]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/mtd/nand/diskonchip.c
[MTD] devices: Clean up trailing white spaces
[net-next-2.6.git] / drivers / mtd / nand / diskonchip.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand/diskonchip.c
3 *
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
7 *
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
11 *
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
16 *
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
18 *
abc37e67 19 * $Id: diskonchip.c,v 1.54 2005/04/07 14:22:55 dbrown Exp $
1da177e4
LT
20 */
21
22#include <linux/kernel.h>
23#include <linux/init.h>
24#include <linux/sched.h>
25#include <linux/delay.h>
26#include <linux/rslib.h>
27#include <linux/moduleparam.h>
28#include <asm/io.h>
29
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/nand.h>
32#include <linux/mtd/doc2000.h>
33#include <linux/mtd/compatmac.h>
34#include <linux/mtd/partitions.h>
35#include <linux/mtd/inftl.h>
36
37/* Where to look for the devices? */
651078ba
TG
38#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
39#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
1da177e4
LT
40#endif
41
42static unsigned long __initdata doc_locations[] = {
43#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
651078ba 44#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
1da177e4
LT
45 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
46 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
47 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
48 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
49 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
50#else /* CONFIG_MTD_DOCPROBE_HIGH */
51 0xc8000, 0xca000, 0xcc000, 0xce000,
52 0xd0000, 0xd2000, 0xd4000, 0xd6000,
53 0xd8000, 0xda000, 0xdc000, 0xde000,
54 0xe0000, 0xe2000, 0xe4000, 0xe6000,
55 0xe8000, 0xea000, 0xec000, 0xee000,
56#endif /* CONFIG_MTD_DOCPROBE_HIGH */
57#elif defined(__PPC__)
58 0xe4000000,
59#elif defined(CONFIG_MOMENCO_OCELOT)
60 0x2f000000,
61 0xff000000,
62#elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
63 0xff000000,
64##else
65#warning Unknown architecture for DiskOnChip. No default probe locations defined
66#endif
67 0xffffffff };
68
69static struct mtd_info *doclist = NULL;
70
71struct doc_priv {
72 void __iomem *virtadr;
73 unsigned long physadr;
74 u_char ChipID;
75 u_char CDSNControl;
76 int chips_per_floor; /* The number of chips detected on each floor */
77 int curfloor;
78 int curchip;
79 int mh0_page;
80 int mh1_page;
81 struct mtd_info *nextdoc;
82};
83
1da177e4
LT
84/* This is the syndrome computed by the HW ecc generator upon reading an empty
85 page, one with all 0xff for data and stored ecc code. */
86static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
87/* This is the ecc value computed by the HW ecc generator upon writing an empty
88 page, one with all 0xff for data. */
89static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
90
91#define INFTL_BBT_RESERVED_BLOCKS 4
92
93#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
94#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
95#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
96
97static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd);
98static void doc200x_select_chip(struct mtd_info *mtd, int chip);
99
100static int debug=0;
101module_param(debug, int, 0);
102
103static int try_dword=1;
104module_param(try_dword, int, 0);
105
106static int no_ecc_failures=0;
107module_param(no_ecc_failures, int, 0);
108
1da177e4
LT
109static int no_autopart=0;
110module_param(no_autopart, int, 0);
1a78ff6b
DB
111
112static int show_firmware_partition=0;
113module_param(show_firmware_partition, int, 0);
1da177e4
LT
114
115#ifdef MTD_NAND_DISKONCHIP_BBTWRITE
116static int inftl_bbt_write=1;
117#else
118static int inftl_bbt_write=0;
119#endif
120module_param(inftl_bbt_write, int, 0);
121
651078ba 122static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
1da177e4
LT
123module_param(doc_config_location, ulong, 0);
124MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
125
126
127/* Sector size for HW ECC */
128#define SECTOR_SIZE 512
129/* The sector bytes are packed into NB_DATA 10 bit words */
130#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
131/* Number of roots */
132#define NROOTS 4
133/* First consective root */
134#define FCR 510
135/* Number of symbols */
136#define NN 1023
137
138/* the Reed Solomon control structure */
139static struct rs_control *rs_decoder;
140
141/*
142 * The HW decoder in the DoC ASIC's provides us a error syndrome,
143 * which we must convert to a standard syndrom usable by the generic
144 * Reed-Solomon library code.
145 *
146 * Fabrice Bellard figured this out in the old docecc code. I added
147 * some comments, improved a minor bit and converted it to make use
148 * of the generic Reed-Solomon libary. tglx
149 */
150static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc)
151{
152 int i, j, nerr, errpos[8];
153 uint8_t parity;
154 uint16_t ds[4], s[5], tmp, errval[8], syn[4];
155
156 /* Convert the ecc bytes into words */
157 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
158 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
159 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
160 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
161 parity = ecc[1];
162
163 /* Initialize the syndrom buffer */
164 for (i = 0; i < NROOTS; i++)
165 s[i] = ds[0];
166 /*
167 * Evaluate
168 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
169 * where x = alpha^(FCR + i)
170 */
171 for(j = 1; j < NROOTS; j++) {
172 if(ds[j] == 0)
173 continue;
174 tmp = rs->index_of[ds[j]];
175 for(i = 0; i < NROOTS; i++)
176 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
177 }
178
179 /* Calc s[i] = s[i] / alpha^(v + i) */
180 for (i = 0; i < NROOTS; i++) {
181 if (syn[i])
182 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
183 }
184 /* Call the decoder library */
185 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
186
187 /* Incorrectable errors ? */
188 if (nerr < 0)
189 return nerr;
190
191 /*
192 * Correct the errors. The bitpositions are a bit of magic,
193 * but they are given by the design of the de/encoder circuit
194 * in the DoC ASIC's.
