]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/mtd/onenand/onenand_base.c
[MTD] OneNAND: Implement read-while-load
[net-next-2.6.git] / drivers / mtd / onenand / onenand_base.c
CommitLineData
cd5f6346
KP
1/*
2 * linux/drivers/mtd/onenand/onenand_base.c
3 *
28b79ff9 4 * Copyright (C) 2005-2006 Samsung Electronics
cd5f6346
KP
5 * Kyungmin Park <kyungmin.park@samsung.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/init.h>
015953d7 15#include <linux/sched.h>
2c22120f 16#include <linux/interrupt.h>
015953d7 17#include <linux/jiffies.h>
cd5f6346
KP
18#include <linux/mtd/mtd.h>
19#include <linux/mtd/onenand.h>
20#include <linux/mtd/partitions.h>
21
22#include <asm/io.h>
23
24/**
25 * onenand_oob_64 - oob info for large (2KB) page
26 */
5bd34c09 27static struct nand_ecclayout onenand_oob_64 = {
cd5f6346
KP
28 .eccbytes = 20,
29 .eccpos = {
30 8, 9, 10, 11, 12,
31 24, 25, 26, 27, 28,
32 40, 41, 42, 43, 44,
33 56, 57, 58, 59, 60,
34 },
35 .oobfree = {
36 {2, 3}, {14, 2}, {18, 3}, {30, 2},
d9777f1c
JL
37 {34, 3}, {46, 2}, {50, 3}, {62, 2}
38 }
cd5f6346
KP
39};
40
41/**
42 * onenand_oob_32 - oob info for middle (1KB) page
43 */
5bd34c09 44static struct nand_ecclayout onenand_oob_32 = {
cd5f6346
KP
45 .eccbytes = 10,
46 .eccpos = {
47 8, 9, 10, 11, 12,
48 24, 25, 26, 27, 28,
49 },
50 .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
51};
52
53static const unsigned char ffchars[] = {
54 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
55 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
56 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
57 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
58 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
59 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
60 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
61 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
62};
63
64/**
65 * onenand_readw - [OneNAND Interface] Read OneNAND register
66 * @param addr address to read
67 *
68 * Read OneNAND register
69 */
70static unsigned short onenand_readw(void __iomem *addr)
71{
72 return readw(addr);
73}
74
75/**
76 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
77 * @param value value to write
78 * @param addr address to write
79 *
80 * Write OneNAND register with value
81 */
82static void onenand_writew(unsigned short value, void __iomem *addr)
83{
84 writew(value, addr);
85}
86
87/**
88 * onenand_block_address - [DEFAULT] Get block address
83a36838 89 * @param this onenand chip data structure
cd5f6346
KP
90 * @param block the block
91 * @return translated block address if DDP, otherwise same
92 *
93 * Setup Start Address 1 Register (F100h)
94 */
83a36838 95static int onenand_block_address(struct onenand_chip *this, int block)
cd5f6346 96{
83a36838 97 if (this->device_id & ONENAND_DEVICE_IS_DDP) {
cd5f6346 98 /* Device Flash Core select, NAND Flash Block Address */
83a36838 99 int dfs = 0;
cd5f6346 100
83a36838 101 if (block & this->density_mask)
cd5f6346
KP
102 dfs = 1;
103
83a36838
KP
104 return (dfs << ONENAND_DDP_SHIFT) |
105 (block & (this->density_mask - 1));
cd5f6346
KP
106 }
107
108 return block;
109}
110
111/**
112 * onenand_bufferram_address - [DEFAULT] Get bufferram address
83a36838 113 * @param this onenand chip data structure
cd5f6346
KP
114 * @param block the block
115 * @return set DBS value if DDP, otherwise 0
116 *
117 * Setup Start Address 2 Register (F101h) for DDP
118 */
83a36838 119static int onenand_bufferram_address(struct onenand_chip *this, int block)
cd5f6346 120{
83a36838 121 if (this->device_id & ONENAND_DEVICE_IS_DDP) {
cd5f6346 122 /* Device BufferRAM Select */
83a36838 123 int dbs = 0;
cd5f6346 124
83a36838 125 if (block & this->density_mask)
cd5f6346
KP
126 dbs = 1;
127
128 return (dbs << ONENAND_DDP_SHIFT);
129 }
130
131 return 0;
132}
133
134/**
135 * onenand_page_address - [DEFAULT] Get page address
136 * @param page the page address
137 * @param sector the sector address
138 * @return combined page and sector address
139 *
140 * Setup Start Address 8 Register (F107h)
141 */
142static int onenand_page_address(int page, int sector)
143{
144 /* Flash Page Address, Flash Sector Address */
145 int fpa, fsa;
146
147 fpa = page & ONENAND_FPA_MASK;
148 fsa = sector & ONENAND_FSA_MASK;
149
150 return ((fpa << ONENAND_FPA_SHIFT) | fsa);
151}
152
153/**
154 * onenand_buffer_address - [DEFAULT] Get buffer address
155 * @param dataram1 DataRAM index
156 * @param sectors the sector address
157 * @param count the number of sectors
158 * @return the start buffer value
159 *
160 * Setup Start Buffer Register (F200h)
161 */
162static int onenand_buffer_address(int dataram1, int sectors, int count)
163{
164 int bsa, bsc;
165
166 /* BufferRAM Sector Address */
167 bsa = sectors & ONENAND_BSA_MASK;
168
169 if (dataram1)
170 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
171 else
172 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
173
174 /* BufferRAM Sector Count */
175 bsc = count & ONENAND_BSC_MASK;
176
177 return ((bsa << ONENAND_BSA_SHIFT) | bsc);
178}
179
180/**
181 * onenand_command - [DEFAULT] Send command to OneNAND device
182 * @param mtd MTD device structure
183 * @param cmd the command to be sent
184 * @param addr offset to read from or write to
185 * @param len number of bytes to read or write
186 *
187 * Send command to OneNAND device. This function is used for middle/large page
188 * devices (1KB/2KB Bytes per page)
189 */
190static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
191{
192 struct onenand_chip *this = mtd->priv;
493c6460 193 int value, readcmd = 0, block_cmd = 0;
cd5f6346 194 int block, page;
cd5f6346
KP
195
196 /* Address translation */
197 switch (cmd) {
198 case ONENAND_CMD_UNLOCK:
199 case ONENAND_CMD_LOCK:
200 case ONENAND_CMD_LOCK_TIGHT:
28b79ff9 201 case ONENAND_CMD_UNLOCK_ALL:
cd5f6346
KP
202 block = -1;
203 page = -1;
204 break;
205
206 case ONENAND_CMD_ERASE:
207 case ONENAND_CMD_BUFFERRAM:
493c6460
KP
208 case ONENAND_CMD_OTP_ACCESS:
209 block_cmd = 1;
cd5f6346
KP
210 block = (int) (addr >> this->erase_shift);
211 page = -1;
212 break;
213
214 default:
215 block = (int) (addr >> this->erase_shift);
216 page = (int) (addr >> this->page_shift);
217 page &= this->page_mask;
218 break;
219 }
220
221 /* NOTE: The setting order of the registers is very important! */
222 if (cmd == ONENAND_CMD_BUFFERRAM) {
223 /* Select DataRAM for DDP */
83a36838 224 value = onenand_bufferram_address(this, block);
cd5f6346
KP
225 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
226
227 /* Switch to the next data buffer */
228 ONENAND_SET_NEXT_BUFFERRAM(this);
229
230 return 0;
231 }
232
233 if (block != -1) {
234 /* Write 'DFS, FBA' of Flash */
83a36838 235 value = onenand_block_address(this, block);
cd5f6346 236 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
3cecf69e 237
75287070 238 if (block_cmd) {
3cecf69e
KP
239 /* Select DataRAM for DDP */
240 value = onenand_bufferram_address(this, block);
241 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
242 }
cd5f6346
KP
243 }
244
245 if (page != -1) {
60d84f97
KP
246 /* Now we use page size operation */
247 int sectors = 4, count = 4;
cd5f6346
KP
248 int dataram;
249
250 switch (cmd) {
251 case ONENAND_CMD_READ:
252 case ONENAND_CMD_READOOB:
253 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
254 readcmd = 1;
255 break;
256
257 default:
258 dataram = ONENAND_CURRENT_BUFFERRAM(this);
259 break;
260 }
261
262 /* Write 'FPA, FSA' of Flash */
263 value = onenand_page_address(page, sectors);
264 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
265
266 /* Write 'BSA, BSC' of DataRAM */
267 value = onenand_buffer_address(dataram, sectors, count);
268 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
d5c5e78a 269
cd5f6346
KP
270 if (readcmd) {
271 /* Select DataRAM for DDP */
83a36838 272 value = onenand_bufferram_address(this, block);
cd5f6346
KP
273 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
274 }
275 }
276
277 /* Interrupt clear */
278 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
279
280 /* Write command */
281 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
282
283 return 0;
284}
285
286/**
287 * onenand_wait - [DEFAULT] wait until the command is done
288 * @param mtd MTD device structure
289 * @param state state to select the max. timeout value
290 *
291 * Wait for command done. This applies to all OneNAND command
292 * Read can take up to 30us, erase up to 2ms and program up to 350us
293 * according to general OneNAND specs
294 */
295static int onenand_wait(struct mtd_info *mtd, int state)
296{
297 struct onenand_chip * this = mtd->priv;
