]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/mtd/nand/nand_base.c
[MTD] NAND Signal that a bitflip was corrected by ECC
[net-next-2.6.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
61b03bd7 8 *
1da177e4
LT
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
61b03bd7 11 *
1da177e4 12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 14 *
ace4dfee 15 * Credits:
61b03bd7
TG
16 * David Woodhouse for adding multichip support
17 *
1da177e4
LT
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
ace4dfee 21 * TODO:
1da177e4
LT
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 *
1da177e4
LT
28 * This program is free software; you can redistribute it and/or modify
29 * it under the terms of the GNU General Public License version 2 as
30 * published by the Free Software Foundation.
31 *
32 */
33
552d9205 34#include <linux/module.h>
1da177e4
LT
35#include <linux/delay.h>
36#include <linux/errno.h>
7aa65bfd 37#include <linux/err.h>
1da177e4
LT
38#include <linux/sched.h>
39#include <linux/slab.h>
40#include <linux/types.h>
41#include <linux/mtd/mtd.h>
42#include <linux/mtd/nand.h>
43#include <linux/mtd/nand_ecc.h>
44#include <linux/mtd/compatmac.h>
45#include <linux/interrupt.h>
46#include <linux/bitops.h>
8fe833c1 47#include <linux/leds.h>
1da177e4
LT
48#include <asm/io.h>
49
50#ifdef CONFIG_MTD_PARTITIONS
51#include <linux/mtd/partitions.h>
52#endif
53
54/* Define default oob placement schemes for large and small page devices */
5bd34c09 55static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
56 .eccbytes = 3,
57 .eccpos = {0, 1, 2},
5bd34c09
TG
58 .oobfree = {
59 {.offset = 3,
60 .length = 2},
61 {.offset = 6,
62 .length = 2}}
1da177e4
LT
63};
64
5bd34c09 65static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
66 .eccbytes = 6,
67 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
68 .oobfree = {
69 {.offset = 8,
70 . length = 8}}
1da177e4
LT
71};
72
5bd34c09 73static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
74 .eccbytes = 24,
75 .eccpos = {
e0c7d767
DW
76 40, 41, 42, 43, 44, 45, 46, 47,
77 48, 49, 50, 51, 52, 53, 54, 55,
78 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
79 .oobfree = {
80 {.offset = 2,
81 .length = 38}}
1da177e4
LT
82};
83
ace4dfee 84static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
2c0a2bed 85 int new_state);
1da177e4 86
8593fbc6
TG
87static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
88 struct mtd_oob_ops *ops);
89
d470a97c
TG
90/*
91 * For devices which display every fart in the system on a seperate LED. Is
92 * compiled away when LED support is disabled.
93 */
94DEFINE_LED_TRIGGER(nand_led_trigger);
95
1da177e4
LT
96/**
97 * nand_release_device - [GENERIC] release chip
98 * @mtd: MTD device structure
61b03bd7
TG
99 *
100 * Deselect, release chip lock and wake up anyone waiting on the device
1da177e4 101 */
e0c7d767 102static void nand_release_device(struct mtd_info *mtd)
1da177e4 103{
ace4dfee 104 struct nand_chip *chip = mtd->priv;
1da177e4
LT
105
106 /* De-select the NAND device */
ace4dfee 107 chip->select_chip(mtd, -1);
0dfc6246 108
a36ed299 109 /* Release the controller and the chip */
ace4dfee
TG
110 spin_lock(&chip->controller->lock);
111 chip->controller->active = NULL;
112 chip->state = FL_READY;
113 wake_up(&chip->controller->wq);
114 spin_unlock(&chip->controller->lock);
1da177e4
LT
115}
116
117/**
118 * nand_read_byte - [DEFAULT] read one byte from the chip
119 * @mtd: MTD device structure
120 *
121 * Default read function for 8bit buswith
122 */
58dd8f2b 123static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 124{
ace4dfee
TG
125 struct nand_chip *chip = mtd->priv;
126 return readb(chip->IO_ADDR_R);
1da177e4
LT
127}
128
1da177e4
LT
129/**
130 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
131 * @mtd: MTD device structure
132 *
61b03bd7 133 * Default read function for 16bit buswith with
1da177e4
LT
134 * endianess conversion
135 */
58dd8f2b 136static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 137{
ace4dfee
TG
138 struct nand_chip *chip = mtd->priv;
139 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
140}
141
1da177e4
LT
142/**
143 * nand_read_word - [DEFAULT] read one word from the chip
144 * @mtd: MTD device structure
145 *
61b03bd7 146 * Default read function for 16bit buswith without
1da177e4
LT
147 * endianess conversion
148 */
149static u16 nand_read_word(struct mtd_info *mtd)
150{
ace4dfee
TG
151 struct nand_chip *chip = mtd->priv;
152 return readw(chip->IO_ADDR_R);
1da177e4
LT
153}
154
1da177e4
LT
155/**
156 * nand_select_chip - [DEFAULT] control CE line
157 * @mtd: MTD device structure
158 * @chip: chipnumber to select, -1 for deselect
159 *
160 * Default select function for 1 chip devices.
161 */
ace4dfee 162static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 163{
ace4dfee
TG
164 struct nand_chip *chip = mtd->priv;
165
166 switch (chipnr) {
1da177e4 167 case -1:
ace4dfee 168 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
169 break;
170 case 0:
1da177e4
LT
171 break;
172
173 default:
174 BUG();
175 }
176}
177
178/**
179 * nand_write_buf - [DEFAULT] write buffer to chip
180 * @mtd: MTD device structure
181 * @buf: data buffer
182 * @len: number of bytes to write
183 *
184 * Default write function for 8bit buswith
185 */
58dd8f2b 186static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
187{
188 int i;
ace4dfee 189 struct nand_chip *chip = mtd->priv;
1da177e4 190
e0c7d767 191 for (i = 0; i < len; i++)
ace4dfee 192 writeb(buf[i], chip->IO_ADDR_W);
1da177e4
LT
193}
194
195/**
61b03bd7 196 * nand_read_buf - [DEFAULT] read chip data into buffer
1da177e4
LT
197 * @mtd: MTD device structure
198 * @buf: buffer to store date
199 * @len: number of bytes to read
200 *
201 * Default read function for 8bit buswith
202 */
58dd8f2b 203static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
204{
205 int i;
ace4dfee 206 struct nand_chip *chip = mtd->priv;
1da177e4 207
e0c7d767 208 for (i = 0; i < len; i++)
ace4dfee 209 buf[i] = readb(chip->IO_ADDR_R);
1da177e4
LT
210}
211
212/**
61b03bd7 213 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
1da177e4
LT
214 * @mtd: MTD device structure
215 * @buf: buffer containing the data to compare
216 * @len: number of bytes to compare
217 *
218 * Default verify function for 8bit buswith
219 */
58dd8f2b 220static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
221{
222 int i;
ace4dfee 223 struct nand_chip *chip = mtd->priv;
1da177e4 224
e0c7d767 225 for (i = 0; i < len; i++)
ace4dfee 226 if (buf[i] != readb(chip->IO_ADDR_R))
1da177e4 227 return -EFAULT;
1da177e4
LT
228 return 0;
229}
230
231/**
232 * nand_write_buf16 - [DEFAULT] write buffer to chip
233 * @mtd: MTD device structure
234 * @buf: data buffer
235 * @len: number of bytes to write
236 *
237 * Default write function for 16bit buswith
238 */
58dd8f2b 239static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
240{
241 int i;
ace4dfee 242 struct nand_chip *chip = mtd->priv;
1da177e4
LT
243 u16 *p = (u16 *) buf;
244 len >>= 1;
61b03bd7 245
e0c7d767 246 for (i = 0; i < len; i++)
ace4dfee 247 writew(p[i], chip->IO_ADDR_W);
61b03bd7 248
1da177e4
LT
249}
250
251/**
61b03bd7 252 * nand_read_buf16 - [DEFAULT] read chip data into buffer
1da177e4
LT
253 * @mtd: MTD device structure
254 * @buf: buffer to store date
255 * @len: number of bytes to read
256 *
257 * Default read function for 16bit buswith
258 */
58dd8f2b 259static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
260{
261 int i;
ace4dfee 262 struct nand_chip *chip = mtd->priv;
1da177e4
LT
263 u16 *p = (u16 *) buf;
264 len >>= 1;
265
e0c7d767 266 for (i = 0; i < len; i++)
ace4dfee 267 p[i] = readw(chip->IO_ADDR_R);
1da177e4
LT
268}
269
270/**
61b03bd7 271 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
1da177e4
LT
272 * @mtd: MTD device structure
273 * @buf: buffer containing the data to compare
274 * @len: number of bytes to compare
275 *
276 * Default verify function for 16bit buswith
277 */
58dd8f2b 278static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
279{
280 int i;
ace4dfee 281 struct nand_chip *chip = mtd->priv;
1da177e4
LT
282 u16 *p = (u16 *) buf;
283 len >>= 1;
284
e0c7d767 285 for (i = 0; i < len; i++)
ace4dfee 286 if (p[i] != readw(chip->IO_ADDR_R))
1da177e4
LT
287 return -EFAULT;
288
289 return 0;
290}
291
292/**
293 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
294 * @mtd: MTD device structure
295 * @ofs: offset from device start
296 * @getchip: 0, if the chip is already selected
297 *
61b03bd7 298 * Check, if the block is bad.
1da177e4
LT
299 */
300static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
301{
302 int page, chipnr, res = 0;
ace4dfee 303 struct nand_chip *chip = mtd->priv;
1da177e4
LT
304 u16 bad;
305
306 if (getchip) {
ace4dfee
TG
307 page = (int)(ofs >> chip->page_shift);
308 chipnr = (int)(ofs >> chip->chip_shift);
1da177e4 309
ace4dfee 310 nand_get_device(chip, mtd, FL_READING);
1da177e4
LT
311
312 /* Select the NAND device */
ace4dfee 313 chip->select_chip(mtd, chipnr);
61b03bd7 314 } else
e0c7d767 315 page = (int)ofs;
1da177e4 316
ace4dfee
TG
317 if (chip->options & NAND_BUSWIDTH_16) {
318 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
319 page & chip->pagemask);
320 bad = cpu_to_le16(chip->read_word(mtd));
321 if (chip->badblockpos & 0x1)
49196f33 322 bad >>= 8;
1da177e4
LT
323 if ((bad & 0xFF) != 0xff)
324 res = 1;
325 } else {
ace4dfee
TG
326 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
327 page & chip->pagemask);
328 if (chip->read_byte(mtd) != 0xff)
1da177e4
LT
329 res = 1;
330 }
61b03bd7 331
ace4dfee 332 if (getchip)
1da177e4 333 nand_release_device(mtd);
61b03bd7 334
1da177e4
LT
335 return res;
336}
337
338/**
339 * nand_default_block_markbad - [DEFAULT] mark a block bad
340 * @mtd: MTD device structure
341 * @ofs: offset from device start
342 *
343 * This is the default implementation, which can be overridden by
344 * a hardware specific driver.
