]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/mtd/onenand/onenand_base.c
[MTD] OneNAND: Update copyrights and code cleanup
[net-next-2.6.git] / drivers / mtd / onenand / onenand_base.c
CommitLineData
cd5f6346
KP
1/*
2 * linux/drivers/mtd/onenand/onenand_base.c
3 *
75384b0d 4 * Copyright (C) 2005-2007 Samsung Electronics
cd5f6346
KP
5 * Kyungmin Park <kyungmin.park@samsung.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/init.h>
015953d7 15#include <linux/sched.h>
2c22120f 16#include <linux/interrupt.h>
015953d7 17#include <linux/jiffies.h>
cd5f6346
KP
18#include <linux/mtd/mtd.h>
19#include <linux/mtd/onenand.h>
20#include <linux/mtd/partitions.h>
21
22#include <asm/io.h>
23
24/**
25 * onenand_oob_64 - oob info for large (2KB) page
26 */
5bd34c09 27static struct nand_ecclayout onenand_oob_64 = {
cd5f6346
KP
28 .eccbytes = 20,
29 .eccpos = {
30 8, 9, 10, 11, 12,
31 24, 25, 26, 27, 28,
32 40, 41, 42, 43, 44,
33 56, 57, 58, 59, 60,
34 },
35 .oobfree = {
36 {2, 3}, {14, 2}, {18, 3}, {30, 2},
d9777f1c
JL
37 {34, 3}, {46, 2}, {50, 3}, {62, 2}
38 }
cd5f6346
KP
39};
40
41/**
42 * onenand_oob_32 - oob info for middle (1KB) page
43 */
5bd34c09 44static struct nand_ecclayout onenand_oob_32 = {
cd5f6346
KP
45 .eccbytes = 10,
46 .eccpos = {
47 8, 9, 10, 11, 12,
48 24, 25, 26, 27, 28,
49 },
50 .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
51};
52
53static const unsigned char ffchars[] = {
54 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
55 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
56 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
57 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
58 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
59 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
60 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
61 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
62};
63
64/**
65 * onenand_readw - [OneNAND Interface] Read OneNAND register
66 * @param addr address to read
67 *
68 * Read OneNAND register
69 */
70static unsigned short onenand_readw(void __iomem *addr)
71{
72 return readw(addr);
73}
74
75/**
76 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
77 * @param value value to write
78 * @param addr address to write
79 *
80 * Write OneNAND register with value
81 */
82static void onenand_writew(unsigned short value, void __iomem *addr)
83{
84 writew(value, addr);
85}
86
87/**
88 * onenand_block_address - [DEFAULT] Get block address
83a36838 89 * @param this onenand chip data structure
cd5f6346
KP
90 * @param block the block
91 * @return translated block address if DDP, otherwise same
92 *
93 * Setup Start Address 1 Register (F100h)
94 */
83a36838 95static int onenand_block_address(struct onenand_chip *this, int block)
cd5f6346 96{
738d61f5
KP
97 /* Device Flash Core select, NAND Flash Block Address */
98 if (block & this->density_mask)
99 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
cd5f6346
KP
100
101 return block;
102}
103
104/**
105 * onenand_bufferram_address - [DEFAULT] Get bufferram address
83a36838 106 * @param this onenand chip data structure
cd5f6346
KP
107 * @param block the block
108 * @return set DBS value if DDP, otherwise 0
109 *
110 * Setup Start Address 2 Register (F101h) for DDP
111 */
83a36838 112static int onenand_bufferram_address(struct onenand_chip *this, int block)
cd5f6346 113{
738d61f5
KP
114 /* Device BufferRAM Select */
115 if (block & this->density_mask)
116 return ONENAND_DDP_CHIP1;
cd5f6346 117
738d61f5 118 return ONENAND_DDP_CHIP0;
cd5f6346
KP
119}
120
121/**
122 * onenand_page_address - [DEFAULT] Get page address
123 * @param page the page address
124 * @param sector the sector address
125 * @return combined page and sector address
126 *
127 * Setup Start Address 8 Register (F107h)
128 */
129static int onenand_page_address(int page, int sector)
130{
131 /* Flash Page Address, Flash Sector Address */
132 int fpa, fsa;
133
134 fpa = page & ONENAND_FPA_MASK;
135 fsa = sector & ONENAND_FSA_MASK;
136
137 return ((fpa << ONENAND_FPA_SHIFT) | fsa);
138}
139
140/**
141 * onenand_buffer_address - [DEFAULT] Get buffer address
142 * @param dataram1 DataRAM index
143 * @param sectors the sector address
144 * @param count the number of sectors
145 * @return the start buffer value
146 *
147 * Setup Start Buffer Register (F200h)
148 */
149static int onenand_buffer_address(int dataram1, int sectors, int count)
150{
151 int bsa, bsc;
152
153 /* BufferRAM Sector Address */
154 bsa = sectors & ONENAND_BSA_MASK;
155
156 if (dataram1)
157 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
158 else
159 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
160
161 /* BufferRAM Sector Count */
162 bsc = count & ONENAND_BSC_MASK;
163
164 return ((bsa << ONENAND_BSA_SHIFT) | bsc);
165}
166
167/**
168 * onenand_command - [DEFAULT] Send command to OneNAND device
169 * @param mtd MTD device structure
170 * @param cmd the command to be sent
171 * @param addr offset to read from or write to
172 * @param len number of bytes to read or write
173 *
174 * Send command to OneNAND device. This function is used for middle/large page
175 * devices (1KB/2KB Bytes per page)
176 */
177static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
178{
179 struct onenand_chip *this = mtd->priv;
493c6460 180 int value, readcmd = 0, block_cmd = 0;
cd5f6346 181 int block, page;
cd5f6346
KP
182
183 /* Address translation */
184 switch (cmd) {
185 case ONENAND_CMD_UNLOCK:
186 case ONENAND_CMD_LOCK:
187 case ONENAND_CMD_LOCK_TIGHT:
28b79ff9 188 case ONENAND_CMD_UNLOCK_ALL:
cd5f6346
KP
189 block = -1;
190 page = -1;
191 break;
192
193 case ONENAND_CMD_ERASE:
194 case ONENAND_CMD_BUFFERRAM:
493c6460
KP
195 case ONENAND_CMD_OTP_ACCESS:
196 block_cmd = 1;
cd5f6346
KP
197 block = (int) (addr >> this->erase_shift);
198 page = -1;
199 break;
200
201 default:
202 block = (int) (addr >> this->erase_shift);
203 page = (int) (addr >> this->page_shift);
204 page &= this->page_mask;
205 break;
206 }
207
208 /* NOTE: The setting order of the registers is very important! */
209 if (cmd == ONENAND_CMD_BUFFERRAM) {
210 /* Select DataRAM for DDP */
83a36838 211 value = onenand_bufferram_address(this, block);
cd5f6346
KP
212 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
213
214 /* Switch to the next data buffer */
215 ONENAND_SET_NEXT_BUFFERRAM(this);
216
217 return 0;
218 }
219
220 if (block != -1) {
221 /* Write 'DFS, FBA' of Flash */
83a36838 222 value = onenand_block_address(this, block);
cd5f6346 223 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
3cecf69e 224
75287070 225 if (block_cmd) {
3cecf69e
KP
226 /* Select DataRAM for DDP */
227 value = onenand_bufferram_address(this, block);
228 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
229 }
cd5f6346
KP
230 }
231
232 if (page != -1) {
60d84f97
KP
233 /* Now we use page size operation */
234 int sectors = 4, count = 4;
cd5f6346
KP
235 int dataram;
236
237 switch (cmd) {
238 case ONENAND_CMD_READ:
239 case ONENAND_CMD_READOOB:
240 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
241 readcmd = 1;
242 break;
243
244 default:
245 dataram = ONENAND_CURRENT_BUFFERRAM(this);
246 break;
247 }
248
249 /* Write 'FPA, FSA' of Flash */
250 value = onenand_page_address(page, sectors);
251 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
252
253 /* Write 'BSA, BSC' of DataRAM */
254 value = onenand_buffer_address(dataram, sectors, count);
255 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
d5c5e78a 256
cd5f6346
KP
257 if (readcmd) {
258 /* Select DataRAM for DDP */
83a36838 259 value = onenand_bufferram_address(this, block);
cd5f6346
KP
260 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
261 }
262 }
263
264 /* Interrupt clear */
265 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
266
267 /* Write command */
268 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
269
270 return 0;
271}
272
273/**
274 * onenand_wait - [DEFAULT] wait until the command is done
275 * @param mtd MTD device structure
276 * @param state state to select the max. timeout value
277 *
278 * Wait for command done. This applies to all OneNAND command
279 * Read can take up to 30us, erase up to 2ms and program up to 350us
280 * according to general OneNAND specs
281 */
282static int onenand_wait(struct mtd_info *mtd, int state)
283{
284 struct onenand_chip * this = mtd->priv;
285 unsigned long timeout;
286 unsigned int flags = ONENAND_INT_MASTER;
287 unsigned int interrupt = 0;
2fd32d4a 288 unsigned int ctrl;
cd5f6346
KP
289
290 /* The 20 msec is enough */
291 timeout = jiffies + msecs_to_jiffies(20);
292 while (time_before(jiffies, timeout)) {
293 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
294
295 if (interrupt & flags)
296 break;
297
298 if (state != FL_READING)
299 cond_resched();
300 }
301 /* To get correct interrupt status in timeout case */
302 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
303
304 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
305
306 if (ctrl & ONENAND_CTRL_ERROR) {
cdc00130 307 DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: controller error = 0x%04x\n", ctrl);
f6272487
KP
308 if (ctrl & ONENAND_CTRL_LOCK)
309 DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: it's locked error.\n");
310 return ctrl;
cd5f6346
KP
311 }
312
313 if (interrupt & ONENAND_INT_READ) {
2fd32d4a 314 int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
f4f91ac3 315 if (ecc) {
cdc00130 316 DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: ECC error = 0x%04x\n", ecc);
b3c9f8bf 317 if (ecc & ONENAND_ECC_2BIT_ALL) {
f4f91ac3 318 mtd->ecc_stats.failed++;
b3c9f8bf
KP
319 return ecc;
320 } else if (ecc & ONENAND_ECC_1BIT_ALL)
f4f91ac3 321 mtd->ecc_stats.corrected++;
cd5f6346 322 }
9d032801
AH
323 } else if (state == FL_READING) {
324 printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
325 return -EIO;
cd5f6346
KP
326 }
327
328 return 0;
329}
330
2c22120f
KP
331/*
332 * onenand_interrupt - [DEFAULT] onenand interrupt handler
333 * @param irq onenand interrupt number
334 * @param dev_id interrupt data
335 *
336 * complete the work
337 */
338static irqreturn_t onenand_interrupt(int irq, void *data)
339{
340 struct onenand_chip *this = (struct onenand_chip *) data;
341
342 /* To handle shared interrupt */
343 if (!this->complete.done)
344 complete(&this->complete);
345
346 return IRQ_HANDLED;
347}
348
349/*
350 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
351 * @param mtd MTD device structure
352 * @param state state to select the max. timeout value
353 *
354 * Wait for command done.
