]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/md/raid5.c
md: handle_stripe5 - add request/completion logic for async expand ops
[net-next-2.6.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
1da177e4
LT
46#include <linux/module.h>
47#include <linux/slab.h>
1da177e4
LT
48#include <linux/highmem.h>
49#include <linux/bitops.h>
f6705578 50#include <linux/kthread.h>
1da177e4 51#include <asm/atomic.h>
16a53ecc 52#include "raid6.h"
1da177e4 53
72626685 54#include <linux/raid/bitmap.h>
91c00924 55#include <linux/async_tx.h>
72626685 56
1da177e4
LT
57/*
58 * Stripe cache
59 */
60
61#define NR_STRIPES 256
62#define STRIPE_SIZE PAGE_SIZE
63#define STRIPE_SHIFT (PAGE_SHIFT - 9)
64#define STRIPE_SECTORS (STRIPE_SIZE>>9)
65#define IO_THRESHOLD 1
fccddba0 66#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
67#define HASH_MASK (NR_HASH - 1)
68
fccddba0 69#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
70
71/* bio's attached to a stripe+device for I/O are linked together in bi_sector
72 * order without overlap. There may be several bio's per stripe+device, and
73 * a bio could span several devices.
74 * When walking this list for a particular stripe+device, we must never proceed
75 * beyond a bio that extends past this device, as the next bio might no longer
76 * be valid.
77 * This macro is used to determine the 'next' bio in the list, given the sector
78 * of the current stripe+device
79 */
80#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81/*
82 * The following can be used to debug the driver
83 */
1da177e4
LT
84#define RAID5_PARANOIA 1
85#if RAID5_PARANOIA && defined(CONFIG_SMP)
86# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87#else
88# define CHECK_DEVLOCK()
89#endif
90
45b4233c 91#ifdef DEBUG
1da177e4
LT
92#define inline
93#define __inline__
94#endif
95
16a53ecc
N
96#if !RAID6_USE_EMPTY_ZERO_PAGE
97/* In .bss so it's zeroed */
98const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
99#endif
100
101static inline int raid6_next_disk(int disk, int raid_disks)
102{
103 disk++;
104 return (disk < raid_disks) ? disk : 0;
105}
a4456856
DW
106
107static void return_io(struct bio *return_bi)
108{
109 struct bio *bi = return_bi;
110 while (bi) {
111 int bytes = bi->bi_size;
112
113 return_bi = bi->bi_next;
114 bi->bi_next = NULL;
115 bi->bi_size = 0;
116 bi->bi_end_io(bi, bytes,
117 test_bit(BIO_UPTODATE, &bi->bi_flags)
118 ? 0 : -EIO);
119 bi = return_bi;
120 }
121}
122
1da177e4
LT
123static void print_raid5_conf (raid5_conf_t *conf);
124
858119e1 125static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
126{
127 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
128 BUG_ON(!list_empty(&sh->lru));
129 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 130 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 131 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 132 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
133 blk_plug_device(conf->mddev->queue);
134 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 135 sh->bm_seq - conf->seq_write > 0) {
72626685 136 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
137 blk_plug_device(conf->mddev->queue);
138 } else {
72626685 139 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 140 list_add_tail(&sh->lru, &conf->handle_list);
72626685 141 }
1da177e4
LT
142 md_wakeup_thread(conf->mddev->thread);
143 } else {
d84e0f10 144 BUG_ON(sh->ops.pending);
1da177e4
LT
145 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146 atomic_dec(&conf->preread_active_stripes);
147 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148 md_wakeup_thread(conf->mddev->thread);
149 }
1da177e4 150 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
151 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 153 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
154 if (conf->retry_read_aligned)
155 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 156 }
1da177e4
LT
157 }
158 }
159}
160static void release_stripe(struct stripe_head *sh)
161{
162 raid5_conf_t *conf = sh->raid_conf;
163 unsigned long flags;
16a53ecc 164
1da177e4
LT
165 spin_lock_irqsave(&conf->device_lock, flags);
166 __release_stripe(conf, sh);
167 spin_unlock_irqrestore(&conf->device_lock, flags);
168}
169
fccddba0 170static inline void remove_hash(struct stripe_head *sh)
1da177e4 171{
45b4233c
DW
172 pr_debug("remove_hash(), stripe %llu\n",
173 (unsigned long long)sh->sector);
1da177e4 174
fccddba0 175 hlist_del_init(&sh->hash);
1da177e4
LT
176}
177
16a53ecc 178static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 179{
fccddba0 180 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 181
45b4233c
DW
182 pr_debug("insert_hash(), stripe %llu\n",
183 (unsigned long long)sh->sector);
1da177e4
LT
184
185 CHECK_DEVLOCK();
fccddba0 186 hlist_add_head(&sh->hash, hp);
1da177e4
LT
187}
188
189
190/* find an idle stripe, make sure it is unhashed, and return it. */
191static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192{
193 struct stripe_head *sh = NULL;
194 struct list_head *first;
195
196 CHECK_DEVLOCK();
197 if (list_empty(&conf->inactive_list))
198 goto out;
199 first = conf->inactive_list.next;
200 sh = list_entry(first, struct stripe_head, lru);
201 list_del_init(first);
202 remove_hash(sh);
203 atomic_inc(&conf->active_stripes);
204out:
205 return sh;
206}
207
208static void shrink_buffers(struct stripe_head *sh, int num)
209{
210 struct page *p;
211 int i;
212
213 for (i=0; i<num ; i++) {
214 p = sh->dev[i].page;
215 if (!p)
216 continue;
217 sh->dev[i].page = NULL;
2d1f3b5d 218 put_page(p);
1da177e4
LT
219 }
220}
221
222static int grow_buffers(struct stripe_head *sh, int num)
223{
224 int i;
225
226 for (i=0; i<num; i++) {
227 struct page *page;
228
229 if (!(page = alloc_page(GFP_KERNEL))) {
230 return 1;
231 }
232 sh->dev[i].page = page;
233 }
234 return 0;
235}
236
237static void raid5_build_block (struct stripe_head *sh, int i);
238
7ecaa1e6 239static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
1da177e4
LT
240{
241 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 242 int i;
1da177e4 243
78bafebd
ES
244 BUG_ON(atomic_read(&sh->count) != 0);
245 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
d84e0f10
DW
246 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247
1da177e4 248 CHECK_DEVLOCK();
45b4233c 249 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
250 (unsigned long long)sh->sector);
251
252 remove_hash(sh);
16a53ecc 253
1da177e4
LT
254 sh->sector = sector;
255 sh->pd_idx = pd_idx;
256 sh->state = 0;
257
7ecaa1e6
N
258 sh->disks = disks;
259
260 for (i = sh->disks; i--; ) {
1da177e4
LT
261 struct r5dev *dev = &sh->dev[i];
262
d84e0f10 263 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 264 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 265 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 266 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 267 dev->read, dev->towrite, dev->written,
1da177e4
LT
268 test_bit(R5_LOCKED, &dev->flags));
269 BUG();
270 }
271 dev->flags = 0;
272 raid5_build_block(sh, i);
273 }
274 insert_hash(conf, sh);
275}
276
7ecaa1e6 277static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
1da177e4
LT
278{
279 struct stripe_head *sh;
fccddba0 280 struct hlist_node *hn;
1da177e4
LT
281
282 CHECK_DEVLOCK();
45b4233c 283 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 284 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
7ecaa1e6 285 if (sh->sector == sector && sh->disks == disks)
1da177e4 286 return sh;
45b4233c 287 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
288 return NULL;
289}
290
291static void unplug_slaves(mddev_t *mddev);
292static void raid5_unplug_device(request_queue_t *q);
293
7ecaa1e6
N
294static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295 int pd_idx, int noblock)
1da177e4
LT
296{
297 struct stripe_head *sh;
298
45b4233c 299 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
300
301 spin_lock_irq(&conf->device_lock);
302
303 do {
72626685
N
304 wait_event_lock_irq(conf->wait_for_stripe,
305 conf->quiesce == 0,
306 conf->device_lock, /* nothing */);
7ecaa1e6 307 sh = __find_stripe(conf, sector, disks);
1da177e4
LT
308 if (!sh) {
309 if (!conf->inactive_blocked)
310 sh = get_free_stripe(conf);
311 if (noblock && sh == NULL)
312 break;
313 if (!sh) {
314 conf->inactive_blocked = 1;
315 wait_event_lock_irq(conf->wait_for_stripe,
316 !list_empty(&conf->inactive_list) &&
5036805b
N
317 (atomic_read(&conf->active_stripes)
318 < (conf->max_nr_stripes *3/4)
1da177e4
LT
319 || !conf->inactive_blocked),
320 conf->device_lock,
f4370781 321 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
322 );
323 conf->inactive_blocked = 0;
324 } else
7ecaa1e6 325 init_stripe(sh, sector, pd_idx, disks);
1da177e4
LT
326 } else {
327 if (atomic_read(&sh->count)) {
78bafebd 328 BUG_ON(!list_empty(&sh->lru));
1da177e4
LT
329 } else {
330 if (!test_bit(STRIPE_HANDLE, &sh->state))
331 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
332 if (list_empty(&sh->lru) &&
333 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
334 BUG();
335 list_del_init(&sh->lru);
1da177e4
LT
336 }
337 }
338 } while (sh == NULL);
339
340 if (sh)
341 atomic_inc(&sh->count);
342
343 spin_unlock_irq(&conf->device_lock);
344 return sh;
345}
346
d84e0f10
DW
347/* test_and_ack_op() ensures that we only dequeue an operation once */
348#define test_and_ack_op(op, pend) \
349do { \
350 if (test_bit(op, &sh->ops.pending) && \
351 !test_bit(op, &sh->ops.complete)) { \
352 if (test_and_set_bit(op, &sh->ops.ack)) \
353 clear_bit(op, &pend); \
354 else \
355 ack++; \
356 } else \
357 clear_bit(op, &pend); \
358} while (0)
359
360/* find new work to run, do not resubmit work that is already
361 * in flight
362 */
363static unsigned long get_stripe_work(struct stripe_head *sh)
364{
365 unsigned long pending;
366 int ack = 0;
367
368 pending = sh->ops.pending;
369
370 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372 test_and_ack_op(STRIPE_OP_PREXOR, pending);
373 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375 test_and_ack_op(STRIPE_OP_CHECK, pending);
376 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
377 ack++;
378
379 sh->ops.count -= ack;
380 BUG_ON(sh->ops.count < 0);
381
382 return pending;
383}
384
91c00924
DW
385static int
386raid5_end_read_request(struct bio *bi, unsigned int bytes_done, int error);
387static int
388raid5_end_write_request (struct bio *bi, unsigned int bytes_done, int error);
389
390static void ops_run_io(struct stripe_head *sh)
391{
392 raid5_conf_t *conf = sh->raid_conf;
393 int i, disks = sh->disks;
394
395 might_sleep();
396
397 for (i = disks; i--; ) {
398 int rw;
399 struct bio *bi;
400 mdk_rdev_t *rdev;
401 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
402 rw = WRITE;
403 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
404 rw = READ;
405 else
406 continue;
407
408 bi = &sh->dev[i].req;
409
410 bi->bi_rw = rw;
411 if (rw == WRITE)
412 bi->bi_end_io = raid5_end_write_request;
413 else
414 bi->bi_end_io = raid5_end_read_request;
415
416 rcu_read_lock();
417 rdev = rcu_dereference(conf->disks[i].rdev);
418 if (rdev && test_bit(Faulty, &rdev->flags))
419 rdev = NULL;
420 if (rdev)
421 atomic_inc(&rdev->nr_pending);
422 rcu_read_unlock();
423
424 if (rdev) {
425 if (test_bit(STRIPE_SYNCING, &sh->state) ||
426 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
427 test_bit(STRIPE_EXPAND_READY, &sh->state))
428 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
429
430 bi->bi_bdev = rdev->bdev;
431 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
432 __FUNCTION__, (unsigned long long)sh->sector,
433 bi->bi_rw, i);
434 atomic_inc(&sh->count);
435 bi->bi_sector = sh->sector + rdev->data_offset;
436 bi->bi_flags = 1 << BIO_UPTODATE;
437 bi->bi_vcnt = 1;
438 bi->bi_max_vecs = 1;
439 bi->bi_idx = 0;
440 bi->bi_io_vec = &sh->dev[i].vec;
441 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
442 bi->bi_io_vec[0].bv_offset = 0;
443 bi->bi_size = STRIPE_SIZE;
444 bi->bi_next = NULL;
445 if (rw == WRITE &&
446 test_bit(R5_ReWrite, &sh->dev[i].flags))
447 atomic_add(STRIPE_SECTORS,
448 &rdev->corrected_errors);
449 generic_make_request(bi);
450 } else {
451 if (rw == WRITE)
452 set_bit(STRIPE_DEGRADED, &sh->state);
453 pr_debug("skip op %ld on disc %d for sector %llu\n",
454 bi->bi_rw, i, (unsigned long long)sh->sector);
455 clear_bit(R5_LOCKED, &sh->dev[i].flags);
456 set_bit(STRIPE_HANDLE, &sh->state);
457 }
458 }
459}
460
461static struct dma_async_tx_descriptor *
462async_copy_data(int frombio, struct bio *bio, struct page *page,
463 sector_t sector, struct dma_async_tx_descriptor *tx)
464{
465 struct bio_vec *bvl;
466 struct page *bio_page;
467 int i;
468 int page_offset;
469
470 if (bio->bi_sector >= sector)
471 page_offset = (signed)(bio->bi_sector - sector) * 512;
472 else
473 page_offset = (signed)(sector - bio->bi_sector) * -512;
474 bio_for_each_segment(bvl, bio, i) {
475 int len = bio_iovec_idx(bio, i)->bv_len;
476 int clen;
477 int b_offset = 0;
478
479 if (page_offset < 0) {
480 b_offset = -page_offset;
481 page_offset += b_offset;
482 len -= b_offset;
483 }
484
485 if (len > 0 && page_offset + len > STRIPE_SIZE)
486 clen = STRIPE_SIZE - page_offset;
487 else
488 clen = len;
489
490 if (clen > 0) {
491 b_offset += bio_iovec_idx(bio, i)->bv_offset;
492 bio_page = bio_iovec_idx(bio, i)->bv_page;
493 if (frombio)
494 tx = async_memcpy(page, bio_page, page_offset,
495 b_offset, clen,
496 ASYNC_TX_DEP_ACK | ASYNC_TX_KMAP_SRC,
497 tx, NULL, NULL);
498 else
499 tx = async_memcpy(bio_page, page, b_offset,
500 page_offset, clen,
501 ASYNC_TX_DEP_ACK | ASYNC_TX_KMAP_DST,
502 tx, NULL, NULL);
503 }
504 if (clen < len) /* hit end of page */
505 break;
506 page_offset += len;
507 }
508
509 return tx;
510}
511
512static void ops_complete_biofill(void *stripe_head_ref)
513{
514 struct stripe_head *sh = stripe_head_ref;
515 struct bio *return_bi = NULL;
516 raid5_conf_t *conf = sh->raid_conf;
517 int i, more_to_read = 0;
518
519 pr_debug("%s: stripe %llu\n", __FUNCTION__,
520 (unsigned long long)sh->sector);
521
522 /* clear completed biofills */
523 for (i = sh->disks; i--; ) {
524 struct r5dev *dev = &sh->dev[i];
525 /* check if this stripe has new incoming reads */
526 if (dev->toread)
527 more_to_read++;
528
529 /* acknowledge completion of a biofill operation */
530 /* and check if we need to reply to a read request
531 */
532 if (test_bit(R5_Wantfill, &dev->flags) && !dev->toread) {
533 struct bio *rbi, *rbi2;
534 clear_bit(R5_Wantfill, &dev->flags);
535
536 /* The access to dev->read is outside of the
537 * spin_lock_irq(&conf->device_lock), but is protected
538 * by the STRIPE_OP_BIOFILL pending bit
539 */
540 BUG_ON(!dev->read);
541 rbi = dev->read;
542 dev->read = NULL;
543 while (rbi && rbi->bi_sector <
544 dev->sector + STRIPE_SECTORS) {
545 rbi2 = r5_next_bio(rbi, dev->sector);
546 spin_lock_irq(&conf->device_lock);
547 if (--rbi->bi_phys_segments == 0) {
548 rbi->bi_next = return_bi;
549 return_bi = rbi;
550 }
551 spin_unlock_irq(&conf->device_lock);
552 rbi = rbi2;
553 }
554 }
555 }
556 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
557 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
558
559 return_io(return_bi);
560
561 if (more_to_read)
562 set_bit(STRIPE_HANDLE, &sh->state);
563 release_stripe(sh);
564}
565
566static void ops_run_biofill(struct stripe_head *sh)
567{
568 struct dma_async_tx_descriptor *tx = NULL;
569 raid5_conf_t *conf = sh->raid_conf;
570 int i;
571
572 pr_debug("%s: stripe %llu\n", __FUNCTION__,
573 (unsigned long long)sh->sector);
574
575 for (i = sh->disks; i--; ) {
576 struct r5dev *dev = &sh->dev[i];
577 if (test_bit(R5_Wantfill, &dev->flags)) {
578 struct bio *rbi;
579 spin_lock_irq(&conf->device_lock);
580 dev->read = rbi = dev->toread;
581 dev->toread = NULL;
582 spin_unlock_irq(&conf->device_lock);
583 while (rbi && rbi->bi_sector <
584 dev->sector + STRIPE_SECTORS) {
585 tx = async_copy_data(0, rbi, dev->page,
586 dev->sector, tx);
587 rbi = r5_next_bio(rbi, dev->sector);
588 }
589 }
590 }
591
592 atomic_inc(&sh->count);
593 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
594 ops_complete_biofill, sh);
595}
596
597static void ops_complete_compute5(void *stripe_head_ref)
598{
599 struct stripe_head *sh = stripe_head_ref;
600 int target = sh->ops.target;
601 struct r5dev *tgt = &sh->dev[target];
602
603 pr_debug("%s: stripe %llu\n", __FUNCTION__,
604 (unsigned long long)sh->sector);
605
606 set_bit(R5_UPTODATE, &tgt->flags);
607 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
608 clear_bit(R5_Wantcompute, &tgt->flags);
609 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
610 set_bit(STRIPE_HANDLE, &sh->state);
611 release_stripe(sh);
612}
613
614static struct dma_async_tx_descriptor *
615ops_run_compute5(struct stripe_head *sh, unsigned long pending)
616{
617 /* kernel stack size limits the total number of disks */
618 int disks = sh->disks;
619 struct page *xor_srcs[disks];
620 int target = sh->ops.target;
621 struct r5dev *tgt = &sh->dev[target];
622 struct page *xor_dest = tgt->page;
623 int count = 0;
624 struct dma_async_tx_descriptor *tx;
625 int i;
626
627 pr_debug("%s: stripe %llu block: %d\n",
628 __FUNCTION__, (unsigned long long)sh->sector, target);
629 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
630
631 for (i = disks; i--; )
632 if (i != target)
633 xor_srcs[count++] = sh->dev[i].page;
634
635 atomic_inc(&sh->count);
636
637 if (unlikely(count == 1))
638 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
639 0, NULL, ops_complete_compute5, sh);
640 else
641 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
642 ASYNC_TX_XOR_ZERO_DST, NULL,
643 ops_complete_compute5, sh);
644
645 /* ack now if postxor is not set to be run */
646 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
647 async_tx_ack(tx);
648
649 return tx;
650}
651
652static void ops_complete_prexor(void *stripe_head_ref)
653{
654 struct stripe_head *sh = stripe_head_ref;
655
656 pr_debug("%s: stripe %llu\n", __FUNCTION__,
657 (unsigned long long)sh->sector);
658
659 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
660}
661
662static struct dma_async_tx_descriptor *
663ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
664{
665 /* kernel stack size limits the total number of disks */
666 int disks = sh->disks;
667 struct page *xor_srcs[disks];
668 int count = 0, pd_idx = sh->pd_idx, i;
669
670 /* existing parity data subtracted */
671 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
672
673 pr_debug("%s: stripe %llu\n", __FUNCTION__,
674 (unsigned long long)sh->sector);
675
676 for (i = disks; i--; ) {
677 struct r5dev *dev = &sh->dev[i];
678 /* Only process blocks that are known to be uptodate */
679 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
680 xor_srcs[count++] = dev->page;
681 }
682
683 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
684 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
685 ops_complete_prexor, sh);
686
687 return tx;
688}
689
690static struct dma_async_tx_descriptor *
691ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
692{
693 int disks = sh->disks;
694 int pd_idx = sh->pd_idx, i;
695
696 /* check if prexor is active which means only process blocks
697 * that are part of a read-modify-write (Wantprexor)
698 */
699 int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
700
701 pr_debug("%s: stripe %llu\n", __FUNCTION__,
702 (unsigned long long)sh->sector);
703
704 for (i = disks; i--; ) {
705 struct r5dev *dev = &sh->dev[i];
706 struct bio *chosen;
707 int towrite;
708
709 towrite = 0;
710 if (prexor) { /* rmw */
711 if (dev->towrite &&
712 test_bit(R5_Wantprexor, &dev->flags))
713 towrite = 1;
714 } else { /* rcw */
715 if (i != pd_idx && dev->towrite &&
716 test_bit(R5_LOCKED, &dev->flags))
717 towrite = 1;
718 }
719
720 if (towrite) {
721 struct bio *wbi;
722
723 spin_lock(&sh->lock);
724 chosen = dev->towrite;
725 dev->towrite = NULL;
726 BUG_ON(dev->written);
727 wbi = dev->written = chosen;
728 spin_unlock(&sh->lock);
729
730 while (wbi && wbi->bi_sector <
731 dev->sector + STRIPE_SECTORS) {
732 tx = async_copy_data(1, wbi, dev->page,
733 dev->sector, tx);
734 wbi = r5_next_bio(wbi, dev->sector);
735 }
736 }
737 }
738
739 return tx;
740}
741
742static void ops_complete_postxor(void *stripe_head_ref)
743{
744 struct stripe_head *sh = stripe_head_ref;
745
746 pr_debug("%s: stripe %llu\n", __FUNCTION__,
747 (unsigned long long)sh->sector);
748
749 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
750 set_bit(STRIPE_HANDLE, &sh->state);
751 release_stripe(sh);
752}
753
754static void ops_complete_write(void *stripe_head_ref)
755{
756 struct stripe_head *sh = stripe_head_ref;
757 int disks = sh->disks, i, pd_idx = sh->pd_idx;
758
759 pr_debug("%s: stripe %llu\n", __FUNCTION__,
760 (unsigned long long)sh->sector);
761
762 for (i = disks; i--; ) {
763 struct r5dev *dev = &sh->dev[i];
764 if (dev->written || i == pd_idx)
765 set_bit(R5_UPTODATE, &dev->flags);
766 }
767
768 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
769 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
770
771 set_bit(STRIPE_HANDLE, &sh->state);
772 release_stripe(sh);
773}
774
775static void
776ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
777{
778 /* kernel stack size limits the total number of disks */
779 int disks = sh->disks;
780 struct page *xor_srcs[disks];
781
782 int count = 0, pd_idx = sh->pd_idx, i;
783 struct page *xor_dest;
784 int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
785 unsigned long flags;
786 dma_async_tx_callback callback;
787
788 pr_debug("%s: stripe %llu\n", __FUNCTION__,
789 (unsigned long long)sh->sector);
790
791 /* check if prexor is active which means only process blocks
792 * that are part of a read-modify-write (written)
793 */
794 if (prexor) {
795 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
796 for (i = disks; i--; ) {
797 struct r5dev *dev = &sh->dev[i];
798 if (dev->written)
799 xor_srcs[count++] = dev->page;
800 }
801 } else {
802 xor_dest = sh->dev[pd_idx].page;
803 for (i = disks; i--; ) {
804 struct r5dev *dev = &sh->dev[i];
805 if (i != pd_idx)
806 xor_srcs[count++] = dev->page;
807 }
808 }
809
810 /* check whether this postxor is part of a write */
811 callback = test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending) ?
