]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/media/video/omap/omap_vout.c
Merge branch 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[net-next-2.6.git] / drivers / media / video / omap / omap_vout.c
CommitLineData
5c7ab634
VH
1/*
2 * omap_vout.c
3 *
4 * Copyright (C) 2005-2010 Texas Instruments.
5 *
6 * This file is licensed under the terms of the GNU General Public License
7 * version 2. This program is licensed "as is" without any warranty of any
8 * kind, whether express or implied.
9 *
10 * Leveraged code from the OMAP2 camera driver
11 * Video-for-Linux (Version 2) camera capture driver for
12 * the OMAP24xx camera controller.
13 *
14 * Author: Andy Lowe (source@mvista.com)
15 *
16 * Copyright (C) 2004 MontaVista Software, Inc.
17 * Copyright (C) 2010 Texas Instruments.
18 *
19 * History:
20 * 20-APR-2006 Khasim Modified VRFB based Rotation,
21 * The image data is always read from 0 degree
22 * view and written
23 * to the virtual space of desired rotation angle
24 * 4-DEC-2006 Jian Changed to support better memory management
25 *
26 * 17-Nov-2008 Hardik Changed driver to use video_ioctl2
27 *
28 * 23-Feb-2010 Vaibhav H Modified to use new DSS2 interface
29 *
30 */
31
32#include <linux/init.h>
33#include <linux/module.h>
34#include <linux/vmalloc.h>
35#include <linux/sched.h>
36#include <linux/types.h>
37#include <linux/platform_device.h>
38#include <linux/dma-mapping.h>
39#include <linux/irq.h>
40#include <linux/videodev2.h>
41
42#include <media/videobuf-dma-sg.h>
43#include <media/v4l2-device.h>
44#include <media/v4l2-ioctl.h>
45
46#include <plat/dma.h>
47#include <plat/vram.h>
48#include <plat/vrfb.h>
49#include <plat/display.h>
50
51#include "omap_voutlib.h"
52#include "omap_voutdef.h"
53
54MODULE_AUTHOR("Texas Instruments");
55MODULE_DESCRIPTION("OMAP Video for Linux Video out driver");
56MODULE_LICENSE("GPL");
57
58
59/* Driver Configuration macros */
60#define VOUT_NAME "omap_vout"
61
62enum omap_vout_channels {
63 OMAP_VIDEO1,
64 OMAP_VIDEO2,
65};
66
67enum dma_channel_state {
68 DMA_CHAN_NOT_ALLOTED,
69 DMA_CHAN_ALLOTED,
70};
71
72#define QQVGA_WIDTH 160
73#define QQVGA_HEIGHT 120
74
75/* Max Resolution supported by the driver */
76#define VID_MAX_WIDTH 1280 /* Largest width */
77#define VID_MAX_HEIGHT 720 /* Largest height */
78
79/* Mimimum requirement is 2x2 for DSS */
80#define VID_MIN_WIDTH 2
81#define VID_MIN_HEIGHT 2
82
83/* 2048 x 2048 is max res supported by OMAP display controller */
84#define MAX_PIXELS_PER_LINE 2048
85
86#define VRFB_TX_TIMEOUT 1000
87#define VRFB_NUM_BUFS 4
88
89/* Max buffer size tobe allocated during init */
90#define OMAP_VOUT_MAX_BUF_SIZE (VID_MAX_WIDTH*VID_MAX_HEIGHT*4)
91
92static struct videobuf_queue_ops video_vbq_ops;
93/* Variables configurable through module params*/
94static u32 video1_numbuffers = 3;
95static u32 video2_numbuffers = 3;
96static u32 video1_bufsize = OMAP_VOUT_MAX_BUF_SIZE;
97static u32 video2_bufsize = OMAP_VOUT_MAX_BUF_SIZE;
98static u32 vid1_static_vrfb_alloc;
99static u32 vid2_static_vrfb_alloc;
100static int debug;
101
102/* Module parameters */
103module_param(video1_numbuffers, uint, S_IRUGO);
104MODULE_PARM_DESC(video1_numbuffers,
105 "Number of buffers to be allocated at init time for Video1 device.");
106
107module_param(video2_numbuffers, uint, S_IRUGO);
108MODULE_PARM_DESC(video2_numbuffers,
109 "Number of buffers to be allocated at init time for Video2 device.");
110
111module_param(video1_bufsize, uint, S_IRUGO);
112MODULE_PARM_DESC(video1_bufsize,
113 "Size of the buffer to be allocated for video1 device");
114
115module_param(video2_bufsize, uint, S_IRUGO);
116MODULE_PARM_DESC(video2_bufsize,
117 "Size of the buffer to be allocated for video2 device");
118
119module_param(vid1_static_vrfb_alloc, bool, S_IRUGO);
120MODULE_PARM_DESC(vid1_static_vrfb_alloc,
121 "Static allocation of the VRFB buffer for video1 device");
122
123module_param(vid2_static_vrfb_alloc, bool, S_IRUGO);
124MODULE_PARM_DESC(vid2_static_vrfb_alloc,
125 "Static allocation of the VRFB buffer for video2 device");
126
127module_param(debug, bool, S_IRUGO);
128MODULE_PARM_DESC(debug, "Debug level (0-1)");
129
130/* list of image formats supported by OMAP2 video pipelines */
131const static struct v4l2_fmtdesc omap_formats[] = {
132 {
133 /* Note: V4L2 defines RGB565 as:
134 *
135 * Byte 0 Byte 1
136 * g2 g1 g0 r4 r3 r2 r1 r0 b4 b3 b2 b1 b0 g5 g4 g3
137 *
138 * We interpret RGB565 as:
139 *
140 * Byte 0 Byte 1
141 * g2 g1 g0 b4 b3 b2 b1 b0 r4 r3 r2 r1 r0 g5 g4 g3
142 */
143 .description = "RGB565, le",
144 .pixelformat = V4L2_PIX_FMT_RGB565,
145 },
146 {
147 /* Note: V4L2 defines RGB32 as: RGB-8-8-8-8 we use
148 * this for RGB24 unpack mode, the last 8 bits are ignored
149 * */
150 .description = "RGB32, le",
151 .pixelformat = V4L2_PIX_FMT_RGB32,
152 },
153 {
154 /* Note: V4L2 defines RGB24 as: RGB-8-8-8 we use
155 * this for RGB24 packed mode
156 *
157 */
158 .description = "RGB24, le",
159 .pixelformat = V4L2_PIX_FMT_RGB24,
160 },
161 {
162 .description = "YUYV (YUV 4:2:2), packed",
163 .pixelformat = V4L2_PIX_FMT_YUYV,
164 },
165 {
166 .description = "UYVY, packed",
167 .pixelformat = V4L2_PIX_FMT_UYVY,
168 },
169};
170
171#define NUM_OUTPUT_FORMATS (ARRAY_SIZE(omap_formats))
172
173/*
174 * Allocate buffers
175 */
176static unsigned long omap_vout_alloc_buffer(u32 buf_size, u32 *phys_addr)
177{
178 u32 order, size;
179 unsigned long virt_addr, addr;
180
181 size = PAGE_ALIGN(buf_size);
182 order = get_order(size);
183 virt_addr = __get_free_pages(GFP_KERNEL | GFP_DMA, order);
184 addr = virt_addr;
185
186 if (virt_addr) {
187 while (size > 0) {
188 SetPageReserved(virt_to_page(addr));
189 addr += PAGE_SIZE;
190 size -= PAGE_SIZE;
191 }
192 }
193 *phys_addr = (u32) virt_to_phys((void *) virt_addr);
194 return virt_addr;
195}
196
197/*
198 * Free buffers
199 */
200static void omap_vout_free_buffer(unsigned long virtaddr, u32 buf_size)
201{
202 u32 order, size;
203 unsigned long addr = virtaddr;
204
205 size = PAGE_ALIGN(buf_size);
206 order = get_order(size);
207
208 while (size > 0) {
209 ClearPageReserved(virt_to_page(addr));
210 addr += PAGE_SIZE;
211 size -= PAGE_SIZE;
212 }
213 free_pages((unsigned long) virtaddr, order);
214}
215
216/*
217 * Function for allocating video buffers
218 */
219static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
220 unsigned int *count, int startindex)
221{
222 int i, j;
223
224 for (i = 0; i < *count; i++) {
225 if (!vout->smsshado_virt_addr[i]) {
226 vout->smsshado_virt_addr[i] =
227 omap_vout_alloc_buffer(vout->smsshado_size,
228 &vout->smsshado_phy_addr[i]);
229 }
230 if (!vout->smsshado_virt_addr[i] && startindex != -1) {
231 if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
232 break;
233 }
234 if (!vout->smsshado_virt_addr[i]) {
235 for (j = 0; j < i; j++) {
236 omap_vout_free_buffer(
237 vout->smsshado_virt_addr[j],
238 vout->smsshado_size);
239 vout->smsshado_virt_addr[j] = 0;
240 vout->smsshado_phy_addr[j] = 0;
241 }
242 *count = 0;
243 return -ENOMEM;
244 }
245 memset((void *) vout->smsshado_virt_addr[i], 0,
246 vout->smsshado_size);
247 }
248 return 0;
249}
250
251/*
252 * Try format
253 */
254static int omap_vout_try_format(struct v4l2_pix_format *pix)
255{
256 int ifmt, bpp = 0;
257
258 pix->height = clamp(pix->height, (u32)VID_MIN_HEIGHT,
259 (u32)VID_MAX_HEIGHT);
260 pix->width = clamp(pix->width, (u32)VID_MIN_WIDTH, (u32)VID_MAX_WIDTH);
261
262 for (ifmt = 0; ifmt < NUM_OUTPUT_FORMATS; ifmt++) {
263 if (pix->pixelformat == omap_formats[ifmt].pixelformat)
264 break;
265 }
266
267 if (ifmt == NUM_OUTPUT_FORMATS)
268 ifmt = 0;
269
270 pix->pixelformat = omap_formats[ifmt].pixelformat;
271 pix->field = V4L2_FIELD_ANY;
272 pix->priv = 0;
273
274 switch (pix->pixelformat) {
275 case V4L2_PIX_FMT_YUYV:
276 case V4L2_PIX_FMT_UYVY:
277 default:
278 pix->colorspace = V4L2_COLORSPACE_JPEG;
279 bpp = YUYV_BPP;
280 break;
281 case V4L2_PIX_FMT_RGB565:
282 case V4L2_PIX_FMT_RGB565X:
283 pix->colorspace = V4L2_COLORSPACE_SRGB;
284 bpp = RGB565_BPP;
285 break;
286 case V4L2_PIX_FMT_RGB24:
287 pix->colorspace = V4L2_COLORSPACE_SRGB;
288 bpp = RGB24_BPP;
289 break;
290 case V4L2_PIX_FMT_RGB32:
291 case V4L2_PIX_FMT_BGR32:
292 pix->colorspace = V4L2_COLORSPACE_SRGB;
293 bpp = RGB32_BPP;
294 break;
295 }
296 pix->bytesperline = pix->width * bpp;
297 pix->sizeimage = pix->bytesperline * pix->height;
298
299 return bpp;
300}
301
302/*
303 * omap_vout_uservirt_to_phys: This inline function is used to convert user
304 * space virtual address to physical address.
305 */
306static u32 omap_vout_uservirt_to_phys(u32 virtp)
307{
308 unsigned long physp = 0;
309 struct vm_area_struct *vma;
310 struct mm_struct *mm = current->mm;
311
312 vma = find_vma(mm, virtp);
313 /* For kernel direct-mapped memory, take the easy way */
314 if (virtp >= PAGE_OFFSET) {
315 physp = virt_to_phys((void *) virtp);
316 } else if (vma && (vma->vm_flags & VM_IO) && vma->vm_pgoff) {
317 /* this will catch, kernel-allocated, mmaped-to-usermode
318 addresses */
319 physp = (vma->vm_pgoff << PAGE_SHIFT) + (virtp - vma->vm_start);
320 } else {
321 /* otherwise, use get_user_pages() for general userland pages */
322 int res, nr_pages = 1;
323 struct page *pages;
324 down_read(&current->mm->mmap_sem);
325
326 res = get_user_pages(current, current->mm, virtp, nr_pages, 1,
327 0, &pages, NULL);
328 up_read(&current->mm->mmap_sem);
329
330 if (res == nr_pages) {
331 physp = __pa(page_address(&pages[0]) +
332 (virtp & ~PAGE_MASK));
333 } else {
334 printk(KERN_WARNING VOUT_NAME
335 "get_user_pages failed\n");
336 return 0;
337 }
338 }
339
340 return physp;
341}
342
343/*
344 * Wakes up the application once the DMA transfer to VRFB space is completed.
