero, because old UBI implementations always set it to zero.
796 * For this reasons, we do not panic if some PEBs have zero
797 * sequence number, while other PEBs have non-zero sequence
798 * number.
799 */
3dc948da 800 image_seq = be32_to_cpu(ech->image_seq);
2eadaad6 801 if (!ubi->image_seq && image_seq)
fe96efc1 802 ubi->image_seq = image_seq;
2eadaad6
AB
803 if (ubi->image_seq && image_seq &&
804 ubi->image_seq != image_seq) {
fe96efc1
AB
805 ubi_err("bad image sequence number %d in PEB %d, "
806 "expected %d", image_seq, pnum, ubi->image_seq);
807 ubi_dbg_dump_ec_hdr(ech);
808 return -EINVAL;
809 }
801c135c
AB
810 }
811
812 /* OK, we've done with the EC header, let's look at the VID header */
813
814 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
815 if (err < 0)
816 return err;
817 else if (err == UBI_IO_BITFLIPS)
818 bitflips = 1;
eb89580e 819 else if (err == UBI_IO_BAD_HDR_READ || err == UBI_IO_BAD_HDR ||
801c135c
AB
820 (err == UBI_IO_PEB_FREE && ec_corr)) {
821 /* VID header is corrupted */
33789fb9
AB
822 if (err == UBI_IO_BAD_HDR_READ ||
823 ec_corr == UBI_IO_BAD_HDR_READ)
824 si->read_err_count += 1;
78d87c95 825 err = add_to_list(si, pnum, ec, &si->corr);
801c135c
AB
826 if (err)
827 return err;
828 goto adjust_mean_ec;
829 } else if (err == UBI_IO_PEB_FREE) {
830 /* No VID header - the physical eraseblock is free */
78d87c95 831 err = add_to_list(si, pnum, ec, &si->free);
801c135c
AB
832 if (err)
833 return err;
834 goto adjust_mean_ec;
835 }
836
3261ebd7 837 vol_id = be32_to_cpu(vidh->vol_id);
91f2d53c 838 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
3261ebd7 839 int lnum = be32_to_cpu(vidh->lnum);
801c135c
AB
840
841 /* Unsupported internal volume */
842 switch (vidh->compat) {
843 case UBI_COMPAT_DELETE:
844 ubi_msg("\"delete\" compatible internal volume %d:%d"
158132c9 845 " found, will remove it", vol_id, lnum);
80c1c16f 846 err = add_to_list(si, pnum, ec, &si->erase);
801c135c
AB
847 if (err)
848 return err;
158132c9 849 return 0;
801c135c
AB
850
851 case UBI_COMPAT_RO:
852 ubi_msg("read-only compatible internal volume %d:%d"
853 " found, switch to read-only mode",
854 vol_id, lnum);
855 ubi->ro_mode = 1;
856 break;
857
858 case UBI_COMPAT_PRESERVE:
859 ubi_msg("\"preserve\" compatible internal volume %d:%d"
860 " found", vol_id, lnum);
78d87c95 861 err = add_to_list(si, pnum, ec, &si->alien);
801c135c
AB
862 if (err)
863 return err;
801c135c
AB
864 return 0;
865
866 case UBI_COMPAT_REJECT:
867 ubi_err("incompatible internal volume %d:%d found",
868 vol_id, lnum);
869 return -EINVAL;
870 }
871 }
872
29a88c99
AB
873 if (ec_corr)
874 ubi_warn("valid VID header but corrupted EC header at PEB %d",
875 pnum);
801c135c
AB
876 err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
877 if (err)
878 return err;
879
880adjust_mean_ec:
881 if (!ec_corr) {
4bc1dca4
AB
882 si->ec_sum += ec;
883 si->ec_count += 1;
801c135c
AB
884 if (ec > si->max_ec)
885 si->max_ec = ec;
886 if (ec < si->min_ec)
887 si->min_ec = ec;
888 }
889
890 return 0;
891}
892
0798cea8
AB
893/**
894 * check_what_we_have - check what PEB were found by scanning.
895 * @ubi: UBI device description object
896 * @si: scanning information
897 *
898 * This is a helper function which takes a look what PEBs were found by
899 * scanning, and decides whether the flash is empty and should be formatted and
900 * whether there are too many corrupted PEBs and we should not attach this
901 * MTD device. Returns zero if we should proceed with attaching the MTD device,
902 * and %-EINVAL if we should not.
