]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/mtd/nand/omap2.c
Merge branch 'for-linus' of git://git.infradead.org/users/eparis/notify
[net-next-2.6.git] / drivers / mtd / nand / omap2.c
CommitLineData
67ce04bf
VS
1/*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
2c01946c 10#define CONFIG_MTD_NAND_OMAP_HWECC
67ce04bf
VS
11
12#include <linux/platform_device.h>
13#include <linux/dma-mapping.h>
14#include <linux/delay.h>
c276aca4 15#include <linux/jiffies.h>
16#include <linux/sched.h>
67ce04bf
VS
17#include <linux/mtd/mtd.h>
18#include <linux/mtd/nand.h>
19#include <linux/mtd/partitions.h>
20#include <linux/io.h>
5a0e3ad6 21#include <linux/slab.h>
67ce04bf 22
ce491cf8
TL
23#include <plat/dma.h>
24#include <plat/gpmc.h>
25#include <plat/nand.h>
67ce04bf 26
67ce04bf
VS
27#define DRIVER_NAME "omap2-nand"
28
67ce04bf
VS
29#define NAND_Ecc_P1e (1 << 0)
30#define NAND_Ecc_P2e (1 << 1)
31#define NAND_Ecc_P4e (1 << 2)
32#define NAND_Ecc_P8e (1 << 3)
33#define NAND_Ecc_P16e (1 << 4)
34#define NAND_Ecc_P32e (1 << 5)
35#define NAND_Ecc_P64e (1 << 6)
36#define NAND_Ecc_P128e (1 << 7)
37#define NAND_Ecc_P256e (1 << 8)
38#define NAND_Ecc_P512e (1 << 9)
39#define NAND_Ecc_P1024e (1 << 10)
40#define NAND_Ecc_P2048e (1 << 11)
41
42#define NAND_Ecc_P1o (1 << 16)
43#define NAND_Ecc_P2o (1 << 17)
44#define NAND_Ecc_P4o (1 << 18)
45#define NAND_Ecc_P8o (1 << 19)
46#define NAND_Ecc_P16o (1 << 20)
47#define NAND_Ecc_P32o (1 << 21)
48#define NAND_Ecc_P64o (1 << 22)
49#define NAND_Ecc_P128o (1 << 23)
50#define NAND_Ecc_P256o (1 << 24)
51#define NAND_Ecc_P512o (1 << 25)
52#define NAND_Ecc_P1024o (1 << 26)
53#define NAND_Ecc_P2048o (1 << 27)
54
55#define TF(value) (value ? 1 : 0)
56
57#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
58#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
59#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
60#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
61#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
62#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
63#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
64#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
65
66#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
67#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
68#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
69#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
70#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
71#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
72#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
73#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
74
75#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
76#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
77#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
78#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
79#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
80#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
81#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
82#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
83
84#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
85#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
86#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
87#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
88#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
89#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
90#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
91#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
92
93#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
94#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
95
96#ifdef CONFIG_MTD_PARTITIONS
97static const char *part_probes[] = { "cmdlinepart", NULL };
98#endif
99
59e9c5ae 100#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH
101static int use_prefetch = 1;
102
103/* "modprobe ... use_prefetch=0" etc */
104module_param(use_prefetch, bool, 0);
105MODULE_PARM_DESC(use_prefetch, "enable/disable use of PREFETCH");
dfe32893 106
107#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
108static int use_dma = 1;
109
110/* "modprobe ... use_dma=0" etc */
111module_param(use_dma, bool, 0);
112MODULE_PARM_DESC(use_dma, "enable/disable use of DMA");
113#else
733daa52 114static const int use_dma;
dfe32893 115#endif
59e9c5ae 116#else
117const int use_prefetch;
733daa52 118static const int use_dma;
59e9c5ae 119#endif
120
67ce04bf
VS
121struct omap_nand_info {
122 struct nand_hw_control controller;
123 struct omap_nand_platform_data *pdata;
124 struct mtd_info mtd;
125 struct mtd_partition *parts;
126 struct nand_chip nand;
127 struct platform_device *pdev;
128
129 int gpmc_cs;
130 unsigned long phys_base;
dfe32893 131 struct completion comp;
132 int dma_ch;
67ce04bf
VS
133};
134
67ce04bf
VS
135/**
136 * omap_hwcontrol - hardware specific access to control-lines
137 * @mtd: MTD device structure
138 * @cmd: command to device
139 * @ctrl:
140 * NAND_NCE: bit 0 -> don't care
141 * NAND_CLE: bit 1 -> Command Latch
142 * NAND_ALE: bit 2 -> Address Latch
143 *
144 * NOTE: boards may use different bits for these!!
