]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/md/raid5.c
md/raid5: suspend shouldn't affect read requests.
[net-next-2.6.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
bff61975 50#include <linux/seq_file.h>
43b2e5d8 51#include "md.h"
bff61975 52#include "raid5.h"
ef740c37 53#include "bitmap.h"
72626685 54
1da177e4
LT
55/*
56 * Stripe cache
57 */
58
59#define NR_STRIPES 256
60#define STRIPE_SIZE PAGE_SIZE
61#define STRIPE_SHIFT (PAGE_SHIFT - 9)
62#define STRIPE_SECTORS (STRIPE_SIZE>>9)
63#define IO_THRESHOLD 1
8b3e6cdc 64#define BYPASS_THRESHOLD 1
fccddba0 65#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
66#define HASH_MASK (NR_HASH - 1)
67
fccddba0 68#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
69
70/* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap. There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
75 * be valid.
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
78 */
79#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80/*
81 * The following can be used to debug the driver
82 */
1da177e4
LT
83#define RAID5_PARANOIA 1
84#if RAID5_PARANOIA && defined(CONFIG_SMP)
85# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86#else
87# define CHECK_DEVLOCK()
88#endif
89
45b4233c 90#ifdef DEBUG
1da177e4
LT
91#define inline
92#define __inline__
93#endif
94
6be9d494
BS
95#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
960e739d 97/*
5b99c2ff
JA
98 * We maintain a biased count of active stripes in the bottom 16 bits of
99 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
100 */
101static inline int raid5_bi_phys_segments(struct bio *bio)
102{
5b99c2ff 103 return bio->bi_phys_segments & 0xffff;
960e739d
JA
104}
105
106static inline int raid5_bi_hw_segments(struct bio *bio)
107{
5b99c2ff 108 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
109}
110
111static inline int raid5_dec_bi_phys_segments(struct bio *bio)
112{
113 --bio->bi_phys_segments;
114 return raid5_bi_phys_segments(bio);
115}
116
117static inline int raid5_dec_bi_hw_segments(struct bio *bio)
118{
119 unsigned short val = raid5_bi_hw_segments(bio);
120
121 --val;
5b99c2ff 122 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
123 return val;
124}
125
126static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
127{
5b99c2ff 128 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
960e739d
JA
129}
130
d0dabf7e
N
131/* Find first data disk in a raid6 stripe */
132static inline int raid6_d0(struct stripe_head *sh)
133{
67cc2b81
N
134 if (sh->ddf_layout)
135 /* ddf always start from first device */
136 return 0;
137 /* md starts just after Q block */
d0dabf7e
N
138 if (sh->qd_idx == sh->disks - 1)
139 return 0;
140 else
141 return sh->qd_idx + 1;
142}
16a53ecc
N
143static inline int raid6_next_disk(int disk, int raid_disks)
144{
145 disk++;
146 return (disk < raid_disks) ? disk : 0;
147}
a4456856 148
d0dabf7e
N
149/* When walking through the disks in a raid5, starting at raid6_d0,
150 * We need to map each disk to a 'slot', where the data disks are slot
151 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152 * is raid_disks-1. This help does that mapping.
153 */
67cc2b81
N
154static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155 int *count, int syndrome_disks)
d0dabf7e
N
156{
157 int slot;
67cc2b81 158
d0dabf7e 159 if (idx == sh->pd_idx)
67cc2b81 160 return syndrome_disks;
d0dabf7e 161 if (idx == sh->qd_idx)
67cc2b81 162 return syndrome_disks + 1;
d0dabf7e
N
163 slot = (*count)++;
164 return slot;
165}
166
a4456856
DW
167static void return_io(struct bio *return_bi)
168{
169 struct bio *bi = return_bi;
170 while (bi) {
a4456856
DW
171
172 return_bi = bi->bi_next;
173 bi->bi_next = NULL;
174 bi->bi_size = 0;
0e13fe23 175 bio_endio(bi, 0);
a4456856
DW
176 bi = return_bi;
177 }
178}
179
1da177e4
LT
180static void print_raid5_conf (raid5_conf_t *conf);
181
600aa109
DW
182static int stripe_operations_active(struct stripe_head *sh)
183{
184 return sh->check_state || sh->reconstruct_state ||
185 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
186 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
187}
188
858119e1 189static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
190{
191 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
192 BUG_ON(!list_empty(&sh->lru));
193 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 194 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 195 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 196 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
197 blk_plug_device(conf->mddev->queue);
198 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 199 sh->bm_seq - conf->seq_write > 0) {
72626685 200 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
201 blk_plug_device(conf->mddev->queue);
202 } else {
72626685 203 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 204 list_add_tail(&sh->lru, &conf->handle_list);
72626685 205 }
1da177e4
LT
206 md_wakeup_thread(conf->mddev->thread);
207 } else {
600aa109 208 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
209 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
210 atomic_dec(&conf->preread_active_stripes);
211 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
212 md_wakeup_thread(conf->mddev->thread);
213 }
1da177e4 214 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
215 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
216 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 217 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
218 if (conf->retry_read_aligned)
219 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 220 }
1da177e4
LT
221 }
222 }
223}
d0dabf7e 224
1da177e4
LT
225static void release_stripe(struct stripe_head *sh)
226{
227 raid5_conf_t *conf = sh->raid_conf;
228 unsigned long flags;
16a53ecc 229
1da177e4
LT
230 spin_lock_irqsave(&conf->device_lock, flags);
231 __release_stripe(conf, sh);
232 spin_unlock_irqrestore(&conf->device_lock, flags);
233}
234
fccddba0 235static inline void remove_hash(struct stripe_head *sh)
1da177e4 236{
45b4233c
DW
237 pr_debug("remove_hash(), stripe %llu\n",
238 (unsigned long long)sh->sector);
1da177e4 239
fccddba0 240 hlist_del_init(&sh->hash);
1da177e4
LT
241}
242
16a53ecc 243static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 244{
fccddba0 245 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 246
45b4233c
DW
247 pr_debug("insert_hash(), stripe %llu\n",
248 (unsigned long long)sh->sector);
1da177e4
LT
249
250 CHECK_DEVLOCK();
fccddba0 251 hlist_add_head(&sh->hash, hp);
1da177e4
LT
252}
253
254
255/* find an idle stripe, make sure it is unhashed, and return it. */
256static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
257{
258 struct stripe_head *sh = NULL;
259 struct list_head *first;
260
261 CHECK_DEVLOCK();
262 if (list_empty(&conf->inactive_list))
263 goto out;
264 first = conf->inactive_list.next;
265 sh = list_entry(first, struct stripe_head, lru);
266 list_del_init(first);
267 remove_hash(sh);
268 atomic_inc(&conf->active_stripes);
269out:
270 return sh;
271}
272
273static void shrink_buffers(struct stripe_head *sh, int num)
274{
275 struct page *p;
276 int i;
277
278 for (i=0; i<num ; i++) {
279 p = sh->dev[i].page;
280 if (!p)
281 continue;
282 sh->dev[i].page = NULL;
2d1f3b5d 283 put_page(p);
1da177e4
LT
284 }
285}
286
287static int grow_buffers(struct stripe_head *sh, int num)
288{
289 int i;
290
291 for (i=0; i<num; i++) {
292 struct page *page;
293
294 if (!(page = alloc_page(GFP_KERNEL))) {
295 return 1;
296 }
297 sh->dev[i].page = page;
298 }
299 return 0;
300}
301
784052ec 302static void raid5_build_block(struct stripe_head *sh, int i, int previous);
911d4ee8
N
303static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
304 struct stripe_head *sh);
1da177e4 305
b5663ba4 306static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4
LT
307{
308 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 309 int i;
1da177e4 310
78bafebd
ES
311 BUG_ON(atomic_read(&sh->count) != 0);
312 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 313 BUG_ON(stripe_operations_active(sh));
d84e0f10 314
1da177e4 315 CHECK_DEVLOCK();
45b4233c 316 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
317 (unsigned long long)sh->sector);
318
319 remove_hash(sh);
16a53ecc 320
86b42c71 321 sh->generation = conf->generation - previous;
b5663ba4 322 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 323 sh->sector = sector;
911d4ee8 324 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
325 sh->state = 0;
326
7ecaa1e6
N
327
328 for (i = sh->disks; i--; ) {
1da177e4
LT
329 struct r5dev *dev = &sh->dev[i];
330
d84e0f10 331 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 332 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 333 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 334 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 335 dev->read, dev->towrite, dev->written,
1da177e4
LT
336 test_bit(R5_LOCKED, &dev->flags));
337 BUG();
338 }
339 dev->flags = 0;
784052ec 340 raid5_build_block(sh, i, previous);
1da177e4
LT
341 }
342 insert_hash(conf, sh);
343}
344
86b42c71
N
345static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
346 short generation)
1da177e4
LT
347{
348 struct stripe_head *sh;
fccddba0 349 struct hlist_node *hn;
1da177e4
LT
350
351 CHECK_DEVLOCK();
45b4233c 352 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 353 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 354 if (sh->sector == sector && sh->generation == generation)
1da177e4 355 return sh;
45b4233c 356 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
357 return NULL;
358}
359
360static void unplug_slaves(mddev_t *mddev);
165125e1 361static void raid5_unplug_device(struct request_queue *q);
1da177e4 362
b5663ba4
N
363static struct stripe_head *
364get_active_stripe(raid5_conf_t *conf, sector_t sector,
a8c906ca 365 int previous, int noblock, int noquiesce)
1da177e4
LT
366{
367 struct stripe_head *sh;
368
45b4233c 369 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
370
371 spin_lock_irq(&conf->device_lock);
372
373 do {
72626685 374 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 375 conf->quiesce == 0 || noquiesce,
72626685 376 conf->device_lock, /* nothing */);
86b42c71 377 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
378 if (!sh) {
379 if (!conf->inactive_blocked)
380 sh = get_free_stripe(conf);
381 if (noblock && sh == NULL)
382 break;
383 if (!sh) {
384 conf->inactive_blocked = 1;
385 wait_event_lock_irq(conf->wait_for_stripe,
386 !list_empty(&conf->inactive_list) &&
5036805b
N
387 (atomic_read(&conf->active_stripes)
388 < (conf->max_nr_stripes *3/4)
1da177e4
LT
389 || !conf->inactive_blocked),
390 conf->device_lock,
f4370781 391 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
392 );
393 conf->inactive_blocked = 0;
394 } else
b5663ba4 395 init_stripe(sh, sector, previous);
1da177e4
LT
396 } else {
397 if (atomic_read(&sh->count)) {
ab69ae12
N
398 BUG_ON(!list_empty(&sh->lru)
399 && !test_bit(STRIPE_EXPANDING, &sh->state));
1da177e4
LT
400 } else {
401 if (!test_bit(STRIPE_HANDLE, &sh->state))
402 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
403 if (list_empty(&sh->lru) &&
404 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
405 BUG();
406 list_del_init(&sh->lru);
1da177e4
LT
407 }
408 }
409 } while (sh == NULL);
410
411 if (sh)
412 atomic_inc(&sh->count);
413
414 spin_unlock_irq(&conf->device_lock);
415 return sh;
416}
417
6712ecf8
N
418static void
419raid5_end_read_request(struct bio *bi, int error);
420static void
421raid5_end_write_request(struct bio *bi, int error);
91c00924 422
c4e5ac0a 423static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
424{
425 raid5_conf_t *conf = sh->raid_conf;
426 int i, disks = sh->disks;
427
428 might_sleep();
429
430 for (i = disks; i--; ) {
431 int rw;
432 struct bio *bi;
433 mdk_rdev_t *rdev;
434 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
435 rw = WRITE;
436 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
437 rw = READ;
438 else
439 continue;
440
441 bi = &sh->dev[i].req;
442
443 bi->bi_rw = rw;
444 if (rw == WRITE)
445 bi->bi_end_io = raid5_end_write_request;
446 else
447 bi->bi_end_io = raid5_end_read_request;
448
449 rcu_read_lock();
450 rdev = rcu_dereference(conf->disks[i].rdev);
451 if (rdev && test_bit(Faulty, &rdev->flags))
452 rdev = NULL;
453 if (rdev)
454 atomic_inc(&rdev->nr_pending);
455 rcu_read_unlock();
456
457 if (rdev) {
c4e5ac0a 458 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
459 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
460
2b7497f0
DW
461 set_bit(STRIPE_IO_STARTED, &sh->state);
462
91c00924
DW
463 bi->bi_bdev = rdev->bdev;
464 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 465 __func__, (unsigned long long)sh->sector,
91c00924
DW
466 bi->bi_rw, i);
467 atomic_inc(&sh->count);
468 bi->bi_sector = sh->sector + rdev->data_offset;
469 bi->bi_flags = 1 << BIO_UPTODATE;
470 bi->bi_vcnt = 1;
471 bi->bi_max_vecs = 1;
472 bi->bi_idx = 0;
473 bi->bi_io_vec = &sh->dev[i].vec;
474 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
475 bi->bi_io_vec[0].bv_offset = 0;
476 bi->bi_size = STRIPE_SIZE;
477 bi->bi_next = NULL;
478 if (rw == WRITE &&
479 test_bit(R5_ReWrite, &sh->dev[i].flags))
480 atomic_add(STRIPE_SECTORS,
481 &rdev->corrected_errors);
482 generic_make_request(bi);
483 } else {
484 if (rw == WRITE)
485 set_bit(STRIPE_DEGRADED, &sh->state);
486 pr_debug("skip op %ld on disc %d for sector %llu\n",
487 bi->bi_rw, i, (unsigned long long)sh->sector);
488 clear_bit(R5_LOCKED, &sh->dev[i].flags);
489 set_bit(STRIPE_HANDLE, &sh->state);
490 }
491 }
492}
493
494static struct dma_async_tx_descriptor *
495async_copy_data(int frombio, struct bio *bio, struct page *page,
496 sector_t sector, struct dma_async_tx_descriptor *tx)
497{
498 struct bio_vec *bvl;
499 struct page *bio_page;
500 int i;
501 int page_offset;
502
503 if (bio->bi_sector >= sector)
504 page_offset = (signed)(bio->bi_sector - sector) * 512;
505 else
506 page_offset = (signed)(sector - bio->bi_sector) * -512;
507 bio_for_each_segment(bvl, bio, i) {
508 int len = bio_iovec_idx(bio, i)->bv_len;
509 int clen;
510 int b_offset = 0;
511
512 if (page_offset < 0) {
513 b_offset = -page_offset;
514 page_offset += b_offset;
515 len -= b_offset;
516 }
517
518 if (len > 0 && page_offset + len > STRIPE_SIZE)
519 clen = STRIPE_SIZE - page_offset;
520 else
521 clen = len;
522
523 if (clen > 0) {
524 b_offset += bio_iovec_idx(bio, i)->bv_offset;
525 bio_page = bio_iovec_idx(bio, i)->bv_page;
526 if (frombio)
527 tx = async_memcpy(page, bio_page, page_offset,
528 b_offset, clen,
eb0645a8 529 ASYNC_TX_DEP_ACK,
91c00924
DW
530 tx, NULL, NULL);
531 else
532 tx = async_memcpy(bio_page, page, b_offset,
533 page_offset, clen,
eb0645a8 534 ASYNC_TX_DEP_ACK,
91c00924
DW
535 tx, NULL, NULL);
536 }
537 if (clen < len) /* hit end of page */
538 break;
539 page_offset += len;
540 }
541
542 return tx;
543}
544
545static void ops_complete_biofill(void *stripe_head_ref)
546{
547 struct stripe_head *sh = stripe_head_ref;
548 struct bio *return_bi = NULL;
549 raid5_conf_t *conf = sh->raid_conf;
e4d84909 550 int i;
91c00924 551
e46b272b 552 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
553 (unsigned long long)sh->sector);
554
555 /* clear completed biofills */
83de75cc 556 spin_lock_irq(&conf->device_lock);
91c00924
DW
557 for (i = sh->disks; i--; ) {
558 struct r5dev *dev = &sh->dev[i];
91c00924
DW
559
560 /* acknowledge completion of a biofill operation */
e4d84909
DW
561 /* and check if we need to reply to a read request,
562 * new R5_Wantfill requests are held off until
83de75cc 563 * !STRIPE_BIOFILL_RUN
e4d84909
DW
564 */
565 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 566 struct bio *rbi, *rbi2;
91c00924 567
91c00924
DW
568 BUG_ON(!dev->read);
569 rbi = dev->read;
570 dev->read = NULL;
571 while (rbi && rbi->bi_sector <
572 dev->sector + STRIPE_SECTORS) {
573 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 574 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
575 rbi->bi_next = return_bi;
576 return_bi = rbi;
577 }
91c00924
DW
578 rbi = rbi2;
579 }
580 }
581 }
83de75cc
DW
582 spin_unlock_irq(&conf->device_lock);
583 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
584
585 return_io(return_bi);
586
e4d84909 587 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
588 release_stripe(sh);
589}
590
591static void ops_run_biofill(struct stripe_head *sh)
592{
593 struct dma_async_tx_descriptor *tx = NULL;
594 raid5_conf_t *conf = sh->raid_conf;
595 int i;
596
e46b272b 597 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
598 (unsigned long long)sh->sector);
599
600 for (i = sh->disks; i--; ) {
601 struct r5dev *dev = &sh->dev[i];
602 if (test_bit(R5_Wantfill, &dev->flags)) {
603 struct bio *rbi;
604 spin_lock_irq(&conf->device_lock);
605 dev->read = rbi = dev->toread;
606 dev->toread = NULL;
607 spin_unlock_irq(&conf->device_lock);
608 while (rbi && rbi->bi_sector <
609 dev->sector + STRIPE_SECTORS) {
610 tx = async_copy_data(0, rbi, dev->page,
611 dev->sector, tx);
612 rbi = r5_next_bio(rbi, dev->sector);
613 }
614 }
615 }
616
617 atomic_inc(&sh->count);
618 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
619 ops_complete_biofill, sh);
620}
621
622static void ops_complete_compute5(void *stripe_head_ref)
623{
624 struct stripe_head *sh = stripe_head_ref;
625 int target = sh->ops.target;
626 struct r5dev *tgt = &sh->dev[target];
627
e46b272b 628 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
629 (unsigned long long)sh->sector);
630
631 set_bit(R5_UPTODATE, &tgt->flags);
632 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
633 clear_bit(R5_Wantcompute, &tgt->flags);
ecc65c9b
DW
634 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
635 if (sh->check_state == check_state_compute_run)
636 sh->check_state = check_state_compute_result;
91c00924
DW
637 set_bit(STRIPE_HANDLE, &sh->state);
638 release_stripe(sh);
639}
640
7b3a871e 641static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
91c00924
DW
642{
643 /* kernel stack size limits the total number of disks */
644 int disks = sh->disks;
645 struct page *xor_srcs[disks];
646 int target = sh->ops.target;
647 struct r5dev *tgt = &sh->dev[target];
648 struct page *xor_dest = tgt->page;
649 int count = 0;
650 struct dma_async_tx_descriptor *tx;
651 int i;
652
653 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 654 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
655 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
656
657 for (i = disks; i--; )
658 if (i != target)
659 xor_srcs[count++] = sh->dev[i].page;
660
661 atomic_inc(&sh->count);
662
663 if (unlikely(count == 1))
664 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
665 0, NULL, ops_complete_compute5, sh);
666 else
667 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
668 ASYNC_TX_XOR_ZERO_DST, NULL,
669 ops_complete_compute5, sh);
670
91c00924
DW
671 return tx;
672}
673
674static void ops_complete_prexor(void *stripe_head_ref)
675{
676 struct stripe_head *sh = stripe_head_ref;
677
e46b272b 678 pr_debug("%s: stripe %llu\n", __func__,
91c00924 679 (unsigned long long)sh->sector);
91c00924
DW
680}
681
682static struct dma_async_tx_descriptor *
683ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
684{
685 /* kernel stack size limits the total number of disks */
686 int disks = sh->disks;
687 struct page *xor_srcs[disks];
688 int count = 0, pd_idx = sh->pd_idx, i;
689
690 /* existing parity data subtracted */
691 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
692
e46b272b 693 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
694 (unsigned long long)sh->sector);
695
696 for (i = disks; i--; ) {
697 struct r5dev *dev = &sh->dev[i];
698 /* Only process blocks that are known to be uptodate */
d8ee0728 699 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
700 xor_srcs[count++] = dev->page;
701 }
702
703 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
704 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
705 ops_complete_prexor, sh);
706
707 return tx;
708}
709
710static struct dma_async_tx_descriptor *
d8ee0728 711ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
712{
713 int disks = sh->disks;
d8ee0728 714 int i;
91c00924 715
e46b272b 716 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
717 (unsigned long long)sh->sector);
718
719 for (i = disks; i--; ) {
720 struct r5dev *dev = &sh->dev[i];
721 struct bio *chosen;
91c00924 722
d8ee0728 723 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
724 struct bio *wbi;
725
726 spin_lock(&sh->lock);
727 chosen = dev->towrite;
728 dev->towrite = NULL;
729 BUG_ON(dev->written);
730 wbi = dev->written = chosen;
731 spin_unlock(&sh->lock);
732
733 while (wbi && wbi->bi_sector <
734 dev->sector + STRIPE_SECTORS) {
735 tx = async_copy_data(1, wbi, dev->page,
736 dev->sector, tx);
737 wbi = r5_next_bio(wbi, dev->sector);
738 }
739 }
740 }
741
742 return tx;
743}
744
745static void ops_complete_postxor(void *stripe_head_ref)
91c00924
DW
746{
747 struct stripe_head *sh = stripe_head_ref;
748 int disks = sh->disks, i, pd_idx = sh->pd_idx;
749
e46b272b 750 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
751 (unsigned long long)sh->sector);
752
753 for (i = disks; i--; ) {
754 struct r5dev *dev = &sh->dev[i];
755 if (dev->written || i == pd_idx)
756 set_bit(R5_UPTODATE, &dev->flags);
757 }
758
d8ee0728
DW
759 if (sh->reconstruct_state == reconstruct_state_drain_run)
760 sh->reconstruct_state = reconstruct_state_drain_result;
761 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
762 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
763 else {
764 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
765 sh->reconstruct_state = reconstruct_state_result;
766 }
91c00924
DW
767
768 set_bit(STRIPE_HANDLE, &sh->state);
769 release_stripe(sh);
770}
771
772static void
d8ee0728 773ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
774{
775 /* kernel stack size limits the total number of disks */
776 int disks = sh->disks;
777 struct page *xor_srcs[disks];
778
779 int count = 0, pd_idx = sh->pd_idx, i;
780 struct page *xor_dest;
d8ee0728 781 int prexor = 0;
91c00924 782 unsigned long flags;
91c00924 783
e46b272b 784 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
785 (unsigned long long)sh->sector);
786
787 /* check if prexor is active which means only process blocks
788 * that are part of a read-modify-write (written)
789 */
d8ee0728
DW
790 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
791 prexor = 1;
91c00924
DW
792 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
793 for (i = disks; i--; ) {
794 struct r5dev *dev = &sh->dev[i];
795 if (dev->written)
796 xor_srcs[count++] = dev->page;
797 }
798 } else {
799 xor_dest = sh->dev[pd_idx].page;
800 for (i = disks; i--; ) {
801 struct r5dev *dev = &sh->dev[i];
802 if (i != pd_idx)
803 xor_srcs[count++] = dev->page;
804 }
805 }
806
91c00924
DW
807 /* 1/ if we prexor'd then the dest is reused as a source
808 * 2/ if we did not prexor then we are redoing the parity
809 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
810 * for the synchronous xor case
811 */
812 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
813 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
814
815 atomic_inc(&sh->count);
816
817 if (unlikely(count == 1)) {
818 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
819 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
d8ee0728 820 flags, tx, ops_complete_postxor, sh);
91c00924
DW
821 } else
822 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
d8ee0728 823 flags, tx, ops_complete_postxor, sh);
91c00924
DW
824}
825
826static void ops_complete_check(void *stripe_head_ref)
827{
828 struct stripe_head *sh = stripe_head_ref;
91c00924 829
e46b272b 830 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
831 (unsigned long long)sh->sector);
832
ecc65c9b 833 sh->check_state = check_state_check_result;
91c00924
DW
834 set_bit(STRIPE_HANDLE, &sh->state);
835 release_stripe(sh);
836}
837
838static void ops_run_check(struct stripe_head *sh)
839{
840 /* kernel stack size limits the total number of disks */
841 int disks = sh->disks;
842 struct page *xor_srcs[disks];
843 struct dma_async_tx_descriptor *tx;
844
845 int count = 0, pd_idx = sh->pd_idx, i;
846 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
847
e46b272b 848 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
849 (unsigned long long)sh->sector);
850
851 for (i = disks; i--; ) {
852 struct r5dev *dev = &sh->dev[i];
853 if (i != pd_idx)
854 xor_srcs[count++] = dev->page;
855 }
856
857 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
858 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
859
91c00924
DW
860 atomic_inc(&sh->count);
861 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
862 ops_complete_check, sh);
863}
864
600aa109 865static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
866{
867 int overlap_clear = 0, i, disks = sh->disks;
868 struct dma_async_tx_descriptor *tx = NULL;
869
83de75cc 870 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
871 ops_run_biofill(sh);
872 overlap_clear++;
873 }
874
7b3a871e
DW
875 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
876 tx = ops_run_compute5(sh);
877 /* terminate the chain if postxor is not set to be run */
878 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
879 async_tx_ack(tx);
880 }
91c00924 881
600aa109 882 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
91c00924
DW
883 tx = ops_run_prexor(sh, tx);
884
600aa109 885 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 886 tx = ops_run_biodrain(sh, tx);
91c00924
DW
887 overlap_clear++;
888 }
889
600aa109 890 if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
d8ee0728 891 ops_run_postxor(sh, tx);
91c00924 892
ecc65c9b 893 if (test_bit(STRIPE_OP_CHECK, &ops_request))
91c00924
DW
894 ops_run_check(sh);
895
91c00924
DW
896 if (overlap_clear)
897 for (i = disks; i--; ) {
898 struct r5dev *dev = &sh->dev[i];
899 if (test_and_clear_bit(R5_Overlap, &dev->flags))
900 wake_up(&sh->raid_conf->wait_for_overlap);
901 }
902}
903
3f294f4f 904static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
905{
906 struct stripe_head *sh;
3f294f4f
N
907 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
908 if (!sh)
909 return 0;
910 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
911 sh->raid_conf = conf;
912 spin_lock_init(&sh->lock);
913
914 if (grow_buffers(sh, conf->raid_disks)) {
915 shrink_buffers(sh, conf->raid_disks);
916 kmem_cache_free(conf->slab_cache, sh);
917 return 0;
918 }
7ecaa1e6 919 sh->disks = conf->raid_disks;
3f294f4f
N
920 /* we just created an active stripe so... */
921 atomic_set(&sh->count, 1);
922 atomic_inc(&conf->active_stripes);
923 INIT_LIST_HEAD(&sh->lru);
924 release_stripe(sh);
925 return 1;
926}
927
928static int grow_stripes(raid5_conf_t *conf, int num)
929{
e18b890b 930 struct kmem_cache *sc;
1da177e4
LT
931 int devs = conf->raid_disks;
932
245f46c2
N
933 sprintf(conf->cache_name[0],
934 "raid%d-%s", conf->level, mdname(conf->mddev));
935 sprintf(conf->cache_name[1],
936 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
ad01c9e3
N
937 conf->active_name = 0;
938 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 939 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 940 0, 0, NULL);
1da177e4
LT
941 if (!sc)
942 return 1;
943 conf->slab_cache = sc;
ad01c9e3 944 conf->pool_size = devs;
16a53ecc 945 while (num--)
3f294f4f 946 if (!grow_one_stripe(conf))
1da177e4 947 return 1;
1da177e4
LT
948 return 0;
949}
29269553 950
ad01c9e3
N
951static int resize_stripes(raid5_conf_t *conf, int newsize)
952{
953 /* Make all the stripes able to hold 'newsize' devices.