355 */
356static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
357{
358 struct onenand_chip *this = mtd->priv;
359
2c22120f
KP
360 wait_for_completion(&this->complete);
361
362 return onenand_wait(mtd, state);
363}
364
365/*
366 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
367 * @param mtd MTD device structure
368 * @param state state to select the max. timeout value
369 *
370 * Try interrupt based wait (It is used one-time)
371 */
372static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
373{
374 struct onenand_chip *this = mtd->priv;
375 unsigned long remain, timeout;
376
377 /* We use interrupt wait first */
378 this->wait = onenand_interrupt_wait;
379
2c22120f
KP
380 timeout = msecs_to_jiffies(100);
381 remain = wait_for_completion_timeout(&this->complete, timeout);
382 if (!remain) {
383 printk(KERN_INFO "OneNAND: There's no interrupt. "
384 "We use the normal wait\n");
385
386 /* Release the irq */
387 free_irq(this->irq, this);
c9ac5977 388
2c22120f
KP
389 this->wait = onenand_wait;
390 }
391
392 return onenand_wait(mtd, state);
393}
394
395/*
396 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
397 * @param mtd MTD device structure
398 *
399 * There's two method to wait onenand work
400 * 1. polling - read interrupt status register
401 * 2. interrupt - use the kernel interrupt method
402 */
403static void onenand_setup_wait(struct mtd_info *mtd)
404{
405 struct onenand_chip *this = mtd->priv;
406 int syscfg;
407
408 init_completion(&this->complete);
409
410 if (this->irq <= 0) {
411 this->wait = onenand_wait;
412 return;
413 }
414
415 if (request_irq(this->irq, &onenand_interrupt,
416 IRQF_SHARED, "onenand", this)) {
417 /* If we can't get irq, use the normal wait */
418 this->wait = onenand_wait;
419 return;
420 }
421
422 /* Enable interrupt */
423 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
424 syscfg |= ONENAND_SYS_CFG1_IOBE;
425 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
426
427 this->wait = onenand_try_interrupt_wait;
428}
429
cd5f6346
KP
430/**
431 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
432 * @param mtd MTD data structure
433 * @param area BufferRAM area
434 * @return offset given area
435 *
436 * Return BufferRAM offset given area
437 */
438static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
439{
440 struct onenand_chip *this = mtd->priv;
441
442 if (ONENAND_CURRENT_BUFFERRAM(this)) {
443 if (area == ONENAND_DATARAM)
28318776 444 return mtd->writesize;
cd5f6346
KP
445 if (area == ONENAND_SPARERAM)
446 return mtd->oobsize;
447 }
448
449 return 0;
450}
451
452/**
453 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
454 * @param mtd MTD data structure
455 * @param area BufferRAM area
456 * @param buffer the databuffer to put/get data
457 * @param offset offset to read from or write to
458 * @param count number of bytes to read/write
459 *
460 * Read the BufferRAM area
461 */
462static int onenand_read_bufferram(struct mtd_info *mtd, int area,
463 unsigned char *buffer, int offset, size_t count)
464{
465 struct onenand_chip *this = mtd->priv;
466 void __iomem *bufferram;
467
468 bufferram = this->base + area;
469
470 bufferram += onenand_bufferram_offset(mtd, area);
471
9c01f87d
KP
472 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
473 unsigned short word;
474
475 /* Align with word(16-bit) size */
476 count--;
477
478 /* Read word and save byte */
479 word = this->read_word(bufferram + offset + count);
480 buffer[count] = (word & 0xff);
481 }
482
cd5f6346
KP
483 memcpy(buffer, bufferram + offset, count);
484
485 return 0;
486}
487
52b0eea7
KP
488/**
489 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
490 * @param mtd MTD data structure
491 * @param area BufferRAM area
492 * @param buffer the databuffer to put/get data
493 * @param offset offset to read from or write to
494 * @param count number of bytes to read/write
495 *
496 * Read the BufferRAM area with Sync. Burst Mode
497 */
498static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
499 unsigned char *buffer, int offset, size_t count)
500{
501 struct onenand_chip *this = mtd->priv;
502 void __iomem *bufferram;
503
504 bufferram = this->base + area;
505
506 bufferram += onenand_bufferram_offset(mtd, area);
507
508 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
509
9c01f87d
KP
510 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
511 unsigned short word;
512
513 /* Align with word(16-bit) size */
514 count--;
515
516 /* Read word and save byte */
517 word = this->read_word(bufferram + offset + count);
518 buffer[count] = (word & 0xff);
519 }
520
52b0eea7
KP
521 memcpy(buffer, bufferram + offset, count);
522
523 this->mmcontrol(mtd, 0);
524
525 return 0;
526}
527
cd5f6346
KP
528/**
529 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
530 * @param mtd MTD data structure
531 * @param area BufferRAM area
532 * @param buffer the databuffer to put/get data
533 * @param offset offset to read from or write to
534 * @param count number of bytes to read/write
535 *
536 * Write the BufferRAM area
537 */
538static int onenand_write_bufferram(struct mtd_info *mtd, int area,
539 const unsigned char *buffer, int offset, size_t count)
540{
541 struct onenand_chip *this = mtd->priv;
542 void __iomem *bufferram;
543
544 bufferram = this->base + area;
545
546 bufferram += onenand_bufferram_offset(mtd, area);
547
9c01f87d
KP
548 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
549 unsigned short word;
550 int byte_offset;
551
552 /* Align with word(16-bit) size */
553 count--;
554
555 /* Calculate byte access offset */
556 byte_offset = offset + count;
557
558 /* Read word and save byte */
559 word = this->read_word(bufferram + byte_offset);
560 word = (word & ~0xff) | buffer[count];
561 this->write_word(word, bufferram + byte_offset);
562 }
563
cd5f6346
KP
564 memcpy(bufferram + offset, buffer, count);
565
566 return 0;
567}
568
569/**
570 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
571 * @param mtd MTD data structure
572 * @param addr address to check
d5c5e78a 573 * @return 1 if there are valid data, otherwise 0
cd5f6346
KP
574 *
575 * Check bufferram if there is data we required
576 */
577static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
578{
579 struct onenand_chip *this = mtd->priv;
580 int block, page;
581 int i;
d5c5e78a 582
cd5f6346 583 block = (int) (addr >> this->erase_shift);
75384b0d 584 page = (int) (addr >> this->page_shift) & this->page_mask;
cd5f6346
KP
585
586 i = ONENAND_CURRENT_BUFFERRAM(this);
587
588 /* Is there valid data? */
589 if (this->bufferram[i].block == block &&
590 this->bufferram[i].page == page &&
591 this->bufferram[i].valid)
592 return 1;
593
594 return 0;
595}
596
597/**
598 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
599 * @param mtd MTD data structure
600 * @param addr address to update
601 * @param valid valid flag
602 *
603 * Update BufferRAM information
604 */
605static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
606 int valid)
607{
608 struct onenand_chip *this = mtd->priv;
609 int block, page;
610 int i;
d5c5e78a 611
cd5f6346 612 block = (int) (addr >> this->erase_shift);
75384b0d 613 page = (int) (addr >> this->page_shift) & this->page_mask;
cd5f6346
KP
614
615 /* Invalidate BufferRAM */
616 for (i = 0; i < MAX_BUFFERRAM; i++) {
617 if (this->bufferram[i].block == block &&
618 this->bufferram[i].page == page)
619 this->bufferram[i].valid = 0;
620 }
621
622 /* Update BufferRAM */
623 i = ONENAND_CURRENT_BUFFERRAM(this);
624 this->bufferram[i].block = block;
625 this->bufferram[i].page = page;
626 this->bufferram[i].valid = valid;
627
628 return 0;
629}
630
631/**
632 * onenand_get_device - [GENERIC] Get chip for selected access
633 * @param mtd MTD device structure
634 * @param new_state the state which is requested
635 *
636 * Get the device and lock it for exclusive access
637 */
a41371eb 638static int onenand_get_device(struct mtd_info *mtd, int new_state)
cd5f6346
KP
639{
640 struct onenand_chip *this = mtd->priv;
641 DECLARE_WAITQUEUE(wait, current);
642
643 /*
644 * Grab the lock and see if the device is available
645 */
