]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/mtd/devices/mtd_dataflash.c
[MTD] support driver model updates
[net-next-2.6.git] / drivers / mtd / devices / mtd_dataflash.c
CommitLineData
1d6432fe
DB
1/*
2 * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
3 *
4 * Largely derived from at91_dataflash.c:
5 * Copyright (C) 2003-2005 SAN People (Pty) Ltd
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11*/
1d6432fe
DB
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/delay.h>
16#include <linux/device.h>
ec9ce52e 17#include <linux/mutex.h>
771999b6 18#include <linux/err.h>
5b7f3a50 19#include <linux/math64.h>
771999b6 20
1d6432fe
DB
21#include <linux/spi/spi.h>
22#include <linux/spi/flash.h>
23
24#include <linux/mtd/mtd.h>
25#include <linux/mtd/partitions.h>
26
27
28/*
29 * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in
30 * each chip, which may be used for double buffered I/O; but this driver
31 * doesn't (yet) use these for any kind of i/o overlap or prefetching.
32 *
33 * Sometimes DataFlash is packaged in MMC-format cards, although the
8c64038e 34 * MMC stack can't (yet?) distinguish between MMC and DataFlash
1d6432fe
DB
35 * protocols during enumeration.
36 */
37
1d6432fe
DB
38/* reads can bypass the buffers */
39#define OP_READ_CONTINUOUS 0xE8
40#define OP_READ_PAGE 0xD2
41
42/* group B requests can run even while status reports "busy" */
43#define OP_READ_STATUS 0xD7 /* group B */
44
45/* move data between host and buffer */
46#define OP_READ_BUFFER1 0xD4 /* group B */
47#define OP_READ_BUFFER2 0xD6 /* group B */
48#define OP_WRITE_BUFFER1 0x84 /* group B */
49#define OP_WRITE_BUFFER2 0x87 /* group B */
50
51/* erasing flash */
52#define OP_ERASE_PAGE 0x81
53#define OP_ERASE_BLOCK 0x50
54
55/* move data between buffer and flash */
56#define OP_TRANSFER_BUF1 0x53
57#define OP_TRANSFER_BUF2 0x55
58#define OP_MREAD_BUFFER1 0xD4
59#define OP_MREAD_BUFFER2 0xD6
60#define OP_MWERASE_BUFFER1 0x83
61#define OP_MWERASE_BUFFER2 0x86
62#define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
63#define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
64
65/* write to buffer, then write-erase to flash */
66#define OP_PROGRAM_VIA_BUF1 0x82
67#define OP_PROGRAM_VIA_BUF2 0x85
68
69/* compare buffer to flash */
70#define OP_COMPARE_BUF1 0x60
71#define OP_COMPARE_BUF2 0x61
72
73/* read flash to buffer, then write-erase to flash */
74#define OP_REWRITE_VIA_BUF1 0x58
75#define OP_REWRITE_VIA_BUF2 0x59
76
77/* newer chips report JEDEC manufacturer and device IDs; chip
78 * serial number and OTP bits; and per-sector writeprotect.
79 */
80#define OP_READ_ID 0x9F
81#define OP_READ_SECURITY 0x77
34a82443
DB
82#define OP_WRITE_SECURITY_REVC 0x9A
83#define OP_WRITE_SECURITY 0x9B /* revision D */
1d6432fe
DB
84
85
86struct dataflash {
271c5c59 87 uint8_t command[4];
1d6432fe
DB
88 char name[24];
89
90 unsigned partitioned:1;
91
92 unsigned short page_offset; /* offset in flash address */
93 unsigned int page_size; /* of bytes per page */
94
ec9ce52e 95 struct mutex lock;
1d6432fe
DB
96 struct spi_device *spi;
97
98 struct mtd_info mtd;
99};
100
1d6432fe
DB
101/* ......................................................................... */
102
103/*
104 * Return the status of the DataFlash device.
105 */
106static inline int dataflash_status(struct spi_device *spi)
107{
108 /* NOTE: at45db321c over 25 MHz wants to write
109 * a dummy byte after the opcode...
110 */
111 return spi_w8r8(spi, OP_READ_STATUS);
112}
113
114/*
115 * Poll the DataFlash device until it is READY.
116 * This usually takes 5-20 msec or so; more for sector erase.
