]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/media/dvb/frontends/cx24123.c
V4L/DVB (4475): Fix most Compat32 stuff on V4L2
[net-next-2.6.git] / drivers / media / dvb / frontends / cx24123.c
CommitLineData
b79cb653
ST
1/*
2 Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver
3
4 Copyright (C) 2005 Steven Toth <stoth@hauppauge.com>
5
1c956a3a
VC
6 Support for KWorld DVB-S 100 by Vadim Catana <skystar@moldova.cc>
7
b79cb653
ST
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21*/
22
23#include <linux/slab.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/moduleparam.h>
27#include <linux/init.h>
28
29#include "dvb_frontend.h"
30#include "cx24123.h"
31
a74b51fc
VC
32#define XTAL 10111000
33
70047f9c 34static int force_band;
b79cb653
ST
35static int debug;
36#define dprintk(args...) \
37 do { \
38 if (debug) printk (KERN_DEBUG "cx24123: " args); \
39 } while (0)
40
e3b152bc
JS
41struct cx24123_state
42{
b79cb653 43 struct i2c_adapter* i2c;
b79cb653
ST
44 const struct cx24123_config* config;
45
46 struct dvb_frontend frontend;
47
b79cb653
ST
48 /* Some PLL specifics for tuning */
49 u32 VCAarg;
50 u32 VGAarg;
51 u32 bandselectarg;
52 u32 pllarg;
a74b51fc 53 u32 FILTune;
b79cb653
ST
54
55 /* The Demod/Tuner can't easily provide these, we cache them */
56 u32 currentfreq;
57 u32 currentsymbolrate;
58};
59
e3b152bc
JS
60/* Various tuner defaults need to be established for a given symbol rate Sps */
61static struct
62{
63 u32 symbolrate_low;
64 u32 symbolrate_high;
e3b152bc
JS
65 u32 VCAprogdata;
66 u32 VGAprogdata;
a74b51fc 67 u32 FILTune;
e3b152bc
JS
68} cx24123_AGC_vals[] =
69{
70 {
71 .symbolrate_low = 1000000,
72 .symbolrate_high = 4999999,
a74b51fc
VC
73 /* the specs recommend other values for VGA offsets,
74 but tests show they are wrong */
0e4558ab
YP
75 .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
76 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x07,
77 .FILTune = 0x27f /* 0.41 V */
e3b152bc
JS
78 },
79 {
80 .symbolrate_low = 5000000,
81 .symbolrate_high = 14999999,
0e4558ab
YP
82 .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
83 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x1f,
a74b51fc 84 .FILTune = 0x317 /* 0.90 V */
e3b152bc
JS
85 },
86 {
87 .symbolrate_low = 15000000,
88 .symbolrate_high = 45000000,
0e4558ab
YP
89 .VGAprogdata = (1 << 19) | (0x100 << 9) | 0x180,
90 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x3f,
91 .FILTune = 0x145 /* 2.70 V */
e3b152bc
JS
92 },
93};
94
95/*
96 * Various tuner defaults need to be established for a given frequency kHz.
97 * fixme: The bounds on the bands do not match the doc in real life.
98 * fixme: Some of them have been moved, other might need adjustment.
99 */
100static struct
101{
102 u32 freq_low;
103 u32 freq_high;
e3b152bc 104 u32 VCOdivider;
e3b152bc
JS
105 u32 progdata;
106} cx24123_bandselect_vals[] =
107{
70047f9c 108 /* band 1 */
e3b152bc
JS
109 {
110 .freq_low = 950000,
e3b152bc 111 .freq_high = 1074999,
e3b152bc 112 .VCOdivider = 4,
70047f9c 113 .progdata = (0 << 19) | (0 << 9) | 0x40,
e3b152bc 114 },
70047f9c
YP
115
116 /* band 2 */
e3b152bc
JS
117 {
118 .freq_low = 1075000,
70047f9c
YP
119 .freq_high = 1177999,
120 .VCOdivider = 4,
121 .progdata = (0 << 19) | (0 << 9) | 0x80,
e3b152bc 122 },
70047f9c
YP
123
124 /* band 3 */
e3b152bc 125 {
70047f9c
YP
126 .freq_low = 1178000,
127 .freq_high = 1295999,
e3b152bc 128 .VCOdivider = 2,
70047f9c 129 .progdata = (0 << 19) | (1 << 9) | 0x01,
e3b152bc 130 },
70047f9c
YP
131
132 /* band 4 */
e3b152bc 133 {
70047f9c
YP
134 .freq_low = 1296000,
135 .freq_high = 1431999,
e3b152bc 136 .VCOdivider = 2,
70047f9c 137 .progdata = (0 << 19) | (1 << 9) | 0x02,
e3b152bc 138 },
70047f9c
YP
139
140 /* band 5 */
e3b152bc 141 {
70047f9c
YP
142 .freq_low = 1432000,
143 .freq_high = 1575999,
e3b152bc 144 .VCOdivider = 2,
70047f9c 145 .progdata = (0 << 19) | (1 << 9) | 0x04,
e3b152bc 146 },
70047f9c
YP
147
148 /* band 6 */
e3b152bc 149 {
70047f9c 150 .freq_low = 1576000,
e3b152bc 151 .freq_high = 1717999,
e3b152bc 152 .VCOdivider = 2,
70047f9c 153 .progdata = (0 << 19) | (1 << 9) | 0x08,
e3b152bc 154 },
70047f9c
YP
155