195 */
196 for(i = 0;i < nerr; i++) {
197 int index, bitpos, pos = 1015 - errpos[i];
198 uint8_t val;
199 if (pos >= NB_DATA && pos < 1019)
200 continue;
201 if (pos < NB_DATA) {
202 /* extract bit position (MSB first) */
203 pos = 10 * (NB_DATA - 1 - pos) - 6;
204 /* now correct the following 10 bits. At most two bytes
205 can be modified since pos is even */
206 index = (pos >> 3) ^ 1;
207 bitpos = pos & 7;
208 if ((index >= 0 && index < SECTOR_SIZE) ||
209 index == (SECTOR_SIZE + 1)) {
210 val = (uint8_t) (errval[i] >> (2 + bitpos));
211 parity ^= val;
212 if (index < SECTOR_SIZE)
213 data[index] ^= val;
214 }
215 index = ((pos >> 3) + 1) ^ 1;
216 bitpos = (bitpos + 10) & 7;
217 if (bitpos == 0)
218 bitpos = 8;
219 if ((index >= 0 && index < SECTOR_SIZE) ||
220 index == (SECTOR_SIZE + 1)) {
221 val = (uint8_t)(errval[i] << (8 - bitpos));
222 parity ^= val;
223 if (index < SECTOR_SIZE)
224 data[index] ^= val;
225 }
226 }
227 }
228 /* If the parity is wrong, no rescue possible */
229 return parity ? -1 : nerr;
230}
231
232static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
233{
234 volatile char dummy;
235 int i;
236
237 for (i = 0; i < cycles; i++) {
238 if (DoC_is_Millennium(doc))
239 dummy = ReadDOC(doc->virtadr, NOP);
240 else if (DoC_is_MillenniumPlus(doc))
241 dummy = ReadDOC(doc->virtadr, Mplus_NOP);
242 else
243 dummy = ReadDOC(doc->virtadr, DOCStatus);
244 }
245
246}
247
248#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
249
250/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
251static int _DoC_WaitReady(struct doc_priv *doc)
252{
253 void __iomem *docptr = doc->virtadr;
254 unsigned long timeo = jiffies + (HZ * 10);
255
256 if(debug) printk("_DoC_WaitReady...\n");
257 /* Out-of-line routine to wait for chip response */
258 if (DoC_is_MillenniumPlus(doc)) {
259 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
260 if (time_after(jiffies, timeo)) {
261 printk("_DoC_WaitReady timed out.\n");
262 return -EIO;
263 }
264 udelay(1);
265 cond_resched();
266 }
267 } else {
268 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
269 if (time_after(jiffies, timeo)) {
270 printk("_DoC_WaitReady timed out.\n");
271 return -EIO;
272 }
273 udelay(1);
274 cond_resched();
275 }
276 }
277
278 return 0;
279}
280
281static inline int DoC_WaitReady(struct doc_priv *doc)
282{
283 void __iomem *docptr = doc->virtadr;
284 int ret = 0;
285
286 if (DoC_is_MillenniumPlus(doc)) {
287 DoC_Delay(doc, 4);
288
289 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
290 /* Call the out-of-line routine to wait */
291 ret = _DoC_WaitReady(doc);
292 } else {
293 DoC_Delay(doc, 4);
294
295 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
296 /* Call the out-of-line routine to wait */
297 ret = _DoC_WaitReady(doc);
298 DoC_Delay(doc, 2);
299 }
300
301 if(debug) printk("DoC_WaitReady OK\n");
302 return ret;
303}
304
305static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
306{
307 struct nand_chip *this = mtd->priv;
308 struct doc_priv *doc = this->priv;
309 void __iomem *docptr = doc->virtadr;
310
311 if(debug)printk("write_byte %02x\n", datum);
312 WriteDOC(datum, docptr, CDSNSlowIO);
313 WriteDOC(datum, docptr, 2k_CDSN_IO);
314}
315
316static u_char doc2000_read_byte(struct mtd_info *mtd)
317{
318 struct nand_chip *this = mtd->priv;
319 struct doc_priv *doc = this->priv;
320 void __iomem *docptr = doc->virtadr;
321 u_char ret;
322
323 ReadDOC(docptr, CDSNSlowIO);
324 DoC_Delay(doc, 2);
325 ret = ReadDOC(docptr, 2k_CDSN_IO);
326 if (debug) printk("read_byte returns %02x\n", ret);
327 return ret;
328}
329
330static void doc2000_writebuf(struct mtd_info *mtd,
331 const u_char *buf, int len)
332{
333 struct nand_chip *this = mtd->priv;
334 struct doc_priv *doc = this->priv;
335 void __iomem *docptr = doc->virtadr;
336 int i;
337 if (debug)printk("writebuf of %d bytes: ", len);
338 for (i=0; i < len; i++) {
339 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
340 if (debug && i < 16)
341 printk("%02x ", buf[i]);
342 }
343 if (debug) printk("\n");
344}
345
346static void doc2000_readbuf(struct mtd_info *mtd,
347 u_char *buf, int len)
348{
349 struct nand_chip *this = mtd->priv;
350 struct doc_priv *doc = this->priv;
351 void __iomem *docptr = doc->virtadr;
352 int i;
353
354 if (debug)printk("readbuf of %d bytes: ", len);
355
356 for (i=0; i < len; i++) {
357 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
358 }
359}
360
361static void doc2000_readbuf_dword(struct mtd_info *mtd,
362 u_char *buf, int len)
363{
364 struct nand_chip *this = mtd->priv;
365 struct doc_priv *doc = this->priv;
366 void __iomem *docptr = doc->virtadr;
367 int i;
368
369 if (debug) printk("readbuf_dword of %d bytes: ", len);
370
371 if (unlikely((((unsigned long)buf)|len) & 3)) {
372 for (i=0; i < len; i++) {
373 *(uint8_t *)(&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
374 }
375 } else {
376 for (i=0; i < len; i+=4) {
377 *(uint32_t*)(&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
378 }
379 }
380}
381
382static int doc2000_verifybuf(struct mtd_info *mtd,
383 const u_char *buf, int len)
384{
385 struct nand_chip *this = mtd->priv;
386 struct doc_priv *doc = this->priv;
387 void __iomem *docptr = doc->virtadr;
388 int i;
389
390 for (i=0; i < len; i++)
391 if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
392 return -EFAULT;
393 return 0;
394}
395
396static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
397{
398 struct nand_chip *this = mtd->priv;
399 struct doc_priv *doc = this->priv;
400 uint16_t ret;
401
402 doc200x_select_chip(mtd, nr);
403 doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
404 this->write_byte(mtd, NAND_CMD_READID);
405 doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
406 doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
407 this->write_byte(mtd, 0);
408 doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
dfd61294
TG
409
410 /* We cant' use dev_ready here, but at least we wait for the
411 * command to complete
412 */
413 udelay(50);
414
1da177e4
LT
415 ret = this->read_byte(mtd) << 8;
416 ret |= this->read_byte(mtd);
417
418 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
419 /* First chip probe. See if we get same results by 32-bit access */
420 union {
421 uint32_t dword;
422 uint8_t byte[4];
423 } ident;
424 void __iomem *docptr = doc->virtadr;
425
426 doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
427 doc2000_write_byte(mtd, NAND_CMD_READID);
428 doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
429 doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
430 doc2000_write_byte(mtd, 0);
431 doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
432
dfd61294
TG
433 udelay(50);
434
1da177e4
LT
435 ident.dword = readl(docptr + DoC_2k_CDSN_IO);
436 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
437 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
438 this->read_buf = &doc2000_readbuf_dword;
439 }
440 }
441
442 return ret;
443}
444
445static void __init doc2000_count_chips(struct mtd_info *mtd)
446{
447 struct nand_chip *this = mtd->priv;
448 struct doc_priv *doc = this->priv;
449 uint16_t mfrid;
450 int i;
451
452 /* Max 4 chips per floor on DiskOnChip 2000 */
453 doc->chips_per_floor = 4;
454
455 /* Find out what the first chip is */
456 mfrid = doc200x_ident_chip(mtd, 0);
457
458 /* Find how many chips in each floor. */
459 for (i = 1; i < 4; i++) {
460 if (doc200x_ident_chip(mtd, i) != mfrid)
461 break;
462 }
463 doc->chips_per_floor = i;
464 printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
465}
466
467static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
468{
