]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/mtd/onenand/onenand_base.c
[MTD] [OneNAND] Add write-while-program support
[net-next-2.6.git] / drivers / mtd / onenand / onenand_base.c
CommitLineData
cd5f6346
KP
1/*
2 * linux/drivers/mtd/onenand/onenand_base.c
3 *
75384b0d 4 * Copyright (C) 2005-2007 Samsung Electronics
cd5f6346
KP
5 * Kyungmin Park <kyungmin.park@samsung.com>
6 *
81280d58
AH
7 * Credits:
8 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
9 * auto-placement support, read-while load support, various fixes
10 * Copyright (C) Nokia Corporation, 2007
11 *
cd5f6346
KP
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/init.h>
015953d7 20#include <linux/sched.h>
6c77fd64 21#include <linux/delay.h>
2c22120f 22#include <linux/interrupt.h>
015953d7 23#include <linux/jiffies.h>
cd5f6346
KP
24#include <linux/mtd/mtd.h>
25#include <linux/mtd/onenand.h>
26#include <linux/mtd/partitions.h>
27
28#include <asm/io.h>
29
30/**
31 * onenand_oob_64 - oob info for large (2KB) page
32 */
5bd34c09 33static struct nand_ecclayout onenand_oob_64 = {
cd5f6346
KP
34 .eccbytes = 20,
35 .eccpos = {
36 8, 9, 10, 11, 12,
37 24, 25, 26, 27, 28,
38 40, 41, 42, 43, 44,
39 56, 57, 58, 59, 60,
40 },
41 .oobfree = {
42 {2, 3}, {14, 2}, {18, 3}, {30, 2},
d9777f1c
JL
43 {34, 3}, {46, 2}, {50, 3}, {62, 2}
44 }
cd5f6346
KP
45};
46
47/**
48 * onenand_oob_32 - oob info for middle (1KB) page
49 */
5bd34c09 50static struct nand_ecclayout onenand_oob_32 = {
cd5f6346
KP
51 .eccbytes = 10,
52 .eccpos = {
53 8, 9, 10, 11, 12,
54 24, 25, 26, 27, 28,
55 },
56 .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
57};
58
59static const unsigned char ffchars[] = {
60 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
61 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
62 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
63 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
64 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
65 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
66 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
67 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
68};
69
70/**
71 * onenand_readw - [OneNAND Interface] Read OneNAND register
72 * @param addr address to read
73 *
74 * Read OneNAND register
75 */
76static unsigned short onenand_readw(void __iomem *addr)
77{
78 return readw(addr);
79}
80
81/**
82 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
83 * @param value value to write
84 * @param addr address to write
85 *
86 * Write OneNAND register with value
87 */
88static void onenand_writew(unsigned short value, void __iomem *addr)
89{
90 writew(value, addr);
91}
92
93/**
94 * onenand_block_address - [DEFAULT] Get block address
83a36838 95 * @param this onenand chip data structure
cd5f6346
KP
96 * @param block the block
97 * @return translated block address if DDP, otherwise same
98 *
99 * Setup Start Address 1 Register (F100h)
100 */
83a36838 101static int onenand_block_address(struct onenand_chip *this, int block)
cd5f6346 102{
738d61f5
KP
103 /* Device Flash Core select, NAND Flash Block Address */
104 if (block & this->density_mask)
105 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
cd5f6346
KP
106
107 return block;
108}
109
110/**
111 * onenand_bufferram_address - [DEFAULT] Get bufferram address
83a36838 112 * @param this onenand chip data structure
cd5f6346
KP
113 * @param block the block
114 * @return set DBS value if DDP, otherwise 0
115 *
116 * Setup Start Address 2 Register (F101h) for DDP
117 */
83a36838 118static int onenand_bufferram_address(struct onenand_chip *this, int block)
cd5f6346 119{
738d61f5
KP
120 /* Device BufferRAM Select */
121 if (block & this->density_mask)
122 return ONENAND_DDP_CHIP1;
cd5f6346 123
738d61f5 124 return ONENAND_DDP_CHIP0;
cd5f6346
KP
125}
126
127/**
128 * onenand_page_address - [DEFAULT] Get page address
129 * @param page the page address
130 * @param sector the sector address
131 * @return combined page and sector address
132 *
133 * Setup Start Address 8 Register (F107h)
134 */
135static int onenand_page_address(int page, int sector)
136{
137 /* Flash Page Address, Flash Sector Address */
138 int fpa, fsa;
139
140 fpa = page & ONENAND_FPA_MASK;
141 fsa = sector & ONENAND_FSA_MASK;
142
143 return ((fpa << ONENAND_FPA_SHIFT) | fsa);
144}
145
146/**
147 * onenand_buffer_address - [DEFAULT] Get buffer address
148 * @param dataram1 DataRAM index
149 * @param sectors the sector address
150 * @param count the number of sectors
151 * @return the start buffer value
152 *
153 * Setup Start Buffer Register (F200h)
154 */
155static int onenand_buffer_address(int dataram1, int sectors, int count)
156{
157 int bsa, bsc;
158
159 /* BufferRAM Sector Address */
160 bsa = sectors & ONENAND_BSA_MASK;
161
162 if (dataram1)
163 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
164 else
165 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
166
167 /* BufferRAM Sector Count */
168 bsc = count & ONENAND_BSC_MASK;
169
170 return ((bsa << ONENAND_BSA_SHIFT) | bsc);
171}
172
e71f04fc
KP
173/**
174 * onenand_get_density - [DEFAULT] Get OneNAND density
175 * @param dev_id OneNAND device ID
176 *
177 * Get OneNAND density from device ID
178 */
179static inline int onenand_get_density(int dev_id)
180{
181 int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
182 return (density & ONENAND_DEVICE_DENSITY_MASK);
183}
184
cd5f6346
KP
185/**
186 * onenand_command - [DEFAULT] Send command to OneNAND device
187 * @param mtd MTD device structure
188 * @param cmd the command to be sent
189 * @param addr offset to read from or write to
190 * @param len number of bytes to read or write
191 *
192 * Send command to OneNAND device. This function is used for middle/large page
193 * devices (1KB/2KB Bytes per page)
194 */
195static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
196{
197 struct onenand_chip *this = mtd->priv;
b21b72cf 198 int value, block, page;
cd5f6346
KP
199
200 /* Address translation */
201 switch (cmd) {
202 case ONENAND_CMD_UNLOCK:
203 case ONENAND_CMD_LOCK:
204 case ONENAND_CMD_LOCK_TIGHT:
28b79ff9 205 case ONENAND_CMD_UNLOCK_ALL:
cd5f6346
KP
206 block = -1;
207 page = -1;
208 break;
209
210 case ONENAND_CMD_ERASE:
211 case ONENAND_CMD_BUFFERRAM:
493c6460 212 case ONENAND_CMD_OTP_ACCESS:
cd5f6346
KP
213 block = (int) (addr >> this->erase_shift);
214 page = -1;
215 break;
216
217 default:
218 block = (int) (addr >> this->erase_shift);
219 page = (int) (addr >> this->page_shift);
ee9745fc
KP
220
221 if (ONENAND_IS_2PLANE(this)) {
222 /* Make the even block number */
223 block &= ~1;
224 /* Is it the odd plane? */
225 if (addr & this->writesize)
226 block++;
227 page >>= 1;
228 }
cd5f6346
KP
229 page &= this->page_mask;
230 break;
231 }
232
233 /* NOTE: The setting order of the registers is very important! */
234 if (cmd == ONENAND_CMD_BUFFERRAM) {
235 /* Select DataRAM for DDP */
83a36838 236 value = onenand_bufferram_address(this, block);
cd5f6346
KP
237 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
238
ee9745fc
KP
239 if (ONENAND_IS_2PLANE(this))
240 /* It is always BufferRAM0 */
241 ONENAND_SET_BUFFERRAM0(this);
242 else
243 /* Switch to the next data buffer */
244 ONENAND_SET_NEXT_BUFFERRAM(this);
cd5f6346
KP
245
246 return 0;
247 }
248
249 if (block != -1) {
250 /* Write 'DFS, FBA' of Flash */
83a36838 251 value = onenand_block_address(this, block);
cd5f6346 252 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
3cecf69e 253
b21b72cf
KP
254 /* Select DataRAM for DDP */
255 value = onenand_bufferram_address(this, block);
256 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
cd5f6346
KP
257 }
258
259 if (page != -1) {
60d84f97
KP
260 /* Now we use page size operation */
261 int sectors = 4, count = 4;
cd5f6346
KP
262 int dataram;
263
264 switch (cmd) {
265 case ONENAND_CMD_READ:
266 case ONENAND_CMD_READOOB:
267 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
cd5f6346
KP
268 break;
269
270 default:
ee9745fc
KP
271 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
272 cmd = ONENAND_CMD_2X_PROG;
cd5f6346
KP
273 dataram = ONENAND_CURRENT_BUFFERRAM(this);
274 break;
275 }
276
277 /* Write 'FPA, FSA' of Flash */
278 value = onenand_page_address(page, sectors);
279 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
280
281 /* Write 'BSA, BSC' of DataRAM */
282 value = onenand_buffer_address(dataram, sectors, count);
283 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
cd5f6346
KP
284 }
285
286 /* Interrupt clear */
287 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
288
289 /* Write command */
290 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
291
292 return 0;
293}
294
295/**
296 * onenand_wait - [DEFAULT] wait until the command is done
297 * @param mtd MTD device structure
298 * @param state state to select the max. timeout value
299 *
300 * Wait for command done. This applies to all OneNAND command
301 * Read can take up to 30us, erase up to 2ms and program up to 350us
302 * according to general OneNAND specs
303 */
304static int onenand_wait(struct mtd_info *mtd, int state)
305{
306 struct onenand_chip * this = mtd->priv;
307 unsigned long timeout;
308 unsigned int flags = ONENAND_INT_MASTER;
309 unsigned int interrupt = 0;
2fd32d4a 310 unsigned int ctrl;
cd5f6346
KP
311
312 /* The 20 msec is enough */
313 timeout = jiffies + msecs_to_jiffies(20);
314 while (time_before(jiffies, timeout)) {
315 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
316
317 if (interrupt & flags)
318 break;
319
320 if (state != FL_READING)
321 cond_resched();
322 }
323 /* To get correct interrupt status in timeout case */
324 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
325
326 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
327
83973b87
KP
328 /*
329 * In the Spec. it checks the controller status first
330 * However if you get the correct information in case of
331 * power off recovery (POR) test, it should read ECC status first
332 */
cd5f6346 333 if (interrupt & ONENAND_INT_READ) {
2fd32d4a 334 int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
f4f91ac3 335 if (ecc) {
b3c9f8bf 336 if (ecc & ONENAND_ECC_2BIT_ALL) {
49dc08ee 337 printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
f4f91ac3 338 mtd->ecc_stats.failed++;
30a7eb29 339 return -EBADMSG;
49dc08ee
AB
340 } else if (ecc & ONENAND_ECC_1BIT_ALL) {
341 printk(KERN_INFO "onenand_wait: correctable ECC error = 0x%04x\n", ecc);
f4f91ac3 342 mtd->ecc_stats.corrected++;
49dc08ee 343 }
cd5f6346 344 }
9d032801
AH
345 } else if (state == FL_READING) {
346 printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
347 return -EIO;
cd5f6346
KP
348 }
349
83973b87
KP
350 /* If there's controller error, it's a real error */
351 if (ctrl & ONENAND_CTRL_ERROR) {
352 printk(KERN_ERR "onenand_wait: controller error = 0x%04x\n",
353 ctrl);
354 if (ctrl & ONENAND_CTRL_LOCK)
355 printk(KERN_ERR "onenand_wait: it's locked error.\n");
356 return -EIO;
357 }
358
cd5f6346
KP
359 return 0;
360}
361
2c22120f
KP
362/*
363 * onenand_interrupt - [DEFAULT] onenand interrupt handler
364 * @param irq onenand interrupt number
365 * @param dev_id interrupt data
366 *
367 * complete the work
368 */
369static irqreturn_t onenand_interrupt(int irq, void *data)
370{
06efcad0 371 struct onenand_chip *this = data;
2c22120f
KP
372
373 /* To handle shared interrupt */
374 if (!this->complete.done)
375 complete(&this->complete);
376
377 return IRQ_HANDLED;
378}
379
380/*
381 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
382 * @param mtd MTD device structure
383 * @param state state to select the max. timeout value
384 *
385 * Wait for command done.