345*/
346static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
347{
ace4dfee 348 struct nand_chip *chip = mtd->priv;
58dd8f2b 349 uint8_t buf[2] = { 0, 0 };
1da177e4 350 int block;
61b03bd7 351
1da177e4 352 /* Get block number */
ace4dfee
TG
353 block = ((int)ofs) >> chip->bbt_erase_shift;
354 if (chip->bbt)
355 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1da177e4
LT
356
357 /* Do we have a flash based bad block table ? */
ace4dfee 358 if (chip->options & NAND_USE_FLASH_BBT)
e0c7d767 359 return nand_update_bbt(mtd, ofs);
61b03bd7 360
1da177e4 361 /* We write two bytes, so we dont have to mess with 16 bit access */
8593fbc6
TG
362 ofs += mtd->oobsize;
363 chip->ops.len = 2;
364 chip->ops.datbuf = NULL;
365 chip->ops.oobbuf = buf;
366 chip->ops.ooboffs = chip->badblockpos & ~0x01;
367
368 return nand_do_write_oob(mtd, ofs, &chip->ops);
1da177e4
LT
369}
370
61b03bd7 371/**
1da177e4
LT
372 * nand_check_wp - [GENERIC] check if the chip is write protected
373 * @mtd: MTD device structure
61b03bd7 374 * Check, if the device is write protected
1da177e4 375 *
61b03bd7 376 * The function expects, that the device is already selected
1da177e4 377 */
e0c7d767 378static int nand_check_wp(struct mtd_info *mtd)
1da177e4 379{
ace4dfee 380 struct nand_chip *chip = mtd->priv;
1da177e4 381 /* Check the WP bit */
ace4dfee
TG
382 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
383 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
384}
385
386/**
387 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
388 * @mtd: MTD device structure
389 * @ofs: offset from device start
390 * @getchip: 0, if the chip is already selected
391 * @allowbbt: 1, if its allowed to access the bbt area
392 *
393 * Check, if the block is bad. Either by reading the bad block table or
394 * calling of the scan function.
395 */
2c0a2bed
TG
396static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
397 int allowbbt)
1da177e4 398{
ace4dfee 399 struct nand_chip *chip = mtd->priv;
61b03bd7 400
ace4dfee
TG
401 if (!chip->bbt)
402 return chip->block_bad(mtd, ofs, getchip);
61b03bd7 403
1da177e4 404 /* Return info from the table */
e0c7d767 405 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
406}
407
61b03bd7 408/*
3b88775c
TG
409 * Wait for the ready pin, after a command
410 * The timeout is catched later.
411 */
412static void nand_wait_ready(struct mtd_info *mtd)
413{
ace4dfee 414 struct nand_chip *chip = mtd->priv;
e0c7d767 415 unsigned long timeo = jiffies + 2;
3b88775c 416
8fe833c1 417 led_trigger_event(nand_led_trigger, LED_FULL);
3b88775c
TG
418 /* wait until command is processed or timeout occures */
419 do {
ace4dfee 420 if (chip->dev_ready(mtd))
8fe833c1 421 break;
8446f1d3 422 touch_softlockup_watchdog();
61b03bd7 423 } while (time_before(jiffies, timeo));
8fe833c1 424 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c
TG
425}
426
1da177e4
LT
427/**
428 * nand_command - [DEFAULT] Send command to NAND device
429 * @mtd: MTD device structure
430 * @command: the command to be sent
431 * @column: the column address for this command, -1 if none
432 * @page_addr: the page address for this command, -1 if none
433 *
434 * Send command to NAND device. This function is used for small page
435 * devices (256/512 Bytes per page)
436 */
7abd3ef9
TG
437static void nand_command(struct mtd_info *mtd, unsigned int command,
438 int column, int page_addr)
1da177e4 439{
ace4dfee 440 register struct nand_chip *chip = mtd->priv;
7abd3ef9 441 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 442
1da177e4
LT
443 /*
444 * Write out the command to the device.
445 */
446 if (command == NAND_CMD_SEQIN) {
447 int readcmd;
448
28318776 449 if (column >= mtd->writesize) {
1da177e4 450 /* OOB area */
28318776 451 column -= mtd->writesize;
1da177e4
LT
452 readcmd = NAND_CMD_READOOB;
453 } else if (column < 256) {
454 /* First 256 bytes --> READ0 */
455 readcmd = NAND_CMD_READ0;
456 } else {
457 column -= 256;
458 readcmd = NAND_CMD_READ1;
459 }
ace4dfee 460 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 461 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 462 }
ace4dfee 463 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 464
7abd3ef9
TG
465 /*
466 * Address cycle, when necessary
467 */
468 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
469 /* Serially input address */
470 if (column != -1) {
471 /* Adjust columns for 16 bit buswidth */
ace4dfee 472 if (chip->options & NAND_BUSWIDTH_16)
7abd3ef9 473 column >>= 1;
ace4dfee 474 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
475 ctrl &= ~NAND_CTRL_CHANGE;
476 }
477 if (page_addr != -1) {
ace4dfee 478 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 479 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 480 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 481 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
482 if (chip->chipsize > (32 << 20))
483 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 484 }
ace4dfee 485 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
486
487 /*
488 * program and erase have their own busy handlers
1da177e4 489 * status and sequential in needs no delay
e0c7d767 490 */
1da177e4 491 switch (command) {
61b03bd7 492
1da177e4
LT
493 case NAND_CMD_PAGEPROG:
494 case NAND_CMD_ERASE1:
495 case NAND_CMD_ERASE2:
496 case NAND_CMD_SEQIN:
497 case NAND_CMD_STATUS:
ace4dfee 498 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE);
1da177e4
LT
499 return;
500
501 case NAND_CMD_RESET:
ace4dfee 502 if (chip->dev_ready)
1da177e4 503 break;
ace4dfee
TG
504 udelay(chip->chip_delay);
505 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 506 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
507 chip->cmd_ctrl(mtd,
508 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
ace4dfee 509 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
1da177e4
LT
510 return;
511
e0c7d767 512 /* This applies to read commands */
1da177e4 513 default:
61b03bd7 514 /*
1da177e4
LT
515 * If we don't have access to the busy pin, we apply the given
516 * command delay
e0c7d767 517 */
ace4dfee
TG
518 if (!chip->dev_ready) {
519 udelay(chip->chip_delay);
1da177e4 520 return;
61b03bd7 521 }
1da177e4 522 }
1da177e4
LT
523 /* Apply this short delay always to ensure that we do wait tWB in
524 * any case on any machine. */
e0c7d767 525 ndelay(100);
3b88775c
TG
526
527 nand_wait_ready(mtd);
1da177e4
LT
528}
529
530/**
531 * nand_command_lp - [DEFAULT] Send command to NAND large page device
532 * @mtd: MTD device structure
533 * @command: the command to be sent
534 * @column: the column address for this command, -1 if none
535 * @page_addr: the page address for this command, -1 if none
536 *
7abd3ef9
TG
537 * Send command to NAND device. This is the version for the new large page
538 * devices We dont have the separate regions as we have in the small page
539 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4
LT
540 *
541 */
7abd3ef9
TG
542static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
543 int column, int page_addr)
1da177e4 544{
ace4dfee 545 register struct nand_chip *chip = mtd->priv;
1da177e4
LT
546
547 /* Emulate NAND_CMD_READOOB */
548 if (command == NAND_CMD_READOOB) {
28318776 549 column += mtd->writesize;
1da177e4
LT
550 command = NAND_CMD_READ0;
551 }
61b03bd7 552
7abd3ef9 553 /* Command latch cycle */
ace4dfee 554 chip->cmd_ctrl(mtd, command & 0xff,
7abd3ef9 555 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
556
557 if (column != -1 || page_addr != -1) {
7abd3ef9 558 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
559
560 /* Serially input address */
561 if (column != -1) {
562 /* Adjust columns for 16 bit buswidth */
ace4dfee 563 if (chip->options & NAND_BUSWIDTH_16)
1da177e4 564 column >>= 1;
ace4dfee 565 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 566 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 567 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 568 }
1da177e4 569 if (page_addr != -1) {
ace4dfee
TG
570 chip->cmd_ctrl(mtd, page_addr, ctrl);
571 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 572 NAND_NCE | NAND_ALE);
1da177e4 573 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
574 if (chip->chipsize > (128 << 20))
575 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 576 NAND_NCE | NAND_ALE);
1da177e4 577 }
1da177e4 578 }
ace4dfee 579 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
580
581 /*
582 * program and erase have their own busy handlers
30f464b7
DM
583 * status, sequential in, and deplete1 need no delay
584 */
1da177e4 585 switch (command) {
61b03bd7 586
1da177e4
LT
587 case NAND_CMD_CACHEDPROG:
588 case NAND_CMD_PAGEPROG:
589 case NAND_CMD_ERASE1:
590 case NAND_CMD_ERASE2:
591 case NAND_CMD_SEQIN:
592 case NAND_CMD_STATUS:
30f464b7 593 case NAND_CMD_DEPLETE1:
1da177e4
LT
594 return;
595
e0c7d767
DW
596 /*
597 * read error status commands require only a short delay
598 */
30f464b7
DM
599 case NAND_CMD_STATUS_ERROR:
600 case NAND_CMD_STATUS_ERROR0:
601 case NAND_CMD_STATUS_ERROR1:
602 case NAND_CMD_STATUS_ERROR2:
603 case NAND_CMD_STATUS_ERROR3:
ace4dfee 604 udelay(chip->chip_delay);
30f464b7 605 return;
1da177e4
LT
606
607 case NAND_CMD_RESET:
ace4dfee 608 if (chip->dev_ready)
1da177e4 609 break;
ace4dfee 610 udelay(chip->chip_delay);
12efdde3
TG
611 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
612 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
613 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
614 NAND_NCE | NAND_CTRL_CHANGE);
ace4dfee 615 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
1da177e4
LT
616 return;
617
618 case NAND_CMD_READ0:
12efdde3
TG
619 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
620 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
621 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
622 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 623
e0c7d767 624 /* This applies to read commands */
1da177e4 625 default:
61b03bd7 626 /*
1da177e4
LT
627 * If we don't have access to the busy pin, we apply the given
628 * command delay
e0c7d767 629 */
ace4dfee
TG
630 if (!chip->dev_ready) {
631 udelay(chip->chip_delay);
1da177e4 632 return;
61b03bd7 633 }
1da177e4 634 }
3b88775c 635
1da177e4
LT
636 /* Apply this short delay always to ensure that we do wait tWB in
637 * any case on any machine. */
e0c7d767 638 ndelay(100);
3b88775c
TG
639
640 nand_wait_ready(mtd);
1da177e4
LT
641}
642
643/**
644 * nand_get_device - [GENERIC] Get chip for selected access
645 * @this: the nand chip descriptor
646 * @mtd: MTD device structure
61b03bd7 647 * @new_state: the state which is requested
1da177e4
LT
648 *
649 * Get the device and lock it for exclusive access
650 */
2c0a2bed 651static int
ace4dfee 652nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
1da177e4 653{
ace4dfee
TG