954 * New slots in each stripe get 'page' set to a new page.
955 *
956 * This happens in stages:
957 * 1/ create a new kmem_cache and allocate the required number of
958 * stripe_heads.
959 * 2/ gather all the old stripe_heads and tranfer the pages across
960 * to the new stripe_heads. This will have the side effect of
961 * freezing the array as once all stripe_heads have been collected,
962 * no IO will be possible. Old stripe heads are freed once their
963 * pages have been transferred over, and the old kmem_cache is
964 * freed when all stripes are done.
965 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
966 * we simple return a failre status - no need to clean anything up.
967 * 4/ allocate new pages for the new slots in the new stripe_heads.
968 * If this fails, we don't bother trying the shrink the
969 * stripe_heads down again, we just leave them as they are.
970 * As each stripe_head is processed the new one is released into
971 * active service.
972 *
973 * Once step2 is started, we cannot afford to wait for a write,
974 * so we use GFP_NOIO allocations.
975 */
976 struct stripe_head *osh, *nsh;
977 LIST_HEAD(newstripes);
978 struct disk_info *ndisks;
b5470dc5 979 int err;
e18b890b 980 struct kmem_cache *sc;
ad01c9e3
N
981 int i;
982
983 if (newsize <= conf->pool_size)
984 return 0; /* never bother to shrink */
985
b5470dc5
DW
986 err = md_allow_write(conf->mddev);
987 if (err)
988 return err;
2a2275d6 989
ad01c9e3
N
990 /* Step 1 */
991 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
992 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 993 0, 0, NULL);
ad01c9e3
N
994 if (!sc)
995 return -ENOMEM;
996
997 for (i = conf->max_nr_stripes; i; i--) {
998 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
999 if (!nsh)
1000 break;
1001
1002 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1003
1004 nsh->raid_conf = conf;
1005 spin_lock_init(&nsh->lock);
1006
1007 list_add(&nsh->lru, &newstripes);
1008 }
1009 if (i) {
1010 /* didn't get enough, give up */
1011 while (!list_empty(&newstripes)) {
1012 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1013 list_del(&nsh->lru);
1014 kmem_cache_free(sc, nsh);
1015 }
1016 kmem_cache_destroy(sc);
1017 return -ENOMEM;
1018 }
1019 /* Step 2 - Must use GFP_NOIO now.
1020 * OK, we have enough stripes, start collecting inactive
1021 * stripes and copying them over
1022 */
1023 list_for_each_entry(nsh, &newstripes, lru) {
1024 spin_lock_irq(&conf->device_lock);
1025 wait_event_lock_irq(conf->wait_for_stripe,
1026 !list_empty(&conf->inactive_list),
1027 conf->device_lock,
b3b46be3 1028 unplug_slaves(conf->mddev)
ad01c9e3
N
1029 );
1030 osh = get_free_stripe(conf);
1031 spin_unlock_irq(&conf->device_lock);
1032 atomic_set(&nsh->count, 1);
1033 for(i=0; i<conf->pool_size; i++)
1034 nsh->dev[i].page = osh->dev[i].page;
1035 for( ; i<newsize; i++)
1036 nsh->dev[i].page = NULL;
1037 kmem_cache_free(conf->slab_cache, osh);
1038 }
1039 kmem_cache_destroy(conf->slab_cache);
1040
1041 /* Step 3.
1042 * At this point, we are holding all the stripes so the array
1043 * is completely stalled, so now is a good time to resize
1044 * conf->disks.
1045 */
1046 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1047 if (ndisks) {
1048 for (i=0; i<conf->raid_disks; i++)
1049 ndisks[i] = conf->disks[i];
1050 kfree(conf->disks);
1051 conf->disks = ndisks;
1052 } else
1053 err = -ENOMEM;
1054
1055 /* Step 4, return new stripes to service */
1056 while(!list_empty(&newstripes)) {
1057 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1058 list_del_init(&nsh->lru);
1059 for (i=conf->raid_disks; i < newsize; i++)
1060 if (nsh->dev[i].page == NULL) {
1061 struct page *p = alloc_page(GFP_NOIO);
1062 nsh->dev[i].page = p;
1063 if (!p)
1064 err = -ENOMEM;
1065 }
1066 release_stripe(nsh);
1067 }
1068 /* critical section pass, GFP_NOIO no longer needed */
1069
1070 conf->slab_cache = sc;
1071 conf->active_name = 1-conf->active_name;
1072 conf->pool_size = newsize;
1073 return err;
1074}
1da177e4 1075
3f294f4f 1076static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1077{
1078 struct stripe_head *sh;
1079
3f294f4f
N
1080 spin_lock_irq(&conf->device_lock);
1081 sh = get_free_stripe(conf);
1082 spin_unlock_irq(&conf->device_lock);
1083 if (!sh)
1084 return 0;
78bafebd 1085 BUG_ON(atomic_read(&sh->count));
ad01c9e3 1086 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
1087 kmem_cache_free(conf->slab_cache, sh);
1088 atomic_dec(&conf->active_stripes);
1089 return 1;
1090}
1091
1092static void shrink_stripes(raid5_conf_t *conf)
1093{
1094 while (drop_one_stripe(conf))
1095 ;
1096
29fc7e3e
N
1097 if (conf->slab_cache)
1098 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1099 conf->slab_cache = NULL;
1100}
1101
6712ecf8 1102static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1103{
99c0fb5f 1104 struct stripe_head *sh = bi->bi_private;
1da177e4 1105 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1106 int disks = sh->disks, i;
1da177e4 1107 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1108 char b[BDEVNAME_SIZE];
1109 mdk_rdev_t *rdev;
1da177e4 1110
1da177e4
LT
1111
1112 for (i=0 ; i<disks; i++)
1113 if (bi == &sh->dev[i].req)
1114 break;
1115
45b4233c
DW
1116 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1117 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1118 uptodate);
1119 if (i == disks) {
1120 BUG();
6712ecf8 1121 return;
1da177e4
LT
1122 }
1123
1124 if (uptodate) {
1da177e4 1125 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1126 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1127 rdev = conf->disks[i].rdev;
6be9d494
BS
1128 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1129 " (%lu sectors at %llu on %s)\n",
1130 mdname(conf->mddev), STRIPE_SECTORS,
1131 (unsigned long long)(sh->sector
1132 + rdev->data_offset),
1133 bdevname(rdev->bdev, b));
4e5314b5
N
1134 clear_bit(R5_ReadError, &sh->dev[i].flags);
1135 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1136 }
ba22dcbf
N
1137 if (atomic_read(&conf->disks[i].rdev->read_errors))
1138 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1139 } else {
d6950432 1140 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1141 int retry = 0;
d6950432
N
1142 rdev = conf->disks[i].rdev;
1143
1da177e4 1144 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1145 atomic_inc(&rdev->read_errors);
ba22dcbf 1146 if (conf->mddev->degraded)
6be9d494
BS
1147 printk_rl(KERN_WARNING
1148 "raid5:%s: read error not correctable "
1149 "(sector %llu on %s).\n",
1150 mdname(conf->mddev),
1151 (unsigned long long)(sh->sector
1152 + rdev->data_offset),
1153 bdn);
ba22dcbf 1154 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1155 /* Oh, no!!! */
6be9d494
BS
1156 printk_rl(KERN_WARNING
1157 "raid5:%s: read error NOT corrected!! "
1158 "(sector %llu on %s).\n",
1159 mdname(conf->mddev),
1160 (unsigned long long)(sh->sector
1161 + rdev->data_offset),
1162 bdn);
d6950432 1163 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1164 > conf->max_nr_stripes)
14f8d26b 1165 printk(KERN_WARNING
d6950432
N
1166 "raid5:%s: Too many read errors, failing device %s.\n",
1167 mdname(conf->mddev), bdn);
ba22dcbf
N
1168 else
1169 retry = 1;
1170 if (retry)
1171 set_bit(R5_ReadError, &sh->dev[i].flags);
1172 else {
4e5314b5
N
1173 clear_bit(R5_ReadError, &sh->dev[i].flags);
1174 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1175 md_error(conf->mddev, rdev);
ba22dcbf 1176 }
1da177e4
LT
1177 }
1178 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1179 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1180 set_bit(STRIPE_HANDLE, &sh->state);
1181 release_stripe(sh);
1da177e4
LT
1182}
1183
d710e138 1184static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1185{
99c0fb5f 1186 struct stripe_head *sh = bi->bi_private;
1da177e4 1187 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1188 int disks = sh->disks, i;
1da177e4
LT
1189 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1190
1da177e4
LT
1191 for (i=0 ; i<disks; i++)
1192 if (bi == &sh->dev[i].req)
1193 break;
1194
45b4233c 1195 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1196 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1197 uptodate);
1198 if (i == disks) {
1199 BUG();
6712ecf8 1200 return;
1da177e4
LT
1201 }
1202
1da177e4
LT
1203 if (!uptodate)
1204 md_error(conf->mddev, conf->disks[i].rdev);
1205
1206 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1207
1208 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1209 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1210 release_stripe(sh);
1da177e4
LT
1211}
1212
1213
784052ec 1214static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1215
784052ec 1216static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1217{
1218 struct r5dev *dev = &sh->dev[i];
1219
1220 bio_init(&dev->req);
1221 dev->req.bi_io_vec = &dev->vec;
1222 dev->req.bi_vcnt++;
1223 dev->req.bi_max_vecs++;
1224 dev->vec.bv_page = dev->page;
1225 dev->vec.bv_len = STRIPE_SIZE;
1226 dev->vec.bv_offset = 0;
1227
1228 dev->req.bi_sector = sh->sector;
1229 dev->req.bi_private = sh;
1230
1231 dev->flags = 0;
784052ec 1232 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1233}
1234
1235static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1236{
1237 char b[BDEVNAME_SIZE];
1238 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
45b4233c 1239 pr_debug("raid5: error called\n");
1da177e4 1240
b2d444d7 1241 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 1242 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
1243 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1244 unsigned long flags;
1245 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1246 mddev->degraded++;
c04be0aa 1247 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1248 /*
1249 * if recovery was running, make sure it aborts.
1250 */
dfc70645 1251 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1252 }
b2d444d7 1253 set_bit(Faulty, &rdev->flags);
d710e138
N
1254 printk(KERN_ALERT
1255 "raid5: Disk failure on %s, disabling device.\n"
1256 "raid5: Operation continuing on %d devices.\n",
1257 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4 1258 }
16a53ecc 1259}
1da177e4
LT
1260
1261/*
1262 * Input: a 'big' sector number,
1263 * Output: index of the data and parity disk, and the sector # in them.
1264 */
112bf897 1265static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
911d4ee8
N
1266 int previous, int *dd_idx,
1267 struct stripe_head *sh)
1da177e4
LT
1268{
1269 long stripe;
1270 unsigned long chunk_number;
1271 unsigned int chunk_offset;
911d4ee8 1272 int pd_idx, qd_idx;
67cc2b81 1273 int ddf_layout = 0;
1da177e4 1274 sector_t new_sector;
e183eaed
N
1275 int algorithm = previous ? conf->prev_algo
1276 : conf->algorithm;
09c9e5fa
AN
1277 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1278 : conf->chunk_sectors;
112bf897
N
1279 int raid_disks = previous ? conf->previous_raid_disks
1280 : conf->raid_disks;
1281 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1282
1283 /* First compute the information on this sector */
1284
1285 /*
1286 * Compute the chunk number and the sector offset inside the chunk
1287 */
1288 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1289 chunk_number = r_sector;
1290 BUG_ON(r_sector != chunk_number);
1291
1292 /*
1293 * Compute the stripe number
1294 */
1295 stripe = chunk_number / data_disks;
1296
1297 /*
1298 * Compute the data disk and parity disk indexes inside the stripe
1299 */
1300 *dd_idx = chunk_number % data_disks;
1301
1302 /*
1303 * Select the parity disk based on the user selected algorithm.
1304 */
911d4ee8 1305 pd_idx = qd_idx = ~0;
16a53ecc
N
1306 switch(conf->level) {
1307 case 4:
911d4ee8 1308 pd_idx = data_disks;
16a53ecc
N
1309 break;
1310 case 5:
e183eaed 1311 switch (algorithm) {
1da177e4 1312 case ALGORITHM_LEFT_ASYMMETRIC:
911d4ee8
N
1313 pd_idx = data_disks - stripe % raid_disks;
1314 if (*dd_idx >= pd_idx)
1da177e4
LT
1315 (*dd_idx)++;
1316 break;
1317 case ALGORITHM_RIGHT_ASYMMETRIC:
911d4ee8
N
1318 pd_idx = stripe % raid_disks;
1319 if (*dd_idx >= pd_idx)
1da177e4
LT
1320 (*dd_idx)++;
1321 break;
1322 case ALGORITHM_LEFT_SYMMETRIC:
911d4ee8
N
1323 pd_idx = data_disks - stripe % raid_disks;
1324 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1325 break;
1326 case ALGORITHM_RIGHT_SYMMETRIC:
911d4ee8
N
1327 pd_idx = stripe % raid_disks;
1328 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1329 break;
99c0fb5f
N
1330 case ALGORITHM_PARITY_0:
1331 pd_idx = 0;
1332 (*dd_idx)++;
1333 break;
1334 case ALGORITHM_PARITY_N:
1335 pd_idx = data_disks;
1336 break;
1da177e4 1337 default:
14f8d26b 1338 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
e183eaed 1339 algorithm);
99c0fb5f 1340 BUG();
16a53ecc
N
1341 }
1342 break;
1343 case 6:
1344
e183eaed 1345 switch (algorithm) {
16a53ecc 1346 case ALGORITHM_LEFT_ASYMMETRIC:
911d4ee8
N
1347 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1348 qd_idx = pd_idx + 1;
1349 if (pd_idx == raid_disks-1) {
99c0fb5f 1350 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1351 qd_idx = 0;
1352 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1353 (*dd_idx) += 2; /* D D P Q D */
1354 break;
1355 case ALGORITHM_RIGHT_ASYMMETRIC:
911d4ee8
N
1356 pd_idx = stripe % raid_disks;
1357 qd_idx = pd_idx + 1;
1358 if (pd_idx == raid_disks-1) {
99c0fb5f 1359 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1360 qd_idx = 0;
1361 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1362 (*dd_idx) += 2; /* D D P Q D */
1363 break;
1364 case ALGORITHM_LEFT_SYMMETRIC:
911d4ee8
N
1365 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1366 qd_idx = (pd_idx + 1) % raid_disks;
1367 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1368 break;
1369 case ALGORITHM_RIGHT_SYMMETRIC:
911d4ee8
N
1370 pd_idx = stripe % raid_disks;
1371 qd_idx = (pd_idx + 1) % raid_disks;
1372 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 1373 break;
99c0fb5f
N
1374
1375 case ALGORITHM_PARITY_0:
1376 pd_idx = 0;
1377 qd_idx = 1;
1378 (*dd_idx) += 2;
1379 break;
1380 case ALGORITHM_PARITY_N:
1381 pd_idx = data_disks;
1382 qd_idx = data_disks + 1;
1383 break;
1384
1385 case ALGORITHM_ROTATING_ZERO_RESTART:
1386 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1387 * of blocks for computing Q is different.
1388 */
1389 pd_idx = stripe % raid_disks;
1390 qd_idx = pd_idx + 1;
1391 if (pd_idx == raid_disks-1) {
1392 (*dd_idx)++; /* Q D D D P */
1393 qd_idx = 0;
1394 } else if (*dd_idx >= pd_idx)
1395 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1396 ddf_layout = 1;
99c0fb5f
N
1397 break;
1398
1399 case ALGORITHM_ROTATING_N_RESTART:
1400 /* Same a left_asymmetric, by first stripe is
1401 * D D D P Q rather than
1402 * Q D D D P
1403 */
1404 pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1405 qd_idx = pd_idx + 1;
1406 if (pd_idx == raid_disks-1) {
1407 (*dd_idx)++; /* Q D D D P */
1408 qd_idx = 0;
1409 } else if (*dd_idx >= pd_idx)
1410 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1411 ddf_layout = 1;
99c0fb5f
N
1412 break;
1413
1414 case ALGORITHM_ROTATING_N_CONTINUE:
1415 /* Same as left_symmetric but Q is before P */
1416 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1417 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1418 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 1419 ddf_layout = 1;
99c0fb5f
N
1420 break;
1421
1422 case ALGORITHM_LEFT_ASYMMETRIC_6:
1423 /* RAID5 left_asymmetric, with Q on last device */
1424 pd_idx = data_disks - stripe % (raid_disks-1);
1425 if (*dd_idx >= pd_idx)
1426 (*dd_idx)++;
1427 qd_idx = raid_disks - 1;
1428 break;
1429
1430 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1431 pd_idx = stripe % (raid_disks-1);
1432 if (*dd_idx >= pd_idx)
1433 (*dd_idx)++;
1434 qd_idx = raid_disks - 1;
1435 break;
1436
1437 case ALGORITHM_LEFT_SYMMETRIC_6:
1438 pd_idx = data_disks - stripe % (raid_disks-1);
1439 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1440 qd_idx = raid_disks - 1;
1441 break;
1442
1443 case ALGORITHM_RIGHT_SYMMETRIC_6:
1444 pd_idx = stripe % (raid_disks-1);
1445 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1446 qd_idx = raid_disks - 1;
1447 break;
1448
1449 case ALGORITHM_PARITY_0_6:
1450 pd_idx = 0;
1451 (*dd_idx)++;
1452 qd_idx = raid_disks - 1;
1453 break;
1454
1455
16a53ecc 1456 default:
d710e138 1457 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
e183eaed 1458 algorithm);
99c0fb5f 1459 BUG();
16a53ecc
N
1460 }
1461 break;
1da177e4
LT
1462 }
1463
911d4ee8
N
1464 if (sh) {
1465 sh->pd_idx = pd_idx;
1466 sh->qd_idx = qd_idx;
67cc2b81 1467 sh->ddf_layout = ddf_layout;
911d4ee8 1468 }
1da177e4
LT
1469 /*
1470 * Finally, compute the new sector number
1471 */
1472 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1473 return new_sector;
1474}
1475
1476
784052ec 1477static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1478{
1479 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1480 int raid_disks = sh->disks;
1481 int data_disks = raid_disks - conf->max_degraded;
1da177e4 1482 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
1483 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1484 : conf->chunk_sectors;
e183eaed
N
1485 int algorithm = previous ? conf->prev_algo
1486 : conf->algorithm;
1da177e4
LT
1487 sector_t stripe;
1488 int chunk_offset;
911d4ee8 1489 int chunk_number, dummy1, dd_idx = i;
1da177e4 1490 sector_t r_sector;
911d4ee8 1491 struct stripe_head sh2;
1da177e4 1492
16a53ecc 1493
1da177e4
LT
1494 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1495 stripe = new_sector;
1496 BUG_ON(new_sector != stripe);
1497
16a53ecc
N
1498 if (i == sh->pd_idx)
1499 return 0;
1500 switch(conf->level) {
1501 case 4: break;
1502 case 5:
e183eaed 1503 switch (algorithm) {
1da177e4
LT
1504 case ALGORITHM_LEFT_ASYMMETRIC:
1505 case ALGORITHM_RIGHT_ASYMMETRIC:
1506 if (i > sh->pd_idx)
1507 i--;
1508 break;
1509 case ALGORITHM_LEFT_SYMMETRIC:
1510 case ALGORITHM_RIGHT_SYMMETRIC:
1511 if (i < sh->pd_idx)
1512 i += raid_disks;
1513 i -= (sh->pd_idx + 1);
1514 break;
99c0fb5f
N
1515 case ALGORITHM_PARITY_0:
1516 i -= 1;
1517 break;
1518 case ALGORITHM_PARITY_N:
1519 break;
1da177e4 1520 default:
14f8d26b 1521 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
e183eaed 1522 algorithm);
99c0fb5f 1523 BUG();
16a53ecc
N
1524 }
1525 break;
1526 case 6:
d0dabf7e 1527 if (i == sh->qd_idx)
16a53ecc 1528 return 0; /* It is the Q disk */
e183eaed 1529 switch (algorithm) {
16a53ecc
N
1530 case ALGORITHM_LEFT_ASYMMETRIC:
1531 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
1532 case ALGORITHM_ROTATING_ZERO_RESTART:
1533 case ALGORITHM_ROTATING_N_RESTART:
1534 if (sh->pd_idx == raid_disks-1)
1535 i--; /* Q D D D P */
16a53ecc
N
1536 else if (i > sh->pd_idx)
1537 i -= 2; /* D D P Q D */
1538 break;
1539 case ALGORITHM_LEFT_SYMMETRIC:
1540 case ALGORITHM_RIGHT_SYMMETRIC:
1541 if (sh->pd_idx == raid_disks-1)
1542 i--; /* Q D D D P */
1543 else {
1544 /* D D P Q D */
1545 if (i < sh->pd_idx)
1546 i += raid_disks;
1547 i -= (sh->pd_idx + 2);
1548 }
1549 break;
99c0fb5f
N
1550 case ALGORITHM_PARITY_0:
1551 i -= 2;
1552 break;
1553 case ALGORITHM_PARITY_N:
1554 break;
1555 case ALGORITHM_ROTATING_N_CONTINUE:
1556 if (sh->pd_idx == 0)
1557 i--; /* P D D D Q */
1558 else if (i > sh->pd_idx)
1559 i -= 2; /* D D Q P D */
1560 break;
1561 case ALGORITHM_LEFT_ASYMMETRIC_6:
1562 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1563 if (i > sh->pd_idx)
1564 i--;
1565 break;
1566 case ALGORITHM_LEFT_SYMMETRIC_6:
1567 case ALGORITHM_RIGHT_SYMMETRIC_6:
1568 if (i < sh->pd_idx)
1569 i += data_disks + 1;
1570 i -= (sh->pd_idx + 1);
1571 break;
1572 case ALGORITHM_PARITY_0_6:
1573 i -= 1;
1574 break;
16a53ecc 1575 default:
d710e138 1576 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
e183eaed 1577 algorithm);
99c0fb5f 1578 BUG();
16a53ecc
N
1579 }
1580 break;
1da177e4
LT
1581 }
1582
1583 chunk_number = stripe * data_disks + i;
1584 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1585
112bf897 1586 check = raid5_compute_sector(conf, r_sector,
784052ec 1587 previous, &dummy1, &sh2);
911d4ee8
N
1588 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1589 || sh2.qd_idx != sh->qd_idx) {
14f8d26b 1590 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
1591 return 0;
1592 }
1593 return r_sector;
1594}
1595
1596
1597
1598/*
16a53ecc
N
1599 * Copy data between a page in the stripe cache, and one or more bion
1600 * The page could align with the middle of the bio, or there could be
1601 * several bion, each with several bio_vecs, which cover part of the page
1602 * Multiple bion are linked together on bi_next. There may be extras
1603 * at the end of this list. We ignore them.