386 */
387static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
388{
389 struct onenand_chip *this = mtd->priv;
390
2c22120f
KP
391 wait_for_completion(&this->complete);
392
393 return onenand_wait(mtd, state);
394}
395
396/*
397 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
398 * @param mtd MTD device structure
399 * @param state state to select the max. timeout value
400 *
401 * Try interrupt based wait (It is used one-time)
402 */
403static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
404{
405 struct onenand_chip *this = mtd->priv;
406 unsigned long remain, timeout;
407
408 /* We use interrupt wait first */
409 this->wait = onenand_interrupt_wait;
410
2c22120f
KP
411 timeout = msecs_to_jiffies(100);
412 remain = wait_for_completion_timeout(&this->complete, timeout);
413 if (!remain) {
414 printk(KERN_INFO "OneNAND: There's no interrupt. "
415 "We use the normal wait\n");
416
417 /* Release the irq */
418 free_irq(this->irq, this);
c9ac5977 419
2c22120f
KP
420 this->wait = onenand_wait;
421 }
422
423 return onenand_wait(mtd, state);
424}
425
426/*
427 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
428 * @param mtd MTD device structure
429 *
430 * There's two method to wait onenand work
431 * 1. polling - read interrupt status register
432 * 2. interrupt - use the kernel interrupt method
433 */
434static void onenand_setup_wait(struct mtd_info *mtd)
435{
436 struct onenand_chip *this = mtd->priv;
437 int syscfg;
438
439 init_completion(&this->complete);
440
441 if (this->irq <= 0) {
442 this->wait = onenand_wait;
443 return;
444 }
445
446 if (request_irq(this->irq, &onenand_interrupt,
447 IRQF_SHARED, "onenand", this)) {
448 /* If we can't get irq, use the normal wait */
449 this->wait = onenand_wait;
450 return;
451 }
452
453 /* Enable interrupt */
454 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
455 syscfg |= ONENAND_SYS_CFG1_IOBE;
456 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
457
458 this->wait = onenand_try_interrupt_wait;
459}
460
cd5f6346
KP
461/**
462 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
463 * @param mtd MTD data structure
464 * @param area BufferRAM area
465 * @return offset given area
466 *
467 * Return BufferRAM offset given area
468 */
469static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
470{
471 struct onenand_chip *this = mtd->priv;
472
473 if (ONENAND_CURRENT_BUFFERRAM(this)) {
ee9745fc 474 /* Note: the 'this->writesize' is a real page size */
cd5f6346 475 if (area == ONENAND_DATARAM)
ee9745fc 476 return this->writesize;
cd5f6346
KP
477 if (area == ONENAND_SPARERAM)
478 return mtd->oobsize;
479 }
480
481 return 0;
482}
483
484/**
485 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
486 * @param mtd MTD data structure
487 * @param area BufferRAM area
488 * @param buffer the databuffer to put/get data
489 * @param offset offset to read from or write to
490 * @param count number of bytes to read/write
491 *
492 * Read the BufferRAM area
493 */
494static int onenand_read_bufferram(struct mtd_info *mtd, int area,
495 unsigned char *buffer, int offset, size_t count)
496{
497 struct onenand_chip *this = mtd->priv;
498 void __iomem *bufferram;
499
500 bufferram = this->base + area;
501
502 bufferram += onenand_bufferram_offset(mtd, area);
503
9c01f87d
KP
504 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
505 unsigned short word;
506
507 /* Align with word(16-bit) size */
508 count--;
509
510 /* Read word and save byte */
511 word = this->read_word(bufferram + offset + count);
512 buffer[count] = (word & 0xff);
513 }
514
cd5f6346
KP
515 memcpy(buffer, bufferram + offset, count);
516
517 return 0;
518}
519
52b0eea7
KP
520/**
521 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
522 * @param mtd MTD data structure
523 * @param area BufferRAM area
524 * @param buffer the databuffer to put/get data
525 * @param offset offset to read from or write to
526 * @param count number of bytes to read/write
527 *
528 * Read the BufferRAM area with Sync. Burst Mode
529 */
530static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
531 unsigned char *buffer, int offset, size_t count)
532{
533 struct onenand_chip *this = mtd->priv;
534 void __iomem *bufferram;
535
536 bufferram = this->base + area;
537
538 bufferram += onenand_bufferram_offset(mtd, area);
539
540 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
541
9c01f87d
KP
542 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
543 unsigned short word;
544
545 /* Align with word(16-bit) size */
546 count--;
547
548 /* Read word and save byte */
549 word = this->read_word(bufferram + offset + count);
550 buffer[count] = (word & 0xff);
551 }
552
52b0eea7
KP
553 memcpy(buffer, bufferram + offset, count);
554
555 this->mmcontrol(mtd, 0);
556
557 return 0;
558}
559
cd5f6346
KP
560/**
561 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
562 * @param mtd MTD data structure
563 * @param area BufferRAM area
564 * @param buffer the databuffer to put/get data
565 * @param offset offset to read from or write to
566 * @param count number of bytes to read/write
567 *
568 * Write the BufferRAM area
569 */
570static int onenand_write_bufferram(struct mtd_info *mtd, int area,
571 const unsigned char *buffer, int offset, size_t count)
572{
573 struct onenand_chip *this = mtd->priv;
574 void __iomem *bufferram;
575
576 bufferram = this->base + area;
577
578 bufferram += onenand_bufferram_offset(mtd, area);
579
9c01f87d
KP
580 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
581 unsigned short word;
582 int byte_offset;
583
584 /* Align with word(16-bit) size */
585 count--;
586
587 /* Calculate byte access offset */
588 byte_offset = offset + count;
589
590 /* Read word and save byte */
591 word = this->read_word(bufferram + byte_offset);
592 word = (word & ~0xff) | buffer[count];
593 this->write_word(word, bufferram + byte_offset);
594 }
595
cd5f6346
KP
596 memcpy(bufferram + offset, buffer, count);
597
598 return 0;
599}
600
ee9745fc
KP
601/**
602 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
603 * @param mtd MTD data structure
604 * @param addr address to check
605 * @return blockpage address
606 *
607 * Get blockpage address at 2x program mode
608 */
609static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
610{
611 struct onenand_chip *this = mtd->priv;
612 int blockpage, block, page;
613
614 /* Calculate the even block number */
615 block = (int) (addr >> this->erase_shift) & ~1;
616 /* Is it the odd plane? */
617 if (addr & this->writesize)
618 block++;
619 page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
620 blockpage = (block << 7) | page;
621
622 return blockpage;
623}
624
cd5f6346
KP
625/**
626 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
627 * @param mtd MTD data structure
628 * @param addr address to check
d5c5e78a 629 * @return 1 if there are valid data, otherwise 0
cd5f6346
KP
630 *
631 * Check bufferram if there is data we required
632 */
633static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
634{
635 struct onenand_chip *this = mtd->priv;
cde36b37 636 int blockpage, found = 0;
abf3c0f2 637 unsigned int i;
d5c5e78a 638
ee9745fc
KP
639 if (ONENAND_IS_2PLANE(this))
640 blockpage = onenand_get_2x_blockpage(mtd, addr);
641 else
642 blockpage = (int) (addr >> this->page_shift);
cd5f6346 643
abf3c0f2 644 /* Is there valid data? */
cd5f6346 645 i = ONENAND_CURRENT_BUFFERRAM(this);
abf3c0f2 646 if (this->bufferram[i].blockpage == blockpage)
cde36b37
AH
647 found = 1;
648 else {
649 /* Check another BufferRAM */
650 i = ONENAND_NEXT_BUFFERRAM(this);
651 if (this->bufferram[i].blockpage == blockpage) {
652 ONENAND_SET_NEXT_BUFFERRAM(this);
653 found = 1;
654 }
655 }
cd5f6346 656
cde36b37
AH
657 if (found && ONENAND_IS_DDP(this)) {
658 /* Select DataRAM for DDP */
659 int block = (int) (addr >> this->erase_shift);
660 int value = onenand_bufferram_address(this, block);
661 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
abf3c0f2 662 }
cd5f6346 663
cde36b37 664 return found;
cd5f6346
KP
665}
666
667/**
668 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
669 * @param mtd MTD data structure
670 * @param addr address to update
671 * @param valid valid flag
672 *
673 * Update BufferRAM information
674 */
abf3c0f2 675static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
cd5f6346
KP
676 int valid)
677{
678 struct onenand_chip *this = mtd->priv;
abf3c0f2
KP
679 int blockpage;
680 unsigned int i;
d5c5e78a 681
ee9745fc
KP
682 if (ONENAND_IS_2PLANE(this))
683 blockpage = onenand_get_2x_blockpage(mtd, addr);
684 else
685 blockpage = (int) (addr >> this->page_shift);
cd5f6346 686
abf3c0f2
KP
687 /* Invalidate another BufferRAM */
688 i = ONENAND_NEXT_BUFFERRAM(this);
5b4246f1 689 if (this->bufferram[i].blockpage == blockpage)
abf3c0f2 690 this->bufferram[i].blockpage = -1;
cd5f6346
KP
691
692 /* Update BufferRAM */
693 i = ONENAND_CURRENT_BUFFERRAM(this);
abf3c0f2
KP
694 if (valid)
695 this->bufferram[i].blockpage = blockpage;
696 else
697 this->bufferram[i].blockpage = -1;
cd5f6346
KP
698}
699
480b9dfb
AH
700/**
701 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
702 * @param mtd MTD data structure
703 * @param addr start address to invalidate
704 * @param len length to invalidate
705 *
706 * Invalidate BufferRAM information
707 */
708static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
709 unsigned int len)
710{
711 struct onenand_chip *this = mtd->priv;
712 int i;
713 loff_t end_addr = addr + len;
714
715 /* Invalidate BufferRAM */
716 for (i = 0; i < MAX_BUFFERRAM; i++) {
717 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
718 if (buf_addr >= addr && buf_addr < end_addr)
719 this->bufferram[i].blockpage = -1;
720 }
721}
722
cd5f6346
KP
723/**
724 * onenand_get_device - [GENERIC] Get chip for selected access
725 * @param mtd MTD device structure
726 * @param new_state the state which is requested
727 *
728 * Get the device and lock it for exclusive access
729 */
a41371eb 730static int onenand_get_device(struct mtd_info *mtd, int new_state)
cd5f6346
KP
731{
732 struct onenand_chip *this = mtd->priv;
733 DECLARE_WAITQUEUE(wait, current);
734
735 /*
736 * Grab the lock and see if the device is available
737 */
738 while (1) {
739 spin_lock(&this->chip_lock);
740 if (this->state == FL_READY) {
741 this->state = new_state;
742 spin_unlock(&this->chip_lock);
743 break;
744 }
a41371eb
KP
745 if (new_state == FL_PM_SUSPENDED) {
746 spin_unlock(&this->chip_lock);
747 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
748 }
cd5f6346
KP
749 set_current_state(TASK_UNINTERRUPTIBLE);
750 add_wait_queue(&this->wq, &wait);
751 spin_unlock(&this->chip_lock);
752 schedule();
753 remove_wait_queue(&this->wq, &wait);
754 }
a41371eb
KP
755
756 return 0;
cd5f6346
KP
757}
758
759/**
760 * onenand_release_device - [GENERIC] release chip
761 * @param mtd MTD device structure
762 *
763 * Deselect, release chip lock and wake up anyone waiting on the device
764 */
765static void onenand_release_device(struct mtd_info *mtd)
766{
767 struct onenand_chip *this = mtd->priv;
768
769 /* Release the chip */
770 spin_lock(&this->chip_lock);
771 this->state = FL_READY;
772 wake_up(&this->wq);
773 spin_unlock(&this->chip_lock);
774}
775
776/**
d15057b7
KP
777 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
778 * @param mtd MTD device structure
779 * @param buf destination address
780 * @param column oob offset to read from
781 * @param thislen oob length to read
782 */
783static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
784 int thislen)
785{
786 struct onenand_chip *this = mtd->priv;
787 struct nand_oobfree *free;
788 int readcol = column;
789 int readend = column + thislen;
790 int lastgap = 0;
791 unsigned int i;
792 uint8_t *oob_buf = this->oob_buf;
793
794 free = this->ecclayout->oobfree;
795 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
796 if (readcol >= lastgap)
797 readcol += free->offset - lastgap;
798 if (readend >= lastgap)
799 readend += free->offset - lastgap;
800 lastgap = free->offset + free->length;
801 }
802 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
803 free = this->ecclayout->oobfree;
804 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
805 int free_end = free->offset + free->length;
806 if (free->offset < readend && free_end > readcol) {
807 int st = max_t(int,free->offset,readcol);
808 int ed = min_t(int,free_end,readend);
809 int n = ed - st;
810 memcpy(buf, oob_buf + st, n);
811 buf += n;
812 } else if (column == 0)
813 break;
814 }
815 return 0;
816}
817
818/**
49dc08ee 819 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
cd5f6346
KP
820 * @param mtd MTD device structure
821 * @param from offset to read from
d15057b7 822 * @param ops: oob operation description structure
cd5f6346 823 *
d15057b7
KP
824 * OneNAND read main and/or out-of-band data
825 */
49dc08ee 826static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
d15057b7 827 struct mtd_oob_ops *ops)
cd5f6346
KP
828{
829 struct onenand_chip *this = mtd->priv;
f4f91ac3 830 struct mtd_ecc_stats stats;
d15057b7
KP
831 size_t len = ops->len;
832 size_t ooblen = ops->ooblen;
833 u_char *buf = ops->datbuf;
834 u_char *oobbuf = ops->oobbuf;
835 int read = 0, column, thislen;
836 int oobread = 0, oobcolumn, thisooblen, oobsize;
0fc2ccea 837 int ret = 0, boundary = 0;
ee9745fc 838 int writesize = this->writesize;
cd5f6346 839
49dc08ee 840 DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
d15057b7
KP
841
842 if (ops->mode == MTD_OOB_AUTO)
843 oobsize = this->ecclayout->oobavail;
844 else
845 oobsize = mtd->oobsize;
846
847 oobcolumn = from & (mtd->oobsize - 1);
cd5f6346
KP
848
849 /* Do not allow reads past end of device */
850 if ((from + len) > mtd->size) {
49dc08ee 851 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
d15057b7
KP
852 ops->retlen = 0;
853 ops->oobretlen = 0;
cd5f6346
KP
854 return -EINVAL;
855 }
856
f4f91ac3 857 stats = mtd->ecc_stats;
61a7e198 858
a8de85d5
AH
859 /* Read-while-load method */
860
861 /* Do first load to bufferRAM */
862 if (read < len) {
863 if (!onenand_check_bufferram(mtd, from)) {
ee9745fc 864 this->command(mtd, ONENAND_CMD_READ, from, writesize);
a8de85d5
AH
865 ret = this->wait(mtd, FL_READING);
866 onenand_update_bufferram(mtd, from, !ret);
5f4d47d5
AH
867 if (ret == -EBADMSG)
868 ret = 0;
a8de85d5
AH
869 }
870 }
871
ee9745fc
KP
872 thislen = min_t(int, writesize, len - read);
873 column = from & (writesize - 1);
874 if (column + thislen > writesize)
875 thislen = writesize - column;
a8de85d5
AH
876
877 while (!ret) {
878 /* If there is more to load then start next load */
879 from += thislen;
880 if (read + thislen < len) {
ee9745fc 881 this->command(mtd, ONENAND_CMD_READ, from, writesize);
0fc2ccea
AH
882 /*
883 * Chip boundary handling in DDP
884 * Now we issued chip 1 read and pointed chip 1
885 * bufferam so we have to point chip 0 bufferam.