117 */
118static int dataflash_waitready(struct spi_device *spi)
119{
120 int status;
121
122 for (;;) {
123 status = dataflash_status(spi);
124 if (status < 0) {
125 DEBUG(MTD_DEBUG_LEVEL1, "%s: status %d?\n",
160bbab3 126 dev_name(&spi->dev), status);
1d6432fe
DB
127 status = 0;
128 }
129
130 if (status & (1 << 7)) /* RDY/nBSY */
131 return status;
132
133 msleep(3);
134 }
135}
136
137/* ......................................................................... */
138
139/*
140 * Erase pages of flash.
141 */
142static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
143{
144 struct dataflash *priv = (struct dataflash *)mtd->priv;
145 struct spi_device *spi = priv->spi;
8275c642 146 struct spi_transfer x = { .tx_dma = 0, };
1d6432fe
DB
147 struct spi_message msg;
148 unsigned blocksize = priv->page_size << 3;
271c5c59 149 uint8_t *command;
5b7f3a50 150 uint32_t rem;
1d6432fe 151
5b7f3a50 152 DEBUG(MTD_DEBUG_LEVEL2, "%s: erase addr=0x%llx len 0x%llx\n",
160bbab3
KS
153 dev_name(&spi->dev), (long long)instr->addr,
154 (long long)instr->len);
1d6432fe
DB
155
156 /* Sanity checks */
5b7f3a50
AB
157 if (instr->addr + instr->len > mtd->size)
158 return -EINVAL;
159 div_u64_rem(instr->len, priv->page_size, &rem);
160 if (rem)
161 return -EINVAL;
162 div_u64_rem(instr->addr, priv->page_size, &rem);
163 if (rem)
1d6432fe
DB
164 return -EINVAL;
165
8275c642
VW
166 spi_message_init(&msg);
167
168 x.tx_buf = command = priv->command;
169 x.len = 4;
170 spi_message_add_tail(&x, &msg);
1d6432fe 171
ec9ce52e 172 mutex_lock(&priv->lock);
1d6432fe
DB
173 while (instr->len > 0) {
174 unsigned int pageaddr;
175 int status;
176 int do_block;
177
178 /* Calculate flash page address; use block erase (for speed) if
179 * we're at a block boundary and need to erase the whole block.
180 */
5b7f3a50 181 pageaddr = div_u64(instr->len, priv->page_size);
3cb4f09f 182 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
1d6432fe
DB
183 pageaddr = pageaddr << priv->page_offset;
184
185 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
271c5c59
DW
186 command[1] = (uint8_t)(pageaddr >> 16);
187 command[2] = (uint8_t)(pageaddr >> 8);
1d6432fe
DB
188 command[3] = 0;
189
190 DEBUG(MTD_DEBUG_LEVEL3, "ERASE %s: (%x) %x %x %x [%i]\n",
191 do_block ? "block" : "page",
192 command[0], command[1], command[2], command[3],
193 pageaddr);
194
195 status = spi_sync(spi, &msg);
196 (void) dataflash_waitready(spi);
197
198 if (status < 0) {
199 printk(KERN_ERR "%s: erase %x, err %d\n",
160bbab3 200 dev_name(&spi->dev), pageaddr, status);
1d6432fe
DB
201 /* REVISIT: can retry instr->retries times; or
202 * giveup and instr->fail_addr = instr->addr;
203 */
204 continue;
205 }
206
207 if (do_block) {
208 instr->addr += blocksize;
209 instr->len -= blocksize;
210 } else {
211 instr->addr += priv->page_size;
212 instr->len -= priv->page_size;
213 }
214 }
ec9ce52e 215 mutex_unlock(&priv->lock);
1d6432fe
DB
216
217 /* Inform MTD subsystem that erase is complete */
218 instr->state = MTD_ERASE_DONE;
219 mtd_erase_callback(instr);
220
221 return 0;
222}
223
224/*
225 * Read from the DataFlash device.