812 ops_complete_write : ops_complete_postxor;
813
814 /* 1/ if we prexor'd then the dest is reused as a source
815 * 2/ if we did not prexor then we are redoing the parity
816 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
817 * for the synchronous xor case
818 */
819 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
820 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
821
822 atomic_inc(&sh->count);
823
824 if (unlikely(count == 1)) {
825 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
826 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
827 flags, tx, callback, sh);
828 } else
829 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
830 flags, tx, callback, sh);
831}
832
833static void ops_complete_check(void *stripe_head_ref)
834{
835 struct stripe_head *sh = stripe_head_ref;
836 int pd_idx = sh->pd_idx;
837
838 pr_debug("%s: stripe %llu\n", __FUNCTION__,
839 (unsigned long long)sh->sector);
840
841 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
842 sh->ops.zero_sum_result == 0)
843 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
844
845 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
846 set_bit(STRIPE_HANDLE, &sh->state);
847 release_stripe(sh);
848}
849
850static void ops_run_check(struct stripe_head *sh)
851{
852 /* kernel stack size limits the total number of disks */
853 int disks = sh->disks;
854 struct page *xor_srcs[disks];
855 struct dma_async_tx_descriptor *tx;
856
857 int count = 0, pd_idx = sh->pd_idx, i;
858 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
859
860 pr_debug("%s: stripe %llu\n", __FUNCTION__,
861 (unsigned long long)sh->sector);
862
863 for (i = disks; i--; ) {
864 struct r5dev *dev = &sh->dev[i];
865 if (i != pd_idx)
866 xor_srcs[count++] = dev->page;
867 }
868
869 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
870 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
871
872 if (tx)
873 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
874 else
875 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
876
877 atomic_inc(&sh->count);
878 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
879 ops_complete_check, sh);
880}
881
882static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
883{
884 int overlap_clear = 0, i, disks = sh->disks;
885 struct dma_async_tx_descriptor *tx = NULL;
886
887 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
888 ops_run_biofill(sh);
889 overlap_clear++;
890 }
891
892 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
893 tx = ops_run_compute5(sh, pending);
894
895 if (test_bit(STRIPE_OP_PREXOR, &pending))
896 tx = ops_run_prexor(sh, tx);
897
898 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
899 tx = ops_run_biodrain(sh, tx);
900 overlap_clear++;
901 }
902
903 if (test_bit(STRIPE_OP_POSTXOR, &pending))
904 ops_run_postxor(sh, tx);
905
906 if (test_bit(STRIPE_OP_CHECK, &pending))
907 ops_run_check(sh);
908
909 if (test_bit(STRIPE_OP_IO, &pending))
910 ops_run_io(sh);
911
912 if (overlap_clear)
913 for (i = disks; i--; ) {
914 struct r5dev *dev = &sh->dev[i];
915 if (test_and_clear_bit(R5_Overlap, &dev->flags))
916 wake_up(&sh->raid_conf->wait_for_overlap);
917 }
918}
919
3f294f4f 920static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
921{
922 struct stripe_head *sh;
3f294f4f
N
923 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
924 if (!sh)
925 return 0;
926 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
927 sh->raid_conf = conf;
928 spin_lock_init(&sh->lock);
929
930 if (grow_buffers(sh, conf->raid_disks)) {
931 shrink_buffers(sh, conf->raid_disks);
932 kmem_cache_free(conf->slab_cache, sh);
933 return 0;
934 }
7ecaa1e6 935 sh->disks = conf->raid_disks;
3f294f4f
N
936 /* we just created an active stripe so... */
937 atomic_set(&sh->count, 1);
938 atomic_inc(&conf->active_stripes);
939 INIT_LIST_HEAD(&sh->lru);
940 release_stripe(sh);
941 return 1;
942}
943
944static int grow_stripes(raid5_conf_t *conf, int num)
945{
e18b890b 946 struct kmem_cache *sc;
1da177e4
LT
947 int devs = conf->raid_disks;
948
42b9bebe
N
949 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
950 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
ad01c9e3
N
951 conf->active_name = 0;
952 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4
LT
953 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
954 0, 0, NULL, NULL);
955 if (!sc)
956 return 1;
957 conf->slab_cache = sc;
ad01c9e3 958 conf->pool_size = devs;
16a53ecc 959 while (num--)
3f294f4f 960 if (!grow_one_stripe(conf))
1da177e4 961 return 1;
1da177e4
LT
962 return 0;
963}
29269553
N
964
965#ifdef CONFIG_MD_RAID5_RESHAPE
ad01c9e3
N
966static int resize_stripes(raid5_conf_t *conf, int newsize)
967{
968 /* Make all the stripes able to hold 'newsize' devices.
969 * New slots in each stripe get 'page' set to a new page.
970 *
971 * This happens in stages:
972 * 1/ create a new kmem_cache and allocate the required number of
973 * stripe_heads.
974 * 2/ gather all the old stripe_heads and tranfer the pages across
975 * to the new stripe_heads. This will have the side effect of
976 * freezing the array as once all stripe_heads have been collected,
977 * no IO will be possible. Old stripe heads are freed once their
978 * pages have been transferred over, and the old kmem_cache is
979 * freed when all stripes are done.
980 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
981 * we simple return a failre status - no need to clean anything up.
982 * 4/ allocate new pages for the new slots in the new stripe_heads.
983 * If this fails, we don't bother trying the shrink the
984 * stripe_heads down again, we just leave them as they are.
985 * As each stripe_head is processed the new one is released into
986 * active service.
987 *
988 * Once step2 is started, we cannot afford to wait for a write,
989 * so we use GFP_NOIO allocations.
990 */
991 struct stripe_head *osh, *nsh;
992 LIST_HEAD(newstripes);
993 struct disk_info *ndisks;
994 int err = 0;
e18b890b 995 struct kmem_cache *sc;
ad01c9e3
N
996 int i;
997
998 if (newsize <= conf->pool_size)
999 return 0; /* never bother to shrink */
1000
2a2275d6
N
1001 md_allow_write(conf->mddev);
1002
ad01c9e3
N
1003 /* Step 1 */
1004 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1005 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1006 0, 0, NULL, NULL);
1007 if (!sc)
1008 return -ENOMEM;
1009
1010 for (i = conf->max_nr_stripes; i; i--) {
1011 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1012 if (!nsh)
1013 break;
1014
1015 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1016
1017 nsh->raid_conf = conf;
1018 spin_lock_init(&nsh->lock);
1019
1020 list_add(&nsh->lru, &newstripes);
1021 }
1022 if (i) {
1023 /* didn't get enough, give up */
1024 while (!list_empty(&newstripes)) {
1025 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1026 list_del(&nsh->lru);
1027 kmem_cache_free(sc, nsh);
1028 }
1029 kmem_cache_destroy(sc);
1030 return -ENOMEM;
1031 }
1032 /* Step 2 - Must use GFP_NOIO now.
1033 * OK, we have enough stripes, start collecting inactive
1034 * stripes and copying them over
1035 */
1036 list_for_each_entry(nsh, &newstripes, lru) {
1037 spin_lock_irq(&conf->device_lock);
1038 wait_event_lock_irq(conf->wait_for_stripe,
1039 !list_empty(&conf->inactive_list),
1040 conf->device_lock,
b3b46be3 1041 unplug_slaves(conf->mddev)
ad01c9e3
N
1042 );
1043 osh = get_free_stripe(conf);
1044 spin_unlock_irq(&conf->device_lock);
1045 atomic_set(&nsh->count, 1);
1046 for(i=0; i<conf->pool_size; i++)
1047 nsh->dev[i].page = osh->dev[i].page;
1048 for( ; i<newsize; i++)
1049 nsh->dev[i].page = NULL;
1050 kmem_cache_free(conf->slab_cache, osh);
1051 }
1052 kmem_cache_destroy(conf->slab_cache);
1053
1054 /* Step 3.
1055 * At this point, we are holding all the stripes so the array
1056 * is completely stalled, so now is a good time to resize
1057 * conf->disks.
1058 */
1059 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1060 if (ndisks) {
1061 for (i=0; i<conf->raid_disks; i++)
1062 ndisks[i] = conf->disks[i];
1063 kfree(conf->disks);
1064 conf->disks = ndisks;
1065 } else
1066 err = -ENOMEM;
1067
1068 /* Step 4, return new stripes to service */
1069 while(!list_empty(&newstripes)) {
1070 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1071 list_del_init(&nsh->lru);
1072 for (i=conf->raid_disks; i < newsize; i++)
1073 if (nsh->dev[i].page == NULL) {
1074 struct page *p = alloc_page(GFP_NOIO);
1075 nsh->dev[i].page = p;
1076 if (!p)
1077 err = -ENOMEM;
1078 }
1079 release_stripe(nsh);
1080 }
1081 /* critical section pass, GFP_NOIO no longer needed */
1082
1083 conf->slab_cache = sc;
1084 conf->active_name = 1-conf->active_name;
1085 conf->pool_size = newsize;
1086 return err;
1087}
29269553 1088#endif
1da177e4 1089
3f294f4f 1090static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1091{
1092 struct stripe_head *sh;
1093
3f294f4f
N
1094 spin_lock_irq(&conf->device_lock);
1095 sh = get_free_stripe(conf);
1096 spin_unlock_irq(&conf->device_lock);
1097 if (!sh)
1098 return 0;
78bafebd 1099 BUG_ON(atomic_read(&sh->count));
ad01c9e3 1100 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
1101 kmem_cache_free(conf->slab_cache, sh);
1102 atomic_dec(&conf->active_stripes);
1103 return 1;
1104}
1105
1106static void shrink_stripes(raid5_conf_t *conf)
1107{
1108 while (drop_one_stripe(conf))
1109 ;
1110
29fc7e3e
N
1111 if (conf->slab_cache)
1112 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1113 conf->slab_cache = NULL;
1114}
1115
4e5314b5 1116static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
1da177e4
LT
1117 int error)
1118{
1119 struct stripe_head *sh = bi->bi_private;
1120 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1121 int disks = sh->disks, i;
1da177e4 1122 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1123 char b[BDEVNAME_SIZE];
1124 mdk_rdev_t *rdev;
1da177e4
LT
1125
1126 if (bi->bi_size)
1127 return 1;
1128
1129 for (i=0 ; i<disks; i++)
1130 if (bi == &sh->dev[i].req)
1131 break;
1132
45b4233c
DW
1133 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1134 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1135 uptodate);
1136 if (i == disks) {
1137 BUG();
1138 return 0;
1139 }
1140
1141 if (uptodate) {
1da177e4 1142 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1143 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432
N
1144 rdev = conf->disks[i].rdev;
1145 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1146 mdname(conf->mddev), STRIPE_SECTORS,
1147 (unsigned long long)sh->sector + rdev->data_offset,
1148 bdevname(rdev->bdev, b));
4e5314b5
N
1149 clear_bit(R5_ReadError, &sh->dev[i].flags);
1150 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1151 }
ba22dcbf
N
1152 if (atomic_read(&conf->disks[i].rdev->read_errors))
1153 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1154 } else {
d6950432 1155 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1156 int retry = 0;
d6950432
N
1157 rdev = conf->disks[i].rdev;
1158
1da177e4 1159 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1160 atomic_inc(&rdev->read_errors);
ba22dcbf 1161 if (conf->mddev->degraded)
d6950432
N
1162 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1163 mdname(conf->mddev),
1164 (unsigned long long)sh->sector + rdev->data_offset,
1165 bdn);
ba22dcbf 1166 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1167 /* Oh, no!!! */
d6950432
N
1168 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1169 mdname(conf->mddev),
1170 (unsigned long long)sh->sector + rdev->data_offset,
1171 bdn);
1172 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1173 > conf->max_nr_stripes)
14f8d26b 1174 printk(KERN_WARNING
d6950432
N
1175 "raid5:%s: Too many read errors, failing device %s.\n",
1176 mdname(conf->mddev), bdn);
ba22dcbf
N
1177 else
1178 retry = 1;
1179 if (retry)
1180 set_bit(R5_ReadError, &sh->dev[i].flags);
1181 else {
4e5314b5
N
1182 clear_bit(R5_ReadError, &sh->dev[i].flags);
1183 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1184 md_error(conf->mddev, rdev);
ba22dcbf 1185 }
1da177e4
LT
1186 }
1187 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1188 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1189 set_bit(STRIPE_HANDLE, &sh->state);
1190 release_stripe(sh);
1191 return 0;
1192}
1193
1194static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
1195 int error)
1196{
1197 struct stripe_head *sh = bi->bi_private;
1198 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1199 int disks = sh->disks, i;
1da177e4
LT
1200 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1201
1202 if (bi->bi_size)
1203 return 1;
1204
1205 for (i=0 ; i<disks; i++)
1206 if (bi == &sh->dev[i].req)
1207 break;
1208
45b4233c 1209 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1210 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1211 uptodate);
1212 if (i == disks) {
1213 BUG();
1214 return 0;
1215 }
1216
1da177e4
LT
1217 if (!uptodate)
1218 md_error(conf->mddev, conf->disks[i].rdev);
1219
1220 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1221
1222 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1223 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1224 release_stripe(sh);
1da177e4
LT
1225 return 0;
1226}
1227
1228
1229static sector_t compute_blocknr(struct stripe_head *sh, int i);
1230
1231static void raid5_build_block (struct stripe_head *sh, int i)
1232{
1233 struct r5dev *dev = &sh->dev[i];
1234
1235 bio_init(&dev->req);
1236 dev->req.bi_io_vec = &dev->vec;
1237 dev->req.bi_vcnt++;
1238 dev->req.bi_max_vecs++;
1239 dev->vec.bv_page = dev->page;
1240 dev->vec.bv_len = STRIPE_SIZE;
1241 dev->vec.bv_offset = 0;
1242
1243 dev->req.bi_sector = sh->sector;
1244 dev->req.bi_private = sh;
1245
1246 dev->flags = 0;
16a53ecc 1247 dev->sector = compute_blocknr(sh, i);
1da177e4
LT
1248}
1249
1250static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1251{
1252 char b[BDEVNAME_SIZE];
1253 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
45b4233c 1254 pr_debug("raid5: error called\n");
1da177e4 1255
b2d444d7 1256 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 1257 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
1258 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1259 unsigned long flags;
1260 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1261 mddev->degraded++;
c04be0aa 1262 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1263 /*
1264 * if recovery was running, make sure it aborts.
1265 */
1266 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1267 }
b2d444d7 1268 set_bit(Faulty, &rdev->flags);
1da177e4
LT
1269 printk (KERN_ALERT
1270 "raid5: Disk failure on %s, disabling device."
1271 " Operation continuing on %d devices\n",
02c2de8c 1272 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4 1273 }
16a53ecc 1274}
1da177e4
LT
1275
1276/*
1277 * Input: a 'big' sector number,
1278 * Output: index of the data and parity disk, and the sector # in them.
1279 */
1280static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1281 unsigned int data_disks, unsigned int * dd_idx,
1282 unsigned int * pd_idx, raid5_conf_t *conf)
1283{
1284 long stripe;
1285 unsigned long chunk_number;
1286 unsigned int chunk_offset;
1287 sector_t new_sector;
1288 int sectors_per_chunk = conf->chunk_size >> 9;
1289
1290 /* First compute the information on this sector */
1291
1292 /*
1293 * Compute the chunk number and the sector offset inside the chunk
1294 */
1295 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1296 chunk_number = r_sector;
1297 BUG_ON(r_sector != chunk_number);
1298
1299 /*
1300 * Compute the stripe number
1301 */
1302 stripe = chunk_number / data_disks;
1303
1304 /*
1305 * Compute the data disk and parity disk indexes inside the stripe
1306 */
1307 *dd_idx = chunk_number % data_disks;
1308
1309 /*
1310 * Select the parity disk based on the user selected algorithm.