298 unsigned long timeout;
299 unsigned int flags = ONENAND_INT_MASTER;
300 unsigned int interrupt = 0;
2fd32d4a 301 unsigned int ctrl;
cd5f6346
KP
302
303 /* The 20 msec is enough */
304 timeout = jiffies + msecs_to_jiffies(20);
305 while (time_before(jiffies, timeout)) {
306 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
307
308 if (interrupt & flags)
309 break;
310
311 if (state != FL_READING)
312 cond_resched();
313 }
314 /* To get correct interrupt status in timeout case */
315 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
316
317 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
318
319 if (ctrl & ONENAND_CTRL_ERROR) {
cdc00130 320 DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: controller error = 0x%04x\n", ctrl);
f6272487
KP
321 if (ctrl & ONENAND_CTRL_LOCK)
322 DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: it's locked error.\n");
323 return ctrl;
cd5f6346
KP
324 }
325
326 if (interrupt & ONENAND_INT_READ) {
2fd32d4a 327 int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
f4f91ac3 328 if (ecc) {
cdc00130 329 DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: ECC error = 0x%04x\n", ecc);
f4f91ac3
KP
330 if (ecc & ONENAND_ECC_2BIT_ALL)
331 mtd->ecc_stats.failed++;
332 else if (ecc & ONENAND_ECC_1BIT_ALL)
333 mtd->ecc_stats.corrected++;
cd5f6346 334 }
2fd32d4a 335 return ecc;
cd5f6346
KP
336 }
337
338 return 0;
339}
340
2c22120f
KP
341/*
342 * onenand_interrupt - [DEFAULT] onenand interrupt handler
343 * @param irq onenand interrupt number
344 * @param dev_id interrupt data
345 *
346 * complete the work
347 */
348static irqreturn_t onenand_interrupt(int irq, void *data)
349{
350 struct onenand_chip *this = (struct onenand_chip *) data;
351
352 /* To handle shared interrupt */
353 if (!this->complete.done)
354 complete(&this->complete);
355
356 return IRQ_HANDLED;
357}
358
359/*
360 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
361 * @param mtd MTD device structure
362 * @param state state to select the max. timeout value
363 *
364 * Wait for command done.
365 */
366static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
367{
368 struct onenand_chip *this = mtd->priv;
369
2c22120f
KP
370 wait_for_completion(&this->complete);
371
372 return onenand_wait(mtd, state);
373}
374
375/*
376 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
377 * @param mtd MTD device structure
378 * @param state state to select the max. timeout value
379 *
380 * Try interrupt based wait (It is used one-time)
381 */
382static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
383{
384 struct onenand_chip *this = mtd->priv;
385 unsigned long remain, timeout;
386
387 /* We use interrupt wait first */
388 this->wait = onenand_interrupt_wait;
389
2c22120f
KP
390 timeout = msecs_to_jiffies(100);
391 remain = wait_for_completion_timeout(&this->complete, timeout);
392 if (!remain) {
393 printk(KERN_INFO "OneNAND: There's no interrupt. "
394 "We use the normal wait\n");
395
396 /* Release the irq */
397 free_irq(this->irq, this);
c9ac5977 398
2c22120f
KP
399 this->wait = onenand_wait;
400 }
401
402 return onenand_wait(mtd, state);
403}
404
405/*
406 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
407 * @param mtd MTD device structure
408 *
409 * There's two method to wait onenand work
410 * 1. polling - read interrupt status register
411 * 2. interrupt - use the kernel interrupt method
412 */
413static void onenand_setup_wait(struct mtd_info *mtd)
414{
415 struct onenand_chip *this = mtd->priv;
416 int syscfg;
417
418 init_completion(&this->complete);
419
420 if (this->irq <= 0) {
421 this->wait = onenand_wait;
422 return;
423 }
424
425 if (request_irq(this->irq, &onenand_interrupt,
426 IRQF_SHARED, "onenand", this)) {
427 /* If we can't get irq, use the normal wait */
428 this->wait = onenand_wait;
429 return;
430 }
431
432 /* Enable interrupt */
433 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
434 syscfg |= ONENAND_SYS_CFG1_IOBE;
435 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
436
437 this->wait = onenand_try_interrupt_wait;
438}
439
cd5f6346
KP
440/**
441 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
442 * @param mtd MTD data structure
443 * @param area BufferRAM area
444 * @return offset given area
445 *
446 * Return BufferRAM offset given area
447 */
448static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
449{
450 struct onenand_chip *this = mtd->priv;
451
452 if (ONENAND_CURRENT_BUFFERRAM(this)) {
453 if (area == ONENAND_DATARAM)
28318776 454 return mtd->writesize;
cd5f6346
KP
455 if (area == ONENAND_SPARERAM)
456 return mtd->oobsize;
457 }
458
459 return 0;
460}
461
462/**
463 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
464 * @param mtd MTD data structure
465 * @param area BufferRAM area
466 * @param buffer the databuffer to put/get data
467 * @param offset offset to read from or write to
468 * @param count number of bytes to read/write
469 *
470 * Read the BufferRAM area
471 */
472static int onenand_read_bufferram(struct mtd_info *mtd, int area,
473 unsigned char *buffer, int offset, size_t count)
474{
475 struct onenand_chip *this = mtd->priv;
476 void __iomem *bufferram;
477
478 bufferram = this->base + area;
479
480 bufferram += onenand_bufferram_offset(mtd, area);
481
9c01f87d
KP
482 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
483 unsigned short word;
484
485 /* Align with word(16-bit) size */
486 count--;
487
488 /* Read word and save byte */
489 word = this->read_word(bufferram + offset + count);
490 buffer[count] = (word & 0xff);
491 }
492
cd5f6346
KP
493 memcpy(buffer, bufferram + offset, count);
494
495 return 0;
496}
497
52b0eea7
KP
498/**
499 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
500 * @param mtd MTD data structure
501 * @param area BufferRAM area
502 * @param buffer the databuffer to put/get data
503 * @param offset offset to read from or write to
504 * @param count number of bytes to read/write
505 *
506 * Read the BufferRAM area with Sync. Burst Mode
507 */
508static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
509 unsigned char *buffer, int offset, size_t count)
510{
511 struct onenand_chip *this = mtd->priv;
512 void __iomem *bufferram;
513
514 bufferram = this->base + area;
515
516 bufferram += onenand_bufferram_offset(mtd, area);
517
518 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
519
9c01f87d
KP
520 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
521 unsigned short word;
522
523 /* Align with word(16-bit) size */
524 count--;
525
526 /* Read word and save byte */
527 word = this->read_word(bufferram + offset + count);
528 buffer[count] = (word & 0xff);
529 }
530
52b0eea7
KP
531 memcpy(buffer, bufferram + offset, count);
532
533 this->mmcontrol(mtd, 0);
534
535 return 0;
536}
537
cd5f6346
KP
538/**
539 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
540 * @param mtd MTD data structure
541 * @param area BufferRAM area
542 * @param buffer the databuffer to put/get data
543 * @param offset offset to read from or write to
544 * @param count number of bytes to read/write
545 *
546 * Write the BufferRAM area
547 */
548static int onenand_write_bufferram(struct mtd_info *mtd, int area,
549 const unsigned char *buffer, int offset, size_t count)
550{
551 struct onenand_chip *this = mtd->priv;
552 void __iomem *bufferram;
553
554 bufferram = this->base + area;
555
556 bufferram += onenand_bufferram_offset(mtd, area);
557
9c01f87d
KP
558 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
559 unsigned short word;
560 int byte_offset;
561
562 /* Align with word(16-bit) size */
563 count--;
564
565 /* Calculate byte access offset */
566 byte_offset = offset + count;
567
568 /* Read word and save byte */
569 word = this->read_word(bufferram + byte_offset);
570 word = (word & ~0xff) | buffer[count];
571 this->write_word(word, bufferram + byte_offset);
572 }
573
cd5f6346
KP
574 memcpy(bufferram + offset, buffer, count);
575
576 return 0;
577}
578
579/**
580 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
581 * @param mtd MTD data structure
582 * @param addr address to check
d5c5e78a 583 * @return 1 if there are valid data, otherwise 0
cd5f6346
KP
584 *
585 * Check bufferram if there is data we required
586 */
587static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
588{
589 struct onenand_chip *this = mtd->priv;
590 int block, page;
591 int i;
d5c5e78a 592
cd5f6346
KP
593 block = (int) (addr >> this->erase_shift);
594 page = (int) (addr >> this->page_shift);
595 page &= this->page_mask;
596
597 i = ONENAND_CURRENT_BUFFERRAM(this);
598
599 /* Is there valid data? */
600 if (this->bufferram[i].block == block &&