226 * from : Start offset in flash device
227 * len : Amount to read
228 * retlen : About of data actually read
229 * buf : Buffer containing the data
230 */
231static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
232 size_t *retlen, u_char *buf)
233{
234 struct dataflash *priv = (struct dataflash *)mtd->priv;
235 struct spi_transfer x[2] = { { .tx_dma = 0, }, };
236 struct spi_message msg;
237 unsigned int addr;
271c5c59 238 uint8_t *command;
1d6432fe
DB
239 int status;
240
241 DEBUG(MTD_DEBUG_LEVEL2, "%s: read 0x%x..0x%x\n",
160bbab3 242 dev_name(&priv->spi->dev), (unsigned)from, (unsigned)(from + len));
1d6432fe
DB
243
244 *retlen = 0;
245
246 /* Sanity checks */
247 if (!len)
248 return 0;
249 if (from + len > mtd->size)
250 return -EINVAL;
251
252 /* Calculate flash page/byte address */
253 addr = (((unsigned)from / priv->page_size) << priv->page_offset)
254 + ((unsigned)from % priv->page_size);
255
256 command = priv->command;
257
258 DEBUG(MTD_DEBUG_LEVEL3, "READ: (%x) %x %x %x\n",
259 command[0], command[1], command[2], command[3]);
260
8275c642
VW
261 spi_message_init(&msg);
262
1d6432fe
DB
263 x[0].tx_buf = command;
264 x[0].len = 8;
8275c642
VW
265 spi_message_add_tail(&x[0], &msg);
266
1d6432fe
DB
267 x[1].rx_buf = buf;
268 x[1].len = len;
8275c642 269 spi_message_add_tail(&x[1], &msg);
1d6432fe 270
ec9ce52e 271 mutex_lock(&priv->lock);
1d6432fe
DB
272
273 /* Continuous read, max clock = f(car) which may be less than
274 * the peak rate available. Some chips support commands with
275 * fewer "don't care" bytes. Both buffers stay unchanged.
276 */
277 command[0] = OP_READ_CONTINUOUS;
271c5c59
DW
278 command[1] = (uint8_t)(addr >> 16);
279 command[2] = (uint8_t)(addr >> 8);
280 command[3] = (uint8_t)(addr >> 0);
1d6432fe
DB
281 /* plus 4 "don't care" bytes */
282
283 status = spi_sync(priv->spi, &msg);
ec9ce52e 284 mutex_unlock(&priv->lock);
1d6432fe
DB
285
286 if (status >= 0) {
287 *retlen = msg.actual_length - 8;
288 status = 0;
289 } else
290 DEBUG(MTD_DEBUG_LEVEL1, "%s: read %x..%x --> %d\n",
160bbab3 291 dev_name(&priv->spi->dev),
1d6432fe
DB
292 (unsigned)from, (unsigned)(from + len),
293 status);
294 return status;
295}
296
297/*
298 * Write to the DataFlash device.
299 * to : Start offset in flash device
300 * len : Amount to write
301 * retlen : Amount of data actually written
302 * buf : Buffer containing the data
303 */
304static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
305 size_t * retlen, const u_char * buf)
306{
307 struct dataflash *priv = (struct dataflash *)mtd->priv;
308 struct spi_device *spi = priv->spi;
309 struct spi_transfer x[2] = { { .tx_dma = 0, }, };
310 struct spi_message msg;
311 unsigned int pageaddr, addr, offset, writelen;
312 size_t remaining = len;
313 u_char *writebuf = (u_char *) buf;
314 int status = -EINVAL;
271c5c59 315 uint8_t *command;
1d6432fe
DB
316
317 DEBUG(MTD_DEBUG_LEVEL2, "%s: write 0x%x..0x%x\n",
160bbab3 318 dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
1d6432fe
DB
319
320 *retlen = 0;
321
322 /* Sanity checks */
323 if (!len)
324 return 0;
325 if ((to + len) > mtd->size)
326 return -EINVAL;
327
8275c642
VW
328 spi_message_init(&msg);
329
1d6432fe
DB
330 x[0].tx_buf = command = priv->command;
331 x[0].len = 4;
8275c642 332 spi_message_add_tail(&x[0], &msg);
1d6432fe
DB
333
334 pageaddr = ((unsigned)to / priv->page_size);
335 offset = ((unsigned)to % priv->page_size);
336 if (offset + len > priv->page_size)
337 writelen = priv->page_size - offset;
338 else
339 writelen = len;
340
ec9ce52e 341 mutex_lock(&priv->lock);
1d6432fe
DB
342 while (remaining > 0) {
343 DEBUG(MTD_DEBUG_LEVEL3, "write @ %i:%i len=%i\n",
344 pageaddr, offset, writelen);
345
346 /* REVISIT:
347 * (a) each page in a sector must be rewritten at least
348 * once every 10K sibling erase/program operations.