156 /* band 7 */
e3b152bc
JS
157 {
158 .freq_low = 1718000,
159 .freq_high = 1855999,
e3b152bc 160 .VCOdivider = 2,
70047f9c 161 .progdata = (0 << 19) | (1 << 9) | 0x10,
e3b152bc 162 },
70047f9c
YP
163
164 /* band 8 */
e3b152bc
JS
165 {
166 .freq_low = 1856000,
167 .freq_high = 2035999,
e3b152bc 168 .VCOdivider = 2,
70047f9c 169 .progdata = (0 << 19) | (1 << 9) | 0x20,
e3b152bc 170 },
70047f9c
YP
171
172 /* band 9 */
e3b152bc
JS
173 {
174 .freq_low = 2036000,
70047f9c 175 .freq_high = 2150000,
e3b152bc 176 .VCOdivider = 2,
70047f9c 177 .progdata = (0 << 19) | (1 << 9) | 0x40,
e3b152bc
JS
178 },
179};
180
b79cb653
ST
181static struct {
182 u8 reg;
183 u8 data;
184} cx24123_regdata[] =
185{
186 {0x00, 0x03}, /* Reset system */
187 {0x00, 0x00}, /* Clear reset */
0e4558ab
YP
188 {0x03, 0x07}, /* QPSK, DVB, Auto Acquisition (default) */
189 {0x04, 0x10}, /* MPEG */
190 {0x05, 0x04}, /* MPEG */
191 {0x06, 0x31}, /* MPEG (default) */
192 {0x0b, 0x00}, /* Freq search start point (default) */
193 {0x0c, 0x00}, /* Demodulator sample gain (default) */
194 {0x0d, 0x02}, /* Frequency search range = Fsymbol / 4 (default) */
195 {0x0e, 0x03}, /* Default non-inverted, FEC 3/4 (default) */
196 {0x0f, 0xfe}, /* FEC search mask (all supported codes) */
197 {0x10, 0x01}, /* Default search inversion, no repeat (default) */
198 {0x16, 0x00}, /* Enable reading of frequency */
199 {0x17, 0x01}, /* Enable EsNO Ready Counter */
200 {0x1c, 0x80}, /* Enable error counter */
201 {0x20, 0x00}, /* Tuner burst clock rate = 500KHz */
202 {0x21, 0x15}, /* Tuner burst mode, word length = 0x15 */
203 {0x28, 0x00}, /* Enable FILTERV with positive pol., DiSEqC 2.x off */
204 {0x29, 0x00}, /* DiSEqC LNB_DC off */
205 {0x2a, 0xb0}, /* DiSEqC Parameters (default) */
206 {0x2b, 0x73}, /* DiSEqC Tone Frequency (default) */
207 {0x2c, 0x00}, /* DiSEqC Message (0x2c - 0x31) */
b79cb653
ST
208 {0x2d, 0x00},
209 {0x2e, 0x00},
210 {0x2f, 0x00},
211 {0x30, 0x00},
212 {0x31, 0x00},
0e4558ab
YP
213 {0x32, 0x8c}, /* DiSEqC Parameters (default) */
214 {0x33, 0x00}, /* Interrupts off (0x33 - 0x34) */
b79cb653 215 {0x34, 0x00},
0e4558ab
YP
216 {0x35, 0x03}, /* DiSEqC Tone Amplitude (default) */
217 {0x36, 0x02}, /* DiSEqC Parameters (default) */
218 {0x37, 0x3a}, /* DiSEqC Parameters (default) */
219 {0x3a, 0x00}, /* Enable AGC accumulator (for signal strength) */
220 {0x44, 0x00}, /* Constellation (default) */
221 {0x45, 0x00}, /* Symbol count (default) */
222 {0x46, 0x0d}, /* Symbol rate estimator on (default) */
18c053b3 223 {0x56, 0xc1}, /* Error Counter = Viterbi BER */
0e4558ab
YP
224 {0x57, 0xff}, /* Error Counter Window (default) */
225 {0x67, 0x83}, /* Non-DCII symbol clock */
b79cb653
ST
226};
227
228static int cx24123_writereg(struct cx24123_state* state, int reg, int data)
229{
230 u8 buf[] = { reg, data };
231 struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
232 int err;
233
caf970e0
MCC
234 if (debug>1)
235 printk("cx24123: %s: write reg 0x%02x, value 0x%02x\n",
236 __FUNCTION__,reg, data);
237
b79cb653
ST
238 if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) {
239 printk("%s: writereg error(err == %i, reg == 0x%02x,"
240 " data == 0x%02x)\n", __FUNCTION__, err, reg, data);
241 return -EREMOTEIO;
242 }
243
244 return 0;
245}
246
b79cb653
ST
247static int cx24123_readreg(struct cx24123_state* state, u8 reg)
248{
249 int ret;
250 u8 b0[] = { reg };
251 u8 b1[] = { 0 };
252 struct i2c_msg msg[] = {
253 { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
254 { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 }
255 };
256
257 ret = i2c_transfer(state->i2c, msg, 2);
258
259 if (ret != 2) {
260 printk("%s: reg=0x%x (error=%d)\n", __FUNCTION__, reg, ret);
261 return ret;
262 }
263
caf970e0
MCC
264 if (debug>1)
265 printk("cx24123: read reg 0x%02x, value 0x%02x\n",reg, ret);
266
b79cb653
ST
267 return b1[0];
268}
269
b79cb653
ST
270static int cx24123_set_inversion(struct cx24123_state* state, fe_spectral_inversion_t inversion)
271{
0e4558ab
YP
272 u8 nom_reg = cx24123_readreg(state, 0x0e);
273 u8 auto_reg = cx24123_readreg(state, 0x10);
274
b79cb653
ST
275 switch (inversion) {
276 case INVERSION_OFF:
caf970e0 277 dprintk("%s: inversion off\n",__FUNCTION__);
0e4558ab
YP
278 cx24123_writereg(state, 0x0e, nom_reg & ~0x80);
279 cx24123_writereg(state, 0x10, auto_reg | 0x80);
b79cb653
ST
280 break;
281 case INVERSION_ON:
caf970e0 282 dprintk("%s: inversion on\n",__FUNCTION__);
0e4558ab
YP
283 cx24123_writereg(state, 0x0e, nom_reg | 0x80);
284 cx24123_writereg(state, 0x10, auto_reg | 0x80);
b79cb653
ST
285 break;
286 case INVERSION_AUTO:
caf970e0 287 dprintk("%s: inversion auto\n",__FUNCTION__);
0e4558ab 288 cx24123_writereg(state, 0x10, auto_reg & ~0x80);
b79cb653
ST
289 break;
290 default:
291 return -EINVAL;
292 }
293
294 return 0;
295}
296
297static int cx24123_get_inversion(struct cx24123_state* state, fe_spectral_inversion_t *inversion)
298{
299 u8 val;
300
301 val = cx24123_readreg(state, 0x1b) >> 7;
302
caf970e0
MCC
303 if (val == 0) {
304 dprintk("%s: read inversion off\n",__FUNCTION__);
e3b152bc 305 *inversion = INVERSION_OFF;
caf970e0
MCC
306 } else {
307 dprintk("%s: read inversion on\n",__FUNCTION__);
e3b152bc 308 *inversion = INVERSION_ON;
caf970e0 309 }
b79cb653
ST
310
311 return 0;
312}
313
314static int cx24123_set_fec(struct cx24123_state* state, fe_code_rate_t fec)
315{
0e4558ab
YP
316 u8 nom_reg = cx24123_readreg(state, 0x0e) & ~0x07;
317
b79cb653 318 if ( (fec < FEC_NONE) || (fec > FEC_AUTO) )
e3b152bc 319 fec = FEC_AUTO;
b79cb653 320
d12a9b91
YP
321 /* Set the soft decision threshold */
322 if(fec == FEC_1_2)
323 cx24123_writereg(state, 0x43, cx24123_readreg(state, 0x43) | 0x01);
324 else
325 cx24123_writereg(state, 0x43, cx24123_readreg(state, 0x43) & ~0x01);
326
b79cb653 327 switch (fec) {
b79cb653 328 case FEC_1_2:
caf970e0 329 dprintk("%s: set FEC to 1/2\n",__FUNCTION__);
0e4558ab
YP
330 cx24123_writereg(state, 0x0e, nom_reg | 0x01);
331 cx24123_writereg(state, 0x0f, 0x02);
332 break;
b79cb653 333 case FEC_2_3:
caf970e0 334 dprintk("%s: set FEC to 2/3\n",__FUNCTION__);
0e4558ab
YP
335 cx24123_writereg(state, 0x0e, nom_reg | 0x02);
336 cx24123_writereg(state, 0x0f, 0x04);
337 break;
b79cb653 338 case FEC_3_4:
caf970e0 339 dprintk("%s: set FEC to 3/4\n",__FUNCTION__);
0e4558ab
YP
340 cx24123_writereg(state, 0x0e, nom_reg | 0x03);
341 cx24123_writereg(state, 0x0f, 0x08);
342 break;
343 case FEC_4_5:
caf970e0 344 dprintk("%s: set FEC to 4/5\n",__FUNCTION__);
0e4558ab
YP
345 cx24123_writereg(state, 0x0e, nom_reg | 0x04);
346 cx24123_writereg(state, 0x0f, 0x10);
347 break;
348 case FEC_5_6:
caf970e0 349 dprintk("%s: set FEC to 5/6\n",__FUNCTION__);
0e4558ab
YP
350 cx24123_writereg(state, 0x0e, nom_reg | 0x05);
351 cx24123_writereg(state, 0x0f, 0x20);
352 break;
353 case FEC_6_7:
354 dprintk("%s: set FEC to 6/7\n",__FUNCTION__);
355 cx24123_writereg(state, 0x0e, nom_reg | 0x06);
356 cx24123_writereg(state, 0x0f, 0x40);
357 break;
358 case FEC_7_8:
359 dprintk("%s: set FEC to 7/8\n",__FUNCTION__);
360 cx24123_writereg(state, 0x0e, nom_reg | 0x07);
361 cx24123_writereg(state, 0x0f, 0x80);
362 break;
b79cb653 363 case FEC_AUTO:
caf970e0 364 dprintk("%s: set FEC to auto\n",__FUNCTION__);
0e4558ab
YP
365 cx24123_writereg(state, 0x0f, 0xfe);
366 break;
b79cb653
ST
367 default:
368 return -EOPNOTSUPP;
369 }
0e4558ab
YP
370
371 return 0;
b79cb653
ST
372}
373
374static int cx24123_get_fec(struct cx24123_state* state, fe_code_rate_t *fec)
375{
e3b152bc 376 int ret;
b79cb653 377
e3b152bc
JS
378 ret = cx24123_readreg (state, 0x1b);
379 if (ret < 0)
380 return ret;
a74b51fc
VC
381 ret = ret & 0x07;
382
383 switch (ret) {
b79cb653 384 case 1:
e3b152bc
JS
385 *fec = FEC_1_2;
386 break;
a74b51fc 387 case 2:
e3b152bc
JS
388 *fec = FEC_2_3;
389 break;
a74b51fc 390 case 3:
e3b152bc
JS
391 *fec = FEC_3_4;
392 break;
a74b51fc 393 case 4:
e3b152bc
JS
394 *fec = FEC_4_5;
395 break;
a74b51fc 396 case 5:
e3b152bc
JS
397 *fec = FEC_5_6;
398 break;
a74b51fc
VC
399 case 6:
400 *fec = FEC_6_7;
401 break;
b79cb653 402 case 7:
e3b152bc
JS
403 *fec = FEC_7_8;
404 break;
b79cb653 405 default:
0e4558ab
YP
406 /* this can happen when there's no lock */
407 *fec = FEC_NONE;
b79cb653
ST
408 }
409
e3b152bc 410 return 0;
b79cb653
ST
411}
412
0e4558ab
YP