654 spinlock_t *lock = &chip->controller->lock;
655 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 656 DECLARE_WAITQUEUE(wait, current);
e0c7d767 657 retry:
0dfc6246
TG
658 spin_lock(lock);
659
1da177e4 660 /* Hardware controller shared among independend devices */
a36ed299 661 /* Hardware controller shared among independend devices */
ace4dfee
TG
662 if (!chip->controller->active)
663 chip->controller->active = chip;
a36ed299 664
ace4dfee
TG
665 if (chip->controller->active == chip && chip->state == FL_READY) {
666 chip->state = new_state;
0dfc6246 667 spin_unlock(lock);
962034f4
VW
668 return 0;
669 }
670 if (new_state == FL_PM_SUSPENDED) {
671 spin_unlock(lock);
ace4dfee 672 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
0dfc6246
TG
673 }
674 set_current_state(TASK_UNINTERRUPTIBLE);
675 add_wait_queue(wq, &wait);
676 spin_unlock(lock);
677 schedule();
678 remove_wait_queue(wq, &wait);
1da177e4
LT
679 goto retry;
680}
681
682/**
683 * nand_wait - [DEFAULT] wait until the command is done
684 * @mtd: MTD device structure
685 * @this: NAND chip structure
686 * @state: state to select the max. timeout value
687 *
688 * Wait for command done. This applies to erase and program only
61b03bd7 689 * Erase can take up to 400ms and program up to 20ms according to
1da177e4
LT
690 * general NAND and SmartMedia specs
691 *
692*/
ace4dfee 693static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip, int state)
1da177e4
LT
694{
695
e0c7d767
DW
696 unsigned long timeo = jiffies;
697 int status;
61b03bd7 698
1da177e4 699 if (state == FL_ERASING)
e0c7d767 700 timeo += (HZ * 400) / 1000;
1da177e4 701 else
e0c7d767 702 timeo += (HZ * 20) / 1000;
1da177e4 703
8fe833c1
RP
704 led_trigger_event(nand_led_trigger, LED_FULL);
705
1da177e4
LT
706 /* Apply this short delay always to ensure that we do wait tWB in
707 * any case on any machine. */
e0c7d767 708 ndelay(100);
1da177e4 709
ace4dfee
TG
710 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
711 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
61b03bd7 712 else
ace4dfee 713 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 714
61b03bd7 715 while (time_before(jiffies, timeo)) {
1da177e4 716 /* Check, if we were interrupted */
ace4dfee 717 if (chip->state != state)
1da177e4
LT
718 return 0;
719
ace4dfee
TG
720 if (chip->dev_ready) {
721 if (chip->dev_ready(mtd))
61b03bd7 722 break;
1da177e4 723 } else {
ace4dfee 724 if (chip->read_byte(mtd) & NAND_STATUS_READY)
1da177e4
LT
725 break;
726 }
20a6c211 727 cond_resched();
1da177e4 728 }
8fe833c1
RP
729 led_trigger_event(nand_led_trigger, LED_OFF);
730
ace4dfee 731 status = (int)chip->read_byte(mtd);
1da177e4
LT
732 return status;
733}
734
8593fbc6
TG
735/**
736 * nand_read_page_raw - [Intern] read raw page data without ecc
737 * @mtd: mtd info structure
738 * @chip: nand chip info structure
739 * @buf: buffer to store read data
740 */
741static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
742 uint8_t *buf)
743{
744 chip->read_buf(mtd, buf, mtd->writesize);
745 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
746 return 0;
747}
748
1da177e4 749/**
f5bbdacc
TG
750 * nand_read_page_swecc - {REPLACABLE] software ecc based page read function
751 * @mtd: mtd info structure
752 * @chip: nand chip info structure
753 * @buf: buffer to store read data
068e3c0a 754 */
f5bbdacc
TG
755static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
756 uint8_t *buf)
1da177e4 757{
f5bbdacc
TG
758 int i, eccsize = chip->ecc.size;
759 int eccbytes = chip->ecc.bytes;
760 int eccsteps = chip->ecc.steps;
761 uint8_t *p = buf;
f75e5097
TG
762 uint8_t *ecc_calc = chip->buffers.ecccalc;
763 uint8_t *ecc_code = chip->buffers.ecccode;
5bd34c09 764 int *eccpos = chip->ecc.layout->eccpos;
f5bbdacc 765
8593fbc6 766 nand_read_page_raw(mtd, chip, buf);
f5bbdacc
TG
767
768 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
769 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
770
771 for (i = 0; i < chip->ecc.total; i++)
f75e5097 772 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
773
774 eccsteps = chip->ecc.steps;
775 p = buf;
776
777 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
778 int stat;
779
780 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
781 if (stat == -1)
782 mtd->ecc_stats.failed++;
783 else
784 mtd->ecc_stats.corrected += stat;
785 }
786 return 0;
22c60f5f 787}
1da177e4 788
068e3c0a 789/**
f5bbdacc
TG
790 * nand_read_page_hwecc - {REPLACABLE] hardware ecc based page read function
791 * @mtd: mtd info structure
792 * @chip: nand chip info structure
793 * @buf: buffer to store read data
068e3c0a 794 *
f5bbdacc 795 * Not for syndrome calculating ecc controllers which need a special oob layout
068e3c0a 796 */
f5bbdacc
TG
797static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
798 uint8_t *buf)
1da177e4 799{
f5bbdacc
TG
800 int i, eccsize = chip->ecc.size;
801 int eccbytes = chip->ecc.bytes;
802 int eccsteps = chip->ecc.steps;
803 uint8_t *p = buf;
f75e5097
TG
804 uint8_t *ecc_calc = chip->buffers.ecccalc;
805 uint8_t *ecc_code = chip->buffers.ecccode;
5bd34c09 806 int *eccpos = chip->ecc.layout->eccpos;
f5bbdacc
TG
807
808 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
809 chip->ecc.hwctl(mtd, NAND_ECC_READ);
810 chip->read_buf(mtd, p, eccsize);
811 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 812 }
f75e5097 813 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 814
f5bbdacc 815 for (i = 0; i < chip->ecc.total; i++)
f75e5097 816 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 817
f5bbdacc
TG
818 eccsteps = chip->ecc.steps;
819 p = buf;
61b03bd7 820
f5bbdacc
TG
821 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
822 int stat;
1da177e4 823
f5bbdacc
TG
824 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
825 if (stat == -1)
826 mtd->ecc_stats.failed++;
827 else
828 mtd->ecc_stats.corrected += stat;
829 }
830 return 0;
831}
1da177e4 832
f5bbdacc
TG
833/**
834 * nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
835 * @mtd: mtd info structure
836 * @chip: nand chip info structure
837 * @buf: buffer to store read data
838 *
839 * The hw generator calculates the error syndrome automatically. Therefor
f75e5097 840 * we need a special oob layout and handling.
f5bbdacc
TG
841 */
842static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
843 uint8_t *buf)
844{
845 int i, eccsize = chip->ecc.size;
846 int eccbytes = chip->ecc.bytes;
847 int eccsteps = chip->ecc.steps;
848 uint8_t *p = buf;
f75e5097 849 uint8_t *oob = chip->oob_poi;
1da177e4 850
f5bbdacc
TG
851 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
852 int stat;
61b03bd7 853
f5bbdacc
TG
854 chip->ecc.hwctl(mtd, NAND_ECC_READ);
855 chip->read_buf(mtd, p, eccsize);
1da177e4 856
f5bbdacc
TG
857 if (chip->ecc.prepad) {
858 chip->read_buf(mtd, oob, chip->ecc.prepad);
859 oob += chip->ecc.prepad;
860 }
1da177e4 861
f5bbdacc
TG
862 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
863 chip->read_buf(mtd, oob, eccbytes);
864 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 865
f5bbdacc
TG
866 if (stat == -1)
867 mtd->ecc_stats.failed++;
61b03bd7 868 else
f5bbdacc 869 mtd->ecc_stats.corrected += stat;
61b03bd7 870
f5bbdacc 871 oob += eccbytes;
1da177e4 872
f5bbdacc
TG
873 if (chip->ecc.postpad) {
874 chip->read_buf(mtd, oob, chip->ecc.postpad);
875 oob += chip->ecc.postpad;
61b03bd7 876 }
f5bbdacc 877 }
1da177e4 878
f5bbdacc 879 /* Calculate remaining oob bytes */
f75e5097 880 i = oob - chip->oob_poi;
f5bbdacc
TG
881 if (i)
882 chip->read_buf(mtd, oob, i);
61b03bd7 883
f5bbdacc
TG
884 return 0;
885}
1da177e4 886
f5bbdacc 887/**
8593fbc6
TG
888 * nand_transfer_oob - [Internal] Transfer oob to client buffer
889 * @chip: nand chip structure
890 * @ops: oob ops structure
891 */
892static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
893 struct mtd_oob_ops *ops)
894{
895 size_t len = ops->ooblen;
896
897 switch(ops->mode) {
898
899 case MTD_OOB_PLACE:
900 case MTD_OOB_RAW:
901 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
902 return oob + len;
903
904 case MTD_OOB_AUTO: {
905 struct nand_oobfree *free = chip->ecc.layout->oobfree;
906 size_t bytes;
907
908 for(; free->length && len; free++, len -= bytes) {
909 bytes = min(len, free->length);
910
911 memcpy(oob, chip->oob_poi + free->offset, bytes);
912 oob += bytes;
913 }
914 return oob;
915 }
916 default:
917 BUG();
918 }
919 return NULL;
920}
921
922/**
923 * nand_do_read_ops - [Internal] Read data with ECC
f5bbdacc
TG
924 *
925 * @mtd: MTD device structure
926 * @from: offset to read from
f5bbdacc
TG
927 *
928 * Internal function. Called with chip held.
929 */
8593fbc6
TG
930static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
931 struct mtd_oob_ops *ops)
f5bbdacc
TG
932{
933 int chipnr, page, realpage, col, bytes, aligned;
934 struct nand_chip *chip = mtd->priv;
935 struct mtd_ecc_stats stats;
936 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
937 int sndcmd = 1;
938 int ret = 0;
8593fbc6
TG
939 uint32_t readlen = ops->len;
940 uint8_t *bufpoi, *oob, *buf;
1da177e4 941
f5bbdacc 942 stats = mtd->ecc_stats;
1da177e4 943
f5bbdacc
TG
944 chipnr = (int)(from >> chip->chip_shift);
945 chip->select_chip(mtd, chipnr);
61b03bd7 946
f5bbdacc
TG
947 realpage = (int)(from >> chip->page_shift);
948 page = realpage & chip->pagemask;
1da177e4 949
f5bbdacc 950 col = (int)(from & (mtd->writesize - 1));
f75e5097 951 chip->oob_poi = chip->buffers.oobrbuf;
61b03bd7 952
8593fbc6
TG
953 buf = ops->datbuf;
954 oob = ops->oobbuf;
955
f5bbdacc
TG
956 while(1) {
957 bytes = min(mtd->writesize - col, readlen);
958 aligned = (bytes == mtd->writesize);
61b03bd7 959
f5bbdacc 960 /* Is the current page in the buffer ? */
8593fbc6 961 if (realpage != chip->pagebuf || oob) {
f75e5097 962 bufpoi = aligned ? buf : chip->buffers.databuf;
61b03bd7 963
f5bbdacc
TG
964 if (likely(sndcmd)) {
965 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
966 sndcmd = 0;
1da177e4 967 }
1da177e4 968
f5bbdacc
TG
969 /* Now read the page into the buffer */
970 ret = chip->ecc.read_page(mtd, chip, bufpoi);
971 if (ret < 0)
1da177e4 972 break;
f5bbdacc
TG
973
974 /* Transfer not aligned data */
975 if (!aligned) {
976 chip->pagebuf = realpage;
f75e5097 977 memcpy(buf, chip->buffers.databuf + col, bytes);
f5bbdacc
TG
978 }
979
8593fbc6
TG
980 buf += bytes;
981
982 if (unlikely(oob)) {
983 /* Raw mode does data:oob:data:oob */
984 if (ops->mode != MTD_OOB_RAW)
985 oob = nand_transfer_oob(chip, oob, ops);
986 else
987 buf = nand_transfer_oob(chip, buf, ops);
988 }
989
f5bbdacc
TG
990 if (!(chip->options & NAND_NO_READRDY)) {
991 /*
992 * Apply delay or wait for ready/busy pin. Do
993 * this before the AUTOINCR check, so no
994 * problems arise if a chip which does auto
995 * increment is marked as NOAUTOINCR by the
996 * board driver.
