]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/mtd/nand/nand_base.c
[MTD] Use single flag to mark writeable devices.
[net-next-2.6.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
61b03bd7 8 *
1da177e4
LT
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
61b03bd7 11 *
1da177e4
LT
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002 Thomas Gleixner (tglx@linutronix.de)
14 *
61b03bd7 15 * 02-08-2004 tglx: support for strange chips, which cannot auto increment
1da177e4
LT
16 * pages on read / read_oob
17 *
18 * 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes
19 * pointed this out, as he marked an auto increment capable chip
20 * as NOAUTOINCR in the board driver.
21 * Make reads over block boundaries work too
22 *
23 * 04-14-2004 tglx: first working version for 2k page size chips
61b03bd7 24 *
1da177e4
LT
25 * 05-19-2004 tglx: Basic support for Renesas AG-AND chips
26 *
27 * 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
28 * among multiple independend devices. Suggestions and initial patch
29 * from Ben Dooks <ben-mtd@fluff.org>
30 *
30f464b7
DM
31 * 12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb" issue.
32 * Basically, any block not rewritten may lose data when surrounding blocks
61b03bd7 33 * are rewritten many times. JFFS2 ensures this doesn't happen for blocks
30f464b7
DM
34 * it uses, but the Bad Block Table(s) may not be rewritten. To ensure they
35 * do not lose data, force them to be rewritten when some of the surrounding
61b03bd7
TG
36 * blocks are erased. Rather than tracking a specific nearby block (which
37 * could itself go bad), use a page address 'mask' to select several blocks
30f464b7
DM
38 * in the same area, and rewrite the BBT when any of them are erased.
39 *
61b03bd7 40 * 01-03-2005 dmarlin: added support for the device recovery command sequence for Renesas
30f464b7
DM
41 * AG-AND chips. If there was a sudden loss of power during an erase operation,
42 * a "device recovery" operation must be performed when power is restored
43 * to ensure correct operation.
44 *
61b03bd7 45 * 01-20-2005 dmarlin: added support for optional hardware specific callback routine to
068e3c0a
DM
46 * perform extra error status checks on erase and write failures. This required
47 * adding a wrapper function for nand_read_ecc.
48 *
962034f4
VW
49 * 08-20-2005 vwool: suspend/resume added
50 *
1da177e4 51 * Credits:
61b03bd7
TG
52 * David Woodhouse for adding multichip support
53 *
1da177e4
LT
54 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
55 * rework for 2K page size chips
56 *
57 * TODO:
58 * Enable cached programming for 2k page size chips
59 * Check, if mtd->ecctype should be set to MTD_ECC_HW
60 * if we have HW ecc support.
61 * The AG-AND chips have nice features for speed improvement,
62 * which are not supported yet. Read / program 4 pages in one go.
63 *
962034f4 64 * $Id: nand_base.c,v 1.150 2005/09/15 13:58:48 vwool Exp $
1da177e4
LT
65 *
66 * This program is free software; you can redistribute it and/or modify
67 * it under the terms of the GNU General Public License version 2 as
68 * published by the Free Software Foundation.
69 *
70 */
71
552d9205 72#include <linux/module.h>
1da177e4
LT
73#include <linux/delay.h>
74#include <linux/errno.h>
75#include <linux/sched.h>
76#include <linux/slab.h>
77#include <linux/types.h>
78#include <linux/mtd/mtd.h>
79#include <linux/mtd/nand.h>
80#include <linux/mtd/nand_ecc.h>
81#include <linux/mtd/compatmac.h>
82#include <linux/interrupt.h>
83#include <linux/bitops.h>
8fe833c1 84#include <linux/leds.h>
1da177e4
LT
85#include <asm/io.h>
86
87#ifdef CONFIG_MTD_PARTITIONS
88#include <linux/mtd/partitions.h>
89#endif
90
91/* Define default oob placement schemes for large and small page devices */
92static struct nand_oobinfo nand_oob_8 = {
93 .useecc = MTD_NANDECC_AUTOPLACE,
94 .eccbytes = 3,
95 .eccpos = {0, 1, 2},
e0c7d767 96 .oobfree = {{3, 2}, {6, 2}}
1da177e4
LT
97};
98
99static struct nand_oobinfo nand_oob_16 = {
100 .useecc = MTD_NANDECC_AUTOPLACE,
101 .eccbytes = 6,
102 .eccpos = {0, 1, 2, 3, 6, 7},
e0c7d767 103 .oobfree = {{8, 8}}
1da177e4
LT
104};
105
106static struct nand_oobinfo nand_oob_64 = {
107 .useecc = MTD_NANDECC_AUTOPLACE,
108 .eccbytes = 24,
109 .eccpos = {
e0c7d767
DW
110 40, 41, 42, 43, 44, 45, 46, 47,
111 48, 49, 50, 51, 52, 53, 54, 55,
112 56, 57, 58, 59, 60, 61, 62, 63},
113 .oobfree = {{2, 38}}
1da177e4
LT
114};
115
116/* This is used for padding purposes in nand_write_oob */
117static u_char ffchars[] = {
118 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
119 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
120 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
121 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
122 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
123 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
124 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
125 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
126};
127
128/*
129 * NAND low-level MTD interface functions
130 */
131static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
132static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
133static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
134
e0c7d767
DW
135static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
136static int nand_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
137 size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
138static int nand_read_oob(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
139static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
140static int nand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
141 size_t *retlen, const u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
142static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
143static int nand_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen);
144static int nand_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs,
145 unsigned long count, loff_t to, size_t *retlen, u_char *eccbuf,
146 struct nand_oobinfo *oobsel);
147static int nand_erase(struct mtd_info *mtd, struct erase_info *instr);
148static void nand_sync(struct mtd_info *mtd);
1da177e4
LT
149
150/* Some internal functions */
e0c7d767
DW
151static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this, int page, u_char * oob_buf,
152 struct nand_oobinfo *oobsel, int mode);
1da177e4 153#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
e0c7d767
DW
154static int nand_verify_pages(struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
155 u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
1da177e4
LT
156#else
157#define nand_verify_pages(...) (0)
158#endif
61b03bd7 159
e0c7d767 160static int nand_get_device(struct nand_chip *this, struct mtd_info *mtd, int new_state);
1da177e4
LT
161
162/**
163 * nand_release_device - [GENERIC] release chip
164 * @mtd: MTD device structure
61b03bd7
TG
165 *
166 * Deselect, release chip lock and wake up anyone waiting on the device
1da177e4 167 */
e0c7d767 168static void nand_release_device(struct mtd_info *mtd)
1da177e4
LT
169{
170 struct nand_chip *this = mtd->priv;
171
172 /* De-select the NAND device */
173 this->select_chip(mtd, -1);
0dfc6246 174
1da177e4 175 if (this->controller) {
0dfc6246 176 /* Release the controller and the chip */
1da177e4
LT
177 spin_lock(&this->controller->lock);
178 this->controller->active = NULL;
0dfc6246
TG
179 this->state = FL_READY;
180 wake_up(&this->controller->wq);
1da177e4 181 spin_unlock(&this->controller->lock);
0dfc6246
TG
182 } else {
183 /* Release the chip */
184 spin_lock(&this->chip_lock);
185 this->state = FL_READY;
186 wake_up(&this->wq);
187 spin_unlock(&this->chip_lock);
1da177e4 188 }
1da177e4
LT
189}
190
191/**
192 * nand_read_byte - [DEFAULT] read one byte from the chip
193 * @mtd: MTD device structure
194 *
195 * Default read function for 8bit buswith
196 */
197static u_char nand_read_byte(struct mtd_info *mtd)
198{
199 struct nand_chip *this = mtd->priv;
200 return readb(this->IO_ADDR_R);
201}
202
203/**
204 * nand_write_byte - [DEFAULT] write one byte to the chip
205 * @mtd: MTD device structure
206 * @byte: pointer to data byte to write
207 *
208 * Default write function for 8it buswith
209 */
210static void nand_write_byte(struct mtd_info *mtd, u_char byte)
211{
212 struct nand_chip *this = mtd->priv;
213 writeb(byte, this->IO_ADDR_W);
214}
215
216/**
217 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
218 * @mtd: MTD device structure
219 *
61b03bd7 220 * Default read function for 16bit buswith with
1da177e4
LT
221 * endianess conversion
222 */
223static u_char nand_read_byte16(struct mtd_info *mtd)
224{
225 struct nand_chip *this = mtd->priv;
226 return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
227}
228
229/**
230 * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
231 * @mtd: MTD device structure
232 * @byte: pointer to data byte to write
233 *
234 * Default write function for 16bit buswith with
235 * endianess conversion
236 */
237static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
238{
239 struct nand_chip *this = mtd->priv;
240 writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
241}
242
243/**
244 * nand_read_word - [DEFAULT] read one word from the chip
245 * @mtd: MTD device structure
246 *
61b03bd7 247 * Default read function for 16bit buswith without
1da177e4
LT
248 * endianess conversion
249 */
250static u16 nand_read_word(struct mtd_info *mtd)
251{
252 struct nand_chip *this = mtd->priv;
253 return readw(this->IO_ADDR_R);
254}
255
256/**
257 * nand_write_word - [DEFAULT] write one word to the chip
258 * @mtd: MTD device structure
259 * @word: data word to write
260 *
61b03bd7 261 * Default write function for 16bit buswith without
1da177e4
LT
262 * endianess conversion
263 */
264static void nand_write_word(struct mtd_info *mtd, u16 word)
265{
266 struct nand_chip *this = mtd->priv;
267 writew(word, this->IO_ADDR_W);
268}
269
270/**
271 * nand_select_chip - [DEFAULT] control CE line
272 * @mtd: MTD device structure
273 * @chip: chipnumber to select, -1 for deselect
274 *
275 * Default select function for 1 chip devices.
276 */
277static void nand_select_chip(struct mtd_info *mtd, int chip)
278{
279 struct nand_chip *this = mtd->priv;
e0c7d767 280 switch (chip) {
1da177e4 281 case -1:
61b03bd7 282 this->hwcontrol(mtd, NAND_CTL_CLRNCE);
1da177e4
LT
283 break;
284 case 0:
285 this->hwcontrol(mtd, NAND_CTL_SETNCE);
286 break;
287
288 default:
289 BUG();
290 }
291}
292
293/**
294 * nand_write_buf - [DEFAULT] write buffer to chip
295 * @mtd: MTD device structure
296 * @buf: data buffer
297 * @len: number of bytes to write
298 *
299 * Default write function for 8bit buswith
300 */
301static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
302{
303 int i;
304 struct nand_chip *this = mtd->priv;
305
e0c7d767 306 for (i = 0; i < len; i++)
1da177e4
LT
307 writeb(buf[i], this->IO_ADDR_W);
308}
309
310/**
61b03bd7 311 * nand_read_buf - [DEFAULT] read chip data into buffer
1da177e4
LT
312 * @mtd: MTD device structure
313 * @buf: buffer to store date
314 * @len: number of bytes to read
315 *
316 * Default read function for 8bit buswith
317 */
318static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
319{
320 int i;
321 struct nand_chip *this = mtd->priv;
322
e0c7d767 323 for (i = 0; i < len; i++)
1da177e4
LT
324 buf[i] = readb(this->IO_ADDR_R);
325}
326
327/**
61b03bd7 328 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
1da177e4
LT
329 * @mtd: MTD device structure
330 * @buf: buffer containing the data to compare
331 * @len: number of bytes to compare
332 *
333 * Default verify function for 8bit buswith
334 */
335static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
336{
337 int i;
338 struct nand_chip *this = mtd->priv;
339
e0c7d767 340 for (i = 0; i < len; i++)
1da177e4
LT
341 if (buf[i] != readb(this->IO_ADDR_R))
342 return -EFAULT;
343
344 return 0;
345}
346
347/**
348 * nand_write_buf16 - [DEFAULT] write buffer to chip
349 * @mtd: MTD device structure
350 * @buf: data buffer
351 * @len: number of bytes to write
352 *
353 * Default write function for 16bit buswith
354 */
355static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
356{
357 int i;
358 struct nand_chip *this = mtd->priv;
359 u16 *p = (u16 *) buf;
360 len >>= 1;
61b03bd7 361
e0c7d767 362 for (i = 0; i < len; i++)
1da177e4 363 writew(p[i], this->IO_ADDR_W);
61b03bd7 364
1da177e4
LT
365}
366
367/**
61b03bd7 368 * nand_read_buf16 - [DEFAULT] read chip data into buffer
1da177e4
LT
369 * @mtd: MTD device structure
370 * @buf: buffer to store date
371 * @len: number of bytes to read
372 *
373 * Default read function for 16bit buswith
374 */
375static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
376{
377 int i;
378 struct nand_chip *this = mtd->priv;
379 u16 *p = (u16 *) buf;
380 len >>= 1;
381
e0c7d767 382 for (i = 0; i < len; i++)
1da177e4
LT
383 p[i] = readw(this->IO_ADDR_R);
384}
385
386/**
61b03bd7 387 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
1da177e4
LT
388 * @mtd: MTD device structure
389 * @buf: buffer containing the data to compare
390 * @len: number of bytes to compare
391 *
392 * Default verify function for 16bit buswith
393 */
394static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
395{
396 int i;
397 struct nand_chip *this = mtd->priv;
398 u16 *p = (u16 *) buf;
399 len >>= 1;
400
e0c7d767 401 for (i = 0; i < len; i++)
1da177e4
LT
402 if (p[i] != readw(this->IO_ADDR_R))
403 return -EFAULT;
404
405 return 0;
406}
407
408/**
409 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
410 * @mtd: MTD device structure
411 * @ofs: offset from device start
412 * @getchip: 0, if the chip is already selected
413 *
61b03bd7 414 * Check, if the block is bad.