903 */
f5d5b1f8 904static int check_what_we_have(struct ubi_device *ubi, struct ubi_scan_info *si)
0798cea8
AB
905{
906 struct ubi_scan_leb *seb;
907 int max_corr;
908
909 max_corr = ubi->peb_count - si->bad_peb_count - si->alien_peb_count;
910 max_corr = max_corr / 20 ?: 8;
911
912 /*
913 * Few corrupted PEBs are not a problem and may be just a result of
914 * unclean reboots. However, many of them may indicate some problems
915 * with the flash HW or driver.
916 */
917 if (si->corr_peb_count >= 8) {
918 ubi_warn("%d PEBs are corrupted", si->corr_peb_count);
919 printk(KERN_WARNING "corrupted PEBs are:");
920 list_for_each_entry(seb, &si->corr, u.list)
921 printk(KERN_CONT " %d", seb->pnum);
922 printk(KERN_CONT "\n");
923
924 /*
925 * If too many PEBs are corrupted, we refuse attaching,
926 * otherwise, only print a warning.
927 */
928 if (si->corr_peb_count >= max_corr) {
929 ubi_err("too many corrupted PEBs, refusing this device");
930 return -EINVAL;
931 }
932 }
933
934 if (si->free_peb_count + si->used_peb_count +
935 si->alien_peb_count == 0) {
936 /* No UBI-formatted eraseblocks were found */
937 if (si->corr_peb_count == si->read_err_count &&
938 si->corr_peb_count < 8) {
939 /* No or just few corrupted PEBs, and all of them had a
940 * read error. We assume that those are bad PEBs, which
941 * were just not marked as bad so far.
942 *
943 * This piece of code basically tries to distinguish
944 * between the following 2 situations:
945 *
946 * 1. Flash is empty, but there are few bad PEBs, which
947 * are not marked as bad so far, and which were read
948 * with error. We want to go ahead and format this
949 * flash. While formating, the faulty PEBs will
950 * probably be marked as bad.
951 *
952 * 2. Flash probably contains non-UBI data and we do
953 * not want to format it and destroy possibly needed
954 * data (e.g., consider the case when the bootloader
955 * MTD partition was accidentally fed to UBI).
956 */
957 si->is_empty = 1;
958 ubi_msg("empty MTD device detected");
095751a6 959 get_random_bytes(&ubi->image_seq, sizeof(ubi->image_seq));
0798cea8
AB
960 } else {
961 ubi_err("MTD device possibly contains non-UBI data, "
962 "refusing it");
963 return -EINVAL;
964 }
965 }
966
7cdb996e 967 if (si->corr_peb_count > 0)
0798cea8
AB
968 ubi_msg("corrupted PEBs will be formatted");
969 return 0;
970}
971
801c135c
AB
972/**
973 * ubi_scan - scan an MTD device.
974 * @ubi: UBI device description object
975 *
976 * This function does full scanning of an MTD device and returns complete
977 * information about it. In case of failure, an error code is returned.
978 */
979struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
980{
981 int err, pnum;
982 struct rb_node *rb1, *rb2;
983 struct ubi_scan_volume *sv;
984 struct ubi_scan_leb *seb;
985 struct ubi_scan_info *si;
986
987 si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
988 if (!si)
989 return ERR_PTR(-ENOMEM);
990
991 INIT_LIST_HEAD(&si->corr);
992 INIT_LIST_HEAD(&si->free);
993 INIT_LIST_HEAD(&si->erase);
994 INIT_LIST_HEAD(&si->alien);
995 si->volumes = RB_ROOT;
801c135c
AB
996
997 err = -ENOMEM;
998 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
999 if (!ech)
1000 goto out_si;
1001
33818bbb 1002 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
801c135c
AB
1003 if (!vidh)
1004 goto out_ech;
1005
1006 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1007 cond_resched();
1008
c8566350 1009 dbg_gen("process PEB %d", pnum);
801c135c
AB
1010 err = process_eb(ubi, si, pnum);
1011 if (err < 0)
1012 goto out_vidh;
1013 }
1014
1015 dbg_msg("scanning is finished");
1016
4bc1dca4 1017 /* Calculate mean erase counter */
3013ee31
AB
1018 if (si->ec_count)
1019 si->mean_ec = div_u64(si->ec_sum, si->ec_count);
801c135c 1020
0798cea8
AB
1021 err = check_what_we_have(ubi, si);
1022 if (err)
1023 goto out_vidh;
4a406856 1024
801c135c
AB
1025 /*
1026 * In case of unknown erase counter we use the mean erase counter
1027 * value.