886 */
738d61f5
KP
887 if (ONENAND_IS_DDP(this) &&
888 unlikely(from == (this->chipsize >> 1))) {
889 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
0fc2ccea
AH
890 boundary = 1;
891 } else
892 boundary = 0;
a8de85d5
AH
893 ONENAND_SET_PREV_BUFFERRAM(this);
894 }
895 /* While load is going, read from last bufferRAM */
896 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
d15057b7
KP
897
898 /* Read oob area if needed */
899 if (oobbuf) {
900 thisooblen = oobsize - oobcolumn;
901 thisooblen = min_t(int, thisooblen, ooblen - oobread);
902
903 if (ops->mode == MTD_OOB_AUTO)
904 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
905 else
906 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
907 oobread += thisooblen;
908 oobbuf += thisooblen;
909 oobcolumn = 0;
910 }
911
a8de85d5
AH
912 /* See if we are done */
913 read += thislen;
914 if (read == len)
915 break;
916 /* Set up for next read from bufferRAM */
0fc2ccea 917 if (unlikely(boundary))
738d61f5 918 this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
a8de85d5
AH
919 ONENAND_SET_NEXT_BUFFERRAM(this);
920 buf += thislen;
ee9745fc 921 thislen = min_t(int, writesize, len - read);
a8de85d5
AH
922 column = 0;
923 cond_resched();
924 /* Now wait for load */
925 ret = this->wait(mtd, FL_READING);
926 onenand_update_bufferram(mtd, from, !ret);
5f4d47d5
AH
927 if (ret == -EBADMSG)
928 ret = 0;
a8de85d5 929 }
cd5f6346 930
cd5f6346
KP
931 /*
932 * Return success, if no ECC failures, else -EBADMSG
933 * fs driver will take care of that, because
934 * retlen == desired len and result == -EBADMSG
935 */
d15057b7
KP
936 ops->retlen = read;
937 ops->oobretlen = oobread;
f4f91ac3 938
a8de85d5
AH
939 if (ret)
940 return ret;
941
5f4d47d5
AH
942 if (mtd->ecc_stats.failed - stats.failed)
943 return -EBADMSG;
944
f4f91ac3 945 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
cd5f6346
KP
946}
947
cd5f6346 948/**
49dc08ee 949 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
cd5f6346
KP
950 * @param mtd MTD device structure
951 * @param from offset to read from
d15057b7 952 * @param ops: oob operation description structure
cd5f6346
KP
953 *
954 * OneNAND read out-of-band data from the spare area
955 */
49dc08ee 956static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
12f77c9e 957 struct mtd_oob_ops *ops)
cd5f6346
KP
958{
959 struct onenand_chip *this = mtd->priv;
5f4d47d5 960 struct mtd_ecc_stats stats;
a5e7c7b4 961 int read = 0, thislen, column, oobsize;
12f77c9e
KP
962 size_t len = ops->ooblen;
963 mtd_oob_mode_t mode = ops->mode;
964 u_char *buf = ops->oobbuf;
cd5f6346
KP
965 int ret = 0;
966
12f77c9e
KP
967 from += ops->ooboffs;
968
49dc08ee 969 DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
cd5f6346
KP
970
971 /* Initialize return length value */
12f77c9e 972 ops->oobretlen = 0;
cd5f6346 973
a5e7c7b4
AH
974 if (mode == MTD_OOB_AUTO)
975 oobsize = this->ecclayout->oobavail;
976 else
977 oobsize = mtd->oobsize;
978
979 column = from & (mtd->oobsize - 1);
980
981 if (unlikely(column >= oobsize)) {
49dc08ee 982 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
a5e7c7b4
AH
983 return -EINVAL;
984 }
985
cd5f6346 986 /* Do not allow reads past end of device */
a5e7c7b4
AH
987 if (unlikely(from >= mtd->size ||
988 column + len > ((mtd->size >> this->page_shift) -
989 (from >> this->page_shift)) * oobsize)) {
49dc08ee 990 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
cd5f6346
KP
991 return -EINVAL;
992 }
993
5f4d47d5
AH
994 stats = mtd->ecc_stats;
995
cd5f6346 996 while (read < len) {
61a7e198
AB
997 cond_resched();
998
a5e7c7b4 999 thislen = oobsize - column;
cd5f6346
KP
1000 thislen = min_t(int, thislen, len);
1001
1002 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
1003
1004 onenand_update_bufferram(mtd, from, 0);
1005
1006 ret = this->wait(mtd, FL_READING);
5f4d47d5
AH
1007 if (ret && ret != -EBADMSG) {
1008 printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1009 break;
1010 }
cd5f6346 1011
a5e7c7b4
AH
1012 if (mode == MTD_OOB_AUTO)
1013 onenand_transfer_auto_oob(mtd, buf, column, thislen);
1014 else
1015 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
cd5f6346
KP
1016
1017 read += thislen;
1018
1019 if (read == len)
1020 break;
1021
cd5f6346
KP
1022 buf += thislen;
1023
1024 /* Read more? */
1025 if (read < len) {
1026 /* Page size */
28318776 1027 from += mtd->writesize;
cd5f6346
KP
1028 column = 0;
1029 }
1030 }
1031
12f77c9e 1032 ops->oobretlen = read;
5f4d47d5
AH
1033
1034 if (ret)
1035 return ret;
1036
1037 if (mtd->ecc_stats.failed - stats.failed)
1038 return -EBADMSG;
1039
1040 return 0;
cd5f6346
KP
1041}
1042
8593fbc6 1043/**
d15057b7
KP
1044 * onenand_read - [MTD Interface] Read data from flash
1045 * @param mtd MTD device structure
1046 * @param from offset to read from
1047 * @param len number of bytes to read
1048 * @param retlen pointer to variable to store the number of read bytes
1049 * @param buf the databuffer to put data
1050 *
1051 * Read with ecc
1052*/
1053static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1054 size_t *retlen, u_char *buf)
1055{
1056 struct mtd_oob_ops ops = {
1057 .len = len,
1058 .ooblen = 0,
1059 .datbuf = buf,
1060 .oobbuf = NULL,
1061 };
1062 int ret;
1063
49dc08ee
AB
1064 onenand_get_device(mtd, FL_READING);
1065 ret = onenand_read_ops_nolock(mtd, from, &ops);
1066 onenand_release_device(mtd);
d15057b7 1067
49dc08ee 1068 *retlen = ops.retlen;
d15057b7
KP
1069 return ret;
1070}
1071
1072/**
1073 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
e3da8067
KP
1074 * @param mtd: MTD device structure
1075 * @param from: offset to read from
1076 * @param ops: oob operation description structure
d15057b7
KP
1077
1078 * Read main and/or out-of-band
8593fbc6
TG
1079 */
1080static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1081 struct mtd_oob_ops *ops)
1082{
49dc08ee
AB
1083 int ret;
1084
4f4fad27 1085 switch (ops->mode) {
a5e7c7b4
AH
1086 case MTD_OOB_PLACE:
1087 case MTD_OOB_AUTO:
1088 break;
1089 case MTD_OOB_RAW:
4f4fad27 1090 /* Not implemented yet */
a5e7c7b4
AH
1091 default:
1092 return -EINVAL;
1093 }
d15057b7 1094
49dc08ee 1095 onenand_get_device(mtd, FL_READING);
d15057b7 1096 if (ops->datbuf)
49dc08ee
AB
1097 ret = onenand_read_ops_nolock(mtd, from, ops);
1098 else
1099 ret = onenand_read_oob_nolock(mtd, from, ops);
1100 onenand_release_device(mtd);
d15057b7 1101
49dc08ee 1102 return ret;
8593fbc6
TG
1103}
1104
211ac75f
KP
1105/**
1106 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1107 * @param mtd MTD device structure
1108 * @param state state to select the max. timeout value
1109 *
1110 * Wait for command done.