145 */
146static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
147{
148 struct omap_nand_info *info = container_of(mtd,
149 struct omap_nand_info, mtd);
67ce04bf 150
2c01946c
SG
151 if (cmd != NAND_CMD_NONE) {
152 if (ctrl & NAND_CLE)
153 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
154
155 else if (ctrl & NAND_ALE)
156 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
157
158 else /* NAND_NCE */
159 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
160 }
67ce04bf
VS
161}
162
59e9c5ae 163/**
164 * omap_read_buf8 - read data from NAND controller into buffer
165 * @mtd: MTD device structure
166 * @buf: buffer to store date
167 * @len: number of bytes to read
168 */
169static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
170{
171 struct nand_chip *nand = mtd->priv;
172
173 ioread8_rep(nand->IO_ADDR_R, buf, len);
174}
175
176/**
177 * omap_write_buf8 - write buffer to NAND controller
178 * @mtd: MTD device structure
179 * @buf: data buffer
180 * @len: number of bytes to write
181 */
182static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
183{
184 struct omap_nand_info *info = container_of(mtd,
185 struct omap_nand_info, mtd);
186 u_char *p = (u_char *)buf;
2c01946c 187 u32 status = 0;
59e9c5ae 188
189 while (len--) {
190 iowrite8(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
191 /* wait until buffer is available for write */
192 do {
193 status = gpmc_read_status(GPMC_STATUS_BUFFER);
194 } while (!status);
59e9c5ae 195 }
196}
197
67ce04bf
VS
198/**
199 * omap_read_buf16 - read data from NAND controller into buffer
200 * @mtd: MTD device structure
201 * @buf: buffer to store date
202 * @len: number of bytes to read
203 */
204static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
205{
206 struct nand_chip *nand = mtd->priv;
207
59e9c5ae 208 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
67ce04bf
VS
209}
210
211/**
212 * omap_write_buf16 - write buffer to NAND controller
213 * @mtd: MTD device structure
214 * @buf: data buffer
215 * @len: number of bytes to write
216 */
217static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
218{
219 struct omap_nand_info *info = container_of(mtd,
220 struct omap_nand_info, mtd);
221 u16 *p = (u16 *) buf;
2c01946c 222 u32 status = 0;
67ce04bf
VS
223 /* FIXME try bursts of writesw() or DMA ... */
224 len >>= 1;
225
226 while (len--) {
59e9c5ae 227 iowrite16(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
228 /* wait until buffer is available for write */
229 do {
230 status = gpmc_read_status(GPMC_STATUS_BUFFER);
231 } while (!status);
67ce04bf
VS
232 }
233}
59e9c5ae 234
235/**
236 * omap_read_buf_pref - read data from NAND controller into buffer
237 * @mtd: MTD device structure
238 * @buf: buffer to store date
239 * @len: number of bytes to read
240 */
241static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
242{
243 struct omap_nand_info *info = container_of(mtd,
244 struct omap_nand_info, mtd);
2c01946c 245 uint32_t r_count = 0;
59e9c5ae 246 int ret = 0;
247 u32 *p = (u32 *)buf;
248
249 /* take care of subpage reads */
c3341d0c
VS
250 if (len % 4) {
251 if (info->nand.options & NAND_BUSWIDTH_16)
252 omap_read_buf16(mtd, buf, len % 4);
253 else
254 omap_read_buf8(mtd, buf, len % 4);
255 p = (u32 *) (buf + len % 4);
256 len -= len % 4;
59e9c5ae 257 }