601 this->bufferram[i].page == page &&
602 this->bufferram[i].valid)
603 return 1;
604
605 return 0;
606}
607
608/**
609 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
610 * @param mtd MTD data structure
611 * @param addr address to update
612 * @param valid valid flag
613 *
614 * Update BufferRAM information
615 */
616static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
617 int valid)
618{
619 struct onenand_chip *this = mtd->priv;
620 int block, page;
621 int i;
d5c5e78a 622
cd5f6346
KP
623 block = (int) (addr >> this->erase_shift);
624 page = (int) (addr >> this->page_shift);
625 page &= this->page_mask;
626
627 /* Invalidate BufferRAM */
628 for (i = 0; i < MAX_BUFFERRAM; i++) {
629 if (this->bufferram[i].block == block &&
630 this->bufferram[i].page == page)
631 this->bufferram[i].valid = 0;
632 }
633
634 /* Update BufferRAM */
635 i = ONENAND_CURRENT_BUFFERRAM(this);
636 this->bufferram[i].block = block;
637 this->bufferram[i].page = page;
638 this->bufferram[i].valid = valid;
639
640 return 0;
641}
642
643/**
644 * onenand_get_device - [GENERIC] Get chip for selected access
645 * @param mtd MTD device structure
646 * @param new_state the state which is requested
647 *
648 * Get the device and lock it for exclusive access
649 */
a41371eb 650static int onenand_get_device(struct mtd_info *mtd, int new_state)
cd5f6346
KP
651{
652 struct onenand_chip *this = mtd->priv;
653 DECLARE_WAITQUEUE(wait, current);
654
655 /*
656 * Grab the lock and see if the device is available
657 */
658 while (1) {
659 spin_lock(&this->chip_lock);
660 if (this->state == FL_READY) {
661 this->state = new_state;
662 spin_unlock(&this->chip_lock);
663 break;
664 }
a41371eb
KP
665 if (new_state == FL_PM_SUSPENDED) {
666 spin_unlock(&this->chip_lock);
667 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
668 }
cd5f6346
KP
669 set_current_state(TASK_UNINTERRUPTIBLE);
670 add_wait_queue(&this->wq, &wait);
671 spin_unlock(&this->chip_lock);
672 schedule();
673 remove_wait_queue(&this->wq, &wait);
674 }
a41371eb
KP
675
676 return 0;
cd5f6346
KP
677}
678
679/**
680 * onenand_release_device - [GENERIC] release chip
681 * @param mtd MTD device structure
682 *
683 * Deselect, release chip lock and wake up anyone waiting on the device
684 */
685static void onenand_release_device(struct mtd_info *mtd)
686{
687 struct onenand_chip *this = mtd->priv;
688
689 /* Release the chip */
690 spin_lock(&this->chip_lock);
691 this->state = FL_READY;
692 wake_up(&this->wq);
693 spin_unlock(&this->chip_lock);
694}
695
696/**
9223a456 697 * onenand_read - [MTD Interface] Read data from flash
cd5f6346
KP
698 * @param mtd MTD device structure
699 * @param from offset to read from
700 * @param len number of bytes to read
701 * @param retlen pointer to variable to store the number of read bytes
702 * @param buf the databuffer to put data
cd5f6346 703 *
9223a456
TG
704 * Read with ecc
705*/
706static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
707 size_t *retlen, u_char *buf)
cd5f6346
KP
708{
709 struct onenand_chip *this = mtd->priv;
f4f91ac3 710 struct mtd_ecc_stats stats;
cd5f6346
KP
711 int read = 0, column;
712 int thislen;
713 int ret = 0;
714
9223a456 715 DEBUG(MTD_DEBUG_LEVEL3, "onenand_read: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
cd5f6346
KP
716
717 /* Do not allow reads past end of device */
718 if ((from + len) > mtd->size) {
9223a456 719 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read: Attempt read beyond end of device\n");
cd5f6346
KP
720 *retlen = 0;
721 return -EINVAL;
722 }
723
724 /* Grab the lock and see if the device is available */
725 onenand_get_device(mtd, FL_READING);
726
727 /* TODO handling oob */
728
f4f91ac3 729 stats = mtd->ecc_stats;
61a7e198 730
a8de85d5
AH
731 /* Read-while-load method */
732
733 /* Do first load to bufferRAM */
734 if (read < len) {
735 if (!onenand_check_bufferram(mtd, from)) {
736 this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
737 ret = this->wait(mtd, FL_READING);
738 onenand_update_bufferram(mtd, from, !ret);
739 }
740 }
741
742 thislen = min_t(int, mtd->writesize, len - read);
743 column = from & (mtd->writesize - 1);
744 if (column + thislen > mtd->writesize)
745 thislen = mtd->writesize - column;
746
747 while (!ret) {
748 /* If there is more to load then start next load */
749 from += thislen;
750 if (read + thislen < len) {
751 this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
752 ONENAND_SET_PREV_BUFFERRAM(this);
753 }
754 /* While load is going, read from last bufferRAM */
755 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
756 /* See if we are done */
757 read += thislen;
758 if (read == len)
759 break;
760 /* Set up for next read from bufferRAM */
761 ONENAND_SET_NEXT_BUFFERRAM(this);
762 buf += thislen;
763 thislen = min_t(int, mtd->writesize, len - read);
764 column = 0;
765 cond_resched();
766 /* Now wait for load */
767 ret = this->wait(mtd, FL_READING);
768 onenand_update_bufferram(mtd, from, !ret);
769 }
cd5f6346 770
cd5f6346
KP
771 /* Deselect and wake up anyone waiting on the device */
772 onenand_release_device(mtd);
773
774 /*
775 * Return success, if no ECC failures, else -EBADMSG
776 * fs driver will take care of that, because
777 * retlen == desired len and result == -EBADMSG
778 */
779 *retlen = read;
f4f91ac3
KP
780
781 if (mtd->ecc_stats.failed - stats.failed)
782 return -EBADMSG;
783
a8de85d5
AH
784 if (ret)
785 return ret;
786
f4f91ac3 787 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
cd5f6346
KP
788}
789
cd5f6346 790/**
8593fbc6 791 * onenand_do_read_oob - [MTD Interface] OneNAND read out-of-band
cd5f6346
KP
792 * @param mtd MTD device structure
793 * @param from offset to read from
794 * @param len number of bytes to read
795 * @param retlen pointer to variable to store the number of read bytes
796 * @param buf the databuffer to put data
797 *
798 * OneNAND read out-of-band data from the spare area
799 */
8593fbc6
TG
800int onenand_do_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
801 size_t *retlen, u_char *buf)
cd5f6346
KP
802{
803 struct onenand_chip *this = mtd->priv;
804 int read = 0, thislen, column;
805 int ret = 0;
806
807 DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
808
809 /* Initialize return length value */
810 *retlen = 0;
811
812 /* Do not allow reads past end of device */
813 if (unlikely((from + len) > mtd->size)) {
814 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: Attempt read beyond end of device\n");
815 return -EINVAL;
816 }
817
818 /* Grab the lock and see if the device is available */
819 onenand_get_device(mtd, FL_READING);
820
821 column = from & (mtd->oobsize - 1);
822
823 while (read < len) {
61a7e198
AB
824 cond_resched();
825
cd5f6346
KP
826 thislen = mtd->oobsize - column;
827 thislen = min_t(int, thislen, len);
828
829 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
830
831 onenand_update_bufferram(mtd, from, 0);
832
833 ret = this->wait(mtd, FL_READING);
834 /* First copy data and check return value for ECC handling */
835
836 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
837
f6272487
KP
838 if (ret) {
839 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: read failed = 0x%x\n", ret);
840 goto out;
841 }
842
cd5f6346
KP
843 read += thislen;
844
845 if (read == len)
846 break;
847
cd5f6346
KP
848 buf += thislen;
849
850 /* Read more? */
851 if (read < len) {
852 /* Page size */
28318776 853 from += mtd->writesize;
cd5f6346
KP
854 column = 0;
855 }
856 }
857
858out:
859 /* Deselect and wake up anyone waiting on the device */
860 onenand_release_device(mtd);
861
862 *retlen = read;
863 return ret;
864}
865
8593fbc6
TG
866/**
867 * onenand_read_oob - [MTD Interface] NAND write data and/or out-of-band
868 * @mtd: MTD device structure
869 * @from: offset to read from
870 * @ops: oob operation description structure
871 */
872static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
873 struct mtd_oob_ops *ops)
874{
875 BUG_ON(ops->mode != MTD_OOB_PLACE);
876
66a1e421
KP
877 return onenand_do_read_oob(mtd, from + ops->ooboffs, ops->ooblen,
878 &ops->oobretlen, ops->oobbuf);
8593fbc6
TG
879}
880
cd5f6346 881#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
8e6ec690
KP
882/**
883 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
884 * @param mtd MTD device structure
885 * @param buf the databuffer to verify
886 * @param to offset to read from
887 * @param len number of bytes to read and compare
888 *
889 */
890static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to, int len)
891{
892 struct onenand_chip *this = mtd->priv;
893 char *readp = this->page_buf;
