]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/mmc/host/mmc_spi.c
Merge branch 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelv...
[net-next-2.6.git] / drivers / mmc / host / mmc_spi.c
CommitLineData
15a0580c
DB
1/*
2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3 *
4 * (C) Copyright 2005, Intec Automation,
5 * Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 * Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 * Jan Nikitenko <jan.nikitenko@gmail.com>
11 *
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
56e303eb 27#include <linux/sched.h>
15a0580c 28#include <linux/delay.h>
5a0e3ad6 29#include <linux/slab.h>
23fd5045 30#include <linux/bio.h>
15a0580c
DB
31#include <linux/dma-mapping.h>
32#include <linux/crc7.h>
33#include <linux/crc-itu-t.h>
e5712a6a 34#include <linux/scatterlist.h>
15a0580c
DB
35
36#include <linux/mmc/host.h>
37#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
38
39#include <linux/spi/spi.h>
40#include <linux/spi/mmc_spi.h>
41
42#include <asm/unaligned.h>
43
44
45/* NOTES:
46 *
47 * - For now, we won't try to interoperate with a real mmc/sd/sdio
48 * controller, although some of them do have hardware support for
49 * SPI protocol. The main reason for such configs would be mmc-ish
50 * cards like DataFlash, which don't support that "native" protocol.
51 *
52 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
53 * switch between driver stacks, and in any case if "native" mode
54 * is available, it will be faster and hence preferable.
55 *
56 * - MMC depends on a different chipselect management policy than the
57 * SPI interface currently supports for shared bus segments: it needs
58 * to issue multiple spi_message requests with the chipselect active,
59 * using the results of one message to decide the next one to issue.
60 *
61 * Pending updates to the programming interface, this driver expects
62 * that it not share the bus with other drivers (precluding conflicts).
63 *
64 * - We tell the controller to keep the chipselect active from the
65 * beginning of an mmc_host_ops.request until the end. So beware
66 * of SPI controller drivers that mis-handle the cs_change flag!
67 *
68 * However, many cards seem OK with chipselect flapping up/down
69 * during that time ... at least on unshared bus segments.
70 */
71
72
73/*
74 * Local protocol constants, internal to data block protocols.
75 */
76
77/* Response tokens used to ack each block written: */
78#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
79#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
80#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
81#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
82
83/* Read and write blocks start with these tokens and end with crc;
84 * on error, read tokens act like a subset of R2_SPI_* values.
85 */
86#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
87#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
88#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
89
90#define MMC_SPI_BLOCKSIZE 512
91
92
93/* These fixed timeouts come from the latest SD specs, which say to ignore
94 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
95 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
96 * reads which takes nowhere near that long. Older cards may be able to use
97 * shorter timeouts ... but why bother?
98 */
56e303eb 99#define r1b_timeout (HZ * 3)
15a0580c 100
5cf20aa5
WM
101/* One of the critical speed parameters is the amount of data which may
102 * be transfered in one command. If this value is too low, the SD card
103 * controller has to do multiple partial block writes (argggh!). With
104 * today (2008) SD cards there is little speed gain if we transfer more
105 * than 64 KBytes at a time. So use this value until there is any indication
106 * that we should do more here.
107 */
108#define MMC_SPI_BLOCKSATONCE 128
15a0580c
DB
109
110/****************************************************************************/
111
112/*
113 * Local Data Structures
114 */
115
116/* "scratch" is per-{command,block} data exchanged with the card */
117struct scratch {
118 u8 status[29];
119 u8 data_token;
120 __be16 crc_val;
121};
122
123struct mmc_spi_host {
124 struct mmc_host *mmc;
125 struct spi_device *spi;
126
127 unsigned char power_mode;
128 u16 powerup_msecs;
129
130 struct mmc_spi_platform_data *pdata;
131
132 /* for bulk data transfers */
133 struct spi_transfer token, t, crc, early_status;
134 struct spi_message m;
135
136 /* for status readback */
137 struct spi_transfer status;
138 struct spi_message readback;
139
140 /* underlying DMA-aware controller, or null */
141 struct device *dma_dev;
142
143 /* buffer used for commands and for message "overhead" */
144 struct scratch *data;
145 dma_addr_t data_dma;
146
147 /* Specs say to write ones most of the time, even when the card
148 * has no need to read its input data; and many cards won't care.
149 * This is our source of those ones.
150 */
151 void *ones;
152 dma_addr_t ones_dma;
153};
154
155
156/****************************************************************************/
157
158/*
159 * MMC-over-SPI protocol glue, used by the MMC stack interface
160 */
161
162static inline int mmc_cs_off(struct mmc_spi_host *host)
163{
164 /* chipselect will always be inactive after setup() */
165 return spi_setup(host->spi);
166}
167
168static int
169mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
170{
171 int status;
172
173 if (len > sizeof(*host->data)) {
174 WARN_ON(1);
175 return -EIO;
176 }
177
178 host->status.len = len;
179
180 if (host->dma_dev)
181 dma_sync_single_for_device(host->dma_dev,
182 host->data_dma, sizeof(*host->data),
183 DMA_FROM_DEVICE);
184
4751c1c7 185 status = spi_sync_locked(host->spi, &host->readback);
15a0580c
DB
186
187 if (host->dma_dev)
188 dma_sync_single_for_cpu(host->dma_dev,
189 host->data_dma, sizeof(*host->data),
190 DMA_FROM_DEVICE);
191
192 return status;
193}
194
56e303eb
WM
195static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
196 unsigned n, u8 byte)
15a0580c
DB
197{
198 u8 *cp = host->data->status;
56e303eb 199 unsigned long start = jiffies;
15a0580c
DB
200
201 while (1) {
202 int status;
203 unsigned i;
204
205 status = mmc_spi_readbytes(host, n);
206 if (status < 0)
207 return status;
208
209 for (i = 0; i < n; i++) {
210 if (cp[i] != byte)
211 return cp[i];
212 }
213
56e303eb 214 if (time_is_before_jiffies(start + timeout))
15a0580c 215 break;
56e303eb
WM
216
217 /* If we need long timeouts, we may release the CPU.
218 * We use jiffies here because we want to have a relation
219 * between elapsed time and the blocking of the scheduler.
220 */
221 if (time_is_before_jiffies(start+1))
222 schedule();
15a0580c
DB
223 }
224 return -ETIMEDOUT;
225}
226
227static inline int
56e303eb 228mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
15a0580c
DB
229{
230 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
231}
232
56e303eb 233static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
15a0580c 234{
162350eb 235 return mmc_spi_skip(host, timeout, 1, 0xff);
15a0580c
DB
236}
237
238
239/*
240 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
241 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
242 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
243 *
244 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
245 * newer cards R7 (IF_COND).