59e9c5ae 258
259 /* configure and start prefetch transfer */
260 ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x0);
261 if (ret) {
262 /* PFPW engine is busy, use cpu copy method */
263 if (info->nand.options & NAND_BUSWIDTH_16)
264 omap_read_buf16(mtd, buf, len);
265 else
266 omap_read_buf8(mtd, buf, len);
267 } else {
2c01946c 268 p = (u32 *) buf;
59e9c5ae 269 do {
2c01946c
SG
270 r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
271 r_count = r_count >> 2;
272 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
59e9c5ae 273 p += r_count;
274 len -= r_count << 2;
275 } while (len);
59e9c5ae 276 /* disable and stop the PFPW engine */
948d38e7 277 gpmc_prefetch_reset(info->gpmc_cs);
59e9c5ae 278 }
279}
280
281/**
282 * omap_write_buf_pref - write buffer to NAND controller
283 * @mtd: MTD device structure
284 * @buf: data buffer
285 * @len: number of bytes to write
286 */
287static void omap_write_buf_pref(struct mtd_info *mtd,
288 const u_char *buf, int len)
289{
290 struct omap_nand_info *info = container_of(mtd,
291 struct omap_nand_info, mtd);
2c01946c 292 uint32_t pref_count = 0, w_count = 0;
59e9c5ae 293 int i = 0, ret = 0;
2c01946c 294 u16 *p;
59e9c5ae 295
296 /* take care of subpage writes */
297 if (len % 2 != 0) {
2c01946c 298 writeb(*buf, info->nand.IO_ADDR_W);
59e9c5ae 299 p = (u16 *)(buf + 1);
300 len--;
301 }
302
303 /* configure and start prefetch transfer */
304 ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x1);
305 if (ret) {
306 /* PFPW engine is busy, use cpu copy method */
307 if (info->nand.options & NAND_BUSWIDTH_16)
308 omap_write_buf16(mtd, buf, len);
309 else
310 omap_write_buf8(mtd, buf, len);
311 } else {
2c01946c
SG
312 p = (u16 *) buf;
313 while (len) {
314 w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
315 w_count = w_count >> 1;
59e9c5ae 316 for (i = 0; (i < w_count) && len; i++, len -= 2)
2c01946c 317 iowrite16(*p++, info->nand.IO_ADDR_W);
59e9c5ae 318 }
2c01946c
SG
319 /* wait for data to flushed-out before reset the prefetch */
320 do {
321 pref_count = gpmc_read_status(GPMC_PREFETCH_COUNT);
322 } while (pref_count);
59e9c5ae 323 /* disable and stop the PFPW engine */
948d38e7 324 gpmc_prefetch_reset(info->gpmc_cs);
59e9c5ae 325 }
326}
327
dfe32893 328#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
329/*
330 * omap_nand_dma_cb: callback on the completion of dma transfer
331 * @lch: logical channel
332 * @ch_satuts: channel status
333 * @data: pointer to completion data structure
334 */
335static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
336{
337 complete((struct completion *) data);
338}
339
340/*
341 * omap_nand_dma_transfer: configer and start dma transfer
342 * @mtd: MTD device structure
343 * @addr: virtual address in RAM of source/destination
344 * @len: number of data bytes to be transferred
345 * @is_write: flag for read/write operation
346 */
347static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
348 unsigned int len, int is_write)
349{
350 struct omap_nand_info *info = container_of(mtd,
351 struct omap_nand_info, mtd);
352 uint32_t prefetch_status = 0;
353 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
354 DMA_FROM_DEVICE;
355 dma_addr_t dma_addr;
356 int ret;
357
358 /* The fifo depth is 64 bytes. We have a sync at each frame and frame
359 * length is 64 bytes.