894 int column = to & (mtd->oobsize - 1);
895 int status, i;
896
897 this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
898 onenand_update_bufferram(mtd, to, 0);
899 status = this->wait(mtd, FL_READING);
900 if (status)
901 return status;
902
903 this->read_bufferram(mtd, ONENAND_SPARERAM, readp, column, len);
904
905 for(i = 0; i < len; i++)
906 if (buf[i] != 0xFF && buf[i] != readp[i])
907 return -EBADMSG;
908
909 return 0;
910}
911
cd5f6346
KP
912/**
913 * onenand_verify_page - [GENERIC] verify the chip contents after a write
914 * @param mtd MTD device structure
915 * @param buf the databuffer to verify
cd5f6346
KP
916 *
917 * Check DataRAM area directly
918 */
d36d63d4 919static int onenand_verify_page(struct mtd_info *mtd, u_char *buf, loff_t addr)
cd5f6346
KP
920{
921 struct onenand_chip *this = mtd->priv;
922 void __iomem *dataram0, *dataram1;
923 int ret = 0;
924
60d84f97
KP
925 /* In partial page write, just skip it */
926 if ((addr & (mtd->writesize - 1)) != 0)
927 return 0;
928
28318776 929 this->command(mtd, ONENAND_CMD_READ, addr, mtd->writesize);
cd5f6346
KP
930
931 ret = this->wait(mtd, FL_READING);
932 if (ret)
933 return ret;
934
935 onenand_update_bufferram(mtd, addr, 1);
936
937 /* Check, if the two dataram areas are same */
938 dataram0 = this->base + ONENAND_DATARAM;
28318776 939 dataram1 = dataram0 + mtd->writesize;
cd5f6346 940
28318776 941 if (memcmp(dataram0, dataram1, mtd->writesize))
cd5f6346 942 return -EBADMSG;
d5c5e78a 943
cd5f6346
KP
944 return 0;
945}
946#else
947#define onenand_verify_page(...) (0)
8e6ec690 948#define onenand_verify_oob(...) (0)
cd5f6346
KP
949#endif
950
60d84f97 951#define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
cd5f6346
KP
952
953/**
9223a456 954 * onenand_write - [MTD Interface] write buffer to FLASH
cd5f6346
KP
955 * @param mtd MTD device structure
956 * @param to offset to write to
957 * @param len number of bytes to write
958 * @param retlen pointer to variable to store the number of written bytes
959 * @param buf the data to write
cd5f6346 960 *
9223a456 961 * Write with ECC
cd5f6346 962 */
9223a456
TG
963static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
964 size_t *retlen, const u_char *buf)
cd5f6346
KP
965{
966 struct onenand_chip *this = mtd->priv;
967 int written = 0;
968 int ret = 0;
60d84f97 969 int column, subpage;
cd5f6346 970
9223a456 971 DEBUG(MTD_DEBUG_LEVEL3, "onenand_write: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
cd5f6346
KP
972
973 /* Initialize retlen, in case of early exit */
974 *retlen = 0;
975
976 /* Do not allow writes past end of device */
977 if (unlikely((to + len) > mtd->size)) {
9223a456 978 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: Attempt write to past end of device\n");
cd5f6346
KP
979 return -EINVAL;
980 }
981
982 /* Reject writes, which are not page aligned */
983 if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
9223a456 984 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: Attempt to write not page aligned data\n");
cd5f6346
KP
985 return -EINVAL;
986 }
987
60d84f97
KP
988 column = to & (mtd->writesize - 1);
989 subpage = column || (len & (mtd->writesize - 1));
990
cd5f6346
KP
991 /* Grab the lock and see if the device is available */
992 onenand_get_device(mtd, FL_WRITING);
993
994 /* Loop until all data write */
995 while (written < len) {
60d84f97
KP
996 int bytes = mtd->writesize;
997 int thislen = min_t(int, bytes, len - written);
998 u_char *wbuf = (u_char *) buf;
999
61a7e198
AB
1000 cond_resched();
1001
60d84f97
KP
1002 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, bytes);
1003
1004 /* Partial page write */
1005 if (subpage) {
1006 bytes = min_t(int, bytes - column, (int) len);
1007 memset(this->page_buf, 0xff, mtd->writesize);
1008 memcpy(this->page_buf + column, buf, bytes);
1009 wbuf = this->page_buf;
1010 /* Even though partial write, we need page size */
1011 thislen = mtd->writesize;
1012 }
cd5f6346 1013
60d84f97 1014 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, thislen);
cd5f6346
KP
1015 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1016
28318776 1017 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
cd5f6346 1018
60d84f97
KP
1019 /* In partial page write we don't update bufferram */
1020 onenand_update_bufferram(mtd, to, !subpage);
cd5f6346
KP
1021
1022 ret = this->wait(mtd, FL_WRITING);
1023 if (ret) {
9223a456 1024 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: write filaed %d\n", ret);
60d84f97 1025 break;
cd5f6346
KP
1026 }
1027
cd5f6346 1028 /* Only check verify write turn on */
60d84f97 1029 ret = onenand_verify_page(mtd, (u_char *) wbuf, to);
cd5f6346 1030 if (ret) {
9223a456 1031 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: verify failed %d\n", ret);
60d84f97 1032 break;
cd5f6346
KP
1033 }
1034
60d84f97
KP
1035 written += thislen;
1036
cd5f6346
KP
1037 if (written == len)
1038 break;
1039
60d84f97 1040 column = 0;
cd5f6346
KP
1041 to += thislen;
1042 buf += thislen;
1043 }
1044
cd5f6346
KP
1045 /* Deselect and wake up anyone waiting on the device */
1046 onenand_release_device(mtd);
1047
1048 *retlen = written;
d5c5e78a 1049
cd5f6346
KP
1050 return ret;
1051}
1052
cd5f6346 1053/**
8593fbc6 1054 * onenand_do_write_oob - [Internal] OneNAND write out-of-band
cd5f6346
KP
1055 * @param mtd MTD device structure
1056 * @param to offset to write to
1057 * @param len number of bytes to write
1058 * @param retlen pointer to variable to store the number of written bytes
1059 * @param buf the data to write
1060 *
1061 * OneNAND write out-of-band
1062 */
8593fbc6
TG
1063static int onenand_do_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
1064 size_t *retlen, const u_char *buf)
cd5f6346
KP
1065{
1066 struct onenand_chip *this = mtd->priv;
8e6ec690 1067 int column, ret = 0;
cd5f6346
KP
1068 int written = 0;
1069
1070 DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1071
1072 /* Initialize retlen, in case of early exit */
1073 *retlen = 0;
1074
1075 /* Do not allow writes past end of device */
1076 if (unlikely((to + len) > mtd->size)) {
1077 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: Attempt write to past end of device\n");
1078 return -EINVAL;
1079 }
1080
1081 /* Grab the lock and see if the device is available */
1082 onenand_get_device(mtd, FL_WRITING);
1083
1084 /* Loop until all data write */
1085 while (written < len) {
1086 int thislen = min_t(int, mtd->oobsize, len - written);
1087
61a7e198
AB
1088 cond_resched();
1089
cd5f6346
KP
1090 column = to & (mtd->oobsize - 1);
1091
1092 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1093
34c10609
KP
1094 /* We send data to spare ram with oobsize
1095 * to prevent byte access */
1096 memset(this->page_buf, 0xff, mtd->oobsize);
1097 memcpy(this->page_buf + column, buf, thislen);
1098 this->write_bufferram(mtd, ONENAND_SPARERAM, this->page_buf, 0, mtd->oobsize);
cd5f6346
KP
1099
1100 this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
1101
1102 onenand_update_bufferram(mtd, to, 0);
1103
8e6ec690
KP
1104 ret = this->wait(mtd, FL_WRITING);
1105 if (ret) {
1106 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: write filaed %d\n", ret);
1107 goto out;
1108 }
1109
1110 ret = onenand_verify_oob(mtd, buf, to, thislen);
1111 if (ret) {
1112 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: verify failed %d\n", ret);
cd5f6346 1113 goto out;
8e6ec690 1114 }
cd5f6346
KP
1115
1116 written += thislen;
1117
1118 if (written == len)
1119 break;
1120
1121 to += thislen;
1122 buf += thislen;
1123 }
1124
1125out:
1126 /* Deselect and wake up anyone waiting on the device */
1127 onenand_release_device(mtd);
1128
1129 *retlen = written;
d5c5e78a 1130
8e6ec690 1131 return ret;
cd5f6346
KP
1132}
1133
8593fbc6
TG
1134/**
1135 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1136 * @mtd: MTD device structure
1137 * @from: offset to read from
1138 * @ops: oob operation description structure
1139 */
1140static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1141 struct mtd_oob_ops *ops)
1142{
1143 BUG_ON(ops->mode != MTD_OOB_PLACE);
1144
66a1e421
KP
1145 return onenand_do_write_oob(mtd, to + ops->ooboffs, ops->ooblen,
1146 &ops->oobretlen, ops->oobbuf);
8593fbc6
TG
1147}
1148
cdc00130
KP
1149/**
1150 * onenand_block_checkbad - [GENERIC] Check if a block is marked bad
1151 * @param mtd MTD device structure
1152 * @param ofs offset from device start
1153 * @param getchip 0, if the chip is already selected
1154 * @param allowbbt 1, if its allowed to access the bbt area
1155 *
1156 * Check, if the block is bad. Either by reading the bad block table or
1157 * calling of the scan function.