1da177e4
LT
415 */
416static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
417{
418 int page, chipnr, res = 0;
419 struct nand_chip *this = mtd->priv;
420 u16 bad;
421
422 if (getchip) {
423 page = (int)(ofs >> this->page_shift);
424 chipnr = (int)(ofs >> this->chip_shift);
425
426 /* Grab the lock and see if the device is available */
e0c7d767 427 nand_get_device(this, mtd, FL_READING);
1da177e4
LT
428
429 /* Select the NAND device */
430 this->select_chip(mtd, chipnr);
61b03bd7 431 } else
e0c7d767 432 page = (int)ofs;
1da177e4
LT
433
434 if (this->options & NAND_BUSWIDTH_16) {
e0c7d767 435 this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
1da177e4
LT
436 bad = cpu_to_le16(this->read_word(mtd));
437 if (this->badblockpos & 0x1)
49196f33 438 bad >>= 8;
1da177e4
LT
439 if ((bad & 0xFF) != 0xff)
440 res = 1;
441 } else {
e0c7d767 442 this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
1da177e4
LT
443 if (this->read_byte(mtd) != 0xff)
444 res = 1;
445 }
61b03bd7 446
1da177e4
LT
447 if (getchip) {
448 /* Deselect and wake up anyone waiting on the device */
449 nand_release_device(mtd);
61b03bd7
TG
450 }
451
1da177e4
LT
452 return res;
453}
454
455/**
456 * nand_default_block_markbad - [DEFAULT] mark a block bad
457 * @mtd: MTD device structure
458 * @ofs: offset from device start
459 *
460 * This is the default implementation, which can be overridden by
461 * a hardware specific driver.
462*/
463static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
464{
465 struct nand_chip *this = mtd->priv;
e0c7d767
DW
466 u_char buf[2] = { 0, 0 };
467 size_t retlen;
1da177e4 468 int block;
61b03bd7 469
1da177e4 470 /* Get block number */
e0c7d767 471 block = ((int)ofs) >> this->bbt_erase_shift;
41ce9214
AB
472 if (this->bbt)
473 this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1da177e4
LT
474
475 /* Do we have a flash based bad block table ? */
476 if (this->options & NAND_USE_FLASH_BBT)
e0c7d767 477 return nand_update_bbt(mtd, ofs);
61b03bd7 478
1da177e4
LT
479 /* We write two bytes, so we dont have to mess with 16 bit access */
480 ofs += mtd->oobsize + (this->badblockpos & ~0x01);
e0c7d767 481 return nand_write_oob(mtd, ofs, 2, &retlen, buf);
1da177e4
LT
482}
483
61b03bd7 484/**
1da177e4
LT
485 * nand_check_wp - [GENERIC] check if the chip is write protected
486 * @mtd: MTD device structure
61b03bd7 487 * Check, if the device is write protected
1da177e4 488 *
61b03bd7 489 * The function expects, that the device is already selected
1da177e4 490 */
e0c7d767 491static int nand_check_wp(struct mtd_info *mtd)
1da177e4
LT
492{
493 struct nand_chip *this = mtd->priv;
494 /* Check the WP bit */
e0c7d767 495 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
61b03bd7 496 return (this->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
497}
498
499/**
500 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
501 * @mtd: MTD device structure
502 * @ofs: offset from device start
503 * @getchip: 0, if the chip is already selected
504 * @allowbbt: 1, if its allowed to access the bbt area
505 *
506 * Check, if the block is bad. Either by reading the bad block table or
507 * calling of the scan function.
508 */
e0c7d767 509static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
1da177e4
LT
510{
511 struct nand_chip *this = mtd->priv;
61b03bd7 512
1da177e4
LT
513 if (!this->bbt)
514 return this->block_bad(mtd, ofs, getchip);
61b03bd7 515
1da177e4 516 /* Return info from the table */
e0c7d767 517 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
518}
519
8fe833c1
RP
520DEFINE_LED_TRIGGER(nand_led_trigger);
521
61b03bd7 522/*
3b88775c
TG
523 * Wait for the ready pin, after a command
524 * The timeout is catched later.
525 */
526static void nand_wait_ready(struct mtd_info *mtd)
527{
528 struct nand_chip *this = mtd->priv;
e0c7d767 529 unsigned long timeo = jiffies + 2;
3b88775c 530
8fe833c1 531 led_trigger_event(nand_led_trigger, LED_FULL);
3b88775c
TG
532 /* wait until command is processed or timeout occures */
533 do {
534 if (this->dev_ready(mtd))
8fe833c1 535 break;
8446f1d3 536 touch_softlockup_watchdog();
61b03bd7 537 } while (time_before(jiffies, timeo));
8fe833c1 538 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c
TG
539}
540
1da177e4
LT
541/**
542 * nand_command - [DEFAULT] Send command to NAND device
543 * @mtd: MTD device structure
544 * @command: the command to be sent
545 * @column: the column address for this command, -1 if none
546 * @page_addr: the page address for this command, -1 if none
547 *
548 * Send command to NAND device. This function is used for small page
549 * devices (256/512 Bytes per page)
550 */
e0c7d767 551static void nand_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
1da177e4
LT
552{
553 register struct nand_chip *this = mtd->priv;
554
555 /* Begin command latch cycle */
556 this->hwcontrol(mtd, NAND_CTL_SETCLE);
557 /*
558 * Write out the command to the device.
559 */
560 if (command == NAND_CMD_SEQIN) {
561 int readcmd;
562
563 if (column >= mtd->oobblock) {
564 /* OOB area */
565 column -= mtd->oobblock;
566 readcmd = NAND_CMD_READOOB;
567 } else if (column < 256) {
568 /* First 256 bytes --> READ0 */
569 readcmd = NAND_CMD_READ0;
570 } else {
571 column -= 256;
572 readcmd = NAND_CMD_READ1;
573 }
574 this->write_byte(mtd, readcmd);
575 }
576 this->write_byte(mtd, command);
577
578 /* Set ALE and clear CLE to start address cycle */
579 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
580
581 if (column != -1 || page_addr != -1) {
582 this->hwcontrol(mtd, NAND_CTL_SETALE);
583
584 /* Serially input address */
585 if (column != -1) {
586 /* Adjust columns for 16 bit buswidth */
587 if (this->options & NAND_BUSWIDTH_16)
588 column >>= 1;
589 this->write_byte(mtd, column);
590 }
591 if (page_addr != -1) {
e0c7d767
DW
592 this->write_byte(mtd, (unsigned char)(page_addr & 0xff));
593 this->write_byte(mtd, (unsigned char)((page_addr >> 8) & 0xff));
1da177e4
LT
594 /* One more address cycle for devices > 32MiB */
595 if (this->chipsize > (32 << 20))
e0c7d767 596 this->write_byte(mtd, (unsigned char)((page_addr >> 16) & 0x0f));
1da177e4
LT
597 }
598 /* Latch in address */
599 this->hwcontrol(mtd, NAND_CTL_CLRALE);
600 }
61b03bd7
TG
601
602 /*
603 * program and erase have their own busy handlers
1da177e4 604 * status and sequential in needs no delay
e0c7d767 605 */
1da177e4 606 switch (command) {
61b03bd7 607
1da177e4
LT
608 case NAND_CMD_PAGEPROG:
609 case NAND_CMD_ERASE1:
610 case NAND_CMD_ERASE2:
611 case NAND_CMD_SEQIN:
612 case NAND_CMD_STATUS:
613 return;
614
615 case NAND_CMD_RESET:
61b03bd7 616 if (this->dev_ready)
1da177e4
LT
617 break;
618 udelay(this->chip_delay);
619 this->hwcontrol(mtd, NAND_CTL_SETCLE);
620 this->write_byte(mtd, NAND_CMD_STATUS);
621 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
e0c7d767 622 while (!(this->read_byte(mtd) & NAND_STATUS_READY)) ;
1da177e4
LT
623 return;
624
e0c7d767 625 /* This applies to read commands */
1da177e4 626 default:
61b03bd7 627 /*
1da177e4
LT
628 * If we don't have access to the busy pin, we apply the given
629 * command delay
e0c7d767 630 */
1da177e4 631 if (!this->dev_ready) {
e0c7d767 632 udelay(this->chip_delay);
1da177e4 633 return;
61b03bd7 634 }
1da177e4 635 }
1da177e4
LT
636 /* Apply this short delay always to ensure that we do wait tWB in
637 * any case on any machine. */
e0c7d767 638 ndelay(100);
3b88775c
TG
639
640 nand_wait_ready(mtd);
1da177e4
LT
641}
642
643/**
644 * nand_command_lp - [DEFAULT] Send command to NAND large page device
645 * @mtd: MTD device structure
646 * @command: the command to be sent
647 * @column: the column address for this command, -1 if none
648 * @page_addr: the page address for this command, -1 if none
649 *
650 * Send command to NAND device. This is the version for the new large page devices
e0c7d767 651 * We dont have the separate regions as we have in the small page devices.
1da177e4
LT
652 * We must emulate NAND_CMD_READOOB to keep the code compatible.