1311 */
16a53ecc
N
1312 switch(conf->level) {
1313 case 4:
1da177e4 1314 *pd_idx = data_disks;
16a53ecc
N
1315 break;
1316 case 5:
1317 switch (conf->algorithm) {
1da177e4
LT
1318 case ALGORITHM_LEFT_ASYMMETRIC:
1319 *pd_idx = data_disks - stripe % raid_disks;
1320 if (*dd_idx >= *pd_idx)
1321 (*dd_idx)++;
1322 break;
1323 case ALGORITHM_RIGHT_ASYMMETRIC:
1324 *pd_idx = stripe % raid_disks;
1325 if (*dd_idx >= *pd_idx)
1326 (*dd_idx)++;
1327 break;
1328 case ALGORITHM_LEFT_SYMMETRIC:
1329 *pd_idx = data_disks - stripe % raid_disks;
1330 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1331 break;
1332 case ALGORITHM_RIGHT_SYMMETRIC:
1333 *pd_idx = stripe % raid_disks;
1334 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1335 break;
1336 default:
14f8d26b 1337 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1da177e4 1338 conf->algorithm);
16a53ecc
N
1339 }
1340 break;
1341 case 6:
1342
1343 /**** FIX THIS ****/
1344 switch (conf->algorithm) {
1345 case ALGORITHM_LEFT_ASYMMETRIC:
1346 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1347 if (*pd_idx == raid_disks-1)
1348 (*dd_idx)++; /* Q D D D P */
1349 else if (*dd_idx >= *pd_idx)
1350 (*dd_idx) += 2; /* D D P Q D */
1351 break;
1352 case ALGORITHM_RIGHT_ASYMMETRIC:
1353 *pd_idx = stripe % raid_disks;
1354 if (*pd_idx == raid_disks-1)
1355 (*dd_idx)++; /* Q D D D P */
1356 else if (*dd_idx >= *pd_idx)
1357 (*dd_idx) += 2; /* D D P Q D */
1358 break;
1359 case ALGORITHM_LEFT_SYMMETRIC:
1360 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1361 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1362 break;
1363 case ALGORITHM_RIGHT_SYMMETRIC:
1364 *pd_idx = stripe % raid_disks;
1365 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1366 break;
1367 default:
1368 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1369 conf->algorithm);
1370 }
1371 break;
1da177e4
LT
1372 }
1373
1374 /*
1375 * Finally, compute the new sector number
1376 */
1377 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1378 return new_sector;
1379}
1380
1381
1382static sector_t compute_blocknr(struct stripe_head *sh, int i)
1383{
1384 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1385 int raid_disks = sh->disks;
1386 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1387 sector_t new_sector = sh->sector, check;
1388 int sectors_per_chunk = conf->chunk_size >> 9;
1389 sector_t stripe;
1390 int chunk_offset;
1391 int chunk_number, dummy1, dummy2, dd_idx = i;
1392 sector_t r_sector;
1393
16a53ecc 1394
1da177e4
LT
1395 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1396 stripe = new_sector;
1397 BUG_ON(new_sector != stripe);
1398
16a53ecc
N
1399 if (i == sh->pd_idx)
1400 return 0;
1401 switch(conf->level) {
1402 case 4: break;
1403 case 5:
1404 switch (conf->algorithm) {
1da177e4
LT
1405 case ALGORITHM_LEFT_ASYMMETRIC:
1406 case ALGORITHM_RIGHT_ASYMMETRIC:
1407 if (i > sh->pd_idx)
1408 i--;
1409 break;
1410 case ALGORITHM_LEFT_SYMMETRIC:
1411 case ALGORITHM_RIGHT_SYMMETRIC:
1412 if (i < sh->pd_idx)
1413 i += raid_disks;
1414 i -= (sh->pd_idx + 1);
1415 break;
1416 default:
14f8d26b 1417 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
16a53ecc
N
1418 conf->algorithm);
1419 }
1420 break;
1421 case 6:
16a53ecc
N
1422 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1423 return 0; /* It is the Q disk */
1424 switch (conf->algorithm) {
1425 case ALGORITHM_LEFT_ASYMMETRIC:
1426 case ALGORITHM_RIGHT_ASYMMETRIC:
1427 if (sh->pd_idx == raid_disks-1)
1428 i--; /* Q D D D P */
1429 else if (i > sh->pd_idx)
1430 i -= 2; /* D D P Q D */
1431 break;
1432 case ALGORITHM_LEFT_SYMMETRIC:
1433 case ALGORITHM_RIGHT_SYMMETRIC:
1434 if (sh->pd_idx == raid_disks-1)
1435 i--; /* Q D D D P */
1436 else {
1437 /* D D P Q D */
1438 if (i < sh->pd_idx)
1439 i += raid_disks;
1440 i -= (sh->pd_idx + 2);
1441 }
1442 break;
1443 default:
1444 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1da177e4 1445 conf->algorithm);
16a53ecc
N
1446 }
1447 break;
1da177e4
LT
1448 }
1449
1450 chunk_number = stripe * data_disks + i;
1451 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1452
1453 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1454 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
14f8d26b 1455 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
1456 return 0;
1457 }
1458 return r_sector;
1459}
1460
1461
1462
1463/*
16a53ecc
N
1464 * Copy data between a page in the stripe cache, and one or more bion
1465 * The page could align with the middle of the bio, or there could be
1466 * several bion, each with several bio_vecs, which cover part of the page
1467 * Multiple bion are linked together on bi_next. There may be extras
1468 * at the end of this list. We ignore them.
1da177e4
LT
1469 */
1470static void copy_data(int frombio, struct bio *bio,
1471 struct page *page,
1472 sector_t sector)
1473{
1474 char *pa = page_address(page);
1475 struct bio_vec *bvl;
1476 int i;
1477 int page_offset;
1478
1479 if (bio->bi_sector >= sector)
1480 page_offset = (signed)(bio->bi_sector - sector) * 512;
1481 else
1482 page_offset = (signed)(sector - bio->bi_sector) * -512;
1483 bio_for_each_segment(bvl, bio, i) {
1484 int len = bio_iovec_idx(bio,i)->bv_len;
1485 int clen;
1486 int b_offset = 0;
1487
1488 if (page_offset < 0) {
1489 b_offset = -page_offset;
1490 page_offset += b_offset;
1491 len -= b_offset;
1492 }
1493
1494 if (len > 0 && page_offset + len > STRIPE_SIZE)
1495 clen = STRIPE_SIZE - page_offset;
1496 else clen = len;
16a53ecc 1497
1da177e4
LT
1498 if (clen > 0) {
1499 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1500 if (frombio)
1501 memcpy(pa+page_offset, ba+b_offset, clen);
1502 else
1503 memcpy(ba+b_offset, pa+page_offset, clen);
1504 __bio_kunmap_atomic(ba, KM_USER0);
1505 }
1506 if (clen < len) /* hit end of page */
1507 break;
1508 page_offset += len;
1509 }
1510}
1511
9bc89cd8
DW
1512#define check_xor() do { \
1513 if (count == MAX_XOR_BLOCKS) { \
1514 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1515 count = 0; \
1516 } \
1da177e4
LT
1517 } while(0)
1518
1519
1520static void compute_block(struct stripe_head *sh, int dd_idx)
1521{
7ecaa1e6 1522 int i, count, disks = sh->disks;
9bc89cd8 1523 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1da177e4 1524
45b4233c 1525 pr_debug("compute_block, stripe %llu, idx %d\n",
1da177e4
LT
1526 (unsigned long long)sh->sector, dd_idx);
1527
9bc89cd8
DW
1528 dest = page_address(sh->dev[dd_idx].page);
1529 memset(dest, 0, STRIPE_SIZE);
1530 count = 0;
1da177e4
LT
1531 for (i = disks ; i--; ) {
1532 if (i == dd_idx)
1533 continue;
1534 p = page_address(sh->dev[i].page);
1535 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1536 ptr[count++] = p;
1537 else
14f8d26b 1538 printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
1da177e4
LT
1539 " not present\n", dd_idx,
1540 (unsigned long long)sh->sector, i);
1541
1542 check_xor();
1543 }
9bc89cd8
DW
1544 if (count)
1545 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1da177e4
LT
1546 set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1547}
1548
16a53ecc 1549static void compute_parity5(struct stripe_head *sh, int method)
1da177e4
LT
1550{
1551 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1552 int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
9bc89cd8 1553 void *ptr[MAX_XOR_BLOCKS], *dest;
1da177e4
LT
1554 struct bio *chosen;
1555
45b4233c 1556 pr_debug("compute_parity5, stripe %llu, method %d\n",
1da177e4
LT
1557 (unsigned long long)sh->sector, method);
1558
9bc89cd8
DW
1559 count = 0;
1560 dest = page_address(sh->dev[pd_idx].page);
1da177e4
LT
1561 switch(method) {
1562 case READ_MODIFY_WRITE:
78bafebd 1563 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags));
1da177e4
LT
1564 for (i=disks ; i-- ;) {
1565 if (i==pd_idx)
1566 continue;
1567 if (sh->dev[i].towrite &&
1568 test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1569 ptr[count++] = page_address(sh->dev[i].page);
1570 chosen = sh->dev[i].towrite;
1571 sh->dev[i].towrite = NULL;
1572
1573 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1574 wake_up(&conf->wait_for_overlap);
1575
78bafebd 1576 BUG_ON(sh->dev[i].written);
1da177e4
LT
1577 sh->dev[i].written = chosen;
1578 check_xor();
1579 }
1580 }
1581 break;
1582 case RECONSTRUCT_WRITE:
9bc89cd8 1583 memset(dest, 0, STRIPE_SIZE);
1da177e4
LT
1584 for (i= disks; i-- ;)
1585 if (i!=pd_idx && sh->dev[i].towrite) {
1586 chosen = sh->dev[i].towrite;
1587 sh->dev[i].towrite = NULL;
1588
1589 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1590 wake_up(&conf->wait_for_overlap);
1591
78bafebd 1592 BUG_ON(sh->dev[i].written);
1da177e4
LT
1593 sh->dev[i].written = chosen;
1594 }
1595 break;
1596 case CHECK_PARITY:
1597 break;
1598 }
9bc89cd8
DW
1599 if (count) {
1600 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1601 count = 0;
1da177e4
LT
1602 }
1603
1604 for (i = disks; i--;)
1605 if (sh->dev[i].written) {
1606 sector_t sector = sh->dev[i].sector;
1607 struct bio *wbi = sh->dev[i].written;
1608 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1609 copy_data(1, wbi, sh->dev[i].page, sector);
1610 wbi = r5_next_bio(wbi, sector);
1611 }
1612
1613 set_bit(R5_LOCKED, &sh->dev[i].flags);
1614 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1615 }
1616
1617 switch(method) {
1618 case RECONSTRUCT_WRITE:
1619 case CHECK_PARITY:
1620 for (i=disks; i--;)
1621 if (i != pd_idx) {
1622 ptr[count++] = page_address(sh->dev[i].page);
1623 check_xor();
1624 }
1625 break;
1626 case READ_MODIFY_WRITE:
1627 for (i = disks; i--;)
1628 if (sh->dev[i].written) {
1629 ptr[count++] = page_address(sh->dev[i].page);
1630 check_xor();
1631 }
1632 }
9bc89cd8
DW
1633 if (count)
1634 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1635
1da177e4
LT
1636 if (method != CHECK_PARITY) {
1637 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1638 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1639 } else
1640 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1641}
1642
16a53ecc
N
1643static void compute_parity6(struct stripe_head *sh, int method)
1644{
1645 raid6_conf_t *conf = sh->raid_conf;
f416885e 1646 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
16a53ecc
N
1647 struct bio *chosen;
1648 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1649 void *ptrs[disks];
1650
1651 qd_idx = raid6_next_disk(pd_idx, disks);
1652 d0_idx = raid6_next_disk(qd_idx, disks);
1653
45b4233c 1654 pr_debug("compute_parity, stripe %llu, method %d\n",
16a53ecc
N
1655 (unsigned long long)sh->sector, method);
1656
1657 switch(method) {
1658 case READ_MODIFY_WRITE:
1659 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1660 case RECONSTRUCT_WRITE:
1661 for (i= disks; i-- ;)
1662 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1663 chosen = sh->dev[i].towrite;
1664 sh->dev[i].towrite = NULL;
1665
1666 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1667 wake_up(&conf->wait_for_overlap);
1668
52e5f9d1 1669 BUG_ON(sh->dev[i].written);
16a53ecc
N
1670 sh->dev[i].written = chosen;
1671 }
1672 break;
1673 case CHECK_PARITY:
1674 BUG(); /* Not implemented yet */
1675 }
1676
1677 for (i = disks; i--;)
1678 if (sh->dev[i].written) {
1679 sector_t sector = sh->dev[i].sector;
1680 struct bio *wbi = sh->dev[i].written;
1681 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1682 copy_data(1, wbi, sh->dev[i].page, sector);
1683 wbi = r5_next_bio(wbi, sector);
1684 }
1685
1686 set_bit(R5_LOCKED, &sh->dev[i].flags);
1687 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1688 }
1689
1690// switch(method) {
1691// case RECONSTRUCT_WRITE:
1692// case CHECK_PARITY:
1693// case UPDATE_PARITY:
1694 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1695 /* FIX: Is this ordering of drives even remotely optimal? */
1696 count = 0;
1697 i = d0_idx;
1698 do {
1699 ptrs[count++] = page_address(sh->dev[i].page);
1700 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1701 printk("block %d/%d not uptodate on parity calc\n", i,count);
1702 i = raid6_next_disk(i, disks);
1703 } while ( i != d0_idx );
1704// break;
1705// }
1706
1707 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1708
1709 switch(method) {
1710 case RECONSTRUCT_WRITE:
1711 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1712 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1713 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1714 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1715 break;
1716 case UPDATE_PARITY:
1717 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1718 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1719 break;
1720 }
1721}
1722
1723
1724/* Compute one missing block */
1725static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1726{
f416885e 1727 int i, count, disks = sh->disks;
9bc89cd8 1728 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
16a53ecc
N
1729 int pd_idx = sh->pd_idx;
1730 int qd_idx = raid6_next_disk(pd_idx, disks);
1731
45b4233c 1732 pr_debug("compute_block_1, stripe %llu, idx %d\n",
16a53ecc
N
1733 (unsigned long long)sh->sector, dd_idx);
1734
1735 if ( dd_idx == qd_idx ) {
1736 /* We're actually computing the Q drive */
1737 compute_parity6(sh, UPDATE_PARITY);
1738 } else {
9bc89cd8
DW
1739 dest = page_address(sh->dev[dd_idx].page);
1740 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1741 count = 0;
16a53ecc
N
1742 for (i = disks ; i--; ) {
1743 if (i == dd_idx || i == qd_idx)
1744 continue;
1745 p = page_address(sh->dev[i].page);
1746 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1747 ptr[count++] = p;
1748 else
1749 printk("compute_block() %d, stripe %llu, %d"
1750 " not present\n", dd_idx,
1751 (unsigned long long)sh->sector, i);
1752
1753 check_xor();
1754 }
9bc89cd8
DW
1755 if (count)
1756 xor_blocks(count, STRIPE_SIZE, dest, ptr);
16a53ecc
N
1757 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1758 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1759 }
1760}
1761
1762/* Compute two missing blocks */
1763static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1764{
f416885e 1765 int i, count, disks = sh->disks;
16a53ecc
N
1766 int pd_idx = sh->pd_idx;
1767 int qd_idx = raid6_next_disk(pd_idx, disks);
1768 int d0_idx = raid6_next_disk(qd_idx, disks);
1769 int faila, failb;
1770
1771 /* faila and failb are disk numbers relative to d0_idx */
1772 /* pd_idx become disks-2 and qd_idx become disks-1 */
1773 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1774 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1775
1776 BUG_ON(faila == failb);
1777 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1778
45b4233c 1779 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
16a53ecc
N
1780 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1781
1782 if ( failb == disks-1 ) {
1783 /* Q disk is one of the missing disks */
1784 if ( faila == disks-2 ) {
1785 /* Missing P+Q, just recompute */
1786 compute_parity6(sh, UPDATE_PARITY);
1787 return;
1788 } else {
1789 /* We're missing D+Q; recompute D from P */
1790 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1791 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1792 return;
1793 }
1794 }
1795
1796 /* We're missing D+P or D+D; build pointer table */
1797 {
1798 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1799 void *ptrs[disks];
1800
1801 count = 0;
1802 i = d0_idx;
1803 do {
1804 ptrs[count++] = page_address(sh->dev[i].page);
1805 i = raid6_next_disk(i, disks);
1806 if (i != dd_idx1 && i != dd_idx2 &&
1807 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1808 printk("compute_2 with missing block %d/%d\n", count, i);
1809 } while ( i != d0_idx );
1810
1811 if ( failb == disks-2 ) {
1812 /* We're missing D+P. */
1813 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1814 } else {
1815 /* We're missing D+D. */
1816 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1817 }
1818
1819 /* Both the above update both missing blocks */
1820 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1821 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1822 }
1823}
1824
e33129d8
DW
1825static int
1826handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1827{
1828 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1829 int locked = 0;
1830
1831 if (rcw) {
1832 /* if we are not expanding this is a proper write request, and
1833 * there will be bios with new data to be drained into the
1834 * stripe cache
1835 */
1836 if (!expand) {
1837 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1838 sh->ops.count++;
1839 }
16a53ecc 1840
e33129d8
DW
1841 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1842 sh->ops.count++;
1843
1844 for (i = disks; i--; ) {
1845 struct r5dev *dev = &sh->dev[i];
1846
1847 if (dev->towrite) {
1848 set_bit(R5_LOCKED, &dev->flags);
1849 if (!expand)
1850 clear_bit(R5_UPTODATE, &dev->flags);
1851 locked++;
1852 }
1853 }
1854 } else {
1855 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1856 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1857
1858 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1859 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1860 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1861
1862 sh->ops.count += 3;
1863
1864 for (i = disks; i--; ) {
1865 struct r5dev *dev = &sh->dev[i];
1866 if (i == pd_idx)
1867 continue;
1868
1869 /* For a read-modify write there may be blocks that are
1870 * locked for reading while others are ready to be
1871 * written so we distinguish these blocks by the
1872 * R5_Wantprexor bit
1873 */
1874 if (dev->towrite &&
1875 (test_bit(R5_UPTODATE, &dev->flags) ||
1876 test_bit(R5_Wantcompute, &dev->flags))) {
1877 set_bit(R5_Wantprexor, &dev->flags);
1878 set_bit(R5_LOCKED, &dev->flags);
1879 clear_bit(R5_UPTODATE, &dev->flags);
1880 locked++;
1881 }
1882 }
1883 }
1884
1885 /* keep the parity disk locked while asynchronous operations
1886 * are in flight
1887 */
1888 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1889 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1890 locked++;
1891
1892 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1893 __FUNCTION__, (unsigned long long)sh->sector,
1894 locked, sh->ops.pending);
1895
1896 return locked;
1897}
16a53ecc 1898
1da177e4
LT
1899/*
1900 * Each stripe/dev can have one or more bion attached.
16a53ecc 1901 * toread/towrite point to the first in a chain.
1da177e4
LT
1902 * The bi_next chain must be in order.
1903 */
1904static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1905{
1906 struct bio **bip;
1907 raid5_conf_t *conf = sh->raid_conf;
72626685 1908 int firstwrite=0;
1da177e4 1909
45b4233c 1910 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
1911 (unsigned long long)bi->bi_sector,
1912 (unsigned long long)sh->sector);
1913
1914
1915 spin_lock(&sh->lock);
1916 spin_lock_irq(&conf->device_lock);
72626685 1917 if (forwrite) {
1da177e4 1918 bip = &sh->dev[dd_idx].towrite;
72626685
N
1919 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1920 firstwrite = 1;
1921 } else
1da177e4
LT
1922 bip = &sh->dev[dd_idx].toread;
1923 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1924 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1925 goto overlap;
1926 bip = & (*bip)->bi_next;
1927 }
1928 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1929 goto overlap;
1930
78bafebd 1931 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
1932 if (*bip)
1933 bi->bi_next = *bip;
1934 *bip = bi;
1935 bi->bi_phys_segments ++;
1936 spin_unlock_irq(&conf->device_lock);
1937 spin_unlock(&sh->lock);
1938
45b4233c 1939 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
1940 (unsigned long long)bi->bi_sector,
1941 (unsigned long long)sh->sector, dd_idx);
1942
72626685 1943 if (conf->mddev->bitmap && firstwrite) {
72626685
N
1944 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1945 STRIPE_SECTORS, 0);
ae3c20cc 1946 sh->bm_seq = conf->seq_flush+1;
72626685
N
1947 set_bit(STRIPE_BIT_DELAY, &sh->state);
1948 }
1949
1da177e4
LT
1950 if (forwrite) {
1951 /* check if page is covered */
1952 sector_t sector = sh->dev[dd_idx].sector;
1953 for (bi=sh->dev[dd_idx].towrite;
1954 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1955 bi && bi->bi_sector <= sector;
1956 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1957 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1958 sector = bi->bi_sector + (bi->bi_size>>9);
1959 }
1960 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1961 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1962 }
1963 return 1;
1964
1965 overlap:
1966 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1967 spin_unlock_irq(&conf->device_lock);
1968 spin_unlock(&sh->lock);
1969 return 0;
1970}
1971
29269553
N
1972static void end_reshape(raid5_conf_t *conf);
1973
16a53ecc
N
1974static int page_is_zero(struct page *p)
1975{
1976 char *a = page_address(p);
1977 return ((*(u32*)a) == 0 &&
1978 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1979}
1980
ccfcc3c1
N
1981static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1982{
1983 int sectors_per_chunk = conf->chunk_size >> 9;
ccfcc3c1 1984 int pd_idx, dd_idx;
2d2063ce
CQH
1985 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1986
b875e531
N
1987 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1988 *sectors_per_chunk + chunk_offset,
1989 disks, disks - conf->max_degraded,
1990 &dd_idx, &pd_idx, conf);
ccfcc3c1
N
1991 return pd_idx;
1992}
1993
a4456856
DW
1994static void
1995handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1996 struct stripe_head_state *s, int disks,
1997 struct bio **return_bi)
1998{
1999 int i;
2000 for (i = disks; i--; ) {
2001 struct bio *bi;
2002 int bitmap_end = 0;
2003
2004 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2005 mdk_rdev_t *rdev;
2006 rcu_read_lock();
2007 rdev = rcu_dereference(conf->disks[i].rdev);
2008 if (rdev && test_bit(In_sync, &rdev->flags))
2009 /* multiple read failures in one stripe */
2010 md_error(conf->mddev, rdev);
2011 rcu_read_unlock();
2012 }
2013 spin_lock_irq(&conf->device_lock);
2014 /* fail all writes first */
2015 bi = sh->dev[i].towrite;
2016 sh->dev[i].towrite = NULL;
2017 if (bi) {
2018 s->to_write--;
2019 bitmap_end = 1;
2020 }
2021
2022 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2023 wake_up(&conf->wait_for_overlap);
2024
2025 while (bi && bi->bi_sector <
2026 sh->dev[i].sector + STRIPE_SECTORS) {
2027 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2028 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2029 if (--bi->bi_phys_segments == 0) {
2030 md_write_end(conf->mddev);
2031 bi->bi_next = *return_bi;
2032 *return_bi = bi;
2033 }
2034 bi = nextbi;
2035 }
2036 /* and fail all 'written' */
2037 bi = sh->dev[i].written;
2038 sh->dev[i].written = NULL;
2039 if (bi) bitmap_end = 1;
2040 while (bi && bi->bi_sector <
2041 sh->dev[i].sector + STRIPE_SECTORS) {
2042 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2043 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2044 if (--bi->bi_phys_segments == 0) {
2045 md_write_end(conf->mddev);
2046 bi->bi_next = *return_bi;
2047 *return_bi = bi;
2048 }
2049 bi = bi2;
2050 }
2051
b5e98d65
DW
2052 /* fail any reads if this device is non-operational and
2053 * the data has not reached the cache yet.