1da177e4
LT
1604 */
1605static void copy_data(int frombio, struct bio *bio,
1606 struct page *page,
1607 sector_t sector)
1608{
1609 char *pa = page_address(page);
1610 struct bio_vec *bvl;
1611 int i;
1612 int page_offset;
1613
1614 if (bio->bi_sector >= sector)
1615 page_offset = (signed)(bio->bi_sector - sector) * 512;
1616 else
1617 page_offset = (signed)(sector - bio->bi_sector) * -512;
1618 bio_for_each_segment(bvl, bio, i) {
1619 int len = bio_iovec_idx(bio,i)->bv_len;
1620 int clen;
1621 int b_offset = 0;
1622
1623 if (page_offset < 0) {
1624 b_offset = -page_offset;
1625 page_offset += b_offset;
1626 len -= b_offset;
1627 }
1628
1629 if (len > 0 && page_offset + len > STRIPE_SIZE)
1630 clen = STRIPE_SIZE - page_offset;
1631 else clen = len;
16a53ecc 1632
1da177e4
LT
1633 if (clen > 0) {
1634 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1635 if (frombio)
1636 memcpy(pa+page_offset, ba+b_offset, clen);
1637 else
1638 memcpy(ba+b_offset, pa+page_offset, clen);
1639 __bio_kunmap_atomic(ba, KM_USER0);
1640 }
1641 if (clen < len) /* hit end of page */
1642 break;
1643 page_offset += len;
1644 }
1645}
1646
9bc89cd8
DW
1647#define check_xor() do { \
1648 if (count == MAX_XOR_BLOCKS) { \
1649 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1650 count = 0; \
1651 } \
1da177e4
LT
1652 } while(0)
1653
16a53ecc
N
1654static void compute_parity6(struct stripe_head *sh, int method)
1655{
bff61975 1656 raid5_conf_t *conf = sh->raid_conf;
d0dabf7e 1657 int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
67cc2b81 1658 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
16a53ecc
N
1659 struct bio *chosen;
1660 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
67cc2b81 1661 void *ptrs[syndrome_disks+2];
16a53ecc 1662
d0dabf7e
N
1663 pd_idx = sh->pd_idx;
1664 qd_idx = sh->qd_idx;
1665 d0_idx = raid6_d0(sh);
16a53ecc 1666
45b4233c 1667 pr_debug("compute_parity, stripe %llu, method %d\n",
16a53ecc
N
1668 (unsigned long long)sh->sector, method);
1669
1670 switch(method) {
1671 case READ_MODIFY_WRITE:
1672 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1673 case RECONSTRUCT_WRITE:
1674 for (i= disks; i-- ;)
1675 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1676 chosen = sh->dev[i].towrite;
1677 sh->dev[i].towrite = NULL;
1678
1679 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1680 wake_up(&conf->wait_for_overlap);
1681
52e5f9d1 1682 BUG_ON(sh->dev[i].written);
16a53ecc
N
1683 sh->dev[i].written = chosen;
1684 }
1685 break;
1686 case CHECK_PARITY:
1687 BUG(); /* Not implemented yet */
1688 }
1689
1690 for (i = disks; i--;)
1691 if (sh->dev[i].written) {
1692 sector_t sector = sh->dev[i].sector;
1693 struct bio *wbi = sh->dev[i].written;
1694 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1695 copy_data(1, wbi, sh->dev[i].page, sector);
1696 wbi = r5_next_bio(wbi, sector);
1697 }
1698
1699 set_bit(R5_LOCKED, &sh->dev[i].flags);
1700 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1701 }
1702
d0dabf7e 1703 /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
67cc2b81
N
1704
1705 for (i = 0; i < disks; i++)
1706 ptrs[i] = (void *)raid6_empty_zero_page;
1707
d0dabf7e
N
1708 count = 0;
1709 i = d0_idx;
1710 do {
67cc2b81
N
1711 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1712
d0dabf7e 1713 ptrs[slot] = page_address(sh->dev[i].page);
67cc2b81 1714 if (slot < syndrome_disks &&
d0dabf7e
N
1715 !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1716 printk(KERN_ERR "block %d/%d not uptodate "
1717 "on parity calc\n", i, count);
1718 BUG();
1719 }
67cc2b81 1720
d0dabf7e
N
1721 i = raid6_next_disk(i, disks);
1722 } while (i != d0_idx);
67cc2b81 1723 BUG_ON(count != syndrome_disks);
16a53ecc 1724
67cc2b81 1725 raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
16a53ecc
N
1726
1727 switch(method) {
1728 case RECONSTRUCT_WRITE:
1729 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1730 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1731 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1732 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1733 break;
1734 case UPDATE_PARITY:
1735 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1736 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1737 break;
1738 }
1739}
1740
1741
1742/* Compute one missing block */
1743static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1744{
f416885e 1745 int i, count, disks = sh->disks;
9bc89cd8 1746 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
d0dabf7e 1747 int qd_idx = sh->qd_idx;
16a53ecc 1748
45b4233c 1749 pr_debug("compute_block_1, stripe %llu, idx %d\n",
16a53ecc
N
1750 (unsigned long long)sh->sector, dd_idx);
1751
1752 if ( dd_idx == qd_idx ) {
1753 /* We're actually computing the Q drive */
1754 compute_parity6(sh, UPDATE_PARITY);
1755 } else {
9bc89cd8
DW
1756 dest = page_address(sh->dev[dd_idx].page);
1757 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1758 count = 0;
16a53ecc
N
1759 for (i = disks ; i--; ) {
1760 if (i == dd_idx || i == qd_idx)
1761 continue;
1762 p = page_address(sh->dev[i].page);
1763 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1764 ptr[count++] = p;
1765 else
1766 printk("compute_block() %d, stripe %llu, %d"
1767 " not present\n", dd_idx,
1768 (unsigned long long)sh->sector, i);
1769
1770 check_xor();
1771 }
9bc89cd8
DW
1772 if (count)
1773 xor_blocks(count, STRIPE_SIZE, dest, ptr);
16a53ecc
N
1774 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1775 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1776 }
1777}
1778
1779/* Compute two missing blocks */
1780static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1781{
f416885e 1782 int i, count, disks = sh->disks;
67cc2b81 1783 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
d0dabf7e
N
1784 int d0_idx = raid6_d0(sh);
1785 int faila = -1, failb = -1;
1786 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
67cc2b81 1787 void *ptrs[syndrome_disks+2];
16a53ecc 1788
67cc2b81
N
1789 for (i = 0; i < disks ; i++)
1790 ptrs[i] = (void *)raid6_empty_zero_page;
d0dabf7e
N
1791 count = 0;
1792 i = d0_idx;
1793 do {
67cc2b81
N
1794 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1795
d0dabf7e 1796 ptrs[slot] = page_address(sh->dev[i].page);
67cc2b81 1797
d0dabf7e
N
1798 if (i == dd_idx1)
1799 faila = slot;
1800 if (i == dd_idx2)
1801 failb = slot;
1802 i = raid6_next_disk(i, disks);
1803 } while (i != d0_idx);
67cc2b81 1804 BUG_ON(count != syndrome_disks);
16a53ecc
N
1805
1806 BUG_ON(faila == failb);
1807 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1808
45b4233c 1809 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
d0dabf7e
N
1810 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1811 faila, failb);
16a53ecc 1812
67cc2b81 1813 if (failb == syndrome_disks+1) {
16a53ecc 1814 /* Q disk is one of the missing disks */
67cc2b81 1815 if (faila == syndrome_disks) {
16a53ecc
N
1816 /* Missing P+Q, just recompute */
1817 compute_parity6(sh, UPDATE_PARITY);
1818 return;
1819 } else {
1820 /* We're missing D+Q; recompute D from P */
d0dabf7e
N
1821 compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1822 dd_idx2 : dd_idx1),
1823 0);
16a53ecc
N
1824 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1825 return;
1826 }
1827 }
1828
d0dabf7e 1829 /* We're missing D+P or D+D; */
67cc2b81 1830 if (failb == syndrome_disks) {
d0dabf7e 1831 /* We're missing D+P. */
67cc2b81 1832 raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
d0dabf7e
N
1833 } else {
1834 /* We're missing D+D. */
67cc2b81
N
1835 raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1836 ptrs);
16a53ecc 1837 }
d0dabf7e
N
1838
1839 /* Both the above update both missing blocks */
1840 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1841 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
16a53ecc
N
1842}
1843
600aa109 1844static void
1fe797e6 1845schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 1846 int rcw, int expand)
e33129d8
DW
1847{
1848 int i, pd_idx = sh->pd_idx, disks = sh->disks;
e33129d8
DW
1849
1850 if (rcw) {
1851 /* if we are not expanding this is a proper write request, and
1852 * there will be bios with new data to be drained into the
1853 * stripe cache
1854 */
1855 if (!expand) {
600aa109
DW
1856 sh->reconstruct_state = reconstruct_state_drain_run;
1857 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1858 } else
1859 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 1860
600aa109 1861 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
e33129d8
DW
1862
1863 for (i = disks; i--; ) {
1864 struct r5dev *dev = &sh->dev[i];
1865
1866 if (dev->towrite) {
1867 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 1868 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
1869 if (!expand)
1870 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 1871 s->locked++;
e33129d8
DW
1872 }
1873 }
600aa109 1874 if (s->locked + 1 == disks)
8b3e6cdc
DW
1875 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1876 atomic_inc(&sh->raid_conf->pending_full_writes);
e33129d8
DW
1877 } else {
1878 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1879 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1880
d8ee0728 1881 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
1882 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1883 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1884 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
e33129d8
DW
1885
1886 for (i = disks; i--; ) {
1887 struct r5dev *dev = &sh->dev[i];
1888 if (i == pd_idx)
1889 continue;
1890
e33129d8
DW
1891 if (dev->towrite &&
1892 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
1893 test_bit(R5_Wantcompute, &dev->flags))) {
1894 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
1895 set_bit(R5_LOCKED, &dev->flags);
1896 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 1897 s->locked++;
e33129d8
DW
1898 }
1899 }
1900 }
1901
1902 /* keep the parity disk locked while asynchronous operations
1903 * are in flight
1904 */
1905 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1906 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 1907 s->locked++;
e33129d8 1908
600aa109 1909 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 1910 __func__, (unsigned long long)sh->sector,
600aa109 1911 s->locked, s->ops_request);
e33129d8 1912}
16a53ecc 1913
1da177e4
LT
1914/*
1915 * Each stripe/dev can have one or more bion attached.
16a53ecc 1916 * toread/towrite point to the first in a chain.
1da177e4
LT
1917 * The bi_next chain must be in order.
1918 */
1919static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1920{
1921 struct bio **bip;
1922 raid5_conf_t *conf = sh->raid_conf;
72626685 1923 int firstwrite=0;
1da177e4 1924
45b4233c 1925 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
1926 (unsigned long long)bi->bi_sector,
1927 (unsigned long long)sh->sector);
1928
1929
1930 spin_lock(&sh->lock);
1931 spin_lock_irq(&conf->device_lock);
72626685 1932 if (forwrite) {
1da177e4 1933 bip = &sh->dev[dd_idx].towrite;
72626685
N
1934 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1935 firstwrite = 1;
1936 } else
1da177e4
LT
1937 bip = &sh->dev[dd_idx].toread;
1938 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1939 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1940 goto overlap;
1941 bip = & (*bip)->bi_next;
1942 }
1943 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1944 goto overlap;
1945
78bafebd 1946 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
1947 if (*bip)
1948 bi->bi_next = *bip;
1949 *bip = bi;
960e739d 1950 bi->bi_phys_segments++;
1da177e4
LT
1951 spin_unlock_irq(&conf->device_lock);
1952 spin_unlock(&sh->lock);
1953
45b4233c 1954 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
1955 (unsigned long long)bi->bi_sector,
1956 (unsigned long long)sh->sector, dd_idx);
1957
72626685 1958 if (conf->mddev->bitmap && firstwrite) {
72626685
N
1959 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1960 STRIPE_SECTORS, 0);
ae3c20cc 1961 sh->bm_seq = conf->seq_flush+1;
72626685
N
1962 set_bit(STRIPE_BIT_DELAY, &sh->state);
1963 }
1964
1da177e4
LT
1965 if (forwrite) {
1966 /* check if page is covered */
1967 sector_t sector = sh->dev[dd_idx].sector;
1968 for (bi=sh->dev[dd_idx].towrite;
1969 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1970 bi && bi->bi_sector <= sector;
1971 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1972 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1973 sector = bi->bi_sector + (bi->bi_size>>9);
1974 }
1975 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1976 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1977 }
1978 return 1;
1979
1980 overlap:
1981 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1982 spin_unlock_irq(&conf->device_lock);
1983 spin_unlock(&sh->lock);
1984 return 0;
1985}
1986
29269553
N
1987static void end_reshape(raid5_conf_t *conf);
1988
16a53ecc
N
1989static int page_is_zero(struct page *p)
1990{
1991 char *a = page_address(p);
1992 return ((*(u32*)a) == 0 &&
1993 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1994}
1995
911d4ee8
N
1996static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1997 struct stripe_head *sh)
ccfcc3c1 1998{
784052ec 1999 int sectors_per_chunk =
09c9e5fa 2000 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2001 int dd_idx;
2d2063ce 2002 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2003 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2004
112bf897
N
2005 raid5_compute_sector(conf,
2006 stripe * (disks - conf->max_degraded)
b875e531 2007 *sectors_per_chunk + chunk_offset,
112bf897 2008 previous,
911d4ee8 2009 &dd_idx, sh);
ccfcc3c1
N
2010}
2011
a4456856 2012static void
1fe797e6 2013handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
a4456856
DW
2014 struct stripe_head_state *s, int disks,
2015 struct bio **return_bi)
2016{
2017 int i;
2018 for (i = disks; i--; ) {
2019 struct bio *bi;
2020 int bitmap_end = 0;
2021
2022 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2023 mdk_rdev_t *rdev;
2024 rcu_read_lock();
2025 rdev = rcu_dereference(conf->disks[i].rdev);
2026 if (rdev && test_bit(In_sync, &rdev->flags))
2027 /* multiple read failures in one stripe */
2028 md_error(conf->mddev, rdev);
2029 rcu_read_unlock();
2030 }
2031 spin_lock_irq(&conf->device_lock);
2032 /* fail all writes first */
2033 bi = sh->dev[i].towrite;
2034 sh->dev[i].towrite = NULL;
2035 if (bi) {
2036 s->to_write--;
2037 bitmap_end = 1;
2038 }
2039
2040 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2041 wake_up(&conf->wait_for_overlap);
2042
2043 while (bi && bi->bi_sector <
2044 sh->dev[i].sector + STRIPE_SECTORS) {
2045 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2046 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2047 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2048 md_write_end(conf->mddev);
2049 bi->bi_next = *return_bi;
2050 *return_bi = bi;
2051 }
2052 bi = nextbi;
2053 }
2054 /* and fail all 'written' */
2055 bi = sh->dev[i].written;
2056 sh->dev[i].written = NULL;
2057 if (bi) bitmap_end = 1;
2058 while (bi && bi->bi_sector <
2059 sh->dev[i].sector + STRIPE_SECTORS) {
2060 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2061 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2062 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2063 md_write_end(conf->mddev);
2064 bi->bi_next = *return_bi;
2065 *return_bi = bi;
2066 }
2067 bi = bi2;
2068 }
2069
b5e98d65
DW
2070 /* fail any reads if this device is non-operational and
2071 * the data has not reached the cache yet.
2072 */
2073 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2074 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2075 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2076 bi = sh->dev[i].toread;
2077 sh->dev[i].toread = NULL;
2078 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2079 wake_up(&conf->wait_for_overlap);
2080 if (bi) s->to_read--;
2081 while (bi && bi->bi_sector <
2082 sh->dev[i].sector + STRIPE_SECTORS) {
2083 struct bio *nextbi =
2084 r5_next_bio(bi, sh->dev[i].sector);
2085 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2086 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2087 bi->bi_next = *return_bi;
2088 *return_bi = bi;
2089 }
2090 bi = nextbi;
2091 }
2092 }
2093 spin_unlock_irq(&conf->device_lock);
2094 if (bitmap_end)
2095 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2096 STRIPE_SECTORS, 0, 0);
2097 }
2098
8b3e6cdc
DW
2099 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2100 if (atomic_dec_and_test(&conf->pending_full_writes))
2101 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2102}
2103
1fe797e6
DW
2104/* fetch_block5 - checks the given member device to see if its data needs
2105 * to be read or computed to satisfy a request.
2106 *
2107 * Returns 1 when no more member devices need to be checked, otherwise returns
2108 * 0 to tell the loop in handle_stripe_fill5 to continue
f38e1219 2109 */
1fe797e6
DW
2110static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2111 int disk_idx, int disks)
f38e1219
DW
2112{
2113 struct r5dev *dev = &sh->dev[disk_idx];
2114 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2115
f38e1219
DW
2116 /* is the data in this block needed, and can we get it? */
2117 if (!test_bit(R5_LOCKED, &dev->flags) &&
1fe797e6
DW
2118 !test_bit(R5_UPTODATE, &dev->flags) &&
2119 (dev->toread ||
2120 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2121 s->syncing || s->expanding ||
2122 (s->failed &&
2123 (failed_dev->toread ||
2124 (failed_dev->towrite &&
2125 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
976ea8d4
DW
2126 /* We would like to get this block, possibly by computing it,
2127 * otherwise read it if the backing disk is insync
f38e1219
DW
2128 */
2129 if ((s->uptodate == disks - 1) &&
ecc65c9b 2130 (s->failed && disk_idx == s->failed_num)) {
976ea8d4
DW
2131 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2132 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
f38e1219
DW
2133 set_bit(R5_Wantcompute, &dev->flags);
2134 sh->ops.target = disk_idx;
2135 s->req_compute = 1;
f38e1219
DW
2136 /* Careful: from this point on 'uptodate' is in the eye
2137 * of raid5_run_ops which services 'compute' operations
2138 * before writes. R5_Wantcompute flags a block that will
2139 * be R5_UPTODATE by the time it is needed for a
2140 * subsequent operation.
2141 */
2142 s->uptodate++;
1fe797e6 2143 return 1; /* uptodate + compute == disks */
7a1fc53c 2144 } else if (test_bit(R5_Insync, &dev->flags)) {
f38e1219
DW
2145 set_bit(R5_LOCKED, &dev->flags);
2146 set_bit(R5_Wantread, &dev->flags);
f38e1219
DW
2147 s->locked++;
2148 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2149 s->syncing);
2150 }
2151 }
2152
1fe797e6 2153 return 0;
f38e1219
DW
2154}
2155
1fe797e6
DW
2156/**
2157 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2158 */
2159static void handle_stripe_fill5(struct stripe_head *sh,
a4456856
DW
2160 struct stripe_head_state *s, int disks)
2161{
2162 int i;
f38e1219 2163
f38e1219
DW
2164 /* look for blocks to read/compute, skip this if a compute
2165 * is already in flight, or if the stripe contents are in the
2166 * midst of changing due to a write
2167 */
976ea8d4 2168 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1fe797e6 2169 !sh->reconstruct_state)
f38e1219 2170 for (i = disks; i--; )
1fe797e6 2171 if (fetch_block5(sh, s, i, disks))
f38e1219 2172 break;
a4456856
DW
2173 set_bit(STRIPE_HANDLE, &sh->state);
2174}
2175
1fe797e6 2176static void handle_stripe_fill6(struct stripe_head *sh,
a4456856
DW
2177 struct stripe_head_state *s, struct r6_state *r6s,
2178 int disks)
2179{
2180 int i;
2181 for (i = disks; i--; ) {
2182 struct r5dev *dev = &sh->dev[i];
2183 if (!test_bit(R5_LOCKED, &dev->flags) &&
2184 !test_bit(R5_UPTODATE, &dev->flags) &&
2185 (dev->toread || (dev->towrite &&
2186 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2187 s->syncing || s->expanding ||
2188 (s->failed >= 1 &&
2189 (sh->dev[r6s->failed_num[0]].toread ||
2190 s->to_write)) ||
2191 (s->failed >= 2 &&
2192 (sh->dev[r6s->failed_num[1]].toread ||
2193 s->to_write)))) {
2194 /* we would like to get this block, possibly
2195 * by computing it, but we might not be able to
2196 */
c337869d
DW
2197 if ((s->uptodate == disks - 1) &&
2198 (s->failed && (i == r6s->failed_num[0] ||
2199 i == r6s->failed_num[1]))) {
45b4233c 2200 pr_debug("Computing stripe %llu block %d\n",
a4456856
DW
2201 (unsigned long long)sh->sector, i);
2202 compute_block_1(sh, i, 0);
2203 s->uptodate++;
2204 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2205 /* Computing 2-failure is *very* expensive; only
2206 * do it if failed >= 2
2207 */
2208 int other;
2209 for (other = disks; other--; ) {
2210 if (other == i)
2211 continue;
2212 if (!test_bit(R5_UPTODATE,
2213 &sh->dev[other].flags))
2214 break;
2215 }
2216 BUG_ON(other < 0);
45b4233c 2217 pr_debug("Computing stripe %llu blocks %d,%d\n",
a4456856
DW
2218 (unsigned long long)sh->sector,
2219 i, other);
2220 compute_block_2(sh, i, other);
2221 s->uptodate += 2;
2222 } else if (test_bit(R5_Insync, &dev->flags)) {
2223 set_bit(R5_LOCKED, &dev->flags);
2224 set_bit(R5_Wantread, &dev->flags);
2225 s->locked++;
45b4233c 2226 pr_debug("Reading block %d (sync=%d)\n",
a4456856
DW
2227 i, s->syncing);
2228 }
2229 }
2230 }
2231 set_bit(STRIPE_HANDLE, &sh->state);
2232}
2233
2234
1fe797e6 2235/* handle_stripe_clean_event
a4456856
DW
2236 * any written block on an uptodate or failed drive can be returned.