1028 */
1029 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1030 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1031 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1032 seb->ec = si->mean_ec;
1033 }
1034
1035 list_for_each_entry(seb, &si->free, u.list) {
1036 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1037 seb->ec = si->mean_ec;
1038 }
1039
1040 list_for_each_entry(seb, &si->corr, u.list)
1041 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1042 seb->ec = si->mean_ec;
1043
1044 list_for_each_entry(seb, &si->erase, u.list)
1045 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1046 seb->ec = si->mean_ec;
1047
1048 err = paranoid_check_si(ubi, si);
adbf05e3 1049 if (err)
801c135c 1050 goto out_vidh;
801c135c
AB
1051
1052 ubi_free_vid_hdr(ubi, vidh);
1053 kfree(ech);
1054
1055 return si;
1056
1057out_vidh:
1058 ubi_free_vid_hdr(ubi, vidh);
1059out_ech:
1060 kfree(ech);
1061out_si:
1062 ubi_scan_destroy_si(si);
1063 return ERR_PTR(err);
1064}
1065
1066/**
1067 * destroy_sv - free the scanning volume information
1068 * @sv: scanning volume information
1069 *
1070 * This function destroys the volume RB-tree (@sv->root) and the scanning
1071 * volume information.
1072 */
1073static void destroy_sv(struct ubi_scan_volume *sv)
1074{
1075 struct ubi_scan_leb *seb;
1076 struct rb_node *this = sv->root.rb_node;
1077
1078 while (this) {
1079 if (this->rb_left)
1080 this = this->rb_left;
1081 else if (this->rb_right)
1082 this = this->rb_right;
1083 else {
1084 seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1085 this = rb_parent(this);
1086 if (this) {
1087 if (this->rb_left == &seb->u.rb)
1088 this->rb_left = NULL;
1089 else
1090 this->rb_right = NULL;
1091 }
1092
1093 kfree(seb);
1094 }
1095 }
1096 kfree(sv);
1097}
1098
1099/**
1100 * ubi_scan_destroy_si - destroy scanning information.
1101 * @si: scanning information
1102 */
1103void ubi_scan_destroy_si(struct ubi_scan_info *si)
1104{
1105 struct ubi_scan_leb *seb, *seb_tmp;
1106 struct ubi_scan_volume *sv;
1107 struct rb_node *rb;
1108
1109 list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1110 list_del(&seb->u.list);
1111 kfree(seb);
1112 }
1113 list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1114 list_del(&seb->u.list);
1115 kfree(seb);
1116 }
1117 list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1118 list_del(&seb->u.list);
1119 kfree(seb);
1120 }
1121 list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1122 list_del(&seb->u.list);
1123 kfree(seb);
1124 }
1125
1126 /* Destroy the volume RB-tree */
1127 rb = si->volumes.rb_node;
1128 while (rb) {
1129 if (rb->rb_left)
1130 rb = rb->rb_left;
1131 else if (rb->rb_right)
1132 rb = rb->rb_right;
1133 else {
1134 sv = rb_entry(rb, struct ubi_scan_volume, rb);
1135
1136 rb = rb_parent(rb);
1137 if (rb) {
1138 if (rb->rb_left == &sv->rb)
1139 rb->rb_left = NULL;
1140 else
1141 rb->rb_right = NULL;
1142 }
1143
1144 destroy_sv(sv);
1145 }
1146 }
1147
1148 kfree(si);
1149}
1150
1151#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1152
1153/**
ebaaf1af 1154 * paranoid_check_si - check the scanning information.
801c135c
AB
1155 * @ubi: UBI device description object
1156 * @si: scanning information
1157 *
adbf05e3
AB
1158 * This function returns zero if the scanning information is all right, and a
1159 * negative error code if not or if an error occurred.