2054 */
2055 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2056 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2057 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2058 bi = sh->dev[i].toread;
2059 sh->dev[i].toread = NULL;
2060 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2061 wake_up(&conf->wait_for_overlap);
2062 if (bi) s->to_read--;
2063 while (bi && bi->bi_sector <
2064 sh->dev[i].sector + STRIPE_SECTORS) {
2065 struct bio *nextbi =
2066 r5_next_bio(bi, sh->dev[i].sector);
2067 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2068 if (--bi->bi_phys_segments == 0) {
2069 bi->bi_next = *return_bi;
2070 *return_bi = bi;
2071 }
2072 bi = nextbi;
2073 }
2074 }
2075 spin_unlock_irq(&conf->device_lock);
2076 if (bitmap_end)
2077 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2078 STRIPE_SECTORS, 0, 0);
2079 }
2080
2081}
2082
f38e1219
DW
2083/* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
2084 * to process
2085 */
2086static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
2087 struct stripe_head_state *s, int disk_idx, int disks)
2088{
2089 struct r5dev *dev = &sh->dev[disk_idx];
2090 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2091
2092 /* don't schedule compute operations or reads on the parity block while
2093 * a check is in flight
2094 */
2095 if ((disk_idx == sh->pd_idx) &&
2096 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2097 return ~0;
2098
2099 /* is the data in this block needed, and can we get it? */
2100 if (!test_bit(R5_LOCKED, &dev->flags) &&
2101 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
2102 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2103 s->syncing || s->expanding || (s->failed &&
2104 (failed_dev->toread || (failed_dev->towrite &&
2105 !test_bit(R5_OVERWRITE, &failed_dev->flags)
2106 ))))) {
2107 /* 1/ We would like to get this block, possibly by computing it,
2108 * but we might not be able to.
2109 *
2110 * 2/ Since parity check operations potentially make the parity
2111 * block !uptodate it will need to be refreshed before any
2112 * compute operations on data disks are scheduled.
2113 *
2114 * 3/ We hold off parity block re-reads until check operations
2115 * have quiesced.
2116 */
2117 if ((s->uptodate == disks - 1) &&
2118 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2119 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2120 set_bit(R5_Wantcompute, &dev->flags);
2121 sh->ops.target = disk_idx;
2122 s->req_compute = 1;
2123 sh->ops.count++;
2124 /* Careful: from this point on 'uptodate' is in the eye
2125 * of raid5_run_ops which services 'compute' operations
2126 * before writes. R5_Wantcompute flags a block that will
2127 * be R5_UPTODATE by the time it is needed for a
2128 * subsequent operation.
2129 */
2130 s->uptodate++;
2131 return 0; /* uptodate + compute == disks */
2132 } else if ((s->uptodate < disks - 1) &&
2133 test_bit(R5_Insync, &dev->flags)) {
2134 /* Note: we hold off compute operations while checks are
2135 * in flight, but we still prefer 'compute' over 'read'
2136 * hence we only read if (uptodate < * disks-1)
2137 */
2138 set_bit(R5_LOCKED, &dev->flags);
2139 set_bit(R5_Wantread, &dev->flags);
2140 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2141 sh->ops.count++;
2142 s->locked++;
2143 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2144 s->syncing);
2145 }
2146 }
2147
2148 return ~0;
2149}
2150
a4456856
DW
2151static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2152 struct stripe_head_state *s, int disks)
2153{
2154 int i;
f38e1219
DW
2155
2156 /* Clear completed compute operations. Parity recovery
2157 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2158 * later on in this routine
2159 */
2160 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2161 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2162 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2163 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2164 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2165 }
2166
2167 /* look for blocks to read/compute, skip this if a compute
2168 * is already in flight, or if the stripe contents are in the
2169 * midst of changing due to a write
2170 */
2171 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2172 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2173 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2174 for (i = disks; i--; )
2175 if (__handle_issuing_new_read_requests5(
2176 sh, s, i, disks) == 0)
2177 break;
a4456856
DW
2178 }
2179 set_bit(STRIPE_HANDLE, &sh->state);
2180}
2181
2182static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2183 struct stripe_head_state *s, struct r6_state *r6s,
2184 int disks)
2185{
2186 int i;
2187 for (i = disks; i--; ) {
2188 struct r5dev *dev = &sh->dev[i];
2189 if (!test_bit(R5_LOCKED, &dev->flags) &&
2190 !test_bit(R5_UPTODATE, &dev->flags) &&
2191 (dev->toread || (dev->towrite &&
2192 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2193 s->syncing || s->expanding ||
2194 (s->failed >= 1 &&
2195 (sh->dev[r6s->failed_num[0]].toread ||
2196 s->to_write)) ||
2197 (s->failed >= 2 &&
2198 (sh->dev[r6s->failed_num[1]].toread ||
2199 s->to_write)))) {
2200 /* we would like to get this block, possibly
2201 * by computing it, but we might not be able to
2202 */
2203 if (s->uptodate == disks-1) {
45b4233c 2204 pr_debug("Computing stripe %llu block %d\n",
a4456856
DW
2205 (unsigned long long)sh->sector, i);
2206 compute_block_1(sh, i, 0);
2207 s->uptodate++;
2208 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2209 /* Computing 2-failure is *very* expensive; only
2210 * do it if failed >= 2
2211 */
2212 int other;
2213 for (other = disks; other--; ) {
2214 if (other == i)
2215 continue;
2216 if (!test_bit(R5_UPTODATE,
2217 &sh->dev[other].flags))
2218 break;
2219 }
2220 BUG_ON(other < 0);
45b4233c 2221 pr_debug("Computing stripe %llu blocks %d,%d\n",
a4456856
DW
2222 (unsigned long long)sh->sector,
2223 i, other);
2224 compute_block_2(sh, i, other);
2225 s->uptodate += 2;
2226 } else if (test_bit(R5_Insync, &dev->flags)) {
2227 set_bit(R5_LOCKED, &dev->flags);
2228 set_bit(R5_Wantread, &dev->flags);
2229 s->locked++;
45b4233c 2230 pr_debug("Reading block %d (sync=%d)\n",
a4456856
DW
2231 i, s->syncing);
2232 }
2233 }
2234 }
2235 set_bit(STRIPE_HANDLE, &sh->state);
2236}
2237
2238
2239/* handle_completed_write_requests
2240 * any written block on an uptodate or failed drive can be returned.
2241 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2242 * never LOCKED, so we don't need to test 'failed' directly.
2243 */
2244static void handle_completed_write_requests(raid5_conf_t *conf,
2245 struct stripe_head *sh, int disks, struct bio **return_bi)
2246{
2247 int i;
2248 struct r5dev *dev;
2249
2250 for (i = disks; i--; )
2251 if (sh->dev[i].written) {
2252 dev = &sh->dev[i];
2253 if (!test_bit(R5_LOCKED, &dev->flags) &&
2254 test_bit(R5_UPTODATE, &dev->flags)) {
2255 /* We can return any write requests */
2256 struct bio *wbi, *wbi2;
2257 int bitmap_end = 0;
45b4233c 2258 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2259 spin_lock_irq(&conf->device_lock);
2260 wbi = dev->written;
2261 dev->written = NULL;
2262 while (wbi && wbi->bi_sector <
2263 dev->sector + STRIPE_SECTORS) {
2264 wbi2 = r5_next_bio(wbi, dev->sector);
2265 if (--wbi->bi_phys_segments == 0) {
2266 md_write_end(conf->mddev);
2267 wbi->bi_next = *return_bi;
2268 *return_bi = wbi;
2269 }
2270 wbi = wbi2;
2271 }
2272 if (dev->towrite == NULL)
2273 bitmap_end = 1;
2274 spin_unlock_irq(&conf->device_lock);
2275 if (bitmap_end)
2276 bitmap_endwrite(conf->mddev->bitmap,
2277 sh->sector,
2278 STRIPE_SECTORS,
2279 !test_bit(STRIPE_DEGRADED, &sh->state),
2280 0);
2281 }
2282 }
2283}
2284
2285static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2286 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2287{
2288 int rmw = 0, rcw = 0, i;
2289 for (i = disks; i--; ) {
2290 /* would I have to read this buffer for read_modify_write */
2291 struct r5dev *dev = &sh->dev[i];
2292 if ((dev->towrite || i == sh->pd_idx) &&
2293 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2294 !(test_bit(R5_UPTODATE, &dev->flags) ||
2295 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2296 if (test_bit(R5_Insync, &dev->flags))
2297 rmw++;
2298 else
2299 rmw += 2*disks; /* cannot read it */
2300 }
2301 /* Would I have to read this buffer for reconstruct_write */
2302 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2303 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2304 !(test_bit(R5_UPTODATE, &dev->flags) ||
2305 test_bit(R5_Wantcompute, &dev->flags))) {
2306 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2307 else
2308 rcw += 2*disks;
2309 }
2310 }
45b4233c 2311 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2312 (unsigned long long)sh->sector, rmw, rcw);
2313 set_bit(STRIPE_HANDLE, &sh->state);
2314 if (rmw < rcw && rmw > 0)
2315 /* prefer read-modify-write, but need to get some data */
2316 for (i = disks; i--; ) {
2317 struct r5dev *dev = &sh->dev[i];
2318 if ((dev->towrite || i == sh->pd_idx) &&
2319 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2320 !(test_bit(R5_UPTODATE, &dev->flags) ||
2321 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2322 test_bit(R5_Insync, &dev->flags)) {
2323 if (
2324 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2325 pr_debug("Read_old block "
a4456856
DW
2326 "%d for r-m-w\n", i);
2327 set_bit(R5_LOCKED, &dev->flags);
2328 set_bit(R5_Wantread, &dev->flags);
2329 s->locked++;
2330 } else {
2331 set_bit(STRIPE_DELAYED, &sh->state);
2332 set_bit(STRIPE_HANDLE, &sh->state);
2333 }
2334 }
2335 }
2336 if (rcw <= rmw && rcw > 0)
2337 /* want reconstruct write, but need to get some data */
2338 for (i = disks; i--; ) {
2339 struct r5dev *dev = &sh->dev[i];
2340 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2341 i != sh->pd_idx &&
2342 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2343 !(test_bit(R5_UPTODATE, &dev->flags) ||
2344 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2345 test_bit(R5_Insync, &dev->flags)) {
2346 if (
2347 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2348 pr_debug("Read_old block "
a4456856
DW
2349 "%d for Reconstruct\n", i);
2350 set_bit(R5_LOCKED, &dev->flags);
2351 set_bit(R5_Wantread, &dev->flags);
2352 s->locked++;
2353 } else {
2354 set_bit(STRIPE_DELAYED, &sh->state);
2355 set_bit(STRIPE_HANDLE, &sh->state);
2356 }
2357 }
2358 }
2359 /* now if nothing is locked, and if we have enough data,
2360 * we can start a write request
2361 */
f38e1219
DW
2362 /* since handle_stripe can be called at any time we need to handle the
2363 * case where a compute block operation has been submitted and then a
2364 * subsequent call wants to start a write request. raid5_run_ops only
2365 * handles the case where compute block and postxor are requested
2366 * simultaneously. If this is not the case then new writes need to be
2367 * held off until the compute completes.
2368 */
2369 if ((s->req_compute ||
2370 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2371 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2372 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
e33129d8 2373 s->locked += handle_write_operations5(sh, rcw == 0, 0);
a4456856
DW
2374}
2375
2376static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2377 struct stripe_head *sh, struct stripe_head_state *s,
2378 struct r6_state *r6s, int disks)
2379{
2380 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2381 int qd_idx = r6s->qd_idx;
2382 for (i = disks; i--; ) {
2383 struct r5dev *dev = &sh->dev[i];
2384 /* Would I have to read this buffer for reconstruct_write */
2385 if (!test_bit(R5_OVERWRITE, &dev->flags)
2386 && i != pd_idx && i != qd_idx
2387 && (!test_bit(R5_LOCKED, &dev->flags)
2388 ) &&
2389 !test_bit(R5_UPTODATE, &dev->flags)) {
2390 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2391 else {
45b4233c 2392 pr_debug("raid6: must_compute: "
a4456856
DW
2393 "disk %d flags=%#lx\n", i, dev->flags);
2394 must_compute++;
2395 }
2396 }
2397 }
45b4233c 2398 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
a4456856
DW
2399 (unsigned long long)sh->sector, rcw, must_compute);
2400 set_bit(STRIPE_HANDLE, &sh->state);
2401
2402 if (rcw > 0)
2403 /* want reconstruct write, but need to get some data */
2404 for (i = disks; i--; ) {
2405 struct r5dev *dev = &sh->dev[i];
2406 if (!test_bit(R5_OVERWRITE, &dev->flags)
2407 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2408 && !test_bit(R5_LOCKED, &dev->flags) &&
2409 !test_bit(R5_UPTODATE, &dev->flags) &&
2410 test_bit(R5_Insync, &dev->flags)) {
2411 if (
2412 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2413 pr_debug("Read_old stripe %llu "
a4456856
DW
2414 "block %d for Reconstruct\n",
2415 (unsigned long long)sh->sector, i);
2416 set_bit(R5_LOCKED, &dev->flags);
2417 set_bit(R5_Wantread, &dev->flags);
2418 s->locked++;
2419 } else {
45b4233c 2420 pr_debug("Request delayed stripe %llu "
a4456856
DW
2421 "block %d for Reconstruct\n",
2422 (unsigned long long)sh->sector, i);
2423 set_bit(STRIPE_DELAYED, &sh->state);
2424 set_bit(STRIPE_HANDLE, &sh->state);
2425 }
2426 }
2427 }
2428 /* now if nothing is locked, and if we have enough data, we can start a
2429 * write request
2430 */
2431 if (s->locked == 0 && rcw == 0 &&
2432 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2433 if (must_compute > 0) {
2434 /* We have failed blocks and need to compute them */
2435 switch (s->failed) {
2436 case 0:
2437 BUG();
2438 case 1:
2439 compute_block_1(sh, r6s->failed_num[0], 0);
2440 break;
2441 case 2:
2442 compute_block_2(sh, r6s->failed_num[0],
2443 r6s->failed_num[1]);
2444 break;
2445 default: /* This request should have been failed? */
2446 BUG();
2447 }
2448 }
2449
45b4233c 2450 pr_debug("Computing parity for stripe %llu\n",
a4456856
DW
2451 (unsigned long long)sh->sector);
2452 compute_parity6(sh, RECONSTRUCT_WRITE);
2453 /* now every locked buffer is ready to be written */
2454 for (i = disks; i--; )
2455 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
45b4233c 2456 pr_debug("Writing stripe %llu block %d\n",
a4456856
DW
2457 (unsigned long long)sh->sector, i);
2458 s->locked++;
2459 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2460 }
2461 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2462 set_bit(STRIPE_INSYNC, &sh->state);
2463
2464 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2465 atomic_dec(&conf->preread_active_stripes);
2466 if (atomic_read(&conf->preread_active_stripes) <
2467 IO_THRESHOLD)
2468 md_wakeup_thread(conf->mddev->thread);
2469 }
2470 }
2471}
2472
2473static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2474 struct stripe_head_state *s, int disks)
2475{
2476 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962
DW
2477 /* Take one of the following actions:
2478 * 1/ start a check parity operation if (uptodate == disks)
2479 * 2/ finish a check parity operation and act on the result
2480 * 3/ skip to the writeback section if we previously
2481 * initiated a recovery operation
2482 */
2483 if (s->failed == 0 &&
2484 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2485 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2486 BUG_ON(s->uptodate != disks);
2487 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2488 sh->ops.count++;
2489 s->uptodate--;
2490 } else if (
2491 test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2492 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2493 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2494
2495 if (sh->ops.zero_sum_result == 0)
2496 /* parity is correct (on disc,
2497 * not in buffer any more)
2498 */
a4456856
DW
2499 set_bit(STRIPE_INSYNC, &sh->state);
2500 else {
e89f8962
DW
2501 conf->mddev->resync_mismatches +=
2502 STRIPE_SECTORS;
2503 if (test_bit(
2504 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2505 /* don't try to repair!! */
2506 set_bit(STRIPE_INSYNC, &sh->state);
2507 else {
2508 set_bit(STRIPE_OP_COMPUTE_BLK,
2509 &sh->ops.pending);
2510 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2511 &sh->ops.pending);
2512 set_bit(R5_Wantcompute,
2513 &sh->dev[sh->pd_idx].flags);
2514 sh->ops.target = sh->pd_idx;
2515 sh->ops.count++;
2516 s->uptodate++;
2517 }
a4456856
DW
2518 }
2519 }
2520 }
e89f8962
DW
2521
2522 /* check if we can clear a parity disk reconstruct */
2523 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2524 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2525
2526 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2527 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2528 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2529 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2530 }
2531
2532 /* Wait for check parity and compute block operations to complete
2533 * before write-back
2534 */
2535 if (!test_bit(STRIPE_INSYNC, &sh->state) &&
2536 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2537 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
a4456856
DW
2538 struct r5dev *dev;
2539 /* either failed parity check, or recovery is happening */
2540 if (s->failed == 0)
2541 s->failed_num = sh->pd_idx;
2542 dev = &sh->dev[s->failed_num];
2543 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2544 BUG_ON(s->uptodate != disks);
2545
2546 set_bit(R5_LOCKED, &dev->flags);
2547 set_bit(R5_Wantwrite, &dev->flags);
2548 clear_bit(STRIPE_DEGRADED, &sh->state);
2549 s->locked++;
2550 set_bit(STRIPE_INSYNC, &sh->state);
2551 }
2552}
2553
2554
2555static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2556 struct stripe_head_state *s,
2557 struct r6_state *r6s, struct page *tmp_page,
2558 int disks)
2559{
2560 int update_p = 0, update_q = 0;
2561 struct r5dev *dev;
2562 int pd_idx = sh->pd_idx;
2563 int qd_idx = r6s->qd_idx;
2564
2565 set_bit(STRIPE_HANDLE, &sh->state);
2566
2567 BUG_ON(s->failed > 2);
2568 BUG_ON(s->uptodate < disks);
2569 /* Want to check and possibly repair P and Q.
2570 * However there could be one 'failed' device, in which
2571 * case we can only check one of them, possibly using the
2572 * other to generate missing data
2573 */
2574
2575 /* If !tmp_page, we cannot do the calculations,
2576 * but as we have set STRIPE_HANDLE, we will soon be called
2577 * by stripe_handle with a tmp_page - just wait until then.
2578 */
2579 if (tmp_page) {
2580 if (s->failed == r6s->q_failed) {
2581 /* The only possible failed device holds 'Q', so it
2582 * makes sense to check P (If anything else were failed,
2583 * we would have used P to recreate it).