345 */
346static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data)
347{
348 struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
349
350 t->tx_status = 1;
351 wake_up_interruptible(&t->wait);
352}
353
354/*
355 * Release the VRFB context once the module exits
356 */
357static void omap_vout_release_vrfb(struct omap_vout_device *vout)
358{
359 int i;
360
361 for (i = 0; i < VRFB_NUM_BUFS; i++)
362 omap_vrfb_release_ctx(&vout->vrfb_context[i]);
363
364 if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
365 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
366 omap_free_dma(vout->vrfb_dma_tx.dma_ch);
367 }
368}
369
370/*
371 * Return true if rotation is 90 or 270
372 */
373static inline int rotate_90_or_270(const struct omap_vout_device *vout)
374{
375 return (vout->rotation == dss_rotation_90_degree ||
376 vout->rotation == dss_rotation_270_degree);
377}
378
379/*
380 * Return true if rotation is enabled
381 */
382static inline int rotation_enabled(const struct omap_vout_device *vout)
383{
384 return vout->rotation || vout->mirror;
385}
386
387/*
388 * Reverse the rotation degree if mirroring is enabled
389 */
390static inline int calc_rotation(const struct omap_vout_device *vout)
391{
392 if (!vout->mirror)
393 return vout->rotation;
394
395 switch (vout->rotation) {
396 case dss_rotation_90_degree:
397 return dss_rotation_270_degree;
398 case dss_rotation_270_degree:
399 return dss_rotation_90_degree;
400 case dss_rotation_180_degree:
401 return dss_rotation_0_degree;
402 default:
403 return dss_rotation_180_degree;
404 }
405}
406
407/*
408 * Free the V4L2 buffers
409 */
410static void omap_vout_free_buffers(struct omap_vout_device *vout)
411{
412 int i, numbuffers;
413
414 /* Allocate memory for the buffers */
415 numbuffers = (vout->vid) ? video2_numbuffers : video1_numbuffers;
416 vout->buffer_size = (vout->vid) ? video2_bufsize : video1_bufsize;
417
418 for (i = 0; i < numbuffers; i++) {
419 omap_vout_free_buffer(vout->buf_virt_addr[i],
420 vout->buffer_size);
421 vout->buf_phy_addr[i] = 0;
422 vout->buf_virt_addr[i] = 0;
423 }
424}
425
426/*
427 * Free VRFB buffers
428 */
429static void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
430{
431 int j;
432
433 for (j = 0; j < VRFB_NUM_BUFS; j++) {
434 omap_vout_free_buffer(vout->smsshado_virt_addr[j],
435 vout->smsshado_size);
436 vout->smsshado_virt_addr[j] = 0;
437 vout->smsshado_phy_addr[j] = 0;
438 }
439}
440
441/*
442 * Allocate the buffers for the VRFB space. Data is copied from V4L2
443 * buffers to the VRFB buffers using the DMA engine.
444 */
445static int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
446 unsigned int *count, unsigned int startindex)
447{
448 int i;
449 bool yuv_mode;
450
451 /* Allocate the VRFB buffers only if the buffers are not
452 * allocated during init time.
453 */
454 if ((rotation_enabled(vout)) && !vout->vrfb_static_allocation)
455 if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
456 return -ENOMEM;
457
458 if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
459 vout->dss_mode == OMAP_DSS_COLOR_UYVY)
460 yuv_mode = true;
461 else
462 yuv_mode = false;
463
464 for (i = 0; i < *count; i++)
465 omap_vrfb_setup(&vout->vrfb_context[i],
466 vout->smsshado_phy_addr[i], vout->pix.width,
467 vout->pix.height, vout->bpp, yuv_mode);
468
469 return 0;
470}
471
472/*
473 * Convert V4L2 rotation to DSS rotation
474 * V4L2 understand 0, 90, 180, 270.
475 * Convert to 0, 1, 2 and 3 repsectively for DSS
476 */
477static int v4l2_rot_to_dss_rot(int v4l2_rotation,
478 enum dss_rotation *rotation, bool mirror)
479{
480 int ret = 0;
481
482 switch (v4l2_rotation) {
483 case 90:
484 *rotation = dss_rotation_90_degree;
485 break;
486 case 180:
487 *rotation = dss_rotation_180_degree;
488 break;
489 case 270:
490 *rotation = dss_rotation_270_degree;
491 break;
492 case 0:
493 *rotation = dss_rotation_0_degree;
494 break;
495 default:
496 ret = -EINVAL;
497 }
498 return ret;
499}
500
501/*
502 * Calculate the buffer offsets from which the streaming should
503 * start. This offset calculation is mainly required because of
504 * the VRFB 32 pixels alignment with rotation.
505 */
506static int omap_vout_calculate_offset(struct omap_vout_device *vout)
507{
508 struct omap_overlay *ovl;
509 enum dss_rotation rotation;
510 struct omapvideo_info *ovid;
511 bool mirroring = vout->mirror;
512 struct omap_dss_device *cur_display;
513 struct v4l2_rect *crop = &vout->crop;
514 struct v4l2_pix_format *pix = &vout->pix;
515 int *cropped_offset = &vout->cropped_offset;
516 int vr_ps = 1, ps = 2, temp_ps = 2;
517 int offset = 0, ctop = 0, cleft = 0, line_length = 0;
518
519 ovid = &vout->vid_info;
520 ovl = ovid->overlays[0];
521 /* get the display device attached to the overlay */
522 if (!ovl->manager || !ovl->manager->device)
523 return -1;
524
525 cur_display = ovl->manager->device;
526 rotation = calc_rotation(vout);
527
528 if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
529 V4L2_PIX_FMT_UYVY == pix->pixelformat) {
530 if (rotation_enabled(vout)) {
531 /*
532 * ps - Actual pixel size for YUYV/UYVY for
533 * VRFB/Mirroring is 4 bytes
534 * vr_ps - Virtually pixel size for YUYV/UYVY is
535 * 2 bytes
536 */
537 ps = 4;
538 vr_ps = 2;
539 } else {
540 ps = 2; /* otherwise the pixel size is 2 byte */
541 }
542 } else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
543 ps = 4;
544 } else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
545 ps = 3;
546 }
547 vout->ps = ps;
548 vout->vr_ps = vr_ps;
549
550 if (rotation_enabled(vout)) {
551 line_length = MAX_PIXELS_PER_LINE;
552 ctop = (pix->height - crop->height) - crop->top;
553 cleft = (pix->width - crop->width) - crop->left;
554 } else {
555 line_length = pix->width;
556 }
557 vout->line_length = line_length;
558 switch (rotation) {
559 case dss_rotation_90_degree:
560 offset = vout->vrfb_context[0].yoffset *
561 vout->vrfb_context[0].bytespp;
562 temp_ps = ps / vr_ps;
563 if (mirroring == 0) {
564 *cropped_offset = offset + line_length *
565 temp_ps * cleft + crop->top * temp_ps;
566 } else {
567 *cropped_offset = offset + line_length * temp_ps *
568 cleft + crop->top * temp_ps + (line_length *
569 ((crop->width / (vr_ps)) - 1) * ps);
570 }
571 break;
572 case dss_rotation_180_degree:
573 offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
574 vout->vrfb_context[0].bytespp) +
575 (vout->vrfb_context[0].xoffset *
576 vout->vrfb_context[0].bytespp));
577 if (mirroring == 0) {
578 *cropped_offset = offset + (line_length * ps * ctop) +
579 (cleft / vr_ps) * ps;
580
581 } else {
582 *cropped_offset = offset + (line_length * ps * ctop) +
583 (cleft / vr_ps) * ps + (line_length *
584 (crop->height - 1) * ps);
585 }
586 break;
587 case dss_rotation_270_degree:
588 offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
589 vout->vrfb_context[0].bytespp;
590 temp_ps = ps / vr_ps;
591 if (mirroring == 0) {
592 *cropped_offset = offset + line_length *
593 temp_ps * crop->left + ctop * ps;
594 } else {
595 *cropped_offset = offset + line_length *
596 temp_ps * crop->left + ctop * ps +
597 (line_length * ((crop->width / vr_ps) - 1) *
598 ps);
599 }
600 break;
601 case dss_rotation_0_degree:
602 if (mirroring == 0) {
603 *cropped_offset = (line_length * ps) *
604 crop->top + (crop->left / vr_ps) * ps;
605 } else {
606 *cropped_offset = (line_length * ps) *
607 crop->top + (crop->left / vr_ps) * ps +
608 (line_length * (crop->height - 1) * ps);
609 }
610 break;
611 default:
612 *cropped_offset = (line_length * ps * crop->top) /
613 vr_ps + (crop->left * ps) / vr_ps +
614 ((crop->width / vr_ps) - 1) * ps;
615 break;
616 }
617 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "%s Offset:%x\n",
618 __func__, *cropped_offset);
619 return 0;
620}
621
622/*
623 * Convert V4L2 pixel format to DSS pixel format
624 */
72fcf2a8 625static int video_mode_to_dss_mode(struct omap_vout_device *vout)
5c7ab634
VH
626{
627 struct omap_overlay *ovl;
628 struct omapvideo_info *ovid;
629 struct v4l2_pix_format *pix = &vout->pix;
630 enum omap_color_mode mode;
631
632 ovid = &vout->vid_info;
633 ovl = ovid->overlays[0];
634
635 switch (pix->pixelformat) {
636 case 0:
637 break;
638 case V4L2_PIX_FMT_YUYV:
639 mode = OMAP_DSS_COLOR_YUV2;
640 break;
641 case V4L2_PIX_FMT_UYVY:
642 mode = OMAP_DSS_COLOR_UYVY;
643 break;
644 case V4L2_PIX_FMT_RGB565:
645 mode = OMAP_DSS_COLOR_RGB16;
646 break;
647 case V4L2_PIX_FMT_RGB24:
648 mode = OMAP_DSS_COLOR_RGB24P;
649 break;
650 case V4L2_PIX_FMT_RGB32:
651 mode = (ovl->id == OMAP_DSS_VIDEO1) ?
652 OMAP_DSS_COLOR_RGB24U : OMAP_DSS_COLOR_ARGB32;
653 break;
654 case V4L2_PIX_FMT_BGR32:
655 mode = OMAP_DSS_COLOR_RGBX32;
656 break;
657 default:
658 mode = -EINVAL;
659 }
660 return mode;
661}
662
663/*
664 * Setup the overlay
665 */
666int omapvid_setup_overlay(struct omap_vout_device *vout,
667 struct omap_overlay *ovl, int posx, int posy, int outw,
668 int outh, u32 addr)
669{
670 int ret = 0;
671 struct omap_overlay_info info;
672 int cropheight, cropwidth, pixheight, pixwidth;
673
674 if ((ovl->caps & OMAP_DSS_OVL_CAP_SCALE) == 0 &&
675 (outw != vout->pix.width || outh != vout->pix.height)) {
676 ret = -EINVAL;
677 goto setup_ovl_err;
678 }
679
680 vout->dss_mode = video_mode_to_dss_mode(vout);
681 if (vout->dss_mode == -EINVAL) {
682 ret = -EINVAL;
683 goto setup_ovl_err;
684 }
685
686 /* Setup the input plane parameters according to
687 * rotation value selected.