646 while (1) {
647 spin_lock(&this->chip_lock);
648 if (this->state == FL_READY) {
649 this->state = new_state;
650 spin_unlock(&this->chip_lock);
651 break;
652 }
a41371eb
KP
653 if (new_state == FL_PM_SUSPENDED) {
654 spin_unlock(&this->chip_lock);
655 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
656 }
cd5f6346
KP
657 set_current_state(TASK_UNINTERRUPTIBLE);
658 add_wait_queue(&this->wq, &wait);
659 spin_unlock(&this->chip_lock);
660 schedule();
661 remove_wait_queue(&this->wq, &wait);
662 }
a41371eb
KP
663
664 return 0;
cd5f6346
KP
665}
666
667/**
668 * onenand_release_device - [GENERIC] release chip
669 * @param mtd MTD device structure
670 *
671 * Deselect, release chip lock and wake up anyone waiting on the device
672 */
673static void onenand_release_device(struct mtd_info *mtd)
674{
675 struct onenand_chip *this = mtd->priv;
676
677 /* Release the chip */
678 spin_lock(&this->chip_lock);
679 this->state = FL_READY;
680 wake_up(&this->wq);
681 spin_unlock(&this->chip_lock);
682}
683
684/**
9223a456 685 * onenand_read - [MTD Interface] Read data from flash
cd5f6346
KP
686 * @param mtd MTD device structure
687 * @param from offset to read from
688 * @param len number of bytes to read
689 * @param retlen pointer to variable to store the number of read bytes
690 * @param buf the databuffer to put data
cd5f6346 691 *
9223a456
TG
692 * Read with ecc
693*/
694static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
695 size_t *retlen, u_char *buf)
cd5f6346
KP
696{
697 struct onenand_chip *this = mtd->priv;
f4f91ac3 698 struct mtd_ecc_stats stats;
cd5f6346
KP
699 int read = 0, column;
700 int thislen;
0fc2ccea 701 int ret = 0, boundary = 0;
cd5f6346 702
9223a456 703 DEBUG(MTD_DEBUG_LEVEL3, "onenand_read: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
cd5f6346
KP
704
705 /* Do not allow reads past end of device */
706 if ((from + len) > mtd->size) {
9223a456 707 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read: Attempt read beyond end of device\n");
cd5f6346
KP
708 *retlen = 0;
709 return -EINVAL;
710 }
711
712 /* Grab the lock and see if the device is available */
713 onenand_get_device(mtd, FL_READING);
714
f4f91ac3 715 stats = mtd->ecc_stats;
61a7e198 716
a8de85d5
AH
717 /* Read-while-load method */
718
719 /* Do first load to bufferRAM */
720 if (read < len) {
721 if (!onenand_check_bufferram(mtd, from)) {
722 this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
723 ret = this->wait(mtd, FL_READING);
724 onenand_update_bufferram(mtd, from, !ret);
725 }
726 }
727
728 thislen = min_t(int, mtd->writesize, len - read);
729 column = from & (mtd->writesize - 1);
730 if (column + thislen > mtd->writesize)
731 thislen = mtd->writesize - column;
732
733 while (!ret) {
734 /* If there is more to load then start next load */
735 from += thislen;
736 if (read + thislen < len) {
737 this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
0fc2ccea
AH
738 /*
739 * Chip boundary handling in DDP
740 * Now we issued chip 1 read and pointed chip 1
741 * bufferam so we have to point chip 0 bufferam.
742 */
738d61f5
KP
743 if (ONENAND_IS_DDP(this) &&
744 unlikely(from == (this->chipsize >> 1))) {
745 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
0fc2ccea
AH
746 boundary = 1;
747 } else
748 boundary = 0;
a8de85d5
AH
749 ONENAND_SET_PREV_BUFFERRAM(this);
750 }
751 /* While load is going, read from last bufferRAM */
752 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
753 /* See if we are done */
754 read += thislen;
755 if (read == len)
756 break;
757 /* Set up for next read from bufferRAM */
0fc2ccea 758 if (unlikely(boundary))
738d61f5 759 this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
a8de85d5
AH
760 ONENAND_SET_NEXT_BUFFERRAM(this);
761 buf += thislen;
762 thislen = min_t(int, mtd->writesize, len - read);
763 column = 0;
764 cond_resched();
765 /* Now wait for load */
766 ret = this->wait(mtd, FL_READING);
767 onenand_update_bufferram(mtd, from, !ret);
768 }
cd5f6346 769
cd5f6346
KP
770 /* Deselect and wake up anyone waiting on the device */
771 onenand_release_device(mtd);
772
773 /*
774 * Return success, if no ECC failures, else -EBADMSG
775 * fs driver will take care of that, because
776 * retlen == desired len and result == -EBADMSG
777 */
778 *retlen = read;
f4f91ac3
KP
779
780 if (mtd->ecc_stats.failed - stats.failed)
781 return -EBADMSG;
782
a8de85d5
AH
783 if (ret)
784 return ret;
785
f4f91ac3 786 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
cd5f6346
KP
787}
788
cd5f6346 789/**
8593fbc6 790 * onenand_do_read_oob - [MTD Interface] OneNAND read out-of-band
cd5f6346
KP
791 * @param mtd MTD device structure
792 * @param from offset to read from
793 * @param len number of bytes to read
794 * @param retlen pointer to variable to store the number of read bytes
795 * @param buf the databuffer to put data
796 *
797 * OneNAND read out-of-band data from the spare area
798 */
8593fbc6
TG
799int onenand_do_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
800 size_t *retlen, u_char *buf)
cd5f6346
KP
801{
802 struct onenand_chip *this = mtd->priv;
803 int read = 0, thislen, column;
804 int ret = 0;
805
806 DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
807
808 /* Initialize return length value */
809 *retlen = 0;
810
811 /* Do not allow reads past end of device */
812 if (unlikely((from + len) > mtd->size)) {
813 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: Attempt read beyond end of device\n");
814 return -EINVAL;
815 }
816
817 /* Grab the lock and see if the device is available */
818 onenand_get_device(mtd, FL_READING);
819
820 column = from & (mtd->oobsize - 1);
821
822 while (read < len) {
61a7e198
AB
823 cond_resched();
824
cd5f6346
KP
825 thislen = mtd->oobsize - column;
826 thislen = min_t(int, thislen, len);
827
828 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
829
830 onenand_update_bufferram(mtd, from, 0);
831
832 ret = this->wait(mtd, FL_READING);
833 /* First copy data and check return value for ECC handling */
834
835 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
836
f6272487
KP
837 if (ret) {
838 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: read failed = 0x%x\n", ret);
839 goto out;
840 }
841
cd5f6346
KP
842 read += thislen;
843
844 if (read == len)
845 break;
846
cd5f6346
KP
847 buf += thislen;
848
849 /* Read more? */
850 if (read < len) {
851 /* Page size */
28318776 852 from += mtd->writesize;
cd5f6346
KP
853 column = 0;
854 }
855 }
856
857out:
858 /* Deselect and wake up anyone waiting on the device */
859 onenand_release_device(mtd);
860
861 *retlen = read;
862 return ret;
863}
864
8593fbc6
TG
865/**
866 * onenand_read_oob - [MTD Interface] NAND write data and/or out-of-band
867 * @mtd: MTD device structure
868 * @from: offset to read from
869 * @ops: oob operation description structure
870 */
871static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
872 struct mtd_oob_ops *ops)
873{
874 BUG_ON(ops->mode != MTD_OOB_PLACE);
875
66a1e421
KP
876 return onenand_do_read_oob(mtd, from + ops->ooboffs, ops->ooblen,
877 &ops->oobretlen, ops->oobbuf);
8593fbc6
TG
878}
879
cd5f6346 880#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
8e6ec690
KP
881/**
882 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
883 * @param mtd MTD device structure
884 * @param buf the databuffer to verify
885 * @param to offset to read from
886 * @param len number of bytes to read and compare
887 *
888 */
889static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to, int len)
890{
891 struct onenand_chip *this = mtd->priv;
892 char *readp = this->page_buf;
893 int column = to & (mtd->oobsize - 1);
894 int status, i;
895
896 this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
897 onenand_update_bufferram(mtd, to, 0);
898 status = this->wait(mtd, FL_READING);
899 if (status)
900 return status;
901
902 this->read_bufferram(mtd, ONENAND_SPARERAM, readp, column, len);
903
904 for(i = 0; i < len; i++)
905 if (buf[i] != 0xFF && buf[i] != readp[i])
906 return -EBADMSG;
907
908 return 0;
909}
910
cd5f6346
KP
911/**
912 * onenand_verify_page - [GENERIC] verify the chip contents after a write