349 * (b) for pages that are already erased, we could
350 * use WRITE+MWRITE not PROGRAM for ~30% speedup.
351 * (c) WRITE to buffer could be done while waiting for
352 * a previous MWRITE/MWERASE to complete ...
353 * (d) error handling here seems to be mostly missing.
354 *
355 * Two persistent bits per page, plus a per-sector counter,
356 * could support (a) and (b) ... we might consider using
357 * the second half of sector zero, which is just one block,
358 * to track that state. (On AT91, that sector should also
359 * support boot-from-DataFlash.)
360 */
361
362 addr = pageaddr << priv->page_offset;
363
364 /* (1) Maybe transfer partial page to Buffer1 */
365 if (writelen != priv->page_size) {
366 command[0] = OP_TRANSFER_BUF1;
367 command[1] = (addr & 0x00FF0000) >> 16;
368 command[2] = (addr & 0x0000FF00) >> 8;
369 command[3] = 0;
370
371 DEBUG(MTD_DEBUG_LEVEL3, "TRANSFER: (%x) %x %x %x\n",
372 command[0], command[1], command[2], command[3]);
373
1d6432fe
DB
374 status = spi_sync(spi, &msg);
375 if (status < 0)
376 DEBUG(MTD_DEBUG_LEVEL1, "%s: xfer %u -> %d \n",
160bbab3 377 dev_name(&spi->dev), addr, status);
1d6432fe
DB
378
379 (void) dataflash_waitready(priv->spi);
380 }
381
382 /* (2) Program full page via Buffer1 */
383 addr += offset;
384 command[0] = OP_PROGRAM_VIA_BUF1;
385 command[1] = (addr & 0x00FF0000) >> 16;
386 command[2] = (addr & 0x0000FF00) >> 8;
387 command[3] = (addr & 0x000000FF);
388
389 DEBUG(MTD_DEBUG_LEVEL3, "PROGRAM: (%x) %x %x %x\n",
390 command[0], command[1], command[2], command[3]);
391
392 x[1].tx_buf = writebuf;
393 x[1].len = writelen;
8275c642 394 spi_message_add_tail(x + 1, &msg);
1d6432fe 395 status = spi_sync(spi, &msg);
8275c642 396 spi_transfer_del(x + 1);
1d6432fe
DB
397 if (status < 0)
398 DEBUG(MTD_DEBUG_LEVEL1, "%s: pgm %u/%u -> %d \n",
160bbab3 399 dev_name(&spi->dev), addr, writelen, status);
1d6432fe
DB
400
401 (void) dataflash_waitready(priv->spi);
402
8275c642 403
8c64038e 404#ifdef CONFIG_MTD_DATAFLASH_VERIFY_WRITE
1d6432fe
DB
405
406 /* (3) Compare to Buffer1 */
407 addr = pageaddr << priv->page_offset;
408 command[0] = OP_COMPARE_BUF1;
409 command[1] = (addr & 0x00FF0000) >> 16;
410 command[2] = (addr & 0x0000FF00) >> 8;
411 command[3] = 0;
412
413 DEBUG(MTD_DEBUG_LEVEL3, "COMPARE: (%x) %x %x %x\n",
414 command[0], command[1], command[2], command[3]);
415
1d6432fe
DB
416 status = spi_sync(spi, &msg);
417 if (status < 0)
418 DEBUG(MTD_DEBUG_LEVEL1, "%s: compare %u -> %d \n",
160bbab3 419 dev_name(&spi->dev), addr, status);
1d6432fe
DB
420
421 status = dataflash_waitready(priv->spi);
422
423 /* Check result of the compare operation */
cccb45d4 424 if (status & (1 << 6)) {
1d6432fe 425 printk(KERN_ERR "%s: compare page %u, err %d\n",
160bbab3 426 dev_name(&spi->dev), pageaddr, status);
1d6432fe
DB
427 remaining = 0;
428 status = -EIO;
429 break;
430 } else
431 status = 0;
432
8c64038e 433#endif /* CONFIG_MTD_DATAFLASH_VERIFY_WRITE */
1d6432fe
DB
434
435 remaining = remaining - writelen;
436 pageaddr++;
437 offset = 0;
438 writebuf += writelen;
439 *retlen += writelen;
440
441 if (remaining > priv->page_size)
442 writelen = priv->page_size;
443 else
444 writelen = remaining;
445 }
ec9ce52e 446 mutex_unlock(&priv->lock);
1d6432fe
DB
447
448 return status;
449}
450
451/* ......................................................................... */
452
34a82443
DB
453#ifdef CONFIG_MTD_DATAFLASH_OTP
454
455static int dataflash_get_otp_info(struct mtd_info *mtd,
456 struct otp_info *info, size_t len)
457{
458 /* Report both blocks as identical: bytes 0..64, locked.