688 */
689 if (rotate_90_or_270(vout)) {
690 cropheight = vout->crop.width;
691 cropwidth = vout->crop.height;
692 pixheight = vout->pix.width;
693 pixwidth = vout->pix.height;
694 } else {
695 cropheight = vout->crop.height;
696 cropwidth = vout->crop.width;
697 pixheight = vout->pix.height;
698 pixwidth = vout->pix.width;
699 }
700
701 ovl->get_overlay_info(ovl, &info);
702 info.paddr = addr;
703 info.vaddr = NULL;
704 info.width = cropwidth;
705 info.height = cropheight;
706 info.color_mode = vout->dss_mode;
707 info.mirror = vout->mirror;
708 info.pos_x = posx;
709 info.pos_y = posy;
710 info.out_width = outw;
711 info.out_height = outh;
712 info.global_alpha = vout->win.global_alpha;
713 if (!rotation_enabled(vout)) {
714 info.rotation = 0;
715 info.rotation_type = OMAP_DSS_ROT_DMA;
716 info.screen_width = pixwidth;
717 } else {
718 info.rotation = vout->rotation;
719 info.rotation_type = OMAP_DSS_ROT_VRFB;
720 info.screen_width = 2048;
721 }
722
723 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev,
724 "%s enable=%d addr=%x width=%d\n height=%d color_mode=%d\n"
725 "rotation=%d mirror=%d posx=%d posy=%d out_width = %d \n"
726 "out_height=%d rotation_type=%d screen_width=%d\n",
727 __func__, info.enabled, info.paddr, info.width, info.height,
728 info.color_mode, info.rotation, info.mirror, info.pos_x,
729 info.pos_y, info.out_width, info.out_height, info.rotation_type,
730 info.screen_width);
731
732 ret = ovl->set_overlay_info(ovl, &info);
733 if (ret)
734 goto setup_ovl_err;
735
736 return 0;
737
738setup_ovl_err:
739 v4l2_warn(&vout->vid_dev->v4l2_dev, "setup_overlay failed\n");
740 return ret;
741}
742
743/*
744 * Initialize the overlay structure
745 */
746int omapvid_init(struct omap_vout_device *vout, u32 addr)
747{
748 int ret = 0, i;
749 struct v4l2_window *win;
750 struct omap_overlay *ovl;
751 int posx, posy, outw, outh, temp;
752 struct omap_video_timings *timing;
753 struct omapvideo_info *ovid = &vout->vid_info;
754
755 win = &vout->win;
756 for (i = 0; i < ovid->num_overlays; i++) {
757 ovl = ovid->overlays[i];
758 if (!ovl->manager || !ovl->manager->device)
759 return -EINVAL;
760
761 timing = &ovl->manager->device->panel.timings;
762
763 outw = win->w.width;
764 outh = win->w.height;
765 switch (vout->rotation) {
766 case dss_rotation_90_degree:
767 /* Invert the height and width for 90
768 * and 270 degree rotation
769 */
770 temp = outw;
771 outw = outh;
772 outh = temp;
773 posy = (timing->y_res - win->w.width) - win->w.left;
774 posx = win->w.top;
775 break;
776
777 case dss_rotation_180_degree:
778 posx = (timing->x_res - win->w.width) - win->w.left;
779 posy = (timing->y_res - win->w.height) - win->w.top;
780 break;
781
782 case dss_rotation_270_degree:
783 temp = outw;
784 outw = outh;
785 outh = temp;
786 posy = win->w.left;
787 posx = (timing->x_res - win->w.height) - win->w.top;
788 break;
789
790 default:
791 posx = win->w.left;
792 posy = win->w.top;
793 break;
794 }
795
796 ret = omapvid_setup_overlay(vout, ovl, posx, posy,
797 outw, outh, addr);
798 if (ret)
799 goto omapvid_init_err;
800 }
801 return 0;
802
803omapvid_init_err:
804 v4l2_warn(&vout->vid_dev->v4l2_dev, "apply_changes failed\n");
805 return ret;
806}
807
808/*
809 * Apply the changes set the go bit of DSS
810 */
811int omapvid_apply_changes(struct omap_vout_device *vout)
812{
813 int i;
814 struct omap_overlay *ovl;
815 struct omapvideo_info *ovid = &vout->vid_info;
816
817 for (i = 0; i < ovid->num_overlays; i++) {
818 ovl = ovid->overlays[i];
819 if (!ovl->manager || !ovl->manager->device)
820 return -EINVAL;
821 ovl->manager->apply(ovl->manager);
822 }
823
824 return 0;
825}
826
827void omap_vout_isr(void *arg, unsigned int irqstatus)
828{
829 int ret;
830 u32 addr, fid;
831 struct omap_overlay *ovl;
832 struct timeval timevalue;
833 struct omapvideo_info *ovid;
834 struct omap_dss_device *cur_display;
835 struct omap_vout_device *vout = (struct omap_vout_device *)arg;
836
837 if (!vout->streaming)
838 return;
839
840 ovid = &vout->vid_info;
841 ovl = ovid->overlays[0];
842 /* get the display device attached to the overlay */
843 if (!ovl->manager || !ovl->manager->device)
844 return;
845
846 cur_display = ovl->manager->device;
847
848 spin_lock(&vout->vbq_lock);
849 do_gettimeofday(&timevalue);
850 if (cur_display->type == OMAP_DISPLAY_TYPE_DPI) {
851 if (!(irqstatus & DISPC_IRQ_VSYNC))
852 goto vout_isr_err;
853
854 if (!vout->first_int && (vout->cur_frm != vout->next_frm)) {
855 vout->cur_frm->ts = timevalue;
856 vout->cur_frm->state = VIDEOBUF_DONE;
857 wake_up_interruptible(&vout->cur_frm->done);
858 vout->cur_frm = vout->next_frm;
859 }
860 vout->first_int = 0;
861 if (list_empty(&vout->dma_queue))
862 goto vout_isr_err;
863
864 vout->next_frm = list_entry(vout->dma_queue.next,
865 struct videobuf_buffer, queue);
866 list_del(&vout->next_frm->queue);
867
868 vout->next_frm->state = VIDEOBUF_ACTIVE;
869
870 addr = (unsigned long) vout->queued_buf_addr[vout->next_frm->i]
871 + vout->cropped_offset;
872
873 /* First save the configuration in ovelray structure */
874 ret = omapvid_init(vout, addr);
875 if (ret)
876 printk(KERN_ERR VOUT_NAME
877 "failed to set overlay info\n");
878 /* Enable the pipeline and set the Go bit */
879 ret = omapvid_apply_changes(vout);
880 if (ret)
881 printk(KERN_ERR VOUT_NAME "failed to change mode\n");
882 } else {
883
884 if (vout->first_int) {
885 vout->first_int = 0;
886 goto vout_isr_err;
887 }
888 if (irqstatus & DISPC_IRQ_EVSYNC_ODD)
889 fid = 1;
890 else if (irqstatus & DISPC_IRQ_EVSYNC_EVEN)
891 fid = 0;
892 else
893 goto vout_isr_err;
894
895 vout->field_id ^= 1;
896 if (fid != vout->field_id) {
897 if (0 == fid)
898 vout->field_id = fid;
899
900 goto vout_isr_err;
901 }
902 if (0 == fid) {
903 if (vout->cur_frm == vout->next_frm)
904 goto vout_isr_err;
905
906 vout->cur_frm->ts = timevalue;
907 vout->cur_frm->state = VIDEOBUF_DONE;
908 wake_up_interruptible(&vout->cur_frm->done);
909 vout->cur_frm = vout->next_frm;
910 } else if (1 == fid) {
911 if (list_empty(&vout->dma_queue) ||
912 (vout->cur_frm != vout->next_frm))
913 goto vout_isr_err;
914
915 vout->next_frm = list_entry(vout->dma_queue.next,
916 struct videobuf_buffer, queue);
917 list_del(&vout->next_frm->queue);
918
919 vout->next_frm->state = VIDEOBUF_ACTIVE;
920 addr = (unsigned long)
921 vout->queued_buf_addr[vout->next_frm->i] +
922 vout->cropped_offset;
923 /* First save the configuration in ovelray structure */
924 ret = omapvid_init(vout, addr);
925 if (ret)
926 printk(KERN_ERR VOUT_NAME
927 "failed to set overlay info\n");
928 /* Enable the pipeline and set the Go bit */
929 ret = omapvid_apply_changes(vout);
930 if (ret)
931 printk(KERN_ERR VOUT_NAME
932 "failed to change mode\n");
933 }
934
935 }
936
937vout_isr_err:
938 spin_unlock(&vout->vbq_lock);
939}
940
941
942/* Video buffer call backs */
943
944/*
945 * Buffer setup function is called by videobuf layer when REQBUF ioctl is
946 * called. This is used to setup buffers and return size and count of
947 * buffers allocated. After the call to this buffer, videobuf layer will
948 * setup buffer queue depending on the size and count of buffers
949 */
950static int omap_vout_buffer_setup(struct videobuf_queue *q, unsigned int *count,
951 unsigned int *size)
952{
953 int startindex = 0, i, j;
954 u32 phy_addr = 0, virt_addr = 0;
955 struct omap_vout_device *vout = q->priv_data;
956
957 if (!vout)
958 return -EINVAL;
959
960 if (V4L2_BUF_TYPE_VIDEO_OUTPUT != q->type)
961 return -EINVAL;
962
963 startindex = (vout->vid == OMAP_VIDEO1) ?
964 video1_numbuffers : video2_numbuffers;
965 if (V4L2_MEMORY_MMAP == vout->memory && *count < startindex)
966 *count = startindex;
967
968 if ((rotation_enabled(vout)) && *count > VRFB_NUM_BUFS)
969 *count = VRFB_NUM_BUFS;
970
971 /* If rotation is enabled, allocate memory for VRFB space also */
972 if (rotation_enabled(vout))
973 if (omap_vout_vrfb_buffer_setup(vout, count, startindex))
974 return -ENOMEM;
975
976 if (V4L2_MEMORY_MMAP != vout->memory)
977 return 0;
978
979 /* Now allocated the V4L2 buffers */
980 *size = PAGE_ALIGN(vout->pix.width * vout->pix.height * vout->bpp);
981 startindex = (vout->vid == OMAP_VIDEO1) ?
982 video1_numbuffers : video2_numbuffers;
983
984 for (i = startindex; i < *count; i++) {
985 vout->buffer_size = *size;
986
987 virt_addr = omap_vout_alloc_buffer(vout->buffer_size,
988 &phy_addr);
989 if (!virt_addr) {
990 if (!rotation_enabled(vout))
991 break;
992 /* Free the VRFB buffers if no space for V4L2 buffers */
993 for (j = i; j < *count; j++) {
994 omap_vout_free_buffer(
995 vout->smsshado_virt_addr[j],
996 vout->smsshado_size);
997 vout->smsshado_virt_addr[j] = 0;
998 vout->smsshado_phy_addr[j] = 0;
999 }
1000 }
1001 vout->buf_virt_addr[i] = virt_addr;
1002 vout->buf_phy_addr[i] = phy_addr;
1003 }
1004 *count = vout->buffer_allocated = i;
1005
1006 return 0;
1007}
1008
1009/*
1010 * Free the V4L2 buffers additionally allocated than default
1011 * number of buffers and free all the VRFB buffers
1012 */
1013static void omap_vout_free_allbuffers(struct omap_vout_device *vout)
1014{
1015 int num_buffers = 0, i;
1016
1017 num_buffers = (vout->vid == OMAP_VIDEO1) ?
1018 video1_numbuffers : video2_numbuffers;
1019
1020 for (i = num_buffers; i < vout->buffer_allocated; i++) {
1021 if (vout->buf_virt_addr[i])
1022 omap_vout_free_buffer(vout->buf_virt_addr[i],
1023 vout->buffer_size);
1024
1025 vout->buf_virt_addr[i] = 0;
1026 vout->buf_phy_addr[i] = 0;
1027 }
1028 /* Free the VRFB buffers only if they are allocated
1029 * during reqbufs. Don't free if init time allocated
1030 */
1031 if (!vout->vrfb_static_allocation) {
1032 for (i = 0; i < VRFB_NUM_BUFS; i++) {
1033 if (vout->smsshado_virt_addr[i]) {
1034 omap_vout_free_buffer(
1035 vout->smsshado_virt_addr[i],
1036 vout->smsshado_size);
1037 vout->smsshado_virt_addr[i] = 0;
1038 vout->smsshado_phy_addr[i] = 0;
1039 }
1040 }
1041 }
1042 vout->buffer_allocated = num_buffers;
1043}
1044
1045/*
1046 * This function will be called when VIDIOC_QBUF ioctl is called.
1047 * It prepare buffers before give out for the display. This function
1048 * converts user space virtual address into physical address if userptr memory
1049 * exchange mechanism is used. If rotation is enabled, it copies entire
1050 * buffer into VRFB memory space before giving it to the DSS.