653 *
654 */
e0c7d767 655static void nand_command_lp(struct mtd_info *mtd, unsigned command, int column, int page_addr)
1da177e4
LT
656{
657 register struct nand_chip *this = mtd->priv;
658
659 /* Emulate NAND_CMD_READOOB */
660 if (command == NAND_CMD_READOOB) {
661 column += mtd->oobblock;
662 command = NAND_CMD_READ0;
663 }
61b03bd7 664
1da177e4
LT
665 /* Begin command latch cycle */
666 this->hwcontrol(mtd, NAND_CTL_SETCLE);
667 /* Write out the command to the device. */
30f464b7 668 this->write_byte(mtd, (command & 0xff));
1da177e4
LT
669 /* End command latch cycle */
670 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
671
672 if (column != -1 || page_addr != -1) {
673 this->hwcontrol(mtd, NAND_CTL_SETALE);
674
675 /* Serially input address */
676 if (column != -1) {
677 /* Adjust columns for 16 bit buswidth */
678 if (this->options & NAND_BUSWIDTH_16)
679 column >>= 1;
680 this->write_byte(mtd, column & 0xff);
681 this->write_byte(mtd, column >> 8);
61b03bd7 682 }
1da177e4 683 if (page_addr != -1) {
e0c7d767
DW
684 this->write_byte(mtd, (unsigned char)(page_addr & 0xff));
685 this->write_byte(mtd, (unsigned char)((page_addr >> 8) & 0xff));
1da177e4
LT
686 /* One more address cycle for devices > 128MiB */
687 if (this->chipsize > (128 << 20))
e0c7d767 688 this->write_byte(mtd, (unsigned char)((page_addr >> 16) & 0xff));
1da177e4
LT
689 }
690 /* Latch in address */
691 this->hwcontrol(mtd, NAND_CTL_CLRALE);
692 }
61b03bd7
TG
693
694 /*
695 * program and erase have their own busy handlers
30f464b7
DM
696 * status, sequential in, and deplete1 need no delay
697 */
1da177e4 698 switch (command) {
61b03bd7 699
1da177e4
LT
700 case NAND_CMD_CACHEDPROG:
701 case NAND_CMD_PAGEPROG:
702 case NAND_CMD_ERASE1:
703 case NAND_CMD_ERASE2:
704 case NAND_CMD_SEQIN:
705 case NAND_CMD_STATUS:
30f464b7 706 case NAND_CMD_DEPLETE1:
1da177e4
LT
707 return;
708
e0c7d767
DW
709 /*
710 * read error status commands require only a short delay
711 */
30f464b7
DM
712 case NAND_CMD_STATUS_ERROR:
713 case NAND_CMD_STATUS_ERROR0:
714 case NAND_CMD_STATUS_ERROR1:
715 case NAND_CMD_STATUS_ERROR2:
716 case NAND_CMD_STATUS_ERROR3:
717 udelay(this->chip_delay);
718 return;
1da177e4
LT
719
720 case NAND_CMD_RESET:
61b03bd7 721 if (this->dev_ready)
1da177e4
LT
722 break;
723 udelay(this->chip_delay);
724 this->hwcontrol(mtd, NAND_CTL_SETCLE);
725 this->write_byte(mtd, NAND_CMD_STATUS);
726 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
e0c7d767 727 while (!(this->read_byte(mtd) & NAND_STATUS_READY)) ;
1da177e4
LT
728 return;
729
730 case NAND_CMD_READ0:
731 /* Begin command latch cycle */
732 this->hwcontrol(mtd, NAND_CTL_SETCLE);
733 /* Write out the start read command */
734 this->write_byte(mtd, NAND_CMD_READSTART);
735 /* End command latch cycle */
736 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
737 /* Fall through into ready check */
61b03bd7 738
e0c7d767 739 /* This applies to read commands */
1da177e4 740 default:
61b03bd7 741 /*
1da177e4
LT
742 * If we don't have access to the busy pin, we apply the given
743 * command delay
e0c7d767 744 */
1da177e4 745 if (!this->dev_ready) {
e0c7d767 746 udelay(this->chip_delay);
1da177e4 747 return;
61b03bd7 748 }
1da177e4 749 }
3b88775c 750
1da177e4
LT
751 /* Apply this short delay always to ensure that we do wait tWB in
752 * any case on any machine. */
e0c7d767 753 ndelay(100);
3b88775c
TG
754
755 nand_wait_ready(mtd);
1da177e4
LT
756}
757
758/**
759 * nand_get_device - [GENERIC] Get chip for selected access
760 * @this: the nand chip descriptor
761 * @mtd: MTD device structure
61b03bd7 762 * @new_state: the state which is requested
1da177e4
LT
763 *
764 * Get the device and lock it for exclusive access
765 */
e0c7d767 766static int nand_get_device(struct nand_chip *this, struct mtd_info *mtd, int new_state)
1da177e4 767{
0dfc6246
TG
768 struct nand_chip *active;
769 spinlock_t *lock;
770 wait_queue_head_t *wq;
e0c7d767 771 DECLARE_WAITQUEUE(wait, current);
1da177e4 772
0dfc6246
TG
773 lock = (this->controller) ? &this->controller->lock : &this->chip_lock;
774 wq = (this->controller) ? &this->controller->wq : &this->wq;
e0c7d767 775 retry:
0dfc6246
TG
776 active = this;
777 spin_lock(lock);
778
1da177e4
LT
779 /* Hardware controller shared among independend devices */
780 if (this->controller) {
1da177e4
LT
781 if (this->controller->active)
782 active = this->controller->active;
783 else
784 this->controller->active = this;
1da177e4 785 }
0dfc6246
TG
786 if (active == this && this->state == FL_READY) {
787 this->state = new_state;
788 spin_unlock(lock);
962034f4
VW
789 return 0;
790 }
791 if (new_state == FL_PM_SUSPENDED) {
792 spin_unlock(lock);
793 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
0dfc6246
TG
794 }
795 set_current_state(TASK_UNINTERRUPTIBLE);
796 add_wait_queue(wq, &wait);
797 spin_unlock(lock);
798 schedule();
799 remove_wait_queue(wq, &wait);
1da177e4
LT
800 goto retry;
801}
802
803/**
804 * nand_wait - [DEFAULT] wait until the command is done
805 * @mtd: MTD device structure
806 * @this: NAND chip structure
807 * @state: state to select the max. timeout value
808 *
809 * Wait for command done. This applies to erase and program only
61b03bd7 810 * Erase can take up to 400ms and program up to 20ms according to
1da177e4
LT
811 * general NAND and SmartMedia specs
812 *
813*/
814static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
815{
816
e0c7d767
DW
817 unsigned long timeo = jiffies;
818 int status;
61b03bd7 819
1da177e4 820 if (state == FL_ERASING)
e0c7d767 821 timeo += (HZ * 400) / 1000;
1da177e4 822 else
e0c7d767 823 timeo += (HZ * 20) / 1000;
1da177e4 824
8fe833c1
RP
825 led_trigger_event(nand_led_trigger, LED_FULL);
826
1da177e4
LT
827 /* Apply this short delay always to ensure that we do wait tWB in
828 * any case on any machine. */
e0c7d767 829 ndelay(100);
1da177e4
LT
830
831 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
e0c7d767 832 this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
61b03bd7 833 else
e0c7d767 834 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 835
61b03bd7 836 while (time_before(jiffies, timeo)) {
1da177e4
LT
837 /* Check, if we were interrupted */
838 if (this->state != state)
839 return 0;
840
841 if (this->dev_ready) {
842 if (this->dev_ready(mtd))
61b03bd7 843 break;
1da177e4
LT
844 } else {
845 if (this->read_byte(mtd) & NAND_STATUS_READY)
846 break;
847 }
20a6c211 848 cond_resched();
1da177e4 849 }
8fe833c1
RP
850 led_trigger_event(nand_led_trigger, LED_OFF);
851
e0c7d767 852 status = (int)this->read_byte(mtd);
1da177e4
LT
853 return status;
854}
855
856/**
857 * nand_write_page - [GENERIC] write one page
858 * @mtd: MTD device structure
859 * @this: NAND chip structure
860 * @page: startpage inside the chip, must be called with (page & this->pagemask)
861 * @oob_buf: out of band data buffer
862 * @oobsel: out of band selecttion structre
863 * @cached: 1 = enable cached programming if supported by chip
864 *
865 * Nand_page_program function is used for write and writev !
866 * This function will always program a full page of data
867 * If you call it with a non page aligned buffer, you're lost :)
868 *
869 * Cached programming is not supported yet.
870 */
e0c7d767
DW
871static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this, int page,
872 u_char *oob_buf, struct nand_oobinfo *oobsel, int cached)
1da177e4 873{
e0c7d767
DW
874 int i, status;
875 u_char ecc_code[32];
876 int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
877 int *oob_config = oobsel->eccpos;
878 int datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
879 int eccbytes = 0;
61b03bd7 880
1da177e4
LT
881 /* FIXME: Enable cached programming */
882 cached = 0;
61b03bd7 883
1da177e4 884 /* Send command to begin auto page programming */
e0c7d767 885 this->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1da177e4
LT
886
887 /* Write out complete page of data, take care of eccmode */
888 switch (eccmode) {
e0c7d767 889 /* No ecc, write all */
1da177e4 890 case NAND_ECC_NONE:
e0c7d767 891 printk(KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
1da177e4
LT
892 this->write_buf(mtd, this->data_poi, mtd->oobblock);
893 break;
61b03bd7 894
e0c7d767 895 /* Software ecc 3/256, write all */
1da177e4
LT
896 case NAND_ECC_SOFT:
897 for (; eccsteps; eccsteps--) {
898 this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
899 for (i = 0; i < 3; i++, eccidx++)
900 oob_buf[oob_config[eccidx]] = ecc_code[i];
901 datidx += this->eccsize;
902 }
903 this->write_buf(mtd, this->data_poi, mtd->oobblock);
904 break;
905 default:
906 eccbytes = this->eccbytes;
907 for (; eccsteps; eccsteps--) {
908 /* enable hardware ecc logic for write */
909 this->enable_hwecc(mtd, NAND_ECC_WRITE);
910 this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
911 this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
912 for (i = 0; i < eccbytes; i++, eccidx++)
913 oob_buf[oob_config[eccidx]] = ecc_code[i];
914 /* If the hardware ecc provides syndromes then
915 * the ecc code must be written immidiately after
916 * the data bytes (words) */
917 if (this->options & NAND_HWECC_SYNDROME)
918 this->write_buf(mtd, ecc_code, eccbytes);
919 datidx += this->eccsize;
920 }
921 break;
922 }
61b03bd7 923
1da177e4
LT
924 /* Write out OOB data */
925 if (this->options & NAND_HWECC_SYNDROME)
926 this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
61b03bd7 927 else
1da177e4
LT
928 this->write_buf(mtd, oob_buf, mtd->oobsize);
929
930 /* Send command to actually program the data */
e0c7d767 931 this->cmdfunc(mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
1da177e4
LT
932
933 if (!cached) {
934 /* call wait ready function */
e0c7d767 935 status = this->waitfunc(mtd, this, FL_WRITING);
068e3c0a
DM
936
937 /* See if operation failed and additional status checks are available */
938 if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
939 status = this->errstat(mtd, this, FL_WRITING, status, page);
940 }
941
1da177e4 942 /* See if device thinks it succeeded */
a4ab4c5d 943 if (status & NAND_STATUS_FAIL) {
e0c7d767 944 DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
1da177e4
LT
945 return -EIO;
946 }
947 } else {
948 /* FIXME: Implement cached programming ! */
e0c7d767 949 /* wait until cache is ready */
1da177e4
LT
950 // status = this->waitfunc (mtd, this, FL_CACHEDRPG);
951 }
61b03bd7 952 return 0;
1da177e4
LT
953}
954
955#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
956/**
957 * nand_verify_pages - [GENERIC] verify the chip contents after a write
958 * @mtd: MTD device structure
959 * @this: NAND chip structure
960 * @page: startpage inside the chip, must be called with (page & this->pagemask)
961 * @numpages: number of pages to verify
962 * @oob_buf: out of band data buffer
963 * @oobsel: out of band selecttion structre
964 * @chipnr: number of the current chip
965 * @oobmode: 1 = full buffer verify, 0 = ecc only
966 *
967 * The NAND device assumes that it is always writing to a cleanly erased page.
61b03bd7 968 * Hence, it performs its internal write verification only on bits that
1da177e4 969 * transitioned from 1 to 0. The device does NOT verify the whole page on a
61b03bd7
TG
970 * byte by byte basis. It is possible that the page was not completely erased
971 * or the page is becoming unusable due to wear. The read with ECC would catch
972 * the error later when the ECC page check fails, but we would rather catch
1da177e4
LT
973 * it early in the page write stage. Better to write no data than invalid data.
974 */
e0c7d767
DW
975static int nand_verify_pages(struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
976 u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
1da177e4 977{
e0c7d767
DW
978 int i, j, datidx = 0, oobofs = 0, res = -EIO;
979 int eccsteps = this->eccsteps;
980 int hweccbytes;
981 u_char oobdata[64];
1da177e4
LT
982
983 hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
984
985 /* Send command to read back the first page */
e0c7d767 986 this->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1da177e4 987
e0c7d767 988 for (;;) {
1da177e4
LT
989 for (j = 0; j < eccsteps; j++) {
990 /* Loop through and verify the data */
991 if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
e0c7d767 992 DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
1da177e4
LT
993 goto out;
994 }
995 datidx += mtd->eccsize;
996 /* Have we a hw generator layout ? */
997 if (!hweccbytes)
998 continue;
999 if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
e0c7d767 1000 DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
1da177e4
LT
1001 goto out;
1002 }
1003 oobofs += hweccbytes;
1004 }
1005
1006 /* check, if we must compare all data or if we just have to
1007 * compare the ecc bytes
1008 */
1009 if (oobmode) {
1010 if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
e0c7d767 1011 DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
1da177e4
LT
1012 goto out;
1013 }
1014 } else {
1015 /* Read always, else autoincrement fails */
1016 this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
1017
1018 if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
1019 int ecccnt = oobsel->eccbytes;
61b03bd7 1020
1da177e4
LT
1021 for (i = 0; i < ecccnt; i++) {
1022 int idx = oobsel->eccpos[i];
e0c7d767
DW
1023 if (oobdata[idx] != oob_buf[oobofs + idx]) {
1024 DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed ECC write verify, page 0x%08x, %6i bytes were succesful\n",
1025 __FUNCTION__, page, i);
1da177e4
LT
1026 goto out;
1027 }
1028 }
61b03bd7 1029 }
1da177e4
LT
1030 }
1031 oobofs += mtd->oobsize - hweccbytes * eccsteps;
1032 page++;
1033 numpages--;
1034
61b03bd7 1035 /* Apply delay or wait for ready/busy pin
1da177e4
LT
1036 * Do this before the AUTOINCR check, so no problems
1037 * arise if a chip which does auto increment
1038 * is marked as NOAUTOINCR by the board driver.
1039 * Do this also before returning, so the chip is
1040 * ready for the next command.
e0c7d767 1041 */
61b03bd7 1042 if (!this->dev_ready)
e0c7d767 1043 udelay(this->chip_delay);
1da177e4 1044 else
3b88775c 1045 nand_wait_ready(mtd);
1da177e4
LT
1046
1047 /* All done, return happy */
1048 if (!numpages)
1049 return 0;
61b03bd7 1050
61b03bd7 1051 /* Check, if the chip supports auto page increment */
1da177e4 1052 if (!NAND_CANAUTOINCR(this))
e0c7d767 1053 this->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1da177e4 1054 }
61b03bd7 1055 /*
1da177e4
LT
1056 * Terminate the read command. We come here in case of an error
1057 * So we must issue a reset command.