459 * Unless the user block changed from all-ones, we can't
460 * tell whether it's still writable; so we assume it isn't.
461 */
462 info->start = 0;
463 info->length = 64;
464 info->locked = 1;
465 return sizeof(*info);
466}
467
468static ssize_t otp_read(struct spi_device *spi, unsigned base,
469 uint8_t *buf, loff_t off, size_t len)
470{
471 struct spi_message m;
472 size_t l;
473 uint8_t *scratch;
474 struct spi_transfer t;
475 int status;
476
477 if (off > 64)
478 return -EINVAL;
479
480 if ((off + len) > 64)
481 len = 64 - off;
482 if (len == 0)
483 return len;
484
485 spi_message_init(&m);
486
487 l = 4 + base + off + len;
488 scratch = kzalloc(l, GFP_KERNEL);
489 if (!scratch)
490 return -ENOMEM;
491
492 /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
493 * IN: ignore 4 bytes, data bytes 0..N (max 127)
494 */
495 scratch[0] = OP_READ_SECURITY;
496
497 memset(&t, 0, sizeof t);
498 t.tx_buf = scratch;
499 t.rx_buf = scratch;
500 t.len = l;
501 spi_message_add_tail(&t, &m);
502
503 dataflash_waitready(spi);
504
505 status = spi_sync(spi, &m);
506 if (status >= 0) {
507 memcpy(buf, scratch + 4 + base + off, len);
508 status = len;
509 }
510
511 kfree(scratch);
512 return status;
513}
514
515static int dataflash_read_fact_otp(struct mtd_info *mtd,
516 loff_t from, size_t len, size_t *retlen, u_char *buf)
517{
518 struct dataflash *priv = (struct dataflash *)mtd->priv;
519 int status;
520
521 /* 64 bytes, from 0..63 ... start at 64 on-chip */
522 mutex_lock(&priv->lock);
523 status = otp_read(priv->spi, 64, buf, from, len);
524 mutex_unlock(&priv->lock);
525
526 if (status < 0)
527 return status;
528 *retlen = status;
529 return 0;
530}
531
532static int dataflash_read_user_otp(struct mtd_info *mtd,
533 loff_t from, size_t len, size_t *retlen, u_char *buf)
534{
535 struct dataflash *priv = (struct dataflash *)mtd->priv;
536 int status;
537
538 /* 64 bytes, from 0..63 ... start at 0 on-chip */
539 mutex_lock(&priv->lock);
540 status = otp_read(priv->spi, 0, buf, from, len);
541 mutex_unlock(&priv->lock);
542
543 if (status < 0)
544 return status;
545 *retlen = status;
546 return 0;
547}
548
549static int dataflash_write_user_otp(struct mtd_info *mtd,
550 loff_t from, size_t len, size_t *retlen, u_char *buf)
551{
552 struct spi_message m;
553 const size_t l = 4 + 64;
554 uint8_t *scratch;
555 struct spi_transfer t;
556 struct dataflash *priv = (struct dataflash *)mtd->priv;
557 int status;
558
559 if (len > 64)
560 return -EINVAL;
561
562 /* Strictly speaking, we *could* truncate the write ... but
563 * let's not do that for the only write that's ever possible.
564 */
565 if ((from + len) > 64)
566 return -EINVAL;
567
568 /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
569 * IN: ignore all
570 */
571 scratch = kzalloc(l, GFP_KERNEL);
572 if (!scratch)
573 return -ENOMEM;
574 scratch[0] = OP_WRITE_SECURITY;
575 memcpy(scratch + 4 + from, buf, len);
576
577 spi_message_init(&m);
578
579 memset(&t, 0, sizeof t);
580 t.tx_buf = scratch;
581 t.len = l;
582 spi_message_add_tail(&t, &m);
583
584 /* Write the OTP bits, if they've not yet been written.
585 * This modifies SRAM buffer1.