1111 */
1112static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1113{
1114 struct onenand_chip *this = mtd->priv;
1115 unsigned long timeout;
1116 unsigned int interrupt;
1117 unsigned int ctrl;
1118
1119 /* The 20 msec is enough */
1120 timeout = jiffies + msecs_to_jiffies(20);
1121 while (time_before(jiffies, timeout)) {
1122 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1123 if (interrupt & ONENAND_INT_MASTER)
1124 break;
1125 }
1126 /* To get correct interrupt status in timeout case */
1127 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1128 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1129
211ac75f
KP
1130 if (interrupt & ONENAND_INT_READ) {
1131 int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
83973b87
KP
1132 if (ecc & ONENAND_ECC_2BIT_ALL) {
1133 printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1134 ", controller error 0x%04x\n", ecc, ctrl);
211ac75f 1135 return ONENAND_BBT_READ_ERROR;
83973b87 1136 }
211ac75f
KP
1137 } else {
1138 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1139 "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1140 return ONENAND_BBT_READ_FATAL_ERROR;
1141 }
1142
83973b87
KP
1143 /* Initial bad block case: 0x2400 or 0x0400 */
1144 if (ctrl & ONENAND_CTRL_ERROR) {
1145 printk(KERN_DEBUG "onenand_bbt_wait: "
1146 "controller error = 0x%04x\n", ctrl);
1147 return ONENAND_BBT_READ_ERROR;
1148 }
1149
211ac75f
KP
1150 return 0;
1151}
1152
1153/**
1154 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1155 * @param mtd MTD device structure
1156 * @param from offset to read from
e3da8067 1157 * @param ops oob operation description structure
211ac75f
KP
1158 *
1159 * OneNAND read out-of-band data from the spare area for bbt scan
1160 */
1161int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1162 struct mtd_oob_ops *ops)
1163{
1164 struct onenand_chip *this = mtd->priv;
1165 int read = 0, thislen, column;
1166 int ret = 0;
1167 size_t len = ops->ooblen;
1168 u_char *buf = ops->oobbuf;
1169
5785bdd6 1170 DEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
211ac75f
KP
1171
1172 /* Initialize return value */
1173 ops->oobretlen = 0;
1174
1175 /* Do not allow reads past end of device */
1176 if (unlikely((from + len) > mtd->size)) {
1177 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1178 return ONENAND_BBT_READ_FATAL_ERROR;
1179 }
1180
1181 /* Grab the lock and see if the device is available */
1182 onenand_get_device(mtd, FL_READING);
1183
1184 column = from & (mtd->oobsize - 1);
1185
1186 while (read < len) {
1187 cond_resched();
1188
1189 thislen = mtd->oobsize - column;
1190 thislen = min_t(int, thislen, len);
1191
1192 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
1193
1194 onenand_update_bufferram(mtd, from, 0);
1195
1196 ret = onenand_bbt_wait(mtd, FL_READING);
1197 if (ret)
1198 break;
1199
1200 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1201 read += thislen;
1202 if (read == len)
1203 break;
1204
1205 buf += thislen;
1206
1207 /* Read more? */
1208 if (read < len) {
1209 /* Update Page size */
ee9745fc 1210 from += this->writesize;
211ac75f
KP
1211 column = 0;
1212 }
1213 }
1214
1215 /* Deselect and wake up anyone waiting on the device */
1216 onenand_release_device(mtd);
1217
1218 ops->oobretlen = read;
1219 return ret;
1220}
1221
cd5f6346 1222#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
8e6ec690
KP
1223/**
1224 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1225 * @param mtd MTD device structure
1226 * @param buf the databuffer to verify
1227 * @param to offset to read from
8e6ec690 1228 */
a5e7c7b4 1229static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
8e6ec690
KP
1230{
1231 struct onenand_chip *this = mtd->priv;
69d79186 1232 u_char *oob_buf = this->oob_buf;
8e6ec690
KP
1233 int status, i;
1234
1235 this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
1236 onenand_update_bufferram(mtd, to, 0);
1237 status = this->wait(mtd, FL_READING);
1238 if (status)
1239 return status;
1240
69d79186 1241 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
91014e9b 1242 for (i = 0; i < mtd->oobsize; i++)
69d79186 1243 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
8e6ec690
KP
1244 return -EBADMSG;
1245
1246 return 0;
1247}
1248
cd5f6346 1249/**
8b29c0b6
AH
1250 * onenand_verify - [GENERIC] verify the chip contents after a write
1251 * @param mtd MTD device structure
1252 * @param buf the databuffer to verify
1253 * @param addr offset to read from
1254 * @param len number of bytes to read and compare
cd5f6346 1255 */
8b29c0b6 1256static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
cd5f6346
KP
1257{
1258 struct onenand_chip *this = mtd->priv;
8b29c0b6 1259 void __iomem *dataram;
cd5f6346 1260 int ret = 0;
8b29c0b6 1261 int thislen, column;
cd5f6346 1262
8b29c0b6 1263 while (len != 0) {
ee9745fc
KP
1264 thislen = min_t(int, this->writesize, len);
1265 column = addr & (this->writesize - 1);
1266 if (column + thislen > this->writesize)
1267 thislen = this->writesize - column;
60d84f97 1268
ee9745fc 1269 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
cd5f6346 1270
8b29c0b6
AH
1271 onenand_update_bufferram(mtd, addr, 0);
1272
1273 ret = this->wait(mtd, FL_READING);
1274 if (ret)
1275 return ret;
cd5f6346 1276
8b29c0b6 1277 onenand_update_bufferram(mtd, addr, 1);
cd5f6346 1278
8b29c0b6
AH
1279 dataram = this->base + ONENAND_DATARAM;
1280 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
cd5f6346 1281
8b29c0b6
AH
1282 if (memcmp(buf, dataram + column, thislen))
1283 return -EBADMSG;
1284
1285 len -= thislen;
1286 buf += thislen;
1287 addr += thislen;
1288 }
d5c5e78a 1289
cd5f6346
KP
1290 return 0;
1291}
1292#else
8b29c0b6 1293#define onenand_verify(...) (0)
8e6ec690 1294#define onenand_verify_oob(...) (0)
cd5f6346
KP
1295#endif
1296
60d84f97 1297#define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
cd5f6346 1298
6c77fd64
RP
1299static void onenand_panic_wait(struct mtd_info *mtd)
1300{
1301 struct onenand_chip *this = mtd->priv;
1302 unsigned int interrupt;
1303 int i;
1304
1305 for (i = 0; i < 2000; i++) {
1306 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1307 if (interrupt & ONENAND_INT_MASTER)
1308 break;
1309 udelay(10);
1310 }
1311}
1312
1313/**
1314 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1315 * @param mtd MTD device structure
1316 * @param to offset to write to
1317 * @param len number of bytes to write
1318 * @param retlen pointer to variable to store the number of written bytes
1319 * @param buf the data to write
1320 *
1321 * Write with ECC
1322 */
1323static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1324 size_t *retlen, const u_char *buf)
1325{
1326 struct onenand_chip *this = mtd->priv;
1327 int column, subpage;
1328 int written = 0;
1329 int ret = 0;
1330
1331 if (this->state == FL_PM_SUSPENDED)
1332 return -EBUSY;
1333
1334 /* Wait for any existing operation to clear */
1335 onenand_panic_wait(mtd);
1336
1337 DEBUG(MTD_DEBUG_LEVEL3, "onenand_panic_write: to = 0x%08x, len = %i\n",
1338 (unsigned int) to, (int) len);
1339
1340 /* Initialize retlen, in case of early exit */
1341 *retlen = 0;
1342
1343 /* Do not allow writes past end of device */
1344 if (unlikely((to + len) > mtd->size)) {
1345 printk(KERN_ERR "onenand_panic_write: Attempt write to past end of device\n");
1346 return -EINVAL;
1347 }
1348
1349 /* Reject writes, which are not page aligned */
b73d7e43 1350 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
6c77fd64
RP
1351 printk(KERN_ERR "onenand_panic_write: Attempt to write not page aligned data\n");
1352 return -EINVAL;
1353 }
1354
1355 column = to & (mtd->writesize - 1);
1356
1357 /* Loop until all data write */
1358 while (written < len) {
1359 int thislen = min_t(int, mtd->writesize - column, len - written);
1360 u_char *wbuf = (u_char *) buf;
1361
1362 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1363
1364 /* Partial page write */
1365 subpage = thislen < mtd->writesize;
1366 if (subpage) {
1367 memset(this->page_buf, 0xff, mtd->writesize);
1368 memcpy(this->page_buf + column, buf, thislen);
1369 wbuf = this->page_buf;
1370 }
1371
1372 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1373 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1374
1375 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1376
1377 onenand_panic_wait(mtd);
1378
1379 /* In partial page write we don't update bufferram */
1380 onenand_update_bufferram(mtd, to, !ret && !subpage);
1381 if (ONENAND_IS_2PLANE(this)) {
1382 ONENAND_SET_BUFFERRAM1(this);
1383 onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1384 }
1385
1386 if (ret) {
1387 printk(KERN_ERR "onenand_panic_write: write failed %d\n", ret);
1388 break;
1389 }
1390
1391 written += thislen;
1392
1393 if (written == len)
1394 break;
1395
1396 column = 0;
1397 to += thislen;
1398 buf += thislen;
1399 }
1400
1401 *retlen = written;
1402 return ret;
1403}
1404
cd5f6346 1405/**
d15057b7
KP
1406 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1407 * @param mtd MTD device structure
1408 * @param oob_buf oob buffer
1409 * @param buf source address
1410 * @param column oob offset to write to
1411 * @param thislen oob length to write
1412 */
1413static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1414 const u_char *buf, int column, int thislen)
1415{
1416 struct onenand_chip *this = mtd->priv;
1417 struct nand_oobfree *free;
1418 int writecol = column;
1419 int writeend = column + thislen;
1420 int lastgap = 0;
1421 unsigned int i;
1422
1423 free = this->ecclayout->oobfree;
1424 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1425 if (writecol >= lastgap)
1426 writecol += free->offset - lastgap;
1427 if (writeend >= lastgap)
1428 writeend += free->offset - lastgap;
1429 lastgap = free->offset + free->length;
1430 }
1431 free = this->ecclayout->oobfree;
1432 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1433 int free_end = free->offset + free->length;
1434 if (free->offset < writeend && free_end > writecol) {
1435 int st = max_t(int,free->offset,writecol);
1436 int ed = min_t(int,free_end,writeend);
1437 int n = ed - st;
1438 memcpy(oob_buf + st, buf, n);
1439 buf += n;
1440 } else if (column == 0)
1441 break;
1442 }
1443 return 0;
1444}
1445
1446/**
49dc08ee 1447 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
cd5f6346
KP
1448 * @param mtd MTD device structure
1449 * @param to offset to write to
d15057b7 1450 * @param ops oob operation description structure
cd5f6346 1451 *
d15057b7 1452 * Write main and/or oob with ECC
cd5f6346 1453 */
49dc08ee 1454static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
d15057b7 1455 struct mtd_oob_ops *ops)
cd5f6346
KP
1456{
1457 struct onenand_chip *this = mtd->priv;
9ce96908
KP
1458 int written = 0, column, thislen = 0, subpage = 0;
1459 int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
d15057b7
KP
1460 int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1461 size_t len = ops->len;
1462 size_t ooblen = ops->ooblen;
1463 const u_char *buf = ops->datbuf;
1464 const u_char *oob = ops->oobbuf;
1465 u_char *oobbuf;
cd5f6346
KP
1466 int ret = 0;
1467
49dc08ee 1468 DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
cd5f6346
KP
1469
1470 /* Initialize retlen, in case of early exit */
d15057b7
KP
1471 ops->retlen = 0;
1472 ops->oobretlen = 0;
cd5f6346
KP
1473
1474 /* Do not allow writes past end of device */
1475 if (unlikely((to + len) > mtd->size)) {
49dc08ee 1476 printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n");
cd5f6346
KP
1477 return -EINVAL;
1478 }
1479
1480 /* Reject writes, which are not page aligned */
b73d7e43 1481 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
49dc08ee 1482 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
cd5f6346
KP
1483 return -EINVAL;
1484 }
1485
9ce96908
KP
1486 /* Check zero length */
1487 if (!len)
1488 return 0;
1489
d15057b7
KP
1490 if (ops->mode == MTD_OOB_AUTO)
1491 oobsize = this->ecclayout->oobavail;
1492 else
1493 oobsize = mtd->oobsize;
1494
1495 oobcolumn = to & (mtd->oobsize - 1);
1496
60d84f97 1497 column = to & (mtd->writesize - 1);
60d84f97 1498
cd5f6346 1499 /* Loop until all data write */
9ce96908
KP
1500 while (1) {
1501 if (written < len) {
1502 u_char *wbuf = (u_char *) buf;
60d84f97 1503
9ce96908
KP
1504 thislen = min_t(int, mtd->writesize - column, len - written);
1505 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
d15057b7 1506
9ce96908 1507 cond_resched();
61a7e198 1508
9ce96908 1509 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
60d84f97 1510
9ce96908
KP
1511 /* Partial page write */
1512 subpage = thislen < mtd->writesize;
1513 if (subpage) {
1514 memset(this->page_buf, 0xff, mtd->writesize);
1515 memcpy(this->page_buf + column, buf, thislen);
1516 wbuf = this->page_buf;
1517 }
cd5f6346 1518
9ce96908 1519 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
d15057b7 1520
9ce96908
KP
1521 if (oob) {
1522 oobbuf = this->oob_buf;
d15057b7 1523
9ce96908
KP
1524 /* We send data to spare ram with oobsize
1525 * to prevent byte access */
1526 memset(oobbuf, 0xff, mtd->oobsize);
1527 if (ops->mode == MTD_OOB_AUTO)
1528 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1529 else
1530 memcpy(oobbuf + oobcolumn, oob, thisooblen);
d15057b7 1531
9ce96908
KP
1532 oobwritten += thisooblen;
1533 oob += thisooblen;
1534 oobcolumn = 0;
1535 } else
1536 oobbuf = (u_char *) ffchars;
1537
1538 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
d15057b7 1539 } else
9ce96908 1540 ONENAND_SET_NEXT_BUFFERRAM(this);
d15057b7 1541
9ce96908
KP
1542 /*
1543 * 2 PLANE, MLC, and Flex-OneNAND doesn't support
1544 * write-while-programe feature.