1058 */
e0c7d767
DW
1059 out:
1060 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
1061 return res;
1062}
1063#endif
1064
1065/**
068e3c0a 1066 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1da177e4
LT
1067 * @mtd: MTD device structure
1068 * @from: offset to read from
1069 * @len: number of bytes to read
1070 * @retlen: pointer to variable to store the number of read bytes
1071 * @buf: the databuffer to put data
1072 *
068e3c0a
DM
1073 * This function simply calls nand_do_read_ecc with oob buffer and oobsel = NULL
1074 * and flags = 0xff
1075 */
e0c7d767 1076static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1da177e4 1077{
e0c7d767 1078 return nand_do_read_ecc(mtd, from, len, retlen, buf, NULL, &mtd->oobinfo, 0xff);
22c60f5f 1079}
1da177e4 1080
1da177e4 1081/**
068e3c0a 1082 * nand_read_ecc - [MTD Interface] MTD compability function for nand_do_read_ecc
1da177e4
LT
1083 * @mtd: MTD device structure
1084 * @from: offset to read from
1085 * @len: number of bytes to read
1086 * @retlen: pointer to variable to store the number of read bytes
1087 * @buf: the databuffer to put data
1088 * @oob_buf: filesystem supplied oob data buffer
1089 * @oobsel: oob selection structure
1090 *
068e3c0a 1091 * This function simply calls nand_do_read_ecc with flags = 0xff
1da177e4 1092 */
e0c7d767
DW
1093static int nand_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
1094 size_t *retlen, u_char *buf, u_char *oob_buf, struct nand_oobinfo *oobsel)
068e3c0a 1095{
22c60f5f
TG
1096 /* use userspace supplied oobinfo, if zero */
1097 if (oobsel == NULL)
1098 oobsel = &mtd->oobinfo;
068e3c0a
DM
1099 return nand_do_read_ecc(mtd, from, len, retlen, buf, oob_buf, oobsel, 0xff);
1100}
1101
068e3c0a
DM
1102/**
1103 * nand_do_read_ecc - [MTD Interface] Read data with ECC
1104 * @mtd: MTD device structure
1105 * @from: offset to read from
1106 * @len: number of bytes to read
1107 * @retlen: pointer to variable to store the number of read bytes
1108 * @buf: the databuffer to put data
bb75ba4c 1109 * @oob_buf: filesystem supplied oob data buffer (can be NULL)
22c60f5f 1110 * @oobsel: oob selection structure
068e3c0a
DM
1111 * @flags: flag to indicate if nand_get_device/nand_release_device should be preformed
1112 * and how many corrected error bits are acceptable:
1113 * bits 0..7 - number of tolerable errors
1114 * bit 8 - 0 == do not get/release chip, 1 == get/release chip
1115 *
1116 * NAND read with ECC
1117 */
e0c7d767
DW
1118int nand_do_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
1119 size_t *retlen, u_char *buf, u_char *oob_buf, struct nand_oobinfo *oobsel, int flags)
1da177e4 1120{
22c60f5f 1121
1da177e4
LT
1122 int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
1123 int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
1124 struct nand_chip *this = mtd->priv;
1125 u_char *data_poi, *oob_data = oob_buf;
0a18cde6
JL
1126 u_char ecc_calc[32];
1127 u_char ecc_code[32];
e0c7d767
DW
1128 int eccmode, eccsteps;
1129 int *oob_config, datidx;
1130 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1131 int eccbytes;
1132 int compareecc = 1;
1133 int oobreadlen;
1da177e4 1134
e0c7d767 1135 DEBUG(MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int)from, (int)len);
1da177e4
LT
1136
1137 /* Do not allow reads past end of device */
1138 if ((from + len) > mtd->size) {
e0c7d767 1139 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
1da177e4
LT
1140 *retlen = 0;
1141 return -EINVAL;
1142 }
1143
1144 /* Grab the lock and see if the device is available */
068e3c0a 1145 if (flags & NAND_GET_DEVICE)
e0c7d767 1146 nand_get_device(this, mtd, FL_READING);
1da177e4 1147
1da177e4
LT
1148 /* Autoplace of oob data ? Use the default placement scheme */
1149 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
1150 oobsel = this->autooob;
61b03bd7 1151
1da177e4
LT
1152 eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
1153 oob_config = oobsel->eccpos;
1154
1155 /* Select the NAND device */
1156 chipnr = (int)(from >> this->chip_shift);
1157 this->select_chip(mtd, chipnr);
1158
1159 /* First we calculate the starting page */
e0c7d767 1160 realpage = (int)(from >> this->page_shift);
1da177e4
LT
1161 page = realpage & this->pagemask;
1162
1163 /* Get raw starting column */
1164 col = from & (mtd->oobblock - 1);
1165
1166 end = mtd->oobblock;
1167 ecc = this->eccsize;
1168 eccbytes = this->eccbytes;
61b03bd7 1169
1da177e4
LT
1170 if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
1171 compareecc = 0;
1172
1173 oobreadlen = mtd->oobsize;
61b03bd7 1174 if (this->options & NAND_HWECC_SYNDROME)
1da177e4
LT
1175 oobreadlen -= oobsel->eccbytes;
1176
1177 /* Loop until all data read */
1178 while (read < len) {
61b03bd7 1179
1da177e4 1180 int aligned = (!col && (len - read) >= end);
61b03bd7 1181 /*
1da177e4
LT
1182 * If the read is not page aligned, we have to read into data buffer
1183 * due to ecc, else we read into return buffer direct
1184 */
1185 if (aligned)
1186 data_poi = &buf[read];
61b03bd7 1187 else
1da177e4 1188 data_poi = this->data_buf;
61b03bd7
TG
1189
1190 /* Check, if we have this page in the buffer
1da177e4
LT
1191 *
1192 * FIXME: Make it work when we must provide oob data too,
1193 * check the usage of data_buf oob field
1194 */
1195 if (realpage == this->pagebuf && !oob_buf) {
1196 /* aligned read ? */
1197 if (aligned)
e0c7d767 1198 memcpy(data_poi, this->data_buf, end);
1da177e4
LT
1199 goto readdata;
1200 }
1201
1202 /* Check, if we must send the read command */
1203 if (sndcmd) {
e0c7d767 1204 this->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1da177e4 1205 sndcmd = 0;
61b03bd7 1206 }
1da177e4
LT
1207
1208 /* get oob area, if we have no oob buffer from fs-driver */
90e260c8
TG
1209 if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE ||
1210 oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1da177e4
LT
1211 oob_data = &this->data_buf[end];
1212
1213 eccsteps = this->eccsteps;
61b03bd7 1214
1da177e4 1215 switch (eccmode) {
e0c7d767
DW
1216 case NAND_ECC_NONE:{
1217 /* No ECC, Read in a page */
1218 static unsigned long lastwhinge = 0;
1219 if ((lastwhinge / HZ) != (jiffies / HZ)) {
1220 printk(KERN_WARNING
1221 "Reading data from NAND FLASH without ECC is not recommended\n");
1222 lastwhinge = jiffies;
1223 }
1224 this->read_buf(mtd, data_poi, end);
1225 break;
1da177e4 1226 }
61b03bd7 1227
1da177e4
LT
1228 case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
1229 this->read_buf(mtd, data_poi, end);
e0c7d767 1230 for (i = 0, datidx = 0; eccsteps; eccsteps--, i += 3, datidx += ecc)
1da177e4 1231 this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
61b03bd7 1232 break;
1da177e4
LT
1233
1234 default:
e0c7d767 1235 for (i = 0, datidx = 0; eccsteps; eccsteps--, i += eccbytes, datidx += ecc) {
1da177e4
LT
1236 this->enable_hwecc(mtd, NAND_ECC_READ);
1237 this->read_buf(mtd, &data_poi[datidx], ecc);
1238
1239 /* HW ecc with syndrome calculation must read the
1240 * syndrome from flash immidiately after the data */
1241 if (!compareecc) {
1242 /* Some hw ecc generators need to know when the
1243 * syndrome is read from flash */
1244 this->enable_hwecc(mtd, NAND_ECC_READSYN);
1245 this->read_buf(mtd, &oob_data[i], eccbytes);
1246 /* We calc error correction directly, it checks the hw
1247 * generator for an error, reads back the syndrome and
1248 * does the error correction on the fly */
068e3c0a
DM
1249 ecc_status = this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]);
1250 if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
e0c7d767
DW
1251 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_ecc: "
1252 "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
1da177e4
LT
1253 ecc_failed++;
1254 }
1255 } else {
1256 this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
61b03bd7 1257 }
1da177e4 1258 }
61b03bd7 1259 break;
1da177e4
LT
1260 }
1261
1262 /* read oobdata */
1263 this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
1264
1265 /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
1266 if (!compareecc)
61b03bd7
TG
1267 goto readoob;
1268
1da177e4
LT
1269 /* Pick the ECC bytes out of the oob data */
1270 for (j = 0; j < oobsel->eccbytes; j++)
1271 ecc_code[j] = oob_data[oob_config[j]];
1272
e0c7d767 1273 /* correct data, if necessary */
1da177e4
LT
1274 for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
1275 ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
61b03bd7 1276
1da177e4
LT
1277 /* Get next chunk of ecc bytes */
1278 j += eccbytes;
61b03bd7
TG
1279
1280 /* Check, if we have a fs supplied oob-buffer,
1da177e4
LT
1281 * This is the legacy mode. Used by YAFFS1
1282 * Should go away some day
1283 */
61b03bd7 1284 if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {
1da177e4
LT
1285 int *p = (int *)(&oob_data[mtd->oobsize]);
1286 p[i] = ecc_status;
1287 }
61b03bd7
TG
1288
1289 if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
e0c7d767 1290 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
1da177e4
LT
1291 ecc_failed++;
1292 }
61b03bd7 1293 }
1da177e4 1294
e0c7d767 1295 readoob:
1da177e4
LT
1296 /* check, if we have a fs supplied oob-buffer */
1297 if (oob_buf) {
1298 /* without autoplace. Legacy mode used by YAFFS1 */
e0c7d767 1299 switch (oobsel->useecc) {
1da177e4 1300 case MTD_NANDECC_AUTOPLACE:
90e260c8 1301 case MTD_NANDECC_AUTOPL_USR:
1da177e4 1302 /* Walk through the autoplace chunks */
82e1d19f 1303 for (i = 0; oobsel->oobfree[i][1]; i++) {
1da177e4
LT
1304 int from = oobsel->oobfree[i][0];
1305 int num = oobsel->oobfree[i][1];
1306 memcpy(&oob_buf[oob], &oob_data[from], num);
82e1d19f 1307 oob += num;
1da177e4 1308 }
1da177e4
LT
1309 break;
1310 case MTD_NANDECC_PLACE:
1311 /* YAFFS1 legacy mode */
e0c7d767 1312 oob_data += this->eccsteps * sizeof(int);
1da177e4
LT
1313 default:
1314 oob_data += mtd->oobsize;
1315 }
1316 }
1317 readdata:
1318 /* Partial page read, transfer data into fs buffer */
61b03bd7 1319 if (!aligned) {
1da177e4
LT
1320 for (j = col; j < end && read < len; j++)
1321 buf[read++] = data_poi[j];
61b03bd7
TG
1322 this->pagebuf = realpage;
1323 } else
1da177e4
LT
1324 read += mtd->oobblock;
1325
61b03bd7 1326 /* Apply delay or wait for ready/busy pin
1da177e4
LT
1327 * Do this before the AUTOINCR check, so no problems
1328 * arise if a chip which does auto increment
1329 * is marked as NOAUTOINCR by the board driver.
e0c7d767 1330 */
61b03bd7 1331 if (!this->dev_ready)
e0c7d767 1332 udelay(this->chip_delay);
1da177e4 1333 else
3b88775c 1334 nand_wait_ready(mtd);
61b03bd7 1335
1da177e4 1336 if (read == len)
61b03bd7 1337 break;
1da177e4
LT
1338
1339 /* For subsequent reads align to page boundary. */
1340 col = 0;
1341 /* Increment page address */
1342 realpage++;
1343
1344 page = realpage & this->pagemask;
1345 /* Check, if we cross a chip boundary */
1346 if (!page) {
1347 chipnr++;
1348 this->select_chip(mtd, -1);
1349 this->select_chip(mtd, chipnr);
1350 }
61b03bd7
TG
1351 /* Check, if the chip supports auto page increment
1352 * or if we have hit a block boundary.
e0c7d767 1353 */
1da177e4 1354 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
61b03bd7 1355 sndcmd = 1;
1da177e4
LT
1356 }
1357
1358 /* Deselect and wake up anyone waiting on the device */
068e3c0a
DM
1359 if (flags & NAND_GET_DEVICE)
1360 nand_release_device(mtd);
1da177e4
LT
1361
1362 /*
1363 * Return success, if no ECC failures, else -EBADMSG
1364 * fs driver will take care of that, because
1365 * retlen == desired len and result == -EBADMSG
1366 */
1367 *retlen = read;
1368 return ecc_failed ? -EBADMSG : 0;
1369}
1370
1371/**
1372 * nand_read_oob - [MTD Interface] NAND read out-of-band
1373 * @mtd: MTD device structure
1374 * @from: offset to read from
1375 * @len: number of bytes to read
1376 * @retlen: pointer to variable to store the number of read bytes
1377 * @buf: the databuffer to put data
1378 *
1379 * NAND read out-of-band data from the spare area
1380 */
e0c7d767 1381static int nand_read_oob(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1da177e4
LT
1382{
1383 int i, col, page, chipnr;
1384 struct nand_chip *this = mtd->priv;
e0c7d767 1385 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1da177e4 1386
e0c7d767 1387 DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int)from, (int)len);
1da177e4
LT
1388
1389 /* Shift to get page */
1390 page = (int)(from >> this->page_shift);
1391 chipnr = (int)(from >> this->chip_shift);
61b03bd7 1392
1da177e4
LT
1393 /* Mask to get column */
1394 col = from & (mtd->oobsize - 1);
1395
1396 /* Initialize return length value */
1397 *retlen = 0;
1398
1399 /* Do not allow reads past end of device */
1400 if ((from + len) > mtd->size) {
e0c7d767 1401 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
1da177e4
LT
1402 *retlen = 0;
1403 return -EINVAL;
1404 }
1405
1406 /* Grab the lock and see if the device is available */
e0c7d767 1407 nand_get_device(this, mtd, FL_READING);
1da177e4
LT
1408
1409 /* Select the NAND device */
1410 this->select_chip(mtd, chipnr);
1411
1412 /* Send the read command */
e0c7d767 1413 this->cmdfunc(mtd, NAND_CMD_READOOB, col, page & this->pagemask);
61b03bd7 1414 /*
1da177e4
LT
1415 * Read the data, if we read more than one page
1416 * oob data, let the device transfer the data !