586 */
587 mutex_lock(&priv->lock);
588 dataflash_waitready(priv->spi);
589 status = spi_sync(priv->spi, &m);
590 mutex_unlock(&priv->lock);
591
592 kfree(scratch);
593
594 if (status >= 0) {
595 status = 0;
596 *retlen = len;
597 }
598 return status;
599}
600
601static char *otp_setup(struct mtd_info *device, char revision)
602{
603 device->get_fact_prot_info = dataflash_get_otp_info;
604 device->read_fact_prot_reg = dataflash_read_fact_otp;
605 device->get_user_prot_info = dataflash_get_otp_info;
606 device->read_user_prot_reg = dataflash_read_user_otp;
607
608 /* rev c parts (at45db321c and at45db1281 only!) use a
609 * different write procedure; not (yet?) implemented.
610 */
611 if (revision > 'c')
612 device->write_user_prot_reg = dataflash_write_user_otp;
613
614 return ", OTP";
615}
616
617#else
618
cf93ae02 619static char *otp_setup(struct mtd_info *device, char revision)
34a82443
DB
620{
621 return " (OTP)";
622}
623
624#endif
625
626/* ......................................................................... */
627
1d6432fe
DB
628/*
629 * Register DataFlash device with MTD subsystem.
630 */
631static int __devinit
34a82443
DB
632add_dataflash_otp(struct spi_device *spi, char *name,
633 int nr_pages, int pagesize, int pageoffset, char revision)
1d6432fe
DB
634{
635 struct dataflash *priv;
636 struct mtd_info *device;
637 struct flash_platform_data *pdata = spi->dev.platform_data;
34a82443 638 char *otp_tag = "";
1d6432fe 639
5cbded58 640 priv = kzalloc(sizeof *priv, GFP_KERNEL);
1d6432fe
DB
641 if (!priv)
642 return -ENOMEM;
643
ec9ce52e 644 mutex_init(&priv->lock);
1d6432fe
DB
645 priv->spi = spi;
646 priv->page_size = pagesize;
647 priv->page_offset = pageoffset;
648
649 /* name must be usable with cmdlinepart */
650 sprintf(priv->name, "spi%d.%d-%s",
651 spi->master->bus_num, spi->chip_select,
652 name);
653
654 device = &priv->mtd;
655 device->name = (pdata && pdata->name) ? pdata->name : priv->name;
656 device->size = nr_pages * pagesize;
657 device->erasesize = pagesize;
17ffc7ba 658 device->writesize = pagesize;
1d6432fe
DB
659 device->owner = THIS_MODULE;
660 device->type = MTD_DATAFLASH;
6c33cafc 661 device->flags = MTD_WRITEABLE;
1d6432fe
DB
662 device->erase = dataflash_erase;
663 device->read = dataflash_read;
664 device->write = dataflash_write;
665 device->priv = priv;
666
87f39f04
DB
667 device->dev.parent = &spi->dev;
668
34a82443
DB
669 if (revision >= 'c')
670 otp_tag = otp_setup(device, revision);
671
5b7f3a50
AB
672 dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
673 name, (long long)((device->size + 1023) >> 10),
34a82443 674 pagesize, otp_tag);
1d6432fe
DB
675 dev_set_drvdata(&spi->dev, priv);
676
677 if (mtd_has_partitions()) {
678 struct mtd_partition *parts;
679 int nr_parts = 0;
680
a4b6d516
DB
681 if (mtd_has_cmdlinepart()) {
682 static const char *part_probes[]
683 = { "cmdlinepart", NULL, };
1d6432fe 684
a4b6d516
DB
685 nr_parts = parse_mtd_partitions(device,
686 part_probes, &parts, 0);
687 }
1d6432fe
DB
688
689 if (nr_parts <= 0 && pdata && pdata->parts) {
690 parts = pdata->parts;
691 nr_parts = pdata->nr_parts;
692 }
693
694 if (nr_parts > 0) {
695 priv->partitioned = 1;
696 return add_mtd_partitions(device, parts, nr_parts);
697 }
7111763d 698 } else if (pdata && pdata->nr_parts)
1d6432fe
DB
699 dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
700 pdata->nr_parts, device->name);
701
702 return add_mtd_device(device) == 1 ? -ENODEV : 0;
703}
704
34a82443
DB
705static inline int __devinit
706add_dataflash(struct spi_device *spi, char *name,
707 int nr_pages, int pagesize, int pageoffset)
708{
709 return add_dataflash_otp(spi, name, nr_pages, pagesize,
710 pageoffset, 0);
711}
712
e9d42227
MH
713struct flash_info {
714 char *name;
715
771999b6 716 /* JEDEC id has a high byte of zero plus three data bytes:
717 * the manufacturer id, then a two byte device id.