913 * @param mtd MTD device structure
914 * @param buf the databuffer to verify
cd5f6346
KP
915 *
916 * Check DataRAM area directly
917 */
d36d63d4 918static int onenand_verify_page(struct mtd_info *mtd, u_char *buf, loff_t addr)
cd5f6346
KP
919{
920 struct onenand_chip *this = mtd->priv;
921 void __iomem *dataram0, *dataram1;
922 int ret = 0;
923
60d84f97
KP
924 /* In partial page write, just skip it */
925 if ((addr & (mtd->writesize - 1)) != 0)
926 return 0;
927
28318776 928 this->command(mtd, ONENAND_CMD_READ, addr, mtd->writesize);
cd5f6346
KP
929
930 ret = this->wait(mtd, FL_READING);
931 if (ret)
932 return ret;
933
934 onenand_update_bufferram(mtd, addr, 1);
935
936 /* Check, if the two dataram areas are same */
937 dataram0 = this->base + ONENAND_DATARAM;
28318776 938 dataram1 = dataram0 + mtd->writesize;
cd5f6346 939
28318776 940 if (memcmp(dataram0, dataram1, mtd->writesize))
cd5f6346 941 return -EBADMSG;
d5c5e78a 942
cd5f6346
KP
943 return 0;
944}
945#else
946#define onenand_verify_page(...) (0)
8e6ec690 947#define onenand_verify_oob(...) (0)
cd5f6346
KP
948#endif
949
60d84f97 950#define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
cd5f6346
KP
951
952/**
9223a456 953 * onenand_write - [MTD Interface] write buffer to FLASH
cd5f6346
KP
954 * @param mtd MTD device structure
955 * @param to offset to write to
956 * @param len number of bytes to write
957 * @param retlen pointer to variable to store the number of written bytes
958 * @param buf the data to write
cd5f6346 959 *
9223a456 960 * Write with ECC
cd5f6346 961 */
9223a456
TG
962static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
963 size_t *retlen, const u_char *buf)
cd5f6346
KP
964{
965 struct onenand_chip *this = mtd->priv;
966 int written = 0;
967 int ret = 0;
60d84f97 968 int column, subpage;
cd5f6346 969
9223a456 970 DEBUG(MTD_DEBUG_LEVEL3, "onenand_write: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
cd5f6346
KP
971
972 /* Initialize retlen, in case of early exit */
973 *retlen = 0;
974
975 /* Do not allow writes past end of device */
976 if (unlikely((to + len) > mtd->size)) {
9223a456 977 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: Attempt write to past end of device\n");
cd5f6346
KP
978 return -EINVAL;
979 }
980
981 /* Reject writes, which are not page aligned */
982 if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
9223a456 983 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: Attempt to write not page aligned data\n");
cd5f6346
KP
984 return -EINVAL;
985 }
986
60d84f97
KP
987 column = to & (mtd->writesize - 1);
988 subpage = column || (len & (mtd->writesize - 1));
989
cd5f6346
KP
990 /* Grab the lock and see if the device is available */
991 onenand_get_device(mtd, FL_WRITING);
992
993 /* Loop until all data write */
994 while (written < len) {
60d84f97
KP
995 int bytes = mtd->writesize;
996 int thislen = min_t(int, bytes, len - written);
997 u_char *wbuf = (u_char *) buf;
998
61a7e198
AB
999 cond_resched();
1000
60d84f97
KP
1001 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, bytes);
1002
1003 /* Partial page write */
1004 if (subpage) {
1005 bytes = min_t(int, bytes - column, (int) len);
1006 memset(this->page_buf, 0xff, mtd->writesize);
1007 memcpy(this->page_buf + column, buf, bytes);
1008 wbuf = this->page_buf;
1009 /* Even though partial write, we need page size */
1010 thislen = mtd->writesize;
1011 }
cd5f6346 1012
60d84f97 1013 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, thislen);
cd5f6346
KP
1014 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1015
28318776 1016 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
cd5f6346 1017
60d84f97
KP
1018 /* In partial page write we don't update bufferram */
1019 onenand_update_bufferram(mtd, to, !subpage);
cd5f6346
KP
1020
1021 ret = this->wait(mtd, FL_WRITING);
1022 if (ret) {
9223a456 1023 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: write filaed %d\n", ret);
60d84f97 1024 break;
cd5f6346
KP
1025 }
1026
cd5f6346 1027 /* Only check verify write turn on */
60d84f97 1028 ret = onenand_verify_page(mtd, (u_char *) wbuf, to);
cd5f6346 1029 if (ret) {
9223a456 1030 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: verify failed %d\n", ret);
60d84f97 1031 break;
cd5f6346
KP
1032 }
1033
60d84f97
KP
1034 written += thislen;
1035
cd5f6346
KP
1036 if (written == len)
1037 break;
1038
60d84f97 1039 column = 0;
cd5f6346
KP
1040 to += thislen;
1041 buf += thislen;
1042 }
1043
cd5f6346
KP
1044 /* Deselect and wake up anyone waiting on the device */
1045 onenand_release_device(mtd);
1046
1047 *retlen = written;
d5c5e78a 1048
cd5f6346
KP
1049 return ret;
1050}
1051
cd5f6346 1052/**
8593fbc6 1053 * onenand_do_write_oob - [Internal] OneNAND write out-of-band
cd5f6346
KP
1054 * @param mtd MTD device structure
1055 * @param to offset to write to
1056 * @param len number of bytes to write
1057 * @param retlen pointer to variable to store the number of written bytes
1058 * @param buf the data to write
1059 *
1060 * OneNAND write out-of-band
1061 */
8593fbc6
TG
1062static int onenand_do_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
1063 size_t *retlen, const u_char *buf)
cd5f6346
KP
1064{
1065 struct onenand_chip *this = mtd->priv;
8e6ec690 1066 int column, ret = 0;
cd5f6346
KP
1067 int written = 0;
1068
1069 DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1070
1071 /* Initialize retlen, in case of early exit */
1072 *retlen = 0;
1073
1074 /* Do not allow writes past end of device */
1075 if (unlikely((to + len) > mtd->size)) {
1076 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: Attempt write to past end of device\n");
1077 return -EINVAL;
1078 }
1079
1080 /* Grab the lock and see if the device is available */
1081 onenand_get_device(mtd, FL_WRITING);
1082
1083 /* Loop until all data write */
1084 while (written < len) {
1085 int thislen = min_t(int, mtd->oobsize, len - written);
1086
61a7e198
AB
1087 cond_resched();
1088
cd5f6346
KP
1089 column = to & (mtd->oobsize - 1);
1090
1091 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1092
34c10609
KP
1093 /* We send data to spare ram with oobsize
1094 * to prevent byte access */
1095 memset(this->page_buf, 0xff, mtd->oobsize);
1096 memcpy(this->page_buf + column, buf, thislen);
1097 this->write_bufferram(mtd, ONENAND_SPARERAM, this->page_buf, 0, mtd->oobsize);
cd5f6346
KP
1098
1099 this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
1100
1101 onenand_update_bufferram(mtd, to, 0);
1102
8e6ec690
KP
1103 ret = this->wait(mtd, FL_WRITING);
1104 if (ret) {
1105 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: write filaed %d\n", ret);
1106 goto out;
1107 }
1108
1109 ret = onenand_verify_oob(mtd, buf, to, thislen);
1110 if (ret) {
1111 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: verify failed %d\n", ret);
cd5f6346 1112 goto out;
8e6ec690 1113 }
cd5f6346
KP
1114
1115 written += thislen;
1116
1117 if (written == len)
1118 break;
1119
1120 to += thislen;
1121 buf += thislen;
1122 }
1123
1124out:
1125 /* Deselect and wake up anyone waiting on the device */
1126 onenand_release_device(mtd);
1127
1128 *retlen = written;
d5c5e78a 1129
8e6ec690 1130 return ret;
cd5f6346
KP
1131}
1132
8593fbc6
TG
1133/**
1134 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1135 * @mtd: MTD device structure
1136 * @from: offset to read from
1137 * @ops: oob operation description structure
1138 */
1139static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1140 struct mtd_oob_ops *ops)
1141{
1142 BUG_ON(ops->mode != MTD_OOB_PLACE);
1143
66a1e421
KP
1144 return onenand_do_write_oob(mtd, to + ops->ooboffs, ops->ooblen,
1145 &ops->oobretlen, ops->oobbuf);
8593fbc6
TG
1146}
1147
cdc00130
KP
1148/**
1149 * onenand_block_checkbad - [GENERIC] Check if a block is marked bad
1150 * @param mtd MTD device structure
1151 * @param ofs offset from device start
1152 * @param getchip 0, if the chip is already selected
1153 * @param allowbbt 1, if its allowed to access the bbt area
1154 *
1155 * Check, if the block is bad. Either by reading the bad block table or
1156 * calling of the scan function.