1545 */
1546 if (!ONENAND_IS_2PLANE(this) && !first) {
1547 ONENAND_SET_PREV_BUFFERRAM(this);
1548
1549 ret = this->wait(mtd, FL_WRITING);
1550
1551 /* In partial page write we don't update bufferram */
1552 onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1553 if (ret) {
1554 written -= prevlen;
1555 printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1556 break;
1557 }
cd5f6346 1558
9ce96908
KP
1559 if (written == len) {
1560 /* Only check verify write turn on */
1561 ret = onenand_verify(mtd, buf - len, to - len, len);
1562 if (ret)
1563 printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1564 break;
1565 }
cd5f6346 1566
9ce96908
KP
1567 ONENAND_SET_NEXT_BUFFERRAM(this);
1568 }
81f38e11 1569
9ce96908
KP
1570 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1571
1572 /*
1573 * 2 PLANE, MLC, and Flex-OneNAND wait here
1574 */
ee9745fc 1575 if (ONENAND_IS_2PLANE(this)) {
9ce96908 1576 ret = this->wait(mtd, FL_WRITING);
cd5f6346 1577
9ce96908
KP
1578 /* In partial page write we don't update bufferram */
1579 onenand_update_bufferram(mtd, to, !ret && !subpage);
1580 if (ret) {
1581 printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1582 break;
1583 }
cd5f6346 1584
9ce96908
KP
1585 /* Only check verify write turn on */
1586 ret = onenand_verify(mtd, buf, to, thislen);
1587 if (ret) {
1588 printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1589 break;
1590 }
cd5f6346 1591
9ce96908 1592 written += thislen;
81f38e11 1593
9ce96908
KP
1594 if (written == len)
1595 break;
1596
1597 } else
1598 written += thislen;
cd5f6346 1599
60d84f97 1600 column = 0;
9ce96908
KP
1601 prev_subpage = subpage;
1602 prev = to;
1603 prevlen = thislen;
cd5f6346
KP
1604 to += thislen;
1605 buf += thislen;
9ce96908 1606 first = 0;
cd5f6346
KP
1607 }
1608
9ce96908
KP
1609 /* In error case, clear all bufferrams */
1610 if (written != len)
1611 onenand_invalidate_bufferram(mtd, 0, -1);
1612
d15057b7 1613 ops->retlen = written;
9ce96908 1614 ops->oobretlen = oobwritten;
d5c5e78a 1615
cd5f6346
KP
1616 return ret;
1617}
1618
a5e7c7b4 1619
cd5f6346 1620/**
49dc08ee 1621 * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
cd5f6346
KP
1622 * @param mtd MTD device structure
1623 * @param to offset to write to
1624 * @param len number of bytes to write
1625 * @param retlen pointer to variable to store the number of written bytes
1626 * @param buf the data to write
a5e7c7b4 1627 * @param mode operation mode
cd5f6346
KP
1628 *
1629 * OneNAND write out-of-band
1630 */
49dc08ee
AB
1631static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1632 struct mtd_oob_ops *ops)
cd5f6346
KP
1633{
1634 struct onenand_chip *this = mtd->priv;
a5e7c7b4 1635 int column, ret = 0, oobsize;
cd5f6346 1636 int written = 0;
91014e9b 1637 u_char *oobbuf;
12f77c9e
KP
1638 size_t len = ops->ooblen;
1639 const u_char *buf = ops->oobbuf;
1640 mtd_oob_mode_t mode = ops->mode;
1641
1642 to += ops->ooboffs;
cd5f6346 1643
49dc08ee 1644 DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
cd5f6346
KP
1645
1646 /* Initialize retlen, in case of early exit */
12f77c9e 1647 ops->oobretlen = 0;
cd5f6346 1648
a5e7c7b4
AH
1649 if (mode == MTD_OOB_AUTO)
1650 oobsize = this->ecclayout->oobavail;
1651 else
1652 oobsize = mtd->oobsize;
1653
1654 column = to & (mtd->oobsize - 1);
1655
1656 if (unlikely(column >= oobsize)) {
49dc08ee 1657 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
a5e7c7b4
AH
1658 return -EINVAL;
1659 }
1660
52e4200a 1661 /* For compatibility with NAND: Do not allow write past end of page */
91014e9b 1662 if (unlikely(column + len > oobsize)) {
49dc08ee 1663 printk(KERN_ERR "onenand_write_oob_nolock: "
52e4200a
AH
1664 "Attempt to write past end of page\n");
1665 return -EINVAL;
1666 }
1667
a5e7c7b4
AH
1668 /* Do not allow reads past end of device */
1669 if (unlikely(to >= mtd->size ||
1670 column + len > ((mtd->size >> this->page_shift) -
1671 (to >> this->page_shift)) * oobsize)) {
49dc08ee 1672 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
cd5f6346
KP
1673 return -EINVAL;
1674 }
1675
470bc844 1676 oobbuf = this->oob_buf;
91014e9b 1677
cd5f6346
KP
1678 /* Loop until all data write */
1679 while (written < len) {
a5e7c7b4 1680 int thislen = min_t(int, oobsize, len - written);
cd5f6346 1681
61a7e198
AB
1682 cond_resched();
1683
cd5f6346
KP
1684 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1685
34c10609
KP
1686 /* We send data to spare ram with oobsize
1687 * to prevent byte access */
91014e9b 1688 memset(oobbuf, 0xff, mtd->oobsize);
a5e7c7b4 1689 if (mode == MTD_OOB_AUTO)
91014e9b 1690 onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
a5e7c7b4 1691 else
91014e9b
KP
1692 memcpy(oobbuf + column, buf, thislen);
1693 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
cd5f6346
KP
1694
1695 this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
1696
1697 onenand_update_bufferram(mtd, to, 0);
ee9745fc
KP
1698 if (ONENAND_IS_2PLANE(this)) {
1699 ONENAND_SET_BUFFERRAM1(this);
1700 onenand_update_bufferram(mtd, to + this->writesize, 0);
1701 }
cd5f6346 1702
8e6ec690
KP
1703 ret = this->wait(mtd, FL_WRITING);
1704 if (ret) {
49dc08ee 1705 printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
5b4246f1 1706 break;
8e6ec690
KP
1707 }
1708
91014e9b 1709 ret = onenand_verify_oob(mtd, oobbuf, to);
8e6ec690 1710 if (ret) {
49dc08ee 1711 printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
5b4246f1 1712 break;
8e6ec690 1713 }
cd5f6346
KP
1714
1715 written += thislen;
cd5f6346
KP
1716 if (written == len)
1717 break;
1718
a5e7c7b4 1719 to += mtd->writesize;
cd5f6346 1720 buf += thislen;
a5e7c7b4 1721 column = 0;
cd5f6346
KP
1722 }
1723
12f77c9e 1724 ops->oobretlen = written;
d5c5e78a 1725
8e6ec690 1726 return ret;
cd5f6346
KP
1727}
1728
d15057b7
KP
1729/**
1730 * onenand_write - [MTD Interface] write buffer to FLASH
1731 * @param mtd MTD device structure
1732 * @param to offset to write to
1733 * @param len number of bytes to write
1734 * @param retlen pointer to variable to store the number of written bytes
1735 * @param buf the data to write
1736 *
1737 * Write with ECC
1738 */
1739static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1740 size_t *retlen, const u_char *buf)
1741{
1742 struct mtd_oob_ops ops = {
1743 .len = len,
1744 .ooblen = 0,
1745 .datbuf = (u_char *) buf,
1746 .oobbuf = NULL,
1747 };
1748 int ret;
1749
49dc08ee
AB
1750 onenand_get_device(mtd, FL_WRITING);
1751 ret = onenand_write_ops_nolock(mtd, to, &ops);
1752 onenand_release_device(mtd);
d15057b7 1753
49dc08ee 1754 *retlen = ops.retlen;
d15057b7
KP
1755 return ret;
1756}
1757
8593fbc6
TG
1758/**
1759 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
e3da8067
KP
1760 * @param mtd: MTD device structure
1761 * @param to: offset to write
1762 * @param ops: oob operation description structure
8593fbc6
TG
1763 */
1764static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1765 struct mtd_oob_ops *ops)
1766{
49dc08ee
AB
1767 int ret;
1768
4f4fad27 1769 switch (ops->mode) {
a5e7c7b4
AH
1770 case MTD_OOB_PLACE:
1771 case MTD_OOB_AUTO:
1772 break;
1773 case MTD_OOB_RAW:
4f4fad27 1774 /* Not implemented yet */
a5e7c7b4
AH
1775 default:
1776 return -EINVAL;
1777 }
d15057b7 1778
49dc08ee 1779 onenand_get_device(mtd, FL_WRITING);
d15057b7 1780 if (ops->datbuf)
49dc08ee
AB
1781 ret = onenand_write_ops_nolock(mtd, to, ops);
1782 else
1783 ret = onenand_write_oob_nolock(mtd, to, ops);
1784 onenand_release_device(mtd);
d15057b7 1785
49dc08ee 1786 return ret;
8593fbc6
TG
1787}
1788
cdc00130 1789/**
49dc08ee 1790 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
cdc00130
KP
1791 * @param mtd MTD device structure
1792 * @param ofs offset from device start
cdc00130
KP
1793 * @param allowbbt 1, if its allowed to access the bbt area
1794 *
1795 * Check, if the block is bad. Either by reading the bad block table or
1796 * calling of the scan function.