1051 */
1052static int omap_vout_buffer_prepare(struct videobuf_queue *q,
1053 struct videobuf_buffer *vb,
1054 enum v4l2_field field)
1055{
1056 struct vid_vrfb_dma *tx;
1057 enum dss_rotation rotation;
1058 struct videobuf_dmabuf *dmabuf = NULL;
1059 struct omap_vout_device *vout = q->priv_data;
1060 u32 dest_frame_index = 0, src_element_index = 0;
1061 u32 dest_element_index = 0, src_frame_index = 0;
1062 u32 elem_count = 0, frame_count = 0, pixsize = 2;
1063
1064 if (VIDEOBUF_NEEDS_INIT == vb->state) {
1065 vb->width = vout->pix.width;
1066 vb->height = vout->pix.height;
1067 vb->size = vb->width * vb->height * vout->bpp;
1068 vb->field = field;
1069 }
1070 vb->state = VIDEOBUF_PREPARED;
1071 /* if user pointer memory mechanism is used, get the physical
1072 * address of the buffer
1073 */
1074 if (V4L2_MEMORY_USERPTR == vb->memory) {
1075 if (0 == vb->baddr)
1076 return -EINVAL;
1077 /* Virtual address */
1078 /* priv points to struct videobuf_pci_sg_memory. But we went
1079 * pointer to videobuf_dmabuf, which is member of
1080 * videobuf_pci_sg_memory */
1081 dmabuf = videobuf_to_dma(q->bufs[vb->i]);
1082 dmabuf->vmalloc = (void *) vb->baddr;
1083
1084 /* Physical address */
1085 dmabuf->bus_addr =
1086 (dma_addr_t) omap_vout_uservirt_to_phys(vb->baddr);
1087 }
1088
1089 if (!rotation_enabled(vout)) {
1090 dmabuf = videobuf_to_dma(q->bufs[vb->i]);
1091 vout->queued_buf_addr[vb->i] = (u8 *) dmabuf->bus_addr;
1092 return 0;
1093 }
1094 dmabuf = videobuf_to_dma(q->bufs[vb->i]);
1095 /* If rotation is enabled, copy input buffer into VRFB
1096 * memory space using DMA. We are copying input buffer
1097 * into VRFB memory space of desired angle and DSS will
1098 * read image VRFB memory for 0 degree angle
1099 */
1100 pixsize = vout->bpp * vout->vrfb_bpp;
1101 /*
1102 * DMA transfer in double index mode
1103 */
1104
1105 /* Frame index */
1106 dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) -
1107 (vout->pix.width * vout->bpp)) + 1;
1108
1109 /* Source and destination parameters */
1110 src_element_index = 0;
1111 src_frame_index = 0;
1112 dest_element_index = 1;
1113 /* Number of elements per frame */
1114 elem_count = vout->pix.width * vout->bpp;
1115 frame_count = vout->pix.height;
1116 tx = &vout->vrfb_dma_tx;
1117 tx->tx_status = 0;
1118 omap_set_dma_transfer_params(tx->dma_ch, OMAP_DMA_DATA_TYPE_S32,
1119 (elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT,
1120 tx->dev_id, 0x0);
1121 /* src_port required only for OMAP1 */
1122 omap_set_dma_src_params(tx->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
1123 dmabuf->bus_addr, src_element_index, src_frame_index);
1124 /*set dma source burst mode for VRFB */
1125 omap_set_dma_src_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
1126 rotation = calc_rotation(vout);
1127
1128 /* dest_port required only for OMAP1 */
1129 omap_set_dma_dest_params(tx->dma_ch, 0, OMAP_DMA_AMODE_DOUBLE_IDX,
1130 vout->vrfb_context[vb->i].paddr[0], dest_element_index,
1131 dest_frame_index);
1132 /*set dma dest burst mode for VRFB */
1133 omap_set_dma_dest_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
1134 omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, 0x20, 0);
1135
1136 omap_start_dma(tx->dma_ch);
1137 interruptible_sleep_on_timeout(&tx->wait, VRFB_TX_TIMEOUT);
1138
1139 if (tx->tx_status == 0) {
1140 omap_stop_dma(tx->dma_ch);
1141 return -EINVAL;
1142 }
1143 /* Store buffers physical address into an array. Addresses
1144 * from this array will be used to configure DSS */
1145 vout->queued_buf_addr[vb->i] = (u8 *)
1146 vout->vrfb_context[vb->i].paddr[rotation];
1147 return 0;
1148}
1149
1150/*
1151 * Buffer queue funtion will be called from the videobuf layer when _QBUF
1152 * ioctl is called. It is used to enqueue buffer, which is ready to be
1153 * displayed.
1154 */
1155static void omap_vout_buffer_queue(struct videobuf_queue *q,
1156 struct videobuf_buffer *vb)
1157{
1158 struct omap_vout_device *vout = q->priv_data;
1159
1160 /* Driver is also maintainig a queue. So enqueue buffer in the driver
1161 * queue */
1162 list_add_tail(&vb->queue, &vout->dma_queue);
1163
1164 vb->state = VIDEOBUF_QUEUED;
1165}
1166
1167/*
1168 * Buffer release function is called from videobuf layer to release buffer
1169 * which are already allocated
1170 */
1171static void omap_vout_buffer_release(struct videobuf_queue *q,
1172 struct videobuf_buffer *vb)
1173{
1174 struct omap_vout_device *vout = q->priv_data;
1175
1176 vb->state = VIDEOBUF_NEEDS_INIT;
1177
1178 if (V4L2_MEMORY_MMAP != vout->memory)
1179 return;
1180}
1181
1182/*
1183 * File operations
1184 */
1185static void omap_vout_vm_open(struct vm_area_struct *vma)
1186{
1187 struct omap_vout_device *vout = vma->vm_private_data;
1188
1189 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev,
1190 "vm_open [vma=%08lx-%08lx]\n", vma->vm_start, vma->vm_end);
1191 vout->mmap_count++;
1192}
1193
1194static void omap_vout_vm_close(struct vm_area_struct *vma)
1195{
1196 struct omap_vout_device *vout = vma->vm_private_data;
1197
1198 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev,
1199 "vm_close [vma=%08lx-%08lx]\n", vma->vm_start, vma->vm_end);
1200 vout->mmap_count--;
1201}
1202
1203static struct vm_operations_struct omap_vout_vm_ops = {
1204 .open = omap_vout_vm_open,
1205 .close = omap_vout_vm_close,
1206};
1207
1208static int omap_vout_mmap(struct file *file, struct vm_area_struct *vma)
1209{
1210 int i;
1211 void *pos;
1212 unsigned long start = vma->vm_start;
1213 unsigned long size = (vma->vm_end - vma->vm_start);
1214 struct videobuf_dmabuf *dmabuf = NULL;
1215 struct omap_vout_device *vout = file->private_data;
1216 struct videobuf_queue *q = &vout->vbq;
1217
1218 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev,
1219 " %s pgoff=0x%lx, start=0x%lx, end=0x%lx\n", __func__,
1220 vma->vm_pgoff, vma->vm_start, vma->vm_end);
1221
1222 /* look for the buffer to map */
1223 for (i = 0; i < VIDEO_MAX_FRAME; i++) {
1224 if (NULL == q->bufs[i])
1225 continue;
1226 if (V4L2_MEMORY_MMAP != q->bufs[i]->memory)
1227 continue;
1228 if (q->bufs[i]->boff == (vma->vm_pgoff << PAGE_SHIFT))
1229 break;
1230 }
1231
1232 if (VIDEO_MAX_FRAME == i) {
1233 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev,
1234 "offset invalid [offset=0x%lx]\n",
1235 (vma->vm_pgoff << PAGE_SHIFT));
1236 return -EINVAL;
1237 }
1238 q->bufs[i]->baddr = vma->vm_start;
1239
1240 vma->vm_flags |= VM_RESERVED;
1241 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
1242 vma->vm_ops = &omap_vout_vm_ops;
1243 vma->vm_private_data = (void *) vout;
1244 dmabuf = videobuf_to_dma(q->bufs[i]);
1245 pos = dmabuf->vmalloc;
1246 vma->vm_pgoff = virt_to_phys((void *)pos) >> PAGE_SHIFT;
1247 while (size > 0) {
1248 unsigned long pfn;
1249 pfn = virt_to_phys((void *) pos) >> PAGE_SHIFT;
1250 if (remap_pfn_range(vma, start, pfn, PAGE_SIZE, PAGE_SHARED))
1251 return -EAGAIN;
1252 start += PAGE_SIZE;
1253 pos += PAGE_SIZE;
1254 size -= PAGE_SIZE;
1255 }
1256 vout->mmap_count++;
1257 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Exiting %s\n", __func__);
1258
1259 return 0;
1260}
1261
1262static int omap_vout_release(struct file *file)
1263{
1264 unsigned int ret, i;
1265 struct videobuf_queue *q;
1266 struct omapvideo_info *ovid;
1267 struct omap_vout_device *vout = file->private_data;
1268
1269 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Entering %s\n", __func__);
1270 ovid = &vout->vid_info;
1271
1272 if (!vout)
1273 return 0;
1274
1275 q = &vout->vbq;
1276 /* Disable all the overlay managers connected with this interface */
1277 for (i = 0; i < ovid->num_overlays; i++) {
1278 struct omap_overlay *ovl = ovid->overlays[i];
1279 if (ovl->manager && ovl->manager->device) {
1280 struct omap_overlay_info info;
1281 ovl->get_overlay_info(ovl, &info);
1282 info.enabled = 0;
1283 ovl->set_overlay_info(ovl, &info);
1284 }
1285 }
1286 /* Turn off the pipeline */
1287 ret = omapvid_apply_changes(vout);
1288 if (ret)
1289 v4l2_warn(&vout->vid_dev->v4l2_dev,
1290 "Unable to apply changes\n");
1291
1292 /* Free all buffers */
1293 omap_vout_free_allbuffers(vout);
1294 videobuf_mmap_free(q);
1295
1296 /* Even if apply changes fails we should continue
1297 freeing allocated memeory */
1298 if (vout->streaming) {
1299 u32 mask = 0;
1300
1301 mask = DISPC_IRQ_VSYNC | DISPC_IRQ_EVSYNC_EVEN |
1302 DISPC_IRQ_EVSYNC_ODD;
1303 omap_dispc_unregister_isr(omap_vout_isr, vout, mask);
1304 vout->streaming = 0;
1305
1306 videobuf_streamoff(q);
1307 videobuf_queue_cancel(q);
1308 }
1309
1310 if (vout->mmap_count != 0)
1311 vout->mmap_count = 0;
1312
1313 vout->opened -= 1;
1314 file->private_data = NULL;
1315
1316 if (vout->buffer_allocated)
1317 videobuf_mmap_free(q);
1318
1319 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Exiting %s\n", __func__);
1320 return ret;
1321}
1322
1323static int omap_vout_open(struct file *file)
1324{
1325 struct videobuf_queue *q;
1326 struct omap_vout_device *vout = NULL;
1327
1328 vout = video_drvdata(file);
1329 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Entering %s\n", __func__);
1330
1331 if (vout == NULL)
1332 return -ENODEV;
1333
1334 /* for now, we only support single open */
1335 if (vout->opened)
1336 return -EBUSY;
1337
1338 vout->opened += 1;
1339
1340 file->private_data = vout;
1341 vout->type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
1342
1343 q = &vout->vbq;
1344 video_vbq_ops.buf_setup = omap_vout_buffer_setup;
1345 video_vbq_ops.buf_prepare = omap_vout_buffer_prepare;
1346 video_vbq_ops.buf_release = omap_vout_buffer_release;
1347 video_vbq_ops.buf_queue = omap_vout_buffer_queue;