1158 */
1159static int onenand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
1160{
1161 struct onenand_chip *this = mtd->priv;
1162 struct bbm_info *bbm = this->bbm;
1163
1164 /* Return info from the table */
1165 return bbm->isbad_bbt(mtd, ofs, allowbbt);
1166}
1167
cd5f6346
KP
1168/**
1169 * onenand_erase - [MTD Interface] erase block(s)
1170 * @param mtd MTD device structure
1171 * @param instr erase instruction
1172 *
1173 * Erase one ore more blocks
1174 */
1175static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1176{
1177 struct onenand_chip *this = mtd->priv;
1178 unsigned int block_size;
1179 loff_t addr;
1180 int len;
1181 int ret = 0;
1182
1183 DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
1184
1185 block_size = (1 << this->erase_shift);
1186
1187 /* Start address must align on block boundary */
1188 if (unlikely(instr->addr & (block_size - 1))) {
1189 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Unaligned address\n");
1190 return -EINVAL;
1191 }
1192
1193 /* Length must align on block boundary */
1194 if (unlikely(instr->len & (block_size - 1))) {
1195 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Length not block aligned\n");
1196 return -EINVAL;
1197 }
1198
1199 /* Do not allow erase past end of device */
1200 if (unlikely((instr->len + instr->addr) > mtd->size)) {
1201 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Erase past end of device\n");
1202 return -EINVAL;
1203 }
1204
1205 instr->fail_addr = 0xffffffff;
1206
1207 /* Grab the lock and see if the device is available */
1208 onenand_get_device(mtd, FL_ERASING);
1209
1210 /* Loop throught the pages */
1211 len = instr->len;
1212 addr = instr->addr;
1213
1214 instr->state = MTD_ERASING;
1215
1216 while (len) {
61a7e198 1217 cond_resched();
cd5f6346 1218
cdc00130
KP
1219 /* Check if we have a bad block, we do not erase bad blocks */
1220 if (onenand_block_checkbad(mtd, addr, 0, 0)) {
1221 printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
1222 instr->state = MTD_ERASE_FAILED;
1223 goto erase_exit;
1224 }
cd5f6346
KP
1225
1226 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1227
1228 ret = this->wait(mtd, FL_ERASING);
1229 /* Check, if it is write protected */
1230 if (ret) {
f6272487 1231 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
cd5f6346
KP
1232 instr->state = MTD_ERASE_FAILED;
1233 instr->fail_addr = addr;
1234 goto erase_exit;
1235 }
1236
1237 len -= block_size;
1238 addr += block_size;
1239 }
1240
1241 instr->state = MTD_ERASE_DONE;
1242
1243erase_exit:
1244
1245 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1246 /* Do call back function */
1247 if (!ret)
1248 mtd_erase_callback(instr);
1249
1250 /* Deselect and wake up anyone waiting on the device */
1251 onenand_release_device(mtd);
1252
1253 return ret;
1254}
1255
1256/**
1257 * onenand_sync - [MTD Interface] sync
1258 * @param mtd MTD device structure
1259 *
1260 * Sync is actually a wait for chip ready function
1261 */
1262static void onenand_sync(struct mtd_info *mtd)
1263{
1264 DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1265
1266 /* Grab the lock and see if the device is available */
1267 onenand_get_device(mtd, FL_SYNCING);
1268
1269 /* Release it and go back */
1270 onenand_release_device(mtd);
1271}
1272
1273/**
1274 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1275 * @param mtd MTD device structure
1276 * @param ofs offset relative to mtd start
cdc00130
KP
1277 *
1278 * Check whether the block is bad
cd5f6346
KP
1279 */
1280static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1281{
cdc00130
KP
1282 /* Check for invalid offset */
1283 if (ofs > mtd->size)
1284 return -EINVAL;
1285
1286 return onenand_block_checkbad(mtd, ofs, 1, 0);
1287}
1288
1289/**
1290 * onenand_default_block_markbad - [DEFAULT] mark a block bad
1291 * @param mtd MTD device structure
1292 * @param ofs offset from device start
1293 *
1294 * This is the default implementation, which can be overridden by
1295 * a hardware specific driver.
1296 */
1297static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1298{
1299 struct onenand_chip *this = mtd->priv;
1300 struct bbm_info *bbm = this->bbm;
1301 u_char buf[2] = {0, 0};
1302 size_t retlen;
1303 int block;
1304
1305 /* Get block number */
1306 block = ((int) ofs) >> bbm->bbt_erase_shift;
1307 if (bbm->bbt)
1308 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1309
1310 /* We write two bytes, so we dont have to mess with 16 bit access */
1311 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
8593fbc6 1312 return onenand_do_write_oob(mtd, ofs , 2, &retlen, buf);
cd5f6346
KP
1313}
1314
1315/**
1316 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1317 * @param mtd MTD device structure
1318 * @param ofs offset relative to mtd start
cdc00130
KP
1319 *
1320 * Mark the block as bad
cd5f6346
KP
1321 */
1322static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1323{
cdc00130
KP
1324 struct onenand_chip *this = mtd->priv;
1325 int ret;
1326
1327 ret = onenand_block_isbad(mtd, ofs);
1328 if (ret) {
1329 /* If it was bad already, return success and do nothing */
1330 if (ret > 0)
1331 return 0;
1332 return ret;
1333 }
1334
1335 return this->block_markbad(mtd, ofs);
cd5f6346
KP
1336}
1337
1338/**
08f782b6 1339 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
cd5f6346
KP
1340 * @param mtd MTD device structure
1341 * @param ofs offset relative to mtd start
08f782b6 1342 * @param len number of bytes to lock or unlock
cd5f6346 1343 *
08f782b6 1344 * Lock or unlock one or more blocks
cd5f6346 1345 */
08f782b6 1346static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
cd5f6346
KP
1347{
1348 struct onenand_chip *this = mtd->priv;
1349 int start, end, block, value, status;
08f782b6 1350 int wp_status_mask;
cd5f6346
KP
1351
1352 start = ofs >> this->erase_shift;
1353 end = len >> this->erase_shift;
1354
08f782b6
KP
1355 if (cmd == ONENAND_CMD_LOCK)
1356 wp_status_mask = ONENAND_WP_LS;
1357 else
1358 wp_status_mask = ONENAND_WP_US;
1359
cd5f6346 1360 /* Continuous lock scheme */
28b79ff9 1361 if (this->options & ONENAND_HAS_CONT_LOCK) {
cd5f6346
KP
1362 /* Set start block address */
1363 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1364 /* Set end block address */
28b79ff9 1365 this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
08f782b6
KP
1366 /* Write lock command */
1367 this->command(mtd, cmd, 0, 0);
cd5f6346
KP
1368
1369 /* There's no return value */
08f782b6 1370 this->wait(mtd, FL_LOCKING);
cd5f6346
KP
1371
1372 /* Sanity check */
1373 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1374 & ONENAND_CTRL_ONGO)
1375 continue;
1376
1377 /* Check lock status */
1378 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
08f782b6 1379 if (!(status & wp_status_mask))
cd5f6346
KP
1380 printk(KERN_ERR "wp status = 0x%x\n", status);
1381
1382 return 0;
1383 }
1384
1385 /* Block lock scheme */
28b79ff9 1386 for (block = start; block < start + end; block++) {
20ba89a3
KP
1387 /* Set block address */
1388 value = onenand_block_address(this, block);
1389 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1390 /* Select DataRAM for DDP */
1391 value = onenand_bufferram_address(this, block);