469 struct doc_priv *doc = this->priv;
470
471 int status;
472
473 DoC_WaitReady(doc);
474 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
475 DoC_WaitReady(doc);
476 status = (int)this->read_byte(mtd);
477
478 return status;
479}
480
481static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
482{
483 struct nand_chip *this = mtd->priv;
484 struct doc_priv *doc = this->priv;
485 void __iomem *docptr = doc->virtadr;
486
487 WriteDOC(datum, docptr, CDSNSlowIO);
488 WriteDOC(datum, docptr, Mil_CDSN_IO);
489 WriteDOC(datum, docptr, WritePipeTerm);
490}
491
492static u_char doc2001_read_byte(struct mtd_info *mtd)
493{
494 struct nand_chip *this = mtd->priv;
495 struct doc_priv *doc = this->priv;
496 void __iomem *docptr = doc->virtadr;
497
498 //ReadDOC(docptr, CDSNSlowIO);
499 /* 11.4.5 -- delay twice to allow extended length cycle */
500 DoC_Delay(doc, 2);
501 ReadDOC(docptr, ReadPipeInit);
502 //return ReadDOC(docptr, Mil_CDSN_IO);
503 return ReadDOC(docptr, LastDataRead);
504}
505
506static void doc2001_writebuf(struct mtd_info *mtd,
507 const u_char *buf, int len)
508{
509 struct nand_chip *this = mtd->priv;
510 struct doc_priv *doc = this->priv;
511 void __iomem *docptr = doc->virtadr;
512 int i;
513
514 for (i=0; i < len; i++)
515 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
516 /* Terminate write pipeline */
517 WriteDOC(0x00, docptr, WritePipeTerm);
518}
519
520static void doc2001_readbuf(struct mtd_info *mtd,
521 u_char *buf, int len)
522{
523 struct nand_chip *this = mtd->priv;
524 struct doc_priv *doc = this->priv;
525 void __iomem *docptr = doc->virtadr;
526 int i;
527
528 /* Start read pipeline */
529 ReadDOC(docptr, ReadPipeInit);
530
531 for (i=0; i < len-1; i++)
532 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
533
534 /* Terminate read pipeline */
535 buf[i] = ReadDOC(docptr, LastDataRead);
536}
537
538static int doc2001_verifybuf(struct mtd_info *mtd,
539 const u_char *buf, int len)
540{
541 struct nand_chip *this = mtd->priv;
542 struct doc_priv *doc = this->priv;
543 void __iomem *docptr = doc->virtadr;
544 int i;
545
546 /* Start read pipeline */
547 ReadDOC(docptr, ReadPipeInit);
548
549 for (i=0; i < len-1; i++)
550 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
551 ReadDOC(docptr, LastDataRead);
552 return i;
553 }
554 if (buf[i] != ReadDOC(docptr, LastDataRead))
555 return i;
556 return 0;
557}
558
559static u_char doc2001plus_read_byte(struct mtd_info *mtd)
560{
561 struct nand_chip *this = mtd->priv;
562 struct doc_priv *doc = this->priv;
563 void __iomem *docptr = doc->virtadr;
564 u_char ret;
565
566 ReadDOC(docptr, Mplus_ReadPipeInit);
567 ReadDOC(docptr, Mplus_ReadPipeInit);
568 ret = ReadDOC(docptr, Mplus_LastDataRead);
569 if (debug) printk("read_byte returns %02x\n", ret);
570 return ret;
571}
572
573static void doc2001plus_writebuf(struct mtd_info *mtd,
574 const u_char *buf, int len)
575{
576 struct nand_chip *this = mtd->priv;
577 struct doc_priv *doc = this->priv;
578 void __iomem *docptr = doc->virtadr;
579 int i;
580
581 if (debug)printk("writebuf of %d bytes: ", len);
582 for (i=0; i < len; i++) {
583 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
584 if (debug && i < 16)
585 printk("%02x ", buf[i]);
586 }
587 if (debug) printk("\n");
588}
589
590static void doc2001plus_readbuf(struct mtd_info *mtd,
591 u_char *buf, int len)
592{
593 struct nand_chip *this = mtd->priv;
594 struct doc_priv *doc = this->priv;
595 void __iomem *docptr = doc->virtadr;
596 int i;
597
598 if (debug)printk("readbuf of %d bytes: ", len);
599
600 /* Start read pipeline */
601 ReadDOC(docptr, Mplus_ReadPipeInit);
602 ReadDOC(docptr, Mplus_ReadPipeInit);
603
604 for (i=0; i < len-2; i++) {
605 buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
606 if (debug && i < 16)
607 printk("%02x ", buf[i]);
608 }
609
610 /* Terminate read pipeline */
611 buf[len-2] = ReadDOC(docptr, Mplus_LastDataRead);
612 if (debug && i < 16)
613 printk("%02x ", buf[len-2]);
614 buf[len-1] = ReadDOC(docptr, Mplus_LastDataRead);
615 if (debug && i < 16)
616 printk("%02x ", buf[len-1]);
617 if (debug) printk("\n");
618}
619
620static int doc2001plus_verifybuf(struct mtd_info *mtd,
621 const u_char *buf, int len)
622{
623 struct nand_chip *this = mtd->priv;
624 struct doc_priv *doc = this->priv;
625 void __iomem *docptr = doc->virtadr;
626 int i;
627
628 if (debug)printk("verifybuf of %d bytes: ", len);
629
630 /* Start read pipeline */
631 ReadDOC(docptr, Mplus_ReadPipeInit);
632 ReadDOC(docptr, Mplus_ReadPipeInit);
633
634 for (i=0; i < len-2; i++)
635 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
636 ReadDOC(docptr, Mplus_LastDataRead);
637 ReadDOC(docptr, Mplus_LastDataRead);
638 return i;
639 }
640 if (buf[len-2] != ReadDOC(docptr, Mplus_LastDataRead))
641 return len-2;
642 if (buf[len-1] != ReadDOC(docptr, Mplus_LastDataRead))
643 return len-1;
644 return 0;
645}
646
647static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
648{
649 struct nand_chip *this = mtd->priv;
650 struct doc_priv *doc = this->priv;
651 void __iomem *docptr = doc->virtadr;
652 int floor = 0;
653
654 if(debug)printk("select chip (%d)\n", chip);
655
656 if (chip == -1) {
657 /* Disable flash internally */
658 WriteDOC(0, docptr, Mplus_FlashSelect);
659 return;
660 }
661
662 floor = chip / doc->chips_per_floor;
663 chip -= (floor * doc->chips_per_floor);
664
665 /* Assert ChipEnable and deassert WriteProtect */
666 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
667 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
668
669 doc->curchip = chip;
670 doc->curfloor = floor;
671}
672
673static void doc200x_select_chip(struct mtd_info *mtd, int chip)
674{
675 struct nand_chip *this = mtd->priv;
676 struct doc_priv *doc = this->priv;
677 void __iomem *docptr = doc->virtadr;
678 int floor = 0;
679
680 if(debug)printk("select chip (%d)\n", chip);
681
682 if (chip == -1)
683 return;
684
685 floor = chip / doc->chips_per_floor;
686 chip -= (floor * doc->chips_per_floor);
687
688 /* 11.4.4 -- deassert CE before changing chip */
689 doc200x_hwcontrol(mtd, NAND_CTL_CLRNCE);
690
691 WriteDOC(floor, docptr, FloorSelect);
692 WriteDOC(chip, docptr, CDSNDeviceSelect);
693
694 doc200x_hwcontrol(mtd, NAND_CTL_SETNCE);
695
696 doc->curchip = chip;
697 doc->curfloor = floor;
698}
699
700static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd)
701{
702 struct nand_chip *this = mtd->priv;
703 struct doc_priv *doc = this->priv;
704 void __iomem *docptr = doc->virtadr;
705
706 switch(cmd) {
707 case NAND_CTL_SETNCE:
708 doc->CDSNControl |= CDSN_CTRL_CE;
709 break;
710 case NAND_CTL_CLRNCE:
711 doc->CDSNControl &= ~CDSN_CTRL_CE;
712 break;
713 case NAND_CTL_SETCLE:
714 doc->CDSNControl |= CDSN_CTRL_CLE;
715 break;
716 case NAND_CTL_CLRCLE:
717 doc->CDSNControl &= ~CDSN_CTRL_CLE;
718 break;
719 case NAND_CTL_SETALE:
720 doc->CDSNControl |= CDSN_CTRL_ALE;
721 break;
722 case NAND_CTL_CLRALE:
723 doc->CDSNControl &= ~CDSN_CTRL_ALE;
724 break;
725 case NAND_CTL_SETWP:
726 doc->CDSNControl |= CDSN_CTRL_WP;
727 break;
728 case NAND_CTL_CLRWP:
729 doc->CDSNControl &= ~CDSN_CTRL_WP;
730 break;
731 }
732 if (debug)printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
733 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
734 /* 11.4.3 -- 4 NOPs after CSDNControl write */
735 DoC_Delay(doc, 4);
736}
737
738static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
739{
740 struct nand_chip *this = mtd->priv;
741 struct doc_priv *doc = this->priv;
742 void __iomem *docptr = doc->virtadr;
743
744 /*
745 * Must terminate write pipeline before sending any commands
746 * to the device.