413/* Approximation of closest integer of log2(a/b). It actually gives the
414 lowest integer i such that 2^i >= round(a/b) */
415static u32 cx24123_int_log2(u32 a, u32 b)
416{
417 u32 exp, nearest = 0;
418 u32 div = a / b;
419 if(a % b >= b / 2) ++div;
420 if(div < (1 << 31))
421 {
422 for(exp = 1; div > exp; nearest++)
423 exp += exp;
424 }
425 return nearest;
426}
427
b79cb653
ST
428static int cx24123_set_symbolrate(struct cx24123_state* state, u32 srate)
429{
0e4558ab 430 u32 tmp, sample_rate, ratio, sample_gain;
a74b51fc
VC
431 u8 pll_mult;
432
433 /* check if symbol rate is within limits */
dea74869
PB
434 if ((srate > state->frontend.ops.info.symbol_rate_max) ||
435 (srate < state->frontend.ops.info.symbol_rate_min))
a74b51fc
VC
436 return -EOPNOTSUPP;;
437
438 /* choose the sampling rate high enough for the required operation,
439 while optimizing the power consumed by the demodulator */
440 if (srate < (XTAL*2)/2)
441 pll_mult = 2;
442 else if (srate < (XTAL*3)/2)
443 pll_mult = 3;
444 else if (srate < (XTAL*4)/2)
445 pll_mult = 4;
446 else if (srate < (XTAL*5)/2)
447 pll_mult = 5;
448 else if (srate < (XTAL*6)/2)
449 pll_mult = 6;
450 else if (srate < (XTAL*7)/2)
451 pll_mult = 7;
452 else if (srate < (XTAL*8)/2)
453 pll_mult = 8;
454 else
455 pll_mult = 9;
456
457
458 sample_rate = pll_mult * XTAL;
b79cb653 459
a74b51fc
VC
460 /*
461 SYSSymbolRate[21:0] = (srate << 23) / sample_rate
b79cb653 462
a74b51fc
VC
463 We have to use 32 bit unsigned arithmetic without precision loss.
464 The maximum srate is 45000000 or 0x02AEA540. This number has
465 only 6 clear bits on top, hence we can shift it left only 6 bits
466 at a time. Borrowed from cx24110.c
467 */
b79cb653 468
a74b51fc
VC
469 tmp = srate << 6;
470 ratio = tmp / sample_rate;
471
472 tmp = (tmp % sample_rate) << 6;
473 ratio = (ratio << 6) + (tmp / sample_rate);
474
475 tmp = (tmp % sample_rate) << 6;
476 ratio = (ratio << 6) + (tmp / sample_rate);
477
478 tmp = (tmp % sample_rate) << 5;
479 ratio = (ratio << 5) + (tmp / sample_rate);
480
481
482 cx24123_writereg(state, 0x01, pll_mult * 6);
483
484 cx24123_writereg(state, 0x08, (ratio >> 16) & 0x3f );
485 cx24123_writereg(state, 0x09, (ratio >> 8) & 0xff );
486 cx24123_writereg(state, 0x0a, (ratio ) & 0xff );
487
0e4558ab
YP
488 /* also set the demodulator sample gain */
489 sample_gain = cx24123_int_log2(sample_rate, srate);
490 tmp = cx24123_readreg(state, 0x0c) & ~0xe0;
491 cx24123_writereg(state, 0x0c, tmp | sample_gain << 5);
492
493 dprintk("%s: srate=%d, ratio=0x%08x, sample_rate=%i sample_gain=%d\n", __FUNCTION__, srate, ratio, sample_rate, sample_gain);
b79cb653
ST
494
495 return 0;
496}
497
498/*
499 * Based on the required frequency and symbolrate, the tuner AGC has to be configured
500 * and the correct band selected. Calculate those values
501 */
502static int cx24123_pll_calculate(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
503{
504 struct cx24123_state *state = fe->demodulator_priv;
e3b152bc
JS
505 u32 ndiv = 0, adiv = 0, vco_div = 0;
506 int i = 0;
a74b51fc 507 int pump = 2;
70047f9c
YP
508 int band = 0;
509 int num_bands = sizeof(cx24123_bandselect_vals) / sizeof(cx24123_bandselect_vals[0]);
b79cb653
ST
510
511 /* Defaults for low freq, low rate */
512 state->VCAarg = cx24123_AGC_vals[0].VCAprogdata;
513 state->VGAarg = cx24123_AGC_vals[0].VGAprogdata;
514 state->bandselectarg = cx24123_bandselect_vals[0].progdata;
515 vco_div = cx24123_bandselect_vals[0].VCOdivider;
516
a74b51fc 517 /* For the given symbol rate, determine the VCA, VGA and FILTUNE programming bits */
e3b152bc 518 for (i = 0; i < sizeof(cx24123_AGC_vals) / sizeof(cx24123_AGC_vals[0]); i++)
b79cb653
ST
519 {
520 if ((cx24123_AGC_vals[i].symbolrate_low <= p->u.qpsk.symbol_rate) &&
a74b51fc 521 (cx24123_AGC_vals[i].symbolrate_high >= p->u.qpsk.symbol_rate) ) {
b79cb653
ST
522 state->VCAarg = cx24123_AGC_vals[i].VCAprogdata;
523 state->VGAarg = cx24123_AGC_vals[i].VGAprogdata;
a74b51fc 524 state->FILTune = cx24123_AGC_vals[i].FILTune;
b79cb653
ST
525 }
526 }
527
70047f9c
YP
528 /* determine the band to use */
529 if(force_band < 1 || force_band > num_bands)
b79cb653 530 {
70047f9c
YP