1417 */
1418 i = 0;
1419 while (i < len) {
1420 int thislen = mtd->oobsize - col;
1421 thislen = min_t(int, thislen, len);
1422 this->read_buf(mtd, &buf[i], thislen);
1423 i += thislen;
1da177e4
LT
1424
1425 /* Read more ? */
1426 if (i < len) {
1427 page++;
1428 col = 0;
1429
1430 /* Check, if we cross a chip boundary */
1431 if (!(page & this->pagemask)) {
1432 chipnr++;
1433 this->select_chip(mtd, -1);
1434 this->select_chip(mtd, chipnr);
1435 }
61b03bd7
TG
1436
1437 /* Apply delay or wait for ready/busy pin
19870da7
TG
1438 * Do this before the AUTOINCR check, so no problems
1439 * arise if a chip which does auto increment
1440 * is marked as NOAUTOINCR by the board driver.
1441 */
61b03bd7 1442 if (!this->dev_ready)
e0c7d767 1443 udelay(this->chip_delay);
19870da7
TG
1444 else
1445 nand_wait_ready(mtd);
1446
61b03bd7
TG
1447 /* Check, if the chip supports auto page increment
1448 * or if we have hit a block boundary.
e0c7d767 1449 */
1da177e4
LT
1450 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
1451 /* For subsequent page reads set offset to 0 */
e0c7d767 1452 this->cmdfunc(mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
1da177e4
LT
1453 }
1454 }
1455 }
1456
1457 /* Deselect and wake up anyone waiting on the device */
1458 nand_release_device(mtd);
1459
1460 /* Return happy */
1461 *retlen = len;
1462 return 0;
1463}
1464
1465/**
1466 * nand_read_raw - [GENERIC] Read raw data including oob into buffer
1467 * @mtd: MTD device structure
1468 * @buf: temporary buffer
1469 * @from: offset to read from
1470 * @len: number of bytes to read
1471 * @ooblen: number of oob data bytes to read
1472 *
1473 * Read raw data including oob into buffer
1474 */
e0c7d767 1475int nand_read_raw(struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
1da177e4
LT
1476{
1477 struct nand_chip *this = mtd->priv;
e0c7d767
DW
1478 int page = (int)(from >> this->page_shift);
1479 int chip = (int)(from >> this->chip_shift);
1da177e4
LT
1480 int sndcmd = 1;
1481 int cnt = 0;
1482 int pagesize = mtd->oobblock + mtd->oobsize;
e0c7d767 1483 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1da177e4
LT
1484
1485 /* Do not allow reads past end of device */
1486 if ((from + len) > mtd->size) {
e0c7d767 1487 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
1da177e4
LT
1488 return -EINVAL;
1489 }
1490
1491 /* Grab the lock and see if the device is available */
e0c7d767 1492 nand_get_device(this, mtd, FL_READING);
1da177e4 1493
e0c7d767 1494 this->select_chip(mtd, chip);
61b03bd7 1495
1da177e4
LT
1496 /* Add requested oob length */
1497 len += ooblen;
61b03bd7 1498
1da177e4
LT
1499 while (len) {
1500 if (sndcmd)
e0c7d767 1501 this->cmdfunc(mtd, NAND_CMD_READ0, 0, page & this->pagemask);
61b03bd7 1502 sndcmd = 0;
1da177e4 1503
e0c7d767 1504 this->read_buf(mtd, &buf[cnt], pagesize);
1da177e4
LT
1505
1506 len -= pagesize;
1507 cnt += pagesize;
1508 page++;
61b03bd7
TG
1509
1510 if (!this->dev_ready)
e0c7d767 1511 udelay(this->chip_delay);
1da177e4 1512 else
3b88775c 1513 nand_wait_ready(mtd);
61b03bd7
TG
1514
1515 /* Check, if the chip supports auto page increment */
1da177e4
LT
1516 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
1517 sndcmd = 1;
1518 }
1519
1520 /* Deselect and wake up anyone waiting on the device */
1521 nand_release_device(mtd);
1522 return 0;
1523}
1524
61b03bd7
TG
1525/**
1526 * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
1da177e4
LT
1527 * @mtd: MTD device structure
1528 * @fsbuf: buffer given by fs driver
1529 * @oobsel: out of band selection structre
1530 * @autoplace: 1 = place given buffer into the oob bytes
1531 * @numpages: number of pages to prepare
1532 *
1533 * Return:
1534 * 1. Filesystem buffer available and autoplacement is off,
1535 * return filesystem buffer
1536 * 2. No filesystem buffer or autoplace is off, return internal
1537 * buffer
1538 * 3. Filesystem buffer is given and autoplace selected
1539 * put data from fs buffer into internal buffer and
1540 * retrun internal buffer
1541 *
1542 * Note: The internal buffer is filled with 0xff. This must
1543 * be done only once, when no autoplacement happens
1544 * Autoplacement sets the buffer dirty flag, which
1545 * forces the 0xff fill before using the buffer again.
1546 *
1547*/
e0c7d767
DW
1548static u_char *nand_prepare_oobbuf(struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
1549 int autoplace, int numpages)
1da177e4
LT
1550{
1551 struct nand_chip *this = mtd->priv;
1552 int i, len, ofs;
1553
1554 /* Zero copy fs supplied buffer */
61b03bd7 1555 if (fsbuf && !autoplace)
1da177e4
LT
1556 return fsbuf;
1557
1558 /* Check, if the buffer must be filled with ff again */
61b03bd7 1559 if (this->oobdirty) {
e0c7d767 1560 memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
1da177e4 1561 this->oobdirty = 0;
61b03bd7
TG
1562 }
1563
1da177e4
LT
1564 /* If we have no autoplacement or no fs buffer use the internal one */
1565 if (!autoplace || !fsbuf)
1566 return this->oob_buf;
61b03bd7 1567
1da177e4
LT
1568 /* Walk through the pages and place the data */
1569 this->oobdirty = 1;
1570 ofs = 0;
1571 while (numpages--) {
1572 for (i = 0, len = 0; len < mtd->oobavail; i++) {
1573 int to = ofs + oobsel->oobfree[i][0];
1574 int num = oobsel->oobfree[i][1];
e0c7d767 1575 memcpy(&this->oob_buf[to], fsbuf, num);
1da177e4
LT
1576 len += num;
1577 fsbuf += num;
1578 }
1579 ofs += mtd->oobavail;
1580 }
1581 return this->oob_buf;
1582}
1583
1584#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
1585
1586/**
1587 * nand_write - [MTD Interface] compability function for nand_write_ecc
1588 * @mtd: MTD device structure
1589 * @to: offset to write to
1590 * @len: number of bytes to write
1591 * @retlen: pointer to variable to store the number of written bytes
1592 * @buf: the data to write
1593 *
1594 * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
1595 *
1596*/
e0c7d767 1597static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
1da177e4 1598{
e0c7d767 1599 return (nand_write_ecc(mtd, to, len, retlen, buf, NULL, NULL));
1da177e4 1600}
61b03bd7 1601
1da177e4
LT
1602/**
1603 * nand_write_ecc - [MTD Interface] NAND write with ECC
1604 * @mtd: MTD device structure
1605 * @to: offset to write to
1606 * @len: number of bytes to write
1607 * @retlen: pointer to variable to store the number of written bytes
1608 * @buf: the data to write
1609 * @eccbuf: filesystem supplied oob data buffer
1610 * @oobsel: oob selection structure
1611 *
1612 * NAND write with ECC
1613 */
e0c7d767
DW
1614static int nand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
1615 size_t *retlen, const u_char *buf, u_char *eccbuf,
1616 struct nand_oobinfo *oobsel)
1da177e4
LT
1617{
1618 int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
1619 int autoplace = 0, numpages, totalpages;
1620 struct nand_chip *this = mtd->priv;
1621 u_char *oobbuf, *bufstart;
e0c7d767 1622 int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
1da177e4 1623
e0c7d767 1624 DEBUG(MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int)to, (int)len);
1da177e4
LT
1625
1626 /* Initialize retlen, in case of early exit */
1627 *retlen = 0;
1628
1629 /* Do not allow write past end of device */
1630 if ((to + len) > mtd->size) {
e0c7d767 1631 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
1da177e4
LT
1632 return -EINVAL;
1633 }
1634
61b03bd7 1635 /* reject writes, which are not page aligned */
e0c7d767
DW
1636 if (NOTALIGNED(to) || NOTALIGNED(len)) {
1637 printk(KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
1da177e4
LT
1638 return -EINVAL;
1639 }
1640
1641 /* Grab the lock and see if the device is available */
e0c7d767 1642 nand_get_device(this, mtd, FL_WRITING);
1da177e4
LT
1643
1644 /* Calculate chipnr */
1645 chipnr = (int)(to >> this->chip_shift);
1646 /* Select the NAND device */
1647 this->select_chip(mtd, chipnr);
1648
1649 /* Check, if it is write protected */
1650 if (nand_check_wp(mtd))
1651 goto out;
1652
1653 /* if oobsel is NULL, use chip defaults */
61b03bd7
TG
1654 if (oobsel == NULL)
1655 oobsel = &mtd->oobinfo;
1656
1da177e4
LT
1657 /* Autoplace of oob data ? Use the default placement scheme */
1658 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
1659 oobsel = this->autooob;
1660 autoplace = 1;
61b03bd7 1661 }
90e260c8
TG
1662 if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1663 autoplace = 1;
1da177e4
LT
1664
1665 /* Setup variables and oob buffer */
1666 totalpages = len >> this->page_shift;
e0c7d767 1667 page = (int)(to >> this->page_shift);
1da177e4 1668 /* Invalidate the page cache, if we write to the cached page */
61b03bd7 1669 if (page <= this->pagebuf && this->pagebuf < (page + totalpages))
1da177e4 1670 this->pagebuf = -1;
61b03bd7 1671
1da177e4
LT
1672 /* Set it relative to chip */
1673 page &= this->pagemask;
1674 startpage = page;
1675 /* Calc number of pages we can write in one go */
e0c7d767
DW
1676 numpages = min(ppblock - (startpage & (ppblock - 1)), totalpages);
1677 oobbuf = nand_prepare_oobbuf(mtd, eccbuf, oobsel, autoplace, numpages);
1678 bufstart = (u_char *) buf;
1da177e4
LT
1679
1680 /* Loop until all data is written */
1681 while (written < len) {
1682
e0c7d767 1683 this->data_poi = (u_char *) &buf[written];
1da177e4
LT
1684 /* Write one page. If this is the last page to write
1685 * or the last page in this block, then use the
1686 * real pageprogram command, else select cached programming
1687 * if supported by the chip.
1688 */
e0c7d767 1689 ret = nand_write_page(mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
1da177e4 1690 if (ret) {
e0c7d767 1691 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
1da177e4 1692 goto out;
61b03bd7 1693 }
1da177e4
LT
1694 /* Next oob page */
1695 oob += mtd->oobsize;
1696 /* Update written bytes count */
1697 written += mtd->oobblock;
61b03bd7 1698 if (written == len)
1da177e4 1699 goto cmp;
61b03bd7 1700
1da177e4
LT
1701 /* Increment page address */
1702 page++;
1703
1704 /* Have we hit a block boundary ? Then we have to verify and
1705 * if verify is ok, we have to setup the oob buffer for
1706 * the next pages.