1348 spin_lock_init(&vout->vbq_lock);
1349
1350 videobuf_queue_sg_init(q, &video_vbq_ops, NULL, &vout->vbq_lock,
1351 vout->type, V4L2_FIELD_NONE,
1352 sizeof(struct videobuf_buffer), vout);
1353
1354 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Exiting %s\n", __func__);
1355 return 0;
1356}
1357
1358/*
1359 * V4L2 ioctls
1360 */
1361static int vidioc_querycap(struct file *file, void *fh,
1362 struct v4l2_capability *cap)
1363{
1364 struct omap_vout_device *vout = fh;
1365
1366 strlcpy(cap->driver, VOUT_NAME, sizeof(cap->driver));
1367 strlcpy(cap->card, vout->vfd->name, sizeof(cap->card));
1368 cap->bus_info[0] = '\0';
1369 cap->capabilities = V4L2_CAP_STREAMING | V4L2_CAP_VIDEO_OUTPUT;
1370
1371 return 0;
1372}
1373
1374static int vidioc_enum_fmt_vid_out(struct file *file, void *fh,
1375 struct v4l2_fmtdesc *fmt)
1376{
1377 int index = fmt->index;
1378 enum v4l2_buf_type type = fmt->type;
1379
1380 fmt->index = index;
1381 fmt->type = type;
1382 if (index >= NUM_OUTPUT_FORMATS)
1383 return -EINVAL;
1384
1385 fmt->flags = omap_formats[index].flags;
1386 strlcpy(fmt->description, omap_formats[index].description,
1387 sizeof(fmt->description));
1388 fmt->pixelformat = omap_formats[index].pixelformat;
1389
1390 return 0;
1391}
1392
1393static int vidioc_g_fmt_vid_out(struct file *file, void *fh,
1394 struct v4l2_format *f)
1395{
1396 struct omap_vout_device *vout = fh;
1397
1398 f->fmt.pix = vout->pix;
1399 return 0;
1400
1401}
1402
1403static int vidioc_try_fmt_vid_out(struct file *file, void *fh,
1404 struct v4l2_format *f)
1405{
1406 struct omap_overlay *ovl;
1407 struct omapvideo_info *ovid;
1408 struct omap_video_timings *timing;
1409 struct omap_vout_device *vout = fh;
1410
1411 ovid = &vout->vid_info;
1412 ovl = ovid->overlays[0];
1413
1414 if (!ovl->manager || !ovl->manager->device)
1415 return -EINVAL;
1416 /* get the display device attached to the overlay */
1417 timing = &ovl->manager->device->panel.timings;
1418
1419 vout->fbuf.fmt.height = timing->y_res;
1420 vout->fbuf.fmt.width = timing->x_res;
1421
1422 omap_vout_try_format(&f->fmt.pix);
1423 return 0;
1424}
1425
1426static int vidioc_s_fmt_vid_out(struct file *file, void *fh,
1427 struct v4l2_format *f)
1428{
1429 int ret, bpp;
1430 struct omap_overlay *ovl;
1431 struct omapvideo_info *ovid;
1432 struct omap_video_timings *timing;
1433 struct omap_vout_device *vout = fh;
1434
1435 if (vout->streaming)
1436 return -EBUSY;
1437
1438 mutex_lock(&vout->lock);
1439
1440 ovid = &vout->vid_info;
1441 ovl = ovid->overlays[0];
1442
1443 /* get the display device attached to the overlay */
1444 if (!ovl->manager || !ovl->manager->device) {
1445 ret = -EINVAL;
1446 goto s_fmt_vid_out_exit;
1447 }
1448 timing = &ovl->manager->device->panel.timings;
1449
1450 /* We dont support RGB24-packed mode if vrfb rotation
1451 * is enabled*/
1452 if ((rotation_enabled(vout)) &&
1453 f->fmt.pix.pixelformat == V4L2_PIX_FMT_RGB24) {
1454 ret = -EINVAL;
1455 goto s_fmt_vid_out_exit;
1456 }
1457
1458 /* get the framebuffer parameters */
1459
1460 if (rotate_90_or_270(vout)) {
1461 vout->fbuf.fmt.height = timing->x_res;
1462 vout->fbuf.fmt.width = timing->y_res;
1463 } else {
1464 vout->fbuf.fmt.height = timing->y_res;
1465 vout->fbuf.fmt.width = timing->x_res;
1466 }
1467
1468 /* change to samller size is OK */
1469
1470 bpp = omap_vout_try_format(&f->fmt.pix);
1471 f->fmt.pix.sizeimage = f->fmt.pix.width * f->fmt.pix.height * bpp;
1472
1473 /* try & set the new output format */
1474 vout->bpp = bpp;
1475 vout->pix = f->fmt.pix;
1476 vout->vrfb_bpp = 1;
1477
1478 /* If YUYV then vrfb bpp is 2, for others its 1 */
1479 if (V4L2_PIX_FMT_YUYV == vout->pix.pixelformat ||
1480 V4L2_PIX_FMT_UYVY == vout->pix.pixelformat)
1481 vout->vrfb_bpp = 2;
1482
1483 /* set default crop and win */
1484 omap_vout_new_format(&vout->pix, &vout->fbuf, &vout->crop, &vout->win);
1485
1486 /* Save the changes in the overlay strcuture */
1487 ret = omapvid_init(vout, 0);
1488 if (ret) {
1489 v4l2_err(&vout->vid_dev->v4l2_dev, "failed to change mode\n");
1490 goto s_fmt_vid_out_exit;
1491 }
1492
1493 ret = 0;
1494
1495s_fmt_vid_out_exit:
1496 mutex_unlock(&vout->lock);
1497 return ret;
1498}
1499
1500static int vidioc_try_fmt_vid_overlay(struct file *file, void *fh,
1501 struct v4l2_format *f)
1502{
1503 int ret = 0;
1504 struct omap_vout_device *vout = fh;
1505 struct v4l2_window *win = &f->fmt.win;
1506
1507 ret = omap_vout_try_window(&vout->fbuf, win);
1508
1509 if (!ret) {
1510 if (vout->vid == OMAP_VIDEO1)
1511 win->global_alpha = 255;
1512 else
1513 win->global_alpha = f->fmt.win.global_alpha;
1514 }
1515
1516 return ret;
1517}
1518
1519static int vidioc_s_fmt_vid_overlay(struct file *file, void *fh,
1520 struct v4l2_format *f)
1521{
1522 int ret = 0;
1523 struct omap_overlay *ovl;
1524 struct omapvideo_info *ovid;
1525 struct omap_vout_device *vout = fh;
1526 struct v4l2_window *win = &f->fmt.win;
1527
1528 mutex_lock(&vout->lock);
1529 ovid = &vout->vid_info;
1530 ovl = ovid->overlays[0];
1531
1532 ret = omap_vout_new_window(&vout->crop, &vout->win, &vout->fbuf, win);
1533 if (!ret) {
1534 /* Video1 plane does not support global alpha */
1535 if (ovl->id == OMAP_DSS_VIDEO1)
1536 vout->win.global_alpha = 255;
1537 else
1538 vout->win.global_alpha = f->fmt.win.global_alpha;
1539
1540 vout->win.chromakey = f->fmt.win.chromakey;
1541 }
1542 mutex_unlock(&vout->lock);
1543 return ret;
1544}
1545
1546static int vidioc_enum_fmt_vid_overlay(struct file *file, void *fh,
1547 struct v4l2_fmtdesc *fmt)
1548{
1549 int index = fmt->index;
1550 enum v4l2_buf_type type = fmt->type;
1551
1552 fmt->index = index;
1553 fmt->type = type;
1554 if (index >= NUM_OUTPUT_FORMATS)
1555 return -EINVAL;
1556
1557 fmt->flags = omap_formats[index].flags;
1558 strlcpy(fmt->description, omap_formats[index].description,
1559 sizeof(fmt->description));
1560 fmt->pixelformat = omap_formats[index].pixelformat;
1561 return 0;
1562}
1563
1564static int vidioc_g_fmt_vid_overlay(struct file *file, void *fh,
1565 struct v4l2_format *f)
1566{
1567 u32 key_value = 0;
1568 struct omap_overlay *ovl;
1569 struct omapvideo_info *ovid;
1570 struct omap_vout_device *vout = fh;
1571 struct omap_overlay_manager_info info;
1572 struct v4l2_window *win = &f->fmt.win;
1573
1574 ovid = &vout->vid_info;
1575 ovl = ovid->overlays[0];
1576
1577 win->w = vout->win.w;
1578 win->field = vout->win.field;
1579 win->global_alpha = vout->win.global_alpha;
1580
1581 if (ovl->manager && ovl->manager->get_manager_info) {
1582 ovl->manager->get_manager_info(ovl->manager, &info);
1583 key_value = info.trans_key;
1584 }
1585 win->chromakey = key_value;
1586 return 0;
1587}
1588
1589static int vidioc_cropcap(struct file *file, void *fh,
1590 struct v4l2_cropcap *cropcap)
1591{
1592 struct omap_vout_device *vout = fh;
1593 struct v4l2_pix_format *pix = &vout->pix;
1594
1595 if (cropcap->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
1596 return -EINVAL;
1597
1598 /* Width and height are always even */
1599 cropcap->bounds.width = pix->width & ~1;
1600 cropcap->bounds.height = pix->height & ~1;
1601
1602 omap_vout_default_crop(&vout->pix, &vout->fbuf, &cropcap->defrect);
1603 cropcap->pixelaspect.numerator = 1;
1604 cropcap->pixelaspect.denominator = 1;
1605 return 0;
1606}
1607
1608static int vidioc_g_crop(struct file *file, void *fh, struct v4l2_crop *crop)
1609{
1610 struct omap_vout_device *vout = fh;
1611
1612 if (crop->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
1613 return -EINVAL;
1614 crop->c = vout->crop;
1615 return 0;
1616}
1617
1618static int vidioc_s_crop(struct file *file, void *fh, struct v4l2_crop *crop)
1619{
1620 int ret = -EINVAL;
1621 struct omap_vout_device *vout = fh;
1622 struct omapvideo_info *ovid;
1623 struct omap_overlay *ovl;
1624 struct omap_video_timings *timing;
1625
1626 if (vout->streaming)
1627 return -EBUSY;
1628
1629 mutex_lock(&vout->lock);
1630 ovid = &vout->vid_info;
1631 ovl = ovid->overlays[0];
1632
1633 if (!ovl->manager || !ovl->manager->device) {
1634 ret = -EINVAL;
1635 goto s_crop_err;
1636 }
1637 /* get the display device attached to the overlay */
1638 timing = &ovl->manager->device->panel.timings;
1639
1640 if (rotate_90_or_270(vout)) {
1641 vout->fbuf.fmt.height = timing->x_res;
1642 vout->fbuf.fmt.width = timing->y_res;
1643 } else {
1644 vout->fbuf.fmt.height = timing->y_res;
1645 vout->fbuf.fmt.width = timing->x_res;
1646 }
1647
1648 if (crop->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1649 ret = omap_vout_new_crop(&vout->pix, &vout->crop, &vout->win,
1650 &vout->fbuf, &crop->c);
1651
1652s_crop_err:
1653 mutex_unlock(&vout->lock);
1654 return ret;
1655}
1656
1657static int vidioc_queryctrl(struct file *file, void *fh,
1658 struct v4l2_queryctrl *ctrl)
1659{
1660 int ret = 0;
1661
1662 switch (ctrl->id) {
1663 case V4L2_CID_ROTATE:
1664 ret = v4l2_ctrl_query_fill(ctrl, 0, 270, 90, 0);
1665 break;
1666 case V4L2_CID_BG_COLOR:
1667 ret = v4l2_ctrl_query_fill(ctrl, 0, 0xFFFFFF, 1, 0);
1668 break;
1669 case V4L2_CID_VFLIP:
1670 ret = v4l2_ctrl_query_fill(ctrl, 0, 1, 1, 0);
1671 break;
1672 default:
1673 ctrl->name[0] = '\0';
1674 ret = -EINVAL;
1675 }
1676 return ret;
1677}
1678
1679static int vidioc_g_ctrl(struct file *file, void *fh, struct v4l2_control *ctrl)
1680{
1681 int ret = 0;
1682 struct omap_vout_device *vout = fh;
1683
1684 switch (ctrl->id) {
1685 case V4L2_CID_ROTATE:
1686 ctrl->value = vout->control[0].value;
1687 break;
1688 case V4L2_CID_BG_COLOR:
1689 {
1690 struct omap_overlay_manager_info info;
1691 struct omap_overlay *ovl;
1692
1693 ovl = vout->vid_info.overlays[0];