360 */
361 int buf_len = len >> 6;
362
363 if (addr >= high_memory) {
364 struct page *p1;
365
366 if (((size_t)addr & PAGE_MASK) !=
367 ((size_t)(addr + len - 1) & PAGE_MASK))
368 goto out_copy;
369 p1 = vmalloc_to_page(addr);
370 if (!p1)
371 goto out_copy;
372 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
373 }
374
375 dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
376 if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
377 dev_err(&info->pdev->dev,
378 "Couldn't DMA map a %d byte buffer\n", len);
379 goto out_copy;
380 }
381
382 if (is_write) {
383 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
384 info->phys_base, 0, 0);
385 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
386 dma_addr, 0, 0);
387 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
388 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
389 OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
390 } else {
391 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
392 info->phys_base, 0, 0);
393 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
394 dma_addr, 0, 0);
395 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
396 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
397 OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
398 }
399 /* configure and start prefetch transfer */
400 ret = gpmc_prefetch_enable(info->gpmc_cs, 0x1, len, is_write);
401 if (ret)
402 /* PFPW engine is busy, use cpu copy methode */
403 goto out_copy;
404
405 init_completion(&info->comp);
406
407 omap_start_dma(info->dma_ch);
408
409 /* setup and start DMA using dma_addr */
410 wait_for_completion(&info->comp);
411
2c01946c
SG
412 do {
413 prefetch_status = gpmc_read_status(GPMC_PREFETCH_COUNT);
414 } while (prefetch_status);
dfe32893 415 /* disable and stop the PFPW engine */
f12f662f 416 gpmc_prefetch_reset(info->gpmc_cs);
dfe32893 417
418 dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
419 return 0;
420
421out_copy:
422 if (info->nand.options & NAND_BUSWIDTH_16)
423 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
424 : omap_write_buf16(mtd, (u_char *) addr, len);
425 else
426 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
427 : omap_write_buf8(mtd, (u_char *) addr, len);
428 return 0;
429}
430#else
431static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) {}
432static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
433 unsigned int len, int is_write)
434{
435 return 0;
436}
437#endif
438
439/**
440 * omap_read_buf_dma_pref - read data from NAND controller into buffer
441 * @mtd: MTD device structure
442 * @buf: buffer to store date
443 * @len: number of bytes to read
444 */
445static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
446{
447 if (len <= mtd->oobsize)
448 omap_read_buf_pref(mtd, buf, len);
449 else
450 /* start transfer in DMA mode */
451 omap_nand_dma_transfer(mtd, buf, len, 0x0);
452}
453
454/**
455 * omap_write_buf_dma_pref - write buffer to NAND controller
456 * @mtd: MTD device structure
457 * @buf: data buffer
458 * @len: number of bytes to write
459 */
460static void omap_write_buf_dma_pref(struct mtd_info *mtd,
461 const u_char *buf, int len)
462{
463 if (len <= mtd->oobsize)
464 omap_write_buf_pref(mtd, buf, len);
465 else
466 /* start transfer in DMA mode */
bdaefc41 467 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
dfe32893 468}
469
67ce04bf
VS
470/**
471 * omap_verify_buf - Verify chip data against buffer
472 * @mtd: MTD device structure
473 * @buf: buffer containing the data to compare
474 * @len: number of bytes to compare
475 */
476static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
477{
478 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
479 mtd);
480 u16 *p = (u16 *) buf;
481
482 len >>= 1;
483 while (len--) {
484 if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
485 return -EFAULT;
486 }
487
488 return 0;
489}
490
491#ifdef CONFIG_MTD_NAND_OMAP_HWECC
67ce04bf
VS
492
493/**
494 * gen_true_ecc - This function will generate true ECC value
495 * @ecc_buf: buffer to store ecc code
496 *
497 * This generated true ECC value can be used when correcting
498 * data read from NAND flash memory core
499 */
500static void gen_true_ecc(u8 *ecc_buf)
501{
502 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
503 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
504
505 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
506 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
507 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
508 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
509 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
510 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
511}
512
513/**
514 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
515 * @ecc_data1: ecc code from nand spare area
516 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
517 * @page_data: page data
518 *
519 * This function compares two ECC's and indicates if there is an error.
520 * If the error can be corrected it will be corrected to the buffer.