1797 */
49dc08ee 1798static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
cdc00130
KP
1799{
1800 struct onenand_chip *this = mtd->priv;
1801 struct bbm_info *bbm = this->bbm;
1802
1803 /* Return info from the table */
1804 return bbm->isbad_bbt(mtd, ofs, allowbbt);
1805}
1806
cd5f6346
KP
1807/**
1808 * onenand_erase - [MTD Interface] erase block(s)
1809 * @param mtd MTD device structure
1810 * @param instr erase instruction
1811 *
1812 * Erase one ore more blocks
1813 */
1814static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1815{
1816 struct onenand_chip *this = mtd->priv;
1817 unsigned int block_size;
1818 loff_t addr;
1819 int len;
1820 int ret = 0;
1821
69423d99 1822 DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%012llx, len = %llu\n", (unsigned long long) instr->addr, (unsigned long long) instr->len);
cd5f6346
KP
1823
1824 block_size = (1 << this->erase_shift);
1825
1826 /* Start address must align on block boundary */
1827 if (unlikely(instr->addr & (block_size - 1))) {
211ac75f 1828 printk(KERN_ERR "onenand_erase: Unaligned address\n");
cd5f6346
KP
1829 return -EINVAL;
1830 }
1831
1832 /* Length must align on block boundary */
1833 if (unlikely(instr->len & (block_size - 1))) {
211ac75f 1834 printk(KERN_ERR "onenand_erase: Length not block aligned\n");
cd5f6346
KP
1835 return -EINVAL;
1836 }
1837
1838 /* Do not allow erase past end of device */
1839 if (unlikely((instr->len + instr->addr) > mtd->size)) {
211ac75f 1840 printk(KERN_ERR "onenand_erase: Erase past end of device\n");
cd5f6346
KP
1841 return -EINVAL;
1842 }
1843
bb0eb217 1844 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
cd5f6346
KP
1845
1846 /* Grab the lock and see if the device is available */
1847 onenand_get_device(mtd, FL_ERASING);
1848
1849 /* Loop throught the pages */
1850 len = instr->len;
1851 addr = instr->addr;
1852
1853 instr->state = MTD_ERASING;
1854
1855 while (len) {
61a7e198 1856 cond_resched();
cd5f6346 1857
cdc00130 1858 /* Check if we have a bad block, we do not erase bad blocks */
49dc08ee 1859 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
69423d99 1860 printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%012llx\n", (unsigned long long) addr);
cdc00130
KP
1861 instr->state = MTD_ERASE_FAILED;
1862 goto erase_exit;
1863 }
cd5f6346
KP
1864
1865 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1866
480b9dfb
AH
1867 onenand_invalidate_bufferram(mtd, addr, block_size);
1868
cd5f6346
KP
1869 ret = this->wait(mtd, FL_ERASING);
1870 /* Check, if it is write protected */
1871 if (ret) {
211ac75f 1872 printk(KERN_ERR "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
cd5f6346
KP
1873 instr->state = MTD_ERASE_FAILED;
1874 instr->fail_addr = addr;
1875 goto erase_exit;
1876 }
1877
1878 len -= block_size;
1879 addr += block_size;
1880 }
1881
1882 instr->state = MTD_ERASE_DONE;
1883
1884erase_exit:
1885
1886 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
cd5f6346
KP
1887
1888 /* Deselect and wake up anyone waiting on the device */
1889 onenand_release_device(mtd);
1890
3cd3a86b
AH
1891 /* Do call back function */
1892 if (!ret)
1893 mtd_erase_callback(instr);
1894
cd5f6346
KP
1895 return ret;
1896}
1897
1898/**
1899 * onenand_sync - [MTD Interface] sync
1900 * @param mtd MTD device structure
1901 *
1902 * Sync is actually a wait for chip ready function
1903 */
1904static void onenand_sync(struct mtd_info *mtd)
1905{
1906 DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1907
1908 /* Grab the lock and see if the device is available */
1909 onenand_get_device(mtd, FL_SYNCING);
1910
1911 /* Release it and go back */
1912 onenand_release_device(mtd);
1913}
1914
1915/**
1916 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1917 * @param mtd MTD device structure
1918 * @param ofs offset relative to mtd start
cdc00130
KP
1919 *
1920 * Check whether the block is bad
cd5f6346
KP
1921 */
1922static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1923{
49dc08ee
AB
1924 int ret;
1925
cdc00130
KP
1926 /* Check for invalid offset */
1927 if (ofs > mtd->size)
1928 return -EINVAL;
1929
49dc08ee
AB
1930 onenand_get_device(mtd, FL_READING);
1931 ret = onenand_block_isbad_nolock(mtd, ofs, 0);
1932 onenand_release_device(mtd);
1933 return ret;
cdc00130
KP
1934}
1935
1936/**
1937 * onenand_default_block_markbad - [DEFAULT] mark a block bad
1938 * @param mtd MTD device structure
1939 * @param ofs offset from device start
1940 *
1941 * This is the default implementation, which can be overridden by
1942 * a hardware specific driver.
1943 */
1944static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1945{
1946 struct onenand_chip *this = mtd->priv;
1947 struct bbm_info *bbm = this->bbm;
1948 u_char buf[2] = {0, 0};
12f77c9e
KP
1949 struct mtd_oob_ops ops = {
1950 .mode = MTD_OOB_PLACE,
1951 .ooblen = 2,
1952 .oobbuf = buf,
1953 .ooboffs = 0,
1954 };
cdc00130
KP
1955 int block;
1956
1957 /* Get block number */
1958 block = ((int) ofs) >> bbm->bbt_erase_shift;
1959 if (bbm->bbt)
1960 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1961
1962 /* We write two bytes, so we dont have to mess with 16 bit access */
1963 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
49dc08ee 1964 return onenand_write_oob_nolock(mtd, ofs, &ops);
cd5f6346
KP
1965}
1966
1967/**
1968 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1969 * @param mtd MTD device structure
1970 * @param ofs offset relative to mtd start
cdc00130
KP
1971 *
1972 * Mark the block as bad
cd5f6346
KP
1973 */
1974static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1975{
cdc00130
KP
1976 struct onenand_chip *this = mtd->priv;
1977 int ret;
1978
1979 ret = onenand_block_isbad(mtd, ofs);
1980 if (ret) {
1981 /* If it was bad already, return success and do nothing */
1982 if (ret > 0)
1983 return 0;
1984 return ret;
1985 }
1986
49dc08ee
AB
1987 onenand_get_device(mtd, FL_WRITING);
1988 ret = this->block_markbad(mtd, ofs);
1989 onenand_release_device(mtd);
1990 return ret;
cd5f6346
KP
1991}
1992
1993/**
08f782b6 1994 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
cd5f6346
KP
1995 * @param mtd MTD device structure
1996 * @param ofs offset relative to mtd start
08f782b6 1997 * @param len number of bytes to lock or unlock
e3da8067 1998 * @param cmd lock or unlock command
cd5f6346 1999 *
08f782b6 2000 * Lock or unlock one or more blocks
cd5f6346 2001 */
08f782b6 2002static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
cd5f6346
KP
2003{
2004 struct onenand_chip *this = mtd->priv;
2005 int start, end, block, value, status;
08f782b6 2006 int wp_status_mask;
cd5f6346
KP
2007
2008 start = ofs >> this->erase_shift;
2009 end = len >> this->erase_shift;
2010
08f782b6
KP
2011 if (cmd == ONENAND_CMD_LOCK)
2012 wp_status_mask = ONENAND_WP_LS;
2013 else
2014 wp_status_mask = ONENAND_WP_US;
2015
cd5f6346 2016 /* Continuous lock scheme */
28b79ff9 2017 if (this->options & ONENAND_HAS_CONT_LOCK) {
cd5f6346
KP
2018 /* Set start block address */
2019 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2020 /* Set end block address */
28b79ff9 2021 this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
08f782b6
KP
2022 /* Write lock command */
2023 this->command(mtd, cmd, 0, 0);
cd5f6346
KP
2024
2025 /* There's no return value */
08f782b6 2026 this->wait(mtd, FL_LOCKING);
cd5f6346
KP
2027
2028 /* Sanity check */
2029 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2030 & ONENAND_CTRL_ONGO)
2031 continue;
2032
2033 /* Check lock status */
2034 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
08f782b6 2035 if (!(status & wp_status_mask))
cd5f6346
KP
2036 printk(KERN_ERR "wp status = 0x%x\n", status);
2037
2038 return 0;
2039 }
2040
2041 /* Block lock scheme */
28b79ff9 2042 for (block = start; block < start + end; block++) {
20ba89a3
KP
2043 /* Set block address */
2044 value = onenand_block_address(this, block);
2045 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2046 /* Select DataRAM for DDP */
2047 value = onenand_bufferram_address(this, block);
2048 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
cd5f6346
KP
2049 /* Set start block address */
2050 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
08f782b6
KP
2051 /* Write lock command */
2052 this->command(mtd, cmd, 0, 0);
cd5f6346
KP
2053
2054 /* There's no return value */
08f782b6 2055 this->wait(mtd, FL_LOCKING);
cd5f6346
KP
2056
2057 /* Sanity check */
2058 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2059 & ONENAND_CTRL_ONGO)
2060 continue;
2061
cd5f6346
KP
2062 /* Check lock status */
2063 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
08f782b6 2064 if (!(status & wp_status_mask))
cd5f6346
KP
2065 printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2066 }
d5c5e78a 2067
cd5f6346
KP
2068 return 0;
2069}
2070
08f782b6
KP
2071/**
2072 * onenand_lock - [MTD Interface] Lock block(s)
2073 * @param mtd MTD device structure
2074 * @param ofs offset relative to mtd start
2075 * @param len number of bytes to unlock
2076 *
2077 * Lock one or more blocks
2078 */
69423d99 2079static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
08f782b6 2080{
34627f0e
AH
2081 int ret;
2082
2083 onenand_get_device(mtd, FL_LOCKING);
2084 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2085 onenand_release_device(mtd);
2086 return ret;
08f782b6
KP
2087}
2088
08f782b6
KP
2089/**
2090 * onenand_unlock - [MTD Interface] Unlock block(s)
2091 * @param mtd MTD device structure
2092 * @param ofs offset relative to mtd start
2093 * @param len number of bytes to unlock
2094 *
2095 * Unlock one or more blocks
2096 */
69423d99 2097static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
08f782b6 2098{
34627f0e
AH
2099 int ret;
2100
2101 onenand_get_device(mtd, FL_LOCKING);
2102 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2103 onenand_release_device(mtd);
2104 return ret;
08f782b6
KP
2105}
2106
28b79ff9
KP
2107/**
2108 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2109 * @param this onenand chip data structure
2110 *
2111 * Check lock status
2112 */
66a10506 2113static int onenand_check_lock_status(struct onenand_chip *this)
28b79ff9
KP
2114{
2115 unsigned int value, block, status;
2116 unsigned int end;
2117
2118 end = this->chipsize >> this->erase_shift;
2119 for (block = 0; block < end; block++) {
2120 /* Set block address */
2121 value = onenand_block_address(this, block);
2122 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2123 /* Select DataRAM for DDP */
2124 value = onenand_bufferram_address(this, block);
2125 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2126 /* Set start block address */
2127 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2128
2129 /* Check lock status */
2130 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
66a10506 2131 if (!(status & ONENAND_WP_US)) {
28b79ff9 2132 printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
66a10506
KP
2133 return 0;
2134 }
28b79ff9 2135 }
66a10506
KP
2136
2137 return 1;
28b79ff9
KP
2138}
2139
2140/**
2141 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2142 * @param mtd MTD device structure
2143 *
2144 * Unlock all blocks
2145 */
66a10506 2146static void onenand_unlock_all(struct mtd_info *mtd)
28b79ff9
KP
2147{
2148 struct onenand_chip *this = mtd->priv;
66a10506
KP
2149 loff_t ofs = 0;
2150 size_t len = this->chipsize;
28b79ff9
KP
2151
2152 if (this->options & ONENAND_HAS_UNLOCK_ALL) {
10b7a2bd
KP
2153 /* Set start block address */
2154 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
28b79ff9
KP
2155 /* Write unlock command */
2156 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2157
2158 /* There's no return value */
08f782b6 2159 this->wait(mtd, FL_LOCKING);
28b79ff9
KP
2160
2161 /* Sanity check */
2162 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2163 & ONENAND_CTRL_ONGO)
2164 continue;
2165
66a10506
KP
2166 /* Check lock status */
2167 if (onenand_check_lock_status(this))
2168 return;
2169
28b79ff9 2170 /* Workaround for all block unlock in DDP */
738d61f5 2171 if (ONENAND_IS_DDP(this)) {
66a10506
KP
2172 /* All blocks on another chip */
2173 ofs = this->chipsize >> 1;
2174 len = this->chipsize >> 1;
28b79ff9 2175 }
28b79ff9
KP
2176 }
2177
66a10506 2178 onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
28b79ff9
KP
2179}
2180
493c6460
KP
2181#ifdef CONFIG_MTD_ONENAND_OTP
2182
2183/* Interal OTP operation */
2184typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2185 size_t *retlen, u_char *buf);
2186
2187/**
2188 * do_otp_read - [DEFAULT] Read OTP block area
2189 * @param mtd MTD device structure
2190 * @param from The offset to read
2191 * @param len number of bytes to read
2192 * @param retlen pointer to variable to store the number of readbytes
2193 * @param buf the databuffer to put/get data
2194 *
2195 * Read OTP block area.
2196 */
2197static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2198 size_t *retlen, u_char *buf)
2199{
2200 struct onenand_chip *this = mtd->priv;
49dc08ee
AB
2201 struct mtd_oob_ops ops = {
2202 .len = len,
2203 .ooblen = 0,
2204 .datbuf = buf,
2205 .oobbuf = NULL,
2206 };
493c6460
KP
2207 int ret;
2208
2209 /* Enter OTP access mode */
2210 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2211 this->wait(mtd, FL_OTPING);
2212
49dc08ee 2213 ret = onenand_read_ops_nolock(mtd, from, &ops);
493c6460
KP
2214
2215 /* Exit OTP access mode */
2216 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2217 this->wait(mtd, FL_RESETING);
2218
2219 return ret;
2220}
2221
2222/**
2223 * do_otp_write - [DEFAULT] Write OTP block area
2224 * @param mtd MTD device structure
49dc08ee 2225 * @param to The offset to write
493c6460
KP
2226 * @param len number of bytes to write
2227 * @param retlen pointer to variable to store the number of write bytes
2228 * @param buf the databuffer to put/get data
2229 *
2230 * Write OTP block area.