2237 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2238 * never LOCKED, so we don't need to test 'failed' directly.
2239 */
1fe797e6 2240static void handle_stripe_clean_event(raid5_conf_t *conf,
a4456856
DW
2241 struct stripe_head *sh, int disks, struct bio **return_bi)
2242{
2243 int i;
2244 struct r5dev *dev;
2245
2246 for (i = disks; i--; )
2247 if (sh->dev[i].written) {
2248 dev = &sh->dev[i];
2249 if (!test_bit(R5_LOCKED, &dev->flags) &&
2250 test_bit(R5_UPTODATE, &dev->flags)) {
2251 /* We can return any write requests */
2252 struct bio *wbi, *wbi2;
2253 int bitmap_end = 0;
45b4233c 2254 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2255 spin_lock_irq(&conf->device_lock);
2256 wbi = dev->written;
2257 dev->written = NULL;
2258 while (wbi && wbi->bi_sector <
2259 dev->sector + STRIPE_SECTORS) {
2260 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2261 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2262 md_write_end(conf->mddev);
2263 wbi->bi_next = *return_bi;
2264 *return_bi = wbi;
2265 }
2266 wbi = wbi2;
2267 }
2268 if (dev->towrite == NULL)
2269 bitmap_end = 1;
2270 spin_unlock_irq(&conf->device_lock);
2271 if (bitmap_end)
2272 bitmap_endwrite(conf->mddev->bitmap,
2273 sh->sector,
2274 STRIPE_SECTORS,
2275 !test_bit(STRIPE_DEGRADED, &sh->state),
2276 0);
2277 }
2278 }
8b3e6cdc
DW
2279
2280 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2281 if (atomic_dec_and_test(&conf->pending_full_writes))
2282 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2283}
2284
1fe797e6 2285static void handle_stripe_dirtying5(raid5_conf_t *conf,
a4456856
DW
2286 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2287{
2288 int rmw = 0, rcw = 0, i;
2289 for (i = disks; i--; ) {
2290 /* would I have to read this buffer for read_modify_write */
2291 struct r5dev *dev = &sh->dev[i];
2292 if ((dev->towrite || i == sh->pd_idx) &&
2293 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2294 !(test_bit(R5_UPTODATE, &dev->flags) ||
2295 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2296 if (test_bit(R5_Insync, &dev->flags))
2297 rmw++;
2298 else
2299 rmw += 2*disks; /* cannot read it */
2300 }
2301 /* Would I have to read this buffer for reconstruct_write */
2302 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2303 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2304 !(test_bit(R5_UPTODATE, &dev->flags) ||
2305 test_bit(R5_Wantcompute, &dev->flags))) {
2306 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2307 else
2308 rcw += 2*disks;
2309 }
2310 }
45b4233c 2311 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2312 (unsigned long long)sh->sector, rmw, rcw);
2313 set_bit(STRIPE_HANDLE, &sh->state);
2314 if (rmw < rcw && rmw > 0)
2315 /* prefer read-modify-write, but need to get some data */
2316 for (i = disks; i--; ) {
2317 struct r5dev *dev = &sh->dev[i];
2318 if ((dev->towrite || i == sh->pd_idx) &&
2319 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2320 !(test_bit(R5_UPTODATE, &dev->flags) ||
2321 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2322 test_bit(R5_Insync, &dev->flags)) {
2323 if (
2324 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2325 pr_debug("Read_old block "
a4456856
DW
2326 "%d for r-m-w\n", i);
2327 set_bit(R5_LOCKED, &dev->flags);
2328 set_bit(R5_Wantread, &dev->flags);
2329 s->locked++;
2330 } else {
2331 set_bit(STRIPE_DELAYED, &sh->state);
2332 set_bit(STRIPE_HANDLE, &sh->state);
2333 }
2334 }
2335 }
2336 if (rcw <= rmw && rcw > 0)
2337 /* want reconstruct write, but need to get some data */
2338 for (i = disks; i--; ) {
2339 struct r5dev *dev = &sh->dev[i];
2340 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2341 i != sh->pd_idx &&
2342 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2343 !(test_bit(R5_UPTODATE, &dev->flags) ||
2344 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2345 test_bit(R5_Insync, &dev->flags)) {
2346 if (
2347 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2348 pr_debug("Read_old block "
a4456856
DW
2349 "%d for Reconstruct\n", i);
2350 set_bit(R5_LOCKED, &dev->flags);
2351 set_bit(R5_Wantread, &dev->flags);
2352 s->locked++;
2353 } else {
2354 set_bit(STRIPE_DELAYED, &sh->state);
2355 set_bit(STRIPE_HANDLE, &sh->state);
2356 }
2357 }
2358 }
2359 /* now if nothing is locked, and if we have enough data,
2360 * we can start a write request
2361 */
f38e1219
DW
2362 /* since handle_stripe can be called at any time we need to handle the
2363 * case where a compute block operation has been submitted and then a
2364 * subsequent call wants to start a write request. raid5_run_ops only
2365 * handles the case where compute block and postxor are requested
2366 * simultaneously. If this is not the case then new writes need to be
2367 * held off until the compute completes.
2368 */
976ea8d4
DW
2369 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2370 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2371 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
1fe797e6 2372 schedule_reconstruction5(sh, s, rcw == 0, 0);
a4456856
DW
2373}
2374
1fe797e6 2375static void handle_stripe_dirtying6(raid5_conf_t *conf,
a4456856
DW
2376 struct stripe_head *sh, struct stripe_head_state *s,
2377 struct r6_state *r6s, int disks)
2378{
2379 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
34e04e87 2380 int qd_idx = sh->qd_idx;
a4456856
DW
2381 for (i = disks; i--; ) {
2382 struct r5dev *dev = &sh->dev[i];
2383 /* Would I have to read this buffer for reconstruct_write */
2384 if (!test_bit(R5_OVERWRITE, &dev->flags)
2385 && i != pd_idx && i != qd_idx
2386 && (!test_bit(R5_LOCKED, &dev->flags)
2387 ) &&
2388 !test_bit(R5_UPTODATE, &dev->flags)) {
2389 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2390 else {
45b4233c 2391 pr_debug("raid6: must_compute: "
a4456856
DW
2392 "disk %d flags=%#lx\n", i, dev->flags);
2393 must_compute++;
2394 }
2395 }
2396 }
45b4233c 2397 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
a4456856
DW
2398 (unsigned long long)sh->sector, rcw, must_compute);
2399 set_bit(STRIPE_HANDLE, &sh->state);
2400
2401 if (rcw > 0)
2402 /* want reconstruct write, but need to get some data */
2403 for (i = disks; i--; ) {
2404 struct r5dev *dev = &sh->dev[i];
2405 if (!test_bit(R5_OVERWRITE, &dev->flags)
2406 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2407 && !test_bit(R5_LOCKED, &dev->flags) &&
2408 !test_bit(R5_UPTODATE, &dev->flags) &&
2409 test_bit(R5_Insync, &dev->flags)) {
2410 if (
2411 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2412 pr_debug("Read_old stripe %llu "
a4456856
DW
2413 "block %d for Reconstruct\n",
2414 (unsigned long long)sh->sector, i);
2415 set_bit(R5_LOCKED, &dev->flags);
2416 set_bit(R5_Wantread, &dev->flags);
2417 s->locked++;
2418 } else {
45b4233c 2419 pr_debug("Request delayed stripe %llu "
a4456856
DW
2420 "block %d for Reconstruct\n",
2421 (unsigned long long)sh->sector, i);
2422 set_bit(STRIPE_DELAYED, &sh->state);
2423 set_bit(STRIPE_HANDLE, &sh->state);
2424 }
2425 }
2426 }
2427 /* now if nothing is locked, and if we have enough data, we can start a
2428 * write request
2429 */
2430 if (s->locked == 0 && rcw == 0 &&
2431 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2432 if (must_compute > 0) {
2433 /* We have failed blocks and need to compute them */
2434 switch (s->failed) {
2435 case 0:
2436 BUG();
2437 case 1:
2438 compute_block_1(sh, r6s->failed_num[0], 0);
2439 break;
2440 case 2:
2441 compute_block_2(sh, r6s->failed_num[0],
2442 r6s->failed_num[1]);
2443 break;
2444 default: /* This request should have been failed? */
2445 BUG();
2446 }
2447 }
2448
45b4233c 2449 pr_debug("Computing parity for stripe %llu\n",
a4456856
DW
2450 (unsigned long long)sh->sector);
2451 compute_parity6(sh, RECONSTRUCT_WRITE);
2452 /* now every locked buffer is ready to be written */
2453 for (i = disks; i--; )
2454 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
45b4233c 2455 pr_debug("Writing stripe %llu block %d\n",
a4456856
DW
2456 (unsigned long long)sh->sector, i);
2457 s->locked++;
2458 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2459 }
8b3e6cdc
DW
2460 if (s->locked == disks)
2461 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2462 atomic_inc(&conf->pending_full_writes);
a4456856
DW
2463 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2464 set_bit(STRIPE_INSYNC, &sh->state);
2465
2466 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2467 atomic_dec(&conf->preread_active_stripes);
2468 if (atomic_read(&conf->preread_active_stripes) <
2469 IO_THRESHOLD)
2470 md_wakeup_thread(conf->mddev->thread);
2471 }
2472 }
2473}
2474
2475static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2476 struct stripe_head_state *s, int disks)
2477{
ecc65c9b 2478 struct r5dev *dev = NULL;
bd2ab670 2479
a4456856 2480 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2481
ecc65c9b
DW
2482 switch (sh->check_state) {
2483 case check_state_idle:
2484 /* start a new check operation if there are no failures */
bd2ab670 2485 if (s->failed == 0) {
bd2ab670 2486 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2487 sh->check_state = check_state_run;
2488 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2489 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2490 s->uptodate--;
ecc65c9b 2491 break;
bd2ab670 2492 }
ecc65c9b
DW
2493 dev = &sh->dev[s->failed_num];
2494 /* fall through */
2495 case check_state_compute_result:
2496 sh->check_state = check_state_idle;
2497 if (!dev)
2498 dev = &sh->dev[sh->pd_idx];
2499
2500 /* check that a write has not made the stripe insync */
2501 if (test_bit(STRIPE_INSYNC, &sh->state))
2502 break;
c8894419 2503
a4456856 2504 /* either failed parity check, or recovery is happening */
a4456856
DW
2505 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2506 BUG_ON(s->uptodate != disks);
2507
2508 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2509 s->locked++;
a4456856 2510 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2511
a4456856 2512 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2513 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2514 break;
2515 case check_state_run:
2516 break; /* we will be called again upon completion */
2517 case check_state_check_result:
2518 sh->check_state = check_state_idle;
2519
2520 /* if a failure occurred during the check operation, leave
2521 * STRIPE_INSYNC not set and let the stripe be handled again
2522 */
2523 if (s->failed)
2524 break;
2525
2526 /* handle a successful check operation, if parity is correct
2527 * we are done. Otherwise update the mismatch count and repair
2528 * parity if !MD_RECOVERY_CHECK
2529 */
2530 if (sh->ops.zero_sum_result == 0)
2531 /* parity is correct (on disc,
2532 * not in buffer any more)
2533 */
2534 set_bit(STRIPE_INSYNC, &sh->state);
2535 else {
2536 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2537 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2538 /* don't try to repair!! */
2539 set_bit(STRIPE_INSYNC, &sh->state);
2540 else {
2541 sh->check_state = check_state_compute_run;
976ea8d4 2542 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2543 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2544 set_bit(R5_Wantcompute,
2545 &sh->dev[sh->pd_idx].flags);
2546 sh->ops.target = sh->pd_idx;
2547 s->uptodate++;
2548 }
2549 }
2550 break;
2551 case check_state_compute_run:
2552 break;
2553 default:
2554 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2555 __func__, sh->check_state,
2556 (unsigned long long) sh->sector);
2557 BUG();
a4456856
DW
2558 }
2559}
2560
2561
2562static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2563 struct stripe_head_state *s,
2564 struct r6_state *r6s, struct page *tmp_page,
2565 int disks)
2566{
2567 int update_p = 0, update_q = 0;
2568 struct r5dev *dev;
2569 int pd_idx = sh->pd_idx;
34e04e87 2570 int qd_idx = sh->qd_idx;
a4456856
DW
2571
2572 set_bit(STRIPE_HANDLE, &sh->state);
2573
2574 BUG_ON(s->failed > 2);
2575 BUG_ON(s->uptodate < disks);
2576 /* Want to check and possibly repair P and Q.
2577 * However there could be one 'failed' device, in which
2578 * case we can only check one of them, possibly using the
2579 * other to generate missing data
2580 */
2581
2582 /* If !tmp_page, we cannot do the calculations,
2583 * but as we have set STRIPE_HANDLE, we will soon be called
2584 * by stripe_handle with a tmp_page - just wait until then.
2585 */
2586 if (tmp_page) {
2587 if (s->failed == r6s->q_failed) {
2588 /* The only possible failed device holds 'Q', so it
2589 * makes sense to check P (If anything else were failed,
2590 * we would have used P to recreate it).
2591 */
2592 compute_block_1(sh, pd_idx, 1);
2593 if (!page_is_zero(sh->dev[pd_idx].page)) {
2594 compute_block_1(sh, pd_idx, 0);
2595 update_p = 1;
2596 }
2597 }
2598 if (!r6s->q_failed && s->failed < 2) {
2599 /* q is not failed, and we didn't use it to generate
2600 * anything, so it makes sense to check it
2601 */
2602 memcpy(page_address(tmp_page),
2603 page_address(sh->dev[qd_idx].page),
2604 STRIPE_SIZE);
2605 compute_parity6(sh, UPDATE_PARITY);
2606 if (memcmp(page_address(tmp_page),
2607 page_address(sh->dev[qd_idx].page),
2608 STRIPE_SIZE) != 0) {
2609 clear_bit(STRIPE_INSYNC, &sh->state);
2610 update_q = 1;
2611 }
2612 }
2613 if (update_p || update_q) {
2614 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2615 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2616 /* don't try to repair!! */
2617 update_p = update_q = 0;
2618 }
2619
2620 /* now write out any block on a failed drive,
2621 * or P or Q if they need it
2622 */
2623
2624 if (s->failed == 2) {
2625 dev = &sh->dev[r6s->failed_num[1]];
2626 s->locked++;
2627 set_bit(R5_LOCKED, &dev->flags);
2628 set_bit(R5_Wantwrite, &dev->flags);
2629 }
2630 if (s->failed >= 1) {
2631 dev = &sh->dev[r6s->failed_num[0]];
2632 s->locked++;
2633 set_bit(R5_LOCKED, &dev->flags);
2634 set_bit(R5_Wantwrite, &dev->flags);
2635 }
2636
2637 if (update_p) {
2638 dev = &sh->dev[pd_idx];
2639 s->locked++;
2640 set_bit(R5_LOCKED, &dev->flags);
2641 set_bit(R5_Wantwrite, &dev->flags);
2642 }
2643 if (update_q) {
2644 dev = &sh->dev[qd_idx];
2645 s->locked++;
2646 set_bit(R5_LOCKED, &dev->flags);
2647 set_bit(R5_Wantwrite, &dev->flags);
2648 }
2649 clear_bit(STRIPE_DEGRADED, &sh->state);
2650
2651 set_bit(STRIPE_INSYNC, &sh->state);
2652 }
2653}
2654
2655static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2656 struct r6_state *r6s)
2657{
2658 int i;
2659
2660 /* We have read all the blocks in this stripe and now we need to
2661 * copy some of them into a target stripe for expand.
2662 */
f0a50d37 2663 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2664 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2665 for (i = 0; i < sh->disks; i++)
34e04e87 2666 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 2667 int dd_idx, j;
a4456856
DW
2668 struct stripe_head *sh2;
2669
784052ec 2670 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
2671 sector_t s = raid5_compute_sector(conf, bn, 0,
2672 &dd_idx, NULL);
a8c906ca 2673 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
2674 if (sh2 == NULL)
2675 /* so far only the early blocks of this stripe
2676 * have been requested. When later blocks
2677 * get requested, we will try again
2678 */
2679 continue;
2680 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2681 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2682 /* must have already done this block */
2683 release_stripe(sh2);
2684 continue;
2685 }
f0a50d37
DW
2686
2687 /* place all the copies on one channel */
2688 tx = async_memcpy(sh2->dev[dd_idx].page,
2689 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2690 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2691
a4456856
DW
2692 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2693 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2694 for (j = 0; j < conf->raid_disks; j++)
2695 if (j != sh2->pd_idx &&
d0dabf7e 2696 (!r6s || j != sh2->qd_idx) &&
a4456856
DW
2697 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2698 break;
2699 if (j == conf->raid_disks) {
2700 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2701 set_bit(STRIPE_HANDLE, &sh2->state);
2702 }
2703 release_stripe(sh2);
f0a50d37 2704
a4456856 2705 }
a2e08551
N
2706 /* done submitting copies, wait for them to complete */
2707 if (tx) {
2708 async_tx_ack(tx);
2709 dma_wait_for_async_tx(tx);
2710 }
a4456856 2711}
1da177e4 2712
6bfe0b49 2713
1da177e4
LT
2714/*
2715 * handle_stripe - do things to a stripe.
2716 *
2717 * We lock the stripe and then examine the state of various bits
2718 * to see what needs to be done.
2719 * Possible results:
2720 * return some read request which now have data
2721 * return some write requests which are safely on disc
2722 * schedule a read on some buffers
2723 * schedule a write of some buffers
2724 * return confirmation of parity correctness
2725 *
1da177e4
LT
2726 * buffers are taken off read_list or write_list, and bh_cache buffers
2727 * get BH_Lock set before the stripe lock is released.
2728 *
2729 */
a4456856 2730
df10cfbc 2731static bool handle_stripe5(struct stripe_head *sh)
1da177e4
LT
2732{
2733 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
2734 int disks = sh->disks, i;
2735 struct bio *return_bi = NULL;
2736 struct stripe_head_state s;
1da177e4 2737 struct r5dev *dev;
6bfe0b49 2738 mdk_rdev_t *blocked_rdev = NULL;
e0a115e5 2739 int prexor;
1da177e4 2740
a4456856 2741 memset(&s, 0, sizeof(s));
600aa109
DW
2742 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2743 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2744 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2745 sh->reconstruct_state);
1da177e4
LT
2746
2747 spin_lock(&sh->lock);
2748 clear_bit(STRIPE_HANDLE, &sh->state);
2749 clear_bit(STRIPE_DELAYED, &sh->state);
2750
a4456856
DW
2751 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2752 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2753 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
def6ae26 2754
83de75cc 2755 /* Now to look around and see what can be done */
9910f16a 2756 rcu_read_lock();
1da177e4
LT
2757 for (i=disks; i--; ) {
2758 mdk_rdev_t *rdev;
a4456856 2759 struct r5dev *dev = &sh->dev[i];
1da177e4 2760 clear_bit(R5_Insync, &dev->flags);
1da177e4 2761
b5e98d65
DW
2762 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2763 "written %p\n", i, dev->flags, dev->toread, dev->read,
2764 dev->towrite, dev->written);
2765
2766 /* maybe we can request a biofill operation
2767 *
2768 * new wantfill requests are only permitted while
83de75cc 2769 * ops_complete_biofill is guaranteed to be inactive
b5e98d65
DW
2770 */
2771 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
83de75cc 2772 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
b5e98d65 2773 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
2774
2775 /* now count some things */
a4456856
DW
2776 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2777 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 2778 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 2779
b5e98d65
DW
2780 if (test_bit(R5_Wantfill, &dev->flags))
2781 s.to_fill++;
2782 else if (dev->toread)
a4456856 2783 s.to_read++;
1da177e4 2784 if (dev->towrite) {
a4456856 2785 s.to_write++;
1da177e4 2786 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2787 s.non_overwrite++;
1da177e4 2788 }
a4456856
DW
2789 if (dev->written)
2790 s.written++;
9910f16a 2791 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
2792 if (blocked_rdev == NULL &&
2793 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
2794 blocked_rdev = rdev;
2795 atomic_inc(&rdev->nr_pending);
6bfe0b49 2796 }
b2d444d7 2797 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 2798 /* The ReadError flag will just be confusing now */
4e5314b5
N
2799 clear_bit(R5_ReadError, &dev->flags);
2800 clear_bit(R5_ReWrite, &dev->flags);
2801 }
b2d444d7 2802 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 2803 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2804 s.failed++;
2805 s.failed_num = i;
1da177e4
LT
2806 } else
2807 set_bit(R5_Insync, &dev->flags);
2808 }
9910f16a 2809 rcu_read_unlock();
b5e98d65 2810
6bfe0b49 2811 if (unlikely(blocked_rdev)) {
ac4090d2
N
2812 if (s.syncing || s.expanding || s.expanded ||
2813 s.to_write || s.written) {
2814 set_bit(STRIPE_HANDLE, &sh->state);
2815 goto unlock;
2816 }
2817 /* There is nothing for the blocked_rdev to block */
2818 rdev_dec_pending(blocked_rdev, conf->mddev);
2819 blocked_rdev = NULL;
6bfe0b49
DW
2820 }
2821
83de75cc
DW
2822 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2823 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2824 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2825 }
b5e98d65 2826
45b4233c 2827 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 2828 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
2829 s.locked, s.uptodate, s.to_read, s.to_write,
2830 s.failed, s.failed_num);
1da177e4
LT
2831 /* check if the array has lost two devices and, if so, some requests might
2832 * need to be failed
2833 */
a4456856 2834 if (s.failed > 1 && s.to_read+s.to_write+s.written)
1fe797e6 2835 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 2836 if (s.failed > 1 && s.syncing) {
1da177e4
LT
2837 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2838 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2839 s.syncing = 0;
1da177e4
LT
2840 }
2841
2842 /* might be able to return some write requests if the parity block
2843 * is safe, or on a failed drive
2844 */
2845 dev = &sh->dev[sh->pd_idx];
a4456856
DW
2846 if ( s.written &&
2847 ((test_bit(R5_Insync, &dev->flags) &&
2848 !test_bit(R5_LOCKED, &dev->flags) &&
2849 test_bit(R5_UPTODATE, &dev->flags)) ||
2850 (s.failed == 1 && s.failed_num == sh->pd_idx)))
1fe797e6 2851 handle_stripe_clean_event(conf, sh, disks, &return_bi);
1da177e4
LT
2852
2853 /* Now we might consider reading some blocks, either to check/generate
2854 * parity, or to satisfy requests
2855 * or to load a block that is being partially written.