521 */
522static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
523 u8 *ecc_data2, /* read from register */
524 u8 *page_data)
525{
526 uint i;
527 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
528 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
529 u8 ecc_bit[24];
530 u8 ecc_sum = 0;
531 u8 find_bit = 0;
532 uint find_byte = 0;
533 int isEccFF;
534
535 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
536
537 gen_true_ecc(ecc_data1);
538 gen_true_ecc(ecc_data2);
539
540 for (i = 0; i <= 2; i++) {
541 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
542 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
543 }
544
545 for (i = 0; i < 8; i++) {
546 tmp0_bit[i] = *ecc_data1 % 2;
547 *ecc_data1 = *ecc_data1 / 2;
548 }
549
550 for (i = 0; i < 8; i++) {
551 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
552 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
553 }
554
555 for (i = 0; i < 8; i++) {
556 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
557 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
558 }
559
560 for (i = 0; i < 8; i++) {
561 comp0_bit[i] = *ecc_data2 % 2;
562 *ecc_data2 = *ecc_data2 / 2;
563 }
564
565 for (i = 0; i < 8; i++) {
566 comp1_bit[i] = *(ecc_data2 + 1) % 2;
567 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
568 }
569
570 for (i = 0; i < 8; i++) {
571 comp2_bit[i] = *(ecc_data2 + 2) % 2;
572 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
573 }
574
575 for (i = 0; i < 6; i++)
576 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
577
578 for (i = 0; i < 8; i++)
579 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
580
581 for (i = 0; i < 8; i++)
582 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
583
584 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
585 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
586
587 for (i = 0; i < 24; i++)
588 ecc_sum += ecc_bit[i];
589
590 switch (ecc_sum) {
591 case 0:
592 /* Not reached because this function is not called if
593 * ECC values are equal
594 */
595 return 0;
596
597 case 1:
598 /* Uncorrectable error */
599 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
600 return -1;
601
602 case 11:
603 /* UN-Correctable error */
604 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
605 return -1;
606
607 case 12:
608 /* Correctable error */
609 find_byte = (ecc_bit[23] << 8) +
610 (ecc_bit[21] << 7) +
611 (ecc_bit[19] << 6) +
612 (ecc_bit[17] << 5) +
613 (ecc_bit[15] << 4) +
614 (ecc_bit[13] << 3) +
615 (ecc_bit[11] << 2) +
616 (ecc_bit[9] << 1) +
617 ecc_bit[7];
618
619 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
620
621 DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
622 "offset: %d, bit: %d\n", find_byte, find_bit);
623
624 page_data[find_byte] ^= (1 << find_bit);
625
626 return 0;
627 default:
628 if (isEccFF) {
629 if (ecc_data2[0] == 0 &&
630 ecc_data2[1] == 0 &&
631 ecc_data2[2] == 0)
632 return 0;
633 }
634 DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
635 return -1;
636 }
637}
638
639/**
640 * omap_correct_data - Compares the ECC read with HW generated ECC
641 * @mtd: MTD device structure
642 * @dat: page data
643 * @read_ecc: ecc read from nand flash
644 * @calc_ecc: ecc read from HW ECC registers
645 *
646 * Compares the ecc read from nand spare area with ECC registers values
647 * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection
648 * and correction.
649 */
650static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
651 u_char *read_ecc, u_char *calc_ecc)
652{
653 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
654 mtd);
655 int blockCnt = 0, i = 0, ret = 0;
656
657 /* Ex NAND_ECC_HW12_2048 */
658 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
659 (info->nand.ecc.size == 2048))
660 blockCnt = 4;
661 else
662 blockCnt = 1;
663
664 for (i = 0; i < blockCnt; i++) {
665 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
666 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
667 if (ret < 0)
668 return ret;
669 }
670 read_ecc += 3;
671 calc_ecc += 3;
672 dat += 512;
673 }
674 return 0;
675}
676
677/**
678 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
679 * @mtd: MTD device structure
680 * @dat: The pointer to data on which ecc is computed
681 * @ecc_code: The ecc_code buffer
682 *
683 * Using noninverted ECC can be considered ugly since writing a blank
684 * page ie. padding will clear the ECC bytes. This is no problem as long
685 * nobody is trying to write data on the seemingly unused page. Reading
686 * an erased page will produce an ECC mismatch between generated and read
687 * ECC bytes that has to be dealt with separately.
688 */
689static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
690 u_char *ecc_code)
691{
692 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
693 mtd);
2c01946c 694 return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
67ce04bf
VS
695}
696
697/**
698 * omap_enable_hwecc - This function enables the hardware ecc functionality
699 * @mtd: MTD device structure
700 * @mode: Read/Write mode
701 */
702static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
703{
704 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
705 mtd);
706 struct nand_chip *chip = mtd->priv;
707 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
67ce04bf 708
2c01946c 709 gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
67ce04bf 710}
2c01946c 711
67ce04bf
VS
712#endif
713
714/**
715 * omap_wait - wait until the command is done
716 * @mtd: MTD device structure
717 * @chip: NAND Chip structure
718 *
719 * Wait function is called during Program and erase operations and
720 * the way it is called from MTD layer, we should wait till the NAND
721 * chip is ready after the programming/erase operation has completed.