747 */
748 if (command == NAND_CMD_PAGEPROG) {
749 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
750 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
751 }
752
753 /*
754 * Write out the command to the device.
755 */
756 if (command == NAND_CMD_SEQIN) {
757 int readcmd;
758
759 if (column >= mtd->oobblock) {
760 /* OOB area */
761 column -= mtd->oobblock;
762 readcmd = NAND_CMD_READOOB;
763 } else if (column < 256) {
764 /* First 256 bytes --> READ0 */
765 readcmd = NAND_CMD_READ0;
766 } else {
767 column -= 256;
768 readcmd = NAND_CMD_READ1;
769 }
770 WriteDOC(readcmd, docptr, Mplus_FlashCmd);
771 }
772 WriteDOC(command, docptr, Mplus_FlashCmd);
773 WriteDOC(0, docptr, Mplus_WritePipeTerm);
774 WriteDOC(0, docptr, Mplus_WritePipeTerm);
775
776 if (column != -1 || page_addr != -1) {
777 /* Serially input address */
778 if (column != -1) {
779 /* Adjust columns for 16 bit buswidth */
780 if (this->options & NAND_BUSWIDTH_16)
781 column >>= 1;
782 WriteDOC(column, docptr, Mplus_FlashAddress);
783 }
784 if (page_addr != -1) {
785 WriteDOC((unsigned char) (page_addr & 0xff), docptr, Mplus_FlashAddress);
786 WriteDOC((unsigned char) ((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
787 /* One more address cycle for higher density devices */
788 if (this->chipsize & 0x0c000000) {
789 WriteDOC((unsigned char) ((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
790 printk("high density\n");
791 }
792 }
793 WriteDOC(0, docptr, Mplus_WritePipeTerm);
794 WriteDOC(0, docptr, Mplus_WritePipeTerm);
795 /* deassert ALE */
796 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_READID)
797 WriteDOC(0, docptr, Mplus_FlashControl);
798 }
799
800 /*
801 * program and erase have their own busy handlers
802 * status and sequential in needs no delay
803 */
804 switch (command) {
805
806 case NAND_CMD_PAGEPROG:
807 case NAND_CMD_ERASE1:
808 case NAND_CMD_ERASE2:
809 case NAND_CMD_SEQIN:
810 case NAND_CMD_STATUS:
811 return;
812
813 case NAND_CMD_RESET:
814 if (this->dev_ready)
815 break;
816 udelay(this->chip_delay);
817 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
818 WriteDOC(0, docptr, Mplus_WritePipeTerm);
819 WriteDOC(0, docptr, Mplus_WritePipeTerm);
820 while ( !(this->read_byte(mtd) & 0x40));
821 return;
822
823 /* This applies to read commands */
824 default:
825 /*
826 * If we don't have access to the busy pin, we apply the given
827 * command delay
828 */
829 if (!this->dev_ready) {
830 udelay (this->chip_delay);
831 return;
832 }
833 }
834
835 /* Apply this short delay always to ensure that we do wait tWB in
836 * any case on any machine. */
837 ndelay (100);
838 /* wait until command is processed */
839 while (!this->dev_ready(mtd));
840}
841
842static int doc200x_dev_ready(struct mtd_info *mtd)
843{
844 struct nand_chip *this = mtd->priv;
845 struct doc_priv *doc = this->priv;
846 void __iomem *docptr = doc->virtadr;
847
848 if (DoC_is_MillenniumPlus(doc)) {
849 /* 11.4.2 -- must NOP four times before checking FR/B# */
850 DoC_Delay(doc, 4);
851 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
852 if(debug)
853 printk("not ready\n");
854 return 0;
855 }
856 if (debug)printk("was ready\n");
857 return 1;
858 } else {
859 /* 11.4.2 -- must NOP four times before checking FR/B# */
860 DoC_Delay(doc, 4);
861 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
862 if(debug)
863 printk("not ready\n");
864 return 0;
865 }
866 /* 11.4.2 -- Must NOP twice if it's ready */
867 DoC_Delay(doc, 2);
868 if (debug)printk("was ready\n");
869 return 1;
870 }
871}
872
873static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
874{
875 /* This is our last resort if we couldn't find or create a BBT. Just
876 pretend all blocks are good. */
877 return 0;
878}
879
880static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
881{
882 struct nand_chip *this = mtd->priv;
883 struct doc_priv *doc = this->priv;
884 void __iomem *docptr = doc->virtadr;
885
886 /* Prime the ECC engine */
887 switch(mode) {
888 case NAND_ECC_READ:
889 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
890 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
891 break;
892 case NAND_ECC_WRITE:
893 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
894 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
895 break;
896 }
897}
898
899static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
900{
901 struct nand_chip *this = mtd->priv;
902 struct doc_priv *doc = this->priv;
903 void __iomem *docptr = doc->virtadr;
904
905 /* Prime the ECC engine */
906 switch(mode) {
907 case NAND_ECC_READ:
908 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
909 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
910 break;
911 case NAND_ECC_WRITE:
912 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
913 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
914 break;
915 }
916}
917
918/* This code is only called on write */
919static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
920 unsigned char *ecc_code)
921{
922 struct nand_chip *this = mtd->priv;
923 struct doc_priv *doc = this->priv;
924 void __iomem *docptr = doc->virtadr;
925 int i;
926 int emptymatch = 1;
927
928 /* flush the pipeline */
929 if (DoC_is_2000(doc)) {
930 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
931 WriteDOC(0, docptr, 2k_CDSN_IO);
932 WriteDOC(0, docptr, 2k_CDSN_IO);
933 WriteDOC(0, docptr, 2k_CDSN_IO);
934 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
935 } else if (DoC_is_MillenniumPlus(doc)) {
936 WriteDOC(0, docptr, Mplus_NOP);
937 WriteDOC(0, docptr, Mplus_NOP);
938 WriteDOC(0, docptr, Mplus_NOP);
939 } else {
940 WriteDOC(0, docptr, NOP);
941 WriteDOC(0, docptr, NOP);
942 WriteDOC(0, docptr, NOP);
943 }
944
945 for (i = 0; i < 6; i++) {
946 if (DoC_is_MillenniumPlus(doc))
947 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
948 else
949 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
950 if (ecc_code[i] != empty_write_ecc[i])
951 emptymatch = 0;
952 }
953 if (DoC_is_MillenniumPlus(doc))
954 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
955 else
956 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
957#if 0
958 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
959 if (emptymatch) {
960 /* Note: this somewhat expensive test should not be triggered
961 often. It could be optimized away by examining the data in
962 the writebuf routine, and remembering the result. */
963 for (i = 0; i < 512; i++) {
964 if (dat[i] == 0xff) continue;
965 emptymatch = 0;
966 break;
967 }
968 }
969 /* If emptymatch still =1, we do have an all-0xff data buffer.