997 */
998 if (!chip->dev_ready)
999 udelay(chip->chip_delay);
1000 else
1001 nand_wait_ready(mtd);
1da177e4 1002 }
8593fbc6 1003 } else {
f75e5097 1004 memcpy(buf, chip->buffers.databuf + col, bytes);
8593fbc6
TG
1005 buf += bytes;
1006 }
1da177e4 1007
f5bbdacc 1008 readlen -= bytes;
61b03bd7 1009
f5bbdacc 1010 if (!readlen)
61b03bd7 1011 break;
1da177e4
LT
1012
1013 /* For subsequent reads align to page boundary. */
1014 col = 0;
1015 /* Increment page address */
1016 realpage++;
1017
ace4dfee 1018 page = realpage & chip->pagemask;
1da177e4
LT
1019 /* Check, if we cross a chip boundary */
1020 if (!page) {
1021 chipnr++;
ace4dfee
TG
1022 chip->select_chip(mtd, -1);
1023 chip->select_chip(mtd, chipnr);
1da177e4 1024 }
f5bbdacc 1025
61b03bd7
TG
1026 /* Check, if the chip supports auto page increment
1027 * or if we have hit a block boundary.
e0c7d767 1028 */
f5bbdacc 1029 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
61b03bd7 1030 sndcmd = 1;
1da177e4
LT
1031 }
1032
8593fbc6 1033 ops->retlen = ops->len - (size_t) readlen;
1da177e4 1034
f5bbdacc
TG
1035 if (ret)
1036 return ret;
1037
9a1fcdfd
TG
1038 if (mtd->ecc_stats.failed - stats.failed)
1039 return -EBADMSG;
1040
1041 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
f5bbdacc
TG
1042}
1043
1044/**
1045 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1046 * @mtd: MTD device structure
1047 * @from: offset to read from
1048 * @len: number of bytes to read
1049 * @retlen: pointer to variable to store the number of read bytes
1050 * @buf: the databuffer to put data
1051 *
1052 * Get hold of the chip and call nand_do_read
1053 */
1054static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1055 size_t *retlen, uint8_t *buf)
1056{
8593fbc6 1057 struct nand_chip *chip = mtd->priv;
f5bbdacc
TG
1058 int ret;
1059
f5bbdacc
TG
1060 /* Do not allow reads past end of device */
1061 if ((from + len) > mtd->size)
1062 return -EINVAL;
1063 if (!len)
1064 return 0;
1065
8593fbc6 1066 nand_get_device(chip, mtd, FL_READING);
f5bbdacc 1067
8593fbc6
TG
1068 chip->ops.len = len;
1069 chip->ops.datbuf = buf;
1070 chip->ops.oobbuf = NULL;
1071
1072 ret = nand_do_read_ops(mtd, from, &chip->ops);
f5bbdacc
TG
1073
1074 nand_release_device(mtd);
1075
8593fbc6 1076 *retlen = chip->ops.retlen;
f5bbdacc 1077 return ret;
1da177e4
LT
1078}
1079
1080/**
8593fbc6 1081 * nand_do_read_oob - [Intern] NAND read out-of-band
1da177e4
LT
1082 * @mtd: MTD device structure
1083 * @from: offset to read from
8593fbc6 1084 * @ops: oob operations description structure
1da177e4
LT
1085 *
1086 * NAND read out-of-band data from the spare area
1087 */
8593fbc6
TG
1088static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1089 struct mtd_oob_ops *ops)
1da177e4 1090{
7314e9e7 1091 int col, page, realpage, chipnr, sndcmd = 1;
ace4dfee 1092 struct nand_chip *chip = mtd->priv;
7314e9e7 1093 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
8593fbc6
TG
1094 int direct, bytes, readlen = ops->len;
1095 uint8_t *bufpoi, *buf = ops->oobbuf;
61b03bd7 1096
7314e9e7
TG
1097 DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n",
1098 (unsigned int)from, (int)len);
1da177e4 1099
7314e9e7 1100 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 1101 chip->select_chip(mtd, chipnr);
1da177e4 1102
7314e9e7
TG
1103 /* Shift to get page */
1104 realpage = (int)(from >> chip->page_shift);
1105 page = realpage & chip->pagemask;
1da177e4 1106
8593fbc6
TG
1107 if (ops->mode != MTD_OOB_AUTO) {
1108 col = ops->ooboffs;
1109 direct = 1;
1110 } else {
1111 col = 0;
1112 direct = 0;
1113 }
7314e9e7
TG
1114
1115 while(1) {
8593fbc6
TG
1116 bytes = direct ? ops->ooblen : mtd->oobsize;
1117 bufpoi = direct ? buf : chip->buffers.oobrbuf;
7314e9e7
TG
1118
1119 if (likely(sndcmd)) {
1120 chip->cmdfunc(mtd, NAND_CMD_READOOB, col, page);
1121 sndcmd = 0;
1122 }
1123
8593fbc6 1124 chip->read_buf(mtd, bufpoi, bytes);
61b03bd7 1125
8593fbc6
TG
1126 if (unlikely(!direct))
1127 buf = nand_transfer_oob(chip, buf, ops);
1128 else
1129 buf += ops->ooblen;
1130
1131 readlen -= ops->ooblen;
7314e9e7
TG
1132 if (!readlen)
1133 break;
1134
1135 if (!(chip->options & NAND_NO_READRDY)) {
1136 /*
1137 * Apply delay or wait for ready/busy pin. Do this
1138 * before the AUTOINCR check, so no problems arise if a
1139 * chip which does auto increment is marked as
1140 * NOAUTOINCR by the board driver.
19870da7 1141 */
ace4dfee
TG
1142 if (!chip->dev_ready)
1143 udelay(chip->chip_delay);
19870da7
TG
1144 else
1145 nand_wait_ready(mtd);
7314e9e7 1146 }
19870da7 1147
7314e9e7
TG
1148 /* Increment page address */
1149 realpage++;
1150
1151 page = realpage & chip->pagemask;
1152 /* Check, if we cross a chip boundary */
1153 if (!page) {
1154 chipnr++;
1155 chip->select_chip(mtd, -1);
1156 chip->select_chip(mtd, chipnr);
1da177e4 1157 }
7314e9e7
TG
1158
1159 /* Check, if the chip supports auto page increment
1160 * or if we have hit a block boundary.
1161 */
1162 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1163 sndcmd = 1;
1da177e4
LT
1164 }
1165
8593fbc6 1166 ops->retlen = ops->len;
1da177e4
LT
1167 return 0;
1168}
1169
1170/**
8593fbc6 1171 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1da177e4 1172 * @mtd: MTD device structure
1da177e4 1173 * @from: offset to read from
8593fbc6 1174 * @ops: oob operation description structure
1da177e4 1175 *
8593fbc6 1176 * NAND read data and/or out-of-band data
1da177e4 1177 */
8593fbc6
TG
1178static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1179 struct mtd_oob_ops *ops)
1da177e4 1180{
8593fbc6
TG
1181 int (*read_page)(struct mtd_info *mtd, struct nand_chip *chip,
1182 uint8_t *buf) = NULL;
ace4dfee 1183 struct nand_chip *chip = mtd->priv;
8593fbc6
TG
1184 int ret = -ENOTSUPP;
1185
1186 ops->retlen = 0;
1da177e4
LT
1187
1188 /* Do not allow reads past end of device */
8593fbc6
TG
1189 if ((from + ops->len) > mtd->size) {
1190 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
ace4dfee 1191 "Attempt read beyond end of device\n");
1da177e4
LT
1192 return -EINVAL;
1193 }
1194
ace4dfee 1195 nand_get_device(chip, mtd, FL_READING);
1da177e4 1196
8593fbc6
TG
1197 switch(ops->mode) {
1198 case MTD_OOB_PLACE:
1199 case MTD_OOB_AUTO:
1200 break;
61b03bd7 1201
8593fbc6
TG
1202 case MTD_OOB_RAW:
1203 /* Replace the read_page algorithm temporary */
1204 read_page = chip->ecc.read_page;
1205 chip->ecc.read_page = nand_read_page_raw;
1206 break;
1da177e4 1207
8593fbc6
TG
1208 default:
1209 goto out;
1210 }
1da177e4 1211
8593fbc6
TG
1212 if (!ops->datbuf)
1213 ret = nand_do_read_oob(mtd, from, ops);
1214 else
1215 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 1216
8593fbc6
TG
1217 if (unlikely(ops->mode == MTD_OOB_RAW))
1218 chip->ecc.read_page = read_page;
1219 out:
1220 nand_release_device(mtd);
1221 return ret;
1222}
61b03bd7 1223
1da177e4 1224
8593fbc6
TG
1225/**
1226 * nand_write_page_raw - [Intern] raw page write function
1227 * @mtd: mtd info structure
1228 * @chip: nand chip info structure
1229 * @buf: data buffer
1230 */
1231static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1232 const uint8_t *buf)
1233{
1234 chip->write_buf(mtd, buf, mtd->writesize);
1235 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4
LT
1236}
1237
9223a456 1238/**
f75e5097
TG
1239 * nand_write_page_swecc - {REPLACABLE] software ecc based page write function
1240 * @mtd: mtd info structure
1241 * @chip: nand chip info structure
1242 * @buf: data buffer
9223a456 1243 */
f75e5097
TG
1244static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1245 const uint8_t *buf)
9223a456 1246{
f75e5097
TG
1247 int i, eccsize = chip->ecc.size;
1248 int eccbytes = chip->ecc.bytes;
1249 int eccsteps = chip->ecc.steps;
1250 uint8_t *ecc_calc = chip->buffers.ecccalc;
1251 const uint8_t *p = buf;
5bd34c09 1252 int *eccpos = chip->ecc.layout->eccpos;
9223a456 1253
8593fbc6
TG
1254 /* Software ecc calculation */
1255 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1256 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 1257
8593fbc6
TG
1258 for (i = 0; i < chip->ecc.total; i++)
1259 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 1260
8593fbc6 1261 nand_write_page_raw(mtd, chip, buf);
f75e5097 1262}
9223a456 1263
f75e5097
TG
1264/**
1265 * nand_write_page_hwecc - {REPLACABLE] hardware ecc based page write function
1266 * @mtd: mtd info structure
1267 * @chip: nand chip info structure
1268 * @buf: data buffer
1269 */
1270static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1271 const uint8_t *buf)
1272{
1273 int i, eccsize = chip->ecc.size;
1274 int eccbytes = chip->ecc.bytes;
1275 int eccsteps = chip->ecc.steps;
1276 uint8_t *ecc_calc = chip->buffers.ecccalc;
1277 const uint8_t *p = buf;
5bd34c09 1278 int *eccpos = chip->ecc.layout->eccpos;
9223a456 1279
f75e5097
TG
1280 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1281 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 1282 chip->write_buf(mtd, p, eccsize);
f75e5097 1283 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
1284 }
1285
f75e5097
TG
1286 for (i = 0; i < chip->ecc.total; i++)
1287 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1288
1289 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
9223a456
TG
1290}
1291
61b03bd7 1292/**
f75e5097
TG
1293 * nand_write_page_syndrome - {REPLACABLE] hardware ecc syndrom based page write
1294 * @mtd: mtd info structure
1295 * @chip: nand chip info structure
1296 * @buf: data buffer
1da177e4 1297 *
f75e5097
TG
1298 * The hw generator calculates the error syndrome automatically. Therefor
1299 * we need a special oob layout and handling.