1392 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
cd5f6346
KP
1393 /* Set start block address */
1394 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
08f782b6
KP
1395 /* Write lock command */
1396 this->command(mtd, cmd, 0, 0);
cd5f6346
KP
1397
1398 /* There's no return value */
08f782b6 1399 this->wait(mtd, FL_LOCKING);
cd5f6346
KP
1400
1401 /* Sanity check */
1402 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1403 & ONENAND_CTRL_ONGO)
1404 continue;
1405
cd5f6346
KP
1406 /* Check lock status */
1407 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
08f782b6 1408 if (!(status & wp_status_mask))
cd5f6346
KP
1409 printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1410 }
d5c5e78a 1411
cd5f6346
KP
1412 return 0;
1413}
1414
08f782b6
KP
1415/**
1416 * onenand_lock - [MTD Interface] Lock block(s)
1417 * @param mtd MTD device structure
1418 * @param ofs offset relative to mtd start
1419 * @param len number of bytes to unlock
1420 *
1421 * Lock one or more blocks
1422 */
1423static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1424{
1425 return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
1426}
1427
08f782b6
KP
1428/**
1429 * onenand_unlock - [MTD Interface] Unlock block(s)
1430 * @param mtd MTD device structure
1431 * @param ofs offset relative to mtd start
1432 * @param len number of bytes to unlock
1433 *
1434 * Unlock one or more blocks
1435 */
1436static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1437{
1438 return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
1439}
1440
28b79ff9
KP
1441/**
1442 * onenand_check_lock_status - [OneNAND Interface] Check lock status
1443 * @param this onenand chip data structure
1444 *
1445 * Check lock status
1446 */
1447static void onenand_check_lock_status(struct onenand_chip *this)
1448{
1449 unsigned int value, block, status;
1450 unsigned int end;
1451
1452 end = this->chipsize >> this->erase_shift;
1453 for (block = 0; block < end; block++) {
1454 /* Set block address */
1455 value = onenand_block_address(this, block);
1456 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1457 /* Select DataRAM for DDP */
1458 value = onenand_bufferram_address(this, block);
1459 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1460 /* Set start block address */
1461 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1462
1463 /* Check lock status */
1464 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1465 if (!(status & ONENAND_WP_US))
1466 printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1467 }
1468}
1469
1470/**
1471 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
1472 * @param mtd MTD device structure
1473 *
1474 * Unlock all blocks
1475 */
1476static int onenand_unlock_all(struct mtd_info *mtd)
1477{
1478 struct onenand_chip *this = mtd->priv;
1479
1480 if (this->options & ONENAND_HAS_UNLOCK_ALL) {
1481 /* Write unlock command */
1482 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
1483
1484 /* There's no return value */
08f782b6 1485 this->wait(mtd, FL_LOCKING);
28b79ff9
KP
1486
1487 /* Sanity check */
1488 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1489 & ONENAND_CTRL_ONGO)
1490 continue;
1491
1492 /* Workaround for all block unlock in DDP */
1493 if (this->device_id & ONENAND_DEVICE_IS_DDP) {
1494 loff_t ofs;
1495 size_t len;
1496
1497 /* 1st block on another chip */
1498 ofs = this->chipsize >> 1;
1499 len = 1 << this->erase_shift;
1500
1501 onenand_unlock(mtd, ofs, len);
1502 }
1503
1504 onenand_check_lock_status(this);
1505
1506 return 0;
1507 }
1508
08f782b6 1509 onenand_unlock(mtd, 0x0, this->chipsize);
28b79ff9
KP
1510
1511 return 0;
1512}
1513
493c6460
KP
1514#ifdef CONFIG_MTD_ONENAND_OTP
1515
1516/* Interal OTP operation */
1517typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
1518 size_t *retlen, u_char *buf);
1519
1520/**
1521 * do_otp_read - [DEFAULT] Read OTP block area
1522 * @param mtd MTD device structure
1523 * @param from The offset to read
1524 * @param len number of bytes to read
1525 * @param retlen pointer to variable to store the number of readbytes
1526 * @param buf the databuffer to put/get data
1527 *
1528 * Read OTP block area.
1529 */
1530static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
1531 size_t *retlen, u_char *buf)
1532{
1533 struct onenand_chip *this = mtd->priv;
1534 int ret;
1535
1536 /* Enter OTP access mode */
1537 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1538 this->wait(mtd, FL_OTPING);
1539
1540 ret = mtd->read(mtd, from, len, retlen, buf);
1541
1542 /* Exit OTP access mode */
1543 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1544 this->wait(mtd, FL_RESETING);
1545
1546 return ret;
1547}
1548
1549/**
1550 * do_otp_write - [DEFAULT] Write OTP block area
1551 * @param mtd MTD device structure
1552 * @param from The offset to write
1553 * @param len number of bytes to write
1554 * @param retlen pointer to variable to store the number of write bytes
1555 * @param buf the databuffer to put/get data
1556 *
1557 * Write OTP block area.
1558 */
1559static int do_otp_write(struct mtd_info *mtd, loff_t from, size_t len,
1560 size_t *retlen, u_char *buf)
1561{
1562 struct onenand_chip *this = mtd->priv;
1563 unsigned char *pbuf = buf;
1564 int ret;
1565
1566 /* Force buffer page aligned */
28318776 1567 if (len < mtd->writesize) {
493c6460 1568 memcpy(this->page_buf, buf, len);
28318776 1569 memset(this->page_buf + len, 0xff, mtd->writesize - len);
493c6460 1570 pbuf = this->page_buf;
28318776 1571 len = mtd->writesize;
493c6460
KP
1572 }
1573
1574 /* Enter OTP access mode */
1575 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1576 this->wait(mtd, FL_OTPING);
1577
1578 ret = mtd->write(mtd, from, len, retlen, pbuf);
1579
1580 /* Exit OTP access mode */
1581 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1582 this->wait(mtd, FL_RESETING);
1583
1584 return ret;
1585}
1586
1587/**
1588 * do_otp_lock - [DEFAULT] Lock OTP block area
1589 * @param mtd MTD device structure
1590 * @param from The offset to lock
1591 * @param len number of bytes to lock
1592 * @param retlen pointer to variable to store the number of lock bytes
1593 * @param buf the databuffer to put/get data
1594 *
1595 * Lock OTP block area.
1596 */
1597static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
1598 size_t *retlen, u_char *buf)
1599{
1600 struct onenand_chip *this = mtd->priv;
1601 int ret;
1602
1603 /* Enter OTP access mode */
1604 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1605 this->wait(mtd, FL_OTPING);
1606
8593fbc6 1607 ret = onenand_do_write_oob(mtd, from, len, retlen, buf);
493c6460
KP
1608
1609 /* Exit OTP access mode */
1610 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1611 this->wait(mtd, FL_RESETING);
1612
1613 return ret;
1614}
1615
1616/**
1617 * onenand_otp_walk - [DEFAULT] Handle OTP operation
1618 * @param mtd MTD device structure
1619 * @param from The offset to read/write
1620 * @param len number of bytes to read/write
1621 * @param retlen pointer to variable to store the number of read bytes
1622 * @param buf the databuffer to put/get data
1623 * @param action do given action
1624 * @param mode specify user and factory
1625 *
1626 * Handle OTP operation.