801c135c 1160 */
e88d6e10 1161static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
801c135c
AB
1162{
1163 int pnum, err, vols_found = 0;
1164 struct rb_node *rb1, *rb2;
1165 struct ubi_scan_volume *sv;
1166 struct ubi_scan_leb *seb, *last_seb;
1167 uint8_t *buf;
1168
1169 /*
78d87c95 1170 * At first, check that scanning information is OK.
801c135c
AB
1171 */
1172 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1173 int leb_count = 0;
1174
1175 cond_resched();
1176
1177 vols_found += 1;
1178
1179 if (si->is_empty) {
1180 ubi_err("bad is_empty flag");
1181 goto bad_sv;
1182 }
1183
1184 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1185 sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1186 sv->data_pad < 0 || sv->last_data_size < 0) {
1187 ubi_err("negative values");
1188 goto bad_sv;
1189 }
1190
1191 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1192 sv->vol_id < UBI_INTERNAL_VOL_START) {
1193 ubi_err("bad vol_id");
1194 goto bad_sv;
1195 }
1196
1197 if (sv->vol_id > si->highest_vol_id) {
1198 ubi_err("highest_vol_id is %d, but vol_id %d is there",
1199 si->highest_vol_id, sv->vol_id);
1200 goto out;
1201 }
1202
1203 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1204 sv->vol_type != UBI_STATIC_VOLUME) {
1205 ubi_err("bad vol_type");
1206 goto bad_sv;
1207 }
1208
1209 if (sv->data_pad > ubi->leb_size / 2) {
1210 ubi_err("bad data_pad");
1211 goto bad_sv;
1212 }
1213
1214 last_seb = NULL;
1215 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1216 cond_resched();
1217
1218 last_seb = seb;
1219 leb_count += 1;
1220
1221 if (seb->pnum < 0 || seb->ec < 0) {
1222 ubi_err("negative values");
1223 goto bad_seb;
1224 }
1225
1226 if (seb->ec < si->min_ec) {
1227 ubi_err("bad si->min_ec (%d), %d found",
1228 si->min_ec, seb->ec);
1229 goto bad_seb;
1230 }
1231
1232 if (seb->ec > si->max_ec) {
1233 ubi_err("bad si->max_ec (%d), %d found",
1234 si->max_ec, seb->ec);
1235 goto bad_seb;
1236 }
1237
1238 if (seb->pnum >= ubi->peb_count) {
1239 ubi_err("too high PEB number %d, total PEBs %d",
1240 seb->pnum, ubi->peb_count);
1241 goto bad_seb;
1242 }
1243
1244 if (sv->vol_type == UBI_STATIC_VOLUME) {
1245 if (seb->lnum >= sv->used_ebs) {
1246 ubi_err("bad lnum or used_ebs");
1247 goto bad_seb;
1248 }
1249 } else {
1250 if (sv->used_ebs != 0) {
1251 ubi_err("non-zero used_ebs");
1252 goto bad_seb;
1253 }
1254 }
1255
1256 if (seb->lnum > sv->highest_lnum) {
1257 ubi_err("incorrect highest_lnum or lnum");
1258 goto bad_seb;
1259 }
1260 }
1261
1262 if (sv->leb_count != leb_count) {
1263 ubi_err("bad leb_count, %d objects in the tree",
1264 leb_count);
1265 goto bad_sv;
1266 }
1267
1268 if (!last_seb)
1269 continue;
1270
1271 seb = last_seb;
1272
1273 if (seb->lnum != sv->highest_lnum) {
1274 ubi_err("bad highest_lnum");
1275 goto bad_seb;
1276 }
1277 }
1278
1279 if (vols_found != si->vols_found) {
1280 ubi_err("bad si->vols_found %d, should be %d",
1281 si->vols_found, vols_found);
1282 goto out;
1283 }
1284
1285 /* Check that scanning information is correct */
1286 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1287 last_seb = NULL;
1288 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1289 int vol_type;
1290
1291 cond_resched();
1292
1293 last_seb = seb;
1294
1295 err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1296 if (err && err != UBI_IO_BITFLIPS) {
1297 ubi_err("VID header is not OK (%d)", err);
1298 if (err > 0)
1299 err = -EIO;
1300 return err;