2231 */
49dc08ee 2232static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
493c6460
KP
2233 size_t *retlen, u_char *buf)
2234{
2235 struct onenand_chip *this = mtd->priv;
2236 unsigned char *pbuf = buf;
2237 int ret;
49dc08ee 2238 struct mtd_oob_ops ops;
493c6460
KP
2239
2240 /* Force buffer page aligned */
28318776 2241 if (len < mtd->writesize) {
493c6460 2242 memcpy(this->page_buf, buf, len);
28318776 2243 memset(this->page_buf + len, 0xff, mtd->writesize - len);
493c6460 2244 pbuf = this->page_buf;
28318776 2245 len = mtd->writesize;
493c6460
KP
2246 }
2247
2248 /* Enter OTP access mode */
2249 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2250 this->wait(mtd, FL_OTPING);
2251
49dc08ee
AB
2252 ops.len = len;
2253 ops.ooblen = 0;
1437085c 2254 ops.datbuf = pbuf;
49dc08ee
AB
2255 ops.oobbuf = NULL;
2256 ret = onenand_write_ops_nolock(mtd, to, &ops);
2257 *retlen = ops.retlen;
493c6460
KP
2258
2259 /* Exit OTP access mode */
2260 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2261 this->wait(mtd, FL_RESETING);
2262
2263 return ret;
2264}
2265
2266/**
2267 * do_otp_lock - [DEFAULT] Lock OTP block area
2268 * @param mtd MTD device structure
2269 * @param from The offset to lock
2270 * @param len number of bytes to lock
2271 * @param retlen pointer to variable to store the number of lock bytes
2272 * @param buf the databuffer to put/get data
2273 *
2274 * Lock OTP block area.
2275 */
2276static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2277 size_t *retlen, u_char *buf)
2278{
2279 struct onenand_chip *this = mtd->priv;
12f77c9e
KP
2280 struct mtd_oob_ops ops = {
2281 .mode = MTD_OOB_PLACE,
2282 .ooblen = len,
2283 .oobbuf = buf,
2284 .ooboffs = 0,
2285 };
493c6460
KP
2286 int ret;
2287
2288 /* Enter OTP access mode */
2289 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2290 this->wait(mtd, FL_OTPING);
2291
49dc08ee 2292 ret = onenand_write_oob_nolock(mtd, from, &ops);
12f77c9e
KP
2293
2294 *retlen = ops.oobretlen;
493c6460
KP
2295
2296 /* Exit OTP access mode */
2297 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2298 this->wait(mtd, FL_RESETING);
2299
2300 return ret;
2301}
2302
2303/**
2304 * onenand_otp_walk - [DEFAULT] Handle OTP operation
2305 * @param mtd MTD device structure
2306 * @param from The offset to read/write
2307 * @param len number of bytes to read/write
2308 * @param retlen pointer to variable to store the number of read bytes
2309 * @param buf the databuffer to put/get data
2310 * @param action do given action
2311 * @param mode specify user and factory
2312 *
2313 * Handle OTP operation.
2314 */
2315static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2316 size_t *retlen, u_char *buf,
2317 otp_op_t action, int mode)
2318{
2319 struct onenand_chip *this = mtd->priv;
2320 int otp_pages;
2321 int density;
2322 int ret = 0;
2323
2324 *retlen = 0;
2325
e71f04fc 2326 density = onenand_get_density(this->device_id);
493c6460
KP
2327 if (density < ONENAND_DEVICE_DENSITY_512Mb)
2328 otp_pages = 20;
2329 else
2330 otp_pages = 10;
2331
2332 if (mode == MTD_OTP_FACTORY) {
28318776 2333 from += mtd->writesize * otp_pages;
493c6460
KP
2334 otp_pages = 64 - otp_pages;
2335 }
2336
2337 /* Check User/Factory boundary */
28318776 2338 if (((mtd->writesize * otp_pages) - (from + len)) < 0)
493c6460
KP
2339 return 0;
2340
49dc08ee 2341 onenand_get_device(mtd, FL_OTPING);
493c6460
KP
2342 while (len > 0 && otp_pages > 0) {
2343 if (!action) { /* OTP Info functions */
2344 struct otp_info *otpinfo;
2345
2346 len -= sizeof(struct otp_info);
49dc08ee
AB
2347 if (len <= 0) {
2348 ret = -ENOSPC;
2349 break;
2350 }
493c6460
KP
2351
2352 otpinfo = (struct otp_info *) buf;
2353 otpinfo->start = from;
28318776 2354 otpinfo->length = mtd->writesize;
493c6460
KP
2355 otpinfo->locked = 0;
2356
28318776 2357 from += mtd->writesize;
493c6460
KP
2358 buf += sizeof(struct otp_info);
2359 *retlen += sizeof(struct otp_info);
2360 } else {
2361 size_t tmp_retlen;
2362 int size = len;
2363
2364 ret = action(mtd, from, len, &tmp_retlen, buf);
2365
2366 buf += size;
2367 len -= size;
2368 *retlen += size;
2369
49dc08ee
AB
2370 if (ret)
2371 break;
493c6460
KP
2372 }
2373 otp_pages--;
2374 }
49dc08ee 2375 onenand_release_device(mtd);
493c6460 2376
49dc08ee 2377 return ret;
493c6460
KP
2378}
2379
2380/**
2381 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
2382 * @param mtd MTD device structure
2383 * @param buf the databuffer to put/get data
2384 * @param len number of bytes to read
2385 *
2386 * Read factory OTP info.
2387 */
2388static int onenand_get_fact_prot_info(struct mtd_info *mtd,
2389 struct otp_info *buf, size_t len)
2390{
2391 size_t retlen;
2392 int ret;
2393
2394 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
2395
2396 return ret ? : retlen;
2397}
2398
2399/**
2400 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
2401 * @param mtd MTD device structure
2402 * @param from The offset to read
2403 * @param len number of bytes to read
2404 * @param retlen pointer to variable to store the number of read bytes
2405 * @param buf the databuffer to put/get data
2406 *
2407 * Read factory OTP area.
2408 */
2409static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2410 size_t len, size_t *retlen, u_char *buf)
2411{
2412 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
2413}
2414
2415/**
2416 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
2417 * @param mtd MTD device structure
2418 * @param buf the databuffer to put/get data
2419 * @param len number of bytes to read
2420 *
2421 * Read user OTP info.
2422 */
2423static int onenand_get_user_prot_info(struct mtd_info *mtd,
2424 struct otp_info *buf, size_t len)
2425{
2426 size_t retlen;
2427 int ret;
2428
2429 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
2430
2431 return ret ? : retlen;
2432}
2433
2434/**
2435 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
2436 * @param mtd MTD device structure
2437 * @param from The offset to read
2438 * @param len number of bytes to read
2439 * @param retlen pointer to variable to store the number of read bytes
2440 * @param buf the databuffer to put/get data
2441 *
2442 * Read user OTP area.
2443 */
2444static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2445 size_t len, size_t *retlen, u_char *buf)
2446{
2447 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
2448}
2449
2450/**
2451 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
2452 * @param mtd MTD device structure
2453 * @param from The offset to write
2454 * @param len number of bytes to write
2455 * @param retlen pointer to variable to store the number of write bytes
2456 * @param buf the databuffer to put/get data
2457 *
2458 * Write user OTP area.
2459 */
2460static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2461 size_t len, size_t *retlen, u_char *buf)
2462{
2463 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
2464}
2465
2466/**
2467 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
2468 * @param mtd MTD device structure
2469 * @param from The offset to lock
2470 * @param len number of bytes to unlock
2471 *
2472 * Write lock mark on spare area in page 0 in OTP block
2473 */
2474static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
2475 size_t len)
2476{
69d79186
KP
2477 struct onenand_chip *this = mtd->priv;
2478 u_char *oob_buf = this->oob_buf;
493c6460
KP
2479 size_t retlen;
2480 int ret;
2481
2482 memset(oob_buf, 0xff, mtd->oobsize);
2483 /*
2484 * Note: OTP lock operation
2485 * OTP block : 0xXXFC
2486 * 1st block : 0xXXF3 (If chip support)
2487 * Both : 0xXXF0 (If chip support)
2488 */
2489 oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
2490
2491 /*
2492 * Write lock mark to 8th word of sector0 of page0 of the spare0.
2493 * We write 16 bytes spare area instead of 2 bytes.
2494 */
2495 from = 0;
2496 len = 16;
2497
2498 ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);
2499
2500 return ret ? : retlen;
2501}
2502#endif /* CONFIG_MTD_ONENAND_OTP */
2503
28b79ff9 2504/**
75384b0d 2505 * onenand_check_features - Check and set OneNAND features
28b79ff9
KP
2506 * @param mtd MTD data structure
2507 *
75384b0d
KP
2508 * Check and set OneNAND features
2509 * - lock scheme
ee9745fc 2510 * - two plane
28b79ff9 2511 */
75384b0d 2512static void onenand_check_features(struct mtd_info *mtd)
28b79ff9
KP
2513{
2514 struct onenand_chip *this = mtd->priv;
2515 unsigned int density, process;
2516
2517 /* Lock scheme depends on density and process */
e71f04fc 2518 density = onenand_get_density(this->device_id);
28b79ff9
KP
2519 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2520
2521 /* Lock scheme */
ee9745fc
KP
2522 switch (density) {
2523 case ONENAND_DEVICE_DENSITY_4Gb:
2524 this->options |= ONENAND_HAS_2PLANE;
2525
2526 case ONENAND_DEVICE_DENSITY_2Gb:
2527 /* 2Gb DDP don't have 2 plane */
2528 if (!ONENAND_IS_DDP(this))
2529 this->options |= ONENAND_HAS_2PLANE;
2530 this->options |= ONENAND_HAS_UNLOCK_ALL;
2531
2532 case ONENAND_DEVICE_DENSITY_1Gb:
28b79ff9 2533 /* A-Die has all block unlock */
ee9745fc 2534 if (process)
28b79ff9 2535 this->options |= ONENAND_HAS_UNLOCK_ALL;
ee9745fc
KP
2536 break;
2537
2538 default:
2539 /* Some OneNAND has continuous lock scheme */
2540 if (!process)
28b79ff9 2541 this->options |= ONENAND_HAS_CONT_LOCK;
ee9745fc 2542 break;
28b79ff9 2543 }
ee9745fc
KP
2544
2545 if (this->options & ONENAND_HAS_CONT_LOCK)
2546 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2547 if (this->options & ONENAND_HAS_UNLOCK_ALL)
2548 printk(KERN_DEBUG "Chip support all block unlock\n");
2549 if (this->options & ONENAND_HAS_2PLANE)
2550 printk(KERN_DEBUG "Chip has 2 plane\n");
28b79ff9
KP
2551}
2552
cd5f6346 2553/**
e3da8067 2554 * onenand_print_device_info - Print device & version ID
cd5f6346 2555 * @param device device ID
e3da8067 2556 * @param version version ID
cd5f6346 2557 *
e3da8067 2558 * Print device & version ID
cd5f6346 2559 */
28b79ff9 2560static void onenand_print_device_info(int device, int version)
cd5f6346
KP
2561{
2562 int vcc, demuxed, ddp, density;
2563
2564 vcc = device & ONENAND_DEVICE_VCC_MASK;
2565 demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2566 ddp = device & ONENAND_DEVICE_IS_DDP;
e71f04fc 2567 density = onenand_get_density(device);
cd5f6346
KP
2568 printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
2569 demuxed ? "" : "Muxed ",
2570 ddp ? "(DDP)" : "",
2571 (16 << density),
2572 vcc ? "2.65/3.3" : "1.8",
2573 device);
49dc08ee 2574 printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
cd5f6346
KP
2575}
2576
2577static const struct onenand_manufacturers onenand_manuf_ids[] = {
2578 {ONENAND_MFR_SAMSUNG, "Samsung"},
cd5f6346
KP
2579};
2580
2581/**