1300 */
1301static void nand_write_page_syndrome(struct mtd_info *mtd,
1302 struct nand_chip *chip, const uint8_t *buf)
1da177e4 1303{
f75e5097
TG
1304 int i, eccsize = chip->ecc.size;
1305 int eccbytes = chip->ecc.bytes;
1306 int eccsteps = chip->ecc.steps;
1307 const uint8_t *p = buf;
1308 uint8_t *oob = chip->oob_poi;
1da177e4 1309
f75e5097 1310 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 1311
f75e5097
TG
1312 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1313 chip->write_buf(mtd, p, eccsize);
61b03bd7 1314
f75e5097
TG
1315 if (chip->ecc.prepad) {
1316 chip->write_buf(mtd, oob, chip->ecc.prepad);
1317 oob += chip->ecc.prepad;
1318 }
1319
1320 chip->ecc.calculate(mtd, p, oob);
1321 chip->write_buf(mtd, oob, eccbytes);
1322 oob += eccbytes;
1323
1324 if (chip->ecc.postpad) {
1325 chip->write_buf(mtd, oob, chip->ecc.postpad);
1326 oob += chip->ecc.postpad;
1da177e4 1327 }
1da177e4 1328 }
f75e5097
TG
1329
1330 /* Calculate remaining oob bytes */
1331 i = oob - chip->oob_poi;
1332 if (i)
1333 chip->write_buf(mtd, oob, i);
1334}
1335
1336/**
1337 * nand_write_page - [INTERNAL] write one page
1338 * @mtd: MTD device structure
1339 * @chip: NAND chip descriptor
1340 * @buf: the data to write
1341 * @page: page number to write
1342 * @cached: cached programming
1343 */
1344static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1345 const uint8_t *buf, int page, int cached)
1346{
1347 int status;
1348
1349 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1350
1351 chip->ecc.write_page(mtd, chip, buf);
1352
1353 /*
1354 * Cached progamming disabled for now, Not sure if its worth the
1355 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1356 */
1357 cached = 0;
1358
1359 if (!cached || !(chip->options & NAND_CACHEPRG)) {
1360
1361 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1362 status = chip->waitfunc(mtd, chip, FL_WRITING);
1363 /*
1364 * See if operation failed and additional status checks are
1365 * available
1366 */
1367 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1368 status = chip->errstat(mtd, chip, FL_WRITING, status,
1369 page);
1370
1371 if (status & NAND_STATUS_FAIL)
1372 return -EIO;
1373 } else {
1374 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1375 status = chip->waitfunc(mtd, chip, FL_WRITING);
1376 }
1377
1378#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1379 /* Send command to read back the data */
1380 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1381
1382 if (chip->verify_buf(mtd, buf, mtd->writesize))
1383 return -EIO;
1384#endif
1385 return 0;
1da177e4
LT
1386}
1387
8593fbc6
TG
1388/**
1389 * nand_fill_oob - [Internal] Transfer client buffer to oob
1390 * @chip: nand chip structure
1391 * @oob: oob data buffer
1392 * @ops: oob ops structure
1393 */
1394static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1395 struct mtd_oob_ops *ops)
1396{
1397 size_t len = ops->ooblen;
1398
1399 switch(ops->mode) {
1400
1401 case MTD_OOB_PLACE:
1402 case MTD_OOB_RAW:
1403 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1404 return oob + len;
1405
1406 case MTD_OOB_AUTO: {
1407 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1408 size_t bytes;
1409
1410 for(; free->length && len; free++, len -= bytes) {
1411 bytes = min(len, free->length);
1412 memcpy(chip->oob_poi + free->offset, oob, bytes);
1413 oob += bytes;
1414 }
1415 return oob;
1416 }
1417 default:
1418 BUG();
1419 }
1420 return NULL;
1421}
1422
28318776 1423#define NOTALIGNED(x) (x & (mtd->writesize-1)) != 0
1da177e4
LT
1424
1425/**
8593fbc6 1426 * nand_do_write_ops - [Internal] NAND write with ECC
1da177e4
LT
1427 * @mtd: MTD device structure
1428 * @to: offset to write to
8593fbc6 1429 * @ops: oob operations description structure
1da177e4
LT
1430 *
1431 * NAND write with ECC
1432 */
8593fbc6
TG
1433static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1434 struct mtd_oob_ops *ops)
1da177e4 1435{
f75e5097 1436 int chipnr, realpage, page, blockmask;
ace4dfee 1437 struct nand_chip *chip = mtd->priv;
8593fbc6
TG
1438 uint32_t writelen = ops->len;
1439 uint8_t *oob = ops->oobbuf;
1440 uint8_t *buf = ops->datbuf;
f75e5097 1441 int bytes = mtd->writesize;
8593fbc6 1442 int ret;
1da177e4 1443
8593fbc6 1444 ops->retlen = 0;
1da177e4 1445
61b03bd7 1446 /* reject writes, which are not page aligned */
8593fbc6 1447 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
f75e5097
TG
1448 printk(KERN_NOTICE "nand_write: "
1449 "Attempt to write not page aligned data\n");
1da177e4
LT
1450 return -EINVAL;
1451 }
1452
8593fbc6 1453 if (!writelen)
f75e5097 1454 return 0;
1da177e4 1455
1da177e4
LT
1456 /* Check, if it is write protected */
1457 if (nand_check_wp(mtd))
8593fbc6 1458 return -EIO;
1da177e4 1459
f75e5097
TG
1460 chipnr = (int)(to >> chip->chip_shift);
1461 chip->select_chip(mtd, chipnr);
1da177e4 1462
f75e5097
TG
1463 realpage = (int)(to >> chip->page_shift);
1464 page = realpage & chip->pagemask;
1465 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1466
1467 /* Invalidate the page cache, when we write to the cached page */
1468 if (to <= (chip->pagebuf << chip->page_shift) &&
8593fbc6 1469 (chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 1470 chip->pagebuf = -1;
61b03bd7 1471
f75e5097 1472 chip->oob_poi = chip->buffers.oobwbuf;
61b03bd7 1473
f75e5097
TG
1474 while(1) {
1475 int cached = writelen > bytes && page != blockmask;
1da177e4 1476
8593fbc6
TG
1477 if (unlikely(oob))
1478 oob = nand_fill_oob(chip, oob, ops);
1479
f75e5097
TG
1480 ret = nand_write_page(mtd, chip, buf, page, cached);
1481 if (ret)
1482 break;
1483
1484 writelen -= bytes;
1485 if (!writelen)
1486 break;
1487
1488 buf += bytes;
1489 realpage++;
1490
1491 page = realpage & chip->pagemask;
1492 /* Check, if we cross a chip boundary */
1493 if (!page) {
1494 chipnr++;
1495 chip->select_chip(mtd, -1);
1496 chip->select_chip(mtd, chipnr);
1da177e4
LT
1497 }
1498 }
8593fbc6
TG
1499
1500 if (unlikely(oob))
1501 memset(chip->oob_poi, 0xff, mtd->oobsize);
1502
1503 ops->retlen = ops->len - writelen;
1da177e4
LT
1504 return ret;
1505}
1506
f75e5097 1507/**
8593fbc6 1508 * nand_write - [MTD Interface] NAND write with ECC
f75e5097 1509 * @mtd: MTD device structure
f75e5097
TG
1510 * @to: offset to write to
1511 * @len: number of bytes to write
8593fbc6
TG
1512 * @retlen: pointer to variable to store the number of written bytes
1513 * @buf: the data to write
f75e5097 1514 *
8593fbc6 1515 * NAND write with ECC
f75e5097 1516 */
8593fbc6
TG
1517static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1518 size_t *retlen, const uint8_t *buf)
f75e5097
TG
1519{
1520 struct nand_chip *chip = mtd->priv;
f75e5097
TG
1521 int ret;
1522
8593fbc6
TG
1523 /* Do not allow reads past end of device */
1524 if ((to + len) > mtd->size)
f75e5097 1525 return -EINVAL;
8593fbc6
TG
1526 if (!len)
1527 return 0;
f75e5097 1528
8593fbc6 1529 nand_get_device(chip, mtd, FL_READING);
f75e5097 1530
8593fbc6
TG
1531 chip->ops.len = len;
1532 chip->ops.datbuf = (uint8_t *)buf;
1533 chip->ops.oobbuf = NULL;
f75e5097 1534
8593fbc6 1535 ret = nand_do_write_ops(mtd, to, &chip->ops);
f75e5097 1536
f75e5097 1537 nand_release_device(mtd);
8593fbc6
TG
1538
1539 *retlen = chip->ops.retlen;
1540 return ret;
f75e5097 1541}
7314e9e7 1542
1da177e4 1543/**
8593fbc6 1544 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1da177e4
LT
1545 * @mtd: MTD device structure
1546 * @to: offset to write to
8593fbc6 1547 * @ops: oob operation description structure
1da177e4
LT
1548 *
1549 * NAND write out-of-band
1550 */
8593fbc6
TG
1551static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1552 struct mtd_oob_ops *ops)
1da177e4 1553{
8593fbc6 1554 int chipnr, page, status;
ace4dfee 1555 struct nand_chip *chip = mtd->priv;
1da177e4 1556
7314e9e7 1557 DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
8593fbc6 1558 (unsigned int)to, (int)ops->len);
1da177e4
LT
1559
1560 /* Do not allow write past end of page */
8593fbc6 1561 if ((ops->ooboffs + ops->len) > mtd->oobsize) {
7314e9e7
TG
1562 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
1563 "Attempt to write past end of page\n");
1da177e4
LT
1564 return -EINVAL;
1565 }
1566
7314e9e7 1567 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 1568 chip->select_chip(mtd, chipnr);
1da177e4 1569
7314e9e7
TG
1570 /* Shift to get page */
1571 page = (int)(to >> chip->page_shift);
1572
1573 /*
1574 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
1575 * of my DiskOnChip 2000 test units) will clear the whole data page too
1576 * if we don't do this. I have no clue why, but I seem to have 'fixed'
1577 * it in the doc2000 driver in August 1999. dwmw2.