1627 */
1628static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1629 size_t *retlen, u_char *buf,
1630 otp_op_t action, int mode)
1631{
1632 struct onenand_chip *this = mtd->priv;
1633 int otp_pages;
1634 int density;
1635 int ret = 0;
1636
1637 *retlen = 0;
1638
1639 density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1640 if (density < ONENAND_DEVICE_DENSITY_512Mb)
1641 otp_pages = 20;
1642 else
1643 otp_pages = 10;
1644
1645 if (mode == MTD_OTP_FACTORY) {
28318776 1646 from += mtd->writesize * otp_pages;
493c6460
KP
1647 otp_pages = 64 - otp_pages;
1648 }
1649
1650 /* Check User/Factory boundary */
28318776 1651 if (((mtd->writesize * otp_pages) - (from + len)) < 0)
493c6460
KP
1652 return 0;
1653
1654 while (len > 0 && otp_pages > 0) {
1655 if (!action) { /* OTP Info functions */
1656 struct otp_info *otpinfo;
1657
1658 len -= sizeof(struct otp_info);
1659 if (len <= 0)
1660 return -ENOSPC;
1661
1662 otpinfo = (struct otp_info *) buf;
1663 otpinfo->start = from;
28318776 1664 otpinfo->length = mtd->writesize;
493c6460
KP
1665 otpinfo->locked = 0;
1666
28318776 1667 from += mtd->writesize;
493c6460
KP
1668 buf += sizeof(struct otp_info);
1669 *retlen += sizeof(struct otp_info);
1670 } else {
1671 size_t tmp_retlen;
1672 int size = len;
1673
1674 ret = action(mtd, from, len, &tmp_retlen, buf);
1675
1676 buf += size;
1677 len -= size;
1678 *retlen += size;
1679
1680 if (ret < 0)
1681 return ret;
1682 }
1683 otp_pages--;
1684 }
1685
1686 return 0;
1687}
1688
1689/**
1690 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
1691 * @param mtd MTD device structure
1692 * @param buf the databuffer to put/get data
1693 * @param len number of bytes to read
1694 *
1695 * Read factory OTP info.
1696 */
1697static int onenand_get_fact_prot_info(struct mtd_info *mtd,
1698 struct otp_info *buf, size_t len)
1699{
1700 size_t retlen;
1701 int ret;
1702
1703 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
1704
1705 return ret ? : retlen;
1706}
1707
1708/**
1709 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
1710 * @param mtd MTD device structure
1711 * @param from The offset to read
1712 * @param len number of bytes to read
1713 * @param retlen pointer to variable to store the number of read bytes
1714 * @param buf the databuffer to put/get data
1715 *
1716 * Read factory OTP area.
1717 */
1718static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1719 size_t len, size_t *retlen, u_char *buf)
1720{
1721 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
1722}
1723
1724/**
1725 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
1726 * @param mtd MTD device structure
1727 * @param buf the databuffer to put/get data
1728 * @param len number of bytes to read
1729 *
1730 * Read user OTP info.
1731 */
1732static int onenand_get_user_prot_info(struct mtd_info *mtd,
1733 struct otp_info *buf, size_t len)
1734{
1735 size_t retlen;
1736 int ret;
1737
1738 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
1739
1740 return ret ? : retlen;
1741}
1742
1743/**
1744 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
1745 * @param mtd MTD device structure
1746 * @param from The offset to read
1747 * @param len number of bytes to read
1748 * @param retlen pointer to variable to store the number of read bytes
1749 * @param buf the databuffer to put/get data
1750 *
1751 * Read user OTP area.
1752 */
1753static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1754 size_t len, size_t *retlen, u_char *buf)
1755{
1756 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
1757}
1758
1759/**
1760 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
1761 * @param mtd MTD device structure
1762 * @param from The offset to write
1763 * @param len number of bytes to write
1764 * @param retlen pointer to variable to store the number of write bytes
1765 * @param buf the databuffer to put/get data
1766 *
1767 * Write user OTP area.
1768 */
1769static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1770 size_t len, size_t *retlen, u_char *buf)
1771{
1772 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
1773}
1774
1775/**
1776 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
1777 * @param mtd MTD device structure
1778 * @param from The offset to lock
1779 * @param len number of bytes to unlock
1780 *
1781 * Write lock mark on spare area in page 0 in OTP block
1782 */
1783static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1784 size_t len)
1785{
1786 unsigned char oob_buf[64];
1787 size_t retlen;
1788 int ret;
1789
1790 memset(oob_buf, 0xff, mtd->oobsize);
1791 /*
1792 * Note: OTP lock operation
1793 * OTP block : 0xXXFC
1794 * 1st block : 0xXXF3 (If chip support)
1795 * Both : 0xXXF0 (If chip support)
1796 */
1797 oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
1798
1799 /*
1800 * Write lock mark to 8th word of sector0 of page0 of the spare0.
1801 * We write 16 bytes spare area instead of 2 bytes.
1802 */
1803 from = 0;
1804 len = 16;
1805
1806 ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);
1807
1808 return ret ? : retlen;
1809}
1810#endif /* CONFIG_MTD_ONENAND_OTP */
1811
28b79ff9
KP
1812/**
1813 * onenand_lock_scheme - Check and set OneNAND lock scheme
1814 * @param mtd MTD data structure
1815 *
1816 * Check and set OneNAND lock scheme
1817 */
1818static void onenand_lock_scheme(struct mtd_info *mtd)
1819{
1820 struct onenand_chip *this = mtd->priv;
1821 unsigned int density, process;
1822
1823 /* Lock scheme depends on density and process */
1824 density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1825 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
1826
1827 /* Lock scheme */
1828 if (density >= ONENAND_DEVICE_DENSITY_1Gb) {
1829 /* A-Die has all block unlock */
1830 if (process) {
1831 printk(KERN_DEBUG "Chip support all block unlock\n");
1832 this->options |= ONENAND_HAS_UNLOCK_ALL;
1833 }
1834 } else {
1835 /* Some OneNAND has continues lock scheme */
1836 if (!process) {
1837 printk(KERN_DEBUG "Lock scheme is Continues Lock\n");
1838 this->options |= ONENAND_HAS_CONT_LOCK;
1839 }
1840 }
1841}
1842
cd5f6346
KP
1843/**
1844 * onenand_print_device_info - Print device ID
1845 * @param device device ID
1846 *
1847 * Print device ID
1848 */
28b79ff9 1849static void onenand_print_device_info(int device, int version)
cd5f6346
KP
1850{
1851 int vcc, demuxed, ddp, density;
1852
1853 vcc = device & ONENAND_DEVICE_VCC_MASK;
1854 demuxed = device & ONENAND_DEVICE_IS_DEMUX;
1855 ddp = device & ONENAND_DEVICE_IS_DDP;
1856 density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
1857 printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
1858 demuxed ? "" : "Muxed ",
1859 ddp ? "(DDP)" : "",
1860 (16 << density),
1861 vcc ? "2.65/3.3" : "1.8",
1862 device);
28b79ff9 1863 printk(KERN_DEBUG "OneNAND version = 0x%04x\n", version);
cd5f6346
KP
1864}
1865
1866static const struct onenand_manufacturers onenand_manuf_ids[] = {
1867 {ONENAND_MFR_SAMSUNG, "Samsung"},
cd5f6346
KP
1868};
1869
1870/**
1871 * onenand_check_maf - Check manufacturer ID
1872 * @param manuf manufacturer ID
1873 *
1874 * Check manufacturer ID
1875 */
1876static int onenand_check_maf(int manuf)
1877{
37b1cc39
KP
1878 int size = ARRAY_SIZE(onenand_manuf_ids);
1879 char *name;
cd5f6346
KP
1880 int i;
1881
37b1cc39 1882 for (i = 0; i < size; i++)
cd5f6346
KP
1883 if (manuf == onenand_manuf_ids[i].id)
1884 break;
cd5f6346 1885
37b1cc39
KP
1886 if (i < size)
1887 name = onenand_manuf_ids[i].name;
1888 else
1889 name = "Unknown";
1890
1891 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
cd5f6346 1892
37b1cc39 1893 return (i == size);
cd5f6346
KP
1894}
1895
1896/**
1897 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
1898 * @param mtd MTD device structure
1899 *
1900 * OneNAND detection method:
1901 * Compare the the values from command with ones from register
1902 */
1903static int onenand_probe(struct mtd_info *mtd)
1904{
1905 struct onenand_chip *this = mtd->priv;
28b79ff9 1906 int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
cd5f6346 1907 int density;
47e777e0
KP
1908 int syscfg;
1909
1910 /* Save system configuration 1 */