1157 */
1158static int onenand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
1159{
1160 struct onenand_chip *this = mtd->priv;
1161 struct bbm_info *bbm = this->bbm;
1162
1163 /* Return info from the table */
1164 return bbm->isbad_bbt(mtd, ofs, allowbbt);
1165}
1166
cd5f6346
KP
1167/**
1168 * onenand_erase - [MTD Interface] erase block(s)
1169 * @param mtd MTD device structure
1170 * @param instr erase instruction
1171 *
1172 * Erase one ore more blocks
1173 */
1174static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1175{
1176 struct onenand_chip *this = mtd->priv;
1177 unsigned int block_size;
1178 loff_t addr;
1179 int len;
1180 int ret = 0;
1181
1182 DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
1183
1184 block_size = (1 << this->erase_shift);
1185
1186 /* Start address must align on block boundary */
1187 if (unlikely(instr->addr & (block_size - 1))) {
1188 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Unaligned address\n");
1189 return -EINVAL;
1190 }
1191
1192 /* Length must align on block boundary */
1193 if (unlikely(instr->len & (block_size - 1))) {
1194 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Length not block aligned\n");
1195 return -EINVAL;
1196 }
1197
1198 /* Do not allow erase past end of device */
1199 if (unlikely((instr->len + instr->addr) > mtd->size)) {
1200 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Erase past end of device\n");
1201 return -EINVAL;
1202 }
1203
1204 instr->fail_addr = 0xffffffff;
1205
1206 /* Grab the lock and see if the device is available */
1207 onenand_get_device(mtd, FL_ERASING);
1208
1209 /* Loop throught the pages */
1210 len = instr->len;
1211 addr = instr->addr;
1212
1213 instr->state = MTD_ERASING;
1214
1215 while (len) {
61a7e198 1216 cond_resched();
cd5f6346 1217
cdc00130
KP
1218 /* Check if we have a bad block, we do not erase bad blocks */
1219 if (onenand_block_checkbad(mtd, addr, 0, 0)) {
1220 printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
1221 instr->state = MTD_ERASE_FAILED;
1222 goto erase_exit;
1223 }
cd5f6346
KP
1224
1225 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1226
1227 ret = this->wait(mtd, FL_ERASING);
1228 /* Check, if it is write protected */
1229 if (ret) {
f6272487 1230 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
cd5f6346
KP
1231 instr->state = MTD_ERASE_FAILED;
1232 instr->fail_addr = addr;
1233 goto erase_exit;
1234 }
1235
1236 len -= block_size;
1237 addr += block_size;
1238 }
1239
1240 instr->state = MTD_ERASE_DONE;
1241
1242erase_exit:
1243
1244 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1245 /* Do call back function */
1246 if (!ret)
1247 mtd_erase_callback(instr);
1248
1249 /* Deselect and wake up anyone waiting on the device */
1250 onenand_release_device(mtd);
1251
1252 return ret;
1253}
1254
1255/**
1256 * onenand_sync - [MTD Interface] sync
1257 * @param mtd MTD device structure
1258 *
1259 * Sync is actually a wait for chip ready function
1260 */
1261static void onenand_sync(struct mtd_info *mtd)
1262{
1263 DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1264
1265 /* Grab the lock and see if the device is available */
1266 onenand_get_device(mtd, FL_SYNCING);
1267
1268 /* Release it and go back */
1269 onenand_release_device(mtd);
1270}
1271
1272/**
1273 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1274 * @param mtd MTD device structure
1275 * @param ofs offset relative to mtd start
cdc00130
KP
1276 *
1277 * Check whether the block is bad
cd5f6346
KP
1278 */
1279static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1280{
cdc00130
KP
1281 /* Check for invalid offset */
1282 if (ofs > mtd->size)
1283 return -EINVAL;
1284
1285 return onenand_block_checkbad(mtd, ofs, 1, 0);
1286}
1287
1288/**
1289 * onenand_default_block_markbad - [DEFAULT] mark a block bad
1290 * @param mtd MTD device structure
1291 * @param ofs offset from device start
1292 *
1293 * This is the default implementation, which can be overridden by
1294 * a hardware specific driver.
1295 */
1296static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1297{
1298 struct onenand_chip *this = mtd->priv;
1299 struct bbm_info *bbm = this->bbm;
1300 u_char buf[2] = {0, 0};
1301 size_t retlen;
1302 int block;
1303
1304 /* Get block number */
1305 block = ((int) ofs) >> bbm->bbt_erase_shift;
1306 if (bbm->bbt)
1307 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1308
1309 /* We write two bytes, so we dont have to mess with 16 bit access */
1310 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
8593fbc6 1311 return onenand_do_write_oob(mtd, ofs , 2, &retlen, buf);
cd5f6346
KP
1312}
1313
1314/**
1315 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1316 * @param mtd MTD device structure
1317 * @param ofs offset relative to mtd start
cdc00130
KP
1318 *
1319 * Mark the block as bad
cd5f6346
KP
1320 */
1321static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1322{
cdc00130
KP
1323 struct onenand_chip *this = mtd->priv;
1324 int ret;
1325
1326 ret = onenand_block_isbad(mtd, ofs);
1327 if (ret) {
1328 /* If it was bad already, return success and do nothing */
1329 if (ret > 0)
1330 return 0;
1331 return ret;
1332 }
1333
1334 return this->block_markbad(mtd, ofs);
cd5f6346
KP
1335}
1336
1337/**
08f782b6 1338 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
cd5f6346
KP
1339 * @param mtd MTD device structure
1340 * @param ofs offset relative to mtd start
08f782b6 1341 * @param len number of bytes to lock or unlock
cd5f6346 1342 *
08f782b6 1343 * Lock or unlock one or more blocks
cd5f6346 1344 */
08f782b6 1345static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
cd5f6346
KP
1346{
1347 struct onenand_chip *this = mtd->priv;
1348 int start, end, block, value, status;
08f782b6 1349 int wp_status_mask;
cd5f6346
KP
1350
1351 start = ofs >> this->erase_shift;
1352 end = len >> this->erase_shift;
1353
08f782b6
KP
1354 if (cmd == ONENAND_CMD_LOCK)
1355 wp_status_mask = ONENAND_WP_LS;
1356 else
1357 wp_status_mask = ONENAND_WP_US;
1358
cd5f6346 1359 /* Continuous lock scheme */
28b79ff9 1360 if (this->options & ONENAND_HAS_CONT_LOCK) {
cd5f6346
KP
1361 /* Set start block address */
1362 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1363 /* Set end block address */
28b79ff9 1364 this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
08f782b6
KP
1365 /* Write lock command */
1366 this->command(mtd, cmd, 0, 0);
cd5f6346
KP
1367
1368 /* There's no return value */
08f782b6 1369 this->wait(mtd, FL_LOCKING);
cd5f6346
KP
1370
1371 /* Sanity check */
1372 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1373 & ONENAND_CTRL_ONGO)
1374 continue;
1375
1376 /* Check lock status */
1377 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
08f782b6 1378 if (!(status & wp_status_mask))
cd5f6346
KP
1379 printk(KERN_ERR "wp status = 0x%x\n", status);
1380
1381 return 0;
1382 }
1383
1384 /* Block lock scheme */
28b79ff9 1385 for (block = start; block < start + end; block++) {
20ba89a3
KP
1386 /* Set block address */
1387 value = onenand_block_address(this, block);
1388 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1389 /* Select DataRAM for DDP */
1390 value = onenand_bufferram_address(this, block);
1391 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