1694 if (!ovl->manager || !ovl->manager->get_manager_info) {
1695 ret = -EINVAL;
1696 break;
1697 }
1698
1699 ovl->manager->get_manager_info(ovl->manager, &info);
1700 ctrl->value = info.default_color;
1701 break;
1702 }
1703 case V4L2_CID_VFLIP:
1704 ctrl->value = vout->control[2].value;
1705 break;
1706 default:
1707 ret = -EINVAL;
1708 }
1709 return ret;
1710}
1711
1712static int vidioc_s_ctrl(struct file *file, void *fh, struct v4l2_control *a)
1713{
1714 int ret = 0;
1715 struct omap_vout_device *vout = fh;
1716
1717 switch (a->id) {
1718 case V4L2_CID_ROTATE:
1719 {
1720 int rotation = a->value;
1721
1722 mutex_lock(&vout->lock);
1723
1724 if (rotation && vout->pix.pixelformat == V4L2_PIX_FMT_RGB24) {
1725 mutex_unlock(&vout->lock);
1726 ret = -EINVAL;
1727 break;
1728 }
1729
1730 if (v4l2_rot_to_dss_rot(rotation, &vout->rotation,
1731 vout->mirror)) {
1732 mutex_unlock(&vout->lock);
1733 ret = -EINVAL;
1734 break;
1735 }
1736
1737 vout->control[0].value = rotation;
1738 mutex_unlock(&vout->lock);
1739 break;
1740 }
1741 case V4L2_CID_BG_COLOR:
1742 {
1743 struct omap_overlay *ovl;
1744 unsigned int color = a->value;
1745 struct omap_overlay_manager_info info;
1746
1747 ovl = vout->vid_info.overlays[0];
1748
1749 mutex_lock(&vout->lock);
1750 if (!ovl->manager || !ovl->manager->get_manager_info) {
1751 mutex_unlock(&vout->lock);
1752 ret = -EINVAL;
1753 break;
1754 }
1755
1756 ovl->manager->get_manager_info(ovl->manager, &info);
1757 info.default_color = color;
1758 if (ovl->manager->set_manager_info(ovl->manager, &info)) {
1759 mutex_unlock(&vout->lock);
1760 ret = -EINVAL;
1761 break;
1762 }
1763
1764 vout->control[1].value = color;
1765 mutex_unlock(&vout->lock);
1766 break;
1767 }
1768 case V4L2_CID_VFLIP:
1769 {
1770 struct omap_overlay *ovl;
1771 struct omapvideo_info *ovid;
1772 unsigned int mirror = a->value;
1773
1774 ovid = &vout->vid_info;
1775 ovl = ovid->overlays[0];
1776
1777 mutex_lock(&vout->lock);
1778
1779 if (mirror && vout->pix.pixelformat == V4L2_PIX_FMT_RGB24) {
1780 mutex_unlock(&vout->lock);
1781 ret = -EINVAL;
1782 break;
1783 }
1784 vout->mirror = mirror;
1785 vout->control[2].value = mirror;
1786 mutex_unlock(&vout->lock);
1787 break;
1788 }
1789 default:
1790 ret = -EINVAL;
1791 }
1792 return ret;
1793}
1794
1795static int vidioc_reqbufs(struct file *file, void *fh,
1796 struct v4l2_requestbuffers *req)
1797{
1798 int ret = 0;
1799 unsigned int i, num_buffers = 0;
1800 struct omap_vout_device *vout = fh;
1801 struct videobuf_queue *q = &vout->vbq;
1802 struct videobuf_dmabuf *dmabuf = NULL;
1803
1804 if ((req->type != V4L2_BUF_TYPE_VIDEO_OUTPUT) || (req->count < 0))
1805 return -EINVAL;
1806 /* if memory is not mmp or userptr
1807 return error */
1808 if ((V4L2_MEMORY_MMAP != req->memory) &&
1809 (V4L2_MEMORY_USERPTR != req->memory))
1810 return -EINVAL;
1811
1812 mutex_lock(&vout->lock);
1813 /* Cannot be requested when streaming is on */
1814 if (vout->streaming) {
1815 ret = -EBUSY;
1816 goto reqbuf_err;
1817 }
1818
1819 /* If buffers are already allocated free them */
1820 if (q->bufs[0] && (V4L2_MEMORY_MMAP == q->bufs[0]->memory)) {
1821 if (vout->mmap_count) {
1822 ret = -EBUSY;
1823 goto reqbuf_err;
1824 }
1825 num_buffers = (vout->vid == OMAP_VIDEO1) ?
1826 video1_numbuffers : video2_numbuffers;
1827 for (i = num_buffers; i < vout->buffer_allocated; i++) {
1828 dmabuf = videobuf_to_dma(q->bufs[i]);
1829 omap_vout_free_buffer((u32)dmabuf->vmalloc,
1830 vout->buffer_size);
1831 vout->buf_virt_addr[i] = 0;
1832 vout->buf_phy_addr[i] = 0;
1833 }
1834 vout->buffer_allocated = num_buffers;
1835 videobuf_mmap_free(q);
1836 } else if (q->bufs[0] && (V4L2_MEMORY_USERPTR == q->bufs[0]->memory)) {
1837 if (vout->buffer_allocated) {
1838 videobuf_mmap_free(q);
1839 for (i = 0; i < vout->buffer_allocated; i++) {
1840 kfree(q->bufs[i]);
1841 q->bufs[i] = NULL;
1842 }
1843 vout->buffer_allocated = 0;
1844 }
1845 }
1846
1847 /*store the memory type in data structure */
1848 vout->memory = req->memory;
1849
1850 INIT_LIST_HEAD(&vout->dma_queue);
1851
1852 /* call videobuf_reqbufs api */
1853 ret = videobuf_reqbufs(q, req);
1854 if (ret < 0)
1855 goto reqbuf_err;
1856
1857 vout->buffer_allocated = req->count;
1858 for (i = 0; i < req->count; i++) {
1859 dmabuf = videobuf_to_dma(q->bufs[i]);
1860 dmabuf->vmalloc = (void *) vout->buf_virt_addr[i];
1861 dmabuf->bus_addr = (dma_addr_t) vout->buf_phy_addr[i];
1862 dmabuf->sglen = 1;
1863 }
1864reqbuf_err:
1865 mutex_unlock(&vout->lock);
1866 return ret;
1867}
1868
1869static int vidioc_querybuf(struct file *file, void *fh,
1870 struct v4l2_buffer *b)
1871{
1872 struct omap_vout_device *vout = fh;
1873
1874 return videobuf_querybuf(&vout->vbq, b);
1875}
1876
1877static int vidioc_qbuf(struct file *file, void *fh,
1878 struct v4l2_buffer *buffer)
1879{
1880 struct omap_vout_device *vout = fh;
1881 struct videobuf_queue *q = &vout->vbq;
1882
1883 if ((V4L2_BUF_TYPE_VIDEO_OUTPUT != buffer->type) ||
1884 (buffer->index >= vout->buffer_allocated) ||
1885 (q->bufs[buffer->index]->memory != buffer->memory)) {
1886 return -EINVAL;
1887 }
1888 if (V4L2_MEMORY_USERPTR == buffer->memory) {
1889 if ((buffer->length < vout->pix.sizeimage) ||
1890 (0 == buffer->m.userptr)) {
1891 return -EINVAL;
1892 }
1893 }
1894
1895 if ((rotation_enabled(vout)) &&
1896 vout->vrfb_dma_tx.req_status == DMA_CHAN_NOT_ALLOTED) {
1897 v4l2_warn(&vout->vid_dev->v4l2_dev,
1898 "DMA Channel not allocated for Rotation\n");
1899 return -EINVAL;
1900 }
1901
1902 return videobuf_qbuf(q, buffer);
1903}
1904
1905static int vidioc_dqbuf(struct file *file, void *fh, struct v4l2_buffer *b)
1906{
1907 struct omap_vout_device *vout = fh;
1908 struct videobuf_queue *q = &vout->vbq;
1909
1910 if (!vout->streaming)
1911 return -EINVAL;
1912
1913 if (file->f_flags & O_NONBLOCK)
1914 /* Call videobuf_dqbuf for non blocking mode */
1915 return videobuf_dqbuf(q, (struct v4l2_buffer *)b, 1);
1916 else
1917 /* Call videobuf_dqbuf for blocking mode */
1918 return videobuf_dqbuf(q, (struct v4l2_buffer *)b, 0);
1919}
1920
1921static int vidioc_streamon(struct file *file, void *fh, enum v4l2_buf_type i)
1922{
1923 int ret = 0, j;
1924 u32 addr = 0, mask = 0;
1925 struct omap_vout_device *vout = fh;
1926 struct videobuf_queue *q = &vout->vbq;
1927 struct omapvideo_info *ovid = &vout->vid_info;
1928
1929 mutex_lock(&vout->lock);
1930
1931 if (vout->streaming) {
1932 ret = -EBUSY;
1933 goto streamon_err;
1934 }
1935
1936 ret = videobuf_streamon(q);
1937 if (ret)
1938 goto streamon_err;
1939
1940 if (list_empty(&vout->dma_queue)) {
1941 ret = -EIO;
1942 goto streamon_err1;
1943 }
1944
1945 /* Get the next frame from the buffer queue */
1946 vout->next_frm = vout->cur_frm = list_entry(vout->dma_queue.next,
1947 struct videobuf_buffer, queue);
1948 /* Remove buffer from the buffer queue */
1949 list_del(&vout->cur_frm->queue);
1950 /* Mark state of the current frame to active */
1951 vout->cur_frm->state = VIDEOBUF_ACTIVE;
1952 /* Initialize field_id and started member */
1953 vout->field_id = 0;
1954
1955 /* set flag here. Next QBUF will start DMA */
1956 vout->streaming = 1;
1957
1958 vout->first_int = 1;
1959
1960 if (omap_vout_calculate_offset(vout)) {
1961 ret = -EINVAL;
1962 goto streamon_err1;
1963 }
1964 addr = (unsigned long) vout->queued_buf_addr[vout->cur_frm->i]
1965 + vout->cropped_offset;
1966
1967 mask = DISPC_IRQ_VSYNC | DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD;
1968
1969 omap_dispc_register_isr(omap_vout_isr, vout, mask);
1970
1971 for (j = 0; j < ovid->num_overlays; j++) {
1972 struct omap_overlay *ovl = ovid->overlays[j];
1973
1974 if (ovl->manager && ovl->manager->device) {
1975 struct omap_overlay_info info;
1976 ovl->get_overlay_info(ovl, &info);
1977 info.enabled = 1;
1978 info.paddr = addr;
1979 if (ovl->set_overlay_info(ovl, &info)) {
1980 ret = -EINVAL;
1981 goto streamon_err1;
1982 }
1983 }
1984 }
1985
1986 /* First save the configuration in ovelray structure */
1987 ret = omapvid_init(vout, addr);
1988 if (ret)
1989 v4l2_err(&vout->vid_dev->v4l2_dev,
1990 "failed to set overlay info\n");
1991 /* Enable the pipeline and set the Go bit */
1992 ret = omapvid_apply_changes(vout);
1993 if (ret)
1994 v4l2_err(&vout->vid_dev->v4l2_dev, "failed to change mode\n");
1995
1996 ret = 0;
1997
1998streamon_err1:
1999 if (ret)
2000 ret = videobuf_streamoff(q);
2001streamon_err:
2002 mutex_unlock(&vout->lock);
2003 return ret;
2004}
2005
2006static int vidioc_streamoff(struct file *file, void *fh, enum v4l2_buf_type i)
2007{
2008 u32 mask = 0;
2009 int ret = 0, j;
2010 struct omap_vout_device *vout = fh;
2011 struct omapvideo_info *ovid = &vout->vid_info;
2012
2013 if (!vout->streaming)
2014 return -EINVAL;
2015
2016 vout->streaming = 0;
2017 mask = DISPC_IRQ_VSYNC | DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD;
2018
2019 omap_dispc_unregister_isr(omap_vout_isr, vout, mask);
2020
2021 for (j = 0; j < ovid->num_overlays; j++) {
2022 struct omap_overlay *ovl = ovid->overlays[j];
2023
2024 if (ovl->manager && ovl->manager->device) {
2025 struct omap_overlay_info info;
2026
2027 ovl->get_overlay_info(ovl, &info);
2028 info.enabled = 0;
2029 ret = ovl->set_overlay_info(ovl, &info);
2030 if (ret)
2031 v4l2_err(&vout->vid_dev->v4l2_dev,
2032 "failed to update overlay info in streamoff\n");
2033 }
2034 }
2035
2036 /* Turn of the pipeline */
2037 ret = omapvid_apply_changes(vout);
2038 if (ret)
2039 v4l2_err(&vout->vid_dev->v4l2_dev, "failed to change mode in"
2040 " streamoff\n");
2041
2042 INIT_LIST_HEAD(&vout->dma_queue);
2043 ret = videobuf_streamoff(&vout->vbq);
2044
2045 return ret;
2046}
2047
2048static int vidioc_s_fbuf(struct file *file, void *fh,