2584 */
2585 compute_block_1(sh, pd_idx, 1);
2586 if (!page_is_zero(sh->dev[pd_idx].page)) {
2587 compute_block_1(sh, pd_idx, 0);
2588 update_p = 1;
2589 }
2590 }
2591 if (!r6s->q_failed && s->failed < 2) {
2592 /* q is not failed, and we didn't use it to generate
2593 * anything, so it makes sense to check it
2594 */
2595 memcpy(page_address(tmp_page),
2596 page_address(sh->dev[qd_idx].page),
2597 STRIPE_SIZE);
2598 compute_parity6(sh, UPDATE_PARITY);
2599 if (memcmp(page_address(tmp_page),
2600 page_address(sh->dev[qd_idx].page),
2601 STRIPE_SIZE) != 0) {
2602 clear_bit(STRIPE_INSYNC, &sh->state);
2603 update_q = 1;
2604 }
2605 }
2606 if (update_p || update_q) {
2607 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2608 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2609 /* don't try to repair!! */
2610 update_p = update_q = 0;
2611 }
2612
2613 /* now write out any block on a failed drive,
2614 * or P or Q if they need it
2615 */
2616
2617 if (s->failed == 2) {
2618 dev = &sh->dev[r6s->failed_num[1]];
2619 s->locked++;
2620 set_bit(R5_LOCKED, &dev->flags);
2621 set_bit(R5_Wantwrite, &dev->flags);
2622 }
2623 if (s->failed >= 1) {
2624 dev = &sh->dev[r6s->failed_num[0]];
2625 s->locked++;
2626 set_bit(R5_LOCKED, &dev->flags);
2627 set_bit(R5_Wantwrite, &dev->flags);
2628 }
2629
2630 if (update_p) {
2631 dev = &sh->dev[pd_idx];
2632 s->locked++;
2633 set_bit(R5_LOCKED, &dev->flags);
2634 set_bit(R5_Wantwrite, &dev->flags);
2635 }
2636 if (update_q) {
2637 dev = &sh->dev[qd_idx];
2638 s->locked++;
2639 set_bit(R5_LOCKED, &dev->flags);
2640 set_bit(R5_Wantwrite, &dev->flags);
2641 }
2642 clear_bit(STRIPE_DEGRADED, &sh->state);
2643
2644 set_bit(STRIPE_INSYNC, &sh->state);
2645 }
2646}
2647
2648static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2649 struct r6_state *r6s)
2650{
2651 int i;
2652
2653 /* We have read all the blocks in this stripe and now we need to
2654 * copy some of them into a target stripe for expand.
2655 */
f0a50d37 2656 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2657 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2658 for (i = 0; i < sh->disks; i++)
2659 if (i != sh->pd_idx && (r6s && i != r6s->qd_idx)) {
2660 int dd_idx, pd_idx, j;
2661 struct stripe_head *sh2;
2662
2663 sector_t bn = compute_blocknr(sh, i);
2664 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2665 conf->raid_disks -
2666 conf->max_degraded, &dd_idx,
2667 &pd_idx, conf);
2668 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2669 pd_idx, 1);
2670 if (sh2 == NULL)
2671 /* so far only the early blocks of this stripe
2672 * have been requested. When later blocks
2673 * get requested, we will try again
2674 */
2675 continue;
2676 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2677 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2678 /* must have already done this block */
2679 release_stripe(sh2);
2680 continue;
2681 }
f0a50d37
DW
2682
2683 /* place all the copies on one channel */
2684 tx = async_memcpy(sh2->dev[dd_idx].page,
2685 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2686 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2687
a4456856
DW
2688 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2689 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2690 for (j = 0; j < conf->raid_disks; j++)
2691 if (j != sh2->pd_idx &&
2692 (r6s && j != r6s->qd_idx) &&
2693 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2694 break;
2695 if (j == conf->raid_disks) {
2696 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2697 set_bit(STRIPE_HANDLE, &sh2->state);
2698 }
2699 release_stripe(sh2);
f0a50d37
DW
2700
2701 /* done submitting copies, wait for them to complete */
2702 if (i + 1 >= sh->disks) {
2703 async_tx_ack(tx);
2704 dma_wait_for_async_tx(tx);
2705 }
a4456856
DW
2706 }
2707}
1da177e4
LT
2708
2709/*
2710 * handle_stripe - do things to a stripe.
2711 *
2712 * We lock the stripe and then examine the state of various bits
2713 * to see what needs to be done.
2714 * Possible results:
2715 * return some read request which now have data
2716 * return some write requests which are safely on disc
2717 * schedule a read on some buffers
2718 * schedule a write of some buffers
2719 * return confirmation of parity correctness
2720 *
1da177e4
LT
2721 * buffers are taken off read_list or write_list, and bh_cache buffers
2722 * get BH_Lock set before the stripe lock is released.
2723 *
2724 */
a4456856 2725
16a53ecc 2726static void handle_stripe5(struct stripe_head *sh)
1da177e4
LT
2727{
2728 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
2729 int disks = sh->disks, i;
2730 struct bio *return_bi = NULL;
2731 struct stripe_head_state s;
1da177e4 2732 struct r5dev *dev;
d84e0f10 2733 unsigned long pending = 0;
1da177e4 2734
a4456856 2735 memset(&s, 0, sizeof(s));
d84e0f10
DW
2736 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2737 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2738 atomic_read(&sh->count), sh->pd_idx,
2739 sh->ops.pending, sh->ops.ack, sh->ops.complete);
1da177e4
LT
2740
2741 spin_lock(&sh->lock);
2742 clear_bit(STRIPE_HANDLE, &sh->state);
2743 clear_bit(STRIPE_DELAYED, &sh->state);
2744
a4456856
DW
2745 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2746 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2747 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1da177e4
LT
2748 /* Now to look around and see what can be done */
2749
9910f16a 2750 rcu_read_lock();
1da177e4
LT
2751 for (i=disks; i--; ) {
2752 mdk_rdev_t *rdev;
a4456856 2753 struct r5dev *dev = &sh->dev[i];
1da177e4 2754 clear_bit(R5_Insync, &dev->flags);
1da177e4 2755
b5e98d65
DW
2756 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2757 "written %p\n", i, dev->flags, dev->toread, dev->read,
2758 dev->towrite, dev->written);
2759
2760 /* maybe we can request a biofill operation
2761 *
2762 * new wantfill requests are only permitted while
2763 * STRIPE_OP_BIOFILL is clear
2764 */
2765 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2766 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2767 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
2768
2769 /* now count some things */
a4456856
DW
2770 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2771 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 2772 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 2773
b5e98d65
DW
2774 if (test_bit(R5_Wantfill, &dev->flags))
2775 s.to_fill++;
2776 else if (dev->toread)
a4456856 2777 s.to_read++;
1da177e4 2778 if (dev->towrite) {
a4456856 2779 s.to_write++;
1da177e4 2780 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2781 s.non_overwrite++;
1da177e4 2782 }
a4456856
DW
2783 if (dev->written)
2784 s.written++;
9910f16a 2785 rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 2786 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 2787 /* The ReadError flag will just be confusing now */
4e5314b5
N
2788 clear_bit(R5_ReadError, &dev->flags);
2789 clear_bit(R5_ReWrite, &dev->flags);
2790 }
b2d444d7 2791 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 2792 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2793 s.failed++;
2794 s.failed_num = i;
1da177e4
LT
2795 } else
2796 set_bit(R5_Insync, &dev->flags);
2797 }
9910f16a 2798 rcu_read_unlock();
b5e98d65
DW
2799
2800 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2801 sh->ops.count++;
2802
45b4233c 2803 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 2804 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
2805 s.locked, s.uptodate, s.to_read, s.to_write,
2806 s.failed, s.failed_num);
1da177e4
LT
2807 /* check if the array has lost two devices and, if so, some requests might
2808 * need to be failed
2809 */
a4456856
DW
2810 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2811 handle_requests_to_failed_array(conf, sh, &s, disks,
2812 &return_bi);
2813 if (s.failed > 1 && s.syncing) {
1da177e4
LT
2814 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2815 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2816 s.syncing = 0;
1da177e4
LT
2817 }
2818
2819 /* might be able to return some write requests if the parity block
2820 * is safe, or on a failed drive
2821 */
2822 dev = &sh->dev[sh->pd_idx];
a4456856
DW
2823 if ( s.written &&
2824 ((test_bit(R5_Insync, &dev->flags) &&
2825 !test_bit(R5_LOCKED, &dev->flags) &&
2826 test_bit(R5_UPTODATE, &dev->flags)) ||
2827 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2828 handle_completed_write_requests(conf, sh, disks, &return_bi);
1da177e4
LT
2829
2830 /* Now we might consider reading some blocks, either to check/generate
2831 * parity, or to satisfy requests
2832 * or to load a block that is being partially written.
2833 */
a4456856 2834 if (s.to_read || s.non_overwrite ||
f38e1219
DW
2835 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2836 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
a4456856 2837 handle_issuing_new_read_requests5(sh, &s, disks);
1da177e4 2838
e33129d8
DW
2839 /* Now we check to see if any write operations have recently
2840 * completed
2841 */
2842
2843 /* leave prexor set until postxor is done, allows us to distinguish
2844 * a rmw from a rcw during biodrain
2845 */
2846 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2847 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2848
2849 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2850 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2851 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2852
2853 for (i = disks; i--; )
2854 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2855 }
2856
2857 /* if only POSTXOR is set then this is an 'expand' postxor */
2858 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2859 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2860
2861 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2862 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2863 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2864
2865 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2866 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2867 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2868
2869 /* All the 'written' buffers and the parity block are ready to
2870 * be written back to disk
2871 */
2872 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2873 for (i = disks; i--; ) {
2874 dev = &sh->dev[i];
2875 if (test_bit(R5_LOCKED, &dev->flags) &&
2876 (i == sh->pd_idx || dev->written)) {
2877 pr_debug("Writing block %d\n", i);
2878 set_bit(R5_Wantwrite, &dev->flags);
2879 if (!test_and_set_bit(
2880 STRIPE_OP_IO, &sh->ops.pending))
2881 sh->ops.count++;
2882 if (!test_bit(R5_Insync, &dev->flags) ||
2883 (i == sh->pd_idx && s.failed == 0))
2884 set_bit(STRIPE_INSYNC, &sh->state);
2885 }
2886 }
2887 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2888 atomic_dec(&conf->preread_active_stripes);
2889 if (atomic_read(&conf->preread_active_stripes) <
2890 IO_THRESHOLD)
2891 md_wakeup_thread(conf->mddev->thread);
2892 }
2893 }
2894
2895 /* Now to consider new write requests and what else, if anything
2896 * should be read. We do not handle new writes when:
2897 * 1/ A 'write' operation (copy+xor) is already in flight.
2898 * 2/ A 'check' operation is in flight, as it may clobber the parity
2899 * block.
2900 */
2901 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2902 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
a4456856 2903 handle_issuing_new_write_requests5(conf, sh, &s, disks);
1da177e4
LT
2904
2905 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
2906 * Any reads will already have been scheduled, so we just see if enough
2907 * data is available. The parity check is held off while parity
2908 * dependent operations are in flight.
1da177e4 2909 */
e89f8962
DW
2910 if ((s.syncing && s.locked == 0 &&
2911 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2912 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2913 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2914 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
a4456856 2915 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 2916
a4456856 2917 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
2918 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2919 clear_bit(STRIPE_SYNCING, &sh->state);
2920 }
4e5314b5
N
2921
2922 /* If the failed drive is just a ReadError, then we might need to progress
2923 * the repair/check process
2924 */
a4456856
DW
2925 if (s.failed == 1 && !conf->mddev->ro &&
2926 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2927 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2928 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 2929 ) {
a4456856 2930 dev = &sh->dev[s.failed_num];
4e5314b5
N
2931 if (!test_bit(R5_ReWrite, &dev->flags)) {
2932 set_bit(R5_Wantwrite, &dev->flags);
2933 set_bit(R5_ReWrite, &dev->flags);
2934 set_bit(R5_LOCKED, &dev->flags);
a4456856 2935 s.locked++;
4e5314b5
N
2936 } else {
2937 /* let's read it back */
2938 set_bit(R5_Wantread, &dev->flags);
2939 set_bit(R5_LOCKED, &dev->flags);
a4456856 2940 s.locked++;
4e5314b5
N
2941 }
2942 }
2943
f0a50d37
DW
2944 /* Finish postxor operations initiated by the expansion
2945 * process
2946 */
2947 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2948 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2949
2950 clear_bit(STRIPE_EXPANDING, &sh->state);
2951
2952 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2953 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2954 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2955
a4456856 2956 for (i = conf->raid_disks; i--; ) {
ccfcc3c1 2957 set_bit(R5_Wantwrite, &sh->dev[i].flags);
f0a50d37
DW
2958 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2959 sh->ops.count++;
ccfcc3c1 2960 }
f0a50d37
DW
2961 }
2962
2963 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2964 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2965 /* Need to write out all blocks after computing parity */
2966 sh->disks = conf->raid_disks;
2967 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2968 conf->raid_disks);
2969 s.locked += handle_write_operations5(sh, 0, 1);
2970 } else if (s.expanded &&
2971 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
ccfcc3c1 2972 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 2973 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
2974 wake_up(&conf->wait_for_overlap);
2975 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2976 }
2977
a4456856
DW
2978 if (s.expanding && s.locked == 0)
2979 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 2980
d84e0f10
DW
2981 if (sh->ops.count)
2982 pending = get_stripe_work(sh);
2983
1da177e4
LT
2984 spin_unlock(&sh->lock);
2985
d84e0f10
DW
2986 if (pending)
2987 raid5_run_ops(sh, pending);
2988
a4456856 2989 return_io(return_bi);
1da177e4 2990
1da177e4
LT
2991 for (i=disks; i-- ;) {
2992 int rw;
2993 struct bio *bi;
2994 mdk_rdev_t *rdev;
2995 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
802ba064 2996 rw = WRITE;
1da177e4 2997 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
802ba064 2998 rw = READ;
1da177e4
LT
2999 else
3000 continue;
3001
3002 bi = &sh->dev[i].req;
3003
3004 bi->bi_rw = rw;
802ba064 3005 if (rw == WRITE)
1da177e4
LT
3006 bi->bi_end_io = raid5_end_write_request;
3007 else
3008 bi->bi_end_io = raid5_end_read_request;
3009
3010 rcu_read_lock();
d6065f7b 3011 rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 3012 if (rdev && test_bit(Faulty, &rdev->flags))
1da177e4
LT
3013 rdev = NULL;
3014 if (rdev)
3015 atomic_inc(&rdev->nr_pending);
3016 rcu_read_unlock();
3017
3018 if (rdev) {
a4456856 3019 if (s.syncing || s.expanding || s.expanded)
1da177e4
LT
3020 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3021
3022 bi->bi_bdev = rdev->bdev;
45b4233c 3023 pr_debug("for %llu schedule op %ld on disc %d\n",
1da177e4
LT
3024 (unsigned long long)sh->sector, bi->bi_rw, i);
3025 atomic_inc(&sh->count);
3026 bi->bi_sector = sh->sector + rdev->data_offset;
3027 bi->bi_flags = 1 << BIO_UPTODATE;
3028 bi->bi_vcnt = 1;
3029 bi->bi_max_vecs = 1;
3030 bi->bi_idx = 0;
3031 bi->bi_io_vec = &sh->dev[i].vec;
3032 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3033 bi->bi_io_vec[0].bv_offset = 0;
3034 bi->bi_size = STRIPE_SIZE;
3035 bi->bi_next = NULL;
4dbcdc75
N
3036 if (rw == WRITE &&
3037 test_bit(R5_ReWrite, &sh->dev[i].flags))
3038 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1da177e4
LT
3039 generic_make_request(bi);
3040 } else {
802ba064 3041 if (rw == WRITE)
72626685 3042 set_bit(STRIPE_DEGRADED, &sh->state);
45b4233c 3043 pr_debug("skip op %ld on disc %d for sector %llu\n",
1da177e4
LT
3044 bi->bi_rw, i, (unsigned long long)sh->sector);
3045 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3046 set_bit(STRIPE_HANDLE, &sh->state);
3047 }
3048 }
3049}
3050
16a53ecc 3051static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1da177e4 3052{
16a53ecc 3053 raid6_conf_t *conf = sh->raid_conf;
f416885e 3054 int disks = sh->disks;
a4456856
DW
3055 struct bio *return_bi = NULL;
3056 int i, pd_idx = sh->pd_idx;
3057 struct stripe_head_state s;
3058 struct r6_state r6s;
16a53ecc 3059 struct r5dev *dev, *pdev, *qdev;
1da177e4 3060
a4456856 3061 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
45b4233c 3062 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
a4456856
DW
3063 "pd_idx=%d, qd_idx=%d\n",
3064 (unsigned long long)sh->sector, sh->state,
3065 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
3066 memset(&s, 0, sizeof(s));
72626685 3067
16a53ecc
N
3068 spin_lock(&sh->lock);
3069 clear_bit(STRIPE_HANDLE, &sh->state);
3070 clear_bit(STRIPE_DELAYED, &sh->state);
3071
a4456856
DW
3072 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3073 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3074 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 3075 /* Now to look around and see what can be done */
1da177e4
LT
3076
3077 rcu_read_lock();
16a53ecc
N
3078 for (i=disks; i--; ) {
3079 mdk_rdev_t *rdev;
3080 dev = &sh->dev[i];
3081 clear_bit(R5_Insync, &dev->flags);
1da177e4 3082
45b4233c 3083 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc
N
3084 i, dev->flags, dev->toread, dev->towrite, dev->written);
3085 /* maybe we can reply to a read */
3086 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3087 struct bio *rbi, *rbi2;
45b4233c 3088 pr_debug("Return read for disc %d\n", i);
16a53ecc
N
3089 spin_lock_irq(&conf->device_lock);
3090 rbi = dev->toread;
3091 dev->toread = NULL;
3092 if (test_and_clear_bit(R5_Overlap, &dev->flags))
3093 wake_up(&conf->wait_for_overlap);
3094 spin_unlock_irq(&conf->device_lock);
3095 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3096 copy_data(0, rbi, dev->page, dev->sector);
3097 rbi2 = r5_next_bio(rbi, dev->sector);
3098 spin_lock_irq(&conf->device_lock);
3099 if (--rbi->bi_phys_segments == 0) {
3100 rbi->bi_next = return_bi;
3101 return_bi = rbi;
3102 }
3103 spin_unlock_irq(&conf->device_lock);
3104 rbi = rbi2;
3105 }
3106 }
1da177e4 3107
16a53ecc 3108 /* now count some things */
a4456856
DW
3109 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3110 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
1da177e4 3111
16a53ecc 3112
a4456856
DW
3113 if (dev->toread)
3114 s.to_read++;
16a53ecc 3115 if (dev->towrite) {
a4456856 3116 s.to_write++;
16a53ecc 3117 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3118 s.non_overwrite++;
16a53ecc 3119 }
a4456856
DW
3120 if (dev->written)
3121 s.written++;
16a53ecc
N
3122 rdev = rcu_dereference(conf->disks[i].rdev);
3123 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3124 /* The ReadError flag will just be confusing now */
3125 clear_bit(R5_ReadError, &dev->flags);
3126 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3127 }
16a53ecc
N
3128 if (!rdev || !test_bit(In_sync, &rdev->flags)
3129 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
3130 if (s.failed < 2)
3131 r6s.failed_num[s.failed] = i;
3132 s.failed++;
16a53ecc
N
3133 } else
3134 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
3135 }
3136 rcu_read_unlock();
45b4233c 3137 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 3138 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
3139 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3140 r6s.failed_num[0], r6s.failed_num[1]);
3141 /* check if the array has lost >2 devices and, if so, some requests
3142 * might need to be failed
16a53ecc 3143 */
a4456856
DW
3144 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3145 handle_requests_to_failed_array(conf, sh, &s, disks,
3146 &return_bi);
3147 if (s.failed > 2 && s.syncing) {
16a53ecc
N
3148 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3149 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3150 s.syncing = 0;
16a53ecc
N
3151 }
3152
3153 /*
3154 * might be able to return some write requests if the parity blocks
3155 * are safe, or on a failed drive
3156 */
3157 pdev = &sh->dev[pd_idx];
a4456856
DW
3158 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3159 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3160 qdev = &sh->dev[r6s.qd_idx];
3161 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3162 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3163
3164 if ( s.written &&
3165 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 3166 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
3167 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3168 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 3169 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856
DW
3170 && test_bit(R5_UPTODATE, &qdev->flags)))))
3171 handle_completed_write_requests(conf, sh, disks, &return_bi);
16a53ecc
N
3172
3173 /* Now we might consider reading some blocks, either to check/generate
3174 * parity, or to satisfy requests
3175 * or to load a block that is being partially written.