2856 */
a4456856 2857 if (s.to_read || s.non_overwrite ||
976ea8d4 2858 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
1fe797e6 2859 handle_stripe_fill5(sh, &s, disks);
1da177e4 2860
e33129d8
DW
2861 /* Now we check to see if any write operations have recently
2862 * completed
2863 */
e0a115e5 2864 prexor = 0;
d8ee0728 2865 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
e0a115e5 2866 prexor = 1;
d8ee0728
DW
2867 if (sh->reconstruct_state == reconstruct_state_drain_result ||
2868 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
600aa109 2869 sh->reconstruct_state = reconstruct_state_idle;
e33129d8
DW
2870
2871 /* All the 'written' buffers and the parity block are ready to
2872 * be written back to disk
2873 */
2874 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2875 for (i = disks; i--; ) {
2876 dev = &sh->dev[i];
2877 if (test_bit(R5_LOCKED, &dev->flags) &&
2878 (i == sh->pd_idx || dev->written)) {
2879 pr_debug("Writing block %d\n", i);
2880 set_bit(R5_Wantwrite, &dev->flags);
e0a115e5
DW
2881 if (prexor)
2882 continue;
e33129d8
DW
2883 if (!test_bit(R5_Insync, &dev->flags) ||
2884 (i == sh->pd_idx && s.failed == 0))
2885 set_bit(STRIPE_INSYNC, &sh->state);
2886 }
2887 }
2888 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2889 atomic_dec(&conf->preread_active_stripes);
2890 if (atomic_read(&conf->preread_active_stripes) <
2891 IO_THRESHOLD)
2892 md_wakeup_thread(conf->mddev->thread);
2893 }
2894 }
2895
2896 /* Now to consider new write requests and what else, if anything
2897 * should be read. We do not handle new writes when:
2898 * 1/ A 'write' operation (copy+xor) is already in flight.
2899 * 2/ A 'check' operation is in flight, as it may clobber the parity
2900 * block.
2901 */
600aa109 2902 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
1fe797e6 2903 handle_stripe_dirtying5(conf, sh, &s, disks);
1da177e4
LT
2904
2905 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
2906 * Any reads will already have been scheduled, so we just see if enough
2907 * data is available. The parity check is held off while parity
2908 * dependent operations are in flight.
1da177e4 2909 */
ecc65c9b
DW
2910 if (sh->check_state ||
2911 (s.syncing && s.locked == 0 &&
976ea8d4 2912 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
ecc65c9b 2913 !test_bit(STRIPE_INSYNC, &sh->state)))
a4456856 2914 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 2915
a4456856 2916 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
2917 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2918 clear_bit(STRIPE_SYNCING, &sh->state);
2919 }
4e5314b5
N
2920
2921 /* If the failed drive is just a ReadError, then we might need to progress
2922 * the repair/check process
2923 */
a4456856
DW
2924 if (s.failed == 1 && !conf->mddev->ro &&
2925 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2926 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2927 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 2928 ) {
a4456856 2929 dev = &sh->dev[s.failed_num];
4e5314b5
N
2930 if (!test_bit(R5_ReWrite, &dev->flags)) {
2931 set_bit(R5_Wantwrite, &dev->flags);
2932 set_bit(R5_ReWrite, &dev->flags);
2933 set_bit(R5_LOCKED, &dev->flags);
a4456856 2934 s.locked++;
4e5314b5
N
2935 } else {
2936 /* let's read it back */
2937 set_bit(R5_Wantread, &dev->flags);
2938 set_bit(R5_LOCKED, &dev->flags);
a4456856 2939 s.locked++;
4e5314b5
N
2940 }
2941 }
2942
600aa109
DW
2943 /* Finish reconstruct operations initiated by the expansion process */
2944 if (sh->reconstruct_state == reconstruct_state_result) {
ab69ae12 2945 struct stripe_head *sh2
a8c906ca 2946 = get_active_stripe(conf, sh->sector, 1, 1, 1);
ab69ae12
N
2947 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
2948 /* sh cannot be written until sh2 has been read.
2949 * so arrange for sh to be delayed a little
2950 */
2951 set_bit(STRIPE_DELAYED, &sh->state);
2952 set_bit(STRIPE_HANDLE, &sh->state);
2953 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
2954 &sh2->state))
2955 atomic_inc(&conf->preread_active_stripes);
2956 release_stripe(sh2);
2957 goto unlock;
2958 }
2959 if (sh2)
2960 release_stripe(sh2);
2961
600aa109 2962 sh->reconstruct_state = reconstruct_state_idle;
f0a50d37 2963 clear_bit(STRIPE_EXPANDING, &sh->state);
23397883 2964 for (i = conf->raid_disks; i--; ) {
ccfcc3c1 2965 set_bit(R5_Wantwrite, &sh->dev[i].flags);
23397883 2966 set_bit(R5_LOCKED, &sh->dev[i].flags);
efe31143 2967 s.locked++;
23397883 2968 }
f0a50d37
DW
2969 }
2970
2971 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
600aa109 2972 !sh->reconstruct_state) {
f0a50d37
DW
2973 /* Need to write out all blocks after computing parity */
2974 sh->disks = conf->raid_disks;
911d4ee8 2975 stripe_set_idx(sh->sector, conf, 0, sh);
1fe797e6 2976 schedule_reconstruction5(sh, &s, 1, 1);
600aa109 2977 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
ccfcc3c1 2978 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 2979 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
2980 wake_up(&conf->wait_for_overlap);
2981 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2982 }
2983
0f94e87c 2984 if (s.expanding && s.locked == 0 &&
976ea8d4 2985 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 2986 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 2987
6bfe0b49 2988 unlock:
1da177e4
LT
2989 spin_unlock(&sh->lock);
2990
6bfe0b49
DW
2991 /* wait for this device to become unblocked */
2992 if (unlikely(blocked_rdev))
2993 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2994
600aa109
DW
2995 if (s.ops_request)
2996 raid5_run_ops(sh, s.ops_request);
d84e0f10 2997
c4e5ac0a 2998 ops_run_io(sh, &s);
1da177e4 2999
a4456856 3000 return_io(return_bi);
df10cfbc
DW
3001
3002 return blocked_rdev == NULL;
1da177e4
LT
3003}
3004
df10cfbc 3005static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1da177e4 3006{
bff61975 3007 raid5_conf_t *conf = sh->raid_conf;
f416885e 3008 int disks = sh->disks;
a4456856 3009 struct bio *return_bi = NULL;
34e04e87 3010 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
a4456856
DW
3011 struct stripe_head_state s;
3012 struct r6_state r6s;
16a53ecc 3013 struct r5dev *dev, *pdev, *qdev;
6bfe0b49 3014 mdk_rdev_t *blocked_rdev = NULL;
1da177e4 3015
45b4233c 3016 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
a4456856
DW
3017 "pd_idx=%d, qd_idx=%d\n",
3018 (unsigned long long)sh->sector, sh->state,
34e04e87 3019 atomic_read(&sh->count), pd_idx, qd_idx);
a4456856 3020 memset(&s, 0, sizeof(s));
72626685 3021
16a53ecc
N
3022 spin_lock(&sh->lock);
3023 clear_bit(STRIPE_HANDLE, &sh->state);
3024 clear_bit(STRIPE_DELAYED, &sh->state);
3025
a4456856
DW
3026 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3027 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3028 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 3029 /* Now to look around and see what can be done */
1da177e4
LT
3030
3031 rcu_read_lock();
16a53ecc
N
3032 for (i=disks; i--; ) {
3033 mdk_rdev_t *rdev;
3034 dev = &sh->dev[i];
3035 clear_bit(R5_Insync, &dev->flags);
1da177e4 3036
45b4233c 3037 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc
N
3038 i, dev->flags, dev->toread, dev->towrite, dev->written);
3039 /* maybe we can reply to a read */
3040 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3041 struct bio *rbi, *rbi2;
45b4233c 3042 pr_debug("Return read for disc %d\n", i);
16a53ecc
N
3043 spin_lock_irq(&conf->device_lock);
3044 rbi = dev->toread;
3045 dev->toread = NULL;
3046 if (test_and_clear_bit(R5_Overlap, &dev->flags))
3047 wake_up(&conf->wait_for_overlap);
3048 spin_unlock_irq(&conf->device_lock);
3049 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3050 copy_data(0, rbi, dev->page, dev->sector);
3051 rbi2 = r5_next_bio(rbi, dev->sector);
3052 spin_lock_irq(&conf->device_lock);
960e739d 3053 if (!raid5_dec_bi_phys_segments(rbi)) {
16a53ecc
N
3054 rbi->bi_next = return_bi;
3055 return_bi = rbi;
3056 }
3057 spin_unlock_irq(&conf->device_lock);
3058 rbi = rbi2;
3059 }
3060 }
1da177e4 3061
16a53ecc 3062 /* now count some things */
a4456856
DW
3063 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3064 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
1da177e4 3065
16a53ecc 3066
a4456856
DW
3067 if (dev->toread)
3068 s.to_read++;
16a53ecc 3069 if (dev->towrite) {
a4456856 3070 s.to_write++;
16a53ecc 3071 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3072 s.non_overwrite++;
16a53ecc 3073 }
a4456856
DW
3074 if (dev->written)
3075 s.written++;
16a53ecc 3076 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
3077 if (blocked_rdev == NULL &&
3078 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
3079 blocked_rdev = rdev;
3080 atomic_inc(&rdev->nr_pending);
6bfe0b49 3081 }
16a53ecc
N
3082 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3083 /* The ReadError flag will just be confusing now */
3084 clear_bit(R5_ReadError, &dev->flags);
3085 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3086 }
16a53ecc
N
3087 if (!rdev || !test_bit(In_sync, &rdev->flags)
3088 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
3089 if (s.failed < 2)
3090 r6s.failed_num[s.failed] = i;
3091 s.failed++;
16a53ecc
N
3092 } else
3093 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
3094 }
3095 rcu_read_unlock();
6bfe0b49
DW
3096
3097 if (unlikely(blocked_rdev)) {
ac4090d2
N
3098 if (s.syncing || s.expanding || s.expanded ||
3099 s.to_write || s.written) {
3100 set_bit(STRIPE_HANDLE, &sh->state);
3101 goto unlock;
3102 }
3103 /* There is nothing for the blocked_rdev to block */
3104 rdev_dec_pending(blocked_rdev, conf->mddev);
3105 blocked_rdev = NULL;
6bfe0b49 3106 }
ac4090d2 3107
45b4233c 3108 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 3109 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
3110 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3111 r6s.failed_num[0], r6s.failed_num[1]);
3112 /* check if the array has lost >2 devices and, if so, some requests
3113 * might need to be failed
16a53ecc 3114 */
a4456856 3115 if (s.failed > 2 && s.to_read+s.to_write+s.written)
1fe797e6 3116 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 3117 if (s.failed > 2 && s.syncing) {
16a53ecc
N
3118 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3119 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3120 s.syncing = 0;
16a53ecc
N
3121 }
3122
3123 /*
3124 * might be able to return some write requests if the parity blocks
3125 * are safe, or on a failed drive
3126 */
3127 pdev = &sh->dev[pd_idx];
a4456856
DW
3128 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3129 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
34e04e87
N
3130 qdev = &sh->dev[qd_idx];
3131 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3132 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
a4456856
DW
3133
3134 if ( s.written &&
3135 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 3136 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
3137 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3138 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 3139 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856 3140 && test_bit(R5_UPTODATE, &qdev->flags)))))
1fe797e6 3141 handle_stripe_clean_event(conf, sh, disks, &return_bi);
16a53ecc
N
3142
3143 /* Now we might consider reading some blocks, either to check/generate
3144 * parity, or to satisfy requests
3145 * or to load a block that is being partially written.
3146 */
a4456856
DW
3147 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3148 (s.syncing && (s.uptodate < disks)) || s.expanding)
1fe797e6 3149 handle_stripe_fill6(sh, &s, &r6s, disks);
16a53ecc
N
3150
3151 /* now to consider writing and what else, if anything should be read */
a4456856 3152 if (s.to_write)
1fe797e6 3153 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
16a53ecc
N
3154
3155 /* maybe we need to check and possibly fix the parity for this stripe
a4456856
DW
3156 * Any reads will already have been scheduled, so we just see if enough
3157 * data is available
16a53ecc 3158 */
a4456856
DW
3159 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3160 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
16a53ecc 3161
a4456856 3162 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3163 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3164 clear_bit(STRIPE_SYNCING, &sh->state);
3165 }
3166
3167 /* If the failed drives are just a ReadError, then we might need
3168 * to progress the repair/check process
3169 */
a4456856
DW
3170 if (s.failed <= 2 && !conf->mddev->ro)
3171 for (i = 0; i < s.failed; i++) {
3172 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3173 if (test_bit(R5_ReadError, &dev->flags)
3174 && !test_bit(R5_LOCKED, &dev->flags)
3175 && test_bit(R5_UPTODATE, &dev->flags)
3176 ) {
3177 if (!test_bit(R5_ReWrite, &dev->flags)) {
3178 set_bit(R5_Wantwrite, &dev->flags);
3179 set_bit(R5_ReWrite, &dev->flags);
3180 set_bit(R5_LOCKED, &dev->flags);
3181 } else {
3182 /* let's read it back */
3183 set_bit(R5_Wantread, &dev->flags);
3184 set_bit(R5_LOCKED, &dev->flags);
3185 }
3186 }
3187 }
f416885e 3188
a4456856 3189 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
ab69ae12 3190 struct stripe_head *sh2
a8c906ca 3191 = get_active_stripe(conf, sh->sector, 1, 1, 1);
ab69ae12
N
3192 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3193 /* sh cannot be written until sh2 has been read.
3194 * so arrange for sh to be delayed a little
3195 */
3196 set_bit(STRIPE_DELAYED, &sh->state);
3197 set_bit(STRIPE_HANDLE, &sh->state);
3198 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3199 &sh2->state))
3200 atomic_inc(&conf->preread_active_stripes);
3201 release_stripe(sh2);
3202 goto unlock;
3203 }
3204 if (sh2)
3205 release_stripe(sh2);
3206
f416885e
N
3207 /* Need to write out all blocks after computing P&Q */
3208 sh->disks = conf->raid_disks;
911d4ee8 3209 stripe_set_idx(sh->sector, conf, 0, sh);
f416885e
N
3210 compute_parity6(sh, RECONSTRUCT_WRITE);
3211 for (i = conf->raid_disks ; i-- ; ) {
3212 set_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3213 s.locked++;
f416885e
N
3214 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3215 }
3216 clear_bit(STRIPE_EXPANDING, &sh->state);
a4456856 3217 } else if (s.expanded) {
f416885e
N
3218 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3219 atomic_dec(&conf->reshape_stripes);
3220 wake_up(&conf->wait_for_overlap);
3221 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3222 }
3223
0f94e87c 3224 if (s.expanding && s.locked == 0 &&
976ea8d4 3225 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3226 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3227
6bfe0b49 3228 unlock:
16a53ecc
N
3229 spin_unlock(&sh->lock);
3230
6bfe0b49
DW
3231 /* wait for this device to become unblocked */
3232 if (unlikely(blocked_rdev))
3233 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3234
f0e43bcd 3235 ops_run_io(sh, &s);
16a53ecc 3236
f0e43bcd 3237 return_io(return_bi);
df10cfbc
DW
3238
3239 return blocked_rdev == NULL;
16a53ecc
N
3240}
3241
df10cfbc
DW
3242/* returns true if the stripe was handled */
3243static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
16a53ecc
N
3244{
3245 if (sh->raid_conf->level == 6)
df10cfbc 3246 return handle_stripe6(sh, tmp_page);
16a53ecc 3247 else
df10cfbc 3248 return handle_stripe5(sh);
16a53ecc
N
3249}
3250
3251
3252
3253static void raid5_activate_delayed(raid5_conf_t *conf)
3254{
3255 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3256 while (!list_empty(&conf->delayed_list)) {
3257 struct list_head *l = conf->delayed_list.next;
3258 struct stripe_head *sh;
3259 sh = list_entry(l, struct stripe_head, lru);
3260 list_del_init(l);
3261 clear_bit(STRIPE_DELAYED, &sh->state);
3262 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3263 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3264 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3265 }
6ed3003c
N
3266 } else
3267 blk_plug_device(conf->mddev->queue);
16a53ecc
N
3268}
3269
3270static void activate_bit_delay(raid5_conf_t *conf)
3271{
3272 /* device_lock is held */
3273 struct list_head head;
3274 list_add(&head, &conf->bitmap_list);
3275 list_del_init(&conf->bitmap_list);
3276 while (!list_empty(&head)) {
3277 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3278 list_del_init(&sh->lru);
3279 atomic_inc(&sh->count);
3280 __release_stripe(conf, sh);
3281 }
3282}
3283
3284static void unplug_slaves(mddev_t *mddev)
3285{
070ec55d 3286 raid5_conf_t *conf = mddev->private;
16a53ecc
N
3287 int i;
3288
3289 rcu_read_lock();
f001a70c 3290 for (i = 0; i < conf->raid_disks; i++) {
16a53ecc
N
3291 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3292 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 3293 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
16a53ecc
N
3294
3295 atomic_inc(&rdev->nr_pending);
3296 rcu_read_unlock();
3297
2ad8b1ef 3298 blk_unplug(r_queue);
16a53ecc
N
3299
3300 rdev_dec_pending(rdev, mddev);
3301 rcu_read_lock();
3302 }
3303 }
3304 rcu_read_unlock();
3305}
3306
165125e1 3307static void raid5_unplug_device(struct request_queue *q)
16a53ecc
N
3308{
3309 mddev_t *mddev = q->queuedata;
070ec55d 3310 raid5_conf_t *conf = mddev->private;
16a53ecc
N
3311 unsigned long flags;
3312
3313 spin_lock_irqsave(&conf->device_lock, flags);
3314
3315 if (blk_remove_plug(q)) {
3316 conf->seq_flush++;
3317 raid5_activate_delayed(conf);
72626685 3318 }
1da177e4
LT
3319 md_wakeup_thread(mddev->thread);
3320
3321 spin_unlock_irqrestore(&conf->device_lock, flags);
3322
3323 unplug_slaves(mddev);
3324}
3325
f022b2fd
N
3326static int raid5_congested(void *data, int bits)
3327{
3328 mddev_t *mddev = data;
070ec55d 3329 raid5_conf_t *conf = mddev->private;
f022b2fd
N
3330
3331 /* No difference between reads and writes. Just check
3332 * how busy the stripe_cache is
3333 */
3334 if (conf->inactive_blocked)
3335 return 1;
3336 if (conf->quiesce)
3337 return 1;
3338 if (list_empty_careful(&conf->inactive_list))
3339 return 1;
3340
3341 return 0;
3342}
3343
23032a0e
RBJ
3344/* We want read requests to align with chunks where possible,
3345 * but write requests don't need to.
3346 */
cc371e66
AK
3347static int raid5_mergeable_bvec(struct request_queue *q,
3348 struct bvec_merge_data *bvm,
3349 struct bio_vec *biovec)
23032a0e
RBJ
3350{
3351 mddev_t *mddev = q->queuedata;
cc371e66 3352 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 3353 int max;
9d8f0363 3354 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 3355 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3356
cc371e66 3357 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3358 return biovec->bv_len; /* always allow writes to be mergeable */
3359
664e7c41
AN
3360 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3361 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
3362 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3363 if (max < 0) max = 0;
3364 if (max <= biovec->bv_len && bio_sectors == 0)
3365 return biovec->bv_len;
3366 else
3367 return max;
3368}
3369
f679623f
RBJ
3370
3371static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3372{
3373 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 3374 unsigned int chunk_sectors = mddev->chunk_sectors;
f679623f
RBJ
3375 unsigned int bio_sectors = bio->bi_size >> 9;
3376
664e7c41
AN
3377 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3378 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
3379 return chunk_sectors >=
3380 ((sector & (chunk_sectors - 1)) + bio_sectors);
3381}
3382
46031f9a
RBJ
3383/*
3384 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3385 * later sampled by raid5d.
3386 */
3387static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3388{
3389 unsigned long flags;
3390
3391 spin_lock_irqsave(&conf->device_lock, flags);
3392
3393 bi->bi_next = conf->retry_read_aligned_list;
3394 conf->retry_read_aligned_list = bi;
3395
3396 spin_unlock_irqrestore(&conf->device_lock, flags);
3397 md_wakeup_thread(conf->mddev->thread);
3398}
3399
3400
3401static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3402{
3403 struct bio *bi;
3404
3405 bi = conf->retry_read_aligned;
3406 if (bi) {
3407 conf->retry_read_aligned = NULL;
3408 return bi;
3409 }
3410 bi = conf->retry_read_aligned_list;
3411 if(bi) {
387bb173 3412 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3413 bi->bi_next = NULL;
960e739d
JA
3414 /*
3415 * this sets the active strip count to 1 and the processed
3416 * strip count to zero (upper 8 bits)
3417 */
46031f9a 3418 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3419 }
3420
3421 return bi;
3422}
3423
3424
f679623f
RBJ
3425/*
3426 * The "raid5_align_endio" should check if the read succeeded and if it
3427 * did, call bio_endio on the original bio (having bio_put the new bio
3428 * first).
3429 * If the read failed..
3430 */
6712ecf8 3431static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3432{
3433 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3434 mddev_t *mddev;
3435 raid5_conf_t *conf;
3436 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3437 mdk_rdev_t *rdev;
3438
f679623f 3439 bio_put(bi);
46031f9a
RBJ
3440
3441 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
070ec55d 3442 conf = mddev->private;
46031f9a
RBJ
3443 rdev = (void*)raid_bi->bi_next;
3444 raid_bi->bi_next = NULL;
3445
3446 rdev_dec_pending(rdev, conf->mddev);
3447
3448 if (!error && uptodate) {
6712ecf8 3449 bio_endio(raid_bi, 0);
46031f9a
RBJ
3450 if (atomic_dec_and_test(&conf->active_aligned_reads))
3451 wake_up(&conf->wait_for_stripe);
6712ecf8 3452 return;
46031f9a
RBJ
3453 }
3454
3455
45b4233c 3456 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3457
3458 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3459}
3460
387bb173
NB
3461static int bio_fits_rdev(struct bio *bi)
3462{
165125e1 3463 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 3464
ae03bf63 3465 if ((bi->bi_size>>9) > queue_max_sectors(q))
387bb173
NB
3466 return 0;
3467 blk_recount_segments(q, bi);
ae03bf63 3468 if (bi->bi_phys_segments > queue_max_phys_segments(q))
387bb173
NB
3469 return 0;
3470
3471 if (q->merge_bvec_fn)
3472 /* it's too hard to apply the merge_bvec_fn at this stage,
3473 * just just give up
3474 */
3475 return 0;
3476
3477 return 1;
3478}
3479
3480
165125e1 3481static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
f679623f
RBJ
3482{
3483 mddev_t *mddev = q->queuedata;
070ec55d 3484 raid5_conf_t *conf = mddev->private;
911d4ee8 3485 unsigned int dd_idx;
f679623f
RBJ
3486 struct bio* align_bi;
3487 mdk_rdev_t *rdev;
3488
3489 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3490 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3491 return 0;
3492 }
3493 /*
99c0fb5f 3494 * use bio_clone to make a copy of the bio
f679623f
RBJ
3495 */
3496 align_bi = bio_clone(raid_bio, GFP_NOIO);
3497 if (!align_bi)
3498 return 0;
3499 /*
3500 * set bi_end_io to a new function, and set bi_private to the
3501 * original bio.