2049 struct v4l2_framebuffer *a)
2050{
2051 int enable = 0;
2052 struct omap_overlay *ovl;
2053 struct omapvideo_info *ovid;
2054 struct omap_vout_device *vout = fh;
2055 struct omap_overlay_manager_info info;
2056 enum omap_dss_trans_key_type key_type = OMAP_DSS_COLOR_KEY_GFX_DST;
2057
2058 ovid = &vout->vid_info;
2059 ovl = ovid->overlays[0];
2060
2061 /* OMAP DSS doesn't support Source and Destination color
2062 key together */
2063 if ((a->flags & V4L2_FBUF_FLAG_SRC_CHROMAKEY) &&
2064 (a->flags & V4L2_FBUF_FLAG_CHROMAKEY))
2065 return -EINVAL;
2066 /* OMAP DSS Doesn't support the Destination color key
2067 and alpha blending together */
2068 if ((a->flags & V4L2_FBUF_FLAG_CHROMAKEY) &&
2069 (a->flags & V4L2_FBUF_FLAG_LOCAL_ALPHA))
2070 return -EINVAL;
2071
2072 if ((a->flags & V4L2_FBUF_FLAG_SRC_CHROMAKEY)) {
2073 vout->fbuf.flags |= V4L2_FBUF_FLAG_SRC_CHROMAKEY;
2074 key_type = OMAP_DSS_COLOR_KEY_VID_SRC;
2075 } else
2076 vout->fbuf.flags &= ~V4L2_FBUF_FLAG_SRC_CHROMAKEY;
2077
2078 if ((a->flags & V4L2_FBUF_FLAG_CHROMAKEY)) {
2079 vout->fbuf.flags |= V4L2_FBUF_FLAG_CHROMAKEY;
2080 key_type = OMAP_DSS_COLOR_KEY_GFX_DST;
2081 } else
2082 vout->fbuf.flags &= ~V4L2_FBUF_FLAG_CHROMAKEY;
2083
2084 if (a->flags & (V4L2_FBUF_FLAG_CHROMAKEY |
2085 V4L2_FBUF_FLAG_SRC_CHROMAKEY))
2086 enable = 1;
2087 else
2088 enable = 0;
2089 if (ovl->manager && ovl->manager->get_manager_info &&
2090 ovl->manager->set_manager_info) {
2091
2092 ovl->manager->get_manager_info(ovl->manager, &info);
2093 info.trans_enabled = enable;
2094 info.trans_key_type = key_type;
2095 info.trans_key = vout->win.chromakey;
2096
2097 if (ovl->manager->set_manager_info(ovl->manager, &info))
2098 return -EINVAL;
2099 }
2100 if (a->flags & V4L2_FBUF_FLAG_LOCAL_ALPHA) {
2101 vout->fbuf.flags |= V4L2_FBUF_FLAG_LOCAL_ALPHA;
2102 enable = 1;
2103 } else {
2104 vout->fbuf.flags &= ~V4L2_FBUF_FLAG_LOCAL_ALPHA;
2105 enable = 0;
2106 }
2107 if (ovl->manager && ovl->manager->get_manager_info &&
2108 ovl->manager->set_manager_info) {
2109 ovl->manager->get_manager_info(ovl->manager, &info);
2110 info.alpha_enabled = enable;
2111 if (ovl->manager->set_manager_info(ovl->manager, &info))
2112 return -EINVAL;
2113 }
2114
2115 return 0;
2116}
2117
2118static int vidioc_g_fbuf(struct file *file, void *fh,
2119 struct v4l2_framebuffer *a)
2120{
2121 struct omap_overlay *ovl;
2122 struct omapvideo_info *ovid;
2123 struct omap_vout_device *vout = fh;
2124 struct omap_overlay_manager_info info;
2125
2126 ovid = &vout->vid_info;
2127 ovl = ovid->overlays[0];
2128
2129 a->flags = 0x0;
2130 a->capability = V4L2_FBUF_CAP_LOCAL_ALPHA | V4L2_FBUF_CAP_CHROMAKEY
2131 | V4L2_FBUF_CAP_SRC_CHROMAKEY;
2132
2133 if (ovl->manager && ovl->manager->get_manager_info) {
2134 ovl->manager->get_manager_info(ovl->manager, &info);
2135 if (info.trans_key_type == OMAP_DSS_COLOR_KEY_VID_SRC)
2136 a->flags |= V4L2_FBUF_FLAG_SRC_CHROMAKEY;
2137 if (info.trans_key_type == OMAP_DSS_COLOR_KEY_GFX_DST)
2138 a->flags |= V4L2_FBUF_FLAG_CHROMAKEY;
2139 }
2140 if (ovl->manager && ovl->manager->get_manager_info) {
2141 ovl->manager->get_manager_info(ovl->manager, &info);
2142 if (info.alpha_enabled)
2143 a->flags |= V4L2_FBUF_FLAG_LOCAL_ALPHA;
2144 }
2145
2146 return 0;
2147}
2148
2149static const struct v4l2_ioctl_ops vout_ioctl_ops = {
2150 .vidioc_querycap = vidioc_querycap,
2151 .vidioc_enum_fmt_vid_out = vidioc_enum_fmt_vid_out,
2152 .vidioc_g_fmt_vid_out = vidioc_g_fmt_vid_out,
2153 .vidioc_try_fmt_vid_out = vidioc_try_fmt_vid_out,
2154 .vidioc_s_fmt_vid_out = vidioc_s_fmt_vid_out,
2155 .vidioc_queryctrl = vidioc_queryctrl,
2156 .vidioc_g_ctrl = vidioc_g_ctrl,
2157 .vidioc_s_fbuf = vidioc_s_fbuf,
2158 .vidioc_g_fbuf = vidioc_g_fbuf,
2159 .vidioc_s_ctrl = vidioc_s_ctrl,
2160 .vidioc_try_fmt_vid_overlay = vidioc_try_fmt_vid_overlay,
2161 .vidioc_s_fmt_vid_overlay = vidioc_s_fmt_vid_overlay,
2162 .vidioc_enum_fmt_vid_overlay = vidioc_enum_fmt_vid_overlay,
2163 .vidioc_g_fmt_vid_overlay = vidioc_g_fmt_vid_overlay,
2164 .vidioc_cropcap = vidioc_cropcap,
2165 .vidioc_g_crop = vidioc_g_crop,
2166 .vidioc_s_crop = vidioc_s_crop,
2167 .vidioc_reqbufs = vidioc_reqbufs,
2168 .vidioc_querybuf = vidioc_querybuf,
2169 .vidioc_qbuf = vidioc_qbuf,
2170 .vidioc_dqbuf = vidioc_dqbuf,
2171 .vidioc_streamon = vidioc_streamon,
2172 .vidioc_streamoff = vidioc_streamoff,
2173};
2174
2175static const struct v4l2_file_operations omap_vout_fops = {
2176 .owner = THIS_MODULE,
2177 .unlocked_ioctl = video_ioctl2,
2178 .mmap = omap_vout_mmap,
2179 .open = omap_vout_open,
2180 .release = omap_vout_release,
2181};
2182
2183/* Init functions used during driver initialization */
2184/* Initial setup of video_data */
2185static int __init omap_vout_setup_video_data(struct omap_vout_device *vout)
2186{
2187 struct video_device *vfd;
2188 struct v4l2_pix_format *pix;
2189 struct v4l2_control *control;
2190 struct omap_dss_device *display =
2191 vout->vid_info.overlays[0]->manager->device;
2192
2193 /* set the default pix */
2194 pix = &vout->pix;
2195
2196 /* Set the default picture of QVGA */
2197 pix->width = QQVGA_WIDTH;
2198 pix->height = QQVGA_HEIGHT;
2199
2200 /* Default pixel format is RGB 5-6-5 */
2201 pix->pixelformat = V4L2_PIX_FMT_RGB565;
2202 pix->field = V4L2_FIELD_ANY;
2203 pix->bytesperline = pix->width * 2;
2204 pix->sizeimage = pix->bytesperline * pix->height;
2205 pix->priv = 0;
2206 pix->colorspace = V4L2_COLORSPACE_JPEG;
2207
2208 vout->bpp = RGB565_BPP;
2209 vout->fbuf.fmt.width = display->panel.timings.x_res;
2210 vout->fbuf.fmt.height = display->panel.timings.y_res;
2211
2212 /* Set the data structures for the overlay parameters*/
2213 vout->win.global_alpha = 255;
2214 vout->fbuf.flags = 0;
2215 vout->fbuf.capability = V4L2_FBUF_CAP_LOCAL_ALPHA |
2216 V4L2_FBUF_CAP_SRC_CHROMAKEY | V4L2_FBUF_CAP_CHROMAKEY;
2217 vout->win.chromakey = 0;
2218
2219 omap_vout_new_format(pix, &vout->fbuf, &vout->crop, &vout->win);
2220
2221 /*Initialize the control variables for
2222 rotation, flipping and background color. */
2223 control = vout->control;
2224 control[0].id = V4L2_CID_ROTATE;
2225 control[0].value = 0;
2226 vout->rotation = 0;
2227 vout->mirror = 0;
2228 vout->control[2].id = V4L2_CID_HFLIP;
2229 vout->control[2].value = 0;
2230 vout->vrfb_bpp = 2;
2231
2232 control[1].id = V4L2_CID_BG_COLOR;
2233 control[1].value = 0;
2234
2235 /* initialize the video_device struct */
2236 vfd = vout->vfd = video_device_alloc();
2237
2238 if (!vfd) {
2239 printk(KERN_ERR VOUT_NAME ": could not allocate"
2240 " video device struct\n");
2241 return -ENOMEM;
2242 }
2243 vfd->release = video_device_release;
2244 vfd->ioctl_ops = &vout_ioctl_ops;
2245
2246 strlcpy(vfd->name, VOUT_NAME, sizeof(vfd->name));
2247
2248 /* need to register for a VID_HARDWARE_* ID in videodev.h */
2249 vfd->fops = &omap_vout_fops;
2250 vfd->v4l2_dev = &vout->vid_dev->v4l2_dev;
2251 mutex_init(&vout->lock);
2252
2253 vfd->minor = -1;
2254 return 0;
2255
2256}
2257
2258/* Setup video buffers */
2259static int __init omap_vout_setup_video_bufs(struct platform_device *pdev,
2260 int vid_num)
2261{
2262 u32 numbuffers;
2263 int ret = 0, i, j;
2264 int image_width, image_height;
2265 struct video_device *vfd;
2266 struct omap_vout_device *vout;
2267 int static_vrfb_allocation = 0, vrfb_num_bufs = VRFB_NUM_BUFS;
2268 struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
2269 struct omap2video_device *vid_dev =
2270 container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
2271
2272 vout = vid_dev->vouts[vid_num];
2273 vfd = vout->vfd;
2274
2275 numbuffers = (vid_num == 0) ? video1_numbuffers : video2_numbuffers;
2276 vout->buffer_size = (vid_num == 0) ? video1_bufsize : video2_bufsize;
2277 dev_info(&pdev->dev, "Buffer Size = %d\n", vout->buffer_size);
2278
2279 for (i = 0; i < numbuffers; i++) {
2280 vout->buf_virt_addr[i] =
2281 omap_vout_alloc_buffer(vout->buffer_size,
2282 (u32 *) &vout->buf_phy_addr[i]);
2283 if (!vout->buf_virt_addr[i]) {
2284 numbuffers = i;
2285 ret = -ENOMEM;
2286 goto free_buffers;
2287 }
2288 }
2289
2290 for (i = 0; i < VRFB_NUM_BUFS; i++) {
2291 if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
2292 dev_info(&pdev->dev, ": VRFB allocation failed\n");
2293 for (j = 0; j < i; j++)
2294 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
2295 ret = -ENOMEM;
2296 goto free_buffers;
2297 }
2298 }
2299 vout->cropped_offset = 0;
2300
2301 /* Calculate VRFB memory size */
2302 /* allocate for worst case size */
2303 image_width = VID_MAX_WIDTH / TILE_SIZE;
2304 if (VID_MAX_WIDTH % TILE_SIZE)
2305 image_width++;
2306
2307 image_width = image_width * TILE_SIZE;
2308 image_height = VID_MAX_HEIGHT / TILE_SIZE;
2309
2310 if (VID_MAX_HEIGHT % TILE_SIZE)
2311 image_height++;
2312
2313 image_height = image_height * TILE_SIZE;
2314 vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
2315
2316 /*
2317 * Request and Initialize DMA, for DMA based VRFB transfer
2318 */
2319 vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE;
2320 vout->vrfb_dma_tx.dma_ch = -1;
2321 vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED;
2322 ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX",
2323 omap_vout_vrfb_dma_tx_callback,
2324 (void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch);
2325 if (ret < 0) {
2326 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
2327 dev_info(&pdev->dev, ": failed to allocate DMA Channel for"
2328 " video%d\n", vfd->minor);
2329 }
2330 init_waitqueue_head(&vout->vrfb_dma_tx.wait);
2331
2332 /* Allocate VRFB buffers if selected through bootargs */
2333 static_vrfb_allocation = (vid_num == 0) ?