970 Return all-0xff ecc value instead of the computed one, so
971 it'll look just like a freshly-erased page. */
972 if (emptymatch) memset(ecc_code, 0xff, 6);
973#endif
974 return 0;
975}
976
977static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
978{
979 int i, ret = 0;
980 struct nand_chip *this = mtd->priv;
981 struct doc_priv *doc = this->priv;
982 void __iomem *docptr = doc->virtadr;
983 volatile u_char dummy;
984 int emptymatch = 1;
985
986 /* flush the pipeline */
987 if (DoC_is_2000(doc)) {
988 dummy = ReadDOC(docptr, 2k_ECCStatus);
989 dummy = ReadDOC(docptr, 2k_ECCStatus);
990 dummy = ReadDOC(docptr, 2k_ECCStatus);
991 } else if (DoC_is_MillenniumPlus(doc)) {
992 dummy = ReadDOC(docptr, Mplus_ECCConf);
993 dummy = ReadDOC(docptr, Mplus_ECCConf);
994 dummy = ReadDOC(docptr, Mplus_ECCConf);
995 } else {
996 dummy = ReadDOC(docptr, ECCConf);
997 dummy = ReadDOC(docptr, ECCConf);
998 dummy = ReadDOC(docptr, ECCConf);
999 }
1000
1001 /* Error occured ? */
1002 if (dummy & 0x80) {
1003 for (i = 0; i < 6; i++) {
1004 if (DoC_is_MillenniumPlus(doc))
1005 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
1006 else
1007 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
1008 if (calc_ecc[i] != empty_read_syndrome[i])
1009 emptymatch = 0;
1010 }
1011 /* If emptymatch=1, the read syndrome is consistent with an
1012 all-0xff data and stored ecc block. Check the stored ecc. */
1013 if (emptymatch) {
1014 for (i = 0; i < 6; i++) {
1015 if (read_ecc[i] == 0xff) continue;
1016 emptymatch = 0;
1017 break;
1018 }
1019 }
1020 /* If emptymatch still =1, check the data block. */
1021 if (emptymatch) {
1022 /* Note: this somewhat expensive test should not be triggered
1023 often. It could be optimized away by examining the data in
1024 the readbuf routine, and remembering the result. */
1025 for (i = 0; i < 512; i++) {
1026 if (dat[i] == 0xff) continue;
1027 emptymatch = 0;
1028 break;
1029 }
1030 }
1031 /* If emptymatch still =1, this is almost certainly a freshly-
1032 erased block, in which case the ECC will not come out right.
1033 We'll suppress the error and tell the caller everything's
1034 OK. Because it is. */
1035 if (!emptymatch) ret = doc_ecc_decode (rs_decoder, dat, calc_ecc);
1036 if (ret > 0)
1037 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1038 }
1039 if (DoC_is_MillenniumPlus(doc))
1040 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1041 else
1042 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1043 if (no_ecc_failures && (ret == -1)) {
1044 printk(KERN_ERR "suppressing ECC failure\n");
1045 ret = 0;
1046 }
1047 return ret;
1048}
1049
1050//u_char mydatabuf[528];
1051
abc37e67
DB
1052/* The strange out-of-order .oobfree list below is a (possibly unneeded)
1053 * attempt to retain compatibility. It used to read:
1054 * .oobfree = { {8, 8} }
1055 * Since that leaves two bytes unusable, it was changed. But the following
1056 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1057 * .oobfree = { {6, 10} }
1058 * jffs2 seems to handle the above gracefully, but the current scheme seems
1059 * safer. The only problem with it is that any code that parses oobfree must
1060 * be able to handle out-of-order segments.
1061 */
1da177e4
LT
1062static struct nand_oobinfo doc200x_oobinfo = {
1063 .useecc = MTD_NANDECC_AUTOPLACE,
1064 .eccbytes = 6,
1065 .eccpos = {0, 1, 2, 3, 4, 5},
dff59421 1066 .oobfree = { {8, 8}, {6, 2} }
1da177e4
LT
1067};
1068
1069/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1070 On sucessful return, buf will contain a copy of the media header for
1071 further processing. id is the string to scan for, and will presumably be
1072 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1073 header. The page #s of the found media headers are placed in mh0_page and
1074 mh1_page in the DOC private structure. */
1075static int __init find_media_headers(struct mtd_info *mtd, u_char *buf,
1076 const char *id, int findmirror)
1077{
1078 struct nand_chip *this = mtd->priv;
1079 struct doc_priv *doc = this->priv;
1a78ff6b 1080 unsigned offs;
1da177e4
LT
1081 int ret;
1082 size_t retlen;
1083
1a78ff6b 1084 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1da177e4
LT
1085 ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
1086 if (retlen != mtd->oobblock) continue;
1087 if (ret) {
1088 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n",
1089 offs);
1090 }
1091 if (memcmp(buf, id, 6)) continue;
1092 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1093 if (doc->mh0_page == -1) {
1094 doc->mh0_page = offs >> this->page_shift;
1095 if (!findmirror) return 1;
1096 continue;
1097 }
1098 doc->mh1_page = offs >> this->page_shift;
1099 return 2;
1100 }
1101 if (doc->mh0_page == -1) {
1102 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1103 return 0;
1104 }
1105 /* Only one mediaheader was found. We want buf to contain a
1106 mediaheader on return, so we'll have to re-read the one we found. */
1107 offs = doc->mh0_page << this->page_shift;
1108 ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
1109 if (retlen != mtd->oobblock) {
1110 /* Insanity. Give up. */
1111 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1112 return 0;
1113 }
1114 return 1;
1115}
1116
1117static inline int __init nftl_partscan(struct mtd_info *mtd,
1118 struct mtd_partition *parts)
1119{
1120 struct nand_chip *this = mtd->priv;
1121 struct doc_priv *doc = this->priv;
1122 int ret = 0;
1123 u_char *buf;
1124 struct NFTLMediaHeader *mh;
1125 const unsigned psize = 1 << this->page_shift;
1a78ff6b 1126 int numparts = 0;
1da177e4
LT
1127 unsigned blocks, maxblocks;
1128 int offs, numheaders;
1129
1130 buf = kmalloc(mtd->oobblock, GFP_KERNEL);
1131 if (!buf) {
1132 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1133 return 0;
1134 }
1135 if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) goto out;
1136 mh = (struct NFTLMediaHeader *) buf;
1137
f29a4b86
TG
1138 mh->NumEraseUnits = le16_to_cpu(mh->NumEraseUnits);
1139 mh->FirstPhysicalEUN = le16_to_cpu(mh->FirstPhysicalEUN);
1140 mh->FormattedSize = le32_to_cpu(mh->FormattedSize);
1141
1da177e4
LT
1142 printk(KERN_INFO " DataOrgID = %s\n"
1143 " NumEraseUnits = %d\n"
1144 " FirstPhysicalEUN = %d\n"
1145 " FormattedSize = %d\n"
1146 " UnitSizeFactor = %d\n",
1147 mh->DataOrgID, mh->NumEraseUnits,
1148 mh->FirstPhysicalEUN, mh->FormattedSize,
1149 mh->UnitSizeFactor);
1da177e4
LT
1150
1151 blocks = mtd->size >> this->phys_erase_shift;
1152 maxblocks = min(32768U, mtd->erasesize - psize);
1153
1154 if (mh->UnitSizeFactor == 0x00) {
1155 /* Auto-determine UnitSizeFactor. The constraints are:
1156 - There can be at most 32768 virtual blocks.