3176 */
a4456856
DW
3177 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3178 (s.syncing && (s.uptodate < disks)) || s.expanding)
3179 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
16a53ecc
N
3180
3181 /* now to consider writing and what else, if anything should be read */
a4456856
DW
3182 if (s.to_write)
3183 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
16a53ecc
N
3184
3185 /* maybe we need to check and possibly fix the parity for this stripe
a4456856
DW
3186 * Any reads will already have been scheduled, so we just see if enough
3187 * data is available
16a53ecc 3188 */
a4456856
DW
3189 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3190 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
16a53ecc 3191
a4456856 3192 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3193 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3194 clear_bit(STRIPE_SYNCING, &sh->state);
3195 }
3196
3197 /* If the failed drives are just a ReadError, then we might need
3198 * to progress the repair/check process
3199 */
a4456856
DW
3200 if (s.failed <= 2 && !conf->mddev->ro)
3201 for (i = 0; i < s.failed; i++) {
3202 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3203 if (test_bit(R5_ReadError, &dev->flags)
3204 && !test_bit(R5_LOCKED, &dev->flags)
3205 && test_bit(R5_UPTODATE, &dev->flags)
3206 ) {
3207 if (!test_bit(R5_ReWrite, &dev->flags)) {
3208 set_bit(R5_Wantwrite, &dev->flags);
3209 set_bit(R5_ReWrite, &dev->flags);
3210 set_bit(R5_LOCKED, &dev->flags);
3211 } else {
3212 /* let's read it back */
3213 set_bit(R5_Wantread, &dev->flags);
3214 set_bit(R5_LOCKED, &dev->flags);
3215 }
3216 }
3217 }
f416885e 3218
a4456856 3219 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
f416885e
N
3220 /* Need to write out all blocks after computing P&Q */
3221 sh->disks = conf->raid_disks;
3222 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3223 conf->raid_disks);
3224 compute_parity6(sh, RECONSTRUCT_WRITE);
3225 for (i = conf->raid_disks ; i-- ; ) {
3226 set_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3227 s.locked++;
f416885e
N
3228 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3229 }
3230 clear_bit(STRIPE_EXPANDING, &sh->state);
a4456856 3231 } else if (s.expanded) {
f416885e
N
3232 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3233 atomic_dec(&conf->reshape_stripes);
3234 wake_up(&conf->wait_for_overlap);
3235 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3236 }
3237
a4456856
DW
3238 if (s.expanding && s.locked == 0)
3239 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3240
16a53ecc
N
3241 spin_unlock(&sh->lock);
3242
a4456856 3243 return_io(return_bi);
16a53ecc 3244
16a53ecc
N
3245 for (i=disks; i-- ;) {
3246 int rw;
3247 struct bio *bi;
3248 mdk_rdev_t *rdev;
3249 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
802ba064 3250 rw = WRITE;
16a53ecc 3251 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
802ba064 3252 rw = READ;
16a53ecc
N
3253 else
3254 continue;
3255
3256 bi = &sh->dev[i].req;
3257
3258 bi->bi_rw = rw;
802ba064 3259 if (rw == WRITE)
16a53ecc
N
3260 bi->bi_end_io = raid5_end_write_request;
3261 else
3262 bi->bi_end_io = raid5_end_read_request;
3263
3264 rcu_read_lock();
3265 rdev = rcu_dereference(conf->disks[i].rdev);
3266 if (rdev && test_bit(Faulty, &rdev->flags))
3267 rdev = NULL;
3268 if (rdev)
3269 atomic_inc(&rdev->nr_pending);
3270 rcu_read_unlock();
3271
3272 if (rdev) {
a4456856 3273 if (s.syncing || s.expanding || s.expanded)
16a53ecc
N
3274 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3275
3276 bi->bi_bdev = rdev->bdev;
45b4233c 3277 pr_debug("for %llu schedule op %ld on disc %d\n",
16a53ecc
N
3278 (unsigned long long)sh->sector, bi->bi_rw, i);
3279 atomic_inc(&sh->count);
3280 bi->bi_sector = sh->sector + rdev->data_offset;
3281 bi->bi_flags = 1 << BIO_UPTODATE;
3282 bi->bi_vcnt = 1;
3283 bi->bi_max_vecs = 1;
3284 bi->bi_idx = 0;
3285 bi->bi_io_vec = &sh->dev[i].vec;
3286 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3287 bi->bi_io_vec[0].bv_offset = 0;
3288 bi->bi_size = STRIPE_SIZE;
3289 bi->bi_next = NULL;
3290 if (rw == WRITE &&
3291 test_bit(R5_ReWrite, &sh->dev[i].flags))
3292 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3293 generic_make_request(bi);
3294 } else {
802ba064 3295 if (rw == WRITE)
16a53ecc 3296 set_bit(STRIPE_DEGRADED, &sh->state);
45b4233c 3297 pr_debug("skip op %ld on disc %d for sector %llu\n",
16a53ecc
N
3298 bi->bi_rw, i, (unsigned long long)sh->sector);
3299 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3300 set_bit(STRIPE_HANDLE, &sh->state);
3301 }
3302 }
3303}
3304
3305static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3306{
3307 if (sh->raid_conf->level == 6)
3308 handle_stripe6(sh, tmp_page);
3309 else
3310 handle_stripe5(sh);
3311}
3312
3313
3314
3315static void raid5_activate_delayed(raid5_conf_t *conf)
3316{
3317 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3318 while (!list_empty(&conf->delayed_list)) {
3319 struct list_head *l = conf->delayed_list.next;
3320 struct stripe_head *sh;
3321 sh = list_entry(l, struct stripe_head, lru);
3322 list_del_init(l);
3323 clear_bit(STRIPE_DELAYED, &sh->state);
3324 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3325 atomic_inc(&conf->preread_active_stripes);
3326 list_add_tail(&sh->lru, &conf->handle_list);
3327 }
3328 }
3329}
3330
3331static void activate_bit_delay(raid5_conf_t *conf)
3332{
3333 /* device_lock is held */
3334 struct list_head head;
3335 list_add(&head, &conf->bitmap_list);
3336 list_del_init(&conf->bitmap_list);
3337 while (!list_empty(&head)) {
3338 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3339 list_del_init(&sh->lru);
3340 atomic_inc(&sh->count);
3341 __release_stripe(conf, sh);
3342 }
3343}
3344
3345static void unplug_slaves(mddev_t *mddev)
3346{
3347 raid5_conf_t *conf = mddev_to_conf(mddev);
3348 int i;
3349
3350 rcu_read_lock();
3351 for (i=0; i<mddev->raid_disks; i++) {
3352 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3353 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3354 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
3355
3356 atomic_inc(&rdev->nr_pending);
3357 rcu_read_unlock();
3358
3359 if (r_queue->unplug_fn)
3360 r_queue->unplug_fn(r_queue);
3361
3362 rdev_dec_pending(rdev, mddev);
3363 rcu_read_lock();
3364 }
3365 }
3366 rcu_read_unlock();
3367}
3368
3369static void raid5_unplug_device(request_queue_t *q)
3370{
3371 mddev_t *mddev = q->queuedata;
3372 raid5_conf_t *conf = mddev_to_conf(mddev);
3373 unsigned long flags;
3374
3375 spin_lock_irqsave(&conf->device_lock, flags);
3376
3377 if (blk_remove_plug(q)) {
3378 conf->seq_flush++;
3379 raid5_activate_delayed(conf);
72626685 3380 }
1da177e4
LT
3381 md_wakeup_thread(mddev->thread);
3382
3383 spin_unlock_irqrestore(&conf->device_lock, flags);
3384
3385 unplug_slaves(mddev);
3386}
3387
3388static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
3389 sector_t *error_sector)
3390{
3391 mddev_t *mddev = q->queuedata;
3392 raid5_conf_t *conf = mddev_to_conf(mddev);
3393 int i, ret = 0;
3394
3395 rcu_read_lock();
3396 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
d6065f7b 3397 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 3398 if (rdev && !test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
3399 struct block_device *bdev = rdev->bdev;
3400 request_queue_t *r_queue = bdev_get_queue(bdev);
3401
3402 if (!r_queue->issue_flush_fn)
3403 ret = -EOPNOTSUPP;
3404 else {
3405 atomic_inc(&rdev->nr_pending);
3406 rcu_read_unlock();
3407 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
3408 error_sector);
3409 rdev_dec_pending(rdev, mddev);
3410 rcu_read_lock();
3411 }
3412 }
3413 }
3414 rcu_read_unlock();
3415 return ret;
3416}
3417
f022b2fd
N
3418static int raid5_congested(void *data, int bits)
3419{
3420 mddev_t *mddev = data;
3421 raid5_conf_t *conf = mddev_to_conf(mddev);
3422
3423 /* No difference between reads and writes. Just check
3424 * how busy the stripe_cache is
3425 */
3426 if (conf->inactive_blocked)
3427 return 1;
3428 if (conf->quiesce)
3429 return 1;
3430 if (list_empty_careful(&conf->inactive_list))
3431 return 1;
3432
3433 return 0;
3434}
3435
23032a0e
RBJ
3436/* We want read requests to align with chunks where possible,
3437 * but write requests don't need to.
3438 */
3439static int raid5_mergeable_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *biovec)
3440{
3441 mddev_t *mddev = q->queuedata;
3442 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3443 int max;
3444 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3445 unsigned int bio_sectors = bio->bi_size >> 9;
3446
802ba064 3447 if (bio_data_dir(bio) == WRITE)
23032a0e
RBJ
3448 return biovec->bv_len; /* always allow writes to be mergeable */
3449
3450 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3451 if (max < 0) max = 0;
3452 if (max <= biovec->bv_len && bio_sectors == 0)
3453 return biovec->bv_len;
3454 else
3455 return max;
3456}
3457
f679623f
RBJ
3458
3459static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3460{
3461 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3462 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3463 unsigned int bio_sectors = bio->bi_size >> 9;
3464
3465 return chunk_sectors >=
3466 ((sector & (chunk_sectors - 1)) + bio_sectors);
3467}
3468
46031f9a
RBJ
3469/*
3470 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3471 * later sampled by raid5d.
3472 */
3473static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3474{
3475 unsigned long flags;
3476
3477 spin_lock_irqsave(&conf->device_lock, flags);
3478
3479 bi->bi_next = conf->retry_read_aligned_list;
3480 conf->retry_read_aligned_list = bi;
3481
3482 spin_unlock_irqrestore(&conf->device_lock, flags);
3483 md_wakeup_thread(conf->mddev->thread);
3484}
3485
3486
3487static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3488{
3489 struct bio *bi;
3490
3491 bi = conf->retry_read_aligned;
3492 if (bi) {
3493 conf->retry_read_aligned = NULL;
3494 return bi;
3495 }
3496 bi = conf->retry_read_aligned_list;
3497 if(bi) {
387bb173 3498 conf->retry_read_aligned_list = bi->bi_next;
46031f9a
RBJ
3499 bi->bi_next = NULL;
3500 bi->bi_phys_segments = 1; /* biased count of active stripes */
3501 bi->bi_hw_segments = 0; /* count of processed stripes */
3502 }
3503
3504 return bi;
3505}
3506
3507
f679623f
RBJ
3508/*
3509 * The "raid5_align_endio" should check if the read succeeded and if it
3510 * did, call bio_endio on the original bio (having bio_put the new bio
3511 * first).
3512 * If the read failed..
3513 */
46031f9a 3514static int raid5_align_endio(struct bio *bi, unsigned int bytes, int error)
f679623f
RBJ
3515{
3516 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3517 mddev_t *mddev;
3518 raid5_conf_t *conf;
3519 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3520 mdk_rdev_t *rdev;
3521
f679623f
RBJ
3522 if (bi->bi_size)
3523 return 1;
3524 bio_put(bi);
46031f9a
RBJ
3525
3526 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3527 conf = mddev_to_conf(mddev);
3528 rdev = (void*)raid_bi->bi_next;
3529 raid_bi->bi_next = NULL;
3530
3531 rdev_dec_pending(rdev, conf->mddev);
3532
3533 if (!error && uptodate) {
3534 bio_endio(raid_bi, bytes, 0);
3535 if (atomic_dec_and_test(&conf->active_aligned_reads))
3536 wake_up(&conf->wait_for_stripe);
3537 return 0;
3538 }
3539
3540
45b4233c 3541 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3542
3543 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3544 return 0;
3545}
3546
387bb173
NB
3547static int bio_fits_rdev(struct bio *bi)
3548{
3549 request_queue_t *q = bdev_get_queue(bi->bi_bdev);
3550
3551 if ((bi->bi_size>>9) > q->max_sectors)
3552 return 0;
3553 blk_recount_segments(q, bi);
3554 if (bi->bi_phys_segments > q->max_phys_segments ||
3555 bi->bi_hw_segments > q->max_hw_segments)
3556 return 0;
3557
3558 if (q->merge_bvec_fn)
3559 /* it's too hard to apply the merge_bvec_fn at this stage,
3560 * just just give up
3561 */
3562 return 0;
3563
3564 return 1;
3565}
3566
3567
f679623f
RBJ
3568static int chunk_aligned_read(request_queue_t *q, struct bio * raid_bio)
3569{
3570 mddev_t *mddev = q->queuedata;
3571 raid5_conf_t *conf = mddev_to_conf(mddev);
3572 const unsigned int raid_disks = conf->raid_disks;
46031f9a 3573 const unsigned int data_disks = raid_disks - conf->max_degraded;
f679623f
RBJ
3574 unsigned int dd_idx, pd_idx;
3575 struct bio* align_bi;
3576 mdk_rdev_t *rdev;
3577
3578 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3579 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3580 return 0;
3581 }
3582 /*
3583 * use bio_clone to make a copy of the bio
3584 */
3585 align_bi = bio_clone(raid_bio, GFP_NOIO);
3586 if (!align_bi)
3587 return 0;
3588 /*
3589 * set bi_end_io to a new function, and set bi_private to the
3590 * original bio.
3591 */
3592 align_bi->bi_end_io = raid5_align_endio;
3593 align_bi->bi_private = raid_bio;
3594 /*
3595 * compute position
3596 */
3597 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3598 raid_disks,
3599 data_disks,
3600 &dd_idx,
3601 &pd_idx,
3602 conf);
3603
3604 rcu_read_lock();
3605 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3606 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3607 atomic_inc(&rdev->nr_pending);
3608 rcu_read_unlock();
46031f9a
RBJ
3609 raid_bio->bi_next = (void*)rdev;
3610 align_bi->bi_bdev = rdev->bdev;
3611 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3612 align_bi->bi_sector += rdev->data_offset;
3613
387bb173
NB
3614 if (!bio_fits_rdev(align_bi)) {
3615 /* too big in some way */
3616 bio_put(align_bi);
3617 rdev_dec_pending(rdev, mddev);
3618 return 0;
3619 }
3620
46031f9a
RBJ
3621 spin_lock_irq(&conf->device_lock);
3622 wait_event_lock_irq(conf->wait_for_stripe,
3623 conf->quiesce == 0,
3624 conf->device_lock, /* nothing */);
3625 atomic_inc(&conf->active_aligned_reads);
3626 spin_unlock_irq(&conf->device_lock);
3627
f679623f
RBJ
3628 generic_make_request(align_bi);
3629 return 1;
3630 } else {
3631 rcu_read_unlock();
46031f9a 3632 bio_put(align_bi);
f679623f
RBJ
3633 return 0;
3634 }
3635}
3636
3637
7ecaa1e6 3638static int make_request(request_queue_t *q, struct bio * bi)
1da177e4
LT
3639{
3640 mddev_t *mddev = q->queuedata;
3641 raid5_conf_t *conf = mddev_to_conf(mddev);
1da177e4
LT
3642 unsigned int dd_idx, pd_idx;
3643 sector_t new_sector;
3644 sector_t logical_sector, last_sector;
3645 struct stripe_head *sh;
a362357b 3646 const int rw = bio_data_dir(bi);
f6344757 3647 int remaining;
1da177e4 3648
e5dcdd80
N
3649 if (unlikely(bio_barrier(bi))) {
3650 bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
3651 return 0;
3652 }
3653
3d310eb7 3654 md_write_start(mddev, bi);
06d91a5f 3655
a362357b
JA
3656 disk_stat_inc(mddev->gendisk, ios[rw]);
3657 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
1da177e4 3658
802ba064 3659 if (rw == READ &&
52488615
RBJ
3660 mddev->reshape_position == MaxSector &&
3661 chunk_aligned_read(q,bi))
3662 return 0;
3663
1da177e4
LT
3664 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3665 last_sector = bi->bi_sector + (bi->bi_size>>9);
3666 bi->bi_next = NULL;
3667 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3668
1da177e4
LT
3669 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3670 DEFINE_WAIT(w);
16a53ecc 3671 int disks, data_disks;
b578d55f 3672
7ecaa1e6 3673 retry:
b578d55f 3674 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
7ecaa1e6
N
3675 if (likely(conf->expand_progress == MaxSector))
3676 disks = conf->raid_disks;
3677 else {
df8e7f76
N
3678 /* spinlock is needed as expand_progress may be
3679 * 64bit on a 32bit platform, and so it might be
3680 * possible to see a half-updated value
3681 * Ofcourse expand_progress could change after
3682 * the lock is dropped, so once we get a reference
3683 * to the stripe that we think it is, we will have
3684 * to check again.
3685 */
7ecaa1e6
N
3686 spin_lock_irq(&conf->device_lock);
3687 disks = conf->raid_disks;
3688 if (logical_sector >= conf->expand_progress)
3689 disks = conf->previous_raid_disks;
b578d55f
N
3690 else {
3691 if (logical_sector >= conf->expand_lo) {
3692 spin_unlock_irq(&conf->device_lock);
3693 schedule();
3694 goto retry;
3695 }
3696 }
7ecaa1e6
N
3697 spin_unlock_irq(&conf->device_lock);
3698 }
16a53ecc
N
3699 data_disks = disks - conf->max_degraded;
3700
3701 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
7ecaa1e6 3702 &dd_idx, &pd_idx, conf);
45b4233c 3703 pr_debug("raid5: make_request, sector %llu logical %llu\n",
1da177e4
LT
3704 (unsigned long long)new_sector,
3705 (unsigned long long)logical_sector);
3706
7ecaa1e6 3707 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
1da177e4 3708 if (sh) {
7ecaa1e6
N
3709 if (unlikely(conf->expand_progress != MaxSector)) {
3710 /* expansion might have moved on while waiting for a
df8e7f76
N
3711 * stripe, so we must do the range check again.
3712 * Expansion could still move past after this
3713 * test, but as we are holding a reference to
3714 * 'sh', we know that if that happens,
3715 * STRIPE_EXPANDING will get set and the expansion
3716 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3717 */
3718 int must_retry = 0;
3719 spin_lock_irq(&conf->device_lock);
3720 if (logical_sector < conf->expand_progress &&
3721 disks == conf->previous_raid_disks)
3722 /* mismatch, need to try again */
3723 must_retry = 1;
3724 spin_unlock_irq(&conf->device_lock);
3725 if (must_retry) {
3726 release_stripe(sh);
3727 goto retry;
3728 }
3729 }
e464eafd
N
3730 /* FIXME what if we get a false positive because these
3731 * are being updated.
3732 */
3733 if (logical_sector >= mddev->suspend_lo &&
3734 logical_sector < mddev->suspend_hi) {
3735 release_stripe(sh);
3736 schedule();
3737 goto retry;
3738 }
7ecaa1e6
N
3739
3740 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3741 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3742 /* Stripe is busy expanding or
3743 * add failed due to overlap. Flush everything
1da177e4
LT
3744 * and wait a while
3745 */
3746 raid5_unplug_device(mddev->queue);
3747 release_stripe(sh);
3748 schedule();
3749 goto retry;
3750 }
3751 finish_wait(&conf->wait_for_overlap, &w);
16a53ecc 3752 handle_stripe(sh, NULL);
1da177e4 3753 release_stripe(sh);
1da177e4
LT
3754 } else {
3755 /* cannot get stripe for read-ahead, just give-up */
3756 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3757 finish_wait(&conf->wait_for_overlap, &w);
3758 break;
3759 }
3760
3761 }
3762 spin_lock_irq(&conf->device_lock);
f6344757
N
3763 remaining = --bi->bi_phys_segments;
3764 spin_unlock_irq(&conf->device_lock);
3765 if (remaining == 0) {
1da177e4
LT
3766 int bytes = bi->bi_size;
3767
16a53ecc 3768 if ( rw == WRITE )
1da177e4
LT
3769 md_write_end(mddev);
3770 bi->bi_size = 0;
c2b00852
N
3771 bi->bi_end_io(bi, bytes,
3772 test_bit(BIO_UPTODATE, &bi->bi_flags)
3773 ? 0 : -EIO);
1da177e4 3774 }
1da177e4
LT
3775 return 0;
3776}
3777
52c03291 3778static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 3779{
52c03291
N
3780 /* reshaping is quite different to recovery/resync so it is
3781 * handled quite separately ... here.
3782 *
3783 * On each call to sync_request, we gather one chunk worth of
3784 * destination stripes and flag them as expanding.
3785 * Then we find all the source stripes and request reads.
3786 * As the reads complete, handle_stripe will copy the data
3787 * into the destination stripe and release that stripe.
3788 */
1da177e4
LT
3789 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3790 struct stripe_head *sh;
ccfcc3c1
N
3791 int pd_idx;
3792 sector_t first_sector, last_sector;
f416885e
N
3793 int raid_disks = conf->previous_raid_disks;
3794 int data_disks = raid_disks - conf->max_degraded;
3795 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
3796 int i;
3797 int dd_idx;
3798 sector_t writepos, safepos, gap;
3799
3800 if (sector_nr == 0 &&
3801 conf->expand_progress != 0) {
3802 /* restarting in the middle, skip the initial sectors */
3803 sector_nr = conf->expand_progress;
f416885e 3804 sector_div(sector_nr, new_data_disks);
52c03291
N
3805 *skipped = 1;
3806 return sector_nr;
3807 }
3808
3809 /* we update the metadata when there is more than 3Meg
3810 * in the block range (that is rather arbitrary, should
3811 * probably be time based) or when the data about to be
3812 * copied would over-write the source of the data at
3813 * the front of the range.