e0c7d767
DW
1707 */
1708 if (!(page & (ppblock - 1))) {
1da177e4
LT
1709 int ofs;
1710 this->data_poi = bufstart;
e0c7d767
DW
1711 ret = nand_verify_pages(mtd, this, startpage, page - startpage,
1712 oobbuf, oobsel, chipnr, (eccbuf != NULL));
1da177e4 1713 if (ret) {
e0c7d767 1714 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
1da177e4 1715 goto out;
61b03bd7 1716 }
1da177e4
LT
1717 *retlen = written;
1718
1719 ofs = autoplace ? mtd->oobavail : mtd->oobsize;
1720 if (eccbuf)
1721 eccbuf += (page - startpage) * ofs;
1722 totalpages -= page - startpage;
e0c7d767 1723 numpages = min(totalpages, ppblock);
1da177e4
LT
1724 page &= this->pagemask;
1725 startpage = page;
e0c7d767 1726 oobbuf = nand_prepare_oobbuf(mtd, eccbuf, oobsel, autoplace, numpages);
868801e5 1727 oob = 0;
1da177e4
LT
1728 /* Check, if we cross a chip boundary */
1729 if (!page) {
1730 chipnr++;
1731 this->select_chip(mtd, -1);
1732 this->select_chip(mtd, chipnr);
1733 }
1734 }
1735 }
1736 /* Verify the remaining pages */
e0c7d767 1737 cmp:
1da177e4 1738 this->data_poi = bufstart;
e0c7d767 1739 ret = nand_verify_pages(mtd, this, startpage, totalpages, oobbuf, oobsel, chipnr, (eccbuf != NULL));
1da177e4
LT
1740 if (!ret)
1741 *retlen = written;
61b03bd7 1742 else
e0c7d767 1743 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
1da177e4 1744
e0c7d767 1745 out:
1da177e4
LT
1746 /* Deselect and wake up anyone waiting on the device */
1747 nand_release_device(mtd);
1748
1749 return ret;
1750}
1751
1da177e4
LT
1752/**
1753 * nand_write_oob - [MTD Interface] NAND write out-of-band
1754 * @mtd: MTD device structure
1755 * @to: offset to write to
1756 * @len: number of bytes to write
1757 * @retlen: pointer to variable to store the number of written bytes
1758 * @buf: the data to write
1759 *
1760 * NAND write out-of-band
1761 */
e0c7d767 1762static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
1da177e4
LT
1763{
1764 int column, page, status, ret = -EIO, chipnr;
1765 struct nand_chip *this = mtd->priv;
1766
e0c7d767 1767 DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int)to, (int)len);
1da177e4
LT
1768
1769 /* Shift to get page */
e0c7d767
DW
1770 page = (int)(to >> this->page_shift);
1771 chipnr = (int)(to >> this->chip_shift);
1da177e4
LT
1772
1773 /* Mask to get column */
1774 column = to & (mtd->oobsize - 1);
1775
1776 /* Initialize return length value */
1777 *retlen = 0;
1778
1779 /* Do not allow write past end of page */
1780 if ((column + len) > mtd->oobsize) {
e0c7d767 1781 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
1da177e4
LT
1782 return -EINVAL;
1783 }
1784
1785 /* Grab the lock and see if the device is available */
e0c7d767 1786 nand_get_device(this, mtd, FL_WRITING);
1da177e4
LT
1787
1788 /* Select the NAND device */
1789 this->select_chip(mtd, chipnr);
1790
1791 /* Reset the chip. Some chips (like the Toshiba TC5832DC found
1792 in one of my DiskOnChip 2000 test units) will clear the whole
1793 data page too if we don't do this. I have no clue why, but
1794 I seem to have 'fixed' it in the doc2000 driver in
1795 August 1999. dwmw2. */
1796 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1797
1798 /* Check, if it is write protected */
1799 if (nand_check_wp(mtd))
1800 goto out;
61b03bd7 1801
1da177e4
LT
1802 /* Invalidate the page cache, if we write to the cached page */
1803 if (page == this->pagebuf)
1804 this->pagebuf = -1;
1805
1806 if (NAND_MUST_PAD(this)) {
1807 /* Write out desired data */
e0c7d767 1808 this->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
1da177e4
LT
1809 /* prepad 0xff for partial programming */
1810 this->write_buf(mtd, ffchars, column);
1811 /* write data */
1812 this->write_buf(mtd, buf, len);
1813 /* postpad 0xff for partial programming */
e0c7d767 1814 this->write_buf(mtd, ffchars, mtd->oobsize - (len + column));
1da177e4
LT
1815 } else {
1816 /* Write out desired data */
e0c7d767 1817 this->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
1da177e4
LT
1818 /* write data */
1819 this->write_buf(mtd, buf, len);
1820 }
1821 /* Send command to program the OOB data */
e0c7d767 1822 this->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1da177e4 1823
e0c7d767 1824 status = this->waitfunc(mtd, this, FL_WRITING);
1da177e4
LT
1825
1826 /* See if device thinks it succeeded */
a4ab4c5d 1827 if (status & NAND_STATUS_FAIL) {
e0c7d767 1828 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
1da177e4
LT
1829 ret = -EIO;
1830 goto out;
1831 }
1832 /* Return happy */
1833 *retlen = len;
1834
1835#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1836 /* Send command to read back the data */
e0c7d767 1837 this->cmdfunc(mtd, NAND_CMD_READOOB, column, page & this->pagemask);
1da177e4
LT
1838
1839 if (this->verify_buf(mtd, buf, len)) {
e0c7d767 1840 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
1da177e4
LT
1841 ret = -EIO;
1842 goto out;
1843 }
1844#endif
1845 ret = 0;
e0c7d767 1846 out:
1da177e4
LT
1847 /* Deselect and wake up anyone waiting on the device */
1848 nand_release_device(mtd);
1849
1850 return ret;
1851}
1852
1da177e4
LT
1853/**
1854 * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
1855 * @mtd: MTD device structure
1856 * @vecs: the iovectors to write
1857 * @count: number of vectors
1858 * @to: offset to write to
1859 * @retlen: pointer to variable to store the number of written bytes
1860 *
1861 * NAND write with kvec. This just calls the ecc function
1862 */
e0c7d767
DW
1863static int nand_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
1864 loff_t to, size_t *retlen)
1da177e4 1865{
e0c7d767 1866 return (nand_writev_ecc(mtd, vecs, count, to, retlen, NULL, NULL));
1da177e4
LT
1867}
1868
1869/**
1870 * nand_writev_ecc - [MTD Interface] write with iovec with ecc
1871 * @mtd: MTD device structure
1872 * @vecs: the iovectors to write
1873 * @count: number of vectors
1874 * @to: offset to write to
1875 * @retlen: pointer to variable to store the number of written bytes
1876 * @eccbuf: filesystem supplied oob data buffer
1877 * @oobsel: oob selection structure
1878 *
1879 * NAND write with iovec with ecc
1880 */
e0c7d767
DW
1881static int nand_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
1882 loff_t to, size_t *retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
1da177e4
LT
1883{
1884 int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
1885 int oob, numpages, autoplace = 0, startpage;
1886 struct nand_chip *this = mtd->priv;
e0c7d767 1887 int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
1da177e4
LT
1888 u_char *oobbuf, *bufstart;
1889
1890 /* Preset written len for early exit */
1891 *retlen = 0;
1892
1893 /* Calculate total length of data */
1894 total_len = 0;
1895 for (i = 0; i < count; i++)
e0c7d767 1896 total_len += (int)vecs[i].iov_len;
1da177e4 1897
e0c7d767 1898 DEBUG(MTD_DEBUG_LEVEL3, "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int)to, (unsigned int)total_len, count);
1da177e4
LT
1899
1900 /* Do not allow write past end of page */
1901 if ((to + total_len) > mtd->size) {
e0c7d767 1902 DEBUG(MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
1da177e4
LT
1903 return -EINVAL;
1904 }
1905
61b03bd7 1906 /* reject writes, which are not page aligned */
e0c7d767
DW
1907 if (NOTALIGNED(to) || NOTALIGNED(total_len)) {
1908 printk(KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
1da177e4
LT
1909 return -EINVAL;
1910 }
1911
1912 /* Grab the lock and see if the device is available */
e0c7d767 1913 nand_get_device(this, mtd, FL_WRITING);
1da177e4
LT
1914
1915 /* Get the current chip-nr */
e0c7d767 1916 chipnr = (int)(to >> this->chip_shift);
1da177e4
LT
1917 /* Select the NAND device */
1918 this->select_chip(mtd, chipnr);
1919
1920 /* Check, if it is write protected */
1921 if (nand_check_wp(mtd))
1922 goto out;
1923
1924 /* if oobsel is NULL, use chip defaults */
61b03bd7
TG
1925 if (oobsel == NULL)
1926 oobsel = &mtd->oobinfo;
1da177e4
LT
1927
1928 /* Autoplace of oob data ? Use the default placement scheme */
1929 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
1930 oobsel = this->autooob;
1931 autoplace = 1;
61b03bd7 1932 }
90e260c8
TG
1933 if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1934 autoplace = 1;
1da177e4
LT
1935
1936 /* Setup start page */
e0c7d767 1937 page = (int)(to >> this->page_shift);
1da177e4 1938 /* Invalidate the page cache, if we write to the cached page */
61b03bd7 1939 if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))
1da177e4
LT
1940 this->pagebuf = -1;
1941
1942 startpage = page & this->pagemask;
1943
1944 /* Loop until all kvec' data has been written */
1945 len = 0;
1946 while (count) {
1947 /* If the given tuple is >= pagesize then
1948 * write it out from the iov
1949 */
1950 if ((vecs->iov_len - len) >= mtd->oobblock) {
1951 /* Calc number of pages we can write
1952 * out of this iov in one go */
1953 numpages = (vecs->iov_len - len) >> this->page_shift;
1954 /* Do not cross block boundaries */
e0c7d767
DW
1955 numpages = min(ppblock - (startpage & (ppblock - 1)), numpages);
1956 oobbuf = nand_prepare_oobbuf(mtd, NULL, oobsel, autoplace, numpages);
1957 bufstart = (u_char *) vecs->iov_base;
1da177e4
LT
1958 bufstart += len;
1959 this->data_poi = bufstart;
1960 oob = 0;
1961 for (i = 1; i <= numpages; i++) {
1962 /* Write one page. If this is the last page to write
61b03bd7 1963 * then use the real pageprogram command, else select
1da177e4
LT
1964 * cached programming if supported by the chip.
1965 */
e0c7d767
DW
1966 ret = nand_write_page(mtd, this, page & this->pagemask,
1967 &oobbuf[oob], oobsel, i != numpages);
1da177e4
LT
1968 if (ret)
1969 goto out;
1970 this->data_poi += mtd->oobblock;
1971 len += mtd->oobblock;
1972 oob += mtd->oobsize;
1973 page++;
1974 }
1975 /* Check, if we have to switch to the next tuple */
e0c7d767 1976 if (len >= (int)vecs->iov_len) {
1da177e4
LT
1977 vecs++;
1978 len = 0;
1979 count--;
1980 }
1981 } else {
61b03bd7 1982 /* We must use the internal buffer, read data out of each
1da177e4
LT
1983 * tuple until we have a full page to write
1984 */
1985 int cnt = 0;
1986 while (cnt < mtd->oobblock) {
61b03bd7 1987 if (vecs->iov_base != NULL && vecs->iov_len)
1da177e4
LT
1988 this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
1989 /* Check, if we have to switch to the next tuple */
e0c7d767 1990 if (len >= (int)vecs->iov_len) {
1da177e4
LT
1991 vecs++;
1992 len = 0;
1993 count--;
1994 }
1995 }
61b03bd7
TG
1996 this->pagebuf = page;
1997 this->data_poi = this->data_buf;
1da177e4 1998 bufstart = this->data_poi;
61b03bd7 1999 numpages = 1;
e0c7d767
DW
2000 oobbuf = nand_prepare_oobbuf(mtd, NULL, oobsel, autoplace, numpages);
2001 ret = nand_write_page(mtd, this, page & this->pagemask, oobbuf, oobsel, 0);
1da177e4
LT
2002 if (ret)
2003 goto out;
2004 page++;
2005 }
2006
2007 this->data_poi = bufstart;
e0c7d767 2008 ret = nand_verify_pages(mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
1da177e4
LT
2009 if (ret)
2010 goto out;
61b03bd7 2011
1da177e4
LT
2012 written += mtd->oobblock * numpages;
2013 /* All done ? */
2014 if (!count)
2015 break;
2016
2017 startpage = page & this->pagemask;
2018 /* Check, if we cross a chip boundary */
2019 if (!startpage) {
2020 chipnr++;
2021 this->select_chip(mtd, -1);
2022 this->select_chip(mtd, chipnr);
2023 }
2024 }
2025 ret = 0;
e0c7d767 2026 out:
1da177e4
LT
2027 /* Deselect and wake up anyone waiting on the device */
2028 nand_release_device(mtd);
2029
2030 *retlen = written;
2031 return ret;
2032}
2033
2034/**
2035 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2036 * @mtd: MTD device structure
2037 * @page: the page address of the block which will be erased
2038 *
2039 * Standard erase command for NAND chips
2040 */
e0c7d767 2041static void single_erase_cmd(struct mtd_info *mtd, int page)
1da177e4
LT
2042{
2043 struct nand_chip *this = mtd->priv;
2044 /* Send commands to erase a block */
e0c7d767
DW
2045 this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2046 this->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2047}
2048
2049/**
2050 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2051 * @mtd: MTD device structure
2052 * @page: the page address of the block which will be erased
2053 *
2054 * AND multi block erase command function
2055 * Erase 4 consecutive blocks
2056 */
e0c7d767 2057static void multi_erase_cmd(struct mtd_info *mtd, int page)
1da177e4
LT
2058{
2059 struct nand_chip *this = mtd->priv;
2060 /* Send commands to erase a block */
e0c7d767
DW
2061 this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2062 this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2063 this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2064 this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2065 this->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2066}
2067
2068/**
2069 * nand_erase - [MTD Interface] erase block(s)
2070 * @mtd: MTD device structure
2071 * @instr: erase instruction
2072 *
2073 * Erase one ore more blocks
2074 */
e0c7d767 2075static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2076{
e0c7d767 2077 return nand_erase_nand(mtd, instr, 0);
1da177e4 2078}
61b03bd7 2079
30f464b7 2080#define BBT_PAGE_MASK 0xffffff3f
1da177e4
LT
2081/**
2082 * nand_erase_intern - [NAND Interface] erase block(s)
2083 * @mtd: MTD device structure
2084 * @instr: erase instruction
2085 * @allowbbt: allow erasing the bbt area
2086 *
2087 * Erase one ore more blocks
2088 */
e0c7d767 2089int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
1da177e4
LT
2090{
2091 int page, len, status, pages_per_block, ret, chipnr;
2092 struct nand_chip *this = mtd->priv;
30f464b7
DM
2093 int rewrite_bbt[NAND_MAX_CHIPS]={0}; /* flags to indicate the page, if bbt needs to be rewritten. */
2094 unsigned int bbt_masked_page; /* bbt mask to compare to page being erased. */