722 *
723 * Erase can take up to 400ms and program up to 20ms according to
724 * general NAND and SmartMedia specs
725 */
726static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
727{
728 struct nand_chip *this = mtd->priv;
729 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
730 mtd);
731 unsigned long timeo = jiffies;
c276aca4 732 int status = NAND_STATUS_FAIL, state = this->state;
67ce04bf
VS
733
734 if (state == FL_ERASING)
735 timeo += (HZ * 400) / 1000;
736 else
737 timeo += (HZ * 20) / 1000;
738
2c01946c
SG
739 gpmc_nand_write(info->gpmc_cs,
740 GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
67ce04bf 741 while (time_before(jiffies, timeo)) {
2c01946c 742 status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
c276aca4 743 if (status & NAND_STATUS_READY)
67ce04bf 744 break;
c276aca4 745 cond_resched();
67ce04bf
VS
746 }
747 return status;
748}
749
750/**
751 * omap_dev_ready - calls the platform specific dev_ready function
752 * @mtd: MTD device structure
753 */
754static int omap_dev_ready(struct mtd_info *mtd)
755{
2c01946c 756 unsigned int val = 0;
67ce04bf
VS
757 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
758 mtd);
67ce04bf 759
2c01946c 760 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
67ce04bf
VS
761 if ((val & 0x100) == 0x100) {
762 /* Clear IRQ Interrupt */
763 val |= 0x100;
764 val &= ~(0x0);
2c01946c 765 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
67ce04bf
VS
766 } else {
767 unsigned int cnt = 0;
768 while (cnt++ < 0x1FF) {
769 if ((val & 0x100) == 0x100)
770 return 0;
2c01946c 771 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
67ce04bf
VS
772 }
773 }
774
775 return 1;
776}
777
778static int __devinit omap_nand_probe(struct platform_device *pdev)
779{
780 struct omap_nand_info *info;
781 struct omap_nand_platform_data *pdata;
782 int err;
67ce04bf
VS
783
784 pdata = pdev->dev.platform_data;
785 if (pdata == NULL) {
786 dev_err(&pdev->dev, "platform data missing\n");
787 return -ENODEV;
788 }
789
790 info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
791 if (!info)
792 return -ENOMEM;
793
794 platform_set_drvdata(pdev, info);
795
796 spin_lock_init(&info->controller.lock);
797 init_waitqueue_head(&info->controller.wq);
798
799 info->pdev = pdev;
800
801 info->gpmc_cs = pdata->cs;
2f70a1e9 802 info->phys_base = pdata->phys_base;
67ce04bf
VS
803
804 info->mtd.priv = &info->nand;
805 info->mtd.name = dev_name(&pdev->dev);
806 info->mtd.owner = THIS_MODULE;
807
2f70a1e9
VS
808 info->nand.options |= pdata->devsize ? NAND_BUSWIDTH_16 : 0;
809 info->nand.options |= NAND_SKIP_BBTSCAN;
67ce04bf
VS
810
811 /* NAND write protect off */
2c01946c 812 gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
67ce04bf
VS
813
814 if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
815 pdev->dev.driver->name)) {
816 err = -EBUSY;
2f70a1e9 817 goto out_free_info;
67ce04bf
VS
818 }
819
820 info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
821 if (!info->nand.IO_ADDR_R) {
822 err = -ENOMEM;
823 goto out_release_mem_region;
824 }
59e9c5ae 825
67ce04bf
VS
826 info->nand.controller = &info->controller;
827
828 info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
829 info->nand.cmd_ctrl = omap_hwcontrol;
830
67ce04bf
VS
831 /*
832 * If RDY/BSY line is connected to OMAP then use the omap ready
833 * funcrtion and the generic nand_wait function which reads the status
834 * register after monitoring the RDY/BSY line.Otherwise use a standard
835 * chip delay which is slightly more than tR (AC Timing) of the NAND
836 * device and read status register until you get a failure or success
837 */
838 if (pdata->dev_ready) {
839 info->nand.dev_ready = omap_dev_ready;
840 info->nand.chip_delay = 0;
841 } else {
842 info->nand.waitfunc = omap_wait;
843 info->nand.chip_delay = 50;
844 }
845
59e9c5ae 846 if (use_prefetch) {
59e9c5ae 847
848 info->nand.read_buf = omap_read_buf_pref;
849 info->nand.write_buf = omap_write_buf_pref;
dfe32893 850 if (use_dma) {
851 err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
852 omap_nand_dma_cb, &info->comp, &info->dma_ch);
853 if (err < 0) {
854 info->dma_ch = -1;
855 printk(KERN_WARNING "DMA request failed."