531 for (i = 0; i < num_bands; i++)
532 {
533 if ((cx24123_bandselect_vals[i].freq_low <= p->frequency) &&
534 (cx24123_bandselect_vals[i].freq_high >= p->frequency) )
535 band = i;
b79cb653
ST
536 }
537 }
70047f9c
YP
538 else
539 band = force_band - 1;
540
541 state->bandselectarg = cx24123_bandselect_vals[band].progdata;
542 vco_div = cx24123_bandselect_vals[band].VCOdivider;
543
544 /* determine the charge pump current */
545 if ( p->frequency < (cx24123_bandselect_vals[band].freq_low + cx24123_bandselect_vals[band].freq_high)/2 )
546 pump = 0x01;
547 else
548 pump = 0x02;
b79cb653
ST
549
550 /* Determine the N/A dividers for the requested lband freq (in kHz). */
a74b51fc
VC
551 /* Note: the reference divider R=10, frequency is in KHz, XTAL is in Hz */
552 ndiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) / 32) & 0x1ff;
553 adiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) % 32) & 0x1f;
b79cb653
ST
554
555 if (adiv == 0)
a74b51fc 556 ndiv++;
b79cb653 557
a74b51fc
VC
558 /* control bits 11, refdiv 11, charge pump polarity 1, charge pump current, ndiv, adiv */
559 state->pllarg = (3 << 19) | (3 << 17) | (1 << 16) | (pump << 14) | (ndiv << 5) | adiv;
b79cb653
ST
560
561 return 0;
562}
563
564/*
565 * Tuner data is 21 bits long, must be left-aligned in data.
566 * Tuner cx24109 is written through a dedicated 3wire interface on the demod chip.
567 */
568static int cx24123_pll_writereg(struct dvb_frontend* fe, struct dvb_frontend_parameters *p, u32 data)
569{
570 struct cx24123_state *state = fe->demodulator_priv;
0144f314 571 unsigned long timeout;
b79cb653 572
caf970e0
MCC
573 dprintk("%s: pll writereg called, data=0x%08x\n",__FUNCTION__,data);
574
b79cb653
ST
575 /* align the 21 bytes into to bit23 boundary */
576 data = data << 3;
577
578 /* Reset the demod pll word length to 0x15 bits */
579 cx24123_writereg(state, 0x21, 0x15);
580
b79cb653 581 /* write the msb 8 bits, wait for the send to be completed */
0144f314 582 timeout = jiffies + msecs_to_jiffies(40);
e3b152bc 583 cx24123_writereg(state, 0x22, (data >> 16) & 0xff);
0144f314
ST
584 while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
585 if (time_after(jiffies, timeout)) {
586 printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
b79cb653
ST
587 return -EREMOTEIO;
588 }
0144f314 589 msleep(10);
b79cb653
ST
590 }
591
b79cb653 592 /* send another 8 bytes, wait for the send to be completed */
0144f314 593 timeout = jiffies + msecs_to_jiffies(40);
b79cb653 594 cx24123_writereg(state, 0x22, (data>>8) & 0xff );
0144f314
ST
595 while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
596 if (time_after(jiffies, timeout)) {
597 printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
b79cb653
ST
598 return -EREMOTEIO;
599 }
0144f314 600 msleep(10);
b79cb653
ST
601 }
602
b79cb653 603 /* send the lower 5 bits of this byte, padded with 3 LBB, wait for the send to be completed */
0144f314 604 timeout = jiffies + msecs_to_jiffies(40);
b79cb653 605 cx24123_writereg(state, 0x22, (data) & 0xff );
0144f314
ST
606 while ((cx24123_readreg(state, 0x20) & 0x80)) {
607 if (time_after(jiffies, timeout)) {
608 printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
b79cb653
ST
609 return -EREMOTEIO;
610 }
0144f314 611 msleep(10);
b79cb653
ST
612 }
613
614 /* Trigger the demod to configure the tuner */
615 cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) | 2);
616 cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) & 0xfd);
617
618 return 0;
619}
620
621static int cx24123_pll_tune(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
622{
623 struct cx24123_state *state = fe->demodulator_priv;
a74b51fc
VC
624 u8 val;
625
626 dprintk("frequency=%i\n", p->frequency);
b79cb653 627
e3b152bc 628 if (cx24123_pll_calculate(fe, p) != 0) {
b79cb653
ST
629 printk("%s: cx24123_pll_calcutate failed\n",__FUNCTION__);
630 return -EINVAL;
631 }
632
633 /* Write the new VCO/VGA */
634 cx24123_pll_writereg(fe, p, state->VCAarg);
635 cx24123_pll_writereg(fe, p, state->VGAarg);
636
637 /* Write the new bandselect and pll args */
638 cx24123_pll_writereg(fe, p, state->bandselectarg);
639 cx24123_pll_writereg(fe, p, state->pllarg);