2095 /* It is used to see if the current page is in the same */
2096 /* 256 block group and the same bank as the bbt. */
1da177e4 2097
e0c7d767 2098 DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n", (unsigned int)instr->addr, (unsigned int)instr->len);
1da177e4
LT
2099
2100 /* Start address must align on block boundary */
2101 if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
e0c7d767 2102 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
1da177e4
LT
2103 return -EINVAL;
2104 }
2105
2106 /* Length must align on block boundary */
2107 if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
e0c7d767 2108 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
1da177e4
LT
2109 return -EINVAL;
2110 }
2111
2112 /* Do not allow erase past end of device */
2113 if ((instr->len + instr->addr) > mtd->size) {
e0c7d767 2114 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
1da177e4
LT
2115 return -EINVAL;
2116 }
2117
2118 instr->fail_addr = 0xffffffff;
2119
2120 /* Grab the lock and see if the device is available */
e0c7d767 2121 nand_get_device(this, mtd, FL_ERASING);
1da177e4
LT
2122
2123 /* Shift to get first page */
e0c7d767
DW
2124 page = (int)(instr->addr >> this->page_shift);
2125 chipnr = (int)(instr->addr >> this->chip_shift);
1da177e4
LT
2126
2127 /* Calculate pages in each block */
2128 pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
2129
2130 /* Select the NAND device */
2131 this->select_chip(mtd, chipnr);
2132
2133 /* Check the WP bit */
2134 /* Check, if it is write protected */
2135 if (nand_check_wp(mtd)) {
e0c7d767 2136 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
1da177e4
LT
2137 instr->state = MTD_ERASE_FAILED;
2138 goto erase_exit;
2139 }
2140
30f464b7
DM
2141 /* if BBT requires refresh, set the BBT page mask to see if the BBT should be rewritten */
2142 if (this->options & BBT_AUTO_REFRESH) {
2143 bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2144 } else {
2145 bbt_masked_page = 0xffffffff; /* should not match anything */
2146 }
2147
1da177e4
LT
2148 /* Loop through the pages */
2149 len = instr->len;
2150
2151 instr->state = MTD_ERASING;
2152
2153 while (len) {
2154 /* Check if we have a bad block, we do not erase bad blocks ! */
2155 if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
e0c7d767 2156 printk(KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
1da177e4
LT
2157 instr->state = MTD_ERASE_FAILED;
2158 goto erase_exit;
2159 }
61b03bd7
TG
2160
2161 /* Invalidate the page cache, if we erase the block which contains
1da177e4
LT
2162 the current cached page */
2163 if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
2164 this->pagebuf = -1;
2165
e0c7d767 2166 this->erase_cmd(mtd, page & this->pagemask);
61b03bd7 2167
e0c7d767 2168 status = this->waitfunc(mtd, this, FL_ERASING);
1da177e4 2169
068e3c0a
DM
2170 /* See if operation failed and additional status checks are available */
2171 if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
2172 status = this->errstat(mtd, this, FL_ERASING, status, page);
2173 }
2174
1da177e4 2175 /* See if block erase succeeded */
a4ab4c5d 2176 if (status & NAND_STATUS_FAIL) {
e0c7d767 2177 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
1da177e4
LT
2178 instr->state = MTD_ERASE_FAILED;
2179 instr->fail_addr = (page << this->page_shift);
2180 goto erase_exit;
2181 }
30f464b7
DM
2182
2183 /* if BBT requires refresh, set the BBT rewrite flag to the page being erased */
2184 if (this->options & BBT_AUTO_REFRESH) {
61b03bd7 2185 if (((page & BBT_PAGE_MASK) == bbt_masked_page) &&
30f464b7
DM
2186 (page != this->bbt_td->pages[chipnr])) {
2187 rewrite_bbt[chipnr] = (page << this->page_shift);
2188 }
2189 }
61b03bd7 2190
1da177e4
LT
2191 /* Increment page address and decrement length */
2192 len -= (1 << this->phys_erase_shift);
2193 page += pages_per_block;
2194
2195 /* Check, if we cross a chip boundary */
2196 if (len && !(page & this->pagemask)) {
2197 chipnr++;
2198 this->select_chip(mtd, -1);
2199 this->select_chip(mtd, chipnr);
30f464b7 2200
61b03bd7 2201 /* if BBT requires refresh and BBT-PERCHIP,
30f464b7
DM
2202 * set the BBT page mask to see if this BBT should be rewritten */
2203 if ((this->options & BBT_AUTO_REFRESH) && (this->bbt_td->options & NAND_BBT_PERCHIP)) {
2204 bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2205 }
2206
1da177e4
LT
2207 }
2208 }
2209 instr->state = MTD_ERASE_DONE;
2210
e0c7d767 2211 erase_exit:
1da177e4
LT
2212
2213 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2214 /* Do call back function */
2215 if (!ret)
2216 mtd_erase_callback(instr);
2217
2218 /* Deselect and wake up anyone waiting on the device */
2219 nand_release_device(mtd);
2220
30f464b7
DM
2221 /* if BBT requires refresh and erase was successful, rewrite any selected bad block tables */
2222 if ((this->options & BBT_AUTO_REFRESH) && (!ret)) {
2223 for (chipnr = 0; chipnr < this->numchips; chipnr++) {
2224 if (rewrite_bbt[chipnr]) {
2225 /* update the BBT for chip */
e0c7d767
DW
2226 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt (%d:0x%0x 0x%0x)\n",
2227 chipnr, rewrite_bbt[chipnr], this->bbt_td->pages[chipnr]);
2228 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
30f464b7
DM
2229 }
2230 }
2231 }
2232
1da177e4
LT
2233 /* Return more or less happy */
2234 return ret;
2235}
2236
2237/**
2238 * nand_sync - [MTD Interface] sync
2239 * @mtd: MTD device structure
2240 *
2241 * Sync is actually a wait for chip ready function
2242 */
e0c7d767 2243static void nand_sync(struct mtd_info *mtd)
1da177e4
LT
2244{
2245 struct nand_chip *this = mtd->priv;
2246
e0c7d767 2247 DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
1da177e4
LT
2248
2249 /* Grab the lock and see if the device is available */
e0c7d767 2250 nand_get_device(this, mtd, FL_SYNCING);
1da177e4 2251 /* Release it and go back */
e0c7d767 2252 nand_release_device(mtd);
1da177e4
LT
2253}
2254
1da177e4
LT
2255/**
2256 * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2257 * @mtd: MTD device structure
2258 * @ofs: offset relative to mtd start
2259 */
e0c7d767 2260static int nand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1da177e4
LT
2261{
2262 /* Check for invalid offset */
61b03bd7 2263 if (ofs > mtd->size)
1da177e4 2264 return -EINVAL;
61b03bd7 2265
e0c7d767 2266 return nand_block_checkbad(mtd, ofs, 1, 0);
1da177e4
LT
2267}
2268
2269/**
2270 * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2271 * @mtd: MTD device structure
2272 * @ofs: offset relative to mtd start
2273 */
e0c7d767 2274static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4
LT
2275{
2276 struct nand_chip *this = mtd->priv;
2277 int ret;
2278
e0c7d767
DW
2279 if ((ret = nand_block_isbad(mtd, ofs))) {
2280 /* If it was bad already, return success and do nothing. */
1da177e4
LT
2281 if (ret > 0)
2282 return 0;
e0c7d767
DW
2283 return ret;
2284 }
1da177e4
LT
2285
2286 return this->block_markbad(mtd, ofs);
2287}
2288
962034f4
VW
2289/**
2290 * nand_suspend - [MTD Interface] Suspend the NAND flash
2291 * @mtd: MTD device structure
2292 */
2293static int nand_suspend(struct mtd_info *mtd)
2294{
2295 struct nand_chip *this = mtd->priv;
2296
e0c7d767 2297 return nand_get_device(this, mtd, FL_PM_SUSPENDED);
962034f4
VW
2298}
2299
2300/**
2301 * nand_resume - [MTD Interface] Resume the NAND flash
2302 * @mtd: MTD device structure
2303 */
2304static void nand_resume(struct mtd_info *mtd)
2305{
2306 struct nand_chip *this = mtd->priv;
2307
2308 if (this->state == FL_PM_SUSPENDED)
2309 nand_release_device(mtd);
2310 else
e0c7d767 2311 printk(KERN_ERR "resume() called for the chip which is not in suspended state\n");
962034f4
VW
2312
2313}
2314
52239da1
DW
2315/* module_text_address() isn't exported, and it's mostly a pointless
2316 test if this is a module _anyway_ -- they'd have to try _really_ hard
2317 to call us from in-kernel code if the core NAND support is modular. */
2318#ifdef MODULE
2319#define caller_is_module() (1)
2320#else
2321#define caller_is_module() module_text_address((unsigned long)__builtin_return_address(0))
2322#endif
2323
1da177e4
LT
2324/**
2325 * nand_scan - [NAND Interface] Scan for the NAND device
2326 * @mtd: MTD device structure
2327 * @maxchips: Number of chips to scan for
2328 *
552d9205 2329 * This fills out all the uninitialized function pointers
1da177e4
LT
2330 * with the defaults.
2331 * The flash ID is read and the mtd/chip structures are
2332 * filled with the appropriate values. Buffers are allocated if
2333 * they are not provided by the board driver
552d9205 2334 * The mtd->owner field must be set to the module of the caller
1da177e4
LT
2335 *
2336 */
e0c7d767 2337int nand_scan(struct mtd_info *mtd, int maxchips)
1da177e4 2338{
3b946e3f 2339 int i, nand_maf_id, nand_dev_id, busw, maf_id;
1da177e4
LT
2340 struct nand_chip *this = mtd->priv;
2341
52239da1
DW
2342 /* Many callers got this wrong, so check for it for a while... */
2343 if (!mtd->owner && caller_is_module()) {
552d9205
DW
2344 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2345 BUG();
2346 }
2347
e0c7d767 2348 /* Get buswidth to select the correct functions */
1da177e4
LT
2349 busw = this->options & NAND_BUSWIDTH_16;
2350
2351 /* check for proper chip_delay setup, set 20us if not */
2352 if (!this->chip_delay)
2353 this->chip_delay = 20;
2354
2355 /* check, if a user supplied command function given */
2356 if (this->cmdfunc == NULL)
2357 this->cmdfunc = nand_command;
2358
2359 /* check, if a user supplied wait function given */
2360 if (this->waitfunc == NULL)
2361 this->waitfunc = nand_wait;
2362
2363 if (!this->select_chip)
2364 this->select_chip = nand_select_chip;
2365 if (!this->write_byte)
2366 this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2367 if (!this->read_byte)
2368 this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2369 if (!this->write_word)
2370 this->write_word = nand_write_word;
2371 if (!this->read_word)
2372 this->read_word = nand_read_word;
2373 if (!this->block_bad)
2374 this->block_bad = nand_block_bad;
2375 if (!this->block_markbad)
2376 this->block_markbad = nand_default_block_markbad;
2377 if (!this->write_buf)
2378 this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2379 if (!this->read_buf)
2380 this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2381 if (!this->verify_buf)
2382 this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2383 if (!this->scan_bbt)
2384 this->scan_bbt = nand_default_bbt;
2385
2386 /* Select the device */
2387 this->select_chip(mtd, 0);
2388
2389 /* Send the command for reading device ID */
e0c7d767 2390 this->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
2391
2392 /* Read manufacturer and device IDs */
2393 nand_maf_id = this->read_byte(mtd);
2394 nand_dev_id = this->read_byte(mtd);
2395
2396 /* Print and store flash device information */
2397 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
61b03bd7
TG
2398
2399 if (nand_dev_id != nand_flash_ids[i].id)
1da177e4
LT
2400 continue;
2401
e0c7d767
DW
2402 if (!mtd->name)
2403 mtd->name = nand_flash_ids[i].name;
1da177e4 2404 this->chipsize = nand_flash_ids[i].chipsize << 20;
61b03bd7 2405
1da177e4
LT
2406 /* New devices have all the information in additional id bytes */
2407 if (!nand_flash_ids[i].pagesize) {
2408 int extid;
2409 /* The 3rd id byte contains non relevant data ATM */
2410 extid = this->read_byte(mtd);
2411 /* The 4th id byte is the important one */
2412 extid = this->read_byte(mtd);
2413 /* Calc pagesize */
2414 mtd->oobblock = 1024 << (extid & 0x3);
2415 extid >>= 2;
2416 /* Calc oobsize */
d4094661 2417 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->oobblock >> 9);
1da177e4
LT
2418 extid >>= 2;
2419 /* Calc blocksize. Blocksize is multiples of 64KiB */
e0c7d767 2420 mtd->erasesize = (64 * 1024) << (extid & 0x03);
1da177e4
LT
2421 extid >>= 2;
2422 /* Get buswidth information */
2423 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
61b03bd7 2424
1da177e4
LT
2425 } else {
2426 /* Old devices have this data hardcoded in the
2427 * device id table */
2428 mtd->erasesize = nand_flash_ids[i].erasesize;
2429 mtd->oobblock = nand_flash_ids[i].pagesize;
2430 mtd->oobsize = mtd->oobblock / 32;
2431 busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
2432 }
2433
0ea4a755
KP
2434 /* Try to identify manufacturer */
2435 for (maf_id = 0; nand_manuf_ids[maf_id].id != 0x0; maf_id++) {
2436 if (nand_manuf_ids[maf_id].id == nand_maf_id)
2437 break;
2438 }
2439
1da177e4
LT
2440 /* Check, if buswidth is correct. Hardware drivers should set
2441 * this correct ! */
2442 if (busw != (this->options & NAND_BUSWIDTH_16)) {
e0c7d767
DW
2443 printk(KERN_INFO "NAND device: Manufacturer ID:"
2444 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
2445 nand_manuf_ids[maf_id].name, mtd->name);
2446 printk(KERN_WARNING
2447 "NAND bus width %d instead %d bit\n",
2448 (this->options & NAND_BUSWIDTH_16) ? 16 : 8, busw ? 16 : 8);
1da177e4 2449 this->select_chip(mtd, -1);
61b03bd7 2450 return 1;
1da177e4 2451 }
61b03bd7
TG
2452
2453 /* Calculate the address shift from the page size */
1da177e4
LT
2454 this->page_shift = ffs(mtd->oobblock) - 1;
2455 this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
2456 this->chip_shift = ffs(this->chipsize) - 1;
2457
2458 /* Set the bad block position */
e0c7d767 2459 this->badblockpos = mtd->oobblock > 512 ? NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
1da177e4
LT
2460
2461 /* Get chip options, preserve non chip based options */
2462 this->options &= ~NAND_CHIPOPTIONS_MSK;
2463 this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
e0c7d767 2464 /* Set this as a default. Board drivers can override it, if necessary */
1da177e4
LT
2465 this->options |= NAND_NO_AUTOINCR;
2466 /* Check if this is a not a samsung device. Do not clear the options
2467 * for chips which are not having an extended id.