3502 */
3503 align_bi->bi_end_io = raid5_align_endio;
3504 align_bi->bi_private = raid_bio;
3505 /*
3506 * compute position
3507 */
112bf897
N
3508 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3509 0,
911d4ee8 3510 &dd_idx, NULL);
f679623f
RBJ
3511
3512 rcu_read_lock();
3513 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3514 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3515 atomic_inc(&rdev->nr_pending);
3516 rcu_read_unlock();
46031f9a
RBJ
3517 raid_bio->bi_next = (void*)rdev;
3518 align_bi->bi_bdev = rdev->bdev;
3519 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3520 align_bi->bi_sector += rdev->data_offset;
3521
387bb173
NB
3522 if (!bio_fits_rdev(align_bi)) {
3523 /* too big in some way */
3524 bio_put(align_bi);
3525 rdev_dec_pending(rdev, mddev);
3526 return 0;
3527 }
3528
46031f9a
RBJ
3529 spin_lock_irq(&conf->device_lock);
3530 wait_event_lock_irq(conf->wait_for_stripe,
3531 conf->quiesce == 0,
3532 conf->device_lock, /* nothing */);
3533 atomic_inc(&conf->active_aligned_reads);
3534 spin_unlock_irq(&conf->device_lock);
3535
f679623f
RBJ
3536 generic_make_request(align_bi);
3537 return 1;
3538 } else {
3539 rcu_read_unlock();
46031f9a 3540 bio_put(align_bi);
f679623f
RBJ
3541 return 0;
3542 }
3543}
3544
8b3e6cdc
DW
3545/* __get_priority_stripe - get the next stripe to process
3546 *
3547 * Full stripe writes are allowed to pass preread active stripes up until
3548 * the bypass_threshold is exceeded. In general the bypass_count
3549 * increments when the handle_list is handled before the hold_list; however, it
3550 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3551 * stripe with in flight i/o. The bypass_count will be reset when the
3552 * head of the hold_list has changed, i.e. the head was promoted to the
3553 * handle_list.
3554 */
3555static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3556{
3557 struct stripe_head *sh;
3558
3559 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3560 __func__,
3561 list_empty(&conf->handle_list) ? "empty" : "busy",
3562 list_empty(&conf->hold_list) ? "empty" : "busy",
3563 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3564
3565 if (!list_empty(&conf->handle_list)) {
3566 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3567
3568 if (list_empty(&conf->hold_list))
3569 conf->bypass_count = 0;
3570 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3571 if (conf->hold_list.next == conf->last_hold)
3572 conf->bypass_count++;
3573 else {
3574 conf->last_hold = conf->hold_list.next;
3575 conf->bypass_count -= conf->bypass_threshold;
3576 if (conf->bypass_count < 0)
3577 conf->bypass_count = 0;
3578 }
3579 }
3580 } else if (!list_empty(&conf->hold_list) &&
3581 ((conf->bypass_threshold &&
3582 conf->bypass_count > conf->bypass_threshold) ||
3583 atomic_read(&conf->pending_full_writes) == 0)) {
3584 sh = list_entry(conf->hold_list.next,
3585 typeof(*sh), lru);
3586 conf->bypass_count -= conf->bypass_threshold;
3587 if (conf->bypass_count < 0)
3588 conf->bypass_count = 0;
3589 } else
3590 return NULL;
3591
3592 list_del_init(&sh->lru);
3593 atomic_inc(&sh->count);
3594 BUG_ON(atomic_read(&sh->count) != 1);
3595 return sh;
3596}
f679623f 3597
165125e1 3598static int make_request(struct request_queue *q, struct bio * bi)
1da177e4
LT
3599{
3600 mddev_t *mddev = q->queuedata;
070ec55d 3601 raid5_conf_t *conf = mddev->private;
911d4ee8 3602 int dd_idx;
1da177e4
LT
3603 sector_t new_sector;
3604 sector_t logical_sector, last_sector;
3605 struct stripe_head *sh;
a362357b 3606 const int rw = bio_data_dir(bi);
c9959059 3607 int cpu, remaining;
1da177e4 3608
e5dcdd80 3609 if (unlikely(bio_barrier(bi))) {
6712ecf8 3610 bio_endio(bi, -EOPNOTSUPP);
e5dcdd80
N
3611 return 0;
3612 }
3613
3d310eb7 3614 md_write_start(mddev, bi);
06d91a5f 3615
074a7aca
TH
3616 cpu = part_stat_lock();
3617 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3618 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3619 bio_sectors(bi));
3620 part_stat_unlock();
1da177e4 3621
802ba064 3622 if (rw == READ &&
52488615
RBJ
3623 mddev->reshape_position == MaxSector &&
3624 chunk_aligned_read(q,bi))
99c0fb5f 3625 return 0;
52488615 3626
1da177e4
LT
3627 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3628 last_sector = bi->bi_sector + (bi->bi_size>>9);
3629 bi->bi_next = NULL;
3630 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3631
1da177e4
LT
3632 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3633 DEFINE_WAIT(w);
16a53ecc 3634 int disks, data_disks;
b5663ba4 3635 int previous;
b578d55f 3636
7ecaa1e6 3637 retry:
b5663ba4 3638 previous = 0;
b0f9ec04 3639 disks = conf->raid_disks;
b578d55f 3640 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 3641 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 3642 /* spinlock is needed as reshape_progress may be
df8e7f76
N
3643 * 64bit on a 32bit platform, and so it might be
3644 * possible to see a half-updated value
fef9c61f 3645 * Ofcourse reshape_progress could change after
df8e7f76
N
3646 * the lock is dropped, so once we get a reference
3647 * to the stripe that we think it is, we will have
3648 * to check again.
3649 */
7ecaa1e6 3650 spin_lock_irq(&conf->device_lock);
fef9c61f
N
3651 if (mddev->delta_disks < 0
3652 ? logical_sector < conf->reshape_progress
3653 : logical_sector >= conf->reshape_progress) {
7ecaa1e6 3654 disks = conf->previous_raid_disks;
b5663ba4
N
3655 previous = 1;
3656 } else {
fef9c61f
N
3657 if (mddev->delta_disks < 0
3658 ? logical_sector < conf->reshape_safe
3659 : logical_sector >= conf->reshape_safe) {
b578d55f
N
3660 spin_unlock_irq(&conf->device_lock);
3661 schedule();
3662 goto retry;
3663 }
3664 }
7ecaa1e6
N
3665 spin_unlock_irq(&conf->device_lock);
3666 }
16a53ecc
N
3667 data_disks = disks - conf->max_degraded;
3668
112bf897
N
3669 new_sector = raid5_compute_sector(conf, logical_sector,
3670 previous,
911d4ee8 3671 &dd_idx, NULL);
45b4233c 3672 pr_debug("raid5: make_request, sector %llu logical %llu\n",
1da177e4
LT
3673 (unsigned long long)new_sector,
3674 (unsigned long long)logical_sector);
3675
b5663ba4 3676 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 3677 (bi->bi_rw&RWA_MASK), 0);
1da177e4 3678 if (sh) {
b0f9ec04 3679 if (unlikely(previous)) {
7ecaa1e6 3680 /* expansion might have moved on while waiting for a
df8e7f76
N
3681 * stripe, so we must do the range check again.
3682 * Expansion could still move past after this
3683 * test, but as we are holding a reference to
3684 * 'sh', we know that if that happens,
3685 * STRIPE_EXPANDING will get set and the expansion
3686 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3687 */
3688 int must_retry = 0;
3689 spin_lock_irq(&conf->device_lock);
b0f9ec04
N
3690 if (mddev->delta_disks < 0
3691 ? logical_sector >= conf->reshape_progress
3692 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
3693 /* mismatch, need to try again */
3694 must_retry = 1;
3695 spin_unlock_irq(&conf->device_lock);
3696 if (must_retry) {
3697 release_stripe(sh);
7a3ab908 3698 schedule();
7ecaa1e6
N
3699 goto retry;
3700 }
3701 }
e464eafd
N
3702 /* FIXME what if we get a false positive because these
3703 * are being updated.
3704 */
a5c308d4
N
3705 if (bio_data_dir(bi) == WRITE &&
3706 logical_sector >= mddev->suspend_lo &&
e464eafd
N
3707 logical_sector < mddev->suspend_hi) {
3708 release_stripe(sh);
3709 schedule();
3710 goto retry;
3711 }
7ecaa1e6
N
3712
3713 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3714 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3715 /* Stripe is busy expanding or
3716 * add failed due to overlap. Flush everything
1da177e4
LT
3717 * and wait a while
3718 */
3719 raid5_unplug_device(mddev->queue);
3720 release_stripe(sh);
3721 schedule();
3722 goto retry;
3723 }
3724 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
3725 set_bit(STRIPE_HANDLE, &sh->state);
3726 clear_bit(STRIPE_DELAYED, &sh->state);
1da177e4 3727 release_stripe(sh);
1da177e4
LT
3728 } else {
3729 /* cannot get stripe for read-ahead, just give-up */
3730 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3731 finish_wait(&conf->wait_for_overlap, &w);
3732 break;
3733 }
3734
3735 }
3736 spin_lock_irq(&conf->device_lock);
960e739d 3737 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
3738 spin_unlock_irq(&conf->device_lock);
3739 if (remaining == 0) {
1da177e4 3740
16a53ecc 3741 if ( rw == WRITE )
1da177e4 3742 md_write_end(mddev);
6712ecf8 3743
0e13fe23 3744 bio_endio(bi, 0);
1da177e4 3745 }
1da177e4
LT
3746 return 0;
3747}
3748
b522adcd
DW
3749static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3750
52c03291 3751static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 3752{
52c03291
N
3753 /* reshaping is quite different to recovery/resync so it is
3754 * handled quite separately ... here.
3755 *
3756 * On each call to sync_request, we gather one chunk worth of
3757 * destination stripes and flag them as expanding.
3758 * Then we find all the source stripes and request reads.
3759 * As the reads complete, handle_stripe will copy the data
3760 * into the destination stripe and release that stripe.
3761 */
1da177e4
LT
3762 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3763 struct stripe_head *sh;
ccfcc3c1 3764 sector_t first_sector, last_sector;
f416885e
N
3765 int raid_disks = conf->previous_raid_disks;
3766 int data_disks = raid_disks - conf->max_degraded;
3767 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
3768 int i;
3769 int dd_idx;
c8f517c4 3770 sector_t writepos, readpos, safepos;
ec32a2bd 3771 sector_t stripe_addr;
7a661381 3772 int reshape_sectors;
ab69ae12 3773 struct list_head stripes;
52c03291 3774
fef9c61f
N
3775 if (sector_nr == 0) {
3776 /* If restarting in the middle, skip the initial sectors */
3777 if (mddev->delta_disks < 0 &&
3778 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3779 sector_nr = raid5_size(mddev, 0, 0)
3780 - conf->reshape_progress;
3781 } else if (mddev->delta_disks > 0 &&
3782 conf->reshape_progress > 0)
3783 sector_nr = conf->reshape_progress;
f416885e 3784 sector_div(sector_nr, new_data_disks);
fef9c61f
N
3785 if (sector_nr) {
3786 *skipped = 1;
3787 return sector_nr;
3788 }
52c03291
N
3789 }
3790
7a661381
N
3791 /* We need to process a full chunk at a time.
3792 * If old and new chunk sizes differ, we need to process the
3793 * largest of these
3794 */
664e7c41
AN
3795 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3796 reshape_sectors = mddev->new_chunk_sectors;
7a661381 3797 else
9d8f0363 3798 reshape_sectors = mddev->chunk_sectors;
7a661381 3799
52c03291
N
3800 /* we update the metadata when there is more than 3Meg
3801 * in the block range (that is rather arbitrary, should
3802 * probably be time based) or when the data about to be
3803 * copied would over-write the source of the data at
3804 * the front of the range.
fef9c61f
N
3805 * i.e. one new_stripe along from reshape_progress new_maps
3806 * to after where reshape_safe old_maps to
52c03291 3807 */
fef9c61f 3808 writepos = conf->reshape_progress;
f416885e 3809 sector_div(writepos, new_data_disks);
c8f517c4
N
3810 readpos = conf->reshape_progress;
3811 sector_div(readpos, data_disks);
fef9c61f 3812 safepos = conf->reshape_safe;
f416885e 3813 sector_div(safepos, data_disks);
fef9c61f 3814 if (mddev->delta_disks < 0) {
ed37d83e 3815 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 3816 readpos += reshape_sectors;
7a661381 3817 safepos += reshape_sectors;
fef9c61f 3818 } else {
7a661381 3819 writepos += reshape_sectors;
ed37d83e
N
3820 readpos -= min_t(sector_t, reshape_sectors, readpos);
3821 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 3822 }
52c03291 3823
c8f517c4
N
3824 /* 'writepos' is the most advanced device address we might write.
3825 * 'readpos' is the least advanced device address we might read.
3826 * 'safepos' is the least address recorded in the metadata as having
3827 * been reshaped.
3828 * If 'readpos' is behind 'writepos', then there is no way that we can
3829 * ensure safety in the face of a crash - that must be done by userspace
3830 * making a backup of the data. So in that case there is no particular
3831 * rush to update metadata.
3832 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3833 * update the metadata to advance 'safepos' to match 'readpos' so that
3834 * we can be safe in the event of a crash.
3835 * So we insist on updating metadata if safepos is behind writepos and
3836 * readpos is beyond writepos.
3837 * In any case, update the metadata every 10 seconds.
3838 * Maybe that number should be configurable, but I'm not sure it is
3839 * worth it.... maybe it could be a multiple of safemode_delay???
3840 */
fef9c61f 3841 if ((mddev->delta_disks < 0
c8f517c4
N
3842 ? (safepos > writepos && readpos < writepos)
3843 : (safepos < writepos && readpos > writepos)) ||
3844 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
3845 /* Cannot proceed until we've updated the superblock... */
3846 wait_event(conf->wait_for_overlap,
3847 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 3848 mddev->reshape_position = conf->reshape_progress;
acb180b0 3849 mddev->curr_resync_completed = mddev->curr_resync;
c8f517c4 3850 conf->reshape_checkpoint = jiffies;
850b2b42 3851 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 3852 md_wakeup_thread(mddev->thread);
850b2b42 3853 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
3854 kthread_should_stop());
3855 spin_lock_irq(&conf->device_lock);
fef9c61f 3856 conf->reshape_safe = mddev->reshape_position;
52c03291
N
3857 spin_unlock_irq(&conf->device_lock);
3858 wake_up(&conf->wait_for_overlap);
acb180b0 3859 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
3860 }
3861
ec32a2bd
N
3862 if (mddev->delta_disks < 0) {
3863 BUG_ON(conf->reshape_progress == 0);
3864 stripe_addr = writepos;
3865 BUG_ON((mddev->dev_sectors &
7a661381
N
3866 ~((sector_t)reshape_sectors - 1))
3867 - reshape_sectors - stripe_addr
ec32a2bd
N
3868 != sector_nr);
3869 } else {
7a661381 3870 BUG_ON(writepos != sector_nr + reshape_sectors);
ec32a2bd
N
3871 stripe_addr = sector_nr;
3872 }
ab69ae12 3873 INIT_LIST_HEAD(&stripes);
7a661381 3874 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291
N
3875 int j;
3876 int skipped = 0;
a8c906ca 3877 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
3878 set_bit(STRIPE_EXPANDING, &sh->state);
3879 atomic_inc(&conf->reshape_stripes);
3880 /* If any of this stripe is beyond the end of the old
3881 * array, then we need to zero those blocks
3882 */
3883 for (j=sh->disks; j--;) {
3884 sector_t s;
3885 if (j == sh->pd_idx)
3886 continue;
f416885e 3887 if (conf->level == 6 &&
d0dabf7e 3888 j == sh->qd_idx)
f416885e 3889 continue;
784052ec 3890 s = compute_blocknr(sh, j, 0);
b522adcd 3891 if (s < raid5_size(mddev, 0, 0)) {
52c03291
N
3892 skipped = 1;
3893 continue;
3894 }
3895 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3896 set_bit(R5_Expanded, &sh->dev[j].flags);
3897 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3898 }
3899 if (!skipped) {
3900 set_bit(STRIPE_EXPAND_READY, &sh->state);
3901 set_bit(STRIPE_HANDLE, &sh->state);
3902 }
ab69ae12 3903 list_add(&sh->lru, &stripes);
52c03291
N
3904 }
3905 spin_lock_irq(&conf->device_lock);
fef9c61f 3906 if (mddev->delta_disks < 0)
7a661381 3907 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 3908 else
7a661381 3909 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
3910 spin_unlock_irq(&conf->device_lock);
3911 /* Ok, those stripe are ready. We can start scheduling
3912 * reads on the source stripes.
3913 * The source stripes are determined by mapping the first and last
3914 * block on the destination stripes.
3915 */
52c03291 3916 first_sector =
ec32a2bd 3917 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 3918 1, &dd_idx, NULL);
52c03291 3919 last_sector =
0e6e0271 3920 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 3921 * new_data_disks - 1),
911d4ee8 3922 1, &dd_idx, NULL);
58c0fed4
AN
3923 if (last_sector >= mddev->dev_sectors)
3924 last_sector = mddev->dev_sectors - 1;
52c03291 3925 while (first_sector <= last_sector) {
a8c906ca 3926 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
3927 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3928 set_bit(STRIPE_HANDLE, &sh->state);
3929 release_stripe(sh);
3930 first_sector += STRIPE_SECTORS;
3931 }
ab69ae12
N
3932 /* Now that the sources are clearly marked, we can release
3933 * the destination stripes
3934 */
3935 while (!list_empty(&stripes)) {
3936 sh = list_entry(stripes.next, struct stripe_head, lru);
3937 list_del_init(&sh->lru);
3938 release_stripe(sh);
3939 }
c6207277
N
3940 /* If this takes us to the resync_max point where we have to pause,
3941 * then we need to write out the superblock.
3942 */
7a661381 3943 sector_nr += reshape_sectors;
c03f6a19
N
3944 if ((sector_nr - mddev->curr_resync_completed) * 2
3945 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
3946 /* Cannot proceed until we've updated the superblock... */
3947 wait_event(conf->wait_for_overlap,
3948 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 3949 mddev->reshape_position = conf->reshape_progress;
48606a9f 3950 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
c8f517c4 3951 conf->reshape_checkpoint = jiffies;
c6207277
N
3952 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3953 md_wakeup_thread(mddev->thread);
3954 wait_event(mddev->sb_wait,
3955 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3956 || kthread_should_stop());
3957 spin_lock_irq(&conf->device_lock);
fef9c61f 3958 conf->reshape_safe = mddev->reshape_position;
c6207277
N
3959 spin_unlock_irq(&conf->device_lock);
3960 wake_up(&conf->wait_for_overlap);
acb180b0 3961 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 3962 }
7a661381 3963 return reshape_sectors;
52c03291
N
3964}
3965
3966/* FIXME go_faster isn't used */
3967static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3968{
3969 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3970 struct stripe_head *sh;
58c0fed4 3971 sector_t max_sector = mddev->dev_sectors;
72626685 3972 int sync_blocks;
16a53ecc
N
3973 int still_degraded = 0;
3974 int i;
1da177e4 3975
72626685 3976 if (sector_nr >= max_sector) {
1da177e4
LT
3977 /* just being told to finish up .. nothing much to do */
3978 unplug_slaves(mddev);
cea9c228 3979
29269553
N
3980 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3981 end_reshape(conf);
3982 return 0;
3983 }
72626685
N
3984
3985 if (mddev->curr_resync < max_sector) /* aborted */
3986 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3987 &sync_blocks, 1);
16a53ecc 3988 else /* completed sync */
72626685
N
3989 conf->fullsync = 0;
3990 bitmap_close_sync(mddev->bitmap);
3991
1da177e4
LT
3992 return 0;
3993 }
ccfcc3c1 3994
52c03291
N
3995 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3996 return reshape_request(mddev, sector_nr, skipped);
f6705578 3997
c6207277
N
3998 /* No need to check resync_max as we never do more than one
3999 * stripe, and as resync_max will always be on a chunk boundary,
4000 * if the check in md_do_sync didn't fire, there is no chance
4001 * of overstepping resync_max here
4002 */
4003
16a53ecc 4004 /* if there is too many failed drives and we are trying
1da177e4
LT
4005 * to resync, then assert that we are finished, because there is
4006 * nothing we can do.
4007 */
3285edf1 4008 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4009 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4010 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4011 *skipped = 1;
1da177e4
LT
4012 return rv;
4013 }
72626685 4014 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4015 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4016 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4017 /* we can skip this block, and probably more */
4018 sync_blocks /= STRIPE_SECTORS;
4019 *skipped = 1;
4020 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4021 }
1da177e4 4022
b47490c9
N
4023
4024 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4025
a8c906ca 4026 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 4027 if (sh == NULL) {
a8c906ca 4028 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 4029 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4030 * is trying to get access
1da177e4 4031 */
66c006a5 4032 schedule_timeout_uninterruptible(1);
1da177e4 4033 }
16a53ecc
N
4034 /* Need to check if array will still be degraded after recovery/resync
4035 * We don't need to check the 'failed' flag as when that gets set,
4036 * recovery aborts.
4037 */
f001a70c 4038 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
4039 if (conf->disks[i].rdev == NULL)
4040 still_degraded = 1;
4041
4042 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4043
4044 spin_lock(&sh->lock);
1da177e4
LT
4045 set_bit(STRIPE_SYNCING, &sh->state);
4046 clear_bit(STRIPE_INSYNC, &sh->state);
4047 spin_unlock(&sh->lock);
4048
df10cfbc
DW
4049 /* wait for any blocked device to be handled */
4050 while(unlikely(!handle_stripe(sh, NULL)))
4051 ;
1da177e4
LT
4052 release_stripe(sh);
4053
4054 return STRIPE_SECTORS;
4055}
4056
46031f9a
RBJ
4057static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4058{
4059 /* We may not be able to submit a whole bio at once as there
4060 * may not be enough stripe_heads available.
4061 * We cannot pre-allocate enough stripe_heads as we may need
4062 * more than exist in the cache (if we allow ever large chunks).
4063 * So we do one stripe head at a time and record in
4064 * ->bi_hw_segments how many have been done.
4065 *
4066 * We *know* that this entire raid_bio is in one chunk, so
4067 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4068 */
4069 struct stripe_head *sh;
911d4ee8 4070 int dd_idx;
46031f9a
RBJ
4071 sector_t sector, logical_sector, last_sector;
4072 int scnt = 0;
4073 int remaining;
4074 int handled = 0;
4075
4076 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4077 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4078 0, &dd_idx, NULL);
46031f9a
RBJ
4079 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4080
4081 for (; logical_sector < last_sector;
387bb173
NB
4082 logical_sector += STRIPE_SECTORS,
4083 sector += STRIPE_SECTORS,
4084 scnt++) {
46031f9a 4085
960e739d 4086 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4087 /* already done this stripe */
4088 continue;
4089
a8c906ca 4090 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
4091
4092 if (!sh) {
4093 /* failed to get a stripe - must wait */
960e739d 4094 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4095 conf->retry_read_aligned = raid_bio;
4096 return handled;
4097 }
4098
4099 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
4100 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4101 release_stripe(sh);
960e739d 4102 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4103 conf->retry_read_aligned = raid_bio;
4104 return handled;
4105 }
4106
46031f9a
RBJ
4107 handle_stripe(sh, NULL);
4108 release_stripe(sh);
4109 handled++;
4110 }
4111 spin_lock_irq(&conf->device_lock);
960e739d 4112 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4113 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4114 if (remaining == 0)
4115 bio_endio(raid_bio, 0);
46031f9a
RBJ
4116 if (atomic_dec_and_test(&conf->active_aligned_reads))
4117 wake_up(&conf->wait_for_stripe);
4118 return handled;
4119}
4120
4121
4122
1da177e4
LT
4123/*
4124 * This is our raid5 kernel thread.