1578 */
ace4dfee 1579 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
1580
1581 /* Check, if it is write protected */
1582 if (nand_check_wp(mtd))
8593fbc6 1583 return -EROFS;
61b03bd7 1584
1da177e4 1585 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
1586 if (page == chip->pagebuf)
1587 chip->pagebuf = -1;
1da177e4 1588
8593fbc6
TG
1589 if (ops->mode == MTD_OOB_AUTO || NAND_MUST_PAD(chip)) {
1590 chip->oob_poi = chip->buffers.oobwbuf;
1591 memset(chip->oob_poi, 0xff, mtd->oobsize);
1592 nand_fill_oob(chip, ops->oobbuf, ops);
7314e9e7
TG
1593 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize,
1594 page & chip->pagemask);
8593fbc6
TG
1595 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1596 memset(chip->oob_poi, 0xff, mtd->oobsize);
1da177e4 1597 } else {
8593fbc6
TG
1598 chip->cmdfunc(mtd, NAND_CMD_SEQIN,
1599 mtd->writesize + ops->ooboffs,
7314e9e7 1600 page & chip->pagemask);
8593fbc6 1601 chip->write_buf(mtd, ops->oobbuf, ops->len);
1da177e4 1602 }
8593fbc6 1603
1da177e4 1604 /* Send command to program the OOB data */
ace4dfee 1605 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1da177e4 1606
ace4dfee 1607 status = chip->waitfunc(mtd, chip, FL_WRITING);
1da177e4
LT
1608
1609 /* See if device thinks it succeeded */
a4ab4c5d 1610 if (status & NAND_STATUS_FAIL) {
7314e9e7
TG
1611 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
1612 "Failed write, page 0x%08x\n", page);
8593fbc6 1613 return -EIO;
1da177e4 1614 }
8593fbc6 1615 ops->retlen = ops->len;
1da177e4
LT
1616
1617#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
8593fbc6
TG
1618 if (ops->mode != MTD_OOB_AUTO) {
1619 /* Send command to read back the data */
1620 chip->cmdfunc(mtd, NAND_CMD_READOOB, ops->ooboffs,
1621 page & chip->pagemask);
1da177e4 1622
8593fbc6
TG
1623 if (chip->verify_buf(mtd, ops->oobbuf, ops->len)) {
1624 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
1625 "Failed write verify, page 0x%08x\n", page);
1626 return -EIO;
1627 }
1da177e4
LT
1628 }
1629#endif
8593fbc6
TG
1630 return 0;
1631}
1632
1633/**
1634 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1635 * @mtd: MTD device structure
1636 * @from: offset to read from
1637 * @ops: oob operation description structure
1638 */
1639static int nand_write_oob(struct mtd_info *mtd, loff_t to,
1640 struct mtd_oob_ops *ops)
1641{
1642 void (*write_page)(struct mtd_info *mtd, struct nand_chip *chip,
1643 const uint8_t *buf) = NULL;
1644 struct nand_chip *chip = mtd->priv;
1645 int ret = -ENOTSUPP;
1646
1647 ops->retlen = 0;
1648
1649 /* Do not allow writes past end of device */
1650 if ((to + ops->len) > mtd->size) {
1651 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1652 "Attempt read beyond end of device\n");
1653 return -EINVAL;
1654 }
1655
1656 nand_get_device(chip, mtd, FL_READING);
1657
1658 switch(ops->mode) {
1659 case MTD_OOB_PLACE:
1660 case MTD_OOB_AUTO:
1661 break;
1662
1663 case MTD_OOB_RAW:
1664 /* Replace the write_page algorithm temporary */
1665 write_page = chip->ecc.write_page;
1666 chip->ecc.write_page = nand_write_page_raw;
1667 break;
1668
1669 default:
1670 goto out;
1671 }
1672
1673 if (!ops->datbuf)
1674 ret = nand_do_write_oob(mtd, to, ops);
1675 else
1676 ret = nand_do_write_ops(mtd, to, ops);
1677
1678 if (unlikely(ops->mode == MTD_OOB_RAW))
1679 chip->ecc.write_page = write_page;
e0c7d767 1680 out:
1da177e4 1681 nand_release_device(mtd);
1da177e4
LT
1682 return ret;
1683}
1684
1da177e4
LT
1685/**
1686 * single_erease_cmd - [GENERIC] NAND standard block erase command function
1687 * @mtd: MTD device structure
1688 * @page: the page address of the block which will be erased
1689 *
1690 * Standard erase command for NAND chips
1691 */
e0c7d767 1692static void single_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 1693{
ace4dfee 1694 struct nand_chip *chip = mtd->priv;
1da177e4 1695 /* Send commands to erase a block */
ace4dfee
TG
1696 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1697 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
1698}
1699
1700/**
1701 * multi_erease_cmd - [GENERIC] AND specific block erase command function
1702 * @mtd: MTD device structure
1703 * @page: the page address of the block which will be erased
1704 *
1705 * AND multi block erase command function
1706 * Erase 4 consecutive blocks
1707 */
e0c7d767 1708static void multi_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 1709{
ace4dfee 1710 struct nand_chip *chip = mtd->priv;
1da177e4 1711 /* Send commands to erase a block */
ace4dfee
TG
1712 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1713 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1714 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1715 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1716 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
1717}
1718
1719/**
1720 * nand_erase - [MTD Interface] erase block(s)
1721 * @mtd: MTD device structure
1722 * @instr: erase instruction
1723 *
1724 * Erase one ore more blocks
1725 */
e0c7d767 1726static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 1727{
e0c7d767 1728 return nand_erase_nand(mtd, instr, 0);
1da177e4 1729}
61b03bd7 1730
30f464b7 1731#define BBT_PAGE_MASK 0xffffff3f
1da177e4 1732/**
ace4dfee 1733 * nand_erase_nand - [Internal] erase block(s)
1da177e4
LT
1734 * @mtd: MTD device structure
1735 * @instr: erase instruction
1736 * @allowbbt: allow erasing the bbt area
1737 *
1738 * Erase one ore more blocks
1739 */
ace4dfee
TG
1740int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
1741 int allowbbt)
1da177e4
LT
1742{
1743 int page, len, status, pages_per_block, ret, chipnr;
ace4dfee
TG
1744 struct nand_chip *chip = mtd->priv;
1745 int rewrite_bbt[NAND_MAX_CHIPS]={0};
1746 unsigned int bbt_masked_page = 0xffffffff;
1da177e4 1747
ace4dfee
TG
1748 DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
1749 (unsigned int)instr->addr, (unsigned int)instr->len);
1da177e4
LT
1750
1751 /* Start address must align on block boundary */
ace4dfee 1752 if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
e0c7d767 1753 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
1da177e4
LT
1754 return -EINVAL;
1755 }
1756
1757 /* Length must align on block boundary */
ace4dfee
TG
1758 if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
1759 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1760 "Length not block aligned\n");
1da177e4
LT
1761 return -EINVAL;
1762 }
1763
1764 /* Do not allow erase past end of device */
1765 if ((instr->len + instr->addr) > mtd->size) {
ace4dfee
TG
1766 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1767 "Erase past end of device\n");
1da177e4
LT
1768 return -EINVAL;
1769 }
1770
1771 instr->fail_addr = 0xffffffff;
1772
1773 /* Grab the lock and see if the device is available */
ace4dfee 1774 nand_get_device(chip, mtd, FL_ERASING);
1da177e4
LT
1775
1776 /* Shift to get first page */
ace4dfee
TG
1777 page = (int)(instr->addr >> chip->page_shift);
1778 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
1779
1780 /* Calculate pages in each block */
ace4dfee 1781 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
1782
1783 /* Select the NAND device */
ace4dfee 1784 chip->select_chip(mtd, chipnr);
1da177e4 1785
1da177e4
LT
1786 /* Check, if it is write protected */
1787 if (nand_check_wp(mtd)) {
ace4dfee
TG
1788 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1789 "Device is write protected!!!\n");
1da177e4
LT
1790 instr->state = MTD_ERASE_FAILED;
1791 goto erase_exit;
1792 }
1793
ace4dfee
TG
1794 /*
1795 * If BBT requires refresh, set the BBT page mask to see if the BBT
1796 * should be rewritten. Otherwise the mask is set to 0xffffffff which
1797 * can not be matched. This is also done when the bbt is actually
1798 * erased to avoid recusrsive updates
1799 */
1800 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
1801 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
30f464b7 1802
1da177e4
LT
1803 /* Loop through the pages */
1804 len = instr->len;
1805
1806 instr->state = MTD_ERASING;
1807
1808 while (len) {
ace4dfee
TG
1809 /*
1810 * heck if we have a bad block, we do not erase bad blocks !