3814 * i.e. one new_stripe forward from expand_progress new_maps
3815 * to after where expand_lo old_maps to
3816 */
3817 writepos = conf->expand_progress +
f416885e
N
3818 conf->chunk_size/512*(new_data_disks);
3819 sector_div(writepos, new_data_disks);
52c03291 3820 safepos = conf->expand_lo;
f416885e 3821 sector_div(safepos, data_disks);
52c03291
N
3822 gap = conf->expand_progress - conf->expand_lo;
3823
3824 if (writepos >= safepos ||
f416885e 3825 gap > (new_data_disks)*3000*2 /*3Meg*/) {
52c03291
N
3826 /* Cannot proceed until we've updated the superblock... */
3827 wait_event(conf->wait_for_overlap,
3828 atomic_read(&conf->reshape_stripes)==0);
3829 mddev->reshape_position = conf->expand_progress;
850b2b42 3830 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 3831 md_wakeup_thread(mddev->thread);
850b2b42 3832 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
3833 kthread_should_stop());
3834 spin_lock_irq(&conf->device_lock);
3835 conf->expand_lo = mddev->reshape_position;
3836 spin_unlock_irq(&conf->device_lock);
3837 wake_up(&conf->wait_for_overlap);
3838 }
3839
3840 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3841 int j;
3842 int skipped = 0;
3843 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3844 sh = get_active_stripe(conf, sector_nr+i,
3845 conf->raid_disks, pd_idx, 0);
3846 set_bit(STRIPE_EXPANDING, &sh->state);
3847 atomic_inc(&conf->reshape_stripes);
3848 /* If any of this stripe is beyond the end of the old
3849 * array, then we need to zero those blocks
3850 */
3851 for (j=sh->disks; j--;) {
3852 sector_t s;
3853 if (j == sh->pd_idx)
3854 continue;
f416885e
N
3855 if (conf->level == 6 &&
3856 j == raid6_next_disk(sh->pd_idx, sh->disks))
3857 continue;
52c03291
N
3858 s = compute_blocknr(sh, j);
3859 if (s < (mddev->array_size<<1)) {
3860 skipped = 1;
3861 continue;
3862 }
3863 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3864 set_bit(R5_Expanded, &sh->dev[j].flags);
3865 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3866 }
3867 if (!skipped) {
3868 set_bit(STRIPE_EXPAND_READY, &sh->state);
3869 set_bit(STRIPE_HANDLE, &sh->state);
3870 }
3871 release_stripe(sh);
3872 }
3873 spin_lock_irq(&conf->device_lock);
6d3baf2e 3874 conf->expand_progress = (sector_nr + i) * new_data_disks;
52c03291
N
3875 spin_unlock_irq(&conf->device_lock);
3876 /* Ok, those stripe are ready. We can start scheduling
3877 * reads on the source stripes.
3878 * The source stripes are determined by mapping the first and last
3879 * block on the destination stripes.
3880 */
52c03291 3881 first_sector =
f416885e 3882 raid5_compute_sector(sector_nr*(new_data_disks),
52c03291
N
3883 raid_disks, data_disks,
3884 &dd_idx, &pd_idx, conf);
3885 last_sector =
3886 raid5_compute_sector((sector_nr+conf->chunk_size/512)
f416885e 3887 *(new_data_disks) -1,
52c03291
N
3888 raid_disks, data_disks,
3889 &dd_idx, &pd_idx, conf);
3890 if (last_sector >= (mddev->size<<1))
3891 last_sector = (mddev->size<<1)-1;
3892 while (first_sector <= last_sector) {
f416885e
N
3893 pd_idx = stripe_to_pdidx(first_sector, conf,
3894 conf->previous_raid_disks);
52c03291
N
3895 sh = get_active_stripe(conf, first_sector,
3896 conf->previous_raid_disks, pd_idx, 0);
3897 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3898 set_bit(STRIPE_HANDLE, &sh->state);
3899 release_stripe(sh);
3900 first_sector += STRIPE_SECTORS;
3901 }
3902 return conf->chunk_size>>9;
3903}
3904
3905/* FIXME go_faster isn't used */
3906static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3907{
3908 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3909 struct stripe_head *sh;
3910 int pd_idx;
1da177e4 3911 int raid_disks = conf->raid_disks;
72626685
N
3912 sector_t max_sector = mddev->size << 1;
3913 int sync_blocks;
16a53ecc
N
3914 int still_degraded = 0;
3915 int i;
1da177e4 3916
72626685 3917 if (sector_nr >= max_sector) {
1da177e4
LT
3918 /* just being told to finish up .. nothing much to do */
3919 unplug_slaves(mddev);
29269553
N
3920 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3921 end_reshape(conf);
3922 return 0;
3923 }
72626685
N
3924
3925 if (mddev->curr_resync < max_sector) /* aborted */
3926 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3927 &sync_blocks, 1);
16a53ecc 3928 else /* completed sync */
72626685
N
3929 conf->fullsync = 0;
3930 bitmap_close_sync(mddev->bitmap);
3931
1da177e4
LT
3932 return 0;
3933 }
ccfcc3c1 3934
52c03291
N
3935 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3936 return reshape_request(mddev, sector_nr, skipped);
f6705578 3937
16a53ecc 3938 /* if there is too many failed drives and we are trying
1da177e4
LT
3939 * to resync, then assert that we are finished, because there is
3940 * nothing we can do.
3941 */
3285edf1 3942 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 3943 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
57afd89f
N
3944 sector_t rv = (mddev->size << 1) - sector_nr;
3945 *skipped = 1;
1da177e4
LT
3946 return rv;
3947 }
72626685 3948 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 3949 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
3950 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3951 /* we can skip this block, and probably more */
3952 sync_blocks /= STRIPE_SECTORS;
3953 *skipped = 1;
3954 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3955 }
1da177e4 3956
ccfcc3c1 3957 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
7ecaa1e6 3958 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
1da177e4 3959 if (sh == NULL) {
7ecaa1e6 3960 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
1da177e4 3961 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 3962 * is trying to get access
1da177e4 3963 */
66c006a5 3964 schedule_timeout_uninterruptible(1);
1da177e4 3965 }
16a53ecc
N
3966 /* Need to check if array will still be degraded after recovery/resync
3967 * We don't need to check the 'failed' flag as when that gets set,
3968 * recovery aborts.
3969 */
3970 for (i=0; i<mddev->raid_disks; i++)
3971 if (conf->disks[i].rdev == NULL)
3972 still_degraded = 1;
3973
3974 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3975
3976 spin_lock(&sh->lock);
1da177e4
LT
3977 set_bit(STRIPE_SYNCING, &sh->state);
3978 clear_bit(STRIPE_INSYNC, &sh->state);
3979 spin_unlock(&sh->lock);
3980
16a53ecc 3981 handle_stripe(sh, NULL);
1da177e4
LT
3982 release_stripe(sh);
3983
3984 return STRIPE_SECTORS;
3985}
3986
46031f9a
RBJ
3987static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3988{
3989 /* We may not be able to submit a whole bio at once as there
3990 * may not be enough stripe_heads available.
3991 * We cannot pre-allocate enough stripe_heads as we may need
3992 * more than exist in the cache (if we allow ever large chunks).
3993 * So we do one stripe head at a time and record in
3994 * ->bi_hw_segments how many have been done.
3995 *
3996 * We *know* that this entire raid_bio is in one chunk, so
3997 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3998 */
3999 struct stripe_head *sh;
4000 int dd_idx, pd_idx;
4001 sector_t sector, logical_sector, last_sector;
4002 int scnt = 0;
4003 int remaining;
4004 int handled = 0;
4005
4006 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4007 sector = raid5_compute_sector( logical_sector,
4008 conf->raid_disks,
4009 conf->raid_disks - conf->max_degraded,
4010 &dd_idx,
4011 &pd_idx,
4012 conf);
4013 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4014
4015 for (; logical_sector < last_sector;
387bb173
NB
4016 logical_sector += STRIPE_SECTORS,
4017 sector += STRIPE_SECTORS,
4018 scnt++) {
46031f9a
RBJ
4019
4020 if (scnt < raid_bio->bi_hw_segments)
4021 /* already done this stripe */
4022 continue;
4023
4024 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
4025
4026 if (!sh) {
4027 /* failed to get a stripe - must wait */
4028 raid_bio->bi_hw_segments = scnt;
4029 conf->retry_read_aligned = raid_bio;
4030 return handled;
4031 }
4032
4033 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
4034 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4035 release_stripe(sh);
4036 raid_bio->bi_hw_segments = scnt;
4037 conf->retry_read_aligned = raid_bio;
4038 return handled;
4039 }
4040
46031f9a
RBJ
4041 handle_stripe(sh, NULL);
4042 release_stripe(sh);
4043 handled++;
4044 }
4045 spin_lock_irq(&conf->device_lock);
4046 remaining = --raid_bio->bi_phys_segments;
4047 spin_unlock_irq(&conf->device_lock);
4048 if (remaining == 0) {
4049 int bytes = raid_bio->bi_size;
4050
4051 raid_bio->bi_size = 0;
c2b00852
N
4052 raid_bio->bi_end_io(raid_bio, bytes,
4053 test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
4054 ? 0 : -EIO);
46031f9a
RBJ
4055 }
4056 if (atomic_dec_and_test(&conf->active_aligned_reads))
4057 wake_up(&conf->wait_for_stripe);
4058 return handled;
4059}
4060
4061
4062
1da177e4
LT
4063/*
4064 * This is our raid5 kernel thread.
4065 *
4066 * We scan the hash table for stripes which can be handled now.
4067 * During the scan, completed stripes are saved for us by the interrupt
4068 * handler, so that they will not have to wait for our next wakeup.
4069 */
4070static void raid5d (mddev_t *mddev)
4071{
4072 struct stripe_head *sh;
4073 raid5_conf_t *conf = mddev_to_conf(mddev);
4074 int handled;
4075
45b4233c 4076 pr_debug("+++ raid5d active\n");
1da177e4
LT
4077
4078 md_check_recovery(mddev);
1da177e4
LT
4079
4080 handled = 0;
4081 spin_lock_irq(&conf->device_lock);
4082 while (1) {
4083 struct list_head *first;
46031f9a 4084 struct bio *bio;
1da177e4 4085
ae3c20cc 4086 if (conf->seq_flush != conf->seq_write) {
72626685 4087 int seq = conf->seq_flush;
700e432d 4088 spin_unlock_irq(&conf->device_lock);
72626685 4089 bitmap_unplug(mddev->bitmap);
700e432d 4090 spin_lock_irq(&conf->device_lock);
72626685
N
4091 conf->seq_write = seq;
4092 activate_bit_delay(conf);
4093 }
4094
1da177e4
LT
4095 if (list_empty(&conf->handle_list) &&
4096 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
4097 !blk_queue_plugged(mddev->queue) &&
4098 !list_empty(&conf->delayed_list))
4099 raid5_activate_delayed(conf);
4100
46031f9a
RBJ
4101 while ((bio = remove_bio_from_retry(conf))) {
4102 int ok;
4103 spin_unlock_irq(&conf->device_lock);
4104 ok = retry_aligned_read(conf, bio);
4105 spin_lock_irq(&conf->device_lock);
4106 if (!ok)
4107 break;
4108 handled++;
4109 }
4110
d84e0f10
DW
4111 if (list_empty(&conf->handle_list)) {
4112 async_tx_issue_pending_all();
1da177e4 4113 break;
d84e0f10 4114 }
1da177e4
LT
4115
4116 first = conf->handle_list.next;
4117 sh = list_entry(first, struct stripe_head, lru);
4118
4119 list_del_init(first);
4120 atomic_inc(&sh->count);
78bafebd 4121 BUG_ON(atomic_read(&sh->count)!= 1);
1da177e4
LT
4122 spin_unlock_irq(&conf->device_lock);
4123
4124 handled++;
16a53ecc 4125 handle_stripe(sh, conf->spare_page);
1da177e4
LT
4126 release_stripe(sh);
4127
4128 spin_lock_irq(&conf->device_lock);
4129 }
45b4233c 4130 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4131
4132 spin_unlock_irq(&conf->device_lock);
4133
4134 unplug_slaves(mddev);
4135
45b4233c 4136 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4137}
4138
3f294f4f 4139static ssize_t
007583c9 4140raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 4141{
007583c9 4142 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4143 if (conf)
4144 return sprintf(page, "%d\n", conf->max_nr_stripes);
4145 else
4146 return 0;
3f294f4f
N
4147}
4148
4149static ssize_t
007583c9 4150raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 4151{
007583c9 4152 raid5_conf_t *conf = mddev_to_conf(mddev);
3f294f4f
N
4153 char *end;
4154 int new;
4155 if (len >= PAGE_SIZE)
4156 return -EINVAL;
96de1e66
N
4157 if (!conf)
4158 return -ENODEV;
3f294f4f
N
4159
4160 new = simple_strtoul(page, &end, 10);
4161 if (!*page || (*end && *end != '\n') )
4162 return -EINVAL;
4163 if (new <= 16 || new > 32768)
4164 return -EINVAL;
4165 while (new < conf->max_nr_stripes) {
4166 if (drop_one_stripe(conf))
4167 conf->max_nr_stripes--;
4168 else
4169 break;
4170 }
2a2275d6 4171 md_allow_write(mddev);
3f294f4f
N
4172 while (new > conf->max_nr_stripes) {
4173 if (grow_one_stripe(conf))
4174 conf->max_nr_stripes++;
4175 else break;
4176 }
4177 return len;
4178}
007583c9 4179
96de1e66
N
4180static struct md_sysfs_entry
4181raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4182 raid5_show_stripe_cache_size,
4183 raid5_store_stripe_cache_size);
3f294f4f
N
4184
4185static ssize_t
96de1e66 4186stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4187{
007583c9 4188 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4189 if (conf)
4190 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4191 else
4192 return 0;
3f294f4f
N
4193}
4194
96de1e66
N
4195static struct md_sysfs_entry
4196raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4197
007583c9 4198static struct attribute *raid5_attrs[] = {
3f294f4f
N
4199 &raid5_stripecache_size.attr,
4200 &raid5_stripecache_active.attr,
4201 NULL,
4202};
007583c9
N
4203static struct attribute_group raid5_attrs_group = {
4204 .name = NULL,
4205 .attrs = raid5_attrs,
3f294f4f
N
4206};
4207
72626685 4208static int run(mddev_t *mddev)
1da177e4
LT
4209{
4210 raid5_conf_t *conf;
4211 int raid_disk, memory;
4212 mdk_rdev_t *rdev;
4213 struct disk_info *disk;
4214 struct list_head *tmp;
02c2de8c 4215 int working_disks = 0;
1da177e4 4216
16a53ecc
N
4217 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4218 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
14f8d26b 4219 mdname(mddev), mddev->level);
1da177e4
LT
4220 return -EIO;
4221 }
4222
f6705578
N
4223 if (mddev->reshape_position != MaxSector) {
4224 /* Check that we can continue the reshape.
4225 * Currently only disks can change, it must
4226 * increase, and we must be past the point where
4227 * a stripe over-writes itself
4228 */
4229 sector_t here_new, here_old;
4230 int old_disks;
f416885e 4231 int max_degraded = (mddev->level == 5 ? 1 : 2);
f6705578
N
4232
4233 if (mddev->new_level != mddev->level ||
4234 mddev->new_layout != mddev->layout ||
4235 mddev->new_chunk != mddev->chunk_size) {
f416885e
N
4236 printk(KERN_ERR "raid5: %s: unsupported reshape "
4237 "required - aborting.\n",
f6705578
N
4238 mdname(mddev));
4239 return -EINVAL;
4240 }
4241 if (mddev->delta_disks <= 0) {
f416885e
N
4242 printk(KERN_ERR "raid5: %s: unsupported reshape "
4243 "(reduce disks) required - aborting.\n",
f6705578
N
4244 mdname(mddev));
4245 return -EINVAL;
4246 }
4247 old_disks = mddev->raid_disks - mddev->delta_disks;
4248 /* reshape_position must be on a new-stripe boundary, and one
f416885e
N
4249 * further up in new geometry must map after here in old
4250 * geometry.
f6705578
N
4251 */
4252 here_new = mddev->reshape_position;
f416885e
N
4253 if (sector_div(here_new, (mddev->chunk_size>>9)*
4254 (mddev->raid_disks - max_degraded))) {
4255 printk(KERN_ERR "raid5: reshape_position not "
4256 "on a stripe boundary\n");
f6705578
N
4257 return -EINVAL;
4258 }
4259 /* here_new is the stripe we will write to */
4260 here_old = mddev->reshape_position;
f416885e
N
4261 sector_div(here_old, (mddev->chunk_size>>9)*
4262 (old_disks-max_degraded));
4263 /* here_old is the first stripe that we might need to read
4264 * from */
f6705578
N
4265 if (here_new >= here_old) {
4266 /* Reading from the same stripe as writing to - bad */
f416885e
N
4267 printk(KERN_ERR "raid5: reshape_position too early for "
4268 "auto-recovery - aborting.\n");
f6705578
N
4269 return -EINVAL;
4270 }
4271 printk(KERN_INFO "raid5: reshape will continue\n");
4272 /* OK, we should be able to continue; */
4273 }
4274
4275
b55e6bfc 4276 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
1da177e4
LT
4277 if ((conf = mddev->private) == NULL)
4278 goto abort;
f6705578
N
4279 if (mddev->reshape_position == MaxSector) {
4280 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4281 } else {
4282 conf->raid_disks = mddev->raid_disks;
4283 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4284 }
4285
4286 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
4287 GFP_KERNEL);
4288 if (!conf->disks)
4289 goto abort;
9ffae0cf 4290
1da177e4
LT
4291 conf->mddev = mddev;
4292
fccddba0 4293 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4294 goto abort;
1da177e4 4295
16a53ecc
N
4296 if (mddev->level == 6) {
4297 conf->spare_page = alloc_page(GFP_KERNEL);
4298 if (!conf->spare_page)
4299 goto abort;
4300 }
1da177e4
LT
4301 spin_lock_init(&conf->device_lock);
4302 init_waitqueue_head(&conf->wait_for_stripe);
4303 init_waitqueue_head(&conf->wait_for_overlap);
4304 INIT_LIST_HEAD(&conf->handle_list);
4305 INIT_LIST_HEAD(&conf->delayed_list);
72626685 4306 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
4307 INIT_LIST_HEAD(&conf->inactive_list);
4308 atomic_set(&conf->active_stripes, 0);
4309 atomic_set(&conf->preread_active_stripes, 0);
46031f9a 4310 atomic_set(&conf->active_aligned_reads, 0);
1da177e4 4311
45b4233c 4312 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
1da177e4
LT
4313
4314 ITERATE_RDEV(mddev,rdev,tmp) {
4315 raid_disk = rdev->raid_disk;
f6705578 4316 if (raid_disk >= conf->raid_disks
1da177e4
LT
4317 || raid_disk < 0)
4318 continue;
4319 disk = conf->disks + raid_disk;
4320
4321 disk->rdev = rdev;
4322
b2d444d7 4323 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
4324 char b[BDEVNAME_SIZE];
4325 printk(KERN_INFO "raid5: device %s operational as raid"
4326 " disk %d\n", bdevname(rdev->bdev,b),
4327 raid_disk);
02c2de8c 4328 working_disks++;
1da177e4
LT
4329 }
4330 }
4331
1da177e4 4332 /*
16a53ecc 4333 * 0 for a fully functional array, 1 or 2 for a degraded array.