246 */
247
248static char *maptype(struct mmc_command *cmd)
249{
250 switch (mmc_spi_resp_type(cmd)) {
251 case MMC_RSP_SPI_R1: return "R1";
252 case MMC_RSP_SPI_R1B: return "R1B";
253 case MMC_RSP_SPI_R2: return "R2/R5";
254 case MMC_RSP_SPI_R3: return "R3/R4/R7";
255 default: return "?";
256 }
257}
258
259/* return zero, else negative errno after setting cmd->error */
260static int mmc_spi_response_get(struct mmc_spi_host *host,
261 struct mmc_command *cmd, int cs_on)
262{
263 u8 *cp = host->data->status;
264 u8 *end = cp + host->t.len;
265 int value = 0;
ab5a643c
WM
266 int bitshift;
267 u8 leftover = 0;
268 unsigned short rotator;
269 int i;
15a0580c
DB
270 char tag[32];
271
272 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
273 cmd->opcode, maptype(cmd));
274
275 /* Except for data block reads, the whole response will already
276 * be stored in the scratch buffer. It's somewhere after the
277 * command and the first byte we read after it. We ignore that
278 * first byte. After STOP_TRANSMISSION command it may include
279 * two data bits, but otherwise it's all ones.
280 */
281 cp += 8;
282 while (cp < end && *cp == 0xff)
283 cp++;
284
285 /* Data block reads (R1 response types) may need more data... */
286 if (cp == end) {
15a0580c 287 cp = host->data->status;
ab5a643c 288 end = cp+1;
15a0580c
DB
289
290 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
291 * status byte ... and we already scanned 2 bytes.
292 *
293 * REVISIT block read paths use nasty byte-at-a-time I/O
294 * so it can always DMA directly into the target buffer.
295 * It'd probably be better to memcpy() the first chunk and
296 * avoid extra i/o calls...
ea15ba5c
WM
297 *
298 * Note we check for more than 8 bytes, because in practice,
299 * some SD cards are slow...
15a0580c 300 */
ea15ba5c 301 for (i = 2; i < 16; i++) {
15a0580c
DB
302 value = mmc_spi_readbytes(host, 1);
303 if (value < 0)
304 goto done;
305 if (*cp != 0xff)
306 goto checkstatus;
307 }
308 value = -ETIMEDOUT;
309 goto done;
310 }
311
312checkstatus:
ab5a643c
WM
313 bitshift = 0;
314 if (*cp & 0x80) {
315 /* Houston, we have an ugly card with a bit-shifted response */
316 rotator = *cp++ << 8;
317 /* read the next byte */
318 if (cp == end) {
319 value = mmc_spi_readbytes(host, 1);
320 if (value < 0)
321 goto done;
322 cp = host->data->status;
323 end = cp+1;
324 }
325 rotator |= *cp++;
326 while (rotator & 0x8000) {
327 bitshift++;
328 rotator <<= 1;
329 }
330 cmd->resp[0] = rotator >> 8;
331 leftover = rotator;
332 } else {
333 cmd->resp[0] = *cp++;
15a0580c 334 }
15a0580c
DB
335 cmd->error = 0;
336
337 /* Status byte: the entire seven-bit R1 response. */
338 if (cmd->resp[0] != 0) {
fdd858db 339 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
15a0580c 340 & cmd->resp[0])
fdd858db
WM
341 value = -EFAULT; /* Bad address */
342 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
343 value = -ENOSYS; /* Function not implemented */
15a0580c 344 else if (R1_SPI_COM_CRC & cmd->resp[0])
fdd858db 345 value = -EILSEQ; /* Illegal byte sequence */
15a0580c
DB
346 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
347 & cmd->resp[0])
fdd858db 348 value = -EIO; /* I/O error */
15a0580c
DB
349 /* else R1_SPI_IDLE, "it's resetting" */
350 }
351
352 switch (mmc_spi_resp_type(cmd)) {
353
354 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
355 * and less-common stuff like various erase operations.
356 */
357 case MMC_RSP_SPI_R1B:
358 /* maybe we read all the busy tokens already */
359 while (cp < end && *cp == 0)
360 cp++;
361 if (cp == end)
362 mmc_spi_wait_unbusy(host, r1b_timeout);
363 break;
364
365 /* SPI R2 == R1 + second status byte; SEND_STATUS
366 * SPI R5 == R1 + data byte; IO_RW_DIRECT
367 */
368 case MMC_RSP_SPI_R2:
ab5a643c
WM
369 /* read the next byte */
370 if (cp == end) {
371 value = mmc_spi_readbytes(host, 1);
372 if (value < 0)
373 goto done;
374 cp = host->data->status;
375 end = cp+1;
376 }
377 if (bitshift) {
378 rotator = leftover << 8;
379 rotator |= *cp << bitshift;
380 cmd->resp[0] |= (rotator & 0xFF00);
381 } else {
382 cmd->resp[0] |= *cp << 8;
383 }
15a0580c
DB
384 break;
385
386 /* SPI R3, R4, or R7 == R1 + 4 bytes */
387 case MMC_RSP_SPI_R3:
ab5a643c
WM
388 rotator = leftover << 8;
389 cmd->resp[1] = 0;
390 for (i = 0; i < 4; i++) {
391 cmd->resp[1] <<= 8;
392 /* read the next byte */
393 if (cp == end) {
394 value = mmc_spi_readbytes(host, 1);
395 if (value < 0)
396 goto done;
397 cp = host->data->status;
398 end = cp+1;
399 }
400 if (bitshift) {
401 rotator |= *cp++ << bitshift;
402 cmd->resp[1] |= (rotator >> 8);
403 rotator <<= 8;
404 } else {
405 cmd->resp[1] |= *cp++;
406 }
407 }
15a0580c
DB
408 break;
409
410 /* SPI R1 == just one status byte */
411 case MMC_RSP_SPI_R1:
412 break;
413
414 default:
415 dev_dbg(&host->spi->dev, "bad response type %04x\n",
416 mmc_spi_resp_type(cmd));
417 if (value >= 0)
418 value = -EINVAL;
419 goto done;
420 }
421
422 if (value < 0)
423 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
424 tag, cmd->resp[0], cmd->resp[1]);
425
426 /* disable chipselect on errors and some success cases */
427 if (value >= 0 && cs_on)
428 return value;
429done:
430 if (value < 0)
431 cmd->error = value;
432 mmc_cs_off(host);
433 return value;
434}
435
436/* Issue command and read its response.