640
a74b51fc
VC
641 /* set the FILTUNE voltage */
642 val = cx24123_readreg(state, 0x28) & ~0x3;
643 cx24123_writereg(state, 0x27, state->FILTune >> 2);
644 cx24123_writereg(state, 0x28, val | (state->FILTune & 0x3));
645
caf970e0
MCC
646 dprintk("%s: pll tune VCA=%d, band=%d, pll=%d\n",__FUNCTION__,state->VCAarg,
647 state->bandselectarg,state->pllarg);
648
b79cb653
ST
649 return 0;
650}
651
652static int cx24123_initfe(struct dvb_frontend* fe)
653{
654 struct cx24123_state *state = fe->demodulator_priv;
655 int i;
656
caf970e0
MCC
657 dprintk("%s: init frontend\n",__FUNCTION__);
658
b79cb653 659 /* Configure the demod to a good set of defaults */
e3b152bc 660 for (i = 0; i < sizeof(cx24123_regdata) / sizeof(cx24123_regdata[0]); i++)
b79cb653
ST
661 cx24123_writereg(state, cx24123_regdata[i].reg, cx24123_regdata[i].data);
662
b79cb653
ST
663 return 0;
664}
665
666static int cx24123_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage)
667{
668 struct cx24123_state *state = fe->demodulator_priv;
669 u8 val;
670
cd20ca9f 671 val = cx24123_readreg(state, 0x29) & ~0x40;
1c956a3a 672
cd20ca9f
AQ
673 switch (voltage) {
674 case SEC_VOLTAGE_13:
675 dprintk("%s: setting voltage 13V\n", __FUNCTION__);
ccd214b2 676 return cx24123_writereg(state, 0x29, val & 0x7f);
cd20ca9f
AQ
677 case SEC_VOLTAGE_18:
678 dprintk("%s: setting voltage 18V\n", __FUNCTION__);
ccd214b2 679 return cx24123_writereg(state, 0x29, val | 0x80);
cd20ca9f
AQ
680 default:
681 return -EINVAL;
682 };
1c956a3a
VC
683
684 return 0;
b79cb653
ST
685}
686
dce1dfc2
YP
687/* wait for diseqc queue to become ready (or timeout) */
688static void cx24123_wait_for_diseqc(struct cx24123_state *state)
689{
690 unsigned long timeout = jiffies + msecs_to_jiffies(200);
691 while (!(cx24123_readreg(state, 0x29) & 0x40)) {
692 if(time_after(jiffies, timeout)) {
693 printk("%s: diseqc queue not ready, command may be lost.\n", __FUNCTION__);
694 break;
695 }
696 msleep(10);
697 }
698}
699
a74b51fc 700static int cx24123_send_diseqc_msg(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd *cmd)
b79cb653 701{
a74b51fc 702 struct cx24123_state *state = fe->demodulator_priv;
cd20ca9f 703 int i, val, tone;
a74b51fc
VC
704
705 dprintk("%s:\n",__FUNCTION__);
b79cb653 706
cd20ca9f
AQ
707 /* stop continuous tone if enabled */
708 tone = cx24123_readreg(state, 0x29);
709 if (tone & 0x10)
710 cx24123_writereg(state, 0x29, tone & ~0x50);
a74b51fc 711
dce1dfc2
YP
712 /* wait for diseqc queue ready */
713 cx24123_wait_for_diseqc(state);
714
a74b51fc 715 /* select tone mode */
cd20ca9f 716 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
a74b51fc
VC
717
718 for (i = 0; i < cmd->msg_len; i++)
719 cx24123_writereg(state, 0x2C + i, cmd->msg[i]);
720
721 val = cx24123_readreg(state, 0x29);
722 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40) | ((cmd->msg_len-3) & 3));
723
dce1dfc2
YP
724 /* wait for diseqc message to finish sending */
725 cx24123_wait_for_diseqc(state);
a74b51fc 726
cd20ca9f
AQ
727 /* restart continuous tone if enabled */
728 if (tone & 0x10) {
729 cx24123_writereg(state, 0x29, tone & ~0x40);
730 }
731
a74b51fc
VC
732 return 0;
733}
734
735static int cx24123_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t burst)
736{
737 struct cx24123_state *state = fe->demodulator_priv;
cd20ca9f 738 int val, tone;
a74b51fc
VC
739
740 dprintk("%s:\n", __FUNCTION__);
741
cd20ca9f
AQ
742 /* stop continuous tone if enabled */
743 tone = cx24123_readreg(state, 0x29);
744 if (tone & 0x10)
745 cx24123_writereg(state, 0x29, tone & ~0x50);
a74b51fc 746
cd20ca9f 747 /* wait for diseqc queue ready */
dce1dfc2
YP
748 cx24123_wait_for_diseqc(state);
749
a74b51fc 750 /* select tone mode */
cd20ca9f
AQ
751 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) | 0x4);
752 msleep(30);
a74b51fc 753 val = cx24123_readreg(state, 0x29);
a74b51fc
VC
754 if (burst == SEC_MINI_A)
755 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x00));
756 else if (burst == SEC_MINI_B)
757 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x08));
758 else
759 return -EINVAL;
760
dce1dfc2 761 cx24123_wait_for_diseqc(state);