1911 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
1912 /* Clear Sync. Burst Read mode to read BootRAM */
1913 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
cd5f6346
KP
1914
1915 /* Send the command for reading device ID from BootRAM */
1916 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
1917
1918 /* Read manufacturer and device IDs from BootRAM */
1919 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
1920 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
1921
47e777e0
KP
1922 /* Reset OneNAND to read default register values */
1923 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
1924 /* Wait reset */
1925 this->wait(mtd, FL_RESETING);
1926
1927 /* Restore system configuration 1 */
1928 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
1929
cd5f6346
KP
1930 /* Check manufacturer ID */
1931 if (onenand_check_maf(bram_maf_id))
1932 return -ENXIO;
1933
cd5f6346
KP
1934 /* Read manufacturer and device IDs from Register */
1935 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
1936 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
f4f91ac3 1937 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
cd5f6346
KP
1938
1939 /* Check OneNAND device */
1940 if (maf_id != bram_maf_id || dev_id != bram_dev_id)
1941 return -ENXIO;
1942
1943 /* Flash device information */
28b79ff9 1944 onenand_print_device_info(dev_id, ver_id);
cd5f6346 1945 this->device_id = dev_id;
28b79ff9 1946 this->version_id = ver_id;
cd5f6346
KP
1947
1948 density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1949 this->chipsize = (16 << density) << 20;
83a36838
KP
1950 /* Set density mask. it is used for DDP */
1951 this->density_mask = (1 << (density + 6));
cd5f6346
KP
1952
1953 /* OneNAND page size & block size */
1954 /* The data buffer size is equal to page size */
28318776
JE
1955 mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
1956 mtd->oobsize = mtd->writesize >> 5;
cd5f6346 1957 /* Pagers per block is always 64 in OneNAND */
28318776 1958 mtd->erasesize = mtd->writesize << 6;
cd5f6346
KP
1959
1960 this->erase_shift = ffs(mtd->erasesize) - 1;
28318776 1961 this->page_shift = ffs(mtd->writesize) - 1;
cd5f6346 1962 this->ppb_shift = (this->erase_shift - this->page_shift);
28318776 1963 this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
cd5f6346
KP
1964
1965 /* REVIST: Multichip handling */
1966
1967 mtd->size = this->chipsize;
1968
28b79ff9
KP
1969 /* Check OneNAND lock scheme */
1970 onenand_lock_scheme(mtd);
d5c5e78a 1971
cd5f6346
KP
1972 return 0;
1973}
1974
a41371eb
KP
1975/**
1976 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
1977 * @param mtd MTD device structure
1978 */
1979static int onenand_suspend(struct mtd_info *mtd)
1980{
1981 return onenand_get_device(mtd, FL_PM_SUSPENDED);
1982}
1983
1984/**
1985 * onenand_resume - [MTD Interface] Resume the OneNAND flash
1986 * @param mtd MTD device structure
1987 */
1988static void onenand_resume(struct mtd_info *mtd)
1989{
1990 struct onenand_chip *this = mtd->priv;
1991
1992 if (this->state == FL_PM_SUSPENDED)
1993 onenand_release_device(mtd);
1994 else
1995 printk(KERN_ERR "resume() called for the chip which is not"
1996 "in suspended state\n");
1997}
1998
cd5f6346
KP
1999/**
2000 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2001 * @param mtd MTD device structure
2002 * @param maxchips Number of chips to scan for
2003 *
2004 * This fills out all the not initialized function pointers
2005 * with the defaults.
2006 * The flash ID is read and the mtd/chip structures are
2007 * filled with the appropriate values.
2008 */
2009int onenand_scan(struct mtd_info *mtd, int maxchips)
2010{
2011 struct onenand_chip *this = mtd->priv;
2012
2013 if (!this->read_word)
2014 this->read_word = onenand_readw;
2015 if (!this->write_word)
2016 this->write_word = onenand_writew;
2017
2018 if (!this->command)
2019 this->command = onenand_command;
2020 if (!this->wait)
2c22120f 2021 onenand_setup_wait(mtd);
cd5f6346
KP
2022
2023 if (!this->read_bufferram)
2024 this->read_bufferram = onenand_read_bufferram;
2025 if (!this->write_bufferram)
2026 this->write_bufferram = onenand_write_bufferram;
2027
cdc00130
KP
2028 if (!this->block_markbad)
2029 this->block_markbad = onenand_default_block_markbad;
2030 if (!this->scan_bbt)
2031 this->scan_bbt = onenand_default_bbt;
2032
cd5f6346
KP
2033 if (onenand_probe(mtd))
2034 return -ENXIO;
2035
52b0eea7
KP
2036 /* Set Sync. Burst Read after probing */
2037 if (this->mmcontrol) {
2038 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2039 this->read_bufferram = onenand_sync_read_bufferram;
2040 }
2041
532a37cf
KP
2042 /* Allocate buffers, if necessary */
2043 if (!this->page_buf) {
2044 size_t len;
28318776 2045 len = mtd->writesize + mtd->oobsize;
532a37cf
KP
2046 this->page_buf = kmalloc(len, GFP_KERNEL);
2047 if (!this->page_buf) {
2048 printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2049 return -ENOMEM;
2050 }
2051 this->options |= ONENAND_PAGEBUF_ALLOC;
2052 }
2053
cd5f6346
KP
2054 this->state = FL_READY;
2055 init_waitqueue_head(&this->wq);
2056 spin_lock_init(&this->chip_lock);
2057
60d84f97
KP
2058 /*
2059 * Allow subpage writes up to oobsize.
2060 */
cd5f6346
KP
2061 switch (mtd->oobsize) {
2062 case 64:
5bd34c09 2063 this->ecclayout = &onenand_oob_64;
60d84f97 2064 mtd->subpage_sft = 2;
cd5f6346
KP
2065 break;
2066
2067 case 32:
5bd34c09 2068 this->ecclayout = &onenand_oob_32;
60d84f97 2069 mtd->subpage_sft = 1;
cd5f6346
KP
2070 break;
2071
2072 default:
2073 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2074 mtd->oobsize);
60d84f97 2075 mtd->subpage_sft = 0;
cd5f6346 2076 /* To prevent kernel oops */
5bd34c09 2077 this->ecclayout = &onenand_oob_32;
cd5f6346
KP
2078 break;
2079 }
2080
60d84f97 2081 this->subpagesize = mtd->writesize >> mtd->subpage_sft;
5bd34c09 2082 mtd->ecclayout = this->ecclayout;
d5c5e78a 2083
cd5f6346
KP
2084 /* Fill in remaining MTD driver data */
2085 mtd->type = MTD_NANDFLASH;
5fa43394 2086 mtd->flags = MTD_CAP_NANDFLASH;
cd5f6346
KP
2087 mtd->ecctype = MTD_ECC_SW;
2088 mtd->erase = onenand_erase;
2089 mtd->point = NULL;
2090 mtd->unpoint = NULL;
2091 mtd->read = onenand_read;
2092 mtd->write = onenand_write;
cd5f6346
KP
2093 mtd->read_oob = onenand_read_oob;
2094 mtd->write_oob = onenand_write_oob;
493c6460
KP
2095#ifdef CONFIG_MTD_ONENAND_OTP
2096 mtd->get_fact_prot_info = onenand_get_fact_prot_info;
2097 mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
2098 mtd->get_user_prot_info = onenand_get_user_prot_info;
2099 mtd->read_user_prot_reg = onenand_read_user_prot_reg;
2100 mtd->write_user_prot_reg = onenand_write_user_prot_reg;
2101 mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
2102#endif
cd5f6346 2103 mtd->sync = onenand_sync;
08f782b6 2104 mtd->lock = onenand_lock;
cd5f6346 2105 mtd->unlock = onenand_unlock;
a41371eb
KP
2106 mtd->suspend = onenand_suspend;
2107 mtd->resume = onenand_resume;
cd5f6346
KP
2108 mtd->block_isbad = onenand_block_isbad;
2109 mtd->block_markbad = onenand_block_markbad;
2110 mtd->owner = THIS_MODULE;
2111
2112 /* Unlock whole block */
28b79ff9 2113 onenand_unlock_all(mtd);
cd5f6346 2114
cdc00130 2115 return this->scan_bbt(mtd);
cd5f6346
KP
2116}
2117
2118/**
2119 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2120 * @param mtd MTD device structure
2121 */
2122void onenand_release(struct mtd_info *mtd)
2123{
532a37cf
KP
2124 struct onenand_chip *this = mtd->priv;
2125
cd5f6346
KP
2126#ifdef CONFIG_MTD_PARTITIONS
2127 /* Deregister partitions */
2128 del_mtd_partitions (mtd);
2129#endif
2130 /* Deregister the device */
2131 del_mtd_device (mtd);
532a37cf
KP
2132
2133 /* Free bad block table memory, if allocated */
2134 if (this->bbm)
2135 kfree(this->bbm);
2136 /* Buffer allocated by onenand_scan */
2137 if (this->options & ONENAND_PAGEBUF_ALLOC)
2138 kfree(this->page_buf);
cd5f6346
KP
2139}
2140
2141EXPORT_SYMBOL_GPL(onenand_scan);
2142EXPORT_SYMBOL_GPL(onenand_release);
2143
2144MODULE_LICENSE("GPL");
2145MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
2146MODULE_DESCRIPTION("Generic OneNAND flash driver code");