4125 *
4126 * We scan the hash table for stripes which can be handled now.
4127 * During the scan, completed stripes are saved for us by the interrupt
4128 * handler, so that they will not have to wait for our next wakeup.
4129 */
6ed3003c 4130static void raid5d(mddev_t *mddev)
1da177e4
LT
4131{
4132 struct stripe_head *sh;
070ec55d 4133 raid5_conf_t *conf = mddev->private;
1da177e4
LT
4134 int handled;
4135
45b4233c 4136 pr_debug("+++ raid5d active\n");
1da177e4
LT
4137
4138 md_check_recovery(mddev);
1da177e4
LT
4139
4140 handled = 0;
4141 spin_lock_irq(&conf->device_lock);
4142 while (1) {
46031f9a 4143 struct bio *bio;
1da177e4 4144
ae3c20cc 4145 if (conf->seq_flush != conf->seq_write) {
72626685 4146 int seq = conf->seq_flush;
700e432d 4147 spin_unlock_irq(&conf->device_lock);
72626685 4148 bitmap_unplug(mddev->bitmap);
700e432d 4149 spin_lock_irq(&conf->device_lock);
72626685
N
4150 conf->seq_write = seq;
4151 activate_bit_delay(conf);
4152 }
4153
46031f9a
RBJ
4154 while ((bio = remove_bio_from_retry(conf))) {
4155 int ok;
4156 spin_unlock_irq(&conf->device_lock);
4157 ok = retry_aligned_read(conf, bio);
4158 spin_lock_irq(&conf->device_lock);
4159 if (!ok)
4160 break;
4161 handled++;
4162 }
4163
8b3e6cdc
DW
4164 sh = __get_priority_stripe(conf);
4165
c9f21aaf 4166 if (!sh)
1da177e4 4167 break;
1da177e4
LT
4168 spin_unlock_irq(&conf->device_lock);
4169
4170 handled++;
16a53ecc 4171 handle_stripe(sh, conf->spare_page);
1da177e4
LT
4172 release_stripe(sh);
4173
4174 spin_lock_irq(&conf->device_lock);
4175 }
45b4233c 4176 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4177
4178 spin_unlock_irq(&conf->device_lock);
4179
c9f21aaf 4180 async_tx_issue_pending_all();
1da177e4
LT
4181 unplug_slaves(mddev);
4182
45b4233c 4183 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4184}
4185
3f294f4f 4186static ssize_t
007583c9 4187raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 4188{
070ec55d 4189 raid5_conf_t *conf = mddev->private;
96de1e66
N
4190 if (conf)
4191 return sprintf(page, "%d\n", conf->max_nr_stripes);
4192 else
4193 return 0;
3f294f4f
N
4194}
4195
4196static ssize_t
007583c9 4197raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 4198{
070ec55d 4199 raid5_conf_t *conf = mddev->private;
4ef197d8 4200 unsigned long new;
b5470dc5
DW
4201 int err;
4202
3f294f4f
N
4203 if (len >= PAGE_SIZE)
4204 return -EINVAL;
96de1e66
N
4205 if (!conf)
4206 return -ENODEV;
3f294f4f 4207
4ef197d8 4208 if (strict_strtoul(page, 10, &new))
3f294f4f
N
4209 return -EINVAL;
4210 if (new <= 16 || new > 32768)
4211 return -EINVAL;
4212 while (new < conf->max_nr_stripes) {
4213 if (drop_one_stripe(conf))
4214 conf->max_nr_stripes--;
4215 else
4216 break;
4217 }
b5470dc5
DW
4218 err = md_allow_write(mddev);
4219 if (err)
4220 return err;
3f294f4f
N
4221 while (new > conf->max_nr_stripes) {
4222 if (grow_one_stripe(conf))
4223 conf->max_nr_stripes++;
4224 else break;
4225 }
4226 return len;
4227}
007583c9 4228
96de1e66
N
4229static struct md_sysfs_entry
4230raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4231 raid5_show_stripe_cache_size,
4232 raid5_store_stripe_cache_size);
3f294f4f 4233
8b3e6cdc
DW
4234static ssize_t
4235raid5_show_preread_threshold(mddev_t *mddev, char *page)
4236{
070ec55d 4237 raid5_conf_t *conf = mddev->private;
8b3e6cdc
DW
4238 if (conf)
4239 return sprintf(page, "%d\n", conf->bypass_threshold);
4240 else
4241 return 0;
4242}
4243
4244static ssize_t
4245raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4246{
070ec55d 4247 raid5_conf_t *conf = mddev->private;
4ef197d8 4248 unsigned long new;
8b3e6cdc
DW
4249 if (len >= PAGE_SIZE)
4250 return -EINVAL;
4251 if (!conf)
4252 return -ENODEV;
4253
4ef197d8 4254 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4255 return -EINVAL;
4ef197d8 4256 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4257 return -EINVAL;
4258 conf->bypass_threshold = new;
4259 return len;
4260}
4261
4262static struct md_sysfs_entry
4263raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4264 S_IRUGO | S_IWUSR,
4265 raid5_show_preread_threshold,
4266 raid5_store_preread_threshold);
4267
3f294f4f 4268static ssize_t
96de1e66 4269stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4270{
070ec55d 4271 raid5_conf_t *conf = mddev->private;
96de1e66
N
4272 if (conf)
4273 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4274 else
4275 return 0;
3f294f4f
N
4276}
4277
96de1e66
N
4278static struct md_sysfs_entry
4279raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4280
007583c9 4281static struct attribute *raid5_attrs[] = {
3f294f4f
N
4282 &raid5_stripecache_size.attr,
4283 &raid5_stripecache_active.attr,
8b3e6cdc 4284 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4285 NULL,
4286};
007583c9
N
4287static struct attribute_group raid5_attrs_group = {
4288 .name = NULL,
4289 .attrs = raid5_attrs,
3f294f4f
N
4290};
4291
80c3a6ce
DW
4292static sector_t
4293raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4294{
070ec55d 4295 raid5_conf_t *conf = mddev->private;
80c3a6ce
DW
4296
4297 if (!sectors)
4298 sectors = mddev->dev_sectors;
7ec05478
N
4299 if (!raid_disks) {
4300 /* size is defined by the smallest of previous and new size */
4301 if (conf->raid_disks < conf->previous_raid_disks)
4302 raid_disks = conf->raid_disks;
4303 else
4304 raid_disks = conf->previous_raid_disks;
4305 }
80c3a6ce 4306
9d8f0363 4307 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 4308 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
4309 return sectors * (raid_disks - conf->max_degraded);
4310}
4311
91adb564 4312static raid5_conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
4313{
4314 raid5_conf_t *conf;
4315 int raid_disk, memory;
4316 mdk_rdev_t *rdev;
4317 struct disk_info *disk;
1da177e4 4318
91adb564
N
4319 if (mddev->new_level != 5
4320 && mddev->new_level != 4
4321 && mddev->new_level != 6) {
16a53ecc 4322 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4323 mdname(mddev), mddev->new_level);
4324 return ERR_PTR(-EIO);
1da177e4 4325 }
91adb564
N
4326 if ((mddev->new_level == 5
4327 && !algorithm_valid_raid5(mddev->new_layout)) ||
4328 (mddev->new_level == 6
4329 && !algorithm_valid_raid6(mddev->new_layout))) {
99c0fb5f 4330 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
91adb564
N
4331 mdname(mddev), mddev->new_layout);
4332 return ERR_PTR(-EIO);
99c0fb5f 4333 }
91adb564
N
4334 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4335 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4336 mdname(mddev), mddev->raid_disks);
4337 return ERR_PTR(-EINVAL);
4bbf3771
N
4338 }
4339
664e7c41
AN
4340 if (!mddev->new_chunk_sectors ||
4341 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4342 !is_power_of_2(mddev->new_chunk_sectors)) {
91adb564 4343 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
664e7c41 4344 mddev->new_chunk_sectors << 9, mdname(mddev));
91adb564 4345 return ERR_PTR(-EINVAL);
f6705578
N
4346 }
4347
91adb564
N
4348 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4349 if (conf == NULL)
1da177e4 4350 goto abort;
91adb564
N
4351
4352 conf->raid_disks = mddev->raid_disks;
4353 if (mddev->reshape_position == MaxSector)
4354 conf->previous_raid_disks = mddev->raid_disks;
4355 else
f6705578 4356 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
f6705578
N
4357
4358 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
4359 GFP_KERNEL);
4360 if (!conf->disks)
4361 goto abort;
9ffae0cf 4362
1da177e4
LT
4363 conf->mddev = mddev;
4364
fccddba0 4365 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4366 goto abort;
1da177e4 4367
91adb564 4368 if (mddev->new_level == 6) {
16a53ecc
N
4369 conf->spare_page = alloc_page(GFP_KERNEL);
4370 if (!conf->spare_page)
4371 goto abort;
4372 }
1da177e4
LT
4373 spin_lock_init(&conf->device_lock);
4374 init_waitqueue_head(&conf->wait_for_stripe);
4375 init_waitqueue_head(&conf->wait_for_overlap);
4376 INIT_LIST_HEAD(&conf->handle_list);
8b3e6cdc 4377 INIT_LIST_HEAD(&conf->hold_list);
1da177e4 4378 INIT_LIST_HEAD(&conf->delayed_list);
72626685 4379 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
4380 INIT_LIST_HEAD(&conf->inactive_list);
4381 atomic_set(&conf->active_stripes, 0);
4382 atomic_set(&conf->preread_active_stripes, 0);
46031f9a 4383 atomic_set(&conf->active_aligned_reads, 0);
8b3e6cdc 4384 conf->bypass_threshold = BYPASS_THRESHOLD;
1da177e4 4385
45b4233c 4386 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
1da177e4 4387
159ec1fc 4388 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4389 raid_disk = rdev->raid_disk;
f6705578 4390 if (raid_disk >= conf->raid_disks
1da177e4
LT
4391 || raid_disk < 0)
4392 continue;
4393 disk = conf->disks + raid_disk;
4394
4395 disk->rdev = rdev;
4396
b2d444d7 4397 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
4398 char b[BDEVNAME_SIZE];
4399 printk(KERN_INFO "raid5: device %s operational as raid"
4400 " disk %d\n", bdevname(rdev->bdev,b),
4401 raid_disk);
8c2e870a
NB
4402 } else
4403 /* Cannot rely on bitmap to complete recovery */
4404 conf->fullsync = 1;
1da177e4
LT
4405 }
4406
09c9e5fa 4407 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 4408 conf->level = mddev->new_level;
16a53ecc
N
4409 if (conf->level == 6)
4410 conf->max_degraded = 2;
4411 else
4412 conf->max_degraded = 1;
91adb564 4413 conf->algorithm = mddev->new_layout;
1da177e4 4414 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4415 conf->reshape_progress = mddev->reshape_position;
e183eaed 4416 if (conf->reshape_progress != MaxSector) {
09c9e5fa 4417 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
4418 conf->prev_algo = mddev->layout;
4419 }
1da177e4 4420
91adb564
N
4421 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4422 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4423 if (grow_stripes(conf, conf->max_nr_stripes)) {
4424 printk(KERN_ERR
4425 "raid5: couldn't allocate %dkB for buffers\n", memory);
4426 goto abort;
4427 } else
4428 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4429 memory, mdname(mddev));
1da177e4 4430
91adb564
N
4431 conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4432 if (!conf->thread) {
4433 printk(KERN_ERR
4434 "raid5: couldn't allocate thread for %s\n",
4435 mdname(mddev));
16a53ecc
N
4436 goto abort;
4437 }
91adb564
N
4438
4439 return conf;
4440
4441 abort:
4442 if (conf) {
4443 shrink_stripes(conf);
4444 safe_put_page(conf->spare_page);
4445 kfree(conf->disks);
4446 kfree(conf->stripe_hashtbl);
4447 kfree(conf);
4448 return ERR_PTR(-EIO);
4449 } else
4450 return ERR_PTR(-ENOMEM);
4451}
4452
4453static int run(mddev_t *mddev)
4454{
4455 raid5_conf_t *conf;
8f6c2e4b 4456 int working_disks = 0, chunk_size;
91adb564
N
4457 mdk_rdev_t *rdev;
4458
8c6ac868
AN
4459 if (mddev->recovery_cp != MaxSector)
4460 printk(KERN_NOTICE "raid5: %s is not clean"
4461 " -- starting background reconstruction\n",
4462 mdname(mddev));
91adb564
N
4463 if (mddev->reshape_position != MaxSector) {
4464 /* Check that we can continue the reshape.
4465 * Currently only disks can change, it must
4466 * increase, and we must be past the point where
4467 * a stripe over-writes itself
4468 */
4469 sector_t here_new, here_old;
4470 int old_disks;
18b00334 4471 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 4472
88ce4930 4473 if (mddev->new_level != mddev->level) {
91adb564
N
4474 printk(KERN_ERR "raid5: %s: unsupported reshape "
4475 "required - aborting.\n",
4476 mdname(mddev));
4477 return -EINVAL;
4478 }
91adb564
N
4479 old_disks = mddev->raid_disks - mddev->delta_disks;
4480 /* reshape_position must be on a new-stripe boundary, and one
4481 * further up in new geometry must map after here in old
4482 * geometry.
4483 */
4484 here_new = mddev->reshape_position;
664e7c41 4485 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564
N
4486 (mddev->raid_disks - max_degraded))) {
4487 printk(KERN_ERR "raid5: reshape_position not "
4488 "on a stripe boundary\n");
4489 return -EINVAL;
4490 }
4491 /* here_new is the stripe we will write to */
4492 here_old = mddev->reshape_position;
9d8f0363 4493 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
4494 (old_disks-max_degraded));
4495 /* here_old is the first stripe that we might need to read
4496 * from */
4497 if (here_new >= here_old) {
4498 /* Reading from the same stripe as writing to - bad */
4499 printk(KERN_ERR "raid5: reshape_position too early for "
4500 "auto-recovery - aborting.\n");
4501 return -EINVAL;
4502 }
4503 printk(KERN_INFO "raid5: reshape will continue\n");
4504 /* OK, we should be able to continue; */
4505 } else {
4506 BUG_ON(mddev->level != mddev->new_level);
4507 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 4508 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 4509 BUG_ON(mddev->delta_disks != 0);
1da177e4 4510 }
91adb564 4511
245f46c2
N
4512 if (mddev->private == NULL)
4513 conf = setup_conf(mddev);
4514 else
4515 conf = mddev->private;
4516
91adb564
N
4517 if (IS_ERR(conf))
4518 return PTR_ERR(conf);
4519
4520 mddev->thread = conf->thread;
4521 conf->thread = NULL;
4522 mddev->private = conf;
4523
4524 /*
4525 * 0 for a fully functional array, 1 or 2 for a degraded array.
4526 */
4527 list_for_each_entry(rdev, &mddev->disks, same_set)
4528 if (rdev->raid_disk >= 0 &&
4529 test_bit(In_sync, &rdev->flags))
4530 working_disks++;
4531
4532 mddev->degraded = conf->raid_disks - working_disks;
4533
16a53ecc 4534 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
4535 printk(KERN_ERR "raid5: not enough operational devices for %s"
4536 " (%d/%d failed)\n",
02c2de8c 4537 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4538 goto abort;
4539 }
4540
91adb564 4541 /* device size must be a multiple of chunk size */
9d8f0363 4542 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
4543 mddev->resync_max_sectors = mddev->dev_sectors;
4544
16a53ecc 4545 if (mddev->degraded > 0 &&
1da177e4 4546 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4547 if (mddev->ok_start_degraded)
4548 printk(KERN_WARNING
4549 "raid5: starting dirty degraded array: %s"
4550 "- data corruption possible.\n",
4551 mdname(mddev));
4552 else {
4553 printk(KERN_ERR
4554 "raid5: cannot start dirty degraded array for %s\n",
4555 mdname(mddev));
4556 goto abort;
4557 }
1da177e4
LT
4558 }
4559
1da177e4
LT
4560 if (mddev->degraded == 0)
4561 printk("raid5: raid level %d set %s active with %d out of %d"
e183eaed
N
4562 " devices, algorithm %d\n", conf->level, mdname(mddev),
4563 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4564 mddev->new_layout);
1da177e4
LT
4565 else
4566 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4567 " out of %d devices, algorithm %d\n", conf->level,
4568 mdname(mddev), mddev->raid_disks - mddev->degraded,
e183eaed 4569 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
4570
4571 print_raid5_conf(conf);
4572
fef9c61f 4573 if (conf->reshape_progress != MaxSector) {
f6705578 4574 printk("...ok start reshape thread\n");
fef9c61f 4575 conf->reshape_safe = conf->reshape_progress;
f6705578
N
4576 atomic_set(&conf->reshape_stripes, 0);
4577 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4578 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4579 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4580 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4581 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4582 "%s_reshape");
f6705578
N
4583 }
4584
1da177e4 4585 /* read-ahead size must cover two whole stripes, which is
16a53ecc 4586 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
4587 */
4588 {
16a53ecc
N
4589 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4590 int stripe = data_disks *
9d8f0363 4591 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
1da177e4
LT
4592 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4593 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4594 }
4595
4596 /* Ok, everything is just fine now */
5e55e2f5
N
4597 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4598 printk(KERN_WARNING
4599 "raid5: failed to create sysfs attributes for %s\n",
4600 mdname(mddev));
7a5febe9 4601
91adb564
N
4602 mddev->queue->queue_lock = &conf->device_lock;
4603
7a5febe9 4604 mddev->queue->unplug_fn = raid5_unplug_device;
f022b2fd 4605 mddev->queue->backing_dev_info.congested_data = mddev;
041ae52e 4606 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
f022b2fd 4607
1f403624 4608 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 4609
23032a0e 4610 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
8f6c2e4b
MP
4611 chunk_size = mddev->chunk_sectors << 9;
4612 blk_queue_io_min(mddev->queue, chunk_size);
4613 blk_queue_io_opt(mddev->queue, chunk_size *
4614 (conf->raid_disks - conf->max_degraded));
4615
4616 list_for_each_entry(rdev, &mddev->disks, same_set)
4617 disk_stack_limits(mddev->gendisk, rdev->bdev,
4618 rdev->data_offset << 9);
23032a0e 4619
1da177e4
LT
4620 return 0;
4621abort:
e0cf8f04 4622 md_unregister_thread(mddev->thread);
91adb564 4623 mddev->thread = NULL;
1da177e4 4624 if (conf) {
91adb564 4625 shrink_stripes(conf);
1da177e4 4626 print_raid5_conf(conf);
16a53ecc 4627 safe_put_page(conf->spare_page);
b55e6bfc 4628 kfree(conf->disks);
fccddba0 4629 kfree(conf->stripe_hashtbl);
1da177e4
LT
4630 kfree(conf);
4631 }
4632 mddev->private = NULL;
4633 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4634 return -EIO;
4635}
4636
4637
4638
3f294f4f 4639static int stop(mddev_t *mddev)
1da177e4
LT
4640{
4641 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4642
4643 md_unregister_thread(mddev->thread);
4644 mddev->thread = NULL;
4645 shrink_stripes(conf);
fccddba0 4646 kfree(conf->stripe_hashtbl);
041ae52e 4647 mddev->queue->backing_dev_info.congested_fn = NULL;
1da177e4 4648 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 4649 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
b55e6bfc 4650 kfree(conf->disks);
96de1e66 4651 kfree(conf);
1da177e4
LT
4652 mddev->private = NULL;
4653 return 0;
4654}
4655
45b4233c 4656#ifdef DEBUG
d710e138 4657static void print_sh(struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
4658{
4659 int i;
4660
16a53ecc
N
4661 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4662 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4663 seq_printf(seq, "sh %llu, count %d.\n",
4664 (unsigned long long)sh->sector, atomic_read(&sh->count));
4665 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 4666 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
4667 seq_printf(seq, "(cache%d: %p %ld) ",
4668 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 4669 }
16a53ecc 4670 seq_printf(seq, "\n");
1da177e4
LT
4671}
4672
d710e138 4673static void printall(struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
4674{
4675 struct stripe_head *sh;
fccddba0 4676 struct hlist_node *hn;
1da177e4
LT
4677 int i;
4678
4679 spin_lock_irq(&conf->device_lock);
4680 for (i = 0; i < NR_HASH; i++) {
fccddba0 4681 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
4682 if (sh->raid_conf != conf)
4683 continue;
16a53ecc 4684 print_sh(seq, sh);
1da177e4
LT
4685 }
4686 }
4687 spin_unlock_irq(&conf->device_lock);
4688}
4689#endif
4690
d710e138 4691static void status(struct seq_file *seq, mddev_t *mddev)
1da177e4
LT
4692{
4693 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4694 int i;
4695
9d8f0363
AN
4696 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4697 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 4698 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
4699 for (i = 0; i < conf->raid_disks; i++)
4700 seq_printf (seq, "%s",
4701 conf->disks[i].rdev &&
b2d444d7 4702 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 4703 seq_printf (seq, "]");
45b4233c 4704#ifdef DEBUG
16a53ecc
N
4705 seq_printf (seq, "\n");
4706 printall(seq, conf);
1da177e4
LT
4707#endif
4708}
4709
4710static void print_raid5_conf (raid5_conf_t *conf)
4711{
4712 int i;
4713 struct disk_info *tmp;
4714
4715 printk("RAID5 conf printout:\n");
4716 if (!conf) {
4717 printk("(conf==NULL)\n");
4718 return;
4719 }
02c2de8c
N
4720 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4721 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
4722
4723 for (i = 0; i < conf->raid_disks; i++) {
4724 char b[BDEVNAME_SIZE];
4725 tmp = conf->disks + i;
4726 if (tmp->rdev)
4727 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 4728 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
4729 bdevname(tmp->rdev->bdev,b));
4730 }
4731}
4732
4733static int raid5_spare_active(mddev_t *mddev)
4734{
4735 int i;
4736 raid5_conf_t *conf = mddev->private;
4737 struct disk_info *tmp;
4738
4739 for (i = 0; i < conf->raid_disks; i++) {
4740 tmp = conf->disks + i;
4741 if (tmp->rdev
b2d444d7 4742 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
4743 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4744 unsigned long flags;
4745 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 4746 mddev->degraded--;
c04be0aa 4747 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
4748 }
4749 }
4750 print_raid5_conf(conf);
4751 return 0;
4752}
4753
4754static int raid5_remove_disk(mddev_t *mddev, int number)
4755{
4756 raid5_conf_t *conf = mddev->private;
4757 int err = 0;
4758 mdk_rdev_t *rdev;
4759 struct disk_info *p = conf->disks + number;
4760
4761 print_raid5_conf(conf);
4762 rdev = p->rdev;
4763 if (rdev) {
ec32a2bd
N
4764 if (number >= conf->raid_disks &&
4765 conf->reshape_progress == MaxSector)
4766 clear_bit(In_sync, &rdev->flags);
4767
b2d444d7 4768 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
4769 atomic_read(&rdev->nr_pending)) {
4770 err = -EBUSY;
4771 goto abort;
4772 }
dfc70645
N
4773 /* Only remove non-faulty devices if recovery
4774 * isn't possible.