1811 */
1812 if (nand_block_checkbad(mtd, ((loff_t) page) <<
1813 chip->page_shift, 0, allowbbt)) {
1814 printk(KERN_WARNING "nand_erase: attempt to erase a "
1815 "bad block at page 0x%08x\n", page);
1da177e4
LT
1816 instr->state = MTD_ERASE_FAILED;
1817 goto erase_exit;
1818 }
61b03bd7 1819
ace4dfee
TG
1820 /*
1821 * Invalidate the page cache, if we erase the block which
1822 * contains the current cached page
1823 */
1824 if (page <= chip->pagebuf && chip->pagebuf <
1825 (page + pages_per_block))
1826 chip->pagebuf = -1;
1da177e4 1827
ace4dfee 1828 chip->erase_cmd(mtd, page & chip->pagemask);
61b03bd7 1829
ace4dfee 1830 status = chip->waitfunc(mtd, chip, FL_ERASING);
1da177e4 1831
ace4dfee
TG
1832 /*
1833 * See if operation failed and additional status checks are
1834 * available
1835 */
1836 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1837 status = chip->errstat(mtd, chip, FL_ERASING,
1838 status, page);
068e3c0a 1839
1da177e4 1840 /* See if block erase succeeded */
a4ab4c5d 1841 if (status & NAND_STATUS_FAIL) {
ace4dfee
TG
1842 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1843 "Failed erase, page 0x%08x\n", page);
1da177e4 1844 instr->state = MTD_ERASE_FAILED;
ace4dfee 1845 instr->fail_addr = (page << chip->page_shift);
1da177e4
LT
1846 goto erase_exit;
1847 }
30f464b7 1848
ace4dfee
TG
1849 /*
1850 * If BBT requires refresh, set the BBT rewrite flag to the
1851 * page being erased
1852 */
1853 if (bbt_masked_page != 0xffffffff &&
1854 (page & BBT_PAGE_MASK) == bbt_masked_page)
1855 rewrite_bbt[chipnr] = (page << chip->page_shift);
61b03bd7 1856
1da177e4 1857 /* Increment page address and decrement length */
ace4dfee 1858 len -= (1 << chip->phys_erase_shift);
1da177e4
LT
1859 page += pages_per_block;
1860
1861 /* Check, if we cross a chip boundary */
ace4dfee 1862 if (len && !(page & chip->pagemask)) {
1da177e4 1863 chipnr++;
ace4dfee
TG
1864 chip->select_chip(mtd, -1);
1865 chip->select_chip(mtd, chipnr);
30f464b7 1866
ace4dfee
TG
1867 /*
1868 * If BBT requires refresh and BBT-PERCHIP, set the BBT
1869 * page mask to see if this BBT should be rewritten
1870 */
1871 if (bbt_masked_page != 0xffffffff &&
1872 (chip->bbt_td->options & NAND_BBT_PERCHIP))
1873 bbt_masked_page = chip->bbt_td->pages[chipnr] &
1874 BBT_PAGE_MASK;
1da177e4
LT
1875 }
1876 }
1877 instr->state = MTD_ERASE_DONE;
1878
e0c7d767 1879 erase_exit:
1da177e4
LT
1880
1881 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1882 /* Do call back function */
1883 if (!ret)
1884 mtd_erase_callback(instr);
1885
1886 /* Deselect and wake up anyone waiting on the device */
1887 nand_release_device(mtd);
1888
ace4dfee
TG
1889 /*
1890 * If BBT requires refresh and erase was successful, rewrite any
1891 * selected bad block tables
1892 */
1893 if (bbt_masked_page == 0xffffffff || ret)
1894 return ret;
1895
1896 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
1897 if (!rewrite_bbt[chipnr])
1898 continue;
1899 /* update the BBT for chip */
1900 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
1901 "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
1902 chip->bbt_td->pages[chipnr]);
1903 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
30f464b7
DM
1904 }
1905
1da177e4
LT
1906 /* Return more or less happy */
1907 return ret;
1908}
1909
1910/**
1911 * nand_sync - [MTD Interface] sync
1912 * @mtd: MTD device structure
1913 *
1914 * Sync is actually a wait for chip ready function
1915 */
e0c7d767 1916static void nand_sync(struct mtd_info *mtd)
1da177e4 1917{
ace4dfee 1918 struct nand_chip *chip = mtd->priv;
1da177e4 1919
e0c7d767 1920 DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
1da177e4
LT
1921
1922 /* Grab the lock and see if the device is available */
ace4dfee 1923 nand_get_device(chip, mtd, FL_SYNCING);
1da177e4 1924 /* Release it and go back */
e0c7d767 1925 nand_release_device(mtd);
1da177e4
LT
1926}
1927
1da177e4 1928/**
ace4dfee 1929 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
1da177e4
LT
1930 * @mtd: MTD device structure
1931 * @ofs: offset relative to mtd start
1932 */
ace4dfee 1933static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4
LT
1934{
1935 /* Check for invalid offset */
ace4dfee 1936 if (offs > mtd->size)
1da177e4 1937 return -EINVAL;
61b03bd7 1938
ace4dfee 1939 return nand_block_checkbad(mtd, offs, 1, 0);
1da177e4
LT
1940}
1941
1942/**
ace4dfee 1943 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
1da177e4
LT
1944 * @mtd: MTD device structure
1945 * @ofs: offset relative to mtd start
1946 */
e0c7d767 1947static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 1948{
ace4dfee 1949 struct nand_chip *chip = mtd->priv;
1da177e4
LT
1950 int ret;
1951
e0c7d767
DW
1952 if ((ret = nand_block_isbad(mtd, ofs))) {
1953 /* If it was bad already, return success and do nothing. */
1da177e4
LT
1954 if (ret > 0)
1955 return 0;
e0c7d767
DW
1956 return ret;
1957 }
1da177e4 1958
ace4dfee 1959 return chip->block_markbad(mtd, ofs);
1da177e4
LT
1960}
1961
962034f4
VW
1962/**
1963 * nand_suspend - [MTD Interface] Suspend the NAND flash
1964 * @mtd: MTD device structure
1965 */
1966static int nand_suspend(struct mtd_info *mtd)
1967{
ace4dfee 1968 struct nand_chip *chip = mtd->priv;
962034f4 1969
ace4dfee 1970 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
962034f4
VW
1971}
1972
1973/**
1974 * nand_resume - [MTD Interface] Resume the NAND flash
1975 * @mtd: MTD device structure
1976 */
1977static void nand_resume(struct mtd_info *mtd)
1978{
ace4dfee 1979 struct nand_chip *chip = mtd->priv;
962034f4 1980
ace4dfee 1981 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
1982 nand_release_device(mtd);
1983 else
2c0a2bed
TG
1984 printk(KERN_ERR "nand_resume() called for a chip which is not "
1985 "in suspended state\n");
962034f4
VW
1986}
1987
7aa65bfd
TG
1988/*
1989 * Set default functions
1990 */
ace4dfee 1991static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 1992{
1da177e4 1993 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
1994 if (!chip->chip_delay)
1995 chip->chip_delay = 20;
1da177e4
LT
1996
1997 /* check, if a user supplied command function given */
ace4dfee
TG
1998 if (chip->cmdfunc == NULL)
1999 chip->cmdfunc = nand_command;
1da177e4
LT
2000
2001 /* check, if a user supplied wait function given */
ace4dfee
TG
2002 if (chip->waitfunc == NULL)
2003 chip->waitfunc = nand_wait;
2004
2005 if (!chip->select_chip)
2006 chip->select_chip = nand_select_chip;
2007 if (!chip->read_byte)
2008 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2009 if (!chip->read_word)
2010 chip->read_word = nand_read_word;
2011 if (!chip->block_bad)
2012 chip->block_bad = nand_block_bad;
2013 if (!chip->block_markbad)
2014 chip->block_markbad = nand_default_block_markbad;
2015 if (!chip->write_buf)
2016 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2017 if (!chip->read_buf)
2018 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2019 if (!chip->verify_buf)
2020 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2021 if (!chip->scan_bbt)
2022 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
2023
2024 if (!chip->controller) {
2025 chip->controller = &chip->hwcontrol;
2026 spin_lock_init(&chip->controller->lock);
2027 init_waitqueue_head(&chip->controller->wq);
2028 }
2029
7aa65bfd
TG
2030}
2031
2032/*
ace4dfee 2033 * Get the flash and manufacturer id and lookup if the type is supported
7aa65bfd
TG
2034 */
2035static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 2036 struct nand_chip *chip,
7aa65bfd
TG
2037 int busw, int *maf_id)
2038{
2039 struct nand_flash_dev *type = NULL;
2040 int i, dev_id, maf_idx;
1da177e4
LT
2041
2042 /* Select the device */
ace4dfee 2043 chip->select_chip(mtd, 0);
1da177e4
LT
2044
2045 /* Send the command for reading device ID */
ace4dfee 2046 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
2047
2048 /* Read manufacturer and device IDs */
ace4dfee
TG
2049 *maf_id = chip->read_byte(mtd);
2050 dev_id = chip->read_byte(mtd);
1da177e4 2051
7aa65bfd 2052 /* Lookup the flash id */
1da177e4 2053 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
7aa65bfd
TG
2054 if (dev_id == nand_flash_ids[i].id) {
2055 type = &nand_flash_ids[i];
2056 break;
2057 }
2058 }
61b03bd7 2059
7aa65bfd
TG
2060 if (!type)
2061 return ERR_PTR(-ENODEV);
2062
ba0251fe
TG
2063 if (!mtd->name)
2064 mtd->name = type->name;
2065
2066 chip->chipsize = type->chipsize << 20;
7aa65bfd
TG
2067
2068 /* Newer devices have all the information in additional id bytes */
ba0251fe 2069 if (!type->pagesize) {
7aa65bfd
TG
2070 int extid;
2071 /* The 3rd id byte contains non relevant data ATM */
ace4dfee 2072 extid = chip->read_byte(mtd);
7aa65bfd 2073 /* The 4th id byte is the important one */
ace4dfee 2074 extid = chip->read_byte(mtd);
7aa65bfd 2075 /* Calc pagesize */
4cbb9b80 2076 mtd->writesize = 1024 << (extid & 0x3);
7aa65bfd
TG
2077 extid >>= 2;
2078 /* Calc oobsize */
4cbb9b80 2079 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
7aa65bfd
TG
2080 extid >>= 2;
2081 /* Calc blocksize. Blocksize is multiples of 64KiB */
2082 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2083 extid >>= 2;
2084 /* Get buswidth information */
2085 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
61b03bd7 2086
7aa65bfd
TG
2087 } else {
2088 /*
ace4dfee 2089 * Old devices have chip data hardcoded in the device id table
7aa65bfd 2090 */
ba0251fe
TG
2091 mtd->erasesize = type->erasesize;
2092 mtd->writesize = type->pagesize;
4cbb9b80 2093 mtd->oobsize = mtd->writesize / 32;
ba0251fe 2094 busw = type->options & NAND_BUSWIDTH_16;
7aa65bfd 2095 }
1da177e4 2096
7aa65bfd
TG
2097 /* Try to identify manufacturer */
2098 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_id++) {
2099 if (nand_manuf_ids[maf_idx].id == *maf_id)
2100 break;
2101 }
0ea4a755 2102
7aa65bfd
TG
2103 /*
2104 * Check, if buswidth is correct. Hardware drivers should set
ace4dfee 2105 * chip correct !
7aa65bfd 2106 */
ace4dfee 2107 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
7aa65bfd
TG
2108 printk(KERN_INFO "NAND device: Manufacturer ID:"
2109 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2110 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2111 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
ace4dfee 2112 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
7aa65bfd
TG
2113 busw ? 16 : 8);
2114 return ERR_PTR(-EINVAL);
2115 }
61b03bd7 2116
7aa65bfd 2117 /* Calculate the address shift from the page size */
ace4dfee 2118 chip->page_shift = ffs(mtd->writesize) - 1;
7aa65bfd 2119 /* Convert chipsize to number of pages per chip -1. */
ace4dfee 2120 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 2121
ace4dfee 2122 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 2123 ffs(mtd->erasesize) - 1;
ace4dfee 2124 chip->chip_shift = ffs(chip->chipsize) - 1;
1da177e4 2125
7aa65bfd 2126 /* Set the bad block position */
ace4dfee 2127 chip->badblockpos = mtd->writesize > 512 ?
7aa65bfd 2128 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
61b03bd7 2129
7aa65bfd 2130 /* Get chip options, preserve non chip based options */
ace4dfee 2131 chip->options &= ~NAND_CHIPOPTIONS_MSK;
ba0251fe 2132 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
7aa65bfd
TG
2133
2134 /*
ace4dfee 2135 * Set chip as a default. Board drivers can override it, if necessary
7aa65bfd 2136 */
ace4dfee 2137 chip->options |= NAND_NO_AUTOINCR;
7aa65bfd 2138
ace4dfee 2139 /* Check if chip is a not a samsung device. Do not clear the
7aa65bfd
TG
2140 * options for chips which are not having an extended id.