1da177e4 4334 */
02c2de8c 4335 mddev->degraded = conf->raid_disks - working_disks;
1da177e4
LT
4336 conf->mddev = mddev;
4337 conf->chunk_size = mddev->chunk_size;
4338 conf->level = mddev->level;
16a53ecc
N
4339 if (conf->level == 6)
4340 conf->max_degraded = 2;
4341 else
4342 conf->max_degraded = 1;
1da177e4
LT
4343 conf->algorithm = mddev->layout;
4344 conf->max_nr_stripes = NR_STRIPES;
f6705578 4345 conf->expand_progress = mddev->reshape_position;
1da177e4
LT
4346
4347 /* device size must be a multiple of chunk size */
4348 mddev->size &= ~(mddev->chunk_size/1024 -1);
b1581566 4349 mddev->resync_max_sectors = mddev->size << 1;
1da177e4 4350
16a53ecc
N
4351 if (conf->level == 6 && conf->raid_disks < 4) {
4352 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4353 mdname(mddev), conf->raid_disks);
4354 goto abort;
4355 }
1da177e4
LT
4356 if (!conf->chunk_size || conf->chunk_size % 4) {
4357 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4358 conf->chunk_size, mdname(mddev));
4359 goto abort;
4360 }
4361 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4362 printk(KERN_ERR
4363 "raid5: unsupported parity algorithm %d for %s\n",
4364 conf->algorithm, mdname(mddev));
4365 goto abort;
4366 }
16a53ecc 4367 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
4368 printk(KERN_ERR "raid5: not enough operational devices for %s"
4369 " (%d/%d failed)\n",
02c2de8c 4370 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4371 goto abort;
4372 }
4373
16a53ecc 4374 if (mddev->degraded > 0 &&
1da177e4 4375 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4376 if (mddev->ok_start_degraded)
4377 printk(KERN_WARNING
4378 "raid5: starting dirty degraded array: %s"
4379 "- data corruption possible.\n",
4380 mdname(mddev));
4381 else {
4382 printk(KERN_ERR
4383 "raid5: cannot start dirty degraded array for %s\n",
4384 mdname(mddev));
4385 goto abort;
4386 }
1da177e4
LT
4387 }
4388
4389 {
4390 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4391 if (!mddev->thread) {
4392 printk(KERN_ERR
4393 "raid5: couldn't allocate thread for %s\n",
4394 mdname(mddev));
4395 goto abort;
4396 }
4397 }
5036805b 4398 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
1da177e4
LT
4399 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4400 if (grow_stripes(conf, conf->max_nr_stripes)) {
4401 printk(KERN_ERR
4402 "raid5: couldn't allocate %dkB for buffers\n", memory);
4403 shrink_stripes(conf);
4404 md_unregister_thread(mddev->thread);
4405 goto abort;
4406 } else
4407 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4408 memory, mdname(mddev));
4409
4410 if (mddev->degraded == 0)
4411 printk("raid5: raid level %d set %s active with %d out of %d"
4412 " devices, algorithm %d\n", conf->level, mdname(mddev),
4413 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4414 conf->algorithm);
4415 else
4416 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4417 " out of %d devices, algorithm %d\n", conf->level,
4418 mdname(mddev), mddev->raid_disks - mddev->degraded,
4419 mddev->raid_disks, conf->algorithm);
4420
4421 print_raid5_conf(conf);
4422
f6705578
N
4423 if (conf->expand_progress != MaxSector) {
4424 printk("...ok start reshape thread\n");
b578d55f 4425 conf->expand_lo = conf->expand_progress;
f6705578
N
4426 atomic_set(&conf->reshape_stripes, 0);
4427 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4428 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4429 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4430 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4431 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4432 "%s_reshape");
f6705578
N
4433 }
4434
1da177e4 4435 /* read-ahead size must cover two whole stripes, which is
16a53ecc 4436 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
4437 */
4438 {
16a53ecc
N
4439 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4440 int stripe = data_disks *
8932c2e0 4441 (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
4442 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4443 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4444 }
4445
4446 /* Ok, everything is just fine now */
5e55e2f5
N
4447 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4448 printk(KERN_WARNING
4449 "raid5: failed to create sysfs attributes for %s\n",
4450 mdname(mddev));
7a5febe9
N
4451
4452 mddev->queue->unplug_fn = raid5_unplug_device;
4453 mddev->queue->issue_flush_fn = raid5_issue_flush;
f022b2fd 4454 mddev->queue->backing_dev_info.congested_data = mddev;
041ae52e 4455 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
f022b2fd 4456
16a53ecc
N
4457 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4458 conf->max_degraded);
7a5febe9 4459
23032a0e
RBJ
4460 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4461
1da177e4
LT
4462 return 0;
4463abort:
4464 if (conf) {
4465 print_raid5_conf(conf);
16a53ecc 4466 safe_put_page(conf->spare_page);
b55e6bfc 4467 kfree(conf->disks);
fccddba0 4468 kfree(conf->stripe_hashtbl);
1da177e4
LT
4469 kfree(conf);
4470 }
4471 mddev->private = NULL;
4472 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4473 return -EIO;
4474}
4475
4476
4477
3f294f4f 4478static int stop(mddev_t *mddev)
1da177e4
LT
4479{
4480 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4481
4482 md_unregister_thread(mddev->thread);
4483 mddev->thread = NULL;
4484 shrink_stripes(conf);
fccddba0 4485 kfree(conf->stripe_hashtbl);
041ae52e 4486 mddev->queue->backing_dev_info.congested_fn = NULL;
1da177e4 4487 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 4488 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
b55e6bfc 4489 kfree(conf->disks);
96de1e66 4490 kfree(conf);
1da177e4
LT
4491 mddev->private = NULL;
4492 return 0;
4493}
4494
45b4233c 4495#ifdef DEBUG
16a53ecc 4496static void print_sh (struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
4497{
4498 int i;
4499
16a53ecc
N
4500 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4501 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4502 seq_printf(seq, "sh %llu, count %d.\n",
4503 (unsigned long long)sh->sector, atomic_read(&sh->count));
4504 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 4505 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
4506 seq_printf(seq, "(cache%d: %p %ld) ",
4507 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 4508 }
16a53ecc 4509 seq_printf(seq, "\n");
1da177e4
LT
4510}
4511
16a53ecc 4512static void printall (struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
4513{
4514 struct stripe_head *sh;
fccddba0 4515 struct hlist_node *hn;
1da177e4
LT
4516 int i;
4517
4518 spin_lock_irq(&conf->device_lock);
4519 for (i = 0; i < NR_HASH; i++) {
fccddba0 4520 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
4521 if (sh->raid_conf != conf)
4522 continue;
16a53ecc 4523 print_sh(seq, sh);
1da177e4
LT
4524 }
4525 }
4526 spin_unlock_irq(&conf->device_lock);
4527}
4528#endif
4529
4530static void status (struct seq_file *seq, mddev_t *mddev)
4531{
4532 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4533 int i;
4534
4535 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
02c2de8c 4536 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
4537 for (i = 0; i < conf->raid_disks; i++)
4538 seq_printf (seq, "%s",
4539 conf->disks[i].rdev &&
b2d444d7 4540 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 4541 seq_printf (seq, "]");
45b4233c 4542#ifdef DEBUG
16a53ecc
N
4543 seq_printf (seq, "\n");
4544 printall(seq, conf);
1da177e4
LT
4545#endif
4546}
4547
4548static void print_raid5_conf (raid5_conf_t *conf)
4549{
4550 int i;
4551 struct disk_info *tmp;
4552
4553 printk("RAID5 conf printout:\n");
4554 if (!conf) {
4555 printk("(conf==NULL)\n");
4556 return;
4557 }
02c2de8c
N
4558 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4559 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
4560
4561 for (i = 0; i < conf->raid_disks; i++) {
4562 char b[BDEVNAME_SIZE];
4563 tmp = conf->disks + i;
4564 if (tmp->rdev)
4565 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 4566 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
4567 bdevname(tmp->rdev->bdev,b));
4568 }
4569}
4570
4571static int raid5_spare_active(mddev_t *mddev)
4572{
4573 int i;
4574 raid5_conf_t *conf = mddev->private;
4575 struct disk_info *tmp;
4576
4577 for (i = 0; i < conf->raid_disks; i++) {
4578 tmp = conf->disks + i;
4579 if (tmp->rdev
b2d444d7 4580 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
4581 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4582 unsigned long flags;
4583 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 4584 mddev->degraded--;
c04be0aa 4585 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
4586 }
4587 }
4588 print_raid5_conf(conf);
4589 return 0;
4590}
4591
4592static int raid5_remove_disk(mddev_t *mddev, int number)
4593{
4594 raid5_conf_t *conf = mddev->private;
4595 int err = 0;
4596 mdk_rdev_t *rdev;
4597 struct disk_info *p = conf->disks + number;
4598
4599 print_raid5_conf(conf);
4600 rdev = p->rdev;
4601 if (rdev) {
b2d444d7 4602 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
4603 atomic_read(&rdev->nr_pending)) {
4604 err = -EBUSY;
4605 goto abort;
4606 }
4607 p->rdev = NULL;
fbd568a3 4608 synchronize_rcu();
1da177e4
LT
4609 if (atomic_read(&rdev->nr_pending)) {
4610 /* lost the race, try later */
4611 err = -EBUSY;
4612 p->rdev = rdev;
4613 }
4614 }
4615abort:
4616
4617 print_raid5_conf(conf);
4618 return err;
4619}
4620
4621static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4622{
4623 raid5_conf_t *conf = mddev->private;
4624 int found = 0;
4625 int disk;
4626 struct disk_info *p;
4627
16a53ecc 4628 if (mddev->degraded > conf->max_degraded)
1da177e4
LT
4629 /* no point adding a device */
4630 return 0;
4631
4632 /*
16a53ecc
N
4633 * find the disk ... but prefer rdev->saved_raid_disk
4634 * if possible.
1da177e4 4635 */
16a53ecc
N
4636 if (rdev->saved_raid_disk >= 0 &&
4637 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4638 disk = rdev->saved_raid_disk;
4639 else
4640 disk = 0;
4641 for ( ; disk < conf->raid_disks; disk++)
1da177e4 4642 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 4643 clear_bit(In_sync, &rdev->flags);
1da177e4
LT
4644 rdev->raid_disk = disk;
4645 found = 1;
72626685
N
4646 if (rdev->saved_raid_disk != disk)
4647 conf->fullsync = 1;
d6065f7b 4648 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
4649 break;
4650 }
4651 print_raid5_conf(conf);
4652 return found;
4653}
4654
4655static int raid5_resize(mddev_t *mddev, sector_t sectors)
4656{
4657 /* no resync is happening, and there is enough space
4658 * on all devices, so we can resize.
4659 * We need to make sure resync covers any new space.
4660 * If the array is shrinking we should possibly wait until
4661 * any io in the removed space completes, but it hardly seems
4662 * worth it.
4663 */
16a53ecc
N
4664 raid5_conf_t *conf = mddev_to_conf(mddev);
4665
1da177e4 4666 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
16a53ecc 4667 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
1da177e4 4668 set_capacity(mddev->gendisk, mddev->array_size << 1);
44ce6294 4669 mddev->changed = 1;
1da177e4
LT
4670 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4671 mddev->recovery_cp = mddev->size << 1;
4672 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4673 }
4674 mddev->size = sectors /2;
4b5c7ae8 4675 mddev->resync_max_sectors = sectors;
1da177e4
LT
4676 return 0;
4677}
4678
29269553 4679#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f 4680static int raid5_check_reshape(mddev_t *mddev)
29269553
N
4681{
4682 raid5_conf_t *conf = mddev_to_conf(mddev);
4683 int err;
29269553 4684
63c70c4f
N
4685 if (mddev->delta_disks < 0 ||
4686 mddev->new_level != mddev->level)
4687 return -EINVAL; /* Cannot shrink array or change level yet */
4688 if (mddev->delta_disks == 0)
29269553
N
4689 return 0; /* nothing to do */
4690
4691 /* Can only proceed if there are plenty of stripe_heads.
4692 * We need a minimum of one full stripe,, and for sensible progress
4693 * it is best to have about 4 times that.
4694 * If we require 4 times, then the default 256 4K stripe_heads will
4695 * allow for chunk sizes up to 256K, which is probably OK.
4696 * If the chunk size is greater, user-space should request more
4697 * stripe_heads first.
4698 */
63c70c4f
N
4699 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4700 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
29269553
N
4701 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4702 (mddev->chunk_size / STRIPE_SIZE)*4);
4703 return -ENOSPC;
4704 }
4705
63c70c4f
N
4706 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4707 if (err)
4708 return err;
4709
b4c4c7b8
N
4710 if (mddev->degraded > conf->max_degraded)
4711 return -EINVAL;
63c70c4f
N
4712 /* looks like we might be able to manage this */
4713 return 0;
4714}
4715
4716static int raid5_start_reshape(mddev_t *mddev)
4717{
4718 raid5_conf_t *conf = mddev_to_conf(mddev);
4719 mdk_rdev_t *rdev;
4720 struct list_head *rtmp;
4721 int spares = 0;
4722 int added_devices = 0;
c04be0aa 4723 unsigned long flags;
63c70c4f 4724
f416885e 4725 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
4726 return -EBUSY;
4727
29269553
N
4728 ITERATE_RDEV(mddev, rdev, rtmp)
4729 if (rdev->raid_disk < 0 &&
4730 !test_bit(Faulty, &rdev->flags))
4731 spares++;
63c70c4f 4732
f416885e 4733 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
4734 /* Not enough devices even to make a degraded array
4735 * of that size
4736 */
4737 return -EINVAL;
4738
f6705578 4739 atomic_set(&conf->reshape_stripes, 0);
29269553
N
4740 spin_lock_irq(&conf->device_lock);
4741 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 4742 conf->raid_disks += mddev->delta_disks;
29269553 4743 conf->expand_progress = 0;
b578d55f 4744 conf->expand_lo = 0;
29269553
N
4745 spin_unlock_irq(&conf->device_lock);
4746
4747 /* Add some new drives, as many as will fit.
4748 * We know there are enough to make the newly sized array work.
4749 */
4750 ITERATE_RDEV(mddev, rdev, rtmp)
4751 if (rdev->raid_disk < 0 &&
4752 !test_bit(Faulty, &rdev->flags)) {
4753 if (raid5_add_disk(mddev, rdev)) {
4754 char nm[20];
4755 set_bit(In_sync, &rdev->flags);
29269553 4756 added_devices++;
5fd6c1dc 4757 rdev->recovery_offset = 0;
29269553 4758 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
4759 if (sysfs_create_link(&mddev->kobj,
4760 &rdev->kobj, nm))
4761 printk(KERN_WARNING
4762 "raid5: failed to create "
4763 " link %s for %s\n",
4764 nm, mdname(mddev));
29269553
N
4765 } else
4766 break;
4767 }
4768
c04be0aa 4769 spin_lock_irqsave(&conf->device_lock, flags);
63c70c4f 4770 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
c04be0aa 4771 spin_unlock_irqrestore(&conf->device_lock, flags);
63c70c4f 4772 mddev->raid_disks = conf->raid_disks;
f6705578 4773 mddev->reshape_position = 0;
850b2b42 4774 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 4775
29269553
N
4776 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4777 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4778 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4779 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4780 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4781 "%s_reshape");
4782 if (!mddev->sync_thread) {
4783 mddev->recovery = 0;
4784 spin_lock_irq(&conf->device_lock);
4785 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4786 conf->expand_progress = MaxSector;
4787 spin_unlock_irq(&conf->device_lock);
4788 return -EAGAIN;
4789 }
4790 md_wakeup_thread(mddev->sync_thread);
4791 md_new_event(mddev);
4792 return 0;
4793}
4794#endif
4795
4796static void end_reshape(raid5_conf_t *conf)
4797{
4798 struct block_device *bdev;
4799
f6705578 4800 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f416885e
N
4801 conf->mddev->array_size = conf->mddev->size *
4802 (conf->raid_disks - conf->max_degraded);
f6705578 4803 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
44ce6294 4804 conf->mddev->changed = 1;
f6705578
N
4805
4806 bdev = bdget_disk(conf->mddev->gendisk, 0);
4807 if (bdev) {
4808 mutex_lock(&bdev->bd_inode->i_mutex);
0692c6b1 4809 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
f6705578
N
4810 mutex_unlock(&bdev->bd_inode->i_mutex);
4811 bdput(bdev);
4812 }
4813 spin_lock_irq(&conf->device_lock);
4814 conf->expand_progress = MaxSector;
4815 spin_unlock_irq(&conf->device_lock);
4816 conf->mddev->reshape_position = MaxSector;
16a53ecc
N
4817
4818 /* read-ahead size must cover two whole stripes, which is
4819 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4820 */
4821 {
4822 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4823 int stripe = data_disks *
4824 (conf->mddev->chunk_size / PAGE_SIZE);
4825 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4826 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4827 }
29269553 4828 }
29269553
N
4829}
4830
72626685
N
4831static void raid5_quiesce(mddev_t *mddev, int state)
4832{
4833 raid5_conf_t *conf = mddev_to_conf(mddev);
4834
4835 switch(state) {
e464eafd
N
4836 case 2: /* resume for a suspend */
4837 wake_up(&conf->wait_for_overlap);
4838 break;
4839
72626685
N
4840 case 1: /* stop all writes */
4841 spin_lock_irq(&conf->device_lock);
4842 conf->quiesce = 1;
4843 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
4844 atomic_read(&conf->active_stripes) == 0 &&
4845 atomic_read(&conf->active_aligned_reads) == 0,
72626685
N
4846 conf->device_lock, /* nothing */);
4847 spin_unlock_irq(&conf->device_lock);
4848 break;
4849
4850 case 0: /* re-enable writes */
4851 spin_lock_irq(&conf->device_lock);
4852 conf->quiesce = 0;
4853 wake_up(&conf->wait_for_stripe);
e464eafd 4854 wake_up(&conf->wait_for_overlap);
72626685
N
4855 spin_unlock_irq(&conf->device_lock);
4856 break;
4857 }
72626685 4858}
b15c2e57 4859
16a53ecc
N
4860static struct mdk_personality raid6_personality =
4861{
4862 .name = "raid6",
4863 .level = 6,
4864 .owner = THIS_MODULE,
4865 .make_request = make_request,
4866 .run = run,
4867 .stop = stop,
4868 .status = status,
4869 .error_handler = error,
4870 .hot_add_disk = raid5_add_disk,
4871 .hot_remove_disk= raid5_remove_disk,
4872 .spare_active = raid5_spare_active,
4873 .sync_request = sync_request,
4874 .resize = raid5_resize,
f416885e
N
4875#ifdef CONFIG_MD_RAID5_RESHAPE
4876 .check_reshape = raid5_check_reshape,
4877 .start_reshape = raid5_start_reshape,
4878#endif
16a53ecc
N
4879 .quiesce = raid5_quiesce,
4880};
2604b703 4881static struct mdk_personality raid5_personality =
1da177e4
LT
4882{
4883 .name = "raid5",
2604b703 4884 .level = 5,
1da177e4
LT
4885 .owner = THIS_MODULE,
4886 .make_request = make_request,
4887 .run = run,
4888 .stop = stop,
4889 .status = status,
4890 .error_handler = error,
4891 .hot_add_disk = raid5_add_disk,
4892 .hot_remove_disk= raid5_remove_disk,
4893 .spare_active = raid5_spare_active,
4894 .sync_request = sync_request,
4895 .resize = raid5_resize,
29269553 4896#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f
N
4897 .check_reshape = raid5_check_reshape,
4898 .start_reshape = raid5_start_reshape,
29269553 4899#endif
72626685 4900 .quiesce = raid5_quiesce,
1da177e4
LT
4901};
4902
2604b703 4903static struct mdk_personality raid4_personality =
1da177e4 4904{
2604b703
N
4905 .name = "raid4",
4906 .level = 4,
4907 .owner = THIS_MODULE,
4908 .make_request = make_request,
4909 .run = run,
4910 .stop = stop,
4911 .status = status,
4912 .error_handler = error,
4913 .hot_add_disk = raid5_add_disk,
4914 .hot_remove_disk= raid5_remove_disk,
4915 .spare_active = raid5_spare_active,
4916 .sync_request = sync_request,
4917 .resize = raid5_resize,
3d37890b
N
4918#ifdef CONFIG_MD_RAID5_RESHAPE
4919 .check_reshape = raid5_check_reshape,
4920 .start_reshape = raid5_start_reshape,
4921#endif
2604b703
N
4922 .quiesce = raid5_quiesce,
4923};
4924
4925static int __init raid5_init(void)
4926{
16a53ecc
N
4927 int e;
4928
4929 e = raid6_select_algo();
4930 if ( e )
4931 return e;
4932 register_md_personality(&raid6_personality);
2604b703
N
4933 register_md_personality(&raid5_personality);
4934 register_md_personality(&raid4_personality);
4935 return 0;
1da177e4
LT
4936}
4937
2604b703 4938static void raid5_exit(void)
1da177e4 4939{
16a53ecc 4940 unregister_md_personality(&raid6_personality);
2604b703
N
4941 unregister_md_personality(&raid5_personality);
4942 unregister_md_personality(&raid4_personality);
1da177e4
LT
4943}
4944
4945module_init(raid5_init);
4946module_exit(raid5_exit);
4947MODULE_LICENSE("GPL");
4948MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
4949MODULE_ALIAS("md-raid5");
4950MODULE_ALIAS("md-raid4");
2604b703
N
4951MODULE_ALIAS("md-level-5");
4952MODULE_ALIAS("md-level-4");
16a53ecc
N
4953MODULE_ALIAS("md-personality-8"); /* RAID6 */
4954MODULE_ALIAS("md-raid6");
4955MODULE_ALIAS("md-level-6");
4956
4957/* This used to be two separate modules, they were: */
4958MODULE_ALIAS("raid5");
4959MODULE_ALIAS("raid6");