e9d42227 718 */
271c5c59 719 uint32_t jedec_id;
e9d42227 720
771999b6 721 /* The size listed here is what works with OP_ERASE_PAGE. */
e9d42227 722 unsigned nr_pages;
271c5c59
DW
723 uint16_t pagesize;
724 uint16_t pageoffset;
e9d42227 725
271c5c59 726 uint16_t flags;
771999b6 727#define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
728#define IS_POW2PS 0x0001 /* uses 2^N byte pages */
e9d42227
MH
729};
730
731static struct flash_info __devinitdata dataflash_data [] = {
732
771999b6 733 /*
734 * NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
735 * one with IS_POW2PS and the other without. The entry with the
736 * non-2^N byte page size can't name exact chip revisions without
737 * losing backwards compatibility for cmdlinepart.
738 *
739 * These newer chips also support 128-byte security registers (with
740 * 64 bytes one-time-programmable) and software write-protection.
741 */
742 { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
e9d42227
MH
743 { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
744
771999b6 745 { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
e9d42227
MH
746 { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
747
771999b6 748 { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
e9d42227
MH
749 { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
750
771999b6 751 { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
e9d42227
MH
752 { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
753
771999b6 754 { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
e9d42227
MH
755 { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
756
771999b6 757 { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
e9d42227 758
771999b6 759 { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
e9d42227
MH
760 { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
761
771999b6 762 { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
763 { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
e9d42227
MH
764};
765
766static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
767{
768 int tmp;
271c5c59
DW
769 uint8_t code = OP_READ_ID;
770 uint8_t id[3];
771 uint32_t jedec;
e9d42227
MH
772 struct flash_info *info;
773 int status;
774
e9d42227
MH
775 /* JEDEC also defines an optional "extended device information"
776 * string for after vendor-specific data, after the three bytes
777 * we use here. Supporting some chips might require using it.
771999b6 778 *
779 * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
780 * That's not an error; only rev C and newer chips handle it, and
781 * only Atmel sells these chips.
e9d42227
MH
782 */
783 tmp = spi_write_then_read(spi, &code, 1, id, 3);
784 if (tmp < 0) {
785 DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
160bbab3 786 dev_name(&spi->dev), tmp);
771999b6 787 return ERR_PTR(tmp);
e9d42227 788 }
771999b6 789 if (id[0] != 0x1f)
790 return NULL;
791
e9d42227
MH
792 jedec = id[0];
793 jedec = jedec << 8;
794 jedec |= id[1];
795 jedec = jedec << 8;
796 jedec |= id[2];
797
798 for (tmp = 0, info = dataflash_data;
799 tmp < ARRAY_SIZE(dataflash_data);
800 tmp++, info++) {
801 if (info->jedec_id == jedec) {
771999b6 802 DEBUG(MTD_DEBUG_LEVEL1, "%s: OTP, sector protect%s\n",
803 dev_name(&spi->dev),
804 (info->flags & SUP_POW2PS)
805 ? ", binary pagesize" : ""
806 );
e9d42227
MH
807 if (info->flags & SUP_POW2PS) {
808 status = dataflash_status(spi);
771999b6 809 if (status < 0) {
810 DEBUG(MTD_DEBUG_LEVEL1,
811 "%s: status error %d\n",
812 dev_name(&spi->dev), status);
813 return ERR_PTR(status);
814 }
815 if (status & 0x1) {
816 if (info->flags & IS_POW2PS)
817 return info;
818 } else {
819 if (!(info->flags & IS_POW2PS))
820 return info;
821 }
229cc58b
WN
822 } else
823 return info;
e9d42227
MH
824 }
825 }
771999b6 826
827 /*
828 * Treat other chips as errors ... we won't know the right page
829 * size (it might be binary) even when we can tell which density
830 * class is involved (legacy chip id scheme).
831 */
832 dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
833 return ERR_PTR(-ENODEV);
e9d42227
MH
834}
835
771999b6 836/*
837 * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
838 * or else the ID code embedded in the status bits:
839 *
840 * Device Density ID code #Pages PageSize Offset
841 * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
842 * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
843 * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
844 * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
845 * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
846 * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
847 * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
848 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
849 */
1d6432fe
DB
850static int __devinit dataflash_probe(struct spi_device *spi)
851{
852 int status;
e9d42227
MH
853 struct flash_info *info;
854
855 /*
856 * Try to detect dataflash by JEDEC ID.