2141 */
ba0251fe 2142 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
ace4dfee 2143 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
7aa65bfd
TG
2144
2145 /* Check for AND chips with 4 page planes */
ace4dfee
TG
2146 if (chip->options & NAND_4PAGE_ARRAY)
2147 chip->erase_cmd = multi_erase_cmd;
7aa65bfd 2148 else
ace4dfee 2149 chip->erase_cmd = single_erase_cmd;
7aa65bfd
TG
2150
2151 /* Do not replace user supplied command function ! */
ace4dfee
TG
2152 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2153 chip->cmdfunc = nand_command_lp;
7aa65bfd
TG
2154
2155 printk(KERN_INFO "NAND device: Manufacturer ID:"
2156 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2157 nand_manuf_ids[maf_idx].name, type->name);
2158
2159 return type;
2160}
2161
2162/* module_text_address() isn't exported, and it's mostly a pointless
2163 test if this is a module _anyway_ -- they'd have to try _really_ hard
2164 to call us from in-kernel code if the core NAND support is modular. */
2165#ifdef MODULE
2166#define caller_is_module() (1)
2167#else
2168#define caller_is_module() \
2169 module_text_address((unsigned long)__builtin_return_address(0))
2170#endif
2171
2172/**
2173 * nand_scan - [NAND Interface] Scan for the NAND device
2174 * @mtd: MTD device structure
2175 * @maxchips: Number of chips to scan for
2176 *
2177 * This fills out all the uninitialized function pointers
2178 * with the defaults.
2179 * The flash ID is read and the mtd/chip structures are
f75e5097 2180 * filled with the appropriate values.
7aa65bfd
TG
2181 * The mtd->owner field must be set to the module of the caller
2182 *
2183 */
2184int nand_scan(struct mtd_info *mtd, int maxchips)
2185{
2186 int i, busw, nand_maf_id;
ace4dfee 2187 struct nand_chip *chip = mtd->priv;
7aa65bfd
TG
2188 struct nand_flash_dev *type;
2189
2190 /* Many callers got this wrong, so check for it for a while... */
2191 if (!mtd->owner && caller_is_module()) {
2192 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2193 BUG();
1da177e4
LT
2194 }
2195
7aa65bfd 2196 /* Get buswidth to select the correct functions */
ace4dfee 2197 busw = chip->options & NAND_BUSWIDTH_16;
7aa65bfd 2198 /* Set the default functions */
ace4dfee 2199 nand_set_defaults(chip, busw);
7aa65bfd
TG
2200
2201 /* Read the flash type */
ace4dfee 2202 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
7aa65bfd
TG
2203
2204 if (IS_ERR(type)) {
e0c7d767 2205 printk(KERN_WARNING "No NAND device found!!!\n");
ace4dfee 2206 chip->select_chip(mtd, -1);
7aa65bfd 2207 return PTR_ERR(type);
1da177e4
LT
2208 }
2209
7aa65bfd 2210 /* Check for a chip array */
e0c7d767 2211 for (i = 1; i < maxchips; i++) {
ace4dfee 2212 chip->select_chip(mtd, i);
1da177e4 2213 /* Send the command for reading device ID */
ace4dfee 2214 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 2215 /* Read manufacturer and device IDs */
ace4dfee
TG
2216 if (nand_maf_id != chip->read_byte(mtd) ||
2217 type->id != chip->read_byte(mtd))
1da177e4
LT
2218 break;
2219 }
2220 if (i > 1)
2221 printk(KERN_INFO "%d NAND chips detected\n", i);
61b03bd7 2222
1da177e4 2223 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
2224 chip->numchips = i;
2225 mtd->size = i * chip->chipsize;
7aa65bfd 2226
f75e5097
TG
2227 /* Preset the internal oob write buffer */
2228 memset(chip->buffers.oobwbuf, 0xff, mtd->oobsize);
1da177e4 2229
7aa65bfd
TG
2230 /*
2231 * If no default placement scheme is given, select an appropriate one
2232 */
5bd34c09 2233 if (!chip->ecc.layout) {
61b03bd7 2234 switch (mtd->oobsize) {
1da177e4 2235 case 8:
5bd34c09 2236 chip->ecc.layout = &nand_oob_8;
1da177e4
LT
2237 break;
2238 case 16:
5bd34c09 2239 chip->ecc.layout = &nand_oob_16;
1da177e4
LT
2240 break;
2241 case 64:
5bd34c09 2242 chip->ecc.layout = &nand_oob_64;
1da177e4
LT
2243 break;
2244 default:
7aa65bfd
TG
2245 printk(KERN_WARNING "No oob scheme defined for "
2246 "oobsize %d\n", mtd->oobsize);
1da177e4
LT
2247 BUG();
2248 }
2249 }
61b03bd7 2250
61b03bd7 2251 /*
7aa65bfd
TG
2252 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2253 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 2254 */
ace4dfee 2255 switch (chip->ecc.mode) {
6dfc6d25 2256 case NAND_ECC_HW:
f5bbdacc
TG
2257 /* Use standard hwecc read page function ? */
2258 if (!chip->ecc.read_page)
2259 chip->ecc.read_page = nand_read_page_hwecc;
f75e5097
TG
2260 if (!chip->ecc.write_page)
2261 chip->ecc.write_page = nand_write_page_hwecc;
f5bbdacc 2262
6dfc6d25 2263 case NAND_ECC_HW_SYNDROME:
ace4dfee
TG
2264 if (!chip->ecc.calculate || !chip->ecc.correct ||
2265 !chip->ecc.hwctl) {
6dfc6d25
TG
2266 printk(KERN_WARNING "No ECC functions supplied, "
2267 "Hardware ECC not possible\n");
2268 BUG();
2269 }
f75e5097 2270 /* Use standard syndrome read/write page function ? */
f5bbdacc
TG
2271 if (!chip->ecc.read_page)
2272 chip->ecc.read_page = nand_read_page_syndrome;
f75e5097
TG
2273 if (!chip->ecc.write_page)
2274 chip->ecc.write_page = nand_write_page_syndrome;
f5bbdacc 2275
ace4dfee 2276 if (mtd->writesize >= chip->ecc.size)
6dfc6d25
TG
2277 break;
2278 printk(KERN_WARNING "%d byte HW ECC not possible on "
2279 "%d byte page size, fallback to SW ECC\n",
ace4dfee
TG
2280 chip->ecc.size, mtd->writesize);
2281 chip->ecc.mode = NAND_ECC_SOFT;
61b03bd7 2282
6dfc6d25 2283 case NAND_ECC_SOFT:
ace4dfee
TG
2284 chip->ecc.calculate = nand_calculate_ecc;
2285 chip->ecc.correct = nand_correct_data;
f5bbdacc 2286 chip->ecc.read_page = nand_read_page_swecc;
f75e5097 2287 chip->ecc.write_page = nand_write_page_swecc;
ace4dfee
TG
2288 chip->ecc.size = 256;
2289 chip->ecc.bytes = 3;
1da177e4 2290 break;
61b03bd7
TG
2291
2292 case NAND_ECC_NONE:
7aa65bfd
TG
2293 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2294 "This is not recommended !!\n");
8593fbc6
TG
2295 chip->ecc.read_page = nand_read_page_raw;
2296 chip->ecc.write_page = nand_write_page_raw;
ace4dfee
TG
2297 chip->ecc.size = mtd->writesize;
2298 chip->ecc.bytes = 0;
1da177e4 2299 break;
1da177e4 2300 default:
7aa65bfd 2301 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
ace4dfee 2302 chip->ecc.mode);
61b03bd7 2303 BUG();
1da177e4 2304 }
61b03bd7 2305
5bd34c09
TG
2306 /*
2307 * The number of bytes available for a client to place data into
2308 * the out of band area
2309 */
2310 chip->ecc.layout->oobavail = 0;
2311 for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2312 chip->ecc.layout->oobavail +=
2313 chip->ecc.layout->oobfree[i].length;
2314
7aa65bfd
TG
2315 /*
2316 * Set the number of read / write steps for one page depending on ECC
2317 * mode
2318 */
ace4dfee
TG
2319 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2320 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
6dfc6d25
TG
2321 printk(KERN_WARNING "Invalid ecc parameters\n");
2322 BUG();
1da177e4 2323 }
f5bbdacc 2324 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
61b03bd7 2325
04bbd0ea 2326 /* Initialize state */
ace4dfee 2327 chip->state = FL_READY;
1da177e4
LT
2328
2329 /* De-select the device */
ace4dfee 2330 chip->select_chip(mtd, -1);
1da177e4
LT
2331
2332 /* Invalidate the pagebuffer reference */
ace4dfee 2333 chip->pagebuf = -1;
1da177e4
LT
2334
2335 /* Fill in remaining MTD driver data */
2336 mtd->type = MTD_NANDFLASH;
5fa43394 2337 mtd->flags = MTD_CAP_NANDFLASH;
1da177e4
LT
2338 mtd->ecctype = MTD_ECC_SW;
2339 mtd->erase = nand_erase;
2340 mtd->point = NULL;
2341 mtd->unpoint = NULL;
2342 mtd->read = nand_read;
2343 mtd->write = nand_write;
1da177e4
LT
2344 mtd->read_oob = nand_read_oob;
2345 mtd->write_oob = nand_write_oob;
1da177e4
LT
2346 mtd->sync = nand_sync;
2347 mtd->lock = NULL;
2348 mtd->unlock = NULL;
962034f4
VW
2349 mtd->suspend = nand_suspend;
2350 mtd->resume = nand_resume;
1da177e4
LT
2351 mtd->block_isbad = nand_block_isbad;
2352 mtd->block_markbad = nand_block_markbad;
2353
5bd34c09
TG
2354 /* propagate ecc.layout to mtd_info */
2355 mtd->ecclayout = chip->ecc.layout;
1da177e4 2356
0040bf38 2357 /* Check, if we should skip the bad block table scan */
ace4dfee 2358 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 2359 return 0;
1da177e4
LT
2360
2361 /* Build bad block table */
ace4dfee 2362 return chip->scan_bbt(mtd);
1da177e4
LT
2363}
2364
2365/**
61b03bd7 2366 * nand_release - [NAND Interface] Free resources held by the NAND device
1da177e4
LT
2367 * @mtd: MTD device structure
2368*/
e0c7d767 2369void nand_release(struct mtd_info *mtd)
1da177e4 2370{
ace4dfee 2371 struct nand_chip *chip = mtd->priv;
1da177e4
LT
2372
2373#ifdef CONFIG_MTD_PARTITIONS
2374 /* Deregister partitions */
e0c7d767 2375 del_mtd_partitions(mtd);
1da177e4
LT
2376#endif
2377 /* Deregister the device */
e0c7d767 2378 del_mtd_device(mtd);
1da177e4 2379
fa671646 2380 /* Free bad block table memory */
ace4dfee 2381 kfree(chip->bbt);
1da177e4
LT
2382}
2383
e0c7d767
DW
2384EXPORT_SYMBOL_GPL(nand_scan);
2385EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
2386
2387static int __init nand_base_init(void)
2388{
2389 led_trigger_register_simple("nand-disk", &nand_led_trigger);
2390 return 0;
2391}
2392
2393static void __exit nand_base_exit(void)
2394{
2395 led_trigger_unregister_simple(nand_led_trigger);
2396}
2397
2398module_init(nand_base_init);
2399module_exit(nand_base_exit);
2400
e0c7d767
DW
2401MODULE_LICENSE("GPL");
2402MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2403MODULE_DESCRIPTION("Generic NAND flash driver code");