cd20ca9f 762 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
a74b51fc 763
cd20ca9f
AQ
764 /* restart continuous tone if enabled */
765 if (tone & 0x10) {
766 cx24123_writereg(state, 0x29, tone & ~0x40);
767 }
a74b51fc 768 return 0;
b79cb653
ST
769}
770
771static int cx24123_read_status(struct dvb_frontend* fe, fe_status_t* status)
772{
773 struct cx24123_state *state = fe->demodulator_priv;
774
775 int sync = cx24123_readreg(state, 0x14);
776 int lock = cx24123_readreg(state, 0x20);
777
778 *status = 0;
779 if (lock & 0x01)
a74b51fc
VC
780 *status |= FE_HAS_SIGNAL;
781 if (sync & 0x02)
782 *status |= FE_HAS_CARRIER;
b79cb653
ST
783 if (sync & 0x04)
784 *status |= FE_HAS_VITERBI;
785 if (sync & 0x08)
a74b51fc 786 *status |= FE_HAS_SYNC;
b79cb653 787 if (sync & 0x80)
a74b51fc 788 *status |= FE_HAS_LOCK;
b79cb653
ST
789
790 return 0;
791}
792
793/*
794 * Configured to return the measurement of errors in blocks, because no UCBLOCKS value
795 * is available, so this value doubles up to satisfy both measurements
796 */
797static int cx24123_read_ber(struct dvb_frontend* fe, u32* ber)
798{
799 struct cx24123_state *state = fe->demodulator_priv;
800
18c053b3
YP
801 /* The true bit error rate is this value divided by
802 the window size (set as 256 * 255) */
803 *ber = ((cx24123_readreg(state, 0x1c) & 0x3f) << 16) |
b79cb653 804 (cx24123_readreg(state, 0x1d) << 8 |
18c053b3 805 cx24123_readreg(state, 0x1e));
caf970e0 806
18c053b3 807 dprintk("%s: BER = %d\n",__FUNCTION__,*ber);
b79cb653
ST
808
809 return 0;
810}
811
812static int cx24123_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
813{
814 struct cx24123_state *state = fe->demodulator_priv;
815 *signal_strength = cx24123_readreg(state, 0x3b) << 8; /* larger = better */
816
caf970e0
MCC
817 dprintk("%s: Signal strength = %d\n",__FUNCTION__,*signal_strength);
818
b79cb653
ST
819 return 0;
820}
821
822static int cx24123_read_snr(struct dvb_frontend* fe, u16* snr)
823{
824 struct cx24123_state *state = fe->demodulator_priv;
b79cb653 825
18c053b3
YP
826 /* Inverted raw Es/N0 count, totally bogus but better than the
827 BER threshold. */
828 *snr = 65535 - (((u16)cx24123_readreg(state, 0x18) << 8) |
829 (u16)cx24123_readreg(state, 0x19));
caf970e0 830
18c053b3 831 dprintk("%s: read S/N index = %d\n",__FUNCTION__,*snr);
caf970e0 832
b79cb653
ST
833 return 0;
834}
835
836static int cx24123_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
837{
838 struct cx24123_state *state = fe->demodulator_priv;
839
caf970e0
MCC
840 dprintk("%s: set_frontend\n",__FUNCTION__);
841
b79cb653
ST
842 if (state->config->set_ts_params)
843 state->config->set_ts_params(fe, 0);
844
845 state->currentfreq=p->frequency;
e3b152bc 846 state->currentsymbolrate = p->u.qpsk.symbol_rate;
b79cb653
ST
847
848 cx24123_set_inversion(state, p->inversion);
849 cx24123_set_fec(state, p->u.qpsk.fec_inner);
850 cx24123_set_symbolrate(state, p->u.qpsk.symbol_rate);
851 cx24123_pll_tune(fe, p);
852
853 /* Enable automatic aquisition and reset cycle */
e3b152bc 854 cx24123_writereg(state, 0x03, (cx24123_readreg(state, 0x03) | 0x07));
b79cb653
ST
855 cx24123_writereg(state, 0x00, 0x10);
856 cx24123_writereg(state, 0x00, 0);
857
858 return 0;
859}
860
861static int cx24123_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
862{
863 struct cx24123_state *state = fe->demodulator_priv;
864
caf970e0
MCC
865 dprintk("%s: get_frontend\n",__FUNCTION__);
866
b79cb653
ST
867 if (cx24123_get_inversion(state, &p->inversion) != 0) {
868 printk("%s: Failed to get inversion status\n",__FUNCTION__);
869 return -EREMOTEIO;
870 }
871 if (cx24123_get_fec(state, &p->u.qpsk.fec_inner) != 0) {
872 printk("%s: Failed to get fec status\n",__FUNCTION__);
873 return -EREMOTEIO;
874 }
875 p->frequency = state->currentfreq;
876 p->u.qpsk.symbol_rate = state->currentsymbolrate;
877
878 return 0;
879}
880
881static int cx24123_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
882{
883 struct cx24123_state *state = fe->demodulator_priv;
884 u8 val;
885
cd20ca9f
AQ
886 /* wait for diseqc queue ready */
887 cx24123_wait_for_diseqc(state);
1c956a3a 888
cd20ca9f 889 val = cx24123_readreg(state, 0x29) & ~0x40;