437 * Returns zero on success, negative for error.
438 *
439 * On error, caller must cope with mmc core retry mechanism. That
440 * means immediate low-level resubmit, which affects the bus lock...
441 */
442static int
443mmc_spi_command_send(struct mmc_spi_host *host,
444 struct mmc_request *mrq,
445 struct mmc_command *cmd, int cs_on)
446{
447 struct scratch *data = host->data;
448 u8 *cp = data->status;
449 u32 arg = cmd->arg;
450 int status;
451 struct spi_transfer *t;
452
453 /* We can handle most commands (except block reads) in one full
454 * duplex I/O operation before either starting the next transfer
455 * (data block or command) or else deselecting the card.
456 *
457 * First, write 7 bytes:
458 * - an all-ones byte to ensure the card is ready
459 * - opcode byte (plus start and transmission bits)
460 * - four bytes of big-endian argument
461 * - crc7 (plus end bit) ... always computed, it's cheap
462 *
463 * We init the whole buffer to all-ones, which is what we need
464 * to write while we're reading (later) response data.
465 */
466 memset(cp++, 0xff, sizeof(data->status));
467
468 *cp++ = 0x40 | cmd->opcode;
469 *cp++ = (u8)(arg >> 24);
470 *cp++ = (u8)(arg >> 16);
471 *cp++ = (u8)(arg >> 8);
472 *cp++ = (u8)arg;
473 *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
474
475 /* Then, read up to 13 bytes (while writing all-ones):
476 * - N(CR) (== 1..8) bytes of all-ones
477 * - status byte (for all response types)
478 * - the rest of the response, either:
479 * + nothing, for R1 or R1B responses
480 * + second status byte, for R2 responses
481 * + four data bytes, for R3 and R7 responses
482 *
483 * Finally, read some more bytes ... in the nice cases we know in
484 * advance how many, and reading 1 more is always OK:
485 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
486 * - N(RC) (== 1..N) bytes of all-ones, before next command
487 * - N(WR) (== 1..N) bytes of all-ones, before data write
488 *
489 * So in those cases one full duplex I/O of at most 21 bytes will
490 * handle the whole command, leaving the card ready to receive a
491 * data block or new command. We do that whenever we can, shaving
492 * CPU and IRQ costs (especially when using DMA or FIFOs).
493 *
494 * There are two other cases, where it's not generally practical
495 * to rely on a single I/O:
496 *
497 * - R1B responses need at least N(EC) bytes of all-zeroes.
498 *
499 * In this case we can *try* to fit it into one I/O, then
500 * maybe read more data later.
501 *
502 * - Data block reads are more troublesome, since a variable
503 * number of padding bytes precede the token and data.
504 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
505 * + N(AC) (== 1..many) bytes of all-ones
506 *
507 * In this case we currently only have minimal speedups here:
508 * when N(CR) == 1 we can avoid I/O in response_get().
509 */
510 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
511 cp += 2; /* min(N(CR)) + status */
512 /* R1 */
513 } else {
514 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
515 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
516 cp++;
517 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
518 cp += 4;
519 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
520 cp = data->status + sizeof(data->status);
521 /* else: R1 (most commands) */
522 }
523
524 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
525 cmd->opcode, maptype(cmd));
526
527 /* send command, leaving chipselect active */
528 spi_message_init(&host->m);
529
530 t = &host->t;
531 memset(t, 0, sizeof(*t));
532 t->tx_buf = t->rx_buf = data->status;
533 t->tx_dma = t->rx_dma = host->data_dma;
534 t->len = cp - data->status;
535 t->cs_change = 1;
536 spi_message_add_tail(t, &host->m);
537
538 if (host->dma_dev) {
539 host->m.is_dma_mapped = 1;
540 dma_sync_single_for_device(host->dma_dev,
541 host->data_dma, sizeof(*host->data),
542 DMA_BIDIRECTIONAL);
543 }
4751c1c7 544 status = spi_sync_locked(host->spi, &host->m);
15a0580c
DB
545
546 if (host->dma_dev)
547 dma_sync_single_for_cpu(host->dma_dev,
548 host->data_dma, sizeof(*host->data),
549 DMA_BIDIRECTIONAL);
550 if (status < 0) {
551 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
552 cmd->error = status;
553 return status;
554 }
555
556 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
557 return mmc_spi_response_get(host, cmd, cs_on);
558}
559
560/* Build data message with up to four separate transfers. For TX, we
561 * start by writing the data token. And in most cases, we finish with
562 * a status transfer.
563 *
564 * We always provide TX data for data and CRC. The MMC/SD protocol
565 * requires us to write ones; but Linux defaults to writing zeroes;
566 * so we explicitly initialize it to all ones on RX paths.
567 *
568 * We also handle DMA mapping, so the underlying SPI controller does
569 * not need to (re)do it for each message.
570 */
571static void
572mmc_spi_setup_data_message(
573 struct mmc_spi_host *host,
574 int multiple,
575 enum dma_data_direction direction)
576{
577 struct spi_transfer *t;
578 struct scratch *scratch = host->data;
579 dma_addr_t dma = host->data_dma;
580
581 spi_message_init(&host->m);
582 if (dma)
583 host->m.is_dma_mapped = 1;
584
585 /* for reads, readblock() skips 0xff bytes before finding
586 * the token; for writes, this transfer issues that token.
587 */
588 if (direction == DMA_TO_DEVICE) {
589 t = &host->token;
590 memset(t, 0, sizeof(*t));
591 t->len = 1;
592 if (multiple)
593 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
594 else
595 scratch->data_token = SPI_TOKEN_SINGLE;
596 t->tx_buf = &scratch->data_token;
597 if (dma)
598 t->tx_dma = dma + offsetof(struct scratch, data_token);
599 spi_message_add_tail(t, &host->m);
600 }
601
602 /* Body of transfer is buffer, then CRC ...
603 * either TX-only, or RX with TX-ones.