1157 - There can be at most (virtual block size - page size)
1158 virtual blocks (because MediaHeader+BBT must fit in 1).
1159 */
1160 mh->UnitSizeFactor = 0xff;
1161 while (blocks > maxblocks) {
1162 blocks >>= 1;
1163 maxblocks = min(32768U, (maxblocks << 1) + psize);
1164 mh->UnitSizeFactor--;
1165 }
1166 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1167 }
1168
1169 /* NOTE: The lines below modify internal variables of the NAND and MTD
1170 layers; variables with have already been configured by nand_scan.
1171 Unfortunately, we didn't know before this point what these values
1172 should be. Thus, this code is somewhat dependant on the exact
1173 implementation of the NAND layer. */
1174 if (mh->UnitSizeFactor != 0xff) {
1175 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1176 mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1177 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1178 blocks = mtd->size >> this->bbt_erase_shift;
1179 maxblocks = min(32768U, mtd->erasesize - psize);
1180 }
1181
1182 if (blocks > maxblocks) {
1183 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
1184 goto out;
1185 }
1186
1187 /* Skip past the media headers. */
1188 offs = max(doc->mh0_page, doc->mh1_page);
1189 offs <<= this->page_shift;
1190 offs += mtd->erasesize;
1191
1a78ff6b
DB
1192 if (show_firmware_partition == 1) {
1193 parts[0].name = " DiskOnChip Firmware / Media Header partition";
1194 parts[0].offset = 0;
1195 parts[0].size = offs;
1196 numparts = 1;
1197 }
1198
1199 parts[numparts].name = " DiskOnChip BDTL partition";
1200 parts[numparts].offset = offs;
1201 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1202
1203 offs += parts[numparts].size;
1204 numparts++;
1da177e4 1205
1da177e4 1206 if (offs < mtd->size) {
1a78ff6b
DB
1207 parts[numparts].name = " DiskOnChip Remainder partition";
1208 parts[numparts].offset = offs;
1209 parts[numparts].size = mtd->size - offs;
1210 numparts++;
1da177e4 1211 }
1a78ff6b
DB
1212
1213 ret = numparts;
1da177e4
LT
1214out:
1215 kfree(buf);
1216 return ret;
1217}
1218
1219/* This is a stripped-down copy of the code in inftlmount.c */
1220static inline int __init inftl_partscan(struct mtd_info *mtd,
1221 struct mtd_partition *parts)
1222{
1223 struct nand_chip *this = mtd->priv;
1224 struct doc_priv *doc = this->priv;
1225 int ret = 0;
1226 u_char *buf;
1227 struct INFTLMediaHeader *mh;
1228 struct INFTLPartition *ip;
1229 int numparts = 0;
1230 int blocks;
1231 int vshift, lastvunit = 0;
1232 int i;
1233 int end = mtd->size;
1234
1235 if (inftl_bbt_write)
1236 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1237
1238 buf = kmalloc(mtd->oobblock, GFP_KERNEL);
1239 if (!buf) {
1240 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1241 return 0;
1242 }
1243
1244 if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out;
1245 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1246 mh = (struct INFTLMediaHeader *) buf;
1247
1248 mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
1249 mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
1250 mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
1251 mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
1252 mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
1253 mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
1254
1da177e4
LT
1255 printk(KERN_INFO " bootRecordID = %s\n"
1256 " NoOfBootImageBlocks = %d\n"
1257 " NoOfBinaryPartitions = %d\n"
1258 " NoOfBDTLPartitions = %d\n"
1259 " BlockMultiplerBits = %d\n"
1260 " FormatFlgs = %d\n"
1261 " OsakVersion = %d.%d.%d.%d\n"
1262 " PercentUsed = %d\n",
1263 mh->bootRecordID, mh->NoOfBootImageBlocks,
1264 mh->NoOfBinaryPartitions,
1265 mh->NoOfBDTLPartitions,
1266 mh->BlockMultiplierBits, mh->FormatFlags,
1267 ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1268 ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1269 ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1270 ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1271 mh->PercentUsed);
1da177e4
LT
1272
1273 vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1274
1275 blocks = mtd->size >> vshift;
1276 if (blocks > 32768) {
1277 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1278 goto out;
1279 }
1280
1281 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1282 if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1283 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1284 goto out;
1285 }
1286
1287 /* Scan the partitions */
1288 for (i = 0; (i < 4); i++) {
1289 ip = &(mh->Partitions[i]);
1290 ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
1291 ip->firstUnit = le32_to_cpu(ip->firstUnit);
1292 ip->lastUnit = le32_to_cpu(ip->lastUnit);
1293 ip->flags = le32_to_cpu(ip->flags);
1294 ip->spareUnits = le32_to_cpu(ip->spareUnits);
1295 ip->Reserved0 = le32_to_cpu(ip->Reserved0);
1296
1da177e4
LT
1297 printk(KERN_INFO " PARTITION[%d] ->\n"
1298 " virtualUnits = %d\n"
1299 " firstUnit = %d\n"
1300 " lastUnit = %d\n"
1301 " flags = 0x%x\n"
1302 " spareUnits = %d\n",
1303 i, ip->virtualUnits, ip->firstUnit,
1304 ip->lastUnit, ip->flags,
1305 ip->spareUnits);
1da177e4 1306
1a78ff6b
DB
1307 if ((show_firmware_partition == 1) &&
1308 (i == 0) && (ip->firstUnit > 0)) {
1da177e4
LT
1309 parts[0].name = " DiskOnChip IPL / Media Header partition";
1310 parts[0].offset = 0;
1311 parts[0].size = mtd->erasesize * ip->firstUnit;
1312 numparts = 1;
1313 }
1da177e4
LT
1314
1315 if (ip->flags & INFTL_BINARY)
1316 parts[numparts].name = " DiskOnChip BDK partition";
1317 else
1318 parts[numparts].name = " DiskOnChip BDTL partition";
1319 parts[numparts].offset = ip->firstUnit << vshift;
1320 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1321 numparts++;
1322 if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit;
1323 if (ip->flags & INFTL_LAST) break;
1324 }
1325 lastvunit++;
1326 if ((lastvunit << vshift) < end) {
1327 parts[numparts].name = " DiskOnChip Remainder partition";
1328 parts[numparts].offset = lastvunit << vshift;
1329 parts[numparts].size = end - parts[numparts].offset;
1330 numparts++;
1331 }
1332 ret = numparts;
1333out:
1334 kfree(buf);
1335 return ret;
1336}
1337
1338static int __init nftl_scan_bbt(struct mtd_info *mtd)
1339{
1340 int ret, numparts;
1341 struct nand_chip *this = mtd->priv;
1342 struct doc_priv *doc = this->priv;
1343 struct mtd_partition parts[2];
1344
1345 memset((char *) parts, 0, sizeof(parts));