2582 * onenand_check_maf - Check manufacturer ID
2583 * @param manuf manufacturer ID
2584 *
2585 * Check manufacturer ID
2586 */
2587static int onenand_check_maf(int manuf)
2588{
37b1cc39
KP
2589 int size = ARRAY_SIZE(onenand_manuf_ids);
2590 char *name;
cd5f6346
KP
2591 int i;
2592
37b1cc39 2593 for (i = 0; i < size; i++)
cd5f6346
KP
2594 if (manuf == onenand_manuf_ids[i].id)
2595 break;
cd5f6346 2596
37b1cc39
KP
2597 if (i < size)
2598 name = onenand_manuf_ids[i].name;
2599 else
2600 name = "Unknown";
2601
2602 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
cd5f6346 2603
37b1cc39 2604 return (i == size);
cd5f6346
KP
2605}
2606
2607/**
2608 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2609 * @param mtd MTD device structure
2610 *
2611 * OneNAND detection method:
59c51591 2612 * Compare the values from command with ones from register
cd5f6346
KP
2613 */
2614static int onenand_probe(struct mtd_info *mtd)
2615{
2616 struct onenand_chip *this = mtd->priv;
28b79ff9 2617 int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
cd5f6346 2618 int density;
47e777e0
KP
2619 int syscfg;
2620
2621 /* Save system configuration 1 */
2622 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2623 /* Clear Sync. Burst Read mode to read BootRAM */
2624 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
cd5f6346
KP
2625
2626 /* Send the command for reading device ID from BootRAM */
2627 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2628
2629 /* Read manufacturer and device IDs from BootRAM */
2630 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2631 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2632
47e777e0
KP
2633 /* Reset OneNAND to read default register values */
2634 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2635 /* Wait reset */
2636 this->wait(mtd, FL_RESETING);
2637
2638 /* Restore system configuration 1 */
2639 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2640
cd5f6346
KP
2641 /* Check manufacturer ID */
2642 if (onenand_check_maf(bram_maf_id))
2643 return -ENXIO;
2644
cd5f6346
KP
2645 /* Read manufacturer and device IDs from Register */
2646 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2647 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
f4f91ac3 2648 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
cd5f6346
KP
2649
2650 /* Check OneNAND device */
2651 if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2652 return -ENXIO;
2653
2654 /* Flash device information */
28b79ff9 2655 onenand_print_device_info(dev_id, ver_id);
cd5f6346 2656 this->device_id = dev_id;
28b79ff9 2657 this->version_id = ver_id;
cd5f6346 2658
e71f04fc 2659 density = onenand_get_density(dev_id);
cd5f6346 2660 this->chipsize = (16 << density) << 20;
83a36838 2661 /* Set density mask. it is used for DDP */
738d61f5
KP
2662 if (ONENAND_IS_DDP(this))
2663 this->density_mask = (1 << (density + 6));
2664 else
2665 this->density_mask = 0;
cd5f6346
KP
2666
2667 /* OneNAND page size & block size */
2668 /* The data buffer size is equal to page size */
28318776
JE
2669 mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2670 mtd->oobsize = mtd->writesize >> 5;
9bfbc9b2 2671 /* Pages per a block are always 64 in OneNAND */
28318776 2672 mtd->erasesize = mtd->writesize << 6;
cd5f6346
KP
2673
2674 this->erase_shift = ffs(mtd->erasesize) - 1;
28318776 2675 this->page_shift = ffs(mtd->writesize) - 1;
9bfbc9b2 2676 this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
ee9745fc
KP
2677 /* It's real page size */
2678 this->writesize = mtd->writesize;
cd5f6346
KP
2679
2680 /* REVIST: Multichip handling */
2681
2682 mtd->size = this->chipsize;
2683
75384b0d
KP
2684 /* Check OneNAND features */
2685 onenand_check_features(mtd);
d5c5e78a 2686
ee9745fc
KP
2687 /*
2688 * We emulate the 4KiB page and 256KiB erase block size
2689 * But oobsize is still 64 bytes.
2690 * It is only valid if you turn on 2X program support,
2691 * Otherwise it will be ignored by compiler.
2692 */
2693 if (ONENAND_IS_2PLANE(this)) {
2694 mtd->writesize <<= 1;
2695 mtd->erasesize <<= 1;
2696 }
2697
cd5f6346
KP
2698 return 0;
2699}
2700
a41371eb
KP
2701/**
2702 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
2703 * @param mtd MTD device structure
2704 */
2705static int onenand_suspend(struct mtd_info *mtd)
2706{
2707 return onenand_get_device(mtd, FL_PM_SUSPENDED);
2708}
2709
2710/**
2711 * onenand_resume - [MTD Interface] Resume the OneNAND flash
2712 * @param mtd MTD device structure
2713 */
2714static void onenand_resume(struct mtd_info *mtd)
2715{
2716 struct onenand_chip *this = mtd->priv;
2717
2718 if (this->state == FL_PM_SUSPENDED)
2719 onenand_release_device(mtd);
2720 else
2721 printk(KERN_ERR "resume() called for the chip which is not"
2722 "in suspended state\n");
2723}
2724
cd5f6346
KP
2725/**
2726 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2727 * @param mtd MTD device structure
2728 * @param maxchips Number of chips to scan for
2729 *
2730 * This fills out all the not initialized function pointers
2731 * with the defaults.
2732 * The flash ID is read and the mtd/chip structures are
2733 * filled with the appropriate values.
2734 */
2735int onenand_scan(struct mtd_info *mtd, int maxchips)
2736{
a5e7c7b4 2737 int i;
cd5f6346
KP
2738 struct onenand_chip *this = mtd->priv;
2739
2740 if (!this->read_word)
2741 this->read_word = onenand_readw;
2742 if (!this->write_word)
2743 this->write_word = onenand_writew;
2744
2745 if (!this->command)
2746 this->command = onenand_command;
2747 if (!this->wait)
2c22120f 2748 onenand_setup_wait(mtd);
cd5f6346
KP
2749
2750 if (!this->read_bufferram)
2751 this->read_bufferram = onenand_read_bufferram;
2752 if (!this->write_bufferram)
2753 this->write_bufferram = onenand_write_bufferram;
2754
cdc00130
KP
2755 if (!this->block_markbad)
2756 this->block_markbad = onenand_default_block_markbad;
2757 if (!this->scan_bbt)
2758 this->scan_bbt = onenand_default_bbt;
2759
cd5f6346
KP
2760 if (onenand_probe(mtd))
2761 return -ENXIO;
2762
52b0eea7
KP
2763 /* Set Sync. Burst Read after probing */
2764 if (this->mmcontrol) {
2765 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2766 this->read_bufferram = onenand_sync_read_bufferram;
2767 }
2768
532a37cf
KP
2769 /* Allocate buffers, if necessary */
2770 if (!this->page_buf) {
470bc844 2771 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
532a37cf
KP
2772 if (!this->page_buf) {
2773 printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2774 return -ENOMEM;
2775 }
2776 this->options |= ONENAND_PAGEBUF_ALLOC;
2777 }
470bc844
KP
2778 if (!this->oob_buf) {
2779 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2780 if (!this->oob_buf) {
2781 printk(KERN_ERR "onenand_scan(): Can't allocate oob_buf\n");
2782 if (this->options & ONENAND_PAGEBUF_ALLOC) {
2783 this->options &= ~ONENAND_PAGEBUF_ALLOC;
2784 kfree(this->page_buf);
2785 }
2786 return -ENOMEM;
2787 }
2788 this->options |= ONENAND_OOBBUF_ALLOC;
2789 }
532a37cf 2790
cd5f6346
KP
2791 this->state = FL_READY;
2792 init_waitqueue_head(&this->wq);
2793 spin_lock_init(&this->chip_lock);
2794
60d84f97
KP
2795 /*
2796 * Allow subpage writes up to oobsize.
2797 */
cd5f6346
KP
2798 switch (mtd->oobsize) {
2799 case 64:
5bd34c09 2800 this->ecclayout = &onenand_oob_64;
60d84f97 2801 mtd->subpage_sft = 2;
cd5f6346
KP
2802 break;
2803
2804 case 32:
5bd34c09 2805 this->ecclayout = &onenand_oob_32;
60d84f97 2806 mtd->subpage_sft = 1;
cd5f6346
KP
2807 break;
2808
2809 default:
2810 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2811 mtd->oobsize);
60d84f97 2812 mtd->subpage_sft = 0;
cd5f6346 2813 /* To prevent kernel oops */
5bd34c09 2814 this->ecclayout = &onenand_oob_32;
cd5f6346
KP
2815 break;
2816 }
2817
60d84f97 2818 this->subpagesize = mtd->writesize >> mtd->subpage_sft;
a5e7c7b4
AH
2819
2820 /*
2821 * The number of bytes available for a client to place data into
2822 * the out of band area
2823 */
2824 this->ecclayout->oobavail = 0;
ad286343
KP
2825 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2826 this->ecclayout->oobfree[i].length; i++)
a5e7c7b4
AH
2827 this->ecclayout->oobavail +=
2828 this->ecclayout->oobfree[i].length;
1f92267c 2829 mtd->oobavail = this->ecclayout->oobavail;
a5e7c7b4 2830
5bd34c09 2831 mtd->ecclayout = this->ecclayout;
d5c5e78a 2832
cd5f6346
KP
2833 /* Fill in remaining MTD driver data */
2834 mtd->type = MTD_NANDFLASH;
5fa43394 2835 mtd->flags = MTD_CAP_NANDFLASH;
cd5f6346
KP
2836 mtd->erase = onenand_erase;
2837 mtd->point = NULL;
2838 mtd->unpoint = NULL;
2839 mtd->read = onenand_read;
2840 mtd->write = onenand_write;
cd5f6346
KP
2841 mtd->read_oob = onenand_read_oob;
2842 mtd->write_oob = onenand_write_oob;
6c77fd64 2843 mtd->panic_write = onenand_panic_write;
493c6460
KP
2844#ifdef CONFIG_MTD_ONENAND_OTP
2845 mtd->get_fact_prot_info = onenand_get_fact_prot_info;
2846 mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
2847 mtd->get_user_prot_info = onenand_get_user_prot_info;
2848 mtd->read_user_prot_reg = onenand_read_user_prot_reg;
2849 mtd->write_user_prot_reg = onenand_write_user_prot_reg;
2850 mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
2851#endif
cd5f6346 2852 mtd->sync = onenand_sync;
08f782b6 2853 mtd->lock = onenand_lock;
cd5f6346 2854 mtd->unlock = onenand_unlock;
a41371eb
KP
2855 mtd->suspend = onenand_suspend;
2856 mtd->resume = onenand_resume;
cd5f6346
KP
2857 mtd->block_isbad = onenand_block_isbad;
2858 mtd->block_markbad = onenand_block_markbad;
2859 mtd->owner = THIS_MODULE;
2860
2861 /* Unlock whole block */
28b79ff9 2862 onenand_unlock_all(mtd);
cd5f6346 2863
cdc00130 2864 return this->scan_bbt(mtd);
cd5f6346
KP
2865}
2866
2867/**
2868 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2869 * @param mtd MTD device structure
2870 */
2871void onenand_release(struct mtd_info *mtd)
2872{
532a37cf
KP
2873 struct onenand_chip *this = mtd->priv;
2874
cd5f6346
KP
2875#ifdef CONFIG_MTD_PARTITIONS
2876 /* Deregister partitions */
2877 del_mtd_partitions (mtd);
2878#endif
2879 /* Deregister the device */
2880 del_mtd_device (mtd);
532a37cf
KP
2881
2882 /* Free bad block table memory, if allocated */
f00b0046
AH
2883 if (this->bbm) {
2884 struct bbm_info *bbm = this->bbm;
2885 kfree(bbm->bbt);
532a37cf 2886 kfree(this->bbm);
f00b0046 2887 }
470bc844 2888 /* Buffers allocated by onenand_scan */
532a37cf
KP
2889 if (this->options & ONENAND_PAGEBUF_ALLOC)
2890 kfree(this->page_buf);
470bc844
KP
2891 if (this->options & ONENAND_OOBBUF_ALLOC)
2892 kfree(this->oob_buf);
cd5f6346
KP
2893}
2894
2895EXPORT_SYMBOL_GPL(onenand_scan);
2896EXPORT_SYMBOL_GPL(onenand_release);
2897
2898MODULE_LICENSE("GPL");
2899MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
2900MODULE_DESCRIPTION("Generic OneNAND flash driver code");