cd5f6346
KP
1392 /* Set start block address */
1393 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
08f782b6
KP
1394 /* Write lock command */
1395 this->command(mtd, cmd, 0, 0);
cd5f6346
KP
1396
1397 /* There's no return value */
08f782b6 1398 this->wait(mtd, FL_LOCKING);
cd5f6346
KP
1399
1400 /* Sanity check */
1401 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1402 & ONENAND_CTRL_ONGO)
1403 continue;
1404
cd5f6346
KP
1405 /* Check lock status */
1406 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
08f782b6 1407 if (!(status & wp_status_mask))
cd5f6346
KP
1408 printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1409 }
d5c5e78a 1410
cd5f6346
KP
1411 return 0;
1412}
1413
08f782b6
KP
1414/**
1415 * onenand_lock - [MTD Interface] Lock block(s)
1416 * @param mtd MTD device structure
1417 * @param ofs offset relative to mtd start
1418 * @param len number of bytes to unlock
1419 *
1420 * Lock one or more blocks
1421 */
1422static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1423{
1424 return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
1425}
1426
08f782b6
KP
1427/**
1428 * onenand_unlock - [MTD Interface] Unlock block(s)
1429 * @param mtd MTD device structure
1430 * @param ofs offset relative to mtd start
1431 * @param len number of bytes to unlock
1432 *
1433 * Unlock one or more blocks
1434 */
1435static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1436{
1437 return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
1438}
1439
28b79ff9
KP
1440/**
1441 * onenand_check_lock_status - [OneNAND Interface] Check lock status
1442 * @param this onenand chip data structure
1443 *
1444 * Check lock status
1445 */
1446static void onenand_check_lock_status(struct onenand_chip *this)
1447{
1448 unsigned int value, block, status;
1449 unsigned int end;
1450
1451 end = this->chipsize >> this->erase_shift;
1452 for (block = 0; block < end; block++) {
1453 /* Set block address */
1454 value = onenand_block_address(this, block);
1455 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1456 /* Select DataRAM for DDP */
1457 value = onenand_bufferram_address(this, block);
1458 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1459 /* Set start block address */
1460 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1461
1462 /* Check lock status */
1463 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1464 if (!(status & ONENAND_WP_US))
1465 printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1466 }
1467}
1468
1469/**
1470 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
1471 * @param mtd MTD device structure
1472 *
1473 * Unlock all blocks
1474 */
1475static int onenand_unlock_all(struct mtd_info *mtd)
1476{
1477 struct onenand_chip *this = mtd->priv;
1478
1479 if (this->options & ONENAND_HAS_UNLOCK_ALL) {
10b7a2bd
KP
1480 /* Set start block address */
1481 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
28b79ff9
KP
1482 /* Write unlock command */
1483 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
1484
1485 /* There's no return value */
08f782b6 1486 this->wait(mtd, FL_LOCKING);
28b79ff9
KP
1487
1488 /* Sanity check */
1489 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1490 & ONENAND_CTRL_ONGO)
1491 continue;
1492
1493 /* Workaround for all block unlock in DDP */
738d61f5 1494 if (ONENAND_IS_DDP(this)) {
28b79ff9 1495 /* 1st block on another chip */
10b7a2bd
KP
1496 loff_t ofs = this->chipsize >> 1;
1497 size_t len = mtd->erasesize;
28b79ff9
KP
1498
1499 onenand_unlock(mtd, ofs, len);
1500 }
1501
1502 onenand_check_lock_status(this);
1503
1504 return 0;
1505 }
1506
08f782b6 1507 onenand_unlock(mtd, 0x0, this->chipsize);
28b79ff9
KP
1508
1509 return 0;
1510}
1511
493c6460
KP
1512#ifdef CONFIG_MTD_ONENAND_OTP
1513
1514/* Interal OTP operation */
1515typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
1516 size_t *retlen, u_char *buf);
1517
1518/**
1519 * do_otp_read - [DEFAULT] Read OTP block area
1520 * @param mtd MTD device structure
1521 * @param from The offset to read
1522 * @param len number of bytes to read
1523 * @param retlen pointer to variable to store the number of readbytes
1524 * @param buf the databuffer to put/get data
1525 *
1526 * Read OTP block area.
1527 */
1528static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
1529 size_t *retlen, u_char *buf)
1530{
1531 struct onenand_chip *this = mtd->priv;
1532 int ret;
1533
1534 /* Enter OTP access mode */
1535 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1536 this->wait(mtd, FL_OTPING);
1537
1538 ret = mtd->read(mtd, from, len, retlen, buf);
1539
1540 /* Exit OTP access mode */
1541 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1542 this->wait(mtd, FL_RESETING);
1543
1544 return ret;
1545}
1546
1547/**
1548 * do_otp_write - [DEFAULT] Write OTP block area
1549 * @param mtd MTD device structure
1550 * @param from The offset to write
1551 * @param len number of bytes to write
1552 * @param retlen pointer to variable to store the number of write bytes
1553 * @param buf the databuffer to put/get data
1554 *
1555 * Write OTP block area.
1556 */
1557static int do_otp_write(struct mtd_info *mtd, loff_t from, size_t len,
1558 size_t *retlen, u_char *buf)
1559{
1560 struct onenand_chip *this = mtd->priv;
1561 unsigned char *pbuf = buf;
1562 int ret;
1563
1564 /* Force buffer page aligned */
28318776 1565 if (len < mtd->writesize) {
493c6460 1566 memcpy(this->page_buf, buf, len);
28318776 1567 memset(this->page_buf + len, 0xff, mtd->writesize - len);
493c6460 1568 pbuf = this->page_buf;
28318776 1569 len = mtd->writesize;
493c6460
KP
1570 }
1571
1572 /* Enter OTP access mode */
1573 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1574 this->wait(mtd, FL_OTPING);
1575
1576 ret = mtd->write(mtd, from, len, retlen, pbuf);
1577
1578 /* Exit OTP access mode */
1579 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1580 this->wait(mtd, FL_RESETING);
1581
1582 return ret;
1583}
1584
1585/**
1586 * do_otp_lock - [DEFAULT] Lock OTP block area
1587 * @param mtd MTD device structure
1588 * @param from The offset to lock
1589 * @param len number of bytes to lock
1590 * @param retlen pointer to variable to store the number of lock bytes
1591 * @param buf the databuffer to put/get data
1592 *
1593 * Lock OTP block area.
1594 */
1595static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
1596 size_t *retlen, u_char *buf)
1597{
1598 struct onenand_chip *this = mtd->priv;
1599 int ret;
1600
1601 /* Enter OTP access mode */
1602 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1603 this->wait(mtd, FL_OTPING);
1604
8593fbc6 1605 ret = onenand_do_write_oob(mtd, from, len, retlen, buf);
493c6460
KP
1606
1607 /* Exit OTP access mode */
1608 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1609 this->wait(mtd, FL_RESETING);
1610
1611 return ret;
1612}
1613
1614/**
1615 * onenand_otp_walk - [DEFAULT] Handle OTP operation
1616 * @param mtd MTD device structure
1617 * @param from The offset to read/write
1618 * @param len number of bytes to read/write
1619 * @param retlen pointer to variable to store the number of read bytes
1620 * @param buf the databuffer to put/get data
1621 * @param action do given action
1622 * @param mode specify user and factory
1623 *
1624 * Handle OTP operation.