604 */
605 t = &host->t;
606 memset(t, 0, sizeof(*t));
607 t->tx_buf = host->ones;
608 t->tx_dma = host->ones_dma;
609 /* length and actual buffer info are written later */
610 spi_message_add_tail(t, &host->m);
611
612 t = &host->crc;
613 memset(t, 0, sizeof(*t));
614 t->len = 2;
615 if (direction == DMA_TO_DEVICE) {
616 /* the actual CRC may get written later */
617 t->tx_buf = &scratch->crc_val;
618 if (dma)
619 t->tx_dma = dma + offsetof(struct scratch, crc_val);
620 } else {
621 t->tx_buf = host->ones;
622 t->tx_dma = host->ones_dma;
623 t->rx_buf = &scratch->crc_val;
624 if (dma)
625 t->rx_dma = dma + offsetof(struct scratch, crc_val);
626 }
627 spi_message_add_tail(t, &host->m);
628
629 /*
630 * A single block read is followed by N(EC) [0+] all-ones bytes
631 * before deselect ... don't bother.
632 *
633 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
634 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
635 * collect that single byte, so readblock() doesn't need to.
636 *
637 * For a write, the one-byte data response follows immediately, then
638 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
639 * Then single block reads may deselect, and multiblock ones issue
640 * the next token (next data block, or STOP_TRAN). We can try to
641 * minimize I/O ops by using a single read to collect end-of-busy.
642 */
643 if (multiple || direction == DMA_TO_DEVICE) {
644 t = &host->early_status;
645 memset(t, 0, sizeof(*t));
646 t->len = (direction == DMA_TO_DEVICE)
647 ? sizeof(scratch->status)
648 : 1;
649 t->tx_buf = host->ones;
650 t->tx_dma = host->ones_dma;
651 t->rx_buf = scratch->status;
652 if (dma)
653 t->rx_dma = dma + offsetof(struct scratch, status);
654 t->cs_change = 1;
655 spi_message_add_tail(t, &host->m);
656 }
657}
658
659/*
660 * Write one block:
661 * - caller handled preceding N(WR) [1+] all-ones bytes
662 * - data block
663 * + token
664 * + data bytes
665 * + crc16
666 * - an all-ones byte ... card writes a data-response byte
667 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
668 *
669 * Return negative errno, else success.
670 */
671static int
162350eb 672mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
56e303eb 673 unsigned long timeout)
15a0580c
DB
674{
675 struct spi_device *spi = host->spi;
676 int status, i;
677 struct scratch *scratch = host->data;
f079a8fc 678 u32 pattern;
15a0580c
DB
679
680 if (host->mmc->use_spi_crc)
681 scratch->crc_val = cpu_to_be16(
682 crc_itu_t(0, t->tx_buf, t->len));
683 if (host->dma_dev)
684 dma_sync_single_for_device(host->dma_dev,
685 host->data_dma, sizeof(*scratch),
686 DMA_BIDIRECTIONAL);
687
4751c1c7 688 status = spi_sync_locked(spi, &host->m);
15a0580c
DB
689
690 if (status != 0) {
691 dev_dbg(&spi->dev, "write error (%d)\n", status);
692 return status;
693 }
694
695 if (host->dma_dev)
696 dma_sync_single_for_cpu(host->dma_dev,
697 host->data_dma, sizeof(*scratch),
698 DMA_BIDIRECTIONAL);
699
700 /*
701 * Get the transmission data-response reply. It must follow
702 * immediately after the data block we transferred. This reply
703 * doesn't necessarily tell whether the write operation succeeded;
704 * it just says if the transmission was ok and whether *earlier*
705 * writes succeeded; see the standard.
f079a8fc
WM
706 *
707 * In practice, there are (even modern SDHC-)cards which are late
708 * in sending the response, and miss the time frame by a few bits,
709 * so we have to cope with this situation and check the response
710 * bit-by-bit. Arggh!!!
15a0580c 711 */
f079a8fc
WM
712 pattern = scratch->status[0] << 24;
713 pattern |= scratch->status[1] << 16;
714 pattern |= scratch->status[2] << 8;
715 pattern |= scratch->status[3];
716
717 /* First 3 bit of pattern are undefined */
718 pattern |= 0xE0000000;
719
720 /* left-adjust to leading 0 bit */
721 while (pattern & 0x80000000)
722 pattern <<= 1;
723 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
724 pattern >>= 27;
725
726 switch (pattern) {
15a0580c
DB
727 case SPI_RESPONSE_ACCEPTED:
728 status = 0;
729 break;
730 case SPI_RESPONSE_CRC_ERR:
731 /* host shall then issue MMC_STOP_TRANSMISSION */
732 status = -EILSEQ;
733 break;
734 case SPI_RESPONSE_WRITE_ERR:
735 /* host shall then issue MMC_STOP_TRANSMISSION,
736 * and should MMC_SEND_STATUS to sort it out
737 */
738 status = -EIO;
739 break;
740 default:
741 status = -EPROTO;
742 break;
743 }
744 if (status != 0) {
745 dev_dbg(&spi->dev, "write error %02x (%d)\n",
746 scratch->status[0], status);
747 return status;
748 }
749
750 t->tx_buf += t->len;
751 if (host->dma_dev)
752 t->tx_dma += t->len;
753
754 /* Return when not busy. If we didn't collect that status yet,
755 * we'll need some more I/O.
756 */
f079a8fc
WM
757 for (i = 4; i < sizeof(scratch->status); i++) {
758 /* card is non-busy if the most recent bit is 1 */
759 if (scratch->status[i] & 0x01)
15a0580c
DB
760 return 0;
761 }
162350eb 762 return mmc_spi_wait_unbusy(host, timeout);
15a0580c
DB
763}
764
765/*
766 * Read one block:
767 * - skip leading all-ones bytes ... either
768 * + N(AC) [1..f(clock,CSD)] usually, else
769 * + N(CX) [0..8] when reading CSD or CID
770 * - data block
771 * + token ... if error token, no data or crc
772 * + data bytes
773 * + crc16
774 *
775 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
776 * before dropping chipselect.
777 *
778 * For multiblock reads, caller either reads the next block or issues a
779 * STOP_TRANSMISSION command.
780 */
781static int
162350eb 782mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
56e303eb 783 unsigned long timeout)
15a0580c
DB
784{
785 struct spi_device *spi = host->spi;
786 int status;
787 struct scratch *scratch = host->data;
ab5a643c
WM
788 unsigned int bitshift;
789 u8 leftover;
15a0580c
DB
790
791 /* At least one SD card sends an all-zeroes byte when N(CX)
792 * applies, before the all-ones bytes ... just cope with that.