2334 vid1_static_vrfb_alloc : vid2_static_vrfb_alloc;
2335
2336 /* statically allocated the VRFB buffer is done through
2337 commands line aruments */
2338 if (static_vrfb_allocation) {
2339 if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
2340 ret = -ENOMEM;
2341 goto release_vrfb_ctx;
2342 }
2343 vout->vrfb_static_allocation = 1;
2344 }
2345 return 0;
2346
2347release_vrfb_ctx:
2348 for (j = 0; j < VRFB_NUM_BUFS; j++)
2349 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
2350
2351free_buffers:
2352 for (i = 0; i < numbuffers; i++) {
2353 omap_vout_free_buffer(vout->buf_virt_addr[i],
2354 vout->buffer_size);
2355 vout->buf_virt_addr[i] = 0;
2356 vout->buf_phy_addr[i] = 0;
2357 }
2358 return ret;
2359
2360}
2361
2362/* Create video out devices */
2363static int __init omap_vout_create_video_devices(struct platform_device *pdev)
2364{
2365 int ret = 0, k;
2366 struct omap_vout_device *vout;
2367 struct video_device *vfd = NULL;
2368 struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
2369 struct omap2video_device *vid_dev = container_of(v4l2_dev,
2370 struct omap2video_device, v4l2_dev);
2371
2372 for (k = 0; k < pdev->num_resources; k++) {
2373
2ef17c9f 2374 vout = kzalloc(sizeof(struct omap_vout_device), GFP_KERNEL);
5c7ab634
VH
2375 if (!vout) {
2376 dev_err(&pdev->dev, ": could not allocate memory\n");
2377 return -ENOMEM;
2378 }
5c7ab634
VH
2379
2380 vout->vid = k;
2381 vid_dev->vouts[k] = vout;
2382 vout->vid_dev = vid_dev;
2383 /* Select video2 if only 1 overlay is controlled by V4L2 */
2384 if (pdev->num_resources == 1)
2385 vout->vid_info.overlays[0] = vid_dev->overlays[k + 2];
2386 else
2387 /* Else select video1 and video2 one by one. */
2388 vout->vid_info.overlays[0] = vid_dev->overlays[k + 1];
2389 vout->vid_info.num_overlays = 1;
2390 vout->vid_info.id = k + 1;
2391
2392 /* Setup the default configuration for the video devices
2393 */
2394 if (omap_vout_setup_video_data(vout) != 0) {
2395 ret = -ENOMEM;
2396 goto error;
2397 }
2398
2399 /* Allocate default number of buffers for the video streaming
2400 * and reserve the VRFB space for rotation
2401 */
2402 if (omap_vout_setup_video_bufs(pdev, k) != 0) {
2403 ret = -ENOMEM;
2404 goto error1;
2405 }
2406
2407 /* Register the Video device with V4L2
2408 */
2409 vfd = vout->vfd;
2410 if (video_register_device(vfd, VFL_TYPE_GRABBER, k + 1) < 0) {
2411 dev_err(&pdev->dev, ": Could not register "
2412 "Video for Linux device\n");
2413 vfd->minor = -1;
2414 ret = -ENODEV;
2415 goto error2;
2416 }
2417 video_set_drvdata(vfd, vout);
2418
2419 /* Configure the overlay structure */
2420 ret = omapvid_init(vid_dev->vouts[k], 0);
2421 if (!ret)
2422 goto success;
2423
2424error2:
2425 omap_vout_release_vrfb(vout);
2426 omap_vout_free_buffers(vout);
2427error1:
2428 video_device_release(vfd);
2429error:
2430 kfree(vout);
2431 return ret;
2432
2433success:
2434 dev_info(&pdev->dev, ": registered and initialized"
2435 " video device %d\n", vfd->minor);
2436 if (k == (pdev->num_resources - 1))
2437 return 0;
2438 }
2439
2440 return -ENODEV;
2441}
2442/* Driver functions */
2443static void omap_vout_cleanup_device(struct omap_vout_device *vout)
2444{
2445 struct video_device *vfd;
2446
2447 if (!vout)
2448 return;
2449
2450 vfd = vout->vfd;
2451 if (vfd) {
2452 if (!video_is_registered(vfd)) {
2453 /*
2454 * The device was never registered, so release the
2455 * video_device struct directly.
2456 */
2457 video_device_release(vfd);
2458 } else {
2459 /*
2460 * The unregister function will release the video_device
2461 * struct as well as unregistering it.
2462 */
2463 video_unregister_device(vfd);
2464 }
2465 }
2466
2467 omap_vout_release_vrfb(vout);
2468 omap_vout_free_buffers(vout);
2469 /* Free the VRFB buffer if allocated
2470 * init time
2471 */
2472 if (vout->vrfb_static_allocation)
2473 omap_vout_free_vrfb_buffers(vout);
2474
2475 kfree(vout);
2476}
2477
2478static int omap_vout_remove(struct platform_device *pdev)
2479{
2480 int k;
2481 struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
2482 struct omap2video_device *vid_dev = container_of(v4l2_dev, struct
2483 omap2video_device, v4l2_dev);
2484
2485 v4l2_device_unregister(v4l2_dev);
2486 for (k = 0; k < pdev->num_resources; k++)
2487 omap_vout_cleanup_device(vid_dev->vouts[k]);
2488
2489 for (k = 0; k < vid_dev->num_displays; k++) {
2490 if (vid_dev->displays[k]->state != OMAP_DSS_DISPLAY_DISABLED)
2491 vid_dev->displays[k]->disable(vid_dev->displays[k]);
2492
2493 omap_dss_put_device(vid_dev->displays[k]);
2494 }
2495 kfree(vid_dev);
2496 return 0;
2497}
2498
2499static int __init omap_vout_probe(struct platform_device *pdev)
2500{
2501 int ret = 0, i;
2502 struct omap_overlay *ovl;
2503 struct omap_dss_device *dssdev = NULL;
2504 struct omap_dss_device *def_display;
2505 struct omap2video_device *vid_dev = NULL;
2506
2507 if (pdev->num_resources == 0) {
2508 dev_err(&pdev->dev, "probed for an unknown device\n");
2509 return -ENODEV;
2510 }
2511
2512 vid_dev = kzalloc(sizeof(struct omap2video_device), GFP_KERNEL);
2513 if (vid_dev == NULL)
2514 return -ENOMEM;
2515
2516 vid_dev->num_displays = 0;
2517 for_each_dss_dev(dssdev) {
2518 omap_dss_get_device(dssdev);
2519 vid_dev->displays[vid_dev->num_displays++] = dssdev;
2520 }
2521
2522 if (vid_dev->num_displays == 0) {
2523 dev_err(&pdev->dev, "no displays\n");
2524 ret = -EINVAL;
2525 goto probe_err0;
2526 }
2527
2528 vid_dev->num_overlays = omap_dss_get_num_overlays();
2529 for (i = 0; i < vid_dev->num_overlays; i++)
2530 vid_dev->overlays[i] = omap_dss_get_overlay(i);
2531
2532 vid_dev->num_managers = omap_dss_get_num_overlay_managers();
2533 for (i = 0; i < vid_dev->num_managers; i++)
2534 vid_dev->managers[i] = omap_dss_get_overlay_manager(i);
2535
2536 /* Get the Video1 overlay and video2 overlay.
2537 * Setup the Display attached to that overlays
2538 */
2539 for (i = 1; i < vid_dev->num_overlays; i++) {
2540 ovl = omap_dss_get_overlay(i);
2541 if (ovl->manager && ovl->manager->device) {
2542 def_display = ovl->manager->device;
2543 } else {
2544 dev_warn(&pdev->dev, "cannot find display\n");
2545 def_display = NULL;
2546 }
2547 if (def_display) {
2548 ret = def_display->enable(def_display);
2549 if (ret) {
2550 /* Here we are not considering a error
2551 * as display may be enabled by frame
2552 * buffer driver
2553 */
2554 dev_warn(&pdev->dev,
2555 "'%s' Display already enabled\n",
2556 def_display->name);
2557 }
2558 /* set the update mode */
2559 if (def_display->caps &
2560 OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE) {
2561#ifdef CONFIG_FB_OMAP2_FORCE_AUTO_UPDATE
2562 if (def_display->enable_te)
2563 def_display->enable_te(def_display, 1);
2564 if (def_display->set_update_mode)
2565 def_display->set_update_mode(def_display,
2566 OMAP_DSS_UPDATE_AUTO);
2567#else /* MANUAL_UPDATE */
2568 if (def_display->enable_te)
2569 def_display->enable_te(def_display, 0);
2570 if (def_display->set_update_mode)
2571 def_display->set_update_mode(def_display,
2572 OMAP_DSS_UPDATE_MANUAL);
2573#endif
2574 } else {
2575 if (def_display->set_update_mode)
2576 def_display->set_update_mode(def_display,
2577 OMAP_DSS_UPDATE_AUTO);
2578 }
2579 }
2580 }
2581
2582 if (v4l2_device_register(&pdev->dev, &vid_dev->v4l2_dev) < 0) {
2583 dev_err(&pdev->dev, "v4l2_device_register failed\n");
2584 ret = -ENODEV;
2585 goto probe_err1;
2586 }
2587
2588 ret = omap_vout_create_video_devices(pdev);
2589 if (ret)
2590 goto probe_err2;
2591
2592 for (i = 0; i < vid_dev->num_displays; i++) {
2593 struct omap_dss_device *display = vid_dev->displays[i];
2594
2595 if (display->update)
2596 display->update(display, 0, 0,
2597 display->panel.timings.x_res,
2598 display->panel.timings.y_res);
2599 }
2600 return 0;
2601
2602probe_err2:
2603 v4l2_device_unregister(&vid_dev->v4l2_dev);
2604probe_err1:
2605 for (i = 1; i < vid_dev->num_overlays; i++) {
2606 def_display = NULL;
2607 ovl = omap_dss_get_overlay(i);
2608 if (ovl->manager && ovl->manager->device)
2609 def_display = ovl->manager->device;
2610
2611 if (def_display)
2612 def_display->disable(def_display);
2613 }
2614probe_err0:
2615 kfree(vid_dev);
2616 return ret;
2617}
2618
2619static struct platform_driver omap_vout_driver = {
2620 .driver = {
2621 .name = VOUT_NAME,
2622 },
2623 .probe = omap_vout_probe,
2624 .remove = omap_vout_remove,
2625};
2626
2627static int __init omap_vout_init(void)
2628{
2629 if (platform_driver_register(&omap_vout_driver) != 0) {
2630 printk(KERN_ERR VOUT_NAME ":Could not register Video driver\n");
2631 return -EINVAL;
2632 }
2633 return 0;
2634}
2635
2636static void omap_vout_cleanup(void)
2637{
2638 platform_driver_unregister(&omap_vout_driver);
2639}
2640
2641late_initcall(omap_vout_init);
2642module_exit(omap_vout_cleanup);