1625 */
1626static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1627 size_t *retlen, u_char *buf,
1628 otp_op_t action, int mode)
1629{
1630 struct onenand_chip *this = mtd->priv;
1631 int otp_pages;
1632 int density;
1633 int ret = 0;
1634
1635 *retlen = 0;
1636
1637 density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1638 if (density < ONENAND_DEVICE_DENSITY_512Mb)
1639 otp_pages = 20;
1640 else
1641 otp_pages = 10;
1642
1643 if (mode == MTD_OTP_FACTORY) {
28318776 1644 from += mtd->writesize * otp_pages;
493c6460
KP
1645 otp_pages = 64 - otp_pages;
1646 }
1647
1648 /* Check User/Factory boundary */
28318776 1649 if (((mtd->writesize * otp_pages) - (from + len)) < 0)
493c6460
KP
1650 return 0;
1651
1652 while (len > 0 && otp_pages > 0) {
1653 if (!action) { /* OTP Info functions */
1654 struct otp_info *otpinfo;
1655
1656 len -= sizeof(struct otp_info);
1657 if (len <= 0)
1658 return -ENOSPC;
1659
1660 otpinfo = (struct otp_info *) buf;
1661 otpinfo->start = from;
28318776 1662 otpinfo->length = mtd->writesize;
493c6460
KP
1663 otpinfo->locked = 0;
1664
28318776 1665 from += mtd->writesize;
493c6460
KP
1666 buf += sizeof(struct otp_info);
1667 *retlen += sizeof(struct otp_info);
1668 } else {
1669 size_t tmp_retlen;
1670 int size = len;
1671
1672 ret = action(mtd, from, len, &tmp_retlen, buf);
1673
1674 buf += size;
1675 len -= size;
1676 *retlen += size;
1677
1678 if (ret < 0)
1679 return ret;
1680 }
1681 otp_pages--;
1682 }
1683
1684 return 0;
1685}
1686
1687/**
1688 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
1689 * @param mtd MTD device structure
1690 * @param buf the databuffer to put/get data
1691 * @param len number of bytes to read
1692 *
1693 * Read factory OTP info.
1694 */
1695static int onenand_get_fact_prot_info(struct mtd_info *mtd,
1696 struct otp_info *buf, size_t len)
1697{
1698 size_t retlen;
1699 int ret;
1700
1701 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
1702
1703 return ret ? : retlen;
1704}
1705
1706/**
1707 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
1708 * @param mtd MTD device structure
1709 * @param from The offset to read
1710 * @param len number of bytes to read
1711 * @param retlen pointer to variable to store the number of read bytes
1712 * @param buf the databuffer to put/get data
1713 *
1714 * Read factory OTP area.
1715 */
1716static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1717 size_t len, size_t *retlen, u_char *buf)
1718{
1719 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
1720}
1721
1722/**
1723 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
1724 * @param mtd MTD device structure
1725 * @param buf the databuffer to put/get data
1726 * @param len number of bytes to read
1727 *
1728 * Read user OTP info.
1729 */
1730static int onenand_get_user_prot_info(struct mtd_info *mtd,
1731 struct otp_info *buf, size_t len)
1732{
1733 size_t retlen;
1734 int ret;
1735
1736 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
1737
1738 return ret ? : retlen;
1739}
1740
1741/**
1742 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
1743 * @param mtd MTD device structure
1744 * @param from The offset to read
1745 * @param len number of bytes to read
1746 * @param retlen pointer to variable to store the number of read bytes
1747 * @param buf the databuffer to put/get data
1748 *
1749 * Read user OTP area.
1750 */
1751static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1752 size_t len, size_t *retlen, u_char *buf)
1753{
1754 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
1755}
1756
1757/**
1758 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
1759 * @param mtd MTD device structure
1760 * @param from The offset to write
1761 * @param len number of bytes to write
1762 * @param retlen pointer to variable to store the number of write bytes
1763 * @param buf the databuffer to put/get data
1764 *
1765 * Write user OTP area.
1766 */
1767static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1768 size_t len, size_t *retlen, u_char *buf)
1769{
1770 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
1771}
1772
1773/**
1774 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
1775 * @param mtd MTD device structure
1776 * @param from The offset to lock
1777 * @param len number of bytes to unlock
1778 *
1779 * Write lock mark on spare area in page 0 in OTP block
1780 */
1781static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1782 size_t len)
1783{
1784 unsigned char oob_buf[64];
1785 size_t retlen;
1786 int ret;
1787
1788 memset(oob_buf, 0xff, mtd->oobsize);
1789 /*
1790 * Note: OTP lock operation
1791 * OTP block : 0xXXFC
1792 * 1st block : 0xXXF3 (If chip support)
1793 * Both : 0xXXF0 (If chip support)
1794 */
1795 oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
1796
1797 /*
1798 * Write lock mark to 8th word of sector0 of page0 of the spare0.
1799 * We write 16 bytes spare area instead of 2 bytes.
1800 */
1801 from = 0;
1802 len = 16;
1803
1804 ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);
1805
1806 return ret ? : retlen;
1807}
1808#endif /* CONFIG_MTD_ONENAND_OTP */
1809
28b79ff9 1810/**
75384b0d 1811 * onenand_check_features - Check and set OneNAND features
28b79ff9
KP
1812 * @param mtd MTD data structure
1813 *
75384b0d
KP
1814 * Check and set OneNAND features
1815 * - lock scheme
28b79ff9 1816 */
75384b0d 1817static void onenand_check_features(struct mtd_info *mtd)
28b79ff9
KP
1818{
1819 struct onenand_chip *this = mtd->priv;
1820 unsigned int density, process;
1821
1822 /* Lock scheme depends on density and process */
1823 density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1824 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
1825
1826 /* Lock scheme */
1827 if (density >= ONENAND_DEVICE_DENSITY_1Gb) {
1828 /* A-Die has all block unlock */
1829 if (process) {
1830 printk(KERN_DEBUG "Chip support all block unlock\n");
1831 this->options |= ONENAND_HAS_UNLOCK_ALL;
1832 }
1833 } else {
1834 /* Some OneNAND has continues lock scheme */
1835 if (!process) {
1836 printk(KERN_DEBUG "Lock scheme is Continues Lock\n");
1837 this->options |= ONENAND_HAS_CONT_LOCK;
1838 }
1839 }
1840}
1841
cd5f6346
KP
1842/**
1843 * onenand_print_device_info - Print device ID
1844 * @param device device ID
1845 *
1846 * Print device ID
1847 */
28b79ff9 1848static void onenand_print_device_info(int device, int version)
cd5f6346
KP
1849{
1850 int vcc, demuxed, ddp, density;
1851
1852 vcc = device & ONENAND_DEVICE_VCC_MASK;
1853 demuxed = device & ONENAND_DEVICE_IS_DEMUX;
1854 ddp = device & ONENAND_DEVICE_IS_DDP;
1855 density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
1856 printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
1857 demuxed ? "" : "Muxed ",
1858 ddp ? "(DDP)" : "",
1859 (16 << density),
1860 vcc ? "2.65/3.3" : "1.8",
1861 device);
28b79ff9 1862 printk(KERN_DEBUG "OneNAND version = 0x%04x\n", version);
cd5f6346
KP
1863}
1864
1865static const struct onenand_manufacturers onenand_manuf_ids[] = {
1866 {ONENAND_MFR_SAMSUNG, "Samsung"},
cd5f6346
KP
1867};
1868
1869/**
1870 * onenand_check_maf - Check manufacturer ID
1871 * @param manuf manufacturer ID
1872 *
1873 * Check manufacturer ID
1874 */
1875static int onenand_check_maf(int manuf)
1876{
37b1cc39
KP
1877 int size = ARRAY_SIZE(onenand_manuf_ids);
1878 char *name;
cd5f6346
KP
1879 int i;
1880
37b1cc39 1881 for (i = 0; i < size; i++)
cd5f6346
KP
1882 if (manuf == onenand_manuf_ids[i].id)
1883 break;
cd5f6346 1884
37b1cc39
KP
1885 if (i < size)
1886 name = onenand_manuf_ids[i].name;
1887 else
1888 name = "Unknown";
1889
1890 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
cd5f6346 1891
37b1cc39 1892 return (i == size);
cd5f6346
KP
1893}
1894
1895/**
1896 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
1897 * @param mtd MTD device structure
1898 *
1899 * OneNAND detection method:
1900 * Compare the the values from command with ones from register
1901 */
1902static int onenand_probe(struct mtd_info *mtd)
1903{
1904 struct onenand_chip *this = mtd->priv;
28b79ff9 1905 int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
cd5f6346 1906 int density;
47e777e0
KP
1907 int syscfg;
1908
1909 /* Save system configuration 1 */