856 " Non-dma data transfer mode\n");
857 } else {
858 omap_set_dma_dest_burst_mode(info->dma_ch,
859 OMAP_DMA_DATA_BURST_16);
860 omap_set_dma_src_burst_mode(info->dma_ch,
861 OMAP_DMA_DATA_BURST_16);
862
863 info->nand.read_buf = omap_read_buf_dma_pref;
864 info->nand.write_buf = omap_write_buf_dma_pref;
865 }
866 }
59e9c5ae 867 } else {
868 if (info->nand.options & NAND_BUSWIDTH_16) {
869 info->nand.read_buf = omap_read_buf16;
870 info->nand.write_buf = omap_write_buf16;
871 } else {
872 info->nand.read_buf = omap_read_buf8;
873 info->nand.write_buf = omap_write_buf8;
874 }
875 }
876 info->nand.verify_buf = omap_verify_buf;
877
67ce04bf
VS
878#ifdef CONFIG_MTD_NAND_OMAP_HWECC
879 info->nand.ecc.bytes = 3;
880 info->nand.ecc.size = 512;
881 info->nand.ecc.calculate = omap_calculate_ecc;
882 info->nand.ecc.hwctl = omap_enable_hwecc;
883 info->nand.ecc.correct = omap_correct_data;
884 info->nand.ecc.mode = NAND_ECC_HW;
885
67ce04bf
VS
886#else
887 info->nand.ecc.mode = NAND_ECC_SOFT;
888#endif
889
890 /* DIP switches on some boards change between 8 and 16 bit
891 * bus widths for flash. Try the other width if the first try fails.
892 */
893 if (nand_scan(&info->mtd, 1)) {
894 info->nand.options ^= NAND_BUSWIDTH_16;
895 if (nand_scan(&info->mtd, 1)) {
896 err = -ENXIO;
897 goto out_release_mem_region;
898 }
899 }
900
901#ifdef CONFIG_MTD_PARTITIONS
902 err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
903 if (err > 0)
904 add_mtd_partitions(&info->mtd, info->parts, err);
905 else if (pdata->parts)
906 add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
907 else
908#endif
909 add_mtd_device(&info->mtd);
910
911 platform_set_drvdata(pdev, &info->mtd);
912
913 return 0;
914
915out_release_mem_region:
916 release_mem_region(info->phys_base, NAND_IO_SIZE);
67ce04bf
VS
917out_free_info:
918 kfree(info);
919
920 return err;
921}
922
923static int omap_nand_remove(struct platform_device *pdev)
924{
925 struct mtd_info *mtd = platform_get_drvdata(pdev);
f35b6eda
VS
926 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
927 mtd);
67ce04bf
VS
928
929 platform_set_drvdata(pdev, NULL);
dfe32893 930 if (use_dma)
931 omap_free_dma(info->dma_ch);
932
67ce04bf
VS
933 /* Release NAND device, its internal structures and partitions */
934 nand_release(&info->mtd);
2c01946c 935 iounmap(info->nand.IO_ADDR_R);
67ce04bf
VS
936 kfree(&info->mtd);
937 return 0;
938}
939
940static struct platform_driver omap_nand_driver = {
941 .probe = omap_nand_probe,
942 .remove = omap_nand_remove,
943 .driver = {
944 .name = DRIVER_NAME,
945 .owner = THIS_MODULE,
946 },
947};
948
949static int __init omap_nand_init(void)
950{
951 printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME);
dfe32893 952
953 /* This check is required if driver is being
954 * loaded run time as a module
955 */
956 if ((1 == use_dma) && (0 == use_prefetch)) {
957 printk(KERN_INFO"Wrong parameters: 'use_dma' can not be 1 "
958 "without use_prefetch'. Prefetch will not be"
959 " used in either mode (mpu or dma)\n");
960 }
67ce04bf
VS
961 return platform_driver_register(&omap_nand_driver);
962}
963
964static void __exit omap_nand_exit(void)
965{
966 platform_driver_unregister(&omap_nand_driver);
967}
968
969module_init(omap_nand_init);
970module_exit(omap_nand_exit);
971
972MODULE_ALIAS(DRIVER_NAME);
973MODULE_LICENSE("GPL");
974MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");