1301 }
1302
1303 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1304 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1305 if (sv->vol_type != vol_type) {
1306 ubi_err("bad vol_type");
1307 goto bad_vid_hdr;
1308 }
1309
3261ebd7 1310 if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
801c135c
AB
1311 ubi_err("bad sqnum %llu", seb->sqnum);
1312 goto bad_vid_hdr;
1313 }
1314
3261ebd7 1315 if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
801c135c
AB
1316 ubi_err("bad vol_id %d", sv->vol_id);
1317 goto bad_vid_hdr;
1318 }
1319
1320 if (sv->compat != vidh->compat) {
1321 ubi_err("bad compat %d", vidh->compat);
1322 goto bad_vid_hdr;
1323 }
1324
3261ebd7 1325 if (seb->lnum != be32_to_cpu(vidh->lnum)) {
801c135c
AB
1326 ubi_err("bad lnum %d", seb->lnum);
1327 goto bad_vid_hdr;
1328 }
1329
3261ebd7 1330 if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
801c135c
AB
1331 ubi_err("bad used_ebs %d", sv->used_ebs);
1332 goto bad_vid_hdr;
1333 }
1334
3261ebd7 1335 if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
801c135c
AB
1336 ubi_err("bad data_pad %d", sv->data_pad);
1337 goto bad_vid_hdr;
1338 }
801c135c
AB
1339 }
1340
1341 if (!last_seb)
1342 continue;
1343
3261ebd7 1344 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
801c135c
AB
1345 ubi_err("bad highest_lnum %d", sv->highest_lnum);
1346 goto bad_vid_hdr;
1347 }
1348
3261ebd7 1349 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
801c135c
AB
1350 ubi_err("bad last_data_size %d", sv->last_data_size);
1351 goto bad_vid_hdr;
1352 }
1353 }
1354
1355 /*
1356 * Make sure that all the physical eraseblocks are in one of the lists
1357 * or trees.
1358 */
d9b0744d 1359 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
801c135c
AB
1360 if (!buf)
1361 return -ENOMEM;
1362
801c135c
AB
1363 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1364 err = ubi_io_is_bad(ubi, pnum);
341e1a0c
AB
1365 if (err < 0) {
1366 kfree(buf);
801c135c 1367 return err;
9c9ec147 1368 } else if (err)
d9b0744d 1369 buf[pnum] = 1;
801c135c
AB
1370 }
1371
1372 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1373 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
d9b0744d 1374 buf[seb->pnum] = 1;
801c135c
AB
1375
1376 list_for_each_entry(seb, &si->free, u.list)
d9b0744d 1377 buf[seb->pnum] = 1;
801c135c
AB
1378
1379 list_for_each_entry(seb, &si->corr, u.list)
d9b0744d 1380 buf[seb->pnum] = 1;
801c135c
AB
1381
1382 list_for_each_entry(seb, &si->erase, u.list)
d9b0744d 1383 buf[seb->pnum] = 1;
801c135c
AB
1384
1385 list_for_each_entry(seb, &si->alien, u.list)
d9b0744d 1386 buf[seb->pnum] = 1;
801c135c
AB
1387
1388 err = 0;
1389 for (pnum = 0; pnum < ubi->peb_count; pnum++)
d9b0744d 1390 if (!buf[pnum]) {
801c135c
AB
1391 ubi_err("PEB %d is not referred", pnum);
1392 err = 1;
1393 }
1394
1395 kfree(buf);
1396 if (err)
1397 goto out;
1398 return 0;
1399
1400bad_seb:
1401 ubi_err("bad scanning information about LEB %d", seb->lnum);
1402 ubi_dbg_dump_seb(seb, 0);
1403 ubi_dbg_dump_sv(sv);
1404 goto out;
1405
1406bad_sv:
1407 ubi_err("bad scanning information about volume %d", sv->vol_id);
1408 ubi_dbg_dump_sv(sv);
1409 goto out;
1410
1411bad_vid_hdr:
1412 ubi_err("bad scanning information about volume %d", sv->vol_id);
1413 ubi_dbg_dump_sv(sv);
1414 ubi_dbg_dump_vid_hdr(vidh);
1415
1416out:
1417 ubi_dbg_dump_stack();
adbf05e3 1418 return -EINVAL;
801c135c
AB
1419}
1420
1421#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */