]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/md/raid5.c
md: give userspace control over removing failed devices when external metdata in use
[net-next-2.6.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
1da177e4
LT
46#include <linux/module.h>
47#include <linux/slab.h>
1da177e4
LT
48#include <linux/highmem.h>
49#include <linux/bitops.h>
f6705578 50#include <linux/kthread.h>
1da177e4 51#include <asm/atomic.h>
16a53ecc 52#include "raid6.h"
1da177e4 53
72626685 54#include <linux/raid/bitmap.h>
91c00924 55#include <linux/async_tx.h>
72626685 56
1da177e4
LT
57/*
58 * Stripe cache
59 */
60
61#define NR_STRIPES 256
62#define STRIPE_SIZE PAGE_SIZE
63#define STRIPE_SHIFT (PAGE_SHIFT - 9)
64#define STRIPE_SECTORS (STRIPE_SIZE>>9)
65#define IO_THRESHOLD 1
fccddba0 66#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
67#define HASH_MASK (NR_HASH - 1)
68
fccddba0 69#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
70
71/* bio's attached to a stripe+device for I/O are linked together in bi_sector
72 * order without overlap. There may be several bio's per stripe+device, and
73 * a bio could span several devices.
74 * When walking this list for a particular stripe+device, we must never proceed
75 * beyond a bio that extends past this device, as the next bio might no longer
76 * be valid.
77 * This macro is used to determine the 'next' bio in the list, given the sector
78 * of the current stripe+device
79 */
80#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81/*
82 * The following can be used to debug the driver
83 */
1da177e4
LT
84#define RAID5_PARANOIA 1
85#if RAID5_PARANOIA && defined(CONFIG_SMP)
86# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87#else
88# define CHECK_DEVLOCK()
89#endif
90
45b4233c 91#ifdef DEBUG
1da177e4
LT
92#define inline
93#define __inline__
94#endif
95
16a53ecc
N
96#if !RAID6_USE_EMPTY_ZERO_PAGE
97/* In .bss so it's zeroed */
98const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
99#endif
100
101static inline int raid6_next_disk(int disk, int raid_disks)
102{
103 disk++;
104 return (disk < raid_disks) ? disk : 0;
105}
a4456856
DW
106
107static void return_io(struct bio *return_bi)
108{
109 struct bio *bi = return_bi;
110 while (bi) {
a4456856
DW
111
112 return_bi = bi->bi_next;
113 bi->bi_next = NULL;
114 bi->bi_size = 0;
6712ecf8 115 bi->bi_end_io(bi,
a4456856
DW
116 test_bit(BIO_UPTODATE, &bi->bi_flags)
117 ? 0 : -EIO);
118 bi = return_bi;
119 }
120}
121
1da177e4
LT
122static void print_raid5_conf (raid5_conf_t *conf);
123
858119e1 124static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
125{
126 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
127 BUG_ON(!list_empty(&sh->lru));
128 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 129 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 130 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 131 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
132 blk_plug_device(conf->mddev->queue);
133 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 134 sh->bm_seq - conf->seq_write > 0) {
72626685 135 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
136 blk_plug_device(conf->mddev->queue);
137 } else {
72626685 138 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 139 list_add_tail(&sh->lru, &conf->handle_list);
72626685 140 }
1da177e4
LT
141 md_wakeup_thread(conf->mddev->thread);
142 } else {
d84e0f10 143 BUG_ON(sh->ops.pending);
1da177e4
LT
144 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
145 atomic_dec(&conf->preread_active_stripes);
146 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
147 md_wakeup_thread(conf->mddev->thread);
148 }
1da177e4 149 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
150 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
151 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 152 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
153 if (conf->retry_read_aligned)
154 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 155 }
1da177e4
LT
156 }
157 }
158}
159static void release_stripe(struct stripe_head *sh)
160{
161 raid5_conf_t *conf = sh->raid_conf;
162 unsigned long flags;
16a53ecc 163
1da177e4
LT
164 spin_lock_irqsave(&conf->device_lock, flags);
165 __release_stripe(conf, sh);
166 spin_unlock_irqrestore(&conf->device_lock, flags);
167}
168
fccddba0 169static inline void remove_hash(struct stripe_head *sh)
1da177e4 170{
45b4233c
DW
171 pr_debug("remove_hash(), stripe %llu\n",
172 (unsigned long long)sh->sector);
1da177e4 173
fccddba0 174 hlist_del_init(&sh->hash);
1da177e4
LT
175}
176
16a53ecc 177static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 178{
fccddba0 179 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 180
45b4233c
DW
181 pr_debug("insert_hash(), stripe %llu\n",
182 (unsigned long long)sh->sector);
1da177e4
LT
183
184 CHECK_DEVLOCK();
fccddba0 185 hlist_add_head(&sh->hash, hp);
1da177e4
LT
186}
187
188
189/* find an idle stripe, make sure it is unhashed, and return it. */
190static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
191{
192 struct stripe_head *sh = NULL;
193 struct list_head *first;
194
195 CHECK_DEVLOCK();
196 if (list_empty(&conf->inactive_list))
197 goto out;
198 first = conf->inactive_list.next;
199 sh = list_entry(first, struct stripe_head, lru);
200 list_del_init(first);
201 remove_hash(sh);
202 atomic_inc(&conf->active_stripes);
203out:
204 return sh;
205}
206
207static void shrink_buffers(struct stripe_head *sh, int num)
208{
209 struct page *p;
210 int i;
211
212 for (i=0; i<num ; i++) {
213 p = sh->dev[i].page;
214 if (!p)
215 continue;
216 sh->dev[i].page = NULL;
2d1f3b5d 217 put_page(p);
1da177e4
LT
218 }
219}
220
221static int grow_buffers(struct stripe_head *sh, int num)
222{
223 int i;
224
225 for (i=0; i<num; i++) {
226 struct page *page;
227
228 if (!(page = alloc_page(GFP_KERNEL))) {
229 return 1;
230 }
231 sh->dev[i].page = page;
232 }
233 return 0;
234}
235
236static void raid5_build_block (struct stripe_head *sh, int i);
237
7ecaa1e6 238static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
1da177e4
LT
239{
240 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 241 int i;
1da177e4 242
78bafebd
ES
243 BUG_ON(atomic_read(&sh->count) != 0);
244 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
d84e0f10
DW
245 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
246
1da177e4 247 CHECK_DEVLOCK();
45b4233c 248 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
249 (unsigned long long)sh->sector);
250
251 remove_hash(sh);
16a53ecc 252
1da177e4
LT
253 sh->sector = sector;
254 sh->pd_idx = pd_idx;
255 sh->state = 0;
256
7ecaa1e6
N
257 sh->disks = disks;
258
259 for (i = sh->disks; i--; ) {
1da177e4
LT
260 struct r5dev *dev = &sh->dev[i];
261
d84e0f10 262 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 263 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 264 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 265 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 266 dev->read, dev->towrite, dev->written,
1da177e4
LT
267 test_bit(R5_LOCKED, &dev->flags));
268 BUG();
269 }
270 dev->flags = 0;
271 raid5_build_block(sh, i);
272 }
273 insert_hash(conf, sh);
274}
275
7ecaa1e6 276static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
1da177e4
LT
277{
278 struct stripe_head *sh;
fccddba0 279 struct hlist_node *hn;
1da177e4
LT
280
281 CHECK_DEVLOCK();
45b4233c 282 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 283 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
7ecaa1e6 284 if (sh->sector == sector && sh->disks == disks)
1da177e4 285 return sh;
45b4233c 286 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
287 return NULL;
288}
289
290static void unplug_slaves(mddev_t *mddev);
165125e1 291static void raid5_unplug_device(struct request_queue *q);
1da177e4 292
7ecaa1e6
N
293static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
294 int pd_idx, int noblock)
1da177e4
LT
295{
296 struct stripe_head *sh;
297
45b4233c 298 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
299
300 spin_lock_irq(&conf->device_lock);
301
302 do {
72626685
N
303 wait_event_lock_irq(conf->wait_for_stripe,
304 conf->quiesce == 0,
305 conf->device_lock, /* nothing */);
7ecaa1e6 306 sh = __find_stripe(conf, sector, disks);
1da177e4
LT
307 if (!sh) {
308 if (!conf->inactive_blocked)
309 sh = get_free_stripe(conf);
310 if (noblock && sh == NULL)
311 break;
312 if (!sh) {
313 conf->inactive_blocked = 1;
314 wait_event_lock_irq(conf->wait_for_stripe,
315 !list_empty(&conf->inactive_list) &&
5036805b
N
316 (atomic_read(&conf->active_stripes)
317 < (conf->max_nr_stripes *3/4)
1da177e4
LT
318 || !conf->inactive_blocked),
319 conf->device_lock,
f4370781 320 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
321 );
322 conf->inactive_blocked = 0;
323 } else
7ecaa1e6 324 init_stripe(sh, sector, pd_idx, disks);
1da177e4
LT
325 } else {
326 if (atomic_read(&sh->count)) {
78bafebd 327 BUG_ON(!list_empty(&sh->lru));
1da177e4
LT
328 } else {
329 if (!test_bit(STRIPE_HANDLE, &sh->state))
330 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
331 if (list_empty(&sh->lru) &&
332 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
333 BUG();
334 list_del_init(&sh->lru);
1da177e4
LT
335 }
336 }
337 } while (sh == NULL);
338
339 if (sh)
340 atomic_inc(&sh->count);
341
342 spin_unlock_irq(&conf->device_lock);
343 return sh;
344}
345
d84e0f10
DW
346/* test_and_ack_op() ensures that we only dequeue an operation once */
347#define test_and_ack_op(op, pend) \
348do { \
349 if (test_bit(op, &sh->ops.pending) && \
350 !test_bit(op, &sh->ops.complete)) { \
351 if (test_and_set_bit(op, &sh->ops.ack)) \
352 clear_bit(op, &pend); \
353 else \
354 ack++; \
355 } else \
356 clear_bit(op, &pend); \
357} while (0)
358
359/* find new work to run, do not resubmit work that is already
360 * in flight
361 */
362static unsigned long get_stripe_work(struct stripe_head *sh)
363{
364 unsigned long pending;
365 int ack = 0;
366
367 pending = sh->ops.pending;
368
369 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
370 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
371 test_and_ack_op(STRIPE_OP_PREXOR, pending);
372 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
373 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
374 test_and_ack_op(STRIPE_OP_CHECK, pending);
375 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
376 ack++;
377
378 sh->ops.count -= ack;
4ae3f847
DW
379 if (unlikely(sh->ops.count < 0)) {
380 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
381 "ops.complete: %#lx\n", pending, sh->ops.pending,
382 sh->ops.ack, sh->ops.complete);
383 BUG();
384 }
d84e0f10
DW
385
386 return pending;
387}
388
6712ecf8
N
389static void
390raid5_end_read_request(struct bio *bi, int error);
391static void
392raid5_end_write_request(struct bio *bi, int error);
91c00924
DW
393
394static void ops_run_io(struct stripe_head *sh)
395{
396 raid5_conf_t *conf = sh->raid_conf;
397 int i, disks = sh->disks;
398
399 might_sleep();
400
401 for (i = disks; i--; ) {
402 int rw;
403 struct bio *bi;
404 mdk_rdev_t *rdev;
405 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
406 rw = WRITE;
407 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
408 rw = READ;
409 else
410 continue;
411
412 bi = &sh->dev[i].req;
413
414 bi->bi_rw = rw;
415 if (rw == WRITE)
416 bi->bi_end_io = raid5_end_write_request;
417 else
418 bi->bi_end_io = raid5_end_read_request;
419
420 rcu_read_lock();
421 rdev = rcu_dereference(conf->disks[i].rdev);
422 if (rdev && test_bit(Faulty, &rdev->flags))
423 rdev = NULL;
424 if (rdev)
425 atomic_inc(&rdev->nr_pending);
426 rcu_read_unlock();
427
428 if (rdev) {
429 if (test_bit(STRIPE_SYNCING, &sh->state) ||
430 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
431 test_bit(STRIPE_EXPAND_READY, &sh->state))
432 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
433
434 bi->bi_bdev = rdev->bdev;
435 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
436 __FUNCTION__, (unsigned long long)sh->sector,
437 bi->bi_rw, i);
438 atomic_inc(&sh->count);
439 bi->bi_sector = sh->sector + rdev->data_offset;
440 bi->bi_flags = 1 << BIO_UPTODATE;
441 bi->bi_vcnt = 1;
442 bi->bi_max_vecs = 1;
443 bi->bi_idx = 0;
444 bi->bi_io_vec = &sh->dev[i].vec;
445 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
446 bi->bi_io_vec[0].bv_offset = 0;
447 bi->bi_size = STRIPE_SIZE;
448 bi->bi_next = NULL;
449 if (rw == WRITE &&
450 test_bit(R5_ReWrite, &sh->dev[i].flags))
451 atomic_add(STRIPE_SECTORS,
452 &rdev->corrected_errors);
453 generic_make_request(bi);
454 } else {
455 if (rw == WRITE)
456 set_bit(STRIPE_DEGRADED, &sh->state);
457 pr_debug("skip op %ld on disc %d for sector %llu\n",
458 bi->bi_rw, i, (unsigned long long)sh->sector);
459 clear_bit(R5_LOCKED, &sh->dev[i].flags);
460 set_bit(STRIPE_HANDLE, &sh->state);
461 }
462 }
463}
464
465static struct dma_async_tx_descriptor *
466async_copy_data(int frombio, struct bio *bio, struct page *page,
467 sector_t sector, struct dma_async_tx_descriptor *tx)
468{
469 struct bio_vec *bvl;
470 struct page *bio_page;
471 int i;
472 int page_offset;
473
474 if (bio->bi_sector >= sector)
475 page_offset = (signed)(bio->bi_sector - sector) * 512;
476 else
477 page_offset = (signed)(sector - bio->bi_sector) * -512;
478 bio_for_each_segment(bvl, bio, i) {
479 int len = bio_iovec_idx(bio, i)->bv_len;
480 int clen;
481 int b_offset = 0;
482
483 if (page_offset < 0) {
484 b_offset = -page_offset;
485 page_offset += b_offset;
486 len -= b_offset;
487 }
488
489 if (len > 0 && page_offset + len > STRIPE_SIZE)
490 clen = STRIPE_SIZE - page_offset;
491 else
492 clen = len;
493
494 if (clen > 0) {
495 b_offset += bio_iovec_idx(bio, i)->bv_offset;
496 bio_page = bio_iovec_idx(bio, i)->bv_page;
497 if (frombio)
498 tx = async_memcpy(page, bio_page, page_offset,
499 b_offset, clen,
eb0645a8 500 ASYNC_TX_DEP_ACK,
91c00924
DW
501 tx, NULL, NULL);
502 else
503 tx = async_memcpy(bio_page, page, b_offset,
504 page_offset, clen,
eb0645a8 505 ASYNC_TX_DEP_ACK,
91c00924
DW
506 tx, NULL, NULL);
507 }
508 if (clen < len) /* hit end of page */
509 break;
510 page_offset += len;
511 }
512
513 return tx;
514}
515
516static void ops_complete_biofill(void *stripe_head_ref)
517{
518 struct stripe_head *sh = stripe_head_ref;
519 struct bio *return_bi = NULL;
520 raid5_conf_t *conf = sh->raid_conf;
e4d84909 521 int i;
91c00924
DW
522
523 pr_debug("%s: stripe %llu\n", __FUNCTION__,
524 (unsigned long long)sh->sector);
525
526 /* clear completed biofills */
527 for (i = sh->disks; i--; ) {
528 struct r5dev *dev = &sh->dev[i];
91c00924
DW
529
530 /* acknowledge completion of a biofill operation */
e4d84909
DW
531 /* and check if we need to reply to a read request,
532 * new R5_Wantfill requests are held off until
533 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
534 */
535 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 536 struct bio *rbi, *rbi2;
91c00924
DW
537
538 /* The access to dev->read is outside of the
539 * spin_lock_irq(&conf->device_lock), but is protected
540 * by the STRIPE_OP_BIOFILL pending bit
541 */
542 BUG_ON(!dev->read);
543 rbi = dev->read;
544 dev->read = NULL;
545 while (rbi && rbi->bi_sector <
546 dev->sector + STRIPE_SECTORS) {
547 rbi2 = r5_next_bio(rbi, dev->sector);
548 spin_lock_irq(&conf->device_lock);
549 if (--rbi->bi_phys_segments == 0) {
550 rbi->bi_next = return_bi;
551 return_bi = rbi;
552 }
553 spin_unlock_irq(&conf->device_lock);
554 rbi = rbi2;
555 }
556 }
557 }
4ae3f847 558 set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
91c00924
DW
559
560 return_io(return_bi);
561
e4d84909 562 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
563 release_stripe(sh);
564}
565
566static void ops_run_biofill(struct stripe_head *sh)
567{
568 struct dma_async_tx_descriptor *tx = NULL;
569 raid5_conf_t *conf = sh->raid_conf;
570 int i;
571
572 pr_debug("%s: stripe %llu\n", __FUNCTION__,
573 (unsigned long long)sh->sector);
574
575 for (i = sh->disks; i--; ) {
576 struct r5dev *dev = &sh->dev[i];
577 if (test_bit(R5_Wantfill, &dev->flags)) {
578 struct bio *rbi;
579 spin_lock_irq(&conf->device_lock);
580 dev->read = rbi = dev->toread;
581 dev->toread = NULL;
582 spin_unlock_irq(&conf->device_lock);
583 while (rbi && rbi->bi_sector <
584 dev->sector + STRIPE_SECTORS) {
585 tx = async_copy_data(0, rbi, dev->page,
586 dev->sector, tx);
587 rbi = r5_next_bio(rbi, dev->sector);
588 }
589 }
590 }
591
592 atomic_inc(&sh->count);
593 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
594 ops_complete_biofill, sh);
595}
596
597static void ops_complete_compute5(void *stripe_head_ref)
598{
599 struct stripe_head *sh = stripe_head_ref;
600 int target = sh->ops.target;
601 struct r5dev *tgt = &sh->dev[target];
602
603 pr_debug("%s: stripe %llu\n", __FUNCTION__,
604 (unsigned long long)sh->sector);
605
606 set_bit(R5_UPTODATE, &tgt->flags);
607 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
608 clear_bit(R5_Wantcompute, &tgt->flags);
609 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
610 set_bit(STRIPE_HANDLE, &sh->state);
611 release_stripe(sh);
612}
613
614static struct dma_async_tx_descriptor *
615ops_run_compute5(struct stripe_head *sh, unsigned long pending)
616{
617 /* kernel stack size limits the total number of disks */
618 int disks = sh->disks;
619 struct page *xor_srcs[disks];
620 int target = sh->ops.target;
621 struct r5dev *tgt = &sh->dev[target];
622 struct page *xor_dest = tgt->page;
623 int count = 0;
624 struct dma_async_tx_descriptor *tx;
625 int i;
626
627 pr_debug("%s: stripe %llu block: %d\n",
628 __FUNCTION__, (unsigned long long)sh->sector, target);
629 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
630
631 for (i = disks; i--; )
632 if (i != target)
633 xor_srcs[count++] = sh->dev[i].page;
634
635 atomic_inc(&sh->count);
636
637 if (unlikely(count == 1))
638 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
639 0, NULL, ops_complete_compute5, sh);
640 else
641 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
642 ASYNC_TX_XOR_ZERO_DST, NULL,
643 ops_complete_compute5, sh);
644
645 /* ack now if postxor is not set to be run */
646 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
647 async_tx_ack(tx);
648
649 return tx;
650}
651
652static void ops_complete_prexor(void *stripe_head_ref)
653{
654 struct stripe_head *sh = stripe_head_ref;
655
656 pr_debug("%s: stripe %llu\n", __FUNCTION__,
657 (unsigned long long)sh->sector);
658
659 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
660}
661
662static struct dma_async_tx_descriptor *
663ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
664{
665 /* kernel stack size limits the total number of disks */
666 int disks = sh->disks;
667 struct page *xor_srcs[disks];
668 int count = 0, pd_idx = sh->pd_idx, i;
669
670 /* existing parity data subtracted */
671 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
672
673 pr_debug("%s: stripe %llu\n", __FUNCTION__,
674 (unsigned long long)sh->sector);
675
676 for (i = disks; i--; ) {
677 struct r5dev *dev = &sh->dev[i];
678 /* Only process blocks that are known to be uptodate */
679 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
680 xor_srcs[count++] = dev->page;
681 }
682
683 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
684 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
685 ops_complete_prexor, sh);
686
687 return tx;
688}
689
690static struct dma_async_tx_descriptor *
6c55be8b
DW
691ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
692 unsigned long pending)
91c00924
DW
693{
694 int disks = sh->disks;
695 int pd_idx = sh->pd_idx, i;
696
697 /* check if prexor is active which means only process blocks
698 * that are part of a read-modify-write (Wantprexor)
699 */
6c55be8b 700 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
91c00924
DW
701
702 pr_debug("%s: stripe %llu\n", __FUNCTION__,
703 (unsigned long long)sh->sector);
704
705 for (i = disks; i--; ) {
706 struct r5dev *dev = &sh->dev[i];
707 struct bio *chosen;
708 int towrite;
709
710 towrite = 0;
711 if (prexor) { /* rmw */
712 if (dev->towrite &&
713 test_bit(R5_Wantprexor, &dev->flags))
714 towrite = 1;
715 } else { /* rcw */
716 if (i != pd_idx && dev->towrite &&
717 test_bit(R5_LOCKED, &dev->flags))
718 towrite = 1;
719 }
720
721 if (towrite) {
722 struct bio *wbi;
723
724 spin_lock(&sh->lock);
725 chosen = dev->towrite;
726 dev->towrite = NULL;
727 BUG_ON(dev->written);
728 wbi = dev->written = chosen;
729 spin_unlock(&sh->lock);
730
731 while (wbi && wbi->bi_sector <
732 dev->sector + STRIPE_SECTORS) {
733 tx = async_copy_data(1, wbi, dev->page,
734 dev->sector, tx);
735 wbi = r5_next_bio(wbi, dev->sector);
736 }
737 }
738 }
739
740 return tx;
741}
742
743static void ops_complete_postxor(void *stripe_head_ref)
744{
745 struct stripe_head *sh = stripe_head_ref;
746
747 pr_debug("%s: stripe %llu\n", __FUNCTION__,
748 (unsigned long long)sh->sector);
749
750 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
751 set_bit(STRIPE_HANDLE, &sh->state);
752 release_stripe(sh);
753}
754
755static void ops_complete_write(void *stripe_head_ref)
756{
757 struct stripe_head *sh = stripe_head_ref;
758 int disks = sh->disks, i, pd_idx = sh->pd_idx;
759
760 pr_debug("%s: stripe %llu\n", __FUNCTION__,
761 (unsigned long long)sh->sector);
762
763 for (i = disks; i--; ) {
764 struct r5dev *dev = &sh->dev[i];
765 if (dev->written || i == pd_idx)
766 set_bit(R5_UPTODATE, &dev->flags);
767 }
768
769 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
770 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
771
772 set_bit(STRIPE_HANDLE, &sh->state);
773 release_stripe(sh);
774}
775
776static void
6c55be8b
DW
777ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
778 unsigned long pending)
91c00924
DW
779{
780 /* kernel stack size limits the total number of disks */
781 int disks = sh->disks;
782 struct page *xor_srcs[disks];
783
784 int count = 0, pd_idx = sh->pd_idx, i;
785 struct page *xor_dest;
6c55be8b 786 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
91c00924
DW
787 unsigned long flags;
788 dma_async_tx_callback callback;
789
790 pr_debug("%s: stripe %llu\n", __FUNCTION__,
791 (unsigned long long)sh->sector);
792
793 /* check if prexor is active which means only process blocks
794 * that are part of a read-modify-write (written)
795 */
796 if (prexor) {
797 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
798 for (i = disks; i--; ) {
799 struct r5dev *dev = &sh->dev[i];
800 if (dev->written)
801 xor_srcs[count++] = dev->page;
802 }
803 } else {
804 xor_dest = sh->dev[pd_idx].page;
805 for (i = disks; i--; ) {
806 struct r5dev *dev = &sh->dev[i];
807 if (i != pd_idx)
808 xor_srcs[count++] = dev->page;
809 }
810 }
811
812 /* check whether this postxor is part of a write */
6c55be8b 813 callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
91c00924
DW
814 ops_complete_write : ops_complete_postxor;
815
816 /* 1/ if we prexor'd then the dest is reused as a source
817 * 2/ if we did not prexor then we are redoing the parity
818 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
819 * for the synchronous xor case
820 */
821 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
822 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
823
824 atomic_inc(&sh->count);
825
826 if (unlikely(count == 1)) {
827 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
828 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
829 flags, tx, callback, sh);
830 } else
831 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
832 flags, tx, callback, sh);
833}
834
835static void ops_complete_check(void *stripe_head_ref)
836{
837 struct stripe_head *sh = stripe_head_ref;
838 int pd_idx = sh->pd_idx;
839
840 pr_debug("%s: stripe %llu\n", __FUNCTION__,
841 (unsigned long long)sh->sector);
842
843 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
844 sh->ops.zero_sum_result == 0)
845 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
846
847 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
848 set_bit(STRIPE_HANDLE, &sh->state);
849 release_stripe(sh);
850}
851
852static void ops_run_check(struct stripe_head *sh)
853{
854 /* kernel stack size limits the total number of disks */
855 int disks = sh->disks;
856 struct page *xor_srcs[disks];
857 struct dma_async_tx_descriptor *tx;
858
859 int count = 0, pd_idx = sh->pd_idx, i;
860 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
861
862 pr_debug("%s: stripe %llu\n", __FUNCTION__,
863 (unsigned long long)sh->sector);
864
865 for (i = disks; i--; ) {
866 struct r5dev *dev = &sh->dev[i];
867 if (i != pd_idx)
868 xor_srcs[count++] = dev->page;
869 }
870
871 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
872 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
873
874 if (tx)
875 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
876 else
877 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
878
879 atomic_inc(&sh->count);
880 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
881 ops_complete_check, sh);
882}
883
884static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
885{
886 int overlap_clear = 0, i, disks = sh->disks;
887 struct dma_async_tx_descriptor *tx = NULL;
888
889 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
890 ops_run_biofill(sh);
891 overlap_clear++;
892 }
893
894 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
895 tx = ops_run_compute5(sh, pending);
896
897 if (test_bit(STRIPE_OP_PREXOR, &pending))
898 tx = ops_run_prexor(sh, tx);
899
900 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
6c55be8b 901 tx = ops_run_biodrain(sh, tx, pending);
91c00924
DW
902 overlap_clear++;
903 }
904
905 if (test_bit(STRIPE_OP_POSTXOR, &pending))
6c55be8b 906 ops_run_postxor(sh, tx, pending);
91c00924
DW
907
908 if (test_bit(STRIPE_OP_CHECK, &pending))
909 ops_run_check(sh);
910
911 if (test_bit(STRIPE_OP_IO, &pending))
912 ops_run_io(sh);
913
914 if (overlap_clear)
915 for (i = disks; i--; ) {
916 struct r5dev *dev = &sh->dev[i];
917 if (test_and_clear_bit(R5_Overlap, &dev->flags))
918 wake_up(&sh->raid_conf->wait_for_overlap);
919 }
920}
921
3f294f4f 922static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
923{
924 struct stripe_head *sh;
3f294f4f
N
925 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
926 if (!sh)
927 return 0;
928 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
929 sh->raid_conf = conf;
930 spin_lock_init(&sh->lock);
931
932 if (grow_buffers(sh, conf->raid_disks)) {
933 shrink_buffers(sh, conf->raid_disks);
934 kmem_cache_free(conf->slab_cache, sh);
935 return 0;
936 }
7ecaa1e6 937 sh->disks = conf->raid_disks;
3f294f4f
N
938 /* we just created an active stripe so... */
939 atomic_set(&sh->count, 1);
940 atomic_inc(&conf->active_stripes);
941 INIT_LIST_HEAD(&sh->lru);
942 release_stripe(sh);
943 return 1;
944}
945
946static int grow_stripes(raid5_conf_t *conf, int num)
947{
e18b890b 948 struct kmem_cache *sc;
1da177e4
LT
949 int devs = conf->raid_disks;
950
42b9bebe
N
951 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
952 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
ad01c9e3
N
953 conf->active_name = 0;
954 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 955 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 956 0, 0, NULL);
1da177e4
LT
957 if (!sc)
958 return 1;
959 conf->slab_cache = sc;
ad01c9e3 960 conf->pool_size = devs;
16a53ecc 961 while (num--)
3f294f4f 962 if (!grow_one_stripe(conf))
1da177e4 963 return 1;
1da177e4
LT
964 return 0;
965}
29269553
N
966
967#ifdef CONFIG_MD_RAID5_RESHAPE
ad01c9e3
N
968static int resize_stripes(raid5_conf_t *conf, int newsize)
969{
970 /* Make all the stripes able to hold 'newsize' devices.
971 * New slots in each stripe get 'page' set to a new page.
972 *
973 * This happens in stages:
974 * 1/ create a new kmem_cache and allocate the required number of
975 * stripe_heads.
976 * 2/ gather all the old stripe_heads and tranfer the pages across
977 * to the new stripe_heads. This will have the side effect of
978 * freezing the array as once all stripe_heads have been collected,
979 * no IO will be possible. Old stripe heads are freed once their
980 * pages have been transferred over, and the old kmem_cache is
981 * freed when all stripes are done.
982 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
983 * we simple return a failre status - no need to clean anything up.
984 * 4/ allocate new pages for the new slots in the new stripe_heads.
985 * If this fails, we don't bother trying the shrink the
986 * stripe_heads down again, we just leave them as they are.
987 * As each stripe_head is processed the new one is released into
988 * active service.
989 *
990 * Once step2 is started, we cannot afford to wait for a write,
991 * so we use GFP_NOIO allocations.
992 */
993 struct stripe_head *osh, *nsh;
994 LIST_HEAD(newstripes);
995 struct disk_info *ndisks;
996 int err = 0;
e18b890b 997 struct kmem_cache *sc;
ad01c9e3
N
998 int i;
999
1000 if (newsize <= conf->pool_size)
1001 return 0; /* never bother to shrink */
1002
2a2275d6
N
1003 md_allow_write(conf->mddev);
1004
ad01c9e3
N
1005 /* Step 1 */
1006 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1007 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1008 0, 0, NULL);
ad01c9e3
N
1009 if (!sc)
1010 return -ENOMEM;
1011
1012 for (i = conf->max_nr_stripes; i; i--) {
1013 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1014 if (!nsh)
1015 break;
1016
1017 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1018
1019 nsh->raid_conf = conf;
1020 spin_lock_init(&nsh->lock);
1021
1022 list_add(&nsh->lru, &newstripes);
1023 }
1024 if (i) {
1025 /* didn't get enough, give up */
1026 while (!list_empty(&newstripes)) {
1027 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1028 list_del(&nsh->lru);
1029 kmem_cache_free(sc, nsh);
1030 }
1031 kmem_cache_destroy(sc);
1032 return -ENOMEM;
1033 }
1034 /* Step 2 - Must use GFP_NOIO now.
1035 * OK, we have enough stripes, start collecting inactive
1036 * stripes and copying them over
1037 */
1038 list_for_each_entry(nsh, &newstripes, lru) {
1039 spin_lock_irq(&conf->device_lock);
1040 wait_event_lock_irq(conf->wait_for_stripe,
1041 !list_empty(&conf->inactive_list),
1042 conf->device_lock,
b3b46be3 1043 unplug_slaves(conf->mddev)
ad01c9e3
N
1044 );
1045 osh = get_free_stripe(conf);
1046 spin_unlock_irq(&conf->device_lock);
1047 atomic_set(&nsh->count, 1);
1048 for(i=0; i<conf->pool_size; i++)
1049 nsh->dev[i].page = osh->dev[i].page;
1050 for( ; i<newsize; i++)
1051 nsh->dev[i].page = NULL;
1052 kmem_cache_free(conf->slab_cache, osh);
1053 }
1054 kmem_cache_destroy(conf->slab_cache);
1055
1056 /* Step 3.
1057 * At this point, we are holding all the stripes so the array
1058 * is completely stalled, so now is a good time to resize
1059 * conf->disks.
1060 */
1061 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1062 if (ndisks) {
1063 for (i=0; i<conf->raid_disks; i++)
1064 ndisks[i] = conf->disks[i];
1065 kfree(conf->disks);
1066 conf->disks = ndisks;
1067 } else
1068 err = -ENOMEM;
1069
1070 /* Step 4, return new stripes to service */
1071 while(!list_empty(&newstripes)) {
1072 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1073 list_del_init(&nsh->lru);
1074 for (i=conf->raid_disks; i < newsize; i++)
1075 if (nsh->dev[i].page == NULL) {
1076 struct page *p = alloc_page(GFP_NOIO);
1077 nsh->dev[i].page = p;
1078 if (!p)
1079 err = -ENOMEM;
1080 }
1081 release_stripe(nsh);
1082 }
1083 /* critical section pass, GFP_NOIO no longer needed */
1084
1085 conf->slab_cache = sc;
1086 conf->active_name = 1-conf->active_name;
1087 conf->pool_size = newsize;
1088 return err;
1089}
29269553 1090#endif
1da177e4 1091
3f294f4f 1092static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1093{
1094 struct stripe_head *sh;
1095
3f294f4f
N
1096 spin_lock_irq(&conf->device_lock);
1097 sh = get_free_stripe(conf);
1098 spin_unlock_irq(&conf->device_lock);
1099 if (!sh)
1100 return 0;
78bafebd 1101 BUG_ON(atomic_read(&sh->count));
ad01c9e3 1102 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
1103 kmem_cache_free(conf->slab_cache, sh);
1104 atomic_dec(&conf->active_stripes);
1105 return 1;
1106}
1107
1108static void shrink_stripes(raid5_conf_t *conf)
1109{
1110 while (drop_one_stripe(conf))
1111 ;
1112
29fc7e3e
N
1113 if (conf->slab_cache)
1114 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1115 conf->slab_cache = NULL;
1116}
1117
6712ecf8 1118static void raid5_end_read_request(struct bio * bi, int error)
1da177e4
LT
1119{
1120 struct stripe_head *sh = bi->bi_private;
1121 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1122 int disks = sh->disks, i;
1da177e4 1123 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1124 char b[BDEVNAME_SIZE];
1125 mdk_rdev_t *rdev;
1da177e4 1126
1da177e4
LT
1127
1128 for (i=0 ; i<disks; i++)
1129 if (bi == &sh->dev[i].req)
1130 break;
1131
45b4233c
DW
1132 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1133 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1134 uptodate);
1135 if (i == disks) {
1136 BUG();
6712ecf8 1137 return;
1da177e4
LT
1138 }
1139
1140 if (uptodate) {
1da177e4 1141 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1142 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432
N
1143 rdev = conf->disks[i].rdev;
1144 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1145 mdname(conf->mddev), STRIPE_SECTORS,
1146 (unsigned long long)sh->sector + rdev->data_offset,
1147 bdevname(rdev->bdev, b));
4e5314b5
N
1148 clear_bit(R5_ReadError, &sh->dev[i].flags);
1149 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1150 }
ba22dcbf
N
1151 if (atomic_read(&conf->disks[i].rdev->read_errors))
1152 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1153 } else {
d6950432 1154 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1155 int retry = 0;
d6950432
N
1156 rdev = conf->disks[i].rdev;
1157
1da177e4 1158 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1159 atomic_inc(&rdev->read_errors);
ba22dcbf 1160 if (conf->mddev->degraded)
d6950432
N
1161 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1162 mdname(conf->mddev),
1163 (unsigned long long)sh->sector + rdev->data_offset,
1164 bdn);
ba22dcbf 1165 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1166 /* Oh, no!!! */
d6950432
N
1167 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1168 mdname(conf->mddev),
1169 (unsigned long long)sh->sector + rdev->data_offset,
1170 bdn);
1171 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1172 > conf->max_nr_stripes)
14f8d26b 1173 printk(KERN_WARNING
d6950432
N
1174 "raid5:%s: Too many read errors, failing device %s.\n",
1175 mdname(conf->mddev), bdn);
ba22dcbf
N
1176 else
1177 retry = 1;
1178 if (retry)
1179 set_bit(R5_ReadError, &sh->dev[i].flags);
1180 else {
4e5314b5
N
1181 clear_bit(R5_ReadError, &sh->dev[i].flags);
1182 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1183 md_error(conf->mddev, rdev);
ba22dcbf 1184 }
1da177e4
LT
1185 }
1186 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1187 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1188 set_bit(STRIPE_HANDLE, &sh->state);
1189 release_stripe(sh);
1da177e4
LT
1190}
1191
6712ecf8 1192static void raid5_end_write_request (struct bio *bi, int error)
1da177e4
LT
1193{
1194 struct stripe_head *sh = bi->bi_private;
1195 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1196 int disks = sh->disks, i;
1da177e4
LT
1197 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1198
1da177e4
LT
1199 for (i=0 ; i<disks; i++)
1200 if (bi == &sh->dev[i].req)
1201 break;
1202
45b4233c 1203 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1204 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1205 uptodate);
1206 if (i == disks) {
1207 BUG();
6712ecf8 1208 return;
1da177e4
LT
1209 }
1210
1da177e4
LT
1211 if (!uptodate)
1212 md_error(conf->mddev, conf->disks[i].rdev);
1213
1214 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1215
1216 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1217 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1218 release_stripe(sh);
1da177e4
LT
1219}
1220
1221
1222static sector_t compute_blocknr(struct stripe_head *sh, int i);
1223
1224static void raid5_build_block (struct stripe_head *sh, int i)
1225{
1226 struct r5dev *dev = &sh->dev[i];
1227
1228 bio_init(&dev->req);
1229 dev->req.bi_io_vec = &dev->vec;
1230 dev->req.bi_vcnt++;
1231 dev->req.bi_max_vecs++;
1232 dev->vec.bv_page = dev->page;
1233 dev->vec.bv_len = STRIPE_SIZE;
1234 dev->vec.bv_offset = 0;
1235
1236 dev->req.bi_sector = sh->sector;
1237 dev->req.bi_private = sh;
1238
1239 dev->flags = 0;
16a53ecc 1240 dev->sector = compute_blocknr(sh, i);
1da177e4
LT
1241}
1242
1243static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1244{
1245 char b[BDEVNAME_SIZE];
1246 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
45b4233c 1247 pr_debug("raid5: error called\n");
1da177e4 1248
b2d444d7 1249 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 1250 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
1251 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1252 unsigned long flags;
1253 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1254 mddev->degraded++;
c04be0aa 1255 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1256 /*
1257 * if recovery was running, make sure it aborts.
1258 */
1259 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1260 }
b2d444d7 1261 set_bit(Faulty, &rdev->flags);
1da177e4
LT
1262 printk (KERN_ALERT
1263 "raid5: Disk failure on %s, disabling device."
1264 " Operation continuing on %d devices\n",
02c2de8c 1265 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4 1266 }
16a53ecc 1267}
1da177e4
LT
1268
1269/*
1270 * Input: a 'big' sector number,
1271 * Output: index of the data and parity disk, and the sector # in them.
1272 */
1273static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1274 unsigned int data_disks, unsigned int * dd_idx,
1275 unsigned int * pd_idx, raid5_conf_t *conf)
1276{
1277 long stripe;
1278 unsigned long chunk_number;
1279 unsigned int chunk_offset;
1280 sector_t new_sector;
1281 int sectors_per_chunk = conf->chunk_size >> 9;
1282
1283 /* First compute the information on this sector */
1284
1285 /*
1286 * Compute the chunk number and the sector offset inside the chunk
1287 */
1288 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1289 chunk_number = r_sector;
1290 BUG_ON(r_sector != chunk_number);
1291
1292 /*
1293 * Compute the stripe number
1294 */
1295 stripe = chunk_number / data_disks;
1296
1297 /*
1298 * Compute the data disk and parity disk indexes inside the stripe
1299 */
1300 *dd_idx = chunk_number % data_disks;
1301
1302 /*
1303 * Select the parity disk based on the user selected algorithm.
1304 */
16a53ecc
N
1305 switch(conf->level) {
1306 case 4:
1da177e4 1307 *pd_idx = data_disks;
16a53ecc
N
1308 break;
1309 case 5:
1310 switch (conf->algorithm) {
1da177e4
LT
1311 case ALGORITHM_LEFT_ASYMMETRIC:
1312 *pd_idx = data_disks - stripe % raid_disks;
1313 if (*dd_idx >= *pd_idx)
1314 (*dd_idx)++;
1315 break;
1316 case ALGORITHM_RIGHT_ASYMMETRIC:
1317 *pd_idx = stripe % raid_disks;
1318 if (*dd_idx >= *pd_idx)
1319 (*dd_idx)++;
1320 break;
1321 case ALGORITHM_LEFT_SYMMETRIC:
1322 *pd_idx = data_disks - stripe % raid_disks;
1323 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1324 break;
1325 case ALGORITHM_RIGHT_SYMMETRIC:
1326 *pd_idx = stripe % raid_disks;
1327 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1328 break;
1329 default:
14f8d26b 1330 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1da177e4 1331 conf->algorithm);
16a53ecc
N
1332 }
1333 break;
1334 case 6:
1335
1336 /**** FIX THIS ****/
1337 switch (conf->algorithm) {
1338 case ALGORITHM_LEFT_ASYMMETRIC:
1339 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1340 if (*pd_idx == raid_disks-1)
1341 (*dd_idx)++; /* Q D D D P */
1342 else if (*dd_idx >= *pd_idx)
1343 (*dd_idx) += 2; /* D D P Q D */
1344 break;
1345 case ALGORITHM_RIGHT_ASYMMETRIC:
1346 *pd_idx = stripe % raid_disks;
1347 if (*pd_idx == raid_disks-1)
1348 (*dd_idx)++; /* Q D D D P */
1349 else if (*dd_idx >= *pd_idx)
1350 (*dd_idx) += 2; /* D D P Q D */
1351 break;
1352 case ALGORITHM_LEFT_SYMMETRIC:
1353 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1354 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1355 break;
1356 case ALGORITHM_RIGHT_SYMMETRIC:
1357 *pd_idx = stripe % raid_disks;
1358 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1359 break;
1360 default:
1361 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1362 conf->algorithm);
1363 }
1364 break;
1da177e4
LT
1365 }
1366
1367 /*
1368 * Finally, compute the new sector number
1369 */
1370 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1371 return new_sector;
1372}
1373
1374
1375static sector_t compute_blocknr(struct stripe_head *sh, int i)
1376{
1377 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1378 int raid_disks = sh->disks;
1379 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1380 sector_t new_sector = sh->sector, check;
1381 int sectors_per_chunk = conf->chunk_size >> 9;
1382 sector_t stripe;
1383 int chunk_offset;
1384 int chunk_number, dummy1, dummy2, dd_idx = i;
1385 sector_t r_sector;
1386
16a53ecc 1387
1da177e4
LT
1388 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1389 stripe = new_sector;
1390 BUG_ON(new_sector != stripe);
1391
16a53ecc
N
1392 if (i == sh->pd_idx)
1393 return 0;
1394 switch(conf->level) {
1395 case 4: break;
1396 case 5:
1397 switch (conf->algorithm) {
1da177e4
LT
1398 case ALGORITHM_LEFT_ASYMMETRIC:
1399 case ALGORITHM_RIGHT_ASYMMETRIC:
1400 if (i > sh->pd_idx)
1401 i--;
1402 break;
1403 case ALGORITHM_LEFT_SYMMETRIC:
1404 case ALGORITHM_RIGHT_SYMMETRIC:
1405 if (i < sh->pd_idx)
1406 i += raid_disks;
1407 i -= (sh->pd_idx + 1);
1408 break;
1409 default:
14f8d26b 1410 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
16a53ecc
N
1411 conf->algorithm);
1412 }
1413 break;
1414 case 6:
16a53ecc
N
1415 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1416 return 0; /* It is the Q disk */
1417 switch (conf->algorithm) {
1418 case ALGORITHM_LEFT_ASYMMETRIC:
1419 case ALGORITHM_RIGHT_ASYMMETRIC:
1420 if (sh->pd_idx == raid_disks-1)
1421 i--; /* Q D D D P */
1422 else if (i > sh->pd_idx)
1423 i -= 2; /* D D P Q D */
1424 break;
1425 case ALGORITHM_LEFT_SYMMETRIC:
1426 case ALGORITHM_RIGHT_SYMMETRIC:
1427 if (sh->pd_idx == raid_disks-1)
1428 i--; /* Q D D D P */
1429 else {
1430 /* D D P Q D */
1431 if (i < sh->pd_idx)
1432 i += raid_disks;
1433 i -= (sh->pd_idx + 2);
1434 }
1435 break;
1436 default:
1437 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1da177e4 1438 conf->algorithm);
16a53ecc
N
1439 }
1440 break;
1da177e4
LT
1441 }
1442
1443 chunk_number = stripe * data_disks + i;
1444 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1445
1446 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1447 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
14f8d26b 1448 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
1449 return 0;
1450 }
1451 return r_sector;
1452}
1453
1454
1455
1456/*
16a53ecc
N
1457 * Copy data between a page in the stripe cache, and one or more bion
1458 * The page could align with the middle of the bio, or there could be
1459 * several bion, each with several bio_vecs, which cover part of the page
1460 * Multiple bion are linked together on bi_next. There may be extras
1461 * at the end of this list. We ignore them.
1da177e4
LT
1462 */
1463static void copy_data(int frombio, struct bio *bio,
1464 struct page *page,
1465 sector_t sector)
1466{
1467 char *pa = page_address(page);
1468 struct bio_vec *bvl;
1469 int i;
1470 int page_offset;
1471
1472 if (bio->bi_sector >= sector)
1473 page_offset = (signed)(bio->bi_sector - sector) * 512;
1474 else
1475 page_offset = (signed)(sector - bio->bi_sector) * -512;
1476 bio_for_each_segment(bvl, bio, i) {
1477 int len = bio_iovec_idx(bio,i)->bv_len;
1478 int clen;
1479 int b_offset = 0;
1480
1481 if (page_offset < 0) {
1482 b_offset = -page_offset;
1483 page_offset += b_offset;
1484 len -= b_offset;
1485 }
1486
1487 if (len > 0 && page_offset + len > STRIPE_SIZE)
1488 clen = STRIPE_SIZE - page_offset;
1489 else clen = len;
16a53ecc 1490
1da177e4
LT
1491 if (clen > 0) {
1492 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1493 if (frombio)
1494 memcpy(pa+page_offset, ba+b_offset, clen);
1495 else
1496 memcpy(ba+b_offset, pa+page_offset, clen);
1497 __bio_kunmap_atomic(ba, KM_USER0);
1498 }
1499 if (clen < len) /* hit end of page */
1500 break;
1501 page_offset += len;
1502 }
1503}
1504
9bc89cd8
DW
1505#define check_xor() do { \
1506 if (count == MAX_XOR_BLOCKS) { \
1507 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1508 count = 0; \
1509 } \
1da177e4
LT
1510 } while(0)
1511
16a53ecc
N
1512static void compute_parity6(struct stripe_head *sh, int method)
1513{
1514 raid6_conf_t *conf = sh->raid_conf;
f416885e 1515 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
16a53ecc
N
1516 struct bio *chosen;
1517 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1518 void *ptrs[disks];
1519
1520 qd_idx = raid6_next_disk(pd_idx, disks);
1521 d0_idx = raid6_next_disk(qd_idx, disks);
1522
45b4233c 1523 pr_debug("compute_parity, stripe %llu, method %d\n",
16a53ecc
N
1524 (unsigned long long)sh->sector, method);
1525
1526 switch(method) {
1527 case READ_MODIFY_WRITE:
1528 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1529 case RECONSTRUCT_WRITE:
1530 for (i= disks; i-- ;)
1531 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1532 chosen = sh->dev[i].towrite;
1533 sh->dev[i].towrite = NULL;
1534
1535 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1536 wake_up(&conf->wait_for_overlap);
1537
52e5f9d1 1538 BUG_ON(sh->dev[i].written);
16a53ecc
N
1539 sh->dev[i].written = chosen;
1540 }
1541 break;
1542 case CHECK_PARITY:
1543 BUG(); /* Not implemented yet */
1544 }
1545
1546 for (i = disks; i--;)
1547 if (sh->dev[i].written) {
1548 sector_t sector = sh->dev[i].sector;
1549 struct bio *wbi = sh->dev[i].written;
1550 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1551 copy_data(1, wbi, sh->dev[i].page, sector);
1552 wbi = r5_next_bio(wbi, sector);
1553 }
1554
1555 set_bit(R5_LOCKED, &sh->dev[i].flags);
1556 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1557 }
1558
1559// switch(method) {
1560// case RECONSTRUCT_WRITE:
1561// case CHECK_PARITY:
1562// case UPDATE_PARITY:
1563 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1564 /* FIX: Is this ordering of drives even remotely optimal? */
1565 count = 0;
1566 i = d0_idx;
1567 do {
1568 ptrs[count++] = page_address(sh->dev[i].page);
1569 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1570 printk("block %d/%d not uptodate on parity calc\n", i,count);
1571 i = raid6_next_disk(i, disks);
1572 } while ( i != d0_idx );
1573// break;
1574// }
1575
1576 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1577
1578 switch(method) {
1579 case RECONSTRUCT_WRITE:
1580 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1581 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1582 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1583 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1584 break;
1585 case UPDATE_PARITY:
1586 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1587 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1588 break;
1589 }
1590}
1591
1592
1593/* Compute one missing block */
1594static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1595{
f416885e 1596 int i, count, disks = sh->disks;
9bc89cd8 1597 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
16a53ecc
N
1598 int pd_idx = sh->pd_idx;
1599 int qd_idx = raid6_next_disk(pd_idx, disks);
1600
45b4233c 1601 pr_debug("compute_block_1, stripe %llu, idx %d\n",
16a53ecc
N
1602 (unsigned long long)sh->sector, dd_idx);
1603
1604 if ( dd_idx == qd_idx ) {
1605 /* We're actually computing the Q drive */
1606 compute_parity6(sh, UPDATE_PARITY);
1607 } else {
9bc89cd8
DW
1608 dest = page_address(sh->dev[dd_idx].page);
1609 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1610 count = 0;
16a53ecc
N
1611 for (i = disks ; i--; ) {
1612 if (i == dd_idx || i == qd_idx)
1613 continue;
1614 p = page_address(sh->dev[i].page);
1615 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1616 ptr[count++] = p;
1617 else
1618 printk("compute_block() %d, stripe %llu, %d"
1619 " not present\n", dd_idx,
1620 (unsigned long long)sh->sector, i);
1621
1622 check_xor();
1623 }
9bc89cd8
DW
1624 if (count)
1625 xor_blocks(count, STRIPE_SIZE, dest, ptr);
16a53ecc
N
1626 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1627 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1628 }
1629}
1630
1631/* Compute two missing blocks */
1632static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1633{
f416885e 1634 int i, count, disks = sh->disks;
16a53ecc
N
1635 int pd_idx = sh->pd_idx;
1636 int qd_idx = raid6_next_disk(pd_idx, disks);
1637 int d0_idx = raid6_next_disk(qd_idx, disks);
1638 int faila, failb;
1639
1640 /* faila and failb are disk numbers relative to d0_idx */
1641 /* pd_idx become disks-2 and qd_idx become disks-1 */
1642 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1643 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1644
1645 BUG_ON(faila == failb);
1646 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1647
45b4233c 1648 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
16a53ecc
N
1649 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1650
1651 if ( failb == disks-1 ) {
1652 /* Q disk is one of the missing disks */
1653 if ( faila == disks-2 ) {
1654 /* Missing P+Q, just recompute */
1655 compute_parity6(sh, UPDATE_PARITY);
1656 return;
1657 } else {
1658 /* We're missing D+Q; recompute D from P */
1659 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1660 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1661 return;
1662 }
1663 }
1664
1665 /* We're missing D+P or D+D; build pointer table */
1666 {
1667 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1668 void *ptrs[disks];
1669
1670 count = 0;
1671 i = d0_idx;
1672 do {
1673 ptrs[count++] = page_address(sh->dev[i].page);
1674 i = raid6_next_disk(i, disks);
1675 if (i != dd_idx1 && i != dd_idx2 &&
1676 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1677 printk("compute_2 with missing block %d/%d\n", count, i);
1678 } while ( i != d0_idx );
1679
1680 if ( failb == disks-2 ) {
1681 /* We're missing D+P. */
1682 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1683 } else {
1684 /* We're missing D+D. */
1685 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1686 }
1687
1688 /* Both the above update both missing blocks */
1689 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1690 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1691 }
1692}
1693
e33129d8
DW
1694static int
1695handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1696{
1697 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1698 int locked = 0;
1699
1700 if (rcw) {
1701 /* if we are not expanding this is a proper write request, and
1702 * there will be bios with new data to be drained into the
1703 * stripe cache
1704 */
1705 if (!expand) {
1706 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1707 sh->ops.count++;
1708 }
16a53ecc 1709
e33129d8
DW
1710 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1711 sh->ops.count++;
1712
1713 for (i = disks; i--; ) {
1714 struct r5dev *dev = &sh->dev[i];
1715
1716 if (dev->towrite) {
1717 set_bit(R5_LOCKED, &dev->flags);
1718 if (!expand)
1719 clear_bit(R5_UPTODATE, &dev->flags);
1720 locked++;
1721 }
1722 }
1723 } else {
1724 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1725 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1726
1727 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1728 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1729 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1730
1731 sh->ops.count += 3;
1732
1733 for (i = disks; i--; ) {
1734 struct r5dev *dev = &sh->dev[i];
1735 if (i == pd_idx)
1736 continue;
1737
1738 /* For a read-modify write there may be blocks that are
1739 * locked for reading while others are ready to be
1740 * written so we distinguish these blocks by the
1741 * R5_Wantprexor bit
1742 */
1743 if (dev->towrite &&
1744 (test_bit(R5_UPTODATE, &dev->flags) ||
1745 test_bit(R5_Wantcompute, &dev->flags))) {
1746 set_bit(R5_Wantprexor, &dev->flags);
1747 set_bit(R5_LOCKED, &dev->flags);
1748 clear_bit(R5_UPTODATE, &dev->flags);
1749 locked++;
1750 }
1751 }
1752 }
1753
1754 /* keep the parity disk locked while asynchronous operations
1755 * are in flight
1756 */
1757 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1758 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1759 locked++;
1760
1761 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1762 __FUNCTION__, (unsigned long long)sh->sector,
1763 locked, sh->ops.pending);
1764
1765 return locked;
1766}
16a53ecc 1767
1da177e4
LT
1768/*
1769 * Each stripe/dev can have one or more bion attached.
16a53ecc 1770 * toread/towrite point to the first in a chain.
1da177e4
LT
1771 * The bi_next chain must be in order.
1772 */
1773static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1774{
1775 struct bio **bip;
1776 raid5_conf_t *conf = sh->raid_conf;
72626685 1777 int firstwrite=0;
1da177e4 1778
45b4233c 1779 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
1780 (unsigned long long)bi->bi_sector,
1781 (unsigned long long)sh->sector);
1782
1783
1784 spin_lock(&sh->lock);
1785 spin_lock_irq(&conf->device_lock);
72626685 1786 if (forwrite) {
1da177e4 1787 bip = &sh->dev[dd_idx].towrite;
72626685
N
1788 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1789 firstwrite = 1;
1790 } else
1da177e4
LT
1791 bip = &sh->dev[dd_idx].toread;
1792 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1793 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1794 goto overlap;
1795 bip = & (*bip)->bi_next;
1796 }
1797 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1798 goto overlap;
1799
78bafebd 1800 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
1801 if (*bip)
1802 bi->bi_next = *bip;
1803 *bip = bi;
1804 bi->bi_phys_segments ++;
1805 spin_unlock_irq(&conf->device_lock);
1806 spin_unlock(&sh->lock);
1807
45b4233c 1808 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
1809 (unsigned long long)bi->bi_sector,
1810 (unsigned long long)sh->sector, dd_idx);
1811
72626685 1812 if (conf->mddev->bitmap && firstwrite) {
72626685
N
1813 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1814 STRIPE_SECTORS, 0);
ae3c20cc 1815 sh->bm_seq = conf->seq_flush+1;
72626685
N
1816 set_bit(STRIPE_BIT_DELAY, &sh->state);
1817 }
1818
1da177e4
LT
1819 if (forwrite) {
1820 /* check if page is covered */
1821 sector_t sector = sh->dev[dd_idx].sector;
1822 for (bi=sh->dev[dd_idx].towrite;
1823 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1824 bi && bi->bi_sector <= sector;
1825 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1826 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1827 sector = bi->bi_sector + (bi->bi_size>>9);
1828 }
1829 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1830 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1831 }
1832 return 1;
1833
1834 overlap:
1835 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1836 spin_unlock_irq(&conf->device_lock);
1837 spin_unlock(&sh->lock);
1838 return 0;
1839}
1840
29269553
N
1841static void end_reshape(raid5_conf_t *conf);
1842
16a53ecc
N
1843static int page_is_zero(struct page *p)
1844{
1845 char *a = page_address(p);
1846 return ((*(u32*)a) == 0 &&
1847 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1848}
1849
ccfcc3c1
N
1850static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1851{
1852 int sectors_per_chunk = conf->chunk_size >> 9;
ccfcc3c1 1853 int pd_idx, dd_idx;
2d2063ce
CQH
1854 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1855
b875e531
N
1856 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1857 *sectors_per_chunk + chunk_offset,
1858 disks, disks - conf->max_degraded,
1859 &dd_idx, &pd_idx, conf);
ccfcc3c1
N
1860 return pd_idx;
1861}
1862
a4456856
DW
1863static void
1864handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1865 struct stripe_head_state *s, int disks,
1866 struct bio **return_bi)
1867{
1868 int i;
1869 for (i = disks; i--; ) {
1870 struct bio *bi;
1871 int bitmap_end = 0;
1872
1873 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1874 mdk_rdev_t *rdev;
1875 rcu_read_lock();
1876 rdev = rcu_dereference(conf->disks[i].rdev);
1877 if (rdev && test_bit(In_sync, &rdev->flags))
1878 /* multiple read failures in one stripe */
1879 md_error(conf->mddev, rdev);
1880 rcu_read_unlock();
1881 }
1882 spin_lock_irq(&conf->device_lock);
1883 /* fail all writes first */
1884 bi = sh->dev[i].towrite;
1885 sh->dev[i].towrite = NULL;
1886 if (bi) {
1887 s->to_write--;
1888 bitmap_end = 1;
1889 }
1890
1891 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1892 wake_up(&conf->wait_for_overlap);
1893
1894 while (bi && bi->bi_sector <
1895 sh->dev[i].sector + STRIPE_SECTORS) {
1896 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1897 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1898 if (--bi->bi_phys_segments == 0) {
1899 md_write_end(conf->mddev);
1900 bi->bi_next = *return_bi;
1901 *return_bi = bi;
1902 }
1903 bi = nextbi;
1904 }
1905 /* and fail all 'written' */
1906 bi = sh->dev[i].written;
1907 sh->dev[i].written = NULL;
1908 if (bi) bitmap_end = 1;
1909 while (bi && bi->bi_sector <
1910 sh->dev[i].sector + STRIPE_SECTORS) {
1911 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1912 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1913 if (--bi->bi_phys_segments == 0) {
1914 md_write_end(conf->mddev);
1915 bi->bi_next = *return_bi;
1916 *return_bi = bi;
1917 }
1918 bi = bi2;
1919 }
1920
b5e98d65
DW
1921 /* fail any reads if this device is non-operational and
1922 * the data has not reached the cache yet.
1923 */
1924 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1925 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1926 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
1927 bi = sh->dev[i].toread;
1928 sh->dev[i].toread = NULL;
1929 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1930 wake_up(&conf->wait_for_overlap);
1931 if (bi) s->to_read--;
1932 while (bi && bi->bi_sector <
1933 sh->dev[i].sector + STRIPE_SECTORS) {
1934 struct bio *nextbi =
1935 r5_next_bio(bi, sh->dev[i].sector);
1936 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1937 if (--bi->bi_phys_segments == 0) {
1938 bi->bi_next = *return_bi;
1939 *return_bi = bi;
1940 }
1941 bi = nextbi;
1942 }
1943 }
1944 spin_unlock_irq(&conf->device_lock);
1945 if (bitmap_end)
1946 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1947 STRIPE_SECTORS, 0, 0);
1948 }
1949
1950}
1951
f38e1219
DW
1952/* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1953 * to process
1954 */
1955static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1956 struct stripe_head_state *s, int disk_idx, int disks)
1957{
1958 struct r5dev *dev = &sh->dev[disk_idx];
1959 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1960
1961 /* don't schedule compute operations or reads on the parity block while
1962 * a check is in flight
1963 */
1964 if ((disk_idx == sh->pd_idx) &&
1965 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1966 return ~0;
1967
1968 /* is the data in this block needed, and can we get it? */
1969 if (!test_bit(R5_LOCKED, &dev->flags) &&
1970 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1971 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1972 s->syncing || s->expanding || (s->failed &&
1973 (failed_dev->toread || (failed_dev->towrite &&
1974 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1975 ))))) {
1976 /* 1/ We would like to get this block, possibly by computing it,
1977 * but we might not be able to.
1978 *
1979 * 2/ Since parity check operations potentially make the parity
1980 * block !uptodate it will need to be refreshed before any
1981 * compute operations on data disks are scheduled.
1982 *
1983 * 3/ We hold off parity block re-reads until check operations
1984 * have quiesced.
1985 */
1986 if ((s->uptodate == disks - 1) &&
1987 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1988 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1989 set_bit(R5_Wantcompute, &dev->flags);
1990 sh->ops.target = disk_idx;
1991 s->req_compute = 1;
1992 sh->ops.count++;
1993 /* Careful: from this point on 'uptodate' is in the eye
1994 * of raid5_run_ops which services 'compute' operations
1995 * before writes. R5_Wantcompute flags a block that will
1996 * be R5_UPTODATE by the time it is needed for a
1997 * subsequent operation.
1998 */
1999 s->uptodate++;
2000 return 0; /* uptodate + compute == disks */
2001 } else if ((s->uptodate < disks - 1) &&
2002 test_bit(R5_Insync, &dev->flags)) {
2003 /* Note: we hold off compute operations while checks are
2004 * in flight, but we still prefer 'compute' over 'read'
2005 * hence we only read if (uptodate < * disks-1)
2006 */
2007 set_bit(R5_LOCKED, &dev->flags);
2008 set_bit(R5_Wantread, &dev->flags);
2009 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2010 sh->ops.count++;
2011 s->locked++;
2012 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2013 s->syncing);
2014 }
2015 }
2016
2017 return ~0;
2018}
2019
a4456856
DW
2020static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2021 struct stripe_head_state *s, int disks)
2022{
2023 int i;
f38e1219
DW
2024
2025 /* Clear completed compute operations. Parity recovery
2026 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2027 * later on in this routine
2028 */
2029 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2030 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2031 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2032 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2033 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2034 }
2035
2036 /* look for blocks to read/compute, skip this if a compute
2037 * is already in flight, or if the stripe contents are in the
2038 * midst of changing due to a write
2039 */
2040 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2041 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2042 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2043 for (i = disks; i--; )
2044 if (__handle_issuing_new_read_requests5(
2045 sh, s, i, disks) == 0)
2046 break;
a4456856
DW
2047 }
2048 set_bit(STRIPE_HANDLE, &sh->state);
2049}
2050
2051static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2052 struct stripe_head_state *s, struct r6_state *r6s,
2053 int disks)
2054{
2055 int i;
2056 for (i = disks; i--; ) {
2057 struct r5dev *dev = &sh->dev[i];
2058 if (!test_bit(R5_LOCKED, &dev->flags) &&
2059 !test_bit(R5_UPTODATE, &dev->flags) &&
2060 (dev->toread || (dev->towrite &&
2061 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2062 s->syncing || s->expanding ||
2063 (s->failed >= 1 &&
2064 (sh->dev[r6s->failed_num[0]].toread ||
2065 s->to_write)) ||
2066 (s->failed >= 2 &&
2067 (sh->dev[r6s->failed_num[1]].toread ||
2068 s->to_write)))) {
2069 /* we would like to get this block, possibly
2070 * by computing it, but we might not be able to
2071 */
2072 if (s->uptodate == disks-1) {
45b4233c 2073 pr_debug("Computing stripe %llu block %d\n",
a4456856
DW
2074 (unsigned long long)sh->sector, i);
2075 compute_block_1(sh, i, 0);
2076 s->uptodate++;
2077 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2078 /* Computing 2-failure is *very* expensive; only
2079 * do it if failed >= 2
2080 */
2081 int other;
2082 for (other = disks; other--; ) {
2083 if (other == i)
2084 continue;
2085 if (!test_bit(R5_UPTODATE,
2086 &sh->dev[other].flags))
2087 break;
2088 }
2089 BUG_ON(other < 0);
45b4233c 2090 pr_debug("Computing stripe %llu blocks %d,%d\n",
a4456856
DW
2091 (unsigned long long)sh->sector,
2092 i, other);
2093 compute_block_2(sh, i, other);
2094 s->uptodate += 2;
2095 } else if (test_bit(R5_Insync, &dev->flags)) {
2096 set_bit(R5_LOCKED, &dev->flags);
2097 set_bit(R5_Wantread, &dev->flags);
2098 s->locked++;
45b4233c 2099 pr_debug("Reading block %d (sync=%d)\n",
a4456856
DW
2100 i, s->syncing);
2101 }
2102 }
2103 }
2104 set_bit(STRIPE_HANDLE, &sh->state);
2105}
2106
2107
2108/* handle_completed_write_requests
2109 * any written block on an uptodate or failed drive can be returned.
2110 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2111 * never LOCKED, so we don't need to test 'failed' directly.
2112 */
2113static void handle_completed_write_requests(raid5_conf_t *conf,
2114 struct stripe_head *sh, int disks, struct bio **return_bi)
2115{
2116 int i;
2117 struct r5dev *dev;
2118
2119 for (i = disks; i--; )
2120 if (sh->dev[i].written) {
2121 dev = &sh->dev[i];
2122 if (!test_bit(R5_LOCKED, &dev->flags) &&
2123 test_bit(R5_UPTODATE, &dev->flags)) {
2124 /* We can return any write requests */
2125 struct bio *wbi, *wbi2;
2126 int bitmap_end = 0;
45b4233c 2127 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2128 spin_lock_irq(&conf->device_lock);
2129 wbi = dev->written;
2130 dev->written = NULL;
2131 while (wbi && wbi->bi_sector <
2132 dev->sector + STRIPE_SECTORS) {
2133 wbi2 = r5_next_bio(wbi, dev->sector);
2134 if (--wbi->bi_phys_segments == 0) {
2135 md_write_end(conf->mddev);
2136 wbi->bi_next = *return_bi;
2137 *return_bi = wbi;
2138 }
2139 wbi = wbi2;
2140 }
2141 if (dev->towrite == NULL)
2142 bitmap_end = 1;
2143 spin_unlock_irq(&conf->device_lock);
2144 if (bitmap_end)
2145 bitmap_endwrite(conf->mddev->bitmap,
2146 sh->sector,
2147 STRIPE_SECTORS,
2148 !test_bit(STRIPE_DEGRADED, &sh->state),
2149 0);
2150 }
2151 }
2152}
2153
2154static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2155 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2156{
2157 int rmw = 0, rcw = 0, i;
2158 for (i = disks; i--; ) {
2159 /* would I have to read this buffer for read_modify_write */
2160 struct r5dev *dev = &sh->dev[i];
2161 if ((dev->towrite || i == sh->pd_idx) &&
2162 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2163 !(test_bit(R5_UPTODATE, &dev->flags) ||
2164 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2165 if (test_bit(R5_Insync, &dev->flags))
2166 rmw++;
2167 else
2168 rmw += 2*disks; /* cannot read it */
2169 }
2170 /* Would I have to read this buffer for reconstruct_write */
2171 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2172 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2173 !(test_bit(R5_UPTODATE, &dev->flags) ||
2174 test_bit(R5_Wantcompute, &dev->flags))) {
2175 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2176 else
2177 rcw += 2*disks;
2178 }
2179 }
45b4233c 2180 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2181 (unsigned long long)sh->sector, rmw, rcw);
2182 set_bit(STRIPE_HANDLE, &sh->state);
2183 if (rmw < rcw && rmw > 0)
2184 /* prefer read-modify-write, but need to get some data */
2185 for (i = disks; i--; ) {
2186 struct r5dev *dev = &sh->dev[i];
2187 if ((dev->towrite || i == sh->pd_idx) &&
2188 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2189 !(test_bit(R5_UPTODATE, &dev->flags) ||
2190 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2191 test_bit(R5_Insync, &dev->flags)) {
2192 if (
2193 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2194 pr_debug("Read_old block "
a4456856
DW
2195 "%d for r-m-w\n", i);
2196 set_bit(R5_LOCKED, &dev->flags);
2197 set_bit(R5_Wantread, &dev->flags);
830ea016
DW
2198 if (!test_and_set_bit(
2199 STRIPE_OP_IO, &sh->ops.pending))
2200 sh->ops.count++;
a4456856
DW
2201 s->locked++;
2202 } else {
2203 set_bit(STRIPE_DELAYED, &sh->state);
2204 set_bit(STRIPE_HANDLE, &sh->state);
2205 }
2206 }
2207 }
2208 if (rcw <= rmw && rcw > 0)
2209 /* want reconstruct write, but need to get some data */
2210 for (i = disks; i--; ) {
2211 struct r5dev *dev = &sh->dev[i];
2212 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2213 i != sh->pd_idx &&
2214 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2215 !(test_bit(R5_UPTODATE, &dev->flags) ||
2216 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2217 test_bit(R5_Insync, &dev->flags)) {
2218 if (
2219 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2220 pr_debug("Read_old block "
a4456856
DW
2221 "%d for Reconstruct\n", i);
2222 set_bit(R5_LOCKED, &dev->flags);
2223 set_bit(R5_Wantread, &dev->flags);
830ea016
DW
2224 if (!test_and_set_bit(
2225 STRIPE_OP_IO, &sh->ops.pending))
2226 sh->ops.count++;
a4456856
DW
2227 s->locked++;
2228 } else {
2229 set_bit(STRIPE_DELAYED, &sh->state);
2230 set_bit(STRIPE_HANDLE, &sh->state);
2231 }
2232 }
2233 }
2234 /* now if nothing is locked, and if we have enough data,
2235 * we can start a write request
2236 */
f38e1219
DW
2237 /* since handle_stripe can be called at any time we need to handle the
2238 * case where a compute block operation has been submitted and then a
2239 * subsequent call wants to start a write request. raid5_run_ops only
2240 * handles the case where compute block and postxor are requested
2241 * simultaneously. If this is not the case then new writes need to be
2242 * held off until the compute completes.
2243 */
2244 if ((s->req_compute ||
2245 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2246 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2247 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
e33129d8 2248 s->locked += handle_write_operations5(sh, rcw == 0, 0);
a4456856
DW
2249}
2250
2251static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2252 struct stripe_head *sh, struct stripe_head_state *s,
2253 struct r6_state *r6s, int disks)
2254{
2255 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2256 int qd_idx = r6s->qd_idx;
2257 for (i = disks; i--; ) {
2258 struct r5dev *dev = &sh->dev[i];
2259 /* Would I have to read this buffer for reconstruct_write */
2260 if (!test_bit(R5_OVERWRITE, &dev->flags)
2261 && i != pd_idx && i != qd_idx
2262 && (!test_bit(R5_LOCKED, &dev->flags)
2263 ) &&
2264 !test_bit(R5_UPTODATE, &dev->flags)) {
2265 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2266 else {
45b4233c 2267 pr_debug("raid6: must_compute: "
a4456856
DW
2268 "disk %d flags=%#lx\n", i, dev->flags);
2269 must_compute++;
2270 }
2271 }
2272 }
45b4233c 2273 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
a4456856
DW
2274 (unsigned long long)sh->sector, rcw, must_compute);
2275 set_bit(STRIPE_HANDLE, &sh->state);
2276
2277 if (rcw > 0)
2278 /* want reconstruct write, but need to get some data */
2279 for (i = disks; i--; ) {
2280 struct r5dev *dev = &sh->dev[i];
2281 if (!test_bit(R5_OVERWRITE, &dev->flags)
2282 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2283 && !test_bit(R5_LOCKED, &dev->flags) &&
2284 !test_bit(R5_UPTODATE, &dev->flags) &&
2285 test_bit(R5_Insync, &dev->flags)) {
2286 if (
2287 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2288 pr_debug("Read_old stripe %llu "
a4456856
DW
2289 "block %d for Reconstruct\n",
2290 (unsigned long long)sh->sector, i);
2291 set_bit(R5_LOCKED, &dev->flags);
2292 set_bit(R5_Wantread, &dev->flags);
2293 s->locked++;
2294 } else {
45b4233c 2295 pr_debug("Request delayed stripe %llu "
a4456856
DW
2296 "block %d for Reconstruct\n",
2297 (unsigned long long)sh->sector, i);
2298 set_bit(STRIPE_DELAYED, &sh->state);
2299 set_bit(STRIPE_HANDLE, &sh->state);
2300 }
2301 }
2302 }
2303 /* now if nothing is locked, and if we have enough data, we can start a
2304 * write request
2305 */
2306 if (s->locked == 0 && rcw == 0 &&
2307 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2308 if (must_compute > 0) {
2309 /* We have failed blocks and need to compute them */
2310 switch (s->failed) {
2311 case 0:
2312 BUG();
2313 case 1:
2314 compute_block_1(sh, r6s->failed_num[0], 0);
2315 break;
2316 case 2:
2317 compute_block_2(sh, r6s->failed_num[0],
2318 r6s->failed_num[1]);
2319 break;
2320 default: /* This request should have been failed? */
2321 BUG();
2322 }
2323 }
2324
45b4233c 2325 pr_debug("Computing parity for stripe %llu\n",
a4456856
DW
2326 (unsigned long long)sh->sector);
2327 compute_parity6(sh, RECONSTRUCT_WRITE);
2328 /* now every locked buffer is ready to be written */
2329 for (i = disks; i--; )
2330 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
45b4233c 2331 pr_debug("Writing stripe %llu block %d\n",
a4456856
DW
2332 (unsigned long long)sh->sector, i);
2333 s->locked++;
2334 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2335 }
2336 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2337 set_bit(STRIPE_INSYNC, &sh->state);
2338
2339 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2340 atomic_dec(&conf->preread_active_stripes);
2341 if (atomic_read(&conf->preread_active_stripes) <
2342 IO_THRESHOLD)
2343 md_wakeup_thread(conf->mddev->thread);
2344 }
2345 }
2346}
2347
2348static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2349 struct stripe_head_state *s, int disks)
2350{
2351 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962
DW
2352 /* Take one of the following actions:
2353 * 1/ start a check parity operation if (uptodate == disks)
2354 * 2/ finish a check parity operation and act on the result
2355 * 3/ skip to the writeback section if we previously
2356 * initiated a recovery operation
2357 */
2358 if (s->failed == 0 &&
2359 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2360 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2361 BUG_ON(s->uptodate != disks);
2362 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2363 sh->ops.count++;
2364 s->uptodate--;
2365 } else if (
2366 test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2367 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2368 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2369
2370 if (sh->ops.zero_sum_result == 0)
2371 /* parity is correct (on disc,
2372 * not in buffer any more)
2373 */
a4456856
DW
2374 set_bit(STRIPE_INSYNC, &sh->state);
2375 else {
e89f8962
DW
2376 conf->mddev->resync_mismatches +=
2377 STRIPE_SECTORS;
2378 if (test_bit(
2379 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2380 /* don't try to repair!! */
2381 set_bit(STRIPE_INSYNC, &sh->state);
2382 else {
2383 set_bit(STRIPE_OP_COMPUTE_BLK,
2384 &sh->ops.pending);
2385 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2386 &sh->ops.pending);
2387 set_bit(R5_Wantcompute,
2388 &sh->dev[sh->pd_idx].flags);
2389 sh->ops.target = sh->pd_idx;
2390 sh->ops.count++;
2391 s->uptodate++;
2392 }
a4456856
DW
2393 }
2394 }
2395 }
e89f8962
DW
2396
2397 /* check if we can clear a parity disk reconstruct */
2398 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2399 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2400
2401 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2402 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2403 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2404 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2405 }
2406
2407 /* Wait for check parity and compute block operations to complete
2408 * before write-back
2409 */
2410 if (!test_bit(STRIPE_INSYNC, &sh->state) &&
2411 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2412 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
a4456856
DW
2413 struct r5dev *dev;
2414 /* either failed parity check, or recovery is happening */
2415 if (s->failed == 0)
2416 s->failed_num = sh->pd_idx;
2417 dev = &sh->dev[s->failed_num];
2418 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2419 BUG_ON(s->uptodate != disks);
2420
2421 set_bit(R5_LOCKED, &dev->flags);
2422 set_bit(R5_Wantwrite, &dev->flags);
830ea016
DW
2423 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2424 sh->ops.count++;
2425
a4456856
DW
2426 clear_bit(STRIPE_DEGRADED, &sh->state);
2427 s->locked++;
2428 set_bit(STRIPE_INSYNC, &sh->state);
2429 }
2430}
2431
2432
2433static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2434 struct stripe_head_state *s,
2435 struct r6_state *r6s, struct page *tmp_page,
2436 int disks)
2437{
2438 int update_p = 0, update_q = 0;
2439 struct r5dev *dev;
2440 int pd_idx = sh->pd_idx;
2441 int qd_idx = r6s->qd_idx;
2442
2443 set_bit(STRIPE_HANDLE, &sh->state);
2444
2445 BUG_ON(s->failed > 2);
2446 BUG_ON(s->uptodate < disks);
2447 /* Want to check and possibly repair P and Q.
2448 * However there could be one 'failed' device, in which
2449 * case we can only check one of them, possibly using the
2450 * other to generate missing data
2451 */
2452
2453 /* If !tmp_page, we cannot do the calculations,
2454 * but as we have set STRIPE_HANDLE, we will soon be called
2455 * by stripe_handle with a tmp_page - just wait until then.
2456 */
2457 if (tmp_page) {
2458 if (s->failed == r6s->q_failed) {
2459 /* The only possible failed device holds 'Q', so it
2460 * makes sense to check P (If anything else were failed,
2461 * we would have used P to recreate it).
2462 */
2463 compute_block_1(sh, pd_idx, 1);
2464 if (!page_is_zero(sh->dev[pd_idx].page)) {
2465 compute_block_1(sh, pd_idx, 0);
2466 update_p = 1;
2467 }
2468 }
2469 if (!r6s->q_failed && s->failed < 2) {
2470 /* q is not failed, and we didn't use it to generate
2471 * anything, so it makes sense to check it
2472 */
2473 memcpy(page_address(tmp_page),
2474 page_address(sh->dev[qd_idx].page),
2475 STRIPE_SIZE);
2476 compute_parity6(sh, UPDATE_PARITY);
2477 if (memcmp(page_address(tmp_page),
2478 page_address(sh->dev[qd_idx].page),
2479 STRIPE_SIZE) != 0) {
2480 clear_bit(STRIPE_INSYNC, &sh->state);
2481 update_q = 1;
2482 }
2483 }
2484 if (update_p || update_q) {
2485 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2486 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2487 /* don't try to repair!! */
2488 update_p = update_q = 0;
2489 }
2490
2491 /* now write out any block on a failed drive,
2492 * or P or Q if they need it
2493 */
2494
2495 if (s->failed == 2) {
2496 dev = &sh->dev[r6s->failed_num[1]];
2497 s->locked++;
2498 set_bit(R5_LOCKED, &dev->flags);
2499 set_bit(R5_Wantwrite, &dev->flags);
2500 }
2501 if (s->failed >= 1) {
2502 dev = &sh->dev[r6s->failed_num[0]];
2503 s->locked++;
2504 set_bit(R5_LOCKED, &dev->flags);
2505 set_bit(R5_Wantwrite, &dev->flags);
2506 }
2507
2508 if (update_p) {
2509 dev = &sh->dev[pd_idx];
2510 s->locked++;
2511 set_bit(R5_LOCKED, &dev->flags);
2512 set_bit(R5_Wantwrite, &dev->flags);
2513 }
2514 if (update_q) {
2515 dev = &sh->dev[qd_idx];
2516 s->locked++;
2517 set_bit(R5_LOCKED, &dev->flags);
2518 set_bit(R5_Wantwrite, &dev->flags);
2519 }
2520 clear_bit(STRIPE_DEGRADED, &sh->state);
2521
2522 set_bit(STRIPE_INSYNC, &sh->state);
2523 }
2524}
2525
2526static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2527 struct r6_state *r6s)
2528{
2529 int i;
2530
2531 /* We have read all the blocks in this stripe and now we need to
2532 * copy some of them into a target stripe for expand.
2533 */
f0a50d37 2534 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2535 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2536 for (i = 0; i < sh->disks; i++)
a2e08551 2537 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
a4456856
DW
2538 int dd_idx, pd_idx, j;
2539 struct stripe_head *sh2;
2540
2541 sector_t bn = compute_blocknr(sh, i);
2542 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2543 conf->raid_disks -
2544 conf->max_degraded, &dd_idx,
2545 &pd_idx, conf);
2546 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2547 pd_idx, 1);
2548 if (sh2 == NULL)
2549 /* so far only the early blocks of this stripe
2550 * have been requested. When later blocks
2551 * get requested, we will try again
2552 */
2553 continue;
2554 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2555 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2556 /* must have already done this block */
2557 release_stripe(sh2);
2558 continue;
2559 }
f0a50d37
DW
2560
2561 /* place all the copies on one channel */
2562 tx = async_memcpy(sh2->dev[dd_idx].page,
2563 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2564 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2565
a4456856
DW
2566 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2567 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2568 for (j = 0; j < conf->raid_disks; j++)
2569 if (j != sh2->pd_idx &&
a2e08551
N
2570 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2571 sh2->disks)) &&
a4456856
DW
2572 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2573 break;
2574 if (j == conf->raid_disks) {
2575 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2576 set_bit(STRIPE_HANDLE, &sh2->state);
2577 }
2578 release_stripe(sh2);
f0a50d37 2579
a4456856 2580 }
a2e08551
N
2581 /* done submitting copies, wait for them to complete */
2582 if (tx) {
2583 async_tx_ack(tx);
2584 dma_wait_for_async_tx(tx);
2585 }
a4456856 2586}
1da177e4
LT
2587
2588/*
2589 * handle_stripe - do things to a stripe.
2590 *
2591 * We lock the stripe and then examine the state of various bits
2592 * to see what needs to be done.
2593 * Possible results:
2594 * return some read request which now have data
2595 * return some write requests which are safely on disc
2596 * schedule a read on some buffers
2597 * schedule a write of some buffers
2598 * return confirmation of parity correctness
2599 *
1da177e4
LT
2600 * buffers are taken off read_list or write_list, and bh_cache buffers
2601 * get BH_Lock set before the stripe lock is released.
2602 *
2603 */
a4456856 2604
16a53ecc 2605static void handle_stripe5(struct stripe_head *sh)
1da177e4
LT
2606{
2607 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
2608 int disks = sh->disks, i;
2609 struct bio *return_bi = NULL;
2610 struct stripe_head_state s;
1da177e4 2611 struct r5dev *dev;
d84e0f10 2612 unsigned long pending = 0;
1da177e4 2613
a4456856 2614 memset(&s, 0, sizeof(s));
d84e0f10
DW
2615 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2616 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2617 atomic_read(&sh->count), sh->pd_idx,
2618 sh->ops.pending, sh->ops.ack, sh->ops.complete);
1da177e4
LT
2619
2620 spin_lock(&sh->lock);
2621 clear_bit(STRIPE_HANDLE, &sh->state);
2622 clear_bit(STRIPE_DELAYED, &sh->state);
2623
a4456856
DW
2624 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2625 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2626 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1da177e4
LT
2627 /* Now to look around and see what can be done */
2628
def6ae26
NB
2629 /* clean-up completed biofill operations */
2630 if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2631 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2632 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2633 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2634 }
2635
9910f16a 2636 rcu_read_lock();
1da177e4
LT
2637 for (i=disks; i--; ) {
2638 mdk_rdev_t *rdev;
a4456856 2639 struct r5dev *dev = &sh->dev[i];
1da177e4 2640 clear_bit(R5_Insync, &dev->flags);
1da177e4 2641
b5e98d65
DW
2642 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2643 "written %p\n", i, dev->flags, dev->toread, dev->read,
2644 dev->towrite, dev->written);
2645
2646 /* maybe we can request a biofill operation
2647 *
2648 * new wantfill requests are only permitted while
2649 * STRIPE_OP_BIOFILL is clear
2650 */
2651 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2652 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2653 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
2654
2655 /* now count some things */
a4456856
DW
2656 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2657 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 2658 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 2659
b5e98d65
DW
2660 if (test_bit(R5_Wantfill, &dev->flags))
2661 s.to_fill++;
2662 else if (dev->toread)
a4456856 2663 s.to_read++;
1da177e4 2664 if (dev->towrite) {
a4456856 2665 s.to_write++;
1da177e4 2666 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2667 s.non_overwrite++;
1da177e4 2668 }
a4456856
DW
2669 if (dev->written)
2670 s.written++;
9910f16a 2671 rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 2672 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 2673 /* The ReadError flag will just be confusing now */
4e5314b5
N
2674 clear_bit(R5_ReadError, &dev->flags);
2675 clear_bit(R5_ReWrite, &dev->flags);
2676 }
b2d444d7 2677 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 2678 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2679 s.failed++;
2680 s.failed_num = i;
1da177e4
LT
2681 } else
2682 set_bit(R5_Insync, &dev->flags);
2683 }
9910f16a 2684 rcu_read_unlock();
b5e98d65
DW
2685
2686 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2687 sh->ops.count++;
2688
45b4233c 2689 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 2690 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
2691 s.locked, s.uptodate, s.to_read, s.to_write,
2692 s.failed, s.failed_num);
1da177e4
LT
2693 /* check if the array has lost two devices and, if so, some requests might
2694 * need to be failed
2695 */
a4456856
DW
2696 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2697 handle_requests_to_failed_array(conf, sh, &s, disks,
2698 &return_bi);
2699 if (s.failed > 1 && s.syncing) {
1da177e4
LT
2700 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2701 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2702 s.syncing = 0;
1da177e4
LT
2703 }
2704
2705 /* might be able to return some write requests if the parity block
2706 * is safe, or on a failed drive
2707 */
2708 dev = &sh->dev[sh->pd_idx];
a4456856
DW
2709 if ( s.written &&
2710 ((test_bit(R5_Insync, &dev->flags) &&
2711 !test_bit(R5_LOCKED, &dev->flags) &&
2712 test_bit(R5_UPTODATE, &dev->flags)) ||
2713 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2714 handle_completed_write_requests(conf, sh, disks, &return_bi);
1da177e4
LT
2715
2716 /* Now we might consider reading some blocks, either to check/generate
2717 * parity, or to satisfy requests
2718 * or to load a block that is being partially written.
2719 */
a4456856 2720 if (s.to_read || s.non_overwrite ||
f38e1219
DW
2721 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2722 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
a4456856 2723 handle_issuing_new_read_requests5(sh, &s, disks);
1da177e4 2724
e33129d8
DW
2725 /* Now we check to see if any write operations have recently
2726 * completed
2727 */
2728
2729 /* leave prexor set until postxor is done, allows us to distinguish
2730 * a rmw from a rcw during biodrain
2731 */
2732 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2733 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2734
2735 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2736 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2737 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2738
2739 for (i = disks; i--; )
2740 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2741 }
2742
2743 /* if only POSTXOR is set then this is an 'expand' postxor */
2744 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2745 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2746
2747 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2748 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2749 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2750
2751 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2752 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2753 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2754
2755 /* All the 'written' buffers and the parity block are ready to
2756 * be written back to disk
2757 */
2758 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2759 for (i = disks; i--; ) {
2760 dev = &sh->dev[i];
2761 if (test_bit(R5_LOCKED, &dev->flags) &&
2762 (i == sh->pd_idx || dev->written)) {
2763 pr_debug("Writing block %d\n", i);
2764 set_bit(R5_Wantwrite, &dev->flags);
2765 if (!test_and_set_bit(
2766 STRIPE_OP_IO, &sh->ops.pending))
2767 sh->ops.count++;
2768 if (!test_bit(R5_Insync, &dev->flags) ||
2769 (i == sh->pd_idx && s.failed == 0))
2770 set_bit(STRIPE_INSYNC, &sh->state);
2771 }
2772 }
2773 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2774 atomic_dec(&conf->preread_active_stripes);
2775 if (atomic_read(&conf->preread_active_stripes) <
2776 IO_THRESHOLD)
2777 md_wakeup_thread(conf->mddev->thread);
2778 }
2779 }
2780
2781 /* Now to consider new write requests and what else, if anything
2782 * should be read. We do not handle new writes when:
2783 * 1/ A 'write' operation (copy+xor) is already in flight.
2784 * 2/ A 'check' operation is in flight, as it may clobber the parity
2785 * block.
2786 */
2787 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2788 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
a4456856 2789 handle_issuing_new_write_requests5(conf, sh, &s, disks);
1da177e4
LT
2790
2791 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
2792 * Any reads will already have been scheduled, so we just see if enough
2793 * data is available. The parity check is held off while parity
2794 * dependent operations are in flight.
1da177e4 2795 */
e89f8962
DW
2796 if ((s.syncing && s.locked == 0 &&
2797 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2798 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2799 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2800 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
a4456856 2801 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 2802
a4456856 2803 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
2804 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2805 clear_bit(STRIPE_SYNCING, &sh->state);
2806 }
4e5314b5
N
2807
2808 /* If the failed drive is just a ReadError, then we might need to progress
2809 * the repair/check process
2810 */
a4456856
DW
2811 if (s.failed == 1 && !conf->mddev->ro &&
2812 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2813 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2814 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 2815 ) {
a4456856 2816 dev = &sh->dev[s.failed_num];
4e5314b5
N
2817 if (!test_bit(R5_ReWrite, &dev->flags)) {
2818 set_bit(R5_Wantwrite, &dev->flags);
830ea016
DW
2819 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2820 sh->ops.count++;
4e5314b5
N
2821 set_bit(R5_ReWrite, &dev->flags);
2822 set_bit(R5_LOCKED, &dev->flags);
a4456856 2823 s.locked++;
4e5314b5
N
2824 } else {
2825 /* let's read it back */
2826 set_bit(R5_Wantread, &dev->flags);
830ea016
DW
2827 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2828 sh->ops.count++;
4e5314b5 2829 set_bit(R5_LOCKED, &dev->flags);
a4456856 2830 s.locked++;
4e5314b5
N
2831 }
2832 }
2833
f0a50d37
DW
2834 /* Finish postxor operations initiated by the expansion
2835 * process
2836 */
2837 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2838 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2839
2840 clear_bit(STRIPE_EXPANDING, &sh->state);
2841
2842 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2843 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2844 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2845
a4456856 2846 for (i = conf->raid_disks; i--; ) {
ccfcc3c1 2847 set_bit(R5_Wantwrite, &sh->dev[i].flags);
f0a50d37
DW
2848 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2849 sh->ops.count++;
ccfcc3c1 2850 }
f0a50d37
DW
2851 }
2852
2853 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2854 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2855 /* Need to write out all blocks after computing parity */
2856 sh->disks = conf->raid_disks;
2857 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2858 conf->raid_disks);
a2e08551 2859 s.locked += handle_write_operations5(sh, 1, 1);
f0a50d37
DW
2860 } else if (s.expanded &&
2861 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
ccfcc3c1 2862 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 2863 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
2864 wake_up(&conf->wait_for_overlap);
2865 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2866 }
2867
0f94e87c
DW
2868 if (s.expanding && s.locked == 0 &&
2869 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
a4456856 2870 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 2871
d84e0f10
DW
2872 if (sh->ops.count)
2873 pending = get_stripe_work(sh);
2874
1da177e4
LT
2875 spin_unlock(&sh->lock);
2876
d84e0f10
DW
2877 if (pending)
2878 raid5_run_ops(sh, pending);
2879
a4456856 2880 return_io(return_bi);
1da177e4 2881
1da177e4
LT
2882}
2883
16a53ecc 2884static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1da177e4 2885{
16a53ecc 2886 raid6_conf_t *conf = sh->raid_conf;
f416885e 2887 int disks = sh->disks;
a4456856
DW
2888 struct bio *return_bi = NULL;
2889 int i, pd_idx = sh->pd_idx;
2890 struct stripe_head_state s;
2891 struct r6_state r6s;
16a53ecc 2892 struct r5dev *dev, *pdev, *qdev;
1da177e4 2893
a4456856 2894 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
45b4233c 2895 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
a4456856
DW
2896 "pd_idx=%d, qd_idx=%d\n",
2897 (unsigned long long)sh->sector, sh->state,
2898 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2899 memset(&s, 0, sizeof(s));
72626685 2900
16a53ecc
N
2901 spin_lock(&sh->lock);
2902 clear_bit(STRIPE_HANDLE, &sh->state);
2903 clear_bit(STRIPE_DELAYED, &sh->state);
2904
a4456856
DW
2905 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2906 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2907 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 2908 /* Now to look around and see what can be done */
1da177e4
LT
2909
2910 rcu_read_lock();
16a53ecc
N
2911 for (i=disks; i--; ) {
2912 mdk_rdev_t *rdev;
2913 dev = &sh->dev[i];
2914 clear_bit(R5_Insync, &dev->flags);
1da177e4 2915
45b4233c 2916 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc
N
2917 i, dev->flags, dev->toread, dev->towrite, dev->written);
2918 /* maybe we can reply to a read */
2919 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2920 struct bio *rbi, *rbi2;
45b4233c 2921 pr_debug("Return read for disc %d\n", i);
16a53ecc
N
2922 spin_lock_irq(&conf->device_lock);
2923 rbi = dev->toread;
2924 dev->toread = NULL;
2925 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2926 wake_up(&conf->wait_for_overlap);
2927 spin_unlock_irq(&conf->device_lock);
2928 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2929 copy_data(0, rbi, dev->page, dev->sector);
2930 rbi2 = r5_next_bio(rbi, dev->sector);
2931 spin_lock_irq(&conf->device_lock);
2932 if (--rbi->bi_phys_segments == 0) {
2933 rbi->bi_next = return_bi;
2934 return_bi = rbi;
2935 }
2936 spin_unlock_irq(&conf->device_lock);
2937 rbi = rbi2;
2938 }
2939 }
1da177e4 2940
16a53ecc 2941 /* now count some things */
a4456856
DW
2942 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2943 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
1da177e4 2944
16a53ecc 2945
a4456856
DW
2946 if (dev->toread)
2947 s.to_read++;
16a53ecc 2948 if (dev->towrite) {
a4456856 2949 s.to_write++;
16a53ecc 2950 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2951 s.non_overwrite++;
16a53ecc 2952 }
a4456856
DW
2953 if (dev->written)
2954 s.written++;
16a53ecc
N
2955 rdev = rcu_dereference(conf->disks[i].rdev);
2956 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2957 /* The ReadError flag will just be confusing now */
2958 clear_bit(R5_ReadError, &dev->flags);
2959 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 2960 }
16a53ecc
N
2961 if (!rdev || !test_bit(In_sync, &rdev->flags)
2962 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2963 if (s.failed < 2)
2964 r6s.failed_num[s.failed] = i;
2965 s.failed++;
16a53ecc
N
2966 } else
2967 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
2968 }
2969 rcu_read_unlock();
45b4233c 2970 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 2971 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
2972 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2973 r6s.failed_num[0], r6s.failed_num[1]);
2974 /* check if the array has lost >2 devices and, if so, some requests
2975 * might need to be failed
16a53ecc 2976 */
a4456856
DW
2977 if (s.failed > 2 && s.to_read+s.to_write+s.written)
2978 handle_requests_to_failed_array(conf, sh, &s, disks,
2979 &return_bi);
2980 if (s.failed > 2 && s.syncing) {
16a53ecc
N
2981 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2982 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2983 s.syncing = 0;
16a53ecc
N
2984 }
2985
2986 /*
2987 * might be able to return some write requests if the parity blocks
2988 * are safe, or on a failed drive
2989 */
2990 pdev = &sh->dev[pd_idx];
a4456856
DW
2991 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2992 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2993 qdev = &sh->dev[r6s.qd_idx];
2994 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2995 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2996
2997 if ( s.written &&
2998 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 2999 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
3000 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3001 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 3002 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856
DW
3003 && test_bit(R5_UPTODATE, &qdev->flags)))))
3004 handle_completed_write_requests(conf, sh, disks, &return_bi);
16a53ecc
N
3005
3006 /* Now we might consider reading some blocks, either to check/generate
3007 * parity, or to satisfy requests
3008 * or to load a block that is being partially written.
3009 */
a4456856
DW
3010 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3011 (s.syncing && (s.uptodate < disks)) || s.expanding)
3012 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
16a53ecc
N
3013
3014 /* now to consider writing and what else, if anything should be read */
a4456856
DW
3015 if (s.to_write)
3016 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
16a53ecc
N
3017
3018 /* maybe we need to check and possibly fix the parity for this stripe
a4456856
DW
3019 * Any reads will already have been scheduled, so we just see if enough
3020 * data is available
16a53ecc 3021 */
a4456856
DW
3022 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3023 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
16a53ecc 3024
a4456856 3025 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3026 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3027 clear_bit(STRIPE_SYNCING, &sh->state);
3028 }
3029
3030 /* If the failed drives are just a ReadError, then we might need
3031 * to progress the repair/check process
3032 */
a4456856
DW
3033 if (s.failed <= 2 && !conf->mddev->ro)
3034 for (i = 0; i < s.failed; i++) {
3035 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3036 if (test_bit(R5_ReadError, &dev->flags)
3037 && !test_bit(R5_LOCKED, &dev->flags)
3038 && test_bit(R5_UPTODATE, &dev->flags)
3039 ) {
3040 if (!test_bit(R5_ReWrite, &dev->flags)) {
3041 set_bit(R5_Wantwrite, &dev->flags);
3042 set_bit(R5_ReWrite, &dev->flags);
3043 set_bit(R5_LOCKED, &dev->flags);
3044 } else {
3045 /* let's read it back */
3046 set_bit(R5_Wantread, &dev->flags);
3047 set_bit(R5_LOCKED, &dev->flags);
3048 }
3049 }
3050 }
f416885e 3051
a4456856 3052 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
f416885e
N
3053 /* Need to write out all blocks after computing P&Q */
3054 sh->disks = conf->raid_disks;
3055 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3056 conf->raid_disks);
3057 compute_parity6(sh, RECONSTRUCT_WRITE);
3058 for (i = conf->raid_disks ; i-- ; ) {
3059 set_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3060 s.locked++;
f416885e
N
3061 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3062 }
3063 clear_bit(STRIPE_EXPANDING, &sh->state);
a4456856 3064 } else if (s.expanded) {
f416885e
N
3065 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3066 atomic_dec(&conf->reshape_stripes);
3067 wake_up(&conf->wait_for_overlap);
3068 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3069 }
3070
0f94e87c
DW
3071 if (s.expanding && s.locked == 0 &&
3072 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
a4456856 3073 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3074
16a53ecc
N
3075 spin_unlock(&sh->lock);
3076
a4456856 3077 return_io(return_bi);
16a53ecc 3078
16a53ecc
N
3079 for (i=disks; i-- ;) {
3080 int rw;
3081 struct bio *bi;
3082 mdk_rdev_t *rdev;
3083 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
802ba064 3084 rw = WRITE;
16a53ecc 3085 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
802ba064 3086 rw = READ;
16a53ecc
N
3087 else
3088 continue;
3089
3090 bi = &sh->dev[i].req;
3091
3092 bi->bi_rw = rw;
802ba064 3093 if (rw == WRITE)
16a53ecc
N
3094 bi->bi_end_io = raid5_end_write_request;
3095 else
3096 bi->bi_end_io = raid5_end_read_request;
3097
3098 rcu_read_lock();
3099 rdev = rcu_dereference(conf->disks[i].rdev);
3100 if (rdev && test_bit(Faulty, &rdev->flags))
3101 rdev = NULL;
3102 if (rdev)
3103 atomic_inc(&rdev->nr_pending);
3104 rcu_read_unlock();
3105
3106 if (rdev) {
a4456856 3107 if (s.syncing || s.expanding || s.expanded)
16a53ecc
N
3108 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3109
3110 bi->bi_bdev = rdev->bdev;
45b4233c 3111 pr_debug("for %llu schedule op %ld on disc %d\n",
16a53ecc
N
3112 (unsigned long long)sh->sector, bi->bi_rw, i);
3113 atomic_inc(&sh->count);
3114 bi->bi_sector = sh->sector + rdev->data_offset;
3115 bi->bi_flags = 1 << BIO_UPTODATE;
3116 bi->bi_vcnt = 1;
3117 bi->bi_max_vecs = 1;
3118 bi->bi_idx = 0;
3119 bi->bi_io_vec = &sh->dev[i].vec;
3120 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3121 bi->bi_io_vec[0].bv_offset = 0;
3122 bi->bi_size = STRIPE_SIZE;
3123 bi->bi_next = NULL;
3124 if (rw == WRITE &&
3125 test_bit(R5_ReWrite, &sh->dev[i].flags))
3126 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3127 generic_make_request(bi);
3128 } else {
802ba064 3129 if (rw == WRITE)
16a53ecc 3130 set_bit(STRIPE_DEGRADED, &sh->state);
45b4233c 3131 pr_debug("skip op %ld on disc %d for sector %llu\n",
16a53ecc
N
3132 bi->bi_rw, i, (unsigned long long)sh->sector);
3133 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3134 set_bit(STRIPE_HANDLE, &sh->state);
3135 }
3136 }
3137}
3138
3139static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3140{
3141 if (sh->raid_conf->level == 6)
3142 handle_stripe6(sh, tmp_page);
3143 else
3144 handle_stripe5(sh);
3145}
3146
3147
3148
3149static void raid5_activate_delayed(raid5_conf_t *conf)
3150{
3151 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3152 while (!list_empty(&conf->delayed_list)) {
3153 struct list_head *l = conf->delayed_list.next;
3154 struct stripe_head *sh;
3155 sh = list_entry(l, struct stripe_head, lru);
3156 list_del_init(l);
3157 clear_bit(STRIPE_DELAYED, &sh->state);
3158 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3159 atomic_inc(&conf->preread_active_stripes);
3160 list_add_tail(&sh->lru, &conf->handle_list);
3161 }
3162 }
3163}
3164
3165static void activate_bit_delay(raid5_conf_t *conf)
3166{
3167 /* device_lock is held */
3168 struct list_head head;
3169 list_add(&head, &conf->bitmap_list);
3170 list_del_init(&conf->bitmap_list);
3171 while (!list_empty(&head)) {
3172 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3173 list_del_init(&sh->lru);
3174 atomic_inc(&sh->count);
3175 __release_stripe(conf, sh);
3176 }
3177}
3178
3179static void unplug_slaves(mddev_t *mddev)
3180{
3181 raid5_conf_t *conf = mddev_to_conf(mddev);
3182 int i;
3183
3184 rcu_read_lock();
3185 for (i=0; i<mddev->raid_disks; i++) {
3186 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3187 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 3188 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
16a53ecc
N
3189
3190 atomic_inc(&rdev->nr_pending);
3191 rcu_read_unlock();
3192
2ad8b1ef 3193 blk_unplug(r_queue);
16a53ecc
N
3194
3195 rdev_dec_pending(rdev, mddev);
3196 rcu_read_lock();
3197 }
3198 }
3199 rcu_read_unlock();
3200}
3201
165125e1 3202static void raid5_unplug_device(struct request_queue *q)
16a53ecc
N
3203{
3204 mddev_t *mddev = q->queuedata;
3205 raid5_conf_t *conf = mddev_to_conf(mddev);
3206 unsigned long flags;
3207
3208 spin_lock_irqsave(&conf->device_lock, flags);
3209
3210 if (blk_remove_plug(q)) {
3211 conf->seq_flush++;
3212 raid5_activate_delayed(conf);
72626685 3213 }
1da177e4
LT
3214 md_wakeup_thread(mddev->thread);
3215
3216 spin_unlock_irqrestore(&conf->device_lock, flags);
3217
3218 unplug_slaves(mddev);
3219}
3220
f022b2fd
N
3221static int raid5_congested(void *data, int bits)
3222{
3223 mddev_t *mddev = data;
3224 raid5_conf_t *conf = mddev_to_conf(mddev);
3225
3226 /* No difference between reads and writes. Just check
3227 * how busy the stripe_cache is
3228 */
3229 if (conf->inactive_blocked)
3230 return 1;
3231 if (conf->quiesce)
3232 return 1;
3233 if (list_empty_careful(&conf->inactive_list))
3234 return 1;
3235
3236 return 0;
3237}
3238
23032a0e
RBJ
3239/* We want read requests to align with chunks where possible,
3240 * but write requests don't need to.
3241 */
165125e1 3242static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
23032a0e
RBJ
3243{
3244 mddev_t *mddev = q->queuedata;
3245 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3246 int max;
3247 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3248 unsigned int bio_sectors = bio->bi_size >> 9;
3249
802ba064 3250 if (bio_data_dir(bio) == WRITE)
23032a0e
RBJ
3251 return biovec->bv_len; /* always allow writes to be mergeable */
3252
3253 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3254 if (max < 0) max = 0;
3255 if (max <= biovec->bv_len && bio_sectors == 0)
3256 return biovec->bv_len;
3257 else
3258 return max;
3259}
3260
f679623f
RBJ
3261
3262static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3263{
3264 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3265 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3266 unsigned int bio_sectors = bio->bi_size >> 9;
3267
3268 return chunk_sectors >=
3269 ((sector & (chunk_sectors - 1)) + bio_sectors);
3270}
3271
46031f9a
RBJ
3272/*
3273 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3274 * later sampled by raid5d.
3275 */
3276static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3277{
3278 unsigned long flags;
3279
3280 spin_lock_irqsave(&conf->device_lock, flags);
3281
3282 bi->bi_next = conf->retry_read_aligned_list;
3283 conf->retry_read_aligned_list = bi;
3284
3285 spin_unlock_irqrestore(&conf->device_lock, flags);
3286 md_wakeup_thread(conf->mddev->thread);
3287}
3288
3289
3290static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3291{
3292 struct bio *bi;
3293
3294 bi = conf->retry_read_aligned;
3295 if (bi) {
3296 conf->retry_read_aligned = NULL;
3297 return bi;
3298 }
3299 bi = conf->retry_read_aligned_list;
3300 if(bi) {
387bb173 3301 conf->retry_read_aligned_list = bi->bi_next;
46031f9a
RBJ
3302 bi->bi_next = NULL;
3303 bi->bi_phys_segments = 1; /* biased count of active stripes */
3304 bi->bi_hw_segments = 0; /* count of processed stripes */
3305 }
3306
3307 return bi;
3308}
3309
3310
f679623f
RBJ
3311/*
3312 * The "raid5_align_endio" should check if the read succeeded and if it
3313 * did, call bio_endio on the original bio (having bio_put the new bio
3314 * first).
3315 * If the read failed..
3316 */
6712ecf8 3317static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3318{
3319 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3320 mddev_t *mddev;
3321 raid5_conf_t *conf;
3322 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3323 mdk_rdev_t *rdev;
3324
f679623f 3325 bio_put(bi);
46031f9a
RBJ
3326
3327 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3328 conf = mddev_to_conf(mddev);
3329 rdev = (void*)raid_bi->bi_next;
3330 raid_bi->bi_next = NULL;
3331
3332 rdev_dec_pending(rdev, conf->mddev);
3333
3334 if (!error && uptodate) {
6712ecf8 3335 bio_endio(raid_bi, 0);
46031f9a
RBJ
3336 if (atomic_dec_and_test(&conf->active_aligned_reads))
3337 wake_up(&conf->wait_for_stripe);
6712ecf8 3338 return;
46031f9a
RBJ
3339 }
3340
3341
45b4233c 3342 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3343
3344 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3345}
3346
387bb173
NB
3347static int bio_fits_rdev(struct bio *bi)
3348{
165125e1 3349 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173
NB
3350
3351 if ((bi->bi_size>>9) > q->max_sectors)
3352 return 0;
3353 blk_recount_segments(q, bi);
3354 if (bi->bi_phys_segments > q->max_phys_segments ||
3355 bi->bi_hw_segments > q->max_hw_segments)
3356 return 0;
3357
3358 if (q->merge_bvec_fn)
3359 /* it's too hard to apply the merge_bvec_fn at this stage,
3360 * just just give up
3361 */
3362 return 0;
3363
3364 return 1;
3365}
3366
3367
165125e1 3368static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
f679623f
RBJ
3369{
3370 mddev_t *mddev = q->queuedata;
3371 raid5_conf_t *conf = mddev_to_conf(mddev);
3372 const unsigned int raid_disks = conf->raid_disks;
46031f9a 3373 const unsigned int data_disks = raid_disks - conf->max_degraded;
f679623f
RBJ
3374 unsigned int dd_idx, pd_idx;
3375 struct bio* align_bi;
3376 mdk_rdev_t *rdev;
3377
3378 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3379 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3380 return 0;
3381 }
3382 /*
3383 * use bio_clone to make a copy of the bio
3384 */
3385 align_bi = bio_clone(raid_bio, GFP_NOIO);
3386 if (!align_bi)
3387 return 0;
3388 /*
3389 * set bi_end_io to a new function, and set bi_private to the
3390 * original bio.
3391 */
3392 align_bi->bi_end_io = raid5_align_endio;
3393 align_bi->bi_private = raid_bio;
3394 /*
3395 * compute position
3396 */
3397 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3398 raid_disks,
3399 data_disks,
3400 &dd_idx,
3401 &pd_idx,
3402 conf);
3403
3404 rcu_read_lock();
3405 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3406 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3407 atomic_inc(&rdev->nr_pending);
3408 rcu_read_unlock();
46031f9a
RBJ
3409 raid_bio->bi_next = (void*)rdev;
3410 align_bi->bi_bdev = rdev->bdev;
3411 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3412 align_bi->bi_sector += rdev->data_offset;
3413
387bb173
NB
3414 if (!bio_fits_rdev(align_bi)) {
3415 /* too big in some way */
3416 bio_put(align_bi);
3417 rdev_dec_pending(rdev, mddev);
3418 return 0;
3419 }
3420
46031f9a
RBJ
3421 spin_lock_irq(&conf->device_lock);
3422 wait_event_lock_irq(conf->wait_for_stripe,
3423 conf->quiesce == 0,
3424 conf->device_lock, /* nothing */);
3425 atomic_inc(&conf->active_aligned_reads);
3426 spin_unlock_irq(&conf->device_lock);
3427
f679623f
RBJ
3428 generic_make_request(align_bi);
3429 return 1;
3430 } else {
3431 rcu_read_unlock();
46031f9a 3432 bio_put(align_bi);
f679623f
RBJ
3433 return 0;
3434 }
3435}
3436
3437
165125e1 3438static int make_request(struct request_queue *q, struct bio * bi)
1da177e4
LT
3439{
3440 mddev_t *mddev = q->queuedata;
3441 raid5_conf_t *conf = mddev_to_conf(mddev);
1da177e4
LT
3442 unsigned int dd_idx, pd_idx;
3443 sector_t new_sector;
3444 sector_t logical_sector, last_sector;
3445 struct stripe_head *sh;
a362357b 3446 const int rw = bio_data_dir(bi);
f6344757 3447 int remaining;
1da177e4 3448
e5dcdd80 3449 if (unlikely(bio_barrier(bi))) {
6712ecf8 3450 bio_endio(bi, -EOPNOTSUPP);
e5dcdd80
N
3451 return 0;
3452 }
3453
3d310eb7 3454 md_write_start(mddev, bi);
06d91a5f 3455
a362357b
JA
3456 disk_stat_inc(mddev->gendisk, ios[rw]);
3457 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
1da177e4 3458
802ba064 3459 if (rw == READ &&
52488615
RBJ
3460 mddev->reshape_position == MaxSector &&
3461 chunk_aligned_read(q,bi))
3462 return 0;
3463
1da177e4
LT
3464 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3465 last_sector = bi->bi_sector + (bi->bi_size>>9);
3466 bi->bi_next = NULL;
3467 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3468
1da177e4
LT
3469 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3470 DEFINE_WAIT(w);
16a53ecc 3471 int disks, data_disks;
b578d55f 3472
7ecaa1e6 3473 retry:
b578d55f 3474 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
7ecaa1e6
N
3475 if (likely(conf->expand_progress == MaxSector))
3476 disks = conf->raid_disks;
3477 else {
df8e7f76
N
3478 /* spinlock is needed as expand_progress may be
3479 * 64bit on a 32bit platform, and so it might be
3480 * possible to see a half-updated value
3481 * Ofcourse expand_progress could change after
3482 * the lock is dropped, so once we get a reference
3483 * to the stripe that we think it is, we will have
3484 * to check again.
3485 */
7ecaa1e6
N
3486 spin_lock_irq(&conf->device_lock);
3487 disks = conf->raid_disks;
3488 if (logical_sector >= conf->expand_progress)
3489 disks = conf->previous_raid_disks;
b578d55f
N
3490 else {
3491 if (logical_sector >= conf->expand_lo) {
3492 spin_unlock_irq(&conf->device_lock);
3493 schedule();
3494 goto retry;
3495 }
3496 }
7ecaa1e6
N
3497 spin_unlock_irq(&conf->device_lock);
3498 }
16a53ecc
N
3499 data_disks = disks - conf->max_degraded;
3500
3501 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
7ecaa1e6 3502 &dd_idx, &pd_idx, conf);
45b4233c 3503 pr_debug("raid5: make_request, sector %llu logical %llu\n",
1da177e4
LT
3504 (unsigned long long)new_sector,
3505 (unsigned long long)logical_sector);
3506
7ecaa1e6 3507 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
1da177e4 3508 if (sh) {
7ecaa1e6
N
3509 if (unlikely(conf->expand_progress != MaxSector)) {
3510 /* expansion might have moved on while waiting for a
df8e7f76
N
3511 * stripe, so we must do the range check again.
3512 * Expansion could still move past after this
3513 * test, but as we are holding a reference to
3514 * 'sh', we know that if that happens,
3515 * STRIPE_EXPANDING will get set and the expansion
3516 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3517 */
3518 int must_retry = 0;
3519 spin_lock_irq(&conf->device_lock);
3520 if (logical_sector < conf->expand_progress &&
3521 disks == conf->previous_raid_disks)
3522 /* mismatch, need to try again */
3523 must_retry = 1;
3524 spin_unlock_irq(&conf->device_lock);
3525 if (must_retry) {
3526 release_stripe(sh);
3527 goto retry;
3528 }
3529 }
e464eafd
N
3530 /* FIXME what if we get a false positive because these
3531 * are being updated.
3532 */
3533 if (logical_sector >= mddev->suspend_lo &&
3534 logical_sector < mddev->suspend_hi) {
3535 release_stripe(sh);
3536 schedule();
3537 goto retry;
3538 }
7ecaa1e6
N
3539
3540 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3541 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3542 /* Stripe is busy expanding or
3543 * add failed due to overlap. Flush everything
1da177e4
LT
3544 * and wait a while
3545 */
3546 raid5_unplug_device(mddev->queue);
3547 release_stripe(sh);
3548 schedule();
3549 goto retry;
3550 }
3551 finish_wait(&conf->wait_for_overlap, &w);
16a53ecc 3552 handle_stripe(sh, NULL);
1da177e4 3553 release_stripe(sh);
1da177e4
LT
3554 } else {
3555 /* cannot get stripe for read-ahead, just give-up */
3556 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3557 finish_wait(&conf->wait_for_overlap, &w);
3558 break;
3559 }
3560
3561 }
3562 spin_lock_irq(&conf->device_lock);
f6344757
N
3563 remaining = --bi->bi_phys_segments;
3564 spin_unlock_irq(&conf->device_lock);
3565 if (remaining == 0) {
1da177e4 3566
16a53ecc 3567 if ( rw == WRITE )
1da177e4 3568 md_write_end(mddev);
6712ecf8
N
3569
3570 bi->bi_end_io(bi,
c2b00852
N
3571 test_bit(BIO_UPTODATE, &bi->bi_flags)
3572 ? 0 : -EIO);
1da177e4 3573 }
1da177e4
LT
3574 return 0;
3575}
3576
52c03291 3577static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 3578{
52c03291
N
3579 /* reshaping is quite different to recovery/resync so it is
3580 * handled quite separately ... here.
3581 *
3582 * On each call to sync_request, we gather one chunk worth of
3583 * destination stripes and flag them as expanding.
3584 * Then we find all the source stripes and request reads.
3585 * As the reads complete, handle_stripe will copy the data
3586 * into the destination stripe and release that stripe.
3587 */
1da177e4
LT
3588 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3589 struct stripe_head *sh;
ccfcc3c1
N
3590 int pd_idx;
3591 sector_t first_sector, last_sector;
f416885e
N
3592 int raid_disks = conf->previous_raid_disks;
3593 int data_disks = raid_disks - conf->max_degraded;
3594 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
3595 int i;
3596 int dd_idx;
3597 sector_t writepos, safepos, gap;
3598
3599 if (sector_nr == 0 &&
3600 conf->expand_progress != 0) {
3601 /* restarting in the middle, skip the initial sectors */
3602 sector_nr = conf->expand_progress;
f416885e 3603 sector_div(sector_nr, new_data_disks);
52c03291
N
3604 *skipped = 1;
3605 return sector_nr;
3606 }
3607
3608 /* we update the metadata when there is more than 3Meg
3609 * in the block range (that is rather arbitrary, should
3610 * probably be time based) or when the data about to be
3611 * copied would over-write the source of the data at
3612 * the front of the range.
3613 * i.e. one new_stripe forward from expand_progress new_maps
3614 * to after where expand_lo old_maps to
3615 */
3616 writepos = conf->expand_progress +
f416885e
N
3617 conf->chunk_size/512*(new_data_disks);
3618 sector_div(writepos, new_data_disks);
52c03291 3619 safepos = conf->expand_lo;
f416885e 3620 sector_div(safepos, data_disks);
52c03291
N
3621 gap = conf->expand_progress - conf->expand_lo;
3622
3623 if (writepos >= safepos ||
f416885e 3624 gap > (new_data_disks)*3000*2 /*3Meg*/) {
52c03291
N
3625 /* Cannot proceed until we've updated the superblock... */
3626 wait_event(conf->wait_for_overlap,
3627 atomic_read(&conf->reshape_stripes)==0);
3628 mddev->reshape_position = conf->expand_progress;
850b2b42 3629 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 3630 md_wakeup_thread(mddev->thread);
850b2b42 3631 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
3632 kthread_should_stop());
3633 spin_lock_irq(&conf->device_lock);
3634 conf->expand_lo = mddev->reshape_position;
3635 spin_unlock_irq(&conf->device_lock);
3636 wake_up(&conf->wait_for_overlap);
3637 }
3638
3639 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3640 int j;
3641 int skipped = 0;
3642 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3643 sh = get_active_stripe(conf, sector_nr+i,
3644 conf->raid_disks, pd_idx, 0);
3645 set_bit(STRIPE_EXPANDING, &sh->state);
3646 atomic_inc(&conf->reshape_stripes);
3647 /* If any of this stripe is beyond the end of the old
3648 * array, then we need to zero those blocks
3649 */
3650 for (j=sh->disks; j--;) {
3651 sector_t s;
3652 if (j == sh->pd_idx)
3653 continue;
f416885e
N
3654 if (conf->level == 6 &&
3655 j == raid6_next_disk(sh->pd_idx, sh->disks))
3656 continue;
52c03291
N
3657 s = compute_blocknr(sh, j);
3658 if (s < (mddev->array_size<<1)) {
3659 skipped = 1;
3660 continue;
3661 }
3662 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3663 set_bit(R5_Expanded, &sh->dev[j].flags);
3664 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3665 }
3666 if (!skipped) {
3667 set_bit(STRIPE_EXPAND_READY, &sh->state);
3668 set_bit(STRIPE_HANDLE, &sh->state);
3669 }
3670 release_stripe(sh);
3671 }
3672 spin_lock_irq(&conf->device_lock);
6d3baf2e 3673 conf->expand_progress = (sector_nr + i) * new_data_disks;
52c03291
N
3674 spin_unlock_irq(&conf->device_lock);
3675 /* Ok, those stripe are ready. We can start scheduling
3676 * reads on the source stripes.
3677 * The source stripes are determined by mapping the first and last
3678 * block on the destination stripes.
3679 */
52c03291 3680 first_sector =
f416885e 3681 raid5_compute_sector(sector_nr*(new_data_disks),
52c03291
N
3682 raid_disks, data_disks,
3683 &dd_idx, &pd_idx, conf);
3684 last_sector =
3685 raid5_compute_sector((sector_nr+conf->chunk_size/512)
f416885e 3686 *(new_data_disks) -1,
52c03291
N
3687 raid_disks, data_disks,
3688 &dd_idx, &pd_idx, conf);
3689 if (last_sector >= (mddev->size<<1))
3690 last_sector = (mddev->size<<1)-1;
3691 while (first_sector <= last_sector) {
f416885e
N
3692 pd_idx = stripe_to_pdidx(first_sector, conf,
3693 conf->previous_raid_disks);
52c03291
N
3694 sh = get_active_stripe(conf, first_sector,
3695 conf->previous_raid_disks, pd_idx, 0);
3696 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3697 set_bit(STRIPE_HANDLE, &sh->state);
3698 release_stripe(sh);
3699 first_sector += STRIPE_SECTORS;
3700 }
3701 return conf->chunk_size>>9;
3702}
3703
3704/* FIXME go_faster isn't used */
3705static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3706{
3707 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3708 struct stripe_head *sh;
3709 int pd_idx;
1da177e4 3710 int raid_disks = conf->raid_disks;
72626685
N
3711 sector_t max_sector = mddev->size << 1;
3712 int sync_blocks;
16a53ecc
N
3713 int still_degraded = 0;
3714 int i;
1da177e4 3715
72626685 3716 if (sector_nr >= max_sector) {
1da177e4
LT
3717 /* just being told to finish up .. nothing much to do */
3718 unplug_slaves(mddev);
29269553
N
3719 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3720 end_reshape(conf);
3721 return 0;
3722 }
72626685
N
3723
3724 if (mddev->curr_resync < max_sector) /* aborted */
3725 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3726 &sync_blocks, 1);
16a53ecc 3727 else /* completed sync */
72626685
N
3728 conf->fullsync = 0;
3729 bitmap_close_sync(mddev->bitmap);
3730
1da177e4
LT
3731 return 0;
3732 }
ccfcc3c1 3733
52c03291
N
3734 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3735 return reshape_request(mddev, sector_nr, skipped);
f6705578 3736
16a53ecc 3737 /* if there is too many failed drives and we are trying
1da177e4
LT
3738 * to resync, then assert that we are finished, because there is
3739 * nothing we can do.
3740 */
3285edf1 3741 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 3742 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
57afd89f
N
3743 sector_t rv = (mddev->size << 1) - sector_nr;
3744 *skipped = 1;
1da177e4
LT
3745 return rv;
3746 }
72626685 3747 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 3748 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
3749 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3750 /* we can skip this block, and probably more */
3751 sync_blocks /= STRIPE_SECTORS;
3752 *skipped = 1;
3753 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3754 }
1da177e4 3755
b47490c9
N
3756
3757 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3758
ccfcc3c1 3759 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
7ecaa1e6 3760 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
1da177e4 3761 if (sh == NULL) {
7ecaa1e6 3762 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
1da177e4 3763 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 3764 * is trying to get access
1da177e4 3765 */
66c006a5 3766 schedule_timeout_uninterruptible(1);
1da177e4 3767 }
16a53ecc
N
3768 /* Need to check if array will still be degraded after recovery/resync
3769 * We don't need to check the 'failed' flag as when that gets set,
3770 * recovery aborts.
3771 */
3772 for (i=0; i<mddev->raid_disks; i++)
3773 if (conf->disks[i].rdev == NULL)
3774 still_degraded = 1;
3775
3776 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3777
3778 spin_lock(&sh->lock);
1da177e4
LT
3779 set_bit(STRIPE_SYNCING, &sh->state);
3780 clear_bit(STRIPE_INSYNC, &sh->state);
3781 spin_unlock(&sh->lock);
3782
16a53ecc 3783 handle_stripe(sh, NULL);
1da177e4
LT
3784 release_stripe(sh);
3785
3786 return STRIPE_SECTORS;
3787}
3788
46031f9a
RBJ
3789static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3790{
3791 /* We may not be able to submit a whole bio at once as there
3792 * may not be enough stripe_heads available.
3793 * We cannot pre-allocate enough stripe_heads as we may need
3794 * more than exist in the cache (if we allow ever large chunks).
3795 * So we do one stripe head at a time and record in
3796 * ->bi_hw_segments how many have been done.
3797 *
3798 * We *know* that this entire raid_bio is in one chunk, so
3799 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3800 */
3801 struct stripe_head *sh;
3802 int dd_idx, pd_idx;
3803 sector_t sector, logical_sector, last_sector;
3804 int scnt = 0;
3805 int remaining;
3806 int handled = 0;
3807
3808 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3809 sector = raid5_compute_sector( logical_sector,
3810 conf->raid_disks,
3811 conf->raid_disks - conf->max_degraded,
3812 &dd_idx,
3813 &pd_idx,
3814 conf);
3815 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3816
3817 for (; logical_sector < last_sector;
387bb173
NB
3818 logical_sector += STRIPE_SECTORS,
3819 sector += STRIPE_SECTORS,
3820 scnt++) {
46031f9a
RBJ
3821
3822 if (scnt < raid_bio->bi_hw_segments)
3823 /* already done this stripe */
3824 continue;
3825
3826 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3827
3828 if (!sh) {
3829 /* failed to get a stripe - must wait */
3830 raid_bio->bi_hw_segments = scnt;
3831 conf->retry_read_aligned = raid_bio;
3832 return handled;
3833 }
3834
3835 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
3836 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3837 release_stripe(sh);
3838 raid_bio->bi_hw_segments = scnt;
3839 conf->retry_read_aligned = raid_bio;
3840 return handled;
3841 }
3842
46031f9a
RBJ
3843 handle_stripe(sh, NULL);
3844 release_stripe(sh);
3845 handled++;
3846 }
3847 spin_lock_irq(&conf->device_lock);
3848 remaining = --raid_bio->bi_phys_segments;
3849 spin_unlock_irq(&conf->device_lock);
3850 if (remaining == 0) {
46031f9a 3851
6712ecf8 3852 raid_bio->bi_end_io(raid_bio,
c2b00852
N
3853 test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3854 ? 0 : -EIO);
46031f9a
RBJ
3855 }
3856 if (atomic_dec_and_test(&conf->active_aligned_reads))
3857 wake_up(&conf->wait_for_stripe);
3858 return handled;
3859}
3860
3861
3862
1da177e4
LT
3863/*
3864 * This is our raid5 kernel thread.
3865 *
3866 * We scan the hash table for stripes which can be handled now.
3867 * During the scan, completed stripes are saved for us by the interrupt
3868 * handler, so that they will not have to wait for our next wakeup.
3869 */
3870static void raid5d (mddev_t *mddev)
3871{
3872 struct stripe_head *sh;
3873 raid5_conf_t *conf = mddev_to_conf(mddev);
3874 int handled;
3875
45b4233c 3876 pr_debug("+++ raid5d active\n");
1da177e4
LT
3877
3878 md_check_recovery(mddev);
1da177e4
LT
3879
3880 handled = 0;
3881 spin_lock_irq(&conf->device_lock);
3882 while (1) {
3883 struct list_head *first;
46031f9a 3884 struct bio *bio;
1da177e4 3885
ae3c20cc 3886 if (conf->seq_flush != conf->seq_write) {
72626685 3887 int seq = conf->seq_flush;
700e432d 3888 spin_unlock_irq(&conf->device_lock);
72626685 3889 bitmap_unplug(mddev->bitmap);
700e432d 3890 spin_lock_irq(&conf->device_lock);
72626685
N
3891 conf->seq_write = seq;
3892 activate_bit_delay(conf);
3893 }
3894
1da177e4
LT
3895 if (list_empty(&conf->handle_list) &&
3896 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
3897 !blk_queue_plugged(mddev->queue) &&
3898 !list_empty(&conf->delayed_list))
3899 raid5_activate_delayed(conf);
3900
46031f9a
RBJ
3901 while ((bio = remove_bio_from_retry(conf))) {
3902 int ok;
3903 spin_unlock_irq(&conf->device_lock);
3904 ok = retry_aligned_read(conf, bio);
3905 spin_lock_irq(&conf->device_lock);
3906 if (!ok)
3907 break;
3908 handled++;
3909 }
3910
d84e0f10
DW
3911 if (list_empty(&conf->handle_list)) {
3912 async_tx_issue_pending_all();
1da177e4 3913 break;
d84e0f10 3914 }
1da177e4
LT
3915
3916 first = conf->handle_list.next;
3917 sh = list_entry(first, struct stripe_head, lru);
3918
3919 list_del_init(first);
3920 atomic_inc(&sh->count);
78bafebd 3921 BUG_ON(atomic_read(&sh->count)!= 1);
1da177e4
LT
3922 spin_unlock_irq(&conf->device_lock);
3923
3924 handled++;
16a53ecc 3925 handle_stripe(sh, conf->spare_page);
1da177e4
LT
3926 release_stripe(sh);
3927
3928 spin_lock_irq(&conf->device_lock);
3929 }
45b4233c 3930 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
3931
3932 spin_unlock_irq(&conf->device_lock);
3933
3934 unplug_slaves(mddev);
3935
45b4233c 3936 pr_debug("--- raid5d inactive\n");
1da177e4
LT
3937}
3938
3f294f4f 3939static ssize_t
007583c9 3940raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 3941{
007583c9 3942 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
3943 if (conf)
3944 return sprintf(page, "%d\n", conf->max_nr_stripes);
3945 else
3946 return 0;
3f294f4f
N
3947}
3948
3949static ssize_t
007583c9 3950raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 3951{
007583c9 3952 raid5_conf_t *conf = mddev_to_conf(mddev);
3f294f4f
N
3953 char *end;
3954 int new;
3955 if (len >= PAGE_SIZE)
3956 return -EINVAL;
96de1e66
N
3957 if (!conf)
3958 return -ENODEV;
3f294f4f
N
3959
3960 new = simple_strtoul(page, &end, 10);
3961 if (!*page || (*end && *end != '\n') )
3962 return -EINVAL;
3963 if (new <= 16 || new > 32768)
3964 return -EINVAL;
3965 while (new < conf->max_nr_stripes) {
3966 if (drop_one_stripe(conf))
3967 conf->max_nr_stripes--;
3968 else
3969 break;
3970 }
2a2275d6 3971 md_allow_write(mddev);
3f294f4f
N
3972 while (new > conf->max_nr_stripes) {
3973 if (grow_one_stripe(conf))
3974 conf->max_nr_stripes++;
3975 else break;
3976 }
3977 return len;
3978}
007583c9 3979
96de1e66
N
3980static struct md_sysfs_entry
3981raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3982 raid5_show_stripe_cache_size,
3983 raid5_store_stripe_cache_size);
3f294f4f
N
3984
3985static ssize_t
96de1e66 3986stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 3987{
007583c9 3988 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
3989 if (conf)
3990 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3991 else
3992 return 0;
3f294f4f
N
3993}
3994
96de1e66
N
3995static struct md_sysfs_entry
3996raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 3997
007583c9 3998static struct attribute *raid5_attrs[] = {
3f294f4f
N
3999 &raid5_stripecache_size.attr,
4000 &raid5_stripecache_active.attr,
4001 NULL,
4002};
007583c9
N
4003static struct attribute_group raid5_attrs_group = {
4004 .name = NULL,
4005 .attrs = raid5_attrs,
3f294f4f
N
4006};
4007
72626685 4008static int run(mddev_t *mddev)
1da177e4
LT
4009{
4010 raid5_conf_t *conf;
4011 int raid_disk, memory;
4012 mdk_rdev_t *rdev;
4013 struct disk_info *disk;
4014 struct list_head *tmp;
02c2de8c 4015 int working_disks = 0;
1da177e4 4016
16a53ecc
N
4017 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4018 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
14f8d26b 4019 mdname(mddev), mddev->level);
1da177e4
LT
4020 return -EIO;
4021 }
4022
f6705578
N
4023 if (mddev->reshape_position != MaxSector) {
4024 /* Check that we can continue the reshape.
4025 * Currently only disks can change, it must
4026 * increase, and we must be past the point where
4027 * a stripe over-writes itself
4028 */
4029 sector_t here_new, here_old;
4030 int old_disks;
f416885e 4031 int max_degraded = (mddev->level == 5 ? 1 : 2);
f6705578
N
4032
4033 if (mddev->new_level != mddev->level ||
4034 mddev->new_layout != mddev->layout ||
4035 mddev->new_chunk != mddev->chunk_size) {
f416885e
N
4036 printk(KERN_ERR "raid5: %s: unsupported reshape "
4037 "required - aborting.\n",
f6705578
N
4038 mdname(mddev));
4039 return -EINVAL;
4040 }
4041 if (mddev->delta_disks <= 0) {
f416885e
N
4042 printk(KERN_ERR "raid5: %s: unsupported reshape "
4043 "(reduce disks) required - aborting.\n",
f6705578
N
4044 mdname(mddev));
4045 return -EINVAL;
4046 }
4047 old_disks = mddev->raid_disks - mddev->delta_disks;
4048 /* reshape_position must be on a new-stripe boundary, and one
f416885e
N
4049 * further up in new geometry must map after here in old
4050 * geometry.
f6705578
N
4051 */
4052 here_new = mddev->reshape_position;
f416885e
N
4053 if (sector_div(here_new, (mddev->chunk_size>>9)*
4054 (mddev->raid_disks - max_degraded))) {
4055 printk(KERN_ERR "raid5: reshape_position not "
4056 "on a stripe boundary\n");
f6705578
N
4057 return -EINVAL;
4058 }
4059 /* here_new is the stripe we will write to */
4060 here_old = mddev->reshape_position;
f416885e
N
4061 sector_div(here_old, (mddev->chunk_size>>9)*
4062 (old_disks-max_degraded));
4063 /* here_old is the first stripe that we might need to read
4064 * from */
f6705578
N
4065 if (here_new >= here_old) {
4066 /* Reading from the same stripe as writing to - bad */
f416885e
N
4067 printk(KERN_ERR "raid5: reshape_position too early for "
4068 "auto-recovery - aborting.\n");
f6705578
N
4069 return -EINVAL;
4070 }
4071 printk(KERN_INFO "raid5: reshape will continue\n");
4072 /* OK, we should be able to continue; */
4073 }
4074
4075
b55e6bfc 4076 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
1da177e4
LT
4077 if ((conf = mddev->private) == NULL)
4078 goto abort;
f6705578
N
4079 if (mddev->reshape_position == MaxSector) {
4080 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4081 } else {
4082 conf->raid_disks = mddev->raid_disks;
4083 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4084 }
4085
4086 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
4087 GFP_KERNEL);
4088 if (!conf->disks)
4089 goto abort;
9ffae0cf 4090
1da177e4
LT
4091 conf->mddev = mddev;
4092
fccddba0 4093 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4094 goto abort;
1da177e4 4095
16a53ecc
N
4096 if (mddev->level == 6) {
4097 conf->spare_page = alloc_page(GFP_KERNEL);
4098 if (!conf->spare_page)
4099 goto abort;
4100 }
1da177e4
LT
4101 spin_lock_init(&conf->device_lock);
4102 init_waitqueue_head(&conf->wait_for_stripe);
4103 init_waitqueue_head(&conf->wait_for_overlap);
4104 INIT_LIST_HEAD(&conf->handle_list);
4105 INIT_LIST_HEAD(&conf->delayed_list);
72626685 4106 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
4107 INIT_LIST_HEAD(&conf->inactive_list);
4108 atomic_set(&conf->active_stripes, 0);
4109 atomic_set(&conf->preread_active_stripes, 0);
46031f9a 4110 atomic_set(&conf->active_aligned_reads, 0);
1da177e4 4111
45b4233c 4112 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
1da177e4
LT
4113
4114 ITERATE_RDEV(mddev,rdev,tmp) {
4115 raid_disk = rdev->raid_disk;
f6705578 4116 if (raid_disk >= conf->raid_disks
1da177e4
LT
4117 || raid_disk < 0)
4118 continue;
4119 disk = conf->disks + raid_disk;
4120
4121 disk->rdev = rdev;
4122
b2d444d7 4123 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
4124 char b[BDEVNAME_SIZE];
4125 printk(KERN_INFO "raid5: device %s operational as raid"
4126 " disk %d\n", bdevname(rdev->bdev,b),
4127 raid_disk);
02c2de8c 4128 working_disks++;
1da177e4
LT
4129 }
4130 }
4131
1da177e4 4132 /*
16a53ecc 4133 * 0 for a fully functional array, 1 or 2 for a degraded array.
1da177e4 4134 */
02c2de8c 4135 mddev->degraded = conf->raid_disks - working_disks;
1da177e4
LT
4136 conf->mddev = mddev;
4137 conf->chunk_size = mddev->chunk_size;
4138 conf->level = mddev->level;
16a53ecc
N
4139 if (conf->level == 6)
4140 conf->max_degraded = 2;
4141 else
4142 conf->max_degraded = 1;
1da177e4
LT
4143 conf->algorithm = mddev->layout;
4144 conf->max_nr_stripes = NR_STRIPES;
f6705578 4145 conf->expand_progress = mddev->reshape_position;
1da177e4
LT
4146
4147 /* device size must be a multiple of chunk size */
4148 mddev->size &= ~(mddev->chunk_size/1024 -1);
b1581566 4149 mddev->resync_max_sectors = mddev->size << 1;
1da177e4 4150
16a53ecc
N
4151 if (conf->level == 6 && conf->raid_disks < 4) {
4152 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4153 mdname(mddev), conf->raid_disks);
4154 goto abort;
4155 }
1da177e4
LT
4156 if (!conf->chunk_size || conf->chunk_size % 4) {
4157 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4158 conf->chunk_size, mdname(mddev));
4159 goto abort;
4160 }
4161 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4162 printk(KERN_ERR
4163 "raid5: unsupported parity algorithm %d for %s\n",
4164 conf->algorithm, mdname(mddev));
4165 goto abort;
4166 }
16a53ecc 4167 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
4168 printk(KERN_ERR "raid5: not enough operational devices for %s"
4169 " (%d/%d failed)\n",
02c2de8c 4170 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4171 goto abort;
4172 }
4173
16a53ecc 4174 if (mddev->degraded > 0 &&
1da177e4 4175 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4176 if (mddev->ok_start_degraded)
4177 printk(KERN_WARNING
4178 "raid5: starting dirty degraded array: %s"
4179 "- data corruption possible.\n",
4180 mdname(mddev));
4181 else {
4182 printk(KERN_ERR
4183 "raid5: cannot start dirty degraded array for %s\n",
4184 mdname(mddev));
4185 goto abort;
4186 }
1da177e4
LT
4187 }
4188
4189 {
4190 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4191 if (!mddev->thread) {
4192 printk(KERN_ERR
4193 "raid5: couldn't allocate thread for %s\n",
4194 mdname(mddev));
4195 goto abort;
4196 }
4197 }
5036805b 4198 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
1da177e4
LT
4199 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4200 if (grow_stripes(conf, conf->max_nr_stripes)) {
4201 printk(KERN_ERR
4202 "raid5: couldn't allocate %dkB for buffers\n", memory);
4203 shrink_stripes(conf);
4204 md_unregister_thread(mddev->thread);
4205 goto abort;
4206 } else
4207 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4208 memory, mdname(mddev));
4209
4210 if (mddev->degraded == 0)
4211 printk("raid5: raid level %d set %s active with %d out of %d"
4212 " devices, algorithm %d\n", conf->level, mdname(mddev),
4213 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4214 conf->algorithm);
4215 else
4216 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4217 " out of %d devices, algorithm %d\n", conf->level,
4218 mdname(mddev), mddev->raid_disks - mddev->degraded,
4219 mddev->raid_disks, conf->algorithm);
4220
4221 print_raid5_conf(conf);
4222
f6705578
N
4223 if (conf->expand_progress != MaxSector) {
4224 printk("...ok start reshape thread\n");
b578d55f 4225 conf->expand_lo = conf->expand_progress;
f6705578
N
4226 atomic_set(&conf->reshape_stripes, 0);
4227 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4228 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4229 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4230 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4231 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4232 "%s_reshape");
f6705578
N
4233 }
4234
1da177e4 4235 /* read-ahead size must cover two whole stripes, which is
16a53ecc 4236 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
4237 */
4238 {
16a53ecc
N
4239 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4240 int stripe = data_disks *
8932c2e0 4241 (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
4242 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4243 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4244 }
4245
4246 /* Ok, everything is just fine now */
5e55e2f5
N
4247 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4248 printk(KERN_WARNING
4249 "raid5: failed to create sysfs attributes for %s\n",
4250 mdname(mddev));
7a5febe9
N
4251
4252 mddev->queue->unplug_fn = raid5_unplug_device;
f022b2fd 4253 mddev->queue->backing_dev_info.congested_data = mddev;
041ae52e 4254 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
f022b2fd 4255
16a53ecc
N
4256 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4257 conf->max_degraded);
7a5febe9 4258
23032a0e
RBJ
4259 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4260
1da177e4
LT
4261 return 0;
4262abort:
4263 if (conf) {
4264 print_raid5_conf(conf);
16a53ecc 4265 safe_put_page(conf->spare_page);
b55e6bfc 4266 kfree(conf->disks);
fccddba0 4267 kfree(conf->stripe_hashtbl);
1da177e4
LT
4268 kfree(conf);
4269 }
4270 mddev->private = NULL;
4271 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4272 return -EIO;
4273}
4274
4275
4276
3f294f4f 4277static int stop(mddev_t *mddev)
1da177e4
LT
4278{
4279 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4280
4281 md_unregister_thread(mddev->thread);
4282 mddev->thread = NULL;
4283 shrink_stripes(conf);
fccddba0 4284 kfree(conf->stripe_hashtbl);
041ae52e 4285 mddev->queue->backing_dev_info.congested_fn = NULL;
1da177e4 4286 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 4287 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
b55e6bfc 4288 kfree(conf->disks);
96de1e66 4289 kfree(conf);
1da177e4
LT
4290 mddev->private = NULL;
4291 return 0;
4292}
4293
45b4233c 4294#ifdef DEBUG
16a53ecc 4295static void print_sh (struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
4296{
4297 int i;
4298
16a53ecc
N
4299 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4300 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4301 seq_printf(seq, "sh %llu, count %d.\n",
4302 (unsigned long long)sh->sector, atomic_read(&sh->count));
4303 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 4304 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
4305 seq_printf(seq, "(cache%d: %p %ld) ",
4306 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 4307 }
16a53ecc 4308 seq_printf(seq, "\n");
1da177e4
LT
4309}
4310
16a53ecc 4311static void printall (struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
4312{
4313 struct stripe_head *sh;
fccddba0 4314 struct hlist_node *hn;
1da177e4
LT
4315 int i;
4316
4317 spin_lock_irq(&conf->device_lock);
4318 for (i = 0; i < NR_HASH; i++) {
fccddba0 4319 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
4320 if (sh->raid_conf != conf)
4321 continue;
16a53ecc 4322 print_sh(seq, sh);
1da177e4
LT
4323 }
4324 }
4325 spin_unlock_irq(&conf->device_lock);
4326}
4327#endif
4328
4329static void status (struct seq_file *seq, mddev_t *mddev)
4330{
4331 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4332 int i;
4333
4334 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
02c2de8c 4335 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
4336 for (i = 0; i < conf->raid_disks; i++)
4337 seq_printf (seq, "%s",
4338 conf->disks[i].rdev &&
b2d444d7 4339 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 4340 seq_printf (seq, "]");
45b4233c 4341#ifdef DEBUG
16a53ecc
N
4342 seq_printf (seq, "\n");
4343 printall(seq, conf);
1da177e4
LT
4344#endif
4345}
4346
4347static void print_raid5_conf (raid5_conf_t *conf)
4348{
4349 int i;
4350 struct disk_info *tmp;
4351
4352 printk("RAID5 conf printout:\n");
4353 if (!conf) {
4354 printk("(conf==NULL)\n");
4355 return;
4356 }
02c2de8c
N
4357 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4358 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
4359
4360 for (i = 0; i < conf->raid_disks; i++) {
4361 char b[BDEVNAME_SIZE];
4362 tmp = conf->disks + i;
4363 if (tmp->rdev)
4364 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 4365 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
4366 bdevname(tmp->rdev->bdev,b));
4367 }
4368}
4369
4370static int raid5_spare_active(mddev_t *mddev)
4371{
4372 int i;
4373 raid5_conf_t *conf = mddev->private;
4374 struct disk_info *tmp;
4375
4376 for (i = 0; i < conf->raid_disks; i++) {
4377 tmp = conf->disks + i;
4378 if (tmp->rdev
b2d444d7 4379 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
4380 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4381 unsigned long flags;
4382 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 4383 mddev->degraded--;
c04be0aa 4384 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
4385 }
4386 }
4387 print_raid5_conf(conf);
4388 return 0;
4389}
4390
4391static int raid5_remove_disk(mddev_t *mddev, int number)
4392{
4393 raid5_conf_t *conf = mddev->private;
4394 int err = 0;
4395 mdk_rdev_t *rdev;
4396 struct disk_info *p = conf->disks + number;
4397
4398 print_raid5_conf(conf);
4399 rdev = p->rdev;
4400 if (rdev) {
b2d444d7 4401 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
4402 atomic_read(&rdev->nr_pending)) {
4403 err = -EBUSY;
4404 goto abort;
4405 }
4406 p->rdev = NULL;
fbd568a3 4407 synchronize_rcu();
1da177e4
LT
4408 if (atomic_read(&rdev->nr_pending)) {
4409 /* lost the race, try later */
4410 err = -EBUSY;
4411 p->rdev = rdev;
4412 }
4413 }
4414abort:
4415
4416 print_raid5_conf(conf);
4417 return err;
4418}
4419
4420static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4421{
4422 raid5_conf_t *conf = mddev->private;
4423 int found = 0;
4424 int disk;
4425 struct disk_info *p;
4426
16a53ecc 4427 if (mddev->degraded > conf->max_degraded)
1da177e4
LT
4428 /* no point adding a device */
4429 return 0;
4430
4431 /*
16a53ecc
N
4432 * find the disk ... but prefer rdev->saved_raid_disk
4433 * if possible.
1da177e4 4434 */
16a53ecc
N
4435 if (rdev->saved_raid_disk >= 0 &&
4436 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4437 disk = rdev->saved_raid_disk;
4438 else
4439 disk = 0;
4440 for ( ; disk < conf->raid_disks; disk++)
1da177e4 4441 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 4442 clear_bit(In_sync, &rdev->flags);
1da177e4
LT
4443 rdev->raid_disk = disk;
4444 found = 1;
72626685
N
4445 if (rdev->saved_raid_disk != disk)
4446 conf->fullsync = 1;
d6065f7b 4447 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
4448 break;
4449 }
4450 print_raid5_conf(conf);
4451 return found;
4452}
4453
4454static int raid5_resize(mddev_t *mddev, sector_t sectors)
4455{
4456 /* no resync is happening, and there is enough space
4457 * on all devices, so we can resize.
4458 * We need to make sure resync covers any new space.
4459 * If the array is shrinking we should possibly wait until
4460 * any io in the removed space completes, but it hardly seems
4461 * worth it.
4462 */
16a53ecc
N
4463 raid5_conf_t *conf = mddev_to_conf(mddev);
4464
1da177e4 4465 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
16a53ecc 4466 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
1da177e4 4467 set_capacity(mddev->gendisk, mddev->array_size << 1);
44ce6294 4468 mddev->changed = 1;
1da177e4
LT
4469 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4470 mddev->recovery_cp = mddev->size << 1;
4471 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4472 }
4473 mddev->size = sectors /2;
4b5c7ae8 4474 mddev->resync_max_sectors = sectors;
1da177e4
LT
4475 return 0;
4476}
4477
29269553 4478#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f 4479static int raid5_check_reshape(mddev_t *mddev)
29269553
N
4480{
4481 raid5_conf_t *conf = mddev_to_conf(mddev);
4482 int err;
29269553 4483
63c70c4f
N
4484 if (mddev->delta_disks < 0 ||
4485 mddev->new_level != mddev->level)
4486 return -EINVAL; /* Cannot shrink array or change level yet */
4487 if (mddev->delta_disks == 0)
29269553
N
4488 return 0; /* nothing to do */
4489
4490 /* Can only proceed if there are plenty of stripe_heads.
4491 * We need a minimum of one full stripe,, and for sensible progress
4492 * it is best to have about 4 times that.
4493 * If we require 4 times, then the default 256 4K stripe_heads will
4494 * allow for chunk sizes up to 256K, which is probably OK.
4495 * If the chunk size is greater, user-space should request more
4496 * stripe_heads first.
4497 */
63c70c4f
N
4498 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4499 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
29269553
N
4500 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4501 (mddev->chunk_size / STRIPE_SIZE)*4);
4502 return -ENOSPC;
4503 }
4504
63c70c4f
N
4505 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4506 if (err)
4507 return err;
4508
b4c4c7b8
N
4509 if (mddev->degraded > conf->max_degraded)
4510 return -EINVAL;
63c70c4f
N
4511 /* looks like we might be able to manage this */
4512 return 0;
4513}
4514
4515static int raid5_start_reshape(mddev_t *mddev)
4516{
4517 raid5_conf_t *conf = mddev_to_conf(mddev);
4518 mdk_rdev_t *rdev;
4519 struct list_head *rtmp;
4520 int spares = 0;
4521 int added_devices = 0;
c04be0aa 4522 unsigned long flags;
63c70c4f 4523
f416885e 4524 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
4525 return -EBUSY;
4526
29269553
N
4527 ITERATE_RDEV(mddev, rdev, rtmp)
4528 if (rdev->raid_disk < 0 &&
4529 !test_bit(Faulty, &rdev->flags))
4530 spares++;
63c70c4f 4531
f416885e 4532 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
4533 /* Not enough devices even to make a degraded array
4534 * of that size
4535 */
4536 return -EINVAL;
4537
f6705578 4538 atomic_set(&conf->reshape_stripes, 0);
29269553
N
4539 spin_lock_irq(&conf->device_lock);
4540 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 4541 conf->raid_disks += mddev->delta_disks;
29269553 4542 conf->expand_progress = 0;
b578d55f 4543 conf->expand_lo = 0;
29269553
N
4544 spin_unlock_irq(&conf->device_lock);
4545
4546 /* Add some new drives, as many as will fit.
4547 * We know there are enough to make the newly sized array work.
4548 */
4549 ITERATE_RDEV(mddev, rdev, rtmp)
4550 if (rdev->raid_disk < 0 &&
4551 !test_bit(Faulty, &rdev->flags)) {
4552 if (raid5_add_disk(mddev, rdev)) {
4553 char nm[20];
4554 set_bit(In_sync, &rdev->flags);
29269553 4555 added_devices++;
5fd6c1dc 4556 rdev->recovery_offset = 0;
29269553 4557 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
4558 if (sysfs_create_link(&mddev->kobj,
4559 &rdev->kobj, nm))
4560 printk(KERN_WARNING
4561 "raid5: failed to create "
4562 " link %s for %s\n",
4563 nm, mdname(mddev));
29269553
N
4564 } else
4565 break;
4566 }
4567
c04be0aa 4568 spin_lock_irqsave(&conf->device_lock, flags);
63c70c4f 4569 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
c04be0aa 4570 spin_unlock_irqrestore(&conf->device_lock, flags);
63c70c4f 4571 mddev->raid_disks = conf->raid_disks;
f6705578 4572 mddev->reshape_position = 0;
850b2b42 4573 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 4574
29269553
N
4575 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4576 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4577 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4578 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4579 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4580 "%s_reshape");
4581 if (!mddev->sync_thread) {
4582 mddev->recovery = 0;
4583 spin_lock_irq(&conf->device_lock);
4584 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4585 conf->expand_progress = MaxSector;
4586 spin_unlock_irq(&conf->device_lock);
4587 return -EAGAIN;
4588 }
4589 md_wakeup_thread(mddev->sync_thread);
4590 md_new_event(mddev);
4591 return 0;
4592}
4593#endif
4594
4595static void end_reshape(raid5_conf_t *conf)
4596{
4597 struct block_device *bdev;
4598
f6705578 4599 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f416885e
N
4600 conf->mddev->array_size = conf->mddev->size *
4601 (conf->raid_disks - conf->max_degraded);
f6705578 4602 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
44ce6294 4603 conf->mddev->changed = 1;
f6705578
N
4604
4605 bdev = bdget_disk(conf->mddev->gendisk, 0);
4606 if (bdev) {
4607 mutex_lock(&bdev->bd_inode->i_mutex);
0692c6b1 4608 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
f6705578
N
4609 mutex_unlock(&bdev->bd_inode->i_mutex);
4610 bdput(bdev);
4611 }
4612 spin_lock_irq(&conf->device_lock);
4613 conf->expand_progress = MaxSector;
4614 spin_unlock_irq(&conf->device_lock);
4615 conf->mddev->reshape_position = MaxSector;
16a53ecc
N
4616
4617 /* read-ahead size must cover two whole stripes, which is
4618 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4619 */
4620 {
4621 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4622 int stripe = data_disks *
4623 (conf->mddev->chunk_size / PAGE_SIZE);
4624 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4625 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4626 }
29269553 4627 }
29269553
N
4628}
4629
72626685
N
4630static void raid5_quiesce(mddev_t *mddev, int state)
4631{
4632 raid5_conf_t *conf = mddev_to_conf(mddev);
4633
4634 switch(state) {
e464eafd
N
4635 case 2: /* resume for a suspend */
4636 wake_up(&conf->wait_for_overlap);
4637 break;
4638
72626685
N
4639 case 1: /* stop all writes */
4640 spin_lock_irq(&conf->device_lock);
4641 conf->quiesce = 1;
4642 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
4643 atomic_read(&conf->active_stripes) == 0 &&
4644 atomic_read(&conf->active_aligned_reads) == 0,
72626685
N
4645 conf->device_lock, /* nothing */);
4646 spin_unlock_irq(&conf->device_lock);
4647 break;
4648
4649 case 0: /* re-enable writes */
4650 spin_lock_irq(&conf->device_lock);
4651 conf->quiesce = 0;
4652 wake_up(&conf->wait_for_stripe);
e464eafd 4653 wake_up(&conf->wait_for_overlap);
72626685
N
4654 spin_unlock_irq(&conf->device_lock);
4655 break;
4656 }
72626685 4657}
b15c2e57 4658
16a53ecc
N
4659static struct mdk_personality raid6_personality =
4660{
4661 .name = "raid6",
4662 .level = 6,
4663 .owner = THIS_MODULE,
4664 .make_request = make_request,
4665 .run = run,
4666 .stop = stop,
4667 .status = status,
4668 .error_handler = error,
4669 .hot_add_disk = raid5_add_disk,
4670 .hot_remove_disk= raid5_remove_disk,
4671 .spare_active = raid5_spare_active,
4672 .sync_request = sync_request,
4673 .resize = raid5_resize,
f416885e
N
4674#ifdef CONFIG_MD_RAID5_RESHAPE
4675 .check_reshape = raid5_check_reshape,
4676 .start_reshape = raid5_start_reshape,
4677#endif
16a53ecc
N
4678 .quiesce = raid5_quiesce,
4679};
2604b703 4680static struct mdk_personality raid5_personality =
1da177e4
LT
4681{
4682 .name = "raid5",
2604b703 4683 .level = 5,
1da177e4
LT
4684 .owner = THIS_MODULE,
4685 .make_request = make_request,
4686 .run = run,
4687 .stop = stop,
4688 .status = status,
4689 .error_handler = error,
4690 .hot_add_disk = raid5_add_disk,
4691 .hot_remove_disk= raid5_remove_disk,
4692 .spare_active = raid5_spare_active,
4693 .sync_request = sync_request,
4694 .resize = raid5_resize,
29269553 4695#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f
N
4696 .check_reshape = raid5_check_reshape,
4697 .start_reshape = raid5_start_reshape,
29269553 4698#endif
72626685 4699 .quiesce = raid5_quiesce,
1da177e4
LT
4700};
4701
2604b703 4702static struct mdk_personality raid4_personality =
1da177e4 4703{
2604b703
N
4704 .name = "raid4",
4705 .level = 4,
4706 .owner = THIS_MODULE,
4707 .make_request = make_request,
4708 .run = run,
4709 .stop = stop,
4710 .status = status,
4711 .error_handler = error,
4712 .hot_add_disk = raid5_add_disk,
4713 .hot_remove_disk= raid5_remove_disk,
4714 .spare_active = raid5_spare_active,
4715 .sync_request = sync_request,
4716 .resize = raid5_resize,
3d37890b
N
4717#ifdef CONFIG_MD_RAID5_RESHAPE
4718 .check_reshape = raid5_check_reshape,
4719 .start_reshape = raid5_start_reshape,
4720#endif
2604b703
N
4721 .quiesce = raid5_quiesce,
4722};
4723
4724static int __init raid5_init(void)
4725{
16a53ecc
N
4726 int e;
4727
4728 e = raid6_select_algo();
4729 if ( e )
4730 return e;
4731 register_md_personality(&raid6_personality);
2604b703
N
4732 register_md_personality(&raid5_personality);
4733 register_md_personality(&raid4_personality);
4734 return 0;
1da177e4
LT
4735}
4736
2604b703 4737static void raid5_exit(void)
1da177e4 4738{
16a53ecc 4739 unregister_md_personality(&raid6_personality);
2604b703
N
4740 unregister_md_personality(&raid5_personality);
4741 unregister_md_personality(&raid4_personality);
1da177e4
LT
4742}
4743
4744module_init(raid5_init);
4745module_exit(raid5_exit);
4746MODULE_LICENSE("GPL");
4747MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
4748MODULE_ALIAS("md-raid5");
4749MODULE_ALIAS("md-raid4");
2604b703
N
4750MODULE_ALIAS("md-level-5");
4751MODULE_ALIAS("md-level-4");
16a53ecc
N
4752MODULE_ALIAS("md-personality-8"); /* RAID6 */
4753MODULE_ALIAS("md-raid6");
4754MODULE_ALIAS("md-level-6");
4755
4756/* This used to be two separate modules, they were: */
4757MODULE_ALIAS("raid5");
4758MODULE_ALIAS("raid6");