793 */
794 status = mmc_spi_readbytes(host, 1);
795 if (status < 0)
796 return status;
797 status = scratch->status[0];
798 if (status == 0xff || status == 0)
162350eb 799 status = mmc_spi_readtoken(host, timeout);
15a0580c 800
ab5a643c
WM
801 if (status < 0) {
802 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
803 return status;
804 }
15a0580c 805
ab5a643c
WM
806 /* The token may be bit-shifted...
807 * the first 0-bit precedes the data stream.
808 */
809 bitshift = 7;
810 while (status & 0x80) {
811 status <<= 1;
812 bitshift--;
813 }
814 leftover = status << 1;
15a0580c 815
ab5a643c
WM
816 if (host->dma_dev) {
817 dma_sync_single_for_device(host->dma_dev,
818 host->data_dma, sizeof(*scratch),
819 DMA_BIDIRECTIONAL);
820 dma_sync_single_for_device(host->dma_dev,
821 t->rx_dma, t->len,
822 DMA_FROM_DEVICE);
823 }
15a0580c 824
4751c1c7 825 status = spi_sync_locked(spi, &host->m);
15a0580c 826
ab5a643c
WM
827 if (host->dma_dev) {
828 dma_sync_single_for_cpu(host->dma_dev,
829 host->data_dma, sizeof(*scratch),
830 DMA_BIDIRECTIONAL);
831 dma_sync_single_for_cpu(host->dma_dev,
832 t->rx_dma, t->len,
833 DMA_FROM_DEVICE);
834 }
15a0580c 835
ab5a643c
WM
836 if (bitshift) {
837 /* Walk through the data and the crc and do
838 * all the magic to get byte-aligned data.
15a0580c 839 */
ab5a643c
WM
840 u8 *cp = t->rx_buf;
841 unsigned int len;
842 unsigned int bitright = 8 - bitshift;
843 u8 temp;
844 for (len = t->len; len; len--) {
845 temp = *cp;
846 *cp++ = leftover | (temp >> bitshift);
847 leftover = temp << bitright;
848 }
849 cp = (u8 *) &scratch->crc_val;
850 temp = *cp;
851 *cp++ = leftover | (temp >> bitshift);
852 leftover = temp << bitright;
853 temp = *cp;
854 *cp = leftover | (temp >> bitshift);
15a0580c
DB
855 }
856
857 if (host->mmc->use_spi_crc) {
858 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
859
860 be16_to_cpus(&scratch->crc_val);
861 if (scratch->crc_val != crc) {
862 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
863 "computed=0x%04x len=%d\n",
864 scratch->crc_val, crc, t->len);
865 return -EILSEQ;
866 }
867 }
868
869 t->rx_buf += t->len;
870 if (host->dma_dev)
871 t->rx_dma += t->len;
872
873 return 0;
874}
875
876/*
877 * An MMC/SD data stage includes one or more blocks, optional CRCs,
878 * and inline handshaking. That handhaking makes it unlike most
879 * other SPI protocol stacks.
880 */
881static void
882mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
883 struct mmc_data *data, u32 blk_size)
884{
885 struct spi_device *spi = host->spi;
886 struct device *dma_dev = host->dma_dev;
887 struct spi_transfer *t;
888 enum dma_data_direction direction;
889 struct scatterlist *sg;
890 unsigned n_sg;
891 int multiple = (data->blocks > 1);
162350eb 892 u32 clock_rate;
56e303eb 893 unsigned long timeout;
15a0580c
DB
894
895 if (data->flags & MMC_DATA_READ)
896 direction = DMA_FROM_DEVICE;
897 else
898 direction = DMA_TO_DEVICE;
899 mmc_spi_setup_data_message(host, multiple, direction);
900 t = &host->t;
901
162350eb
MF
902 if (t->speed_hz)
903 clock_rate = t->speed_hz;
904 else
905 clock_rate = spi->max_speed_hz;
906
56e303eb
WM
907 timeout = data->timeout_ns +
908 data->timeout_clks * 1000000 / clock_rate;
909 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
162350eb 910
15a0580c
DB
911 /* Handle scatterlist segments one at a time, with synch for
912 * each 512-byte block
913 */
914 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
915 int status = 0;
916 dma_addr_t dma_addr = 0;
917 void *kmap_addr;
918 unsigned length = sg->length;
919 enum dma_data_direction dir = direction;
920
921 /* set up dma mapping for controller drivers that might
922 * use DMA ... though they may fall back to PIO
923 */
924 if (dma_dev) {
925 /* never invalidate whole *shared* pages ... */
926 if ((sg->offset != 0 || length != PAGE_SIZE)
927 && dir == DMA_FROM_DEVICE)
928 dir = DMA_BIDIRECTIONAL;
929
45711f1a 930 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
15a0580c
DB
931 PAGE_SIZE, dir);
932 if (direction == DMA_TO_DEVICE)
933 t->tx_dma = dma_addr + sg->offset;
934 else
935 t->rx_dma = dma_addr + sg->offset;
936 }
937
938 /* allow pio too; we don't allow highmem */
45711f1a 939 kmap_addr = kmap(sg_page(sg));
15a0580c
DB
940 if (direction == DMA_TO_DEVICE)
941 t->tx_buf = kmap_addr + sg->offset;
942 else
943 t->rx_buf = kmap_addr + sg->offset;
944
945 /* transfer each block, and update request status */
946 while (length) {
947 t->len = min(length, blk_size);
948
949 dev_dbg(&host->spi->dev,
950 " mmc_spi: %s block, %d bytes\n",
951 (direction == DMA_TO_DEVICE)
952 ? "write"
953 : "read",
954 t->len);
955
956 if (direction == DMA_TO_DEVICE)
162350eb 957 status = mmc_spi_writeblock(host, t, timeout);
15a0580c 958 else
162350eb 959 status = mmc_spi_readblock(host, t, timeout);
15a0580c
DB
960 if (status < 0)
961 break;
962
963 data->bytes_xfered += t->len;
964 length -= t->len;
965
966 if (!multiple)
967 break;
968 }
969
970 /* discard mappings */
971 if (direction == DMA_FROM_DEVICE)
45711f1a
JA
972 flush_kernel_dcache_page(sg_page(sg));
973 kunmap(sg_page(sg));
15a0580c
DB
974 if (dma_dev)
975 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
976
977 if (status < 0) {
978 data->error = status;
979 dev_dbg(&spi->dev, "%s status %d\n",
980 (direction == DMA_TO_DEVICE)
981 ? "write" : "read",
982 status);
983 break;
984 }
985 }
986
987 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
988 * can be issued before multiblock writes. Unlike its more widely
989 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
990 * that can affect the STOP_TRAN logic. Complete (and current)
991 * MMC specs should sort that out before Linux starts using CMD23.
992 */
993 if (direction == DMA_TO_DEVICE && multiple) {
994 struct scratch *scratch = host->data;
995 int tmp;
996 const unsigned statlen = sizeof(scratch->status);
997
998 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
999
1000 /* Tweak the per-block message we set up earlier by morphing
1001 * it to hold single buffer with the token followed by some
1002 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1003 * "not busy any longer" status, and leave chip selected.
1004 */
1005 INIT_LIST_HEAD(&host->m.transfers);
1006 list_add(&host->early_status.transfer_list,
1007 &host->m.transfers);
1008
1009 memset(scratch->status, 0xff, statlen);
1010 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1011
1012 host->early_status.tx_buf = host->early_status.rx_buf;
1013 host->early_status.tx_dma = host->early_status.rx_dma;
1014 host->early_status.len = statlen;
1015
1016 if (host->dma_dev)
1017 dma_sync_single_for_device(host->dma_dev,
1018 host->data_dma, sizeof(*scratch),
1019 DMA_BIDIRECTIONAL);
1020
4751c1c7 1021 tmp = spi_sync_locked(spi, &host->m);
15a0580c
DB
1022
1023 if (host->dma_dev)
1024 dma_sync_single_for_cpu(host->dma_dev,
1025 host->data_dma, sizeof(*scratch),
1026 DMA_BIDIRECTIONAL);
1027
1028 if (tmp < 0) {
1029 if (!data->error)
1030 data->error = tmp;
1031 return;
1032 }
1033
1034 /* Ideally we collected "not busy" status with one I/O,
1035 * avoiding wasteful byte-at-a-time scanning... but more
1036 * I/O is often needed.
1037 */
1038 for (tmp = 2; tmp < statlen; tmp++) {
1039 if (scratch->status[tmp] != 0)
1040 return;
1041 }
162350eb 1042 tmp = mmc_spi_wait_unbusy(host, timeout);
15a0580c
DB
1043 if (tmp < 0 && !data->error)
1044 data->error = tmp;
1045 }
1046}
1047
1048/****************************************************************************/
1049
1050/*
1051 * MMC driver implementation -- the interface to the MMC stack
1052 */
1053
1054static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1055{
1056 struct mmc_spi_host *host = mmc_priv(mmc);
1057 int status = -EINVAL;
1058
1059#ifdef DEBUG
1060 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1061 {
1062 struct mmc_command *cmd;
1063 int invalid = 0;
1064
1065 cmd = mrq->cmd;
1066 if (!mmc_spi_resp_type(cmd)) {
1067 dev_dbg(&host->spi->dev, "bogus command\n");
1068 cmd->error = -EINVAL;
1069 invalid = 1;
1070 }
1071
1072 cmd = mrq->stop;
1073 if (cmd && !mmc_spi_resp_type(cmd)) {
1074 dev_dbg(&host->spi->dev, "bogus STOP command\n");
1075 cmd->error = -EINVAL;
1076 invalid = 1;
1077 }
1078
1079 if (invalid) {
1080 dump_stack();
1081 mmc_request_done(host->mmc, mrq);
1082 return;
1083 }
1084 }
1085#endif
1086
4751c1c7
ES
1087 /* request exclusive bus access */
1088 spi_bus_lock(host->spi->master);
1089
15a0580c
DB
1090 /* issue command; then optionally data and stop */
1091 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1092 if (status == 0 && mrq->data) {
1093 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1094 if (mrq->stop)
1095 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1096 else
1097 mmc_cs_off(host);
1098 }
1099
4751c1c7
ES
1100 /* release the bus */
1101 spi_bus_unlock(host->spi->master);
1102
15a0580c
DB
1103 mmc_request_done(host->mmc, mrq);
1104}
1105
1106/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1107 *
1108 * NOTE that here we can't know that the card has just been powered up;
1109 * not all MMC/SD sockets support power switching.
1110 *
1111 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1112 * this doesn't seem to do the right thing at all...
1113 */
1114static void mmc_spi_initsequence(struct mmc_spi_host *host)
1115{
1116 /* Try to be very sure any previous command has completed;
1117 * wait till not-busy, skip debris from any old commands.
1118 */
1119 mmc_spi_wait_unbusy(host, r1b_timeout);
1120 mmc_spi_readbytes(host, 10);
1121
1122 /*
1123 * Do a burst with chipselect active-high. We need to do this to
1124 * meet the requirement of 74 clock cycles with both chipselect
1125 * and CMD (MOSI) high before CMD0 ... after the card has been
1126 * powered up to Vdd(min), and so is ready to take commands.
1127 *
1128 * Some cards are particularly needy of this (e.g. Viking "SD256")
1129 * while most others don't seem to care.
1130 *
1131 * Note that this is one of the places MMC/SD plays games with the
1132 * SPI protocol. Another is that when chipselect is released while
1133 * the card returns BUSY status, the clock must issue several cycles
1134 * with chipselect high before the card will stop driving its output.
1135 */
1136 host->spi->mode |= SPI_CS_HIGH;
1137 if (spi_setup(host->spi) != 0) {
1138 /* Just warn; most cards work without it. */
1139 dev_warn(&host->spi->dev,
1140 "can't change chip-select polarity\n");
1141 host->spi->mode &= ~SPI_CS_HIGH;
1142 } else {
1143 mmc_spi_readbytes(host, 18);
1144
1145 host->spi->mode &= ~SPI_CS_HIGH;
1146 if (spi_setup(host->spi) != 0) {
1147 /* Wot, we can't get the same setup we had before? */
1148 dev_err(&host->spi->dev,
1149 "can't restore chip-select polarity\n");
1150 }
1151 }
1152}
1153
1154static char *mmc_powerstring(u8 power_mode)
1155{
1156 switch (power_mode) {
1157 case MMC_POWER_OFF: return "off";
1158 case MMC_POWER_UP: return "up";
1159 case MMC_POWER_ON: return "on";
1160 }
1161 return "?";
1162}
1163
1164static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1165{
1166 struct mmc_spi_host *host = mmc_priv(mmc);
1167
1168 if (host->power_mode != ios->power_mode) {
1169 int canpower;
1170
1171 canpower = host->pdata && host->pdata->setpower;
1172
1173 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1174 mmc_powerstring(ios->power_mode),
1175 ios->vdd,
1176 canpower ? ", can switch" : "");
1177
1178 /* switch power on/off if possible, accounting for
1179 * max 250msec powerup time if needed.