61b03bd7 2468 */
1da177e4
LT
2469 if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
2470 this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
61b03bd7 2471
1da177e4
LT
2472 /* Check for AND chips with 4 page planes */
2473 if (this->options & NAND_4PAGE_ARRAY)
2474 this->erase_cmd = multi_erase_cmd;
2475 else
2476 this->erase_cmd = single_erase_cmd;
2477
2478 /* Do not replace user supplied command function ! */
2479 if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
2480 this->cmdfunc = nand_command_lp;
61b03bd7 2481
e0c7d767
DW
2482 printk(KERN_INFO "NAND device: Manufacturer ID:"
2483 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
2484 nand_manuf_ids[maf_id].name, nand_flash_ids[i].name);
1da177e4
LT
2485 break;
2486 }
2487
2488 if (!nand_flash_ids[i].name) {
e0c7d767 2489 printk(KERN_WARNING "No NAND device found!!!\n");
1da177e4
LT
2490 this->select_chip(mtd, -1);
2491 return 1;
2492 }
2493
e0c7d767 2494 for (i = 1; i < maxchips; i++) {
1da177e4
LT
2495 this->select_chip(mtd, i);
2496
2497 /* Send the command for reading device ID */
e0c7d767 2498 this->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
2499
2500 /* Read manufacturer and device IDs */
2501 if (nand_maf_id != this->read_byte(mtd) ||
2502 nand_dev_id != this->read_byte(mtd))
2503 break;
2504 }
2505 if (i > 1)
2506 printk(KERN_INFO "%d NAND chips detected\n", i);
61b03bd7 2507
e0c7d767 2508 /* Allocate buffers, if necessary */
1da177e4
LT
2509 if (!this->oob_buf) {
2510 size_t len;
2511 len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
e0c7d767 2512 this->oob_buf = kmalloc(len, GFP_KERNEL);
1da177e4 2513 if (!this->oob_buf) {
e0c7d767 2514 printk(KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
1da177e4
LT
2515 return -ENOMEM;
2516 }
2517 this->options |= NAND_OOBBUF_ALLOC;
2518 }
61b03bd7 2519
1da177e4
LT
2520 if (!this->data_buf) {
2521 size_t len;
2522 len = mtd->oobblock + mtd->oobsize;
e0c7d767 2523 this->data_buf = kmalloc(len, GFP_KERNEL);
1da177e4
LT
2524 if (!this->data_buf) {
2525 if (this->options & NAND_OOBBUF_ALLOC)
e0c7d767
DW
2526 kfree(this->oob_buf);
2527 printk(KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
1da177e4
LT
2528 return -ENOMEM;
2529 }
2530 this->options |= NAND_DATABUF_ALLOC;
2531 }
2532
2533 /* Store the number of chips and calc total size for mtd */
2534 this->numchips = i;
2535 mtd->size = i * this->chipsize;
2536 /* Convert chipsize to number of pages per chip -1. */
2537 this->pagemask = (this->chipsize >> this->page_shift) - 1;
2538 /* Preset the internal oob buffer */
2539 memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
2540
2541 /* If no default placement scheme is given, select an
2542 * appropriate one */
2543 if (!this->autooob) {
2544 /* Select the appropriate default oob placement scheme for
2545 * placement agnostic filesystems */
61b03bd7 2546 switch (mtd->oobsize) {
1da177e4
LT
2547 case 8:
2548 this->autooob = &nand_oob_8;
2549 break;
2550 case 16:
2551 this->autooob = &nand_oob_16;
2552 break;
2553 case 64:
2554 this->autooob = &nand_oob_64;
2555 break;
2556 default:
e0c7d767 2557 printk(KERN_WARNING "No oob scheme defined for oobsize %d\n", mtd->oobsize);
1da177e4
LT
2558 BUG();
2559 }
2560 }
61b03bd7 2561
1da177e4
LT
2562 /* The number of bytes available for the filesystem to place fs dependend
2563 * oob data */
998cf640
TG
2564 mtd->oobavail = 0;
2565 for (i = 0; this->autooob->oobfree[i][1]; i++)
2566 mtd->oobavail += this->autooob->oobfree[i][1];
1da177e4 2567
61b03bd7 2568 /*
1da177e4
LT
2569 * check ECC mode, default to software
2570 * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
61b03bd7 2571 * fallback to software ECC
e0c7d767 2572 */
61b03bd7 2573 this->eccsize = 256; /* set default eccsize */
1da177e4
LT
2574 this->eccbytes = 3;
2575
2576 switch (this->eccmode) {
2577 case NAND_ECC_HW12_2048:
2578 if (mtd->oobblock < 2048) {
2579 printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
2580 mtd->oobblock);
2581 this->eccmode = NAND_ECC_SOFT;
2582 this->calculate_ecc = nand_calculate_ecc;
2583 this->correct_data = nand_correct_data;
2584 } else
2585 this->eccsize = 2048;
2586 break;
2587
61b03bd7
TG
2588 case NAND_ECC_HW3_512:
2589 case NAND_ECC_HW6_512:
2590 case NAND_ECC_HW8_512:
1da177e4 2591 if (mtd->oobblock == 256) {
e0c7d767 2592 printk(KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
1da177e4
LT
2593 this->eccmode = NAND_ECC_SOFT;
2594 this->calculate_ecc = nand_calculate_ecc;
2595 this->correct_data = nand_correct_data;
61b03bd7 2596 } else
e0c7d767 2597 this->eccsize = 512; /* set eccsize to 512 */
1da177e4 2598 break;
61b03bd7 2599
1da177e4
LT
2600 case NAND_ECC_HW3_256:
2601 break;
61b03bd7
TG
2602
2603 case NAND_ECC_NONE:
e0c7d767 2604 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
1da177e4
LT
2605 this->eccmode = NAND_ECC_NONE;
2606 break;
2607
61b03bd7 2608 case NAND_ECC_SOFT:
1da177e4
LT
2609 this->calculate_ecc = nand_calculate_ecc;
2610 this->correct_data = nand_correct_data;
2611 break;
2612
2613 default:
e0c7d767 2614 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
61b03bd7
TG
2615 BUG();
2616 }
1da177e4 2617
61b03bd7 2618 /* Check hardware ecc function availability and adjust number of ecc bytes per
1da177e4 2619 * calculation step
e0c7d767 2620 */
1da177e4
LT
2621 switch (this->eccmode) {
2622 case NAND_ECC_HW12_2048:
2623 this->eccbytes += 4;
61b03bd7 2624 case NAND_ECC_HW8_512:
1da177e4 2625 this->eccbytes += 2;
61b03bd7 2626 case NAND_ECC_HW6_512:
1da177e4 2627 this->eccbytes += 3;
61b03bd7 2628 case NAND_ECC_HW3_512:
1da177e4
LT
2629 case NAND_ECC_HW3_256:
2630 if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
2631 break;
e0c7d767 2632 printk(KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
61b03bd7 2633 BUG();
1da177e4 2634 }
61b03bd7 2635
1da177e4 2636 mtd->eccsize = this->eccsize;
61b03bd7 2637
1da177e4
LT
2638 /* Set the number of read / write steps for one page to ensure ECC generation */
2639 switch (this->eccmode) {
2640 case NAND_ECC_HW12_2048:
2641 this->eccsteps = mtd->oobblock / 2048;
2642 break;
2643 case NAND_ECC_HW3_512:
2644 case NAND_ECC_HW6_512:
2645 case NAND_ECC_HW8_512:
2646 this->eccsteps = mtd->oobblock / 512;
2647 break;
2648 case NAND_ECC_HW3_256:
61b03bd7 2649 case NAND_ECC_SOFT:
1da177e4
LT
2650 this->eccsteps = mtd->oobblock / 256;
2651 break;
61b03bd7
TG
2652
2653 case NAND_ECC_NONE:
1da177e4
LT
2654 this->eccsteps = 1;
2655 break;
2656 }
61b03bd7 2657
1da177e4
LT
2658 /* Initialize state, waitqueue and spinlock */
2659 this->state = FL_READY;
e0c7d767
DW
2660 init_waitqueue_head(&this->wq);
2661 spin_lock_init(&this->chip_lock);
1da177e4
LT
2662
2663 /* De-select the device */
2664 this->select_chip(mtd, -1);
2665
2666 /* Invalidate the pagebuffer reference */
2667 this->pagebuf = -1;
2668
2669 /* Fill in remaining MTD driver data */
2670 mtd->type = MTD_NANDFLASH;
2671 mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
2672 mtd->ecctype = MTD_ECC_SW;
2673 mtd->erase = nand_erase;
2674 mtd->point = NULL;
2675 mtd->unpoint = NULL;
2676 mtd->read = nand_read;
2677 mtd->write = nand_write;
2678 mtd->read_ecc = nand_read_ecc;
2679 mtd->write_ecc = nand_write_ecc;
2680 mtd->read_oob = nand_read_oob;
2681 mtd->write_oob = nand_write_oob;
2682 mtd->readv = NULL;
2683 mtd->writev = nand_writev;
2684 mtd->writev_ecc = nand_writev_ecc;
2685 mtd->sync = nand_sync;
2686 mtd->lock = NULL;
2687 mtd->unlock = NULL;
962034f4
VW
2688 mtd->suspend = nand_suspend;
2689 mtd->resume = nand_resume;
1da177e4
LT
2690 mtd->block_isbad = nand_block_isbad;
2691 mtd->block_markbad = nand_block_markbad;
2692
2693 /* and make the autooob the default one */
2694 memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
2695
0040bf38
TG
2696 /* Check, if we should skip the bad block table scan */
2697 if (this->options & NAND_SKIP_BBTSCAN)
2698 return 0;
1da177e4
LT
2699
2700 /* Build bad block table */
e0c7d767 2701 return this->scan_bbt(mtd);
1da177e4
LT
2702}
2703
2704/**
61b03bd7 2705 * nand_release - [NAND Interface] Free resources held by the NAND device
1da177e4
LT
2706 * @mtd: MTD device structure
2707*/
e0c7d767 2708void nand_release(struct mtd_info *mtd)
1da177e4
LT
2709{
2710 struct nand_chip *this = mtd->priv;
2711
2712#ifdef CONFIG_MTD_PARTITIONS
2713 /* Deregister partitions */
e0c7d767 2714 del_mtd_partitions(mtd);
1da177e4
LT
2715#endif
2716 /* Deregister the device */
e0c7d767 2717 del_mtd_device(mtd);
1da177e4 2718
fa671646 2719 /* Free bad block table memory */
e0c7d767 2720 kfree(this->bbt);
1da177e4
LT
2721 /* Buffer allocated by nand_scan ? */
2722 if (this->options & NAND_OOBBUF_ALLOC)
e0c7d767 2723 kfree(this->oob_buf);
1da177e4
LT
2724 /* Buffer allocated by nand_scan ? */
2725 if (this->options & NAND_DATABUF_ALLOC)
e0c7d767 2726 kfree(this->data_buf);
1da177e4
LT
2727}
2728
e0c7d767
DW
2729EXPORT_SYMBOL_GPL(nand_scan);
2730EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
2731
2732static int __init nand_base_init(void)
2733{
2734 led_trigger_register_simple("nand-disk", &nand_led_trigger);
2735 return 0;
2736}
2737
2738static void __exit nand_base_exit(void)
2739{
2740 led_trigger_unregister_simple(nand_led_trigger);
2741}
2742
2743module_init(nand_base_init);
2744module_exit(nand_base_exit);
2745
e0c7d767
DW
2746MODULE_LICENSE("GPL");
2747MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2748MODULE_DESCRIPTION("Generic NAND flash driver code");