1910 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
1911 /* Clear Sync. Burst Read mode to read BootRAM */
1912 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
cd5f6346
KP
1913
1914 /* Send the command for reading device ID from BootRAM */
1915 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
1916
1917 /* Read manufacturer and device IDs from BootRAM */
1918 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
1919 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
1920
47e777e0
KP
1921 /* Reset OneNAND to read default register values */
1922 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
1923 /* Wait reset */
1924 this->wait(mtd, FL_RESETING);
1925
1926 /* Restore system configuration 1 */
1927 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
1928
cd5f6346
KP
1929 /* Check manufacturer ID */
1930 if (onenand_check_maf(bram_maf_id))
1931 return -ENXIO;
1932
cd5f6346
KP
1933 /* Read manufacturer and device IDs from Register */
1934 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
1935 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
f4f91ac3 1936 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
cd5f6346
KP
1937
1938 /* Check OneNAND device */
1939 if (maf_id != bram_maf_id || dev_id != bram_dev_id)
1940 return -ENXIO;
1941
1942 /* Flash device information */
28b79ff9 1943 onenand_print_device_info(dev_id, ver_id);
cd5f6346 1944 this->device_id = dev_id;
28b79ff9 1945 this->version_id = ver_id;
cd5f6346
KP
1946
1947 density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1948 this->chipsize = (16 << density) << 20;
83a36838 1949 /* Set density mask. it is used for DDP */
738d61f5
KP
1950 if (ONENAND_IS_DDP(this))
1951 this->density_mask = (1 << (density + 6));
1952 else
1953 this->density_mask = 0;
cd5f6346
KP
1954
1955 /* OneNAND page size & block size */
1956 /* The data buffer size is equal to page size */
28318776
JE
1957 mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
1958 mtd->oobsize = mtd->writesize >> 5;
cd5f6346 1959 /* Pagers per block is always 64 in OneNAND */
28318776 1960 mtd->erasesize = mtd->writesize << 6;
cd5f6346
KP
1961
1962 this->erase_shift = ffs(mtd->erasesize) - 1;
28318776 1963 this->page_shift = ffs(mtd->writesize) - 1;
cd5f6346 1964 this->ppb_shift = (this->erase_shift - this->page_shift);
28318776 1965 this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
cd5f6346
KP
1966
1967 /* REVIST: Multichip handling */
1968
1969 mtd->size = this->chipsize;
1970
75384b0d
KP
1971 /* Check OneNAND features */
1972 onenand_check_features(mtd);
d5c5e78a 1973
cd5f6346
KP
1974 return 0;
1975}
1976
a41371eb
KP
1977/**
1978 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
1979 * @param mtd MTD device structure
1980 */
1981static int onenand_suspend(struct mtd_info *mtd)
1982{
1983 return onenand_get_device(mtd, FL_PM_SUSPENDED);
1984}
1985
1986/**
1987 * onenand_resume - [MTD Interface] Resume the OneNAND flash
1988 * @param mtd MTD device structure
1989 */
1990static void onenand_resume(struct mtd_info *mtd)
1991{
1992 struct onenand_chip *this = mtd->priv;
1993
1994 if (this->state == FL_PM_SUSPENDED)
1995 onenand_release_device(mtd);
1996 else
1997 printk(KERN_ERR "resume() called for the chip which is not"
1998 "in suspended state\n");
1999}
2000
cd5f6346
KP
2001/**
2002 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2003 * @param mtd MTD device structure
2004 * @param maxchips Number of chips to scan for
2005 *
2006 * This fills out all the not initialized function pointers
2007 * with the defaults.
2008 * The flash ID is read and the mtd/chip structures are
2009 * filled with the appropriate values.
2010 */
2011int onenand_scan(struct mtd_info *mtd, int maxchips)
2012{
2013 struct onenand_chip *this = mtd->priv;
2014
2015 if (!this->read_word)
2016 this->read_word = onenand_readw;
2017 if (!this->write_word)
2018 this->write_word = onenand_writew;
2019
2020 if (!this->command)
2021 this->command = onenand_command;
2022 if (!this->wait)
2c22120f 2023 onenand_setup_wait(mtd);
cd5f6346
KP
2024
2025 if (!this->read_bufferram)
2026 this->read_bufferram = onenand_read_bufferram;
2027 if (!this->write_bufferram)
2028 this->write_bufferram = onenand_write_bufferram;
2029
cdc00130
KP
2030 if (!this->block_markbad)
2031 this->block_markbad = onenand_default_block_markbad;
2032 if (!this->scan_bbt)
2033 this->scan_bbt = onenand_default_bbt;
2034
cd5f6346
KP
2035 if (onenand_probe(mtd))
2036 return -ENXIO;
2037
52b0eea7
KP
2038 /* Set Sync. Burst Read after probing */
2039 if (this->mmcontrol) {
2040 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2041 this->read_bufferram = onenand_sync_read_bufferram;
2042 }
2043
532a37cf
KP
2044 /* Allocate buffers, if necessary */
2045 if (!this->page_buf) {
2046 size_t len;
28318776 2047 len = mtd->writesize + mtd->oobsize;
532a37cf
KP
2048 this->page_buf = kmalloc(len, GFP_KERNEL);
2049 if (!this->page_buf) {
2050 printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2051 return -ENOMEM;
2052 }
2053 this->options |= ONENAND_PAGEBUF_ALLOC;
2054 }
2055
cd5f6346
KP
2056 this->state = FL_READY;
2057 init_waitqueue_head(&this->wq);
2058 spin_lock_init(&this->chip_lock);
2059
60d84f97
KP
2060 /*
2061 * Allow subpage writes up to oobsize.
2062 */
cd5f6346
KP
2063 switch (mtd->oobsize) {
2064 case 64:
5bd34c09 2065 this->ecclayout = &onenand_oob_64;
60d84f97 2066 mtd->subpage_sft = 2;
cd5f6346
KP
2067 break;
2068
2069 case 32:
5bd34c09 2070 this->ecclayout = &onenand_oob_32;
60d84f97 2071 mtd->subpage_sft = 1;
cd5f6346
KP
2072 break;
2073
2074 default:
2075 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2076 mtd->oobsize);
60d84f97 2077 mtd->subpage_sft = 0;
cd5f6346 2078 /* To prevent kernel oops */
5bd34c09 2079 this->ecclayout = &onenand_oob_32;
cd5f6346
KP
2080 break;
2081 }
2082
60d84f97 2083 this->subpagesize = mtd->writesize >> mtd->subpage_sft;
5bd34c09 2084 mtd->ecclayout = this->ecclayout;
d5c5e78a 2085
cd5f6346
KP
2086 /* Fill in remaining MTD driver data */
2087 mtd->type = MTD_NANDFLASH;
5fa43394 2088 mtd->flags = MTD_CAP_NANDFLASH;
cd5f6346
KP
2089 mtd->ecctype = MTD_ECC_SW;
2090 mtd->erase = onenand_erase;
2091 mtd->point = NULL;
2092 mtd->unpoint = NULL;
2093 mtd->read = onenand_read;
2094 mtd->write = onenand_write;
cd5f6346
KP
2095 mtd->read_oob = onenand_read_oob;
2096 mtd->write_oob = onenand_write_oob;
493c6460
KP
2097#ifdef CONFIG_MTD_ONENAND_OTP
2098 mtd->get_fact_prot_info = onenand_get_fact_prot_info;
2099 mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
2100 mtd->get_user_prot_info = onenand_get_user_prot_info;
2101 mtd->read_user_prot_reg = onenand_read_user_prot_reg;
2102 mtd->write_user_prot_reg = onenand_write_user_prot_reg;
2103 mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
2104#endif
cd5f6346 2105 mtd->sync = onenand_sync;
08f782b6 2106 mtd->lock = onenand_lock;
cd5f6346 2107 mtd->unlock = onenand_unlock;
a41371eb
KP
2108 mtd->suspend = onenand_suspend;
2109 mtd->resume = onenand_resume;
cd5f6346
KP
2110 mtd->block_isbad = onenand_block_isbad;
2111 mtd->block_markbad = onenand_block_markbad;
2112 mtd->owner = THIS_MODULE;
2113
2114 /* Unlock whole block */
28b79ff9 2115 onenand_unlock_all(mtd);
cd5f6346 2116
cdc00130 2117 return this->scan_bbt(mtd);
cd5f6346
KP
2118}
2119
2120/**
2121 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2122 * @param mtd MTD device structure
2123 */
2124void onenand_release(struct mtd_info *mtd)
2125{
532a37cf
KP
2126 struct onenand_chip *this = mtd->priv;
2127
cd5f6346
KP
2128#ifdef CONFIG_MTD_PARTITIONS
2129 /* Deregister partitions */
2130 del_mtd_partitions (mtd);
2131#endif
2132 /* Deregister the device */
2133 del_mtd_device (mtd);
532a37cf
KP
2134
2135 /* Free bad block table memory, if allocated */
2136 if (this->bbm)
2137 kfree(this->bbm);
2138 /* Buffer allocated by onenand_scan */
2139 if (this->options & ONENAND_PAGEBUF_ALLOC)
2140 kfree(this->page_buf);
cd5f6346
KP
2141}
2142
2143EXPORT_SYMBOL_GPL(onenand_scan);
2144EXPORT_SYMBOL_GPL(onenand_release);
2145
2146MODULE_LICENSE("GPL");
2147MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
2148MODULE_DESCRIPTION("Generic OneNAND flash driver code");