1346 /* On NFTL, we have to find the media headers before we can read the
1347 BBTs, since they're stored in the media header eraseblocks. */
1348 numparts = nftl_partscan(mtd, parts);
1349 if (!numparts) return -EIO;
1350 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1351 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1352 NAND_BBT_VERSION;
1353 this->bbt_td->veroffs = 7;
1354 this->bbt_td->pages[0] = doc->mh0_page + 1;
1355 if (doc->mh1_page != -1) {
1356 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1357 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1358 NAND_BBT_VERSION;
1359 this->bbt_md->veroffs = 7;
1360 this->bbt_md->pages[0] = doc->mh1_page + 1;
1361 } else {
1362 this->bbt_md = NULL;
1363 }
1364
1365 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1366 At least as nand_bbt.c is currently written. */
1367 if ((ret = nand_scan_bbt(mtd, NULL)))
1368 return ret;
1369 add_mtd_device(mtd);
1370#ifdef CONFIG_MTD_PARTITIONS
1371 if (!no_autopart)
1372 add_mtd_partitions(mtd, parts, numparts);
1373#endif
1374 return 0;
1375}
1376
1377static int __init inftl_scan_bbt(struct mtd_info *mtd)
1378{
1379 int ret, numparts;
1380 struct nand_chip *this = mtd->priv;
1381 struct doc_priv *doc = this->priv;
1382 struct mtd_partition parts[5];
1383
1384 if (this->numchips > doc->chips_per_floor) {
1385 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1386 return -EIO;
1387 }
1388
1389 if (DoC_is_MillenniumPlus(doc)) {
1390 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1391 if (inftl_bbt_write)
1392 this->bbt_td->options |= NAND_BBT_WRITE;
1393 this->bbt_td->pages[0] = 2;
1394 this->bbt_md = NULL;
1395 } else {
1396 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
1397 NAND_BBT_VERSION;
1398 if (inftl_bbt_write)
1399 this->bbt_td->options |= NAND_BBT_WRITE;
1400 this->bbt_td->offs = 8;
1401 this->bbt_td->len = 8;
1402 this->bbt_td->veroffs = 7;
1403 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1404 this->bbt_td->reserved_block_code = 0x01;
1405 this->bbt_td->pattern = "MSYS_BBT";
1406
1407 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
1408 NAND_BBT_VERSION;
1409 if (inftl_bbt_write)
1410 this->bbt_md->options |= NAND_BBT_WRITE;
1411 this->bbt_md->offs = 8;
1412 this->bbt_md->len = 8;
1413 this->bbt_md->veroffs = 7;
1414 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1415 this->bbt_md->reserved_block_code = 0x01;
1416 this->bbt_md->pattern = "TBB_SYSM";
1417 }
1418
1419 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1420 At least as nand_bbt.c is currently written. */
1421 if ((ret = nand_scan_bbt(mtd, NULL)))
1422 return ret;
1423 memset((char *) parts, 0, sizeof(parts));
1424 numparts = inftl_partscan(mtd, parts);
1425 /* At least for now, require the INFTL Media Header. We could probably
1426 do without it for non-INFTL use, since all it gives us is
1427 autopartitioning, but I want to give it more thought. */
1428 if (!numparts) return -EIO;
1429 add_mtd_device(mtd);
1430#ifdef CONFIG_MTD_PARTITIONS
1431 if (!no_autopart)
1432 add_mtd_partitions(mtd, parts, numparts);
1433#endif
1434 return 0;
1435}
1436
1437static inline int __init doc2000_init(struct mtd_info *mtd)
1438{
1439 struct nand_chip *this = mtd->priv;
1440 struct doc_priv *doc = this->priv;
1441
1442 this->write_byte = doc2000_write_byte;
1443 this->read_byte = doc2000_read_byte;
1444 this->write_buf = doc2000_writebuf;
1445 this->read_buf = doc2000_readbuf;
1446 this->verify_buf = doc2000_verifybuf;
1447 this->scan_bbt = nftl_scan_bbt;
1448
1449 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1450 doc2000_count_chips(mtd);
1451 mtd->name = "DiskOnChip 2000 (NFTL Model)";
1452 return (4 * doc->chips_per_floor);
1453}
1454
1455static inline int __init doc2001_init(struct mtd_info *mtd)
1456{
1457 struct nand_chip *this = mtd->priv;
1458 struct doc_priv *doc = this->priv;
1459
1460 this->write_byte = doc2001_write_byte;
1461 this->read_byte = doc2001_read_byte;
1462 this->write_buf = doc2001_writebuf;
1463 this->read_buf = doc2001_readbuf;
1464 this->verify_buf = doc2001_verifybuf;
1465
1466 ReadDOC(doc->virtadr, ChipID);
1467 ReadDOC(doc->virtadr, ChipID);
1468 ReadDOC(doc->virtadr, ChipID);
1469 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1470 /* It's not a Millennium; it's one of the newer
1471 DiskOnChip 2000 units with a similar ASIC.
1472 Treat it like a Millennium, except that it
1473 can have multiple chips. */
1474 doc2000_count_chips(mtd);
1475 mtd->name = "DiskOnChip 2000 (INFTL Model)";
1476 this->scan_bbt = inftl_scan_bbt;
1477 return (4 * doc->chips_per_floor);
1478 } else {
1479 /* Bog-standard Millennium */
1480 doc->chips_per_floor = 1;
1481 mtd->name = "DiskOnChip Millennium";
1482 this->scan_bbt = nftl_scan_bbt;
1483 return 1;
1484 }
1485}
1486
1487static inline int __init doc2001plus_init(struct mtd_info *mtd)
1488{
1489 struct nand_chip *this = mtd->priv;
1490 struct doc_priv *doc = this->priv;
1491
1492 this->write_byte = NULL;
1493 this->read_byte = doc2001plus_read_byte;
1494 this->write_buf = doc2001plus_writebuf;
1495 this->read_buf = doc2001plus_readbuf;
1496 this->verify_buf = doc2001plus_verifybuf;
1497 this->scan_bbt = inftl_scan_bbt;
1498 this->hwcontrol = NULL;
1499 this->select_chip = doc2001plus_select_chip;
1500 this->cmdfunc = doc2001plus_command;
1501 this->enable_hwecc = doc2001plus_enable_hwecc;
1502
1503 doc->chips_per_floor = 1;
1504 mtd->name = "DiskOnChip Millennium Plus";
1505
1506 return 1;
1507}
1508
1509static inline int __init doc_probe(unsigned long physadr)
1510{
1511 unsigned char ChipID;
1512 struct mtd_info *mtd;
1513 struct nand_chip *nand;
1514 struct doc_priv *doc;
1515 void __iomem *virtadr;
1516 unsigned char save_control;
1517 unsigned char tmp, tmpb, tmpc;
1518 int reg, len, numchips;
1519 int ret = 0;
1520
1521 virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1522 if (!virtadr) {
1523 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1524 return -EIO;
1525 }
1526
1527 /* It's not possible to cleanly detect the DiskOnChip - the
1528 * bootup procedure will put the device into reset mode, and
1529 * it's not possible to talk to it without actually writing
1530 * to the DOCControl register. So we store the current contents
1531 * of the DOCControl register's location, in case we later decide
1532 * that it's not a DiskOnChip, and want to put it back how we
1533 * found it.