1180 */
1181 if (canpower) {
1182 switch (ios->power_mode) {
1183 case MMC_POWER_OFF:
1184 case MMC_POWER_UP:
1185 host->pdata->setpower(&host->spi->dev,
1186 ios->vdd);
1187 if (ios->power_mode == MMC_POWER_UP)
1188 msleep(host->powerup_msecs);
1189 }
1190 }
1191
1192 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1193 if (ios->power_mode == MMC_POWER_ON)
1194 mmc_spi_initsequence(host);
1195
1196 /* If powering down, ground all card inputs to avoid power
1197 * delivery from data lines! On a shared SPI bus, this
1198 * will probably be temporary; 6.4.2 of the simplified SD
1199 * spec says this must last at least 1msec.
1200 *
1201 * - Clock low means CPOL 0, e.g. mode 0
1202 * - MOSI low comes from writing zero
1203 * - Chipselect is usually active low...
1204 */
1205 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1206 int mres;
1685a03e 1207 u8 nullbyte = 0;
15a0580c
DB
1208
1209 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1210 mres = spi_setup(host->spi);
1211 if (mres < 0)
1212 dev_dbg(&host->spi->dev,
1213 "switch to SPI mode 0 failed\n");
1214
1685a03e 1215 if (spi_write(host->spi, &nullbyte, 1) < 0)
15a0580c
DB
1216 dev_dbg(&host->spi->dev,
1217 "put spi signals to low failed\n");
1218
1219 /*
1220 * Now clock should be low due to spi mode 0;
1221 * MOSI should be low because of written 0x00;
1222 * chipselect should be low (it is active low)
1223 * power supply is off, so now MMC is off too!
1224 *
1225 * FIXME no, chipselect can be high since the
1226 * device is inactive and SPI_CS_HIGH is clear...
1227 */
1228 msleep(10);
1229 if (mres == 0) {
1230 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1231 mres = spi_setup(host->spi);
1232 if (mres < 0)
1233 dev_dbg(&host->spi->dev,
1234 "switch back to SPI mode 3"
1235 " failed\n");
1236 }
1237 }
1238
1239 host->power_mode = ios->power_mode;
1240 }
1241
1242 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1243 int status;
1244
1245 host->spi->max_speed_hz = ios->clock;
1246 status = spi_setup(host->spi);
1247 dev_dbg(&host->spi->dev,
1248 "mmc_spi: clock to %d Hz, %d\n",
1249 host->spi->max_speed_hz, status);
1250 }
1251}
1252
1253static int mmc_spi_get_ro(struct mmc_host *mmc)
1254{
1255 struct mmc_spi_host *host = mmc_priv(mmc);
1256
1257 if (host->pdata && host->pdata->get_ro)
08f80bb5
AV
1258 return !!host->pdata->get_ro(mmc->parent);
1259 /*
1260 * Board doesn't support read only detection; let the mmc core
1261 * decide what to do.
1262 */
1263 return -ENOSYS;
15a0580c
DB
1264}
1265
619ef4b4
AV
1266static int mmc_spi_get_cd(struct mmc_host *mmc)
1267{
1268 struct mmc_spi_host *host = mmc_priv(mmc);
1269
1270 if (host->pdata && host->pdata->get_cd)
1271 return !!host->pdata->get_cd(mmc->parent);
1272 return -ENOSYS;
1273}
15a0580c
DB
1274
1275static const struct mmc_host_ops mmc_spi_ops = {
1276 .request = mmc_spi_request,
1277 .set_ios = mmc_spi_set_ios,
1278 .get_ro = mmc_spi_get_ro,
619ef4b4 1279 .get_cd = mmc_spi_get_cd,
15a0580c
DB
1280};
1281
1282
1283/****************************************************************************/
1284
1285/*
1286 * SPI driver implementation
1287 */
1288
1289static irqreturn_t
1290mmc_spi_detect_irq(int irq, void *mmc)
1291{
1292 struct mmc_spi_host *host = mmc_priv(mmc);
1293 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1294
1295 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1296 return IRQ_HANDLED;
1297}
1298
1299static int mmc_spi_probe(struct spi_device *spi)
1300{
1301 void *ones;
1302 struct mmc_host *mmc;
1303 struct mmc_spi_host *host;
1304 int status;
1305
70d6027f
DB
1306 /* We rely on full duplex transfers, mostly to reduce
1307 * per-transfer overheads (by making fewer transfers).
1308 */
1309 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1310 return -EINVAL;
1311
15a0580c
DB
1312 /* MMC and SD specs only seem to care that sampling is on the
1313 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
48881cae
WM
1314 * should be legit. We'll use mode 0 since the steady state is 0,
1315 * which is appropriate for hotplugging, unless the platform data
1316 * specify mode 3 (if hardware is not compatible to mode 0).
15a0580c 1317 */
48881cae
WM
1318 if (spi->mode != SPI_MODE_3)
1319 spi->mode = SPI_MODE_0;
15a0580c
DB
1320 spi->bits_per_word = 8;
1321
1322 status = spi_setup(spi);
1323 if (status < 0) {
1324 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1325 spi->mode, spi->max_speed_hz / 1000,
1326 status);
1327 return status;
1328 }
1329
15a0580c
DB
1330 /* We need a supply of ones to transmit. This is the only time
1331 * the CPU touches these, so cache coherency isn't a concern.
1332 *
1333 * NOTE if many systems use more than one MMC-over-SPI connector
1334 * it'd save some memory to share this. That's evidently rare.
1335 */
1336 status = -ENOMEM;
1337 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1338 if (!ones)
1339 goto nomem;
1340 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1341
1342 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1343 if (!mmc)
1344 goto nomem;
1345
1346 mmc->ops = &mmc_spi_ops;
1347 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
5cf20aa5
WM
1348 mmc->max_hw_segs = MMC_SPI_BLOCKSATONCE;
1349 mmc->max_phys_segs = MMC_SPI_BLOCKSATONCE;
1350 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1351 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
15a0580c 1352
23af6039 1353 mmc->caps = MMC_CAP_SPI;
15a0580c
DB
1354
1355 /* SPI doesn't need the lowspeed device identification thing for
1356 * MMC or SD cards, since it never comes up in open drain mode.
1357 * That's good; some SPI masters can't handle very low speeds!
1358 *
1359 * However, low speed SDIO cards need not handle over 400 KHz;
1360 * that's the only reason not to use a few MHz for f_min (until
1361 * the upper layer reads the target frequency from the CSD).