857 * If it succeeds we know we have either a C or D part.
858 * D will support power of 2 pagesize option.
34a82443
DB
859 * Both support the security register, though with different
860 * write procedures.
e9d42227 861 */
e9d42227 862 info = jedec_probe(spi);
771999b6 863 if (IS_ERR(info))
864 return PTR_ERR(info);
e9d42227 865 if (info != NULL)
34a82443
DB
866 return add_dataflash_otp(spi, info->name, info->nr_pages,
867 info->pagesize, info->pageoffset,
868 (info->flags & SUP_POW2PS) ? 'd' : 'c');
e9d42227 869
771999b6 870 /*
871 * Older chips support only legacy commands, identifing
872 * capacity using bits in the status byte.
873 */
1d6432fe
DB
874 status = dataflash_status(spi);
875 if (status <= 0 || status == 0xff) {
876 DEBUG(MTD_DEBUG_LEVEL1, "%s: status error %d\n",
160bbab3 877 dev_name(&spi->dev), status);
de4fa992 878 if (status == 0 || status == 0xff)
1d6432fe
DB
879 status = -ENODEV;
880 return status;
881 }
882
883 /* if there's a device there, assume it's dataflash.
884 * board setup should have set spi->max_speed_max to
885 * match f(car) for continuous reads, mode 0 or 3.
886 */
887 switch (status & 0x3c) {
888 case 0x0c: /* 0 0 1 1 x x */
889 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
890 break;
891 case 0x14: /* 0 1 0 1 x x */
e9d42227 892 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
1d6432fe
DB
893 break;
894 case 0x1c: /* 0 1 1 1 x x */
771999b6 895 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
1d6432fe
DB
896 break;
897 case 0x24: /* 1 0 0 1 x x */
898 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
899 break;
900 case 0x2c: /* 1 0 1 1 x x */
771999b6 901 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
1d6432fe
DB
902 break;
903 case 0x34: /* 1 1 0 1 x x */
904 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
905 break;
906 case 0x38: /* 1 1 1 x x x */
907 case 0x3c:
908 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
909 break;
910 /* obsolete AT45DB1282 not (yet?) supported */
911 default:
912 DEBUG(MTD_DEBUG_LEVEL1, "%s: unsupported device (%x)\n",
160bbab3 913 dev_name(&spi->dev), status & 0x3c);
1d6432fe
DB
914 status = -ENODEV;
915 }
916
917 if (status < 0)
918 DEBUG(MTD_DEBUG_LEVEL1, "%s: add_dataflash --> %d\n",
160bbab3 919 dev_name(&spi->dev), status);
1d6432fe
DB
920
921 return status;
922}
923
924static int __devexit dataflash_remove(struct spi_device *spi)
925{
926 struct dataflash *flash = dev_get_drvdata(&spi->dev);
927 int status;
928
160bbab3 929 DEBUG(MTD_DEBUG_LEVEL1, "%s: remove\n", dev_name(&spi->dev));
1d6432fe
DB
930
931 if (mtd_has_partitions() && flash->partitioned)
932 status = del_mtd_partitions(&flash->mtd);
933 else
934 status = del_mtd_device(&flash->mtd);
935 if (status == 0)
936 kfree(flash);
937 return status;
938}
939
940static struct spi_driver dataflash_driver = {
941 .driver = {
942 .name = "mtd_dataflash",
943 .bus = &spi_bus_type,
944 .owner = THIS_MODULE,
945 },
946
947 .probe = dataflash_probe,
948 .remove = __devexit_p(dataflash_remove),
949
950 /* FIXME: investigate suspend and resume... */
951};
952
953static int __init dataflash_init(void)
954{
955 return spi_register_driver(&dataflash_driver);
956}
957module_init(dataflash_init);
958
959static void __exit dataflash_exit(void)
960{
961 spi_unregister_driver(&dataflash_driver);
962}
963module_exit(dataflash_exit);
964
965
966MODULE_LICENSE("GPL");
967MODULE_AUTHOR("Andrew Victor, David Brownell");
968MODULE_DESCRIPTION("MTD DataFlash driver");