1534 */
1535 save_control = ReadDOC(virtadr, DOCControl);
1536
1537 /* Reset the DiskOnChip ASIC */
1538 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
1539 virtadr, DOCControl);
1540 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
1541 virtadr, DOCControl);
1542
1543 /* Enable the DiskOnChip ASIC */
1544 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
1545 virtadr, DOCControl);
1546 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
1547 virtadr, DOCControl);
1548
1549 ChipID = ReadDOC(virtadr, ChipID);
1550
1551 switch(ChipID) {
1552 case DOC_ChipID_Doc2k:
1553 reg = DoC_2k_ECCStatus;
1554 break;
1555 case DOC_ChipID_DocMil:
1556 reg = DoC_ECCConf;
1557 break;
1558 case DOC_ChipID_DocMilPlus16:
1559 case DOC_ChipID_DocMilPlus32:
1560 case 0:
1561 /* Possible Millennium Plus, need to do more checks */
1562 /* Possibly release from power down mode */
1563 for (tmp = 0; (tmp < 4); tmp++)
1564 ReadDOC(virtadr, Mplus_Power);
1565
1566 /* Reset the Millennium Plus ASIC */
1567 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
1568 DOC_MODE_BDECT;
1569 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1570 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1571
1572 mdelay(1);
1573 /* Enable the Millennium Plus ASIC */
1574 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
1575 DOC_MODE_BDECT;
1576 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1577 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1578 mdelay(1);
1579
1580 ChipID = ReadDOC(virtadr, ChipID);
1581
1582 switch (ChipID) {
1583 case DOC_ChipID_DocMilPlus16:
1584 reg = DoC_Mplus_Toggle;
1585 break;
1586 case DOC_ChipID_DocMilPlus32:
1587 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1588 default:
1589 ret = -ENODEV;
1590 goto notfound;
1591 }
1592 break;
1593
1594 default:
1595 ret = -ENODEV;
1596 goto notfound;
1597 }
1598 /* Check the TOGGLE bit in the ECC register */
1599 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1600 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1601 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1602 if ((tmp == tmpb) || (tmp != tmpc)) {
1603 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1604 ret = -ENODEV;
1605 goto notfound;
1606 }
1607
1608 for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1609 unsigned char oldval;
1610 unsigned char newval;
1611 nand = mtd->priv;
1612 doc = nand->priv;
1613 /* Use the alias resolution register to determine if this is
1614 in fact the same DOC aliased to a new address. If writes
1615 to one chip's alias resolution register change the value on
1616 the other chip, they're the same chip. */
1617 if (ChipID == DOC_ChipID_DocMilPlus16) {
1618 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1619 newval = ReadDOC(virtadr, Mplus_AliasResolution);
1620 } else {
1621 oldval = ReadDOC(doc->virtadr, AliasResolution);
1622 newval = ReadDOC(virtadr, AliasResolution);
1623 }
1624 if (oldval != newval)
1625 continue;
1626 if (ChipID == DOC_ChipID_DocMilPlus16) {
1627 WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1628 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1629 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
1630 } else {
1631 WriteDOC(~newval, virtadr, AliasResolution);
1632 oldval = ReadDOC(doc->virtadr, AliasResolution);
1633 WriteDOC(newval, virtadr, AliasResolution); // restore it
1634 }
1635 newval = ~newval;
1636 if (oldval == newval) {
1637 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1638 goto notfound;
1639 }
1640 }
1641
1642 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1643
1644 len = sizeof(struct mtd_info) +
1645 sizeof(struct nand_chip) +
1646 sizeof(struct doc_priv) +
1647 (2 * sizeof(struct nand_bbt_descr));
1648 mtd = kmalloc(len, GFP_KERNEL);
1649 if (!mtd) {
1650 printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1651 ret = -ENOMEM;
1652 goto fail;
1653 }
1654 memset(mtd, 0, len);
1655
1656 nand = (struct nand_chip *) (mtd + 1);
1657 doc = (struct doc_priv *) (nand + 1);
1658 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1659 nand->bbt_md = nand->bbt_td + 1;
1660
1661 mtd->priv = nand;
1662 mtd->owner = THIS_MODULE;
1663
1664 nand->priv = doc;
1665 nand->select_chip = doc200x_select_chip;
1666 nand->hwcontrol = doc200x_hwcontrol;
1667 nand->dev_ready = doc200x_dev_ready;
1668 nand->waitfunc = doc200x_wait;
1669 nand->block_bad = doc200x_block_bad;
1670 nand->enable_hwecc = doc200x_enable_hwecc;
1671 nand->calculate_ecc = doc200x_calculate_ecc;
1672 nand->correct_data = doc200x_correct_data;
1673
1674 nand->autooob = &doc200x_oobinfo;
1675 nand->eccmode = NAND_ECC_HW6_512;
1676 nand->options = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
1677
1678 doc->physadr = physadr;
1679 doc->virtadr = virtadr;
1680 doc->ChipID = ChipID;
1681 doc->curfloor = -1;
1682 doc->curchip = -1;
1683 doc->mh0_page = -1;
1684 doc->mh1_page = -1;
1685 doc->nextdoc = doclist;
1686
1687 if (ChipID == DOC_ChipID_Doc2k)
1688 numchips = doc2000_init(mtd);
1689 else if (ChipID == DOC_ChipID_DocMilPlus16)
1690 numchips = doc2001plus_init(mtd);
1691 else
1692 numchips = doc2001_init(mtd);
1693
1694 if ((ret = nand_scan(mtd, numchips))) {
1695 /* DBB note: i believe nand_release is necessary here, as
1696 buffers may have been allocated in nand_base. Check with
1697 Thomas. FIX ME! */
1698 /* nand_release will call del_mtd_device, but we haven't yet
1699 added it. This is handled without incident by
1700 del_mtd_device, as far as I can tell. */
1701 nand_release(mtd);
1702 kfree(mtd);
1703 goto fail;
1704 }
1705
1706 /* Success! */
1707 doclist = mtd;
1708 return 0;
1709
1710notfound:
1711 /* Put back the contents of the DOCControl register, in case it's not
1712 actually a DiskOnChip. */
1713 WriteDOC(save_control, virtadr, DOCControl);
1714fail:
1715 iounmap(virtadr);
1716 return ret;
1717}
1718
1719static void release_nanddoc(void)
1720{
1721 struct mtd_info *mtd, *nextmtd;
1722 struct nand_chip *nand;
1723 struct doc_priv *doc;
1724
1725 for (mtd = doclist; mtd; mtd = nextmtd) {
1726 nand = mtd->priv;
1727 doc = nand->priv;
1728
1729 nextmtd = doc->nextdoc;
1730 nand_release(mtd);
1731 iounmap(doc->virtadr);
1732 kfree(mtd);
1733 }
1734}
1735
1736static int __init init_nanddoc(void)
1737{
1738 int i, ret = 0;
1739
1740 /* We could create the decoder on demand, if memory is a concern.
1741 * This way we have it handy, if an error happens
1742 *
1743 * Symbolsize is 10 (bits)
1744 * Primitve polynomial is x^10+x^3+1
1745 * first consecutive root is 510
1746 * primitve element to generate roots = 1
1747 * generator polinomial degree = 4
1748 */
1749 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1750 if (!rs_decoder) {
1751 printk (KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1752 return -ENOMEM;
1753 }
1754
1755 if (doc_config_location) {
1756 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1757 ret = doc_probe(doc_config_location);
1758 if (ret < 0)
1759 goto outerr;
1760 } else {
1761 for (i=0; (doc_locations[i] != 0xffffffff); i++) {
1762 doc_probe(doc_locations[i]);
1763 }
1764 }
1765 /* No banner message any more. Print a message if no DiskOnChip
1766 found, so the user knows we at least tried. */
1767 if (!doclist) {
1768 printk(KERN_INFO "No valid DiskOnChip devices found\n");
1769 ret = -ENODEV;
1770 goto outerr;
1771 }
1772 return 0;
1773outerr:
1774 free_rs(rs_decoder);
1775 return ret;
1776}
1777
1778static void __exit cleanup_nanddoc(void)
1779{
1780 /* Cleanup the nand/DoC resources */
1781 release_nanddoc();
1782
1783 /* Free the reed solomon resources */
1784 if (rs_decoder) {
1785 free_rs(rs_decoder);
1786 }
1787}
1788
1789module_init(init_nanddoc);
1790module_exit(cleanup_nanddoc);
1791
1792MODULE_LICENSE("GPL");
1793MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1794MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");