1c956a3a 890
cd20ca9f
AQ
891 switch (tone) {
892 case SEC_TONE_ON:
893 dprintk("%s: setting tone on\n", __FUNCTION__);
894 return cx24123_writereg(state, 0x29, val | 0x10);
895 case SEC_TONE_OFF:
896 dprintk("%s: setting tone off\n",__FUNCTION__);
897 return cx24123_writereg(state, 0x29, val & 0xef);
898 default:
899 printk("%s: CASE reached default with tone=%d\n", __FUNCTION__, tone);
900 return -EINVAL;
b79cb653 901 }
1c956a3a
VC
902
903 return 0;
b79cb653
ST
904}
905
174ff219
YP
906static int cx24123_tune(struct dvb_frontend* fe,
907 struct dvb_frontend_parameters* params,
908 unsigned int mode_flags,
909 int *delay,
910 fe_status_t *status)
911{
912 int retval = 0;
913
914 if (params != NULL)
915 retval = cx24123_set_frontend(fe, params);
916
917 if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
918 cx24123_read_status(fe, status);
919 *delay = HZ/10;
920
921 return retval;
922}
923
924static int cx24123_get_algo(struct dvb_frontend *fe)
925{
926 return 1; //FE_ALGO_HW
927}
928
b79cb653
ST
929static void cx24123_release(struct dvb_frontend* fe)
930{
931 struct cx24123_state* state = fe->demodulator_priv;
932 dprintk("%s\n",__FUNCTION__);
933 kfree(state);
934}
935
936static struct dvb_frontend_ops cx24123_ops;
937
e3b152bc
JS
938struct dvb_frontend* cx24123_attach(const struct cx24123_config* config,
939 struct i2c_adapter* i2c)
b79cb653
ST
940{
941 struct cx24123_state* state = NULL;
942 int ret;
943
944 dprintk("%s\n",__FUNCTION__);
945
946 /* allocate memory for the internal state */
947 state = kmalloc(sizeof(struct cx24123_state), GFP_KERNEL);
948 if (state == NULL) {
949 printk("Unable to kmalloc\n");
950 goto error;
951 }
952
953 /* setup the state */
954 state->config = config;
955 state->i2c = i2c;
b79cb653
ST
956 state->VCAarg = 0;
957 state->VGAarg = 0;
958 state->bandselectarg = 0;
959 state->pllarg = 0;
960 state->currentfreq = 0;
961 state->currentsymbolrate = 0;
962
963 /* check if the demod is there */
964 ret = cx24123_readreg(state, 0x00);
965 if ((ret != 0xd1) && (ret != 0xe1)) {
966 printk("Version != d1 or e1\n");
967 goto error;
968 }
969
970 /* create dvb_frontend */
dea74869 971 memcpy(&state->frontend.ops, &cx24123_ops, sizeof(struct dvb_frontend_ops));
b79cb653
ST
972 state->frontend.demodulator_priv = state;
973 return &state->frontend;
974
975error:
976 kfree(state);
977
978 return NULL;
979}
980
981static struct dvb_frontend_ops cx24123_ops = {
982
983 .info = {
984 .name = "Conexant CX24123/CX24109",
985 .type = FE_QPSK,
986 .frequency_min = 950000,
987 .frequency_max = 2150000,
988 .frequency_stepsize = 1011, /* kHz for QPSK frontends */
0e4558ab 989 .frequency_tolerance = 5000,
b79cb653
ST
990 .symbol_rate_min = 1000000,
991 .symbol_rate_max = 45000000,
992 .caps = FE_CAN_INVERSION_AUTO |
993 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
0e4558ab
YP
994 FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
995 FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
b79cb653
ST
996 FE_CAN_QPSK | FE_CAN_RECOVER
997 },
998
999 .release = cx24123_release,
1000
1001 .init = cx24123_initfe,
1002 .set_frontend = cx24123_set_frontend,
1003 .get_frontend = cx24123_get_frontend,
1004 .read_status = cx24123_read_status,
1005 .read_ber = cx24123_read_ber,
1006 .read_signal_strength = cx24123_read_signal_strength,
1007 .read_snr = cx24123_read_snr,
b79cb653 1008 .diseqc_send_master_cmd = cx24123_send_diseqc_msg,
a74b51fc 1009 .diseqc_send_burst = cx24123_diseqc_send_burst,
b79cb653
ST
1010 .set_tone = cx24123_set_tone,
1011 .set_voltage = cx24123_set_voltage,
174ff219
YP
1012 .tune = cx24123_tune,
1013 .get_frontend_algo = cx24123_get_algo,
b79cb653
ST
1014};
1015
1016module_param(debug, int, 0644);
caf970e0 1017MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");
b79cb653 1018
70047f9c
YP
1019module_param(force_band, int, 0644);
1020MODULE_PARM_DESC(force_band, "Force a specific band select (1-9, default:off).");
1021
b79cb653
ST
1022MODULE_DESCRIPTION("DVB Frontend module for Conexant cx24123/cx24109 hardware");
1023MODULE_AUTHOR("Steven Toth");
1024MODULE_LICENSE("GPL");
1025
1026EXPORT_SYMBOL(cx24123_attach);