1362 */
1363 mmc->f_min = 400000;
1364 mmc->f_max = spi->max_speed_hz;
1365
1366 host = mmc_priv(mmc);
1367 host->mmc = mmc;
1368 host->spi = spi;
1369
1370 host->ones = ones;
1371
1372 /* Platform data is used to hook up things like card sensing
1373 * and power switching gpios.
1374 */
9c43df57 1375 host->pdata = mmc_spi_get_pdata(spi);
15a0580c
DB
1376 if (host->pdata)
1377 mmc->ocr_avail = host->pdata->ocr_mask;
1378 if (!mmc->ocr_avail) {
1379 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1380 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1381 }
1382 if (host->pdata && host->pdata->setpower) {
1383 host->powerup_msecs = host->pdata->powerup_msecs;
1384 if (!host->powerup_msecs || host->powerup_msecs > 250)
1385 host->powerup_msecs = 250;
1386 }
1387
1388 dev_set_drvdata(&spi->dev, mmc);
1389
1390 /* preallocate dma buffers */
1391 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1392 if (!host->data)
1393 goto fail_nobuf1;
1394
49dce689
TJ
1395 if (spi->master->dev.parent->dma_mask) {
1396 struct device *dev = spi->master->dev.parent;
15a0580c
DB
1397
1398 host->dma_dev = dev;
1399 host->ones_dma = dma_map_single(dev, ones,
1400 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1401 host->data_dma = dma_map_single(dev, host->data,
1402 sizeof(*host->data), DMA_BIDIRECTIONAL);
1403
1404 /* REVISIT in theory those map operations can fail... */
1405
1406 dma_sync_single_for_cpu(host->dma_dev,
1407 host->data_dma, sizeof(*host->data),
1408 DMA_BIDIRECTIONAL);
1409 }
1410
1411 /* setup message for status/busy readback */
1412 spi_message_init(&host->readback);
1413 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1414
1415 spi_message_add_tail(&host->status, &host->readback);
1416 host->status.tx_buf = host->ones;
1417 host->status.tx_dma = host->ones_dma;
1418 host->status.rx_buf = &host->data->status;
1419 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1420 host->status.cs_change = 1;
1421
1422 /* register card detect irq */
1423 if (host->pdata && host->pdata->init) {
1424 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1425 if (status != 0)
1426 goto fail_glue_init;
1427 }
1428
619ef4b4
AV
1429 /* pass platform capabilities, if any */
1430 if (host->pdata)
1431 mmc->caps |= host->pdata->caps;
1432
15a0580c
DB
1433 status = mmc_add_host(mmc);
1434 if (status != 0)
1435 goto fail_add_host;
1436
619ef4b4 1437 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
d1b26863 1438 dev_name(&mmc->class_dev),
15a0580c
DB
1439 host->dma_dev ? "" : ", no DMA",
1440 (host->pdata && host->pdata->get_ro)
1441 ? "" : ", no WP",
1442 (host->pdata && host->pdata->setpower)
619ef4b4
AV
1443 ? "" : ", no poweroff",
1444 (mmc->caps & MMC_CAP_NEEDS_POLL)
1445 ? ", cd polling" : "");
15a0580c
DB
1446 return 0;
1447
1448fail_add_host:
1449 mmc_remove_host (mmc);
1450fail_glue_init:
1451 if (host->dma_dev)
1452 dma_unmap_single(host->dma_dev, host->data_dma,
1453 sizeof(*host->data), DMA_BIDIRECTIONAL);
1454 kfree(host->data);
1455
1456fail_nobuf1:
1457 mmc_free_host(mmc);
9c43df57 1458 mmc_spi_put_pdata(spi);
15a0580c
DB
1459 dev_set_drvdata(&spi->dev, NULL);
1460
1461nomem:
1462 kfree(ones);
1463 return status;
1464}
1465
1466
1467static int __devexit mmc_spi_remove(struct spi_device *spi)
1468{
1469 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1470 struct mmc_spi_host *host;
1471
1472 if (mmc) {
1473 host = mmc_priv(mmc);
1474
1475 /* prevent new mmc_detect_change() calls */
1476 if (host->pdata && host->pdata->exit)
1477 host->pdata->exit(&spi->dev, mmc);
1478
1479 mmc_remove_host(mmc);
1480
1481 if (host->dma_dev) {
1482 dma_unmap_single(host->dma_dev, host->ones_dma,
1483 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1484 dma_unmap_single(host->dma_dev, host->data_dma,
1485 sizeof(*host->data), DMA_BIDIRECTIONAL);
1486 }
1487
1488 kfree(host->data);
1489 kfree(host->ones);
1490
1491 spi->max_speed_hz = mmc->f_max;
1492 mmc_free_host(mmc);
9c43df57 1493 mmc_spi_put_pdata(spi);
15a0580c
DB
1494 dev_set_drvdata(&spi->dev, NULL);
1495 }
1496 return 0;
1497}
1498
2ffe8c5f
GL
1499#if defined(CONFIG_OF)
1500static struct of_device_id mmc_spi_of_match_table[] __devinitdata = {
1501 { .compatible = "mmc-spi-slot", },
fbe0f834 1502 {},
2ffe8c5f
GL
1503};
1504#endif
15a0580c
DB
1505
1506static struct spi_driver mmc_spi_driver = {
1507 .driver = {
1508 .name = "mmc_spi",
1509 .bus = &spi_bus_type,
1510 .owner = THIS_MODULE,
2ffe8c5f
GL
1511#if defined(CONFIG_OF)
1512 .of_match_table = mmc_spi_of_match_table,
1513#endif
15a0580c
DB
1514 },
1515 .probe = mmc_spi_probe,
1516 .remove = __devexit_p(mmc_spi_remove),
1517};
1518
1519
1520static int __init mmc_spi_init(void)
1521{
1522 return spi_register_driver(&mmc_spi_driver);
1523}
1524module_init(mmc_spi_init);
1525
1526
1527static void __exit mmc_spi_exit(void)
1528{
1529 spi_unregister_driver(&mmc_spi_driver);
1530}
1531module_exit(mmc_spi_exit);
1532
1533
1534MODULE_AUTHOR("Mike Lavender, David Brownell, "
1535 "Hans-Peter Nilsson, Jan Nikitenko");
1536MODULE_DESCRIPTION("SPI SD/MMC host driver");
1537MODULE_LICENSE("GPL");
e0626e38 1538MODULE_ALIAS("spi:mmc_spi");