4775 */
4776 if (!test_bit(Faulty, &rdev->flags) &&
ec32a2bd
N
4777 mddev->degraded <= conf->max_degraded &&
4778 number < conf->raid_disks) {
dfc70645
N
4779 err = -EBUSY;
4780 goto abort;
4781 }
1da177e4 4782 p->rdev = NULL;
fbd568a3 4783 synchronize_rcu();
1da177e4
LT
4784 if (atomic_read(&rdev->nr_pending)) {
4785 /* lost the race, try later */
4786 err = -EBUSY;
4787 p->rdev = rdev;
4788 }
4789 }
4790abort:
4791
4792 print_raid5_conf(conf);
4793 return err;
4794}
4795
4796static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4797{
4798 raid5_conf_t *conf = mddev->private;
199050ea 4799 int err = -EEXIST;
1da177e4
LT
4800 int disk;
4801 struct disk_info *p;
6c2fce2e
NB
4802 int first = 0;
4803 int last = conf->raid_disks - 1;
1da177e4 4804
16a53ecc 4805 if (mddev->degraded > conf->max_degraded)
1da177e4 4806 /* no point adding a device */
199050ea 4807 return -EINVAL;
1da177e4 4808
6c2fce2e
NB
4809 if (rdev->raid_disk >= 0)
4810 first = last = rdev->raid_disk;
1da177e4
LT
4811
4812 /*
16a53ecc
N
4813 * find the disk ... but prefer rdev->saved_raid_disk
4814 * if possible.
1da177e4 4815 */
16a53ecc 4816 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 4817 rdev->saved_raid_disk >= first &&
16a53ecc
N
4818 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4819 disk = rdev->saved_raid_disk;
4820 else
6c2fce2e
NB
4821 disk = first;
4822 for ( ; disk <= last ; disk++)
1da177e4 4823 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 4824 clear_bit(In_sync, &rdev->flags);
1da177e4 4825 rdev->raid_disk = disk;
199050ea 4826 err = 0;
72626685
N
4827 if (rdev->saved_raid_disk != disk)
4828 conf->fullsync = 1;
d6065f7b 4829 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
4830 break;
4831 }
4832 print_raid5_conf(conf);
199050ea 4833 return err;
1da177e4
LT
4834}
4835
4836static int raid5_resize(mddev_t *mddev, sector_t sectors)
4837{
4838 /* no resync is happening, and there is enough space
4839 * on all devices, so we can resize.
4840 * We need to make sure resync covers any new space.
4841 * If the array is shrinking we should possibly wait until
4842 * any io in the removed space completes, but it hardly seems
4843 * worth it.
4844 */
9d8f0363 4845 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
1f403624
DW
4846 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4847 mddev->raid_disks));
b522adcd
DW
4848 if (mddev->array_sectors >
4849 raid5_size(mddev, sectors, mddev->raid_disks))
4850 return -EINVAL;
f233ea5c 4851 set_capacity(mddev->gendisk, mddev->array_sectors);
44ce6294 4852 mddev->changed = 1;
58c0fed4
AN
4853 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4854 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
4855 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4856 }
58c0fed4 4857 mddev->dev_sectors = sectors;
4b5c7ae8 4858 mddev->resync_max_sectors = sectors;
1da177e4
LT
4859 return 0;
4860}
4861
01ee22b4
N
4862static int check_stripe_cache(mddev_t *mddev)
4863{
4864 /* Can only proceed if there are plenty of stripe_heads.
4865 * We need a minimum of one full stripe,, and for sensible progress
4866 * it is best to have about 4 times that.
4867 * If we require 4 times, then the default 256 4K stripe_heads will
4868 * allow for chunk sizes up to 256K, which is probably OK.
4869 * If the chunk size is greater, user-space should request more
4870 * stripe_heads first.
4871 */
4872 raid5_conf_t *conf = mddev->private;
4873 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
4874 > conf->max_nr_stripes ||
4875 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
4876 > conf->max_nr_stripes) {
4877 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4878 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
4879 / STRIPE_SIZE)*4);
4880 return 0;
4881 }
4882 return 1;
4883}
4884
50ac168a 4885static int check_reshape(mddev_t *mddev)
29269553 4886{
070ec55d 4887 raid5_conf_t *conf = mddev->private;
29269553 4888
88ce4930
N
4889 if (mddev->delta_disks == 0 &&
4890 mddev->new_layout == mddev->layout &&
664e7c41 4891 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 4892 return 0; /* nothing to do */
dba034ee
N
4893 if (mddev->bitmap)
4894 /* Cannot grow a bitmap yet */
4895 return -EBUSY;
ec32a2bd
N
4896 if (mddev->degraded > conf->max_degraded)
4897 return -EINVAL;
4898 if (mddev->delta_disks < 0) {
4899 /* We might be able to shrink, but the devices must
4900 * be made bigger first.
4901 * For raid6, 4 is the minimum size.
4902 * Otherwise 2 is the minimum
4903 */
4904 int min = 2;
4905 if (mddev->level == 6)
4906 min = 4;
4907 if (mddev->raid_disks + mddev->delta_disks < min)
4908 return -EINVAL;
4909 }
29269553 4910
01ee22b4 4911 if (!check_stripe_cache(mddev))
29269553 4912 return -ENOSPC;
29269553 4913
ec32a2bd 4914 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
4915}
4916
4917static int raid5_start_reshape(mddev_t *mddev)
4918{
070ec55d 4919 raid5_conf_t *conf = mddev->private;
63c70c4f 4920 mdk_rdev_t *rdev;
63c70c4f
N
4921 int spares = 0;
4922 int added_devices = 0;
c04be0aa 4923 unsigned long flags;
63c70c4f 4924
f416885e 4925 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
4926 return -EBUSY;
4927
01ee22b4
N
4928 if (!check_stripe_cache(mddev))
4929 return -ENOSPC;
4930
159ec1fc 4931 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
4932 if (rdev->raid_disk < 0 &&
4933 !test_bit(Faulty, &rdev->flags))
4934 spares++;
63c70c4f 4935
f416885e 4936 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
4937 /* Not enough devices even to make a degraded array
4938 * of that size
4939 */
4940 return -EINVAL;
4941
ec32a2bd
N
4942 /* Refuse to reduce size of the array. Any reductions in
4943 * array size must be through explicit setting of array_size
4944 * attribute.
4945 */
4946 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
4947 < mddev->array_sectors) {
4948 printk(KERN_ERR "md: %s: array size must be reduced "
4949 "before number of disks\n", mdname(mddev));
4950 return -EINVAL;
4951 }
4952
f6705578 4953 atomic_set(&conf->reshape_stripes, 0);
29269553
N
4954 spin_lock_irq(&conf->device_lock);
4955 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 4956 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
4957 conf->prev_chunk_sectors = conf->chunk_sectors;
4958 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
4959 conf->prev_algo = conf->algorithm;
4960 conf->algorithm = mddev->new_layout;
fef9c61f
N
4961 if (mddev->delta_disks < 0)
4962 conf->reshape_progress = raid5_size(mddev, 0, 0);
4963 else
4964 conf->reshape_progress = 0;
4965 conf->reshape_safe = conf->reshape_progress;
86b42c71 4966 conf->generation++;
29269553
N
4967 spin_unlock_irq(&conf->device_lock);
4968
4969 /* Add some new drives, as many as will fit.
4970 * We know there are enough to make the newly sized array work.
4971 */
159ec1fc 4972 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
4973 if (rdev->raid_disk < 0 &&
4974 !test_bit(Faulty, &rdev->flags)) {
199050ea 4975 if (raid5_add_disk(mddev, rdev) == 0) {
29269553
N
4976 char nm[20];
4977 set_bit(In_sync, &rdev->flags);
29269553 4978 added_devices++;
5fd6c1dc 4979 rdev->recovery_offset = 0;
29269553 4980 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
4981 if (sysfs_create_link(&mddev->kobj,
4982 &rdev->kobj, nm))
4983 printk(KERN_WARNING
4984 "raid5: failed to create "
4985 " link %s for %s\n",
4986 nm, mdname(mddev));
29269553
N
4987 } else
4988 break;
4989 }
4990
ec32a2bd
N
4991 if (mddev->delta_disks > 0) {
4992 spin_lock_irqsave(&conf->device_lock, flags);
4993 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
4994 - added_devices;
4995 spin_unlock_irqrestore(&conf->device_lock, flags);
4996 }
63c70c4f 4997 mddev->raid_disks = conf->raid_disks;
f6705578 4998 mddev->reshape_position = 0;
850b2b42 4999 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 5000
29269553
N
5001 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5002 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5003 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5004 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5005 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5006 "%s_reshape");
5007 if (!mddev->sync_thread) {
5008 mddev->recovery = 0;
5009 spin_lock_irq(&conf->device_lock);
5010 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
fef9c61f 5011 conf->reshape_progress = MaxSector;
29269553
N
5012 spin_unlock_irq(&conf->device_lock);
5013 return -EAGAIN;
5014 }
c8f517c4 5015 conf->reshape_checkpoint = jiffies;
29269553
N
5016 md_wakeup_thread(mddev->sync_thread);
5017 md_new_event(mddev);
5018 return 0;
5019}
29269553 5020
ec32a2bd
N
5021/* This is called from the reshape thread and should make any
5022 * changes needed in 'conf'
5023 */
29269553
N
5024static void end_reshape(raid5_conf_t *conf)
5025{
29269553 5026
f6705578 5027 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 5028
f6705578 5029 spin_lock_irq(&conf->device_lock);
cea9c228 5030 conf->previous_raid_disks = conf->raid_disks;
fef9c61f 5031 conf->reshape_progress = MaxSector;
f6705578 5032 spin_unlock_irq(&conf->device_lock);
b0f9ec04 5033 wake_up(&conf->wait_for_overlap);
16a53ecc
N
5034
5035 /* read-ahead size must cover two whole stripes, which is
5036 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5037 */
5038 {
cea9c228 5039 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 5040 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 5041 / PAGE_SIZE);
16a53ecc
N
5042 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5043 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5044 }
29269553 5045 }
29269553
N
5046}
5047
ec32a2bd
N
5048/* This is called from the raid5d thread with mddev_lock held.
5049 * It makes config changes to the device.
5050 */
cea9c228
N
5051static void raid5_finish_reshape(mddev_t *mddev)
5052{
5053 struct block_device *bdev;
070ec55d 5054 raid5_conf_t *conf = mddev->private;
cea9c228
N
5055
5056 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5057
ec32a2bd
N
5058 if (mddev->delta_disks > 0) {
5059 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5060 set_capacity(mddev->gendisk, mddev->array_sectors);
5061 mddev->changed = 1;
5062
5063 bdev = bdget_disk(mddev->gendisk, 0);
5064 if (bdev) {
5065 mutex_lock(&bdev->bd_inode->i_mutex);
5066 i_size_write(bdev->bd_inode,
5067 (loff_t)mddev->array_sectors << 9);
5068 mutex_unlock(&bdev->bd_inode->i_mutex);
5069 bdput(bdev);
5070 }
5071 } else {
5072 int d;
ec32a2bd
N
5073 mddev->degraded = conf->raid_disks;
5074 for (d = 0; d < conf->raid_disks ; d++)
5075 if (conf->disks[d].rdev &&
5076 test_bit(In_sync,
5077 &conf->disks[d].rdev->flags))
5078 mddev->degraded--;
5079 for (d = conf->raid_disks ;
5080 d < conf->raid_disks - mddev->delta_disks;
5081 d++)
5082 raid5_remove_disk(mddev, d);
cea9c228 5083 }
88ce4930 5084 mddev->layout = conf->algorithm;
09c9e5fa 5085 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
5086 mddev->reshape_position = MaxSector;
5087 mddev->delta_disks = 0;
cea9c228
N
5088 }
5089}
5090
72626685
N
5091static void raid5_quiesce(mddev_t *mddev, int state)
5092{
070ec55d 5093 raid5_conf_t *conf = mddev->private;
72626685
N
5094
5095 switch(state) {
e464eafd
N
5096 case 2: /* resume for a suspend */
5097 wake_up(&conf->wait_for_overlap);
5098 break;
5099
72626685
N
5100 case 1: /* stop all writes */
5101 spin_lock_irq(&conf->device_lock);
5102 conf->quiesce = 1;
5103 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5104 atomic_read(&conf->active_stripes) == 0 &&
5105 atomic_read(&conf->active_aligned_reads) == 0,
72626685
N
5106 conf->device_lock, /* nothing */);
5107 spin_unlock_irq(&conf->device_lock);
5108 break;
5109
5110 case 0: /* re-enable writes */
5111 spin_lock_irq(&conf->device_lock);
5112 conf->quiesce = 0;
5113 wake_up(&conf->wait_for_stripe);
e464eafd 5114 wake_up(&conf->wait_for_overlap);
72626685
N
5115 spin_unlock_irq(&conf->device_lock);
5116 break;
5117 }
72626685 5118}
b15c2e57 5119
d562b0c4
N
5120
5121static void *raid5_takeover_raid1(mddev_t *mddev)
5122{
5123 int chunksect;
5124
5125 if (mddev->raid_disks != 2 ||
5126 mddev->degraded > 1)
5127 return ERR_PTR(-EINVAL);
5128
5129 /* Should check if there are write-behind devices? */
5130
5131 chunksect = 64*2; /* 64K by default */
5132
5133 /* The array must be an exact multiple of chunksize */
5134 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5135 chunksect >>= 1;
5136
5137 if ((chunksect<<9) < STRIPE_SIZE)
5138 /* array size does not allow a suitable chunk size */
5139 return ERR_PTR(-EINVAL);
5140
5141 mddev->new_level = 5;
5142 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 5143 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
5144
5145 return setup_conf(mddev);
5146}
5147
fc9739c6
N
5148static void *raid5_takeover_raid6(mddev_t *mddev)
5149{
5150 int new_layout;
5151
5152 switch (mddev->layout) {
5153 case ALGORITHM_LEFT_ASYMMETRIC_6:
5154 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5155 break;
5156 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5157 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5158 break;
5159 case ALGORITHM_LEFT_SYMMETRIC_6:
5160 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5161 break;
5162 case ALGORITHM_RIGHT_SYMMETRIC_6:
5163 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5164 break;
5165 case ALGORITHM_PARITY_0_6:
5166 new_layout = ALGORITHM_PARITY_0;
5167 break;
5168 case ALGORITHM_PARITY_N:
5169 new_layout = ALGORITHM_PARITY_N;
5170 break;
5171 default:
5172 return ERR_PTR(-EINVAL);
5173 }
5174 mddev->new_level = 5;
5175 mddev->new_layout = new_layout;
5176 mddev->delta_disks = -1;
5177 mddev->raid_disks -= 1;
5178 return setup_conf(mddev);
5179}
5180
d562b0c4 5181
50ac168a 5182static int raid5_check_reshape(mddev_t *mddev)
b3546035 5183{
88ce4930
N
5184 /* For a 2-drive array, the layout and chunk size can be changed
5185 * immediately as not restriping is needed.
5186 * For larger arrays we record the new value - after validation
5187 * to be used by a reshape pass.
b3546035 5188 */
070ec55d 5189 raid5_conf_t *conf = mddev->private;
597a711b 5190 int new_chunk = mddev->new_chunk_sectors;
b3546035 5191
597a711b 5192 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
5193 return -EINVAL;
5194 if (new_chunk > 0) {
0ba459d2 5195 if (!is_power_of_2(new_chunk))
b3546035 5196 return -EINVAL;
597a711b 5197 if (new_chunk < (PAGE_SIZE>>9))
b3546035 5198 return -EINVAL;
597a711b 5199 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
5200 /* not factor of array size */
5201 return -EINVAL;
5202 }
5203
5204 /* They look valid */
5205
88ce4930 5206 if (mddev->raid_disks == 2) {
597a711b
N
5207 /* can make the change immediately */
5208 if (mddev->new_layout >= 0) {
5209 conf->algorithm = mddev->new_layout;
5210 mddev->layout = mddev->new_layout;
88ce4930
N
5211 }
5212 if (new_chunk > 0) {
597a711b
N
5213 conf->chunk_sectors = new_chunk ;
5214 mddev->chunk_sectors = new_chunk;
88ce4930
N
5215 }
5216 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5217 md_wakeup_thread(mddev->thread);
b3546035 5218 }
50ac168a 5219 return check_reshape(mddev);
88ce4930
N
5220}
5221
50ac168a 5222static int raid6_check_reshape(mddev_t *mddev)
88ce4930 5223{
597a711b 5224 int new_chunk = mddev->new_chunk_sectors;
50ac168a 5225
597a711b 5226 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 5227 return -EINVAL;
b3546035 5228 if (new_chunk > 0) {
0ba459d2 5229 if (!is_power_of_2(new_chunk))
88ce4930 5230 return -EINVAL;
597a711b 5231 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 5232 return -EINVAL;
597a711b 5233 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
5234 /* not factor of array size */
5235 return -EINVAL;
b3546035 5236 }
88ce4930
N
5237
5238 /* They look valid */
50ac168a 5239 return check_reshape(mddev);
b3546035
N
5240}
5241
d562b0c4
N
5242static void *raid5_takeover(mddev_t *mddev)
5243{
5244 /* raid5 can take over:
5245 * raid0 - if all devices are the same - make it a raid4 layout
5246 * raid1 - if there are two drives. We need to know the chunk size
5247 * raid4 - trivial - just use a raid4 layout.
5248 * raid6 - Providing it is a *_6 layout
d562b0c4
N
5249 */
5250
5251 if (mddev->level == 1)
5252 return raid5_takeover_raid1(mddev);
e9d4758f
N
5253 if (mddev->level == 4) {
5254 mddev->new_layout = ALGORITHM_PARITY_N;
5255 mddev->new_level = 5;
5256 return setup_conf(mddev);
5257 }
fc9739c6
N
5258 if (mddev->level == 6)
5259 return raid5_takeover_raid6(mddev);
d562b0c4
N
5260
5261 return ERR_PTR(-EINVAL);
5262}
5263
5264
245f46c2
N
5265static struct mdk_personality raid5_personality;
5266
5267static void *raid6_takeover(mddev_t *mddev)
5268{
5269 /* Currently can only take over a raid5. We map the
5270 * personality to an equivalent raid6 personality
5271 * with the Q block at the end.
5272 */
5273 int new_layout;
5274
5275 if (mddev->pers != &raid5_personality)
5276 return ERR_PTR(-EINVAL);
5277 if (mddev->degraded > 1)
5278 return ERR_PTR(-EINVAL);
5279 if (mddev->raid_disks > 253)
5280 return ERR_PTR(-EINVAL);
5281 if (mddev->raid_disks < 3)
5282 return ERR_PTR(-EINVAL);
5283
5284 switch (mddev->layout) {
5285 case ALGORITHM_LEFT_ASYMMETRIC:
5286 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5287 break;
5288 case ALGORITHM_RIGHT_ASYMMETRIC:
5289 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5290 break;
5291 case ALGORITHM_LEFT_SYMMETRIC:
5292 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5293 break;
5294 case ALGORITHM_RIGHT_SYMMETRIC:
5295 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5296 break;
5297 case ALGORITHM_PARITY_0:
5298 new_layout = ALGORITHM_PARITY_0_6;
5299 break;
5300 case ALGORITHM_PARITY_N:
5301 new_layout = ALGORITHM_PARITY_N;
5302 break;
5303 default:
5304 return ERR_PTR(-EINVAL);
5305 }
5306 mddev->new_level = 6;
5307 mddev->new_layout = new_layout;
5308 mddev->delta_disks = 1;
5309 mddev->raid_disks += 1;
5310 return setup_conf(mddev);
5311}
5312
5313
16a53ecc
N
5314static struct mdk_personality raid6_personality =
5315{
5316 .name = "raid6",
5317 .level = 6,
5318 .owner = THIS_MODULE,
5319 .make_request = make_request,
5320 .run = run,
5321 .stop = stop,
5322 .status = status,
5323 .error_handler = error,
5324 .hot_add_disk = raid5_add_disk,
5325 .hot_remove_disk= raid5_remove_disk,
5326 .spare_active = raid5_spare_active,
5327 .sync_request = sync_request,
5328 .resize = raid5_resize,
80c3a6ce 5329 .size = raid5_size,
50ac168a 5330 .check_reshape = raid6_check_reshape,
f416885e 5331 .start_reshape = raid5_start_reshape,
cea9c228 5332 .finish_reshape = raid5_finish_reshape,
16a53ecc 5333 .quiesce = raid5_quiesce,
245f46c2 5334 .takeover = raid6_takeover,
16a53ecc 5335};
2604b703 5336static struct mdk_personality raid5_personality =
1da177e4
LT
5337{
5338 .name = "raid5",
2604b703 5339 .level = 5,
1da177e4
LT
5340 .owner = THIS_MODULE,
5341 .make_request = make_request,
5342 .run = run,
5343 .stop = stop,
5344 .status = status,
5345 .error_handler = error,
5346 .hot_add_disk = raid5_add_disk,
5347 .hot_remove_disk= raid5_remove_disk,
5348 .spare_active = raid5_spare_active,
5349 .sync_request = sync_request,
5350 .resize = raid5_resize,
80c3a6ce 5351 .size = raid5_size,
63c70c4f
N
5352 .check_reshape = raid5_check_reshape,
5353 .start_reshape = raid5_start_reshape,
cea9c228 5354 .finish_reshape = raid5_finish_reshape,
72626685 5355 .quiesce = raid5_quiesce,
d562b0c4 5356 .takeover = raid5_takeover,
1da177e4
LT
5357};
5358
2604b703 5359static struct mdk_personality raid4_personality =
1da177e4 5360{
2604b703
N
5361 .name = "raid4",
5362 .level = 4,
5363 .owner = THIS_MODULE,
5364 .make_request = make_request,
5365 .run = run,
5366 .stop = stop,
5367 .status = status,
5368 .error_handler = error,
5369 .hot_add_disk = raid5_add_disk,
5370 .hot_remove_disk= raid5_remove_disk,
5371 .spare_active = raid5_spare_active,
5372 .sync_request = sync_request,
5373 .resize = raid5_resize,
80c3a6ce 5374 .size = raid5_size,
3d37890b
N
5375 .check_reshape = raid5_check_reshape,
5376 .start_reshape = raid5_start_reshape,
cea9c228 5377 .finish_reshape = raid5_finish_reshape,
2604b703
N
5378 .quiesce = raid5_quiesce,
5379};
5380
5381static int __init raid5_init(void)
5382{
16a53ecc 5383 register_md_personality(&raid6_personality);
2604b703
N
5384 register_md_personality(&raid5_personality);
5385 register_md_personality(&raid4_personality);
5386 return 0;
1da177e4
LT
5387}
5388
2604b703 5389static void raid5_exit(void)
1da177e4 5390{
16a53ecc 5391 unregister_md_personality(&raid6_personality);
2604b703
N
5392 unregister_md_personality(&raid5_personality);
5393 unregister_md_personality(&raid4_personality);
1da177e4
LT
5394}
5395
5396module_init(raid5_init);
5397module_exit(raid5_exit);
5398MODULE_LICENSE("GPL");
5399MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
5400MODULE_ALIAS("md-raid5");
5401MODULE_ALIAS("md-raid4");
2604b703
N
5402MODULE_ALIAS("md-level-5");
5403MODULE_ALIAS("md-level-4");
16a53ecc
N
5404MODULE_ALIAS("md-personality-8"); /* RAID6 */
5405MODULE_ALIAS("md-raid6");
5406MODULE_ALIAS("md-level-6");
5407
5408/* This used to be two separate modules, they were: */
5409MODULE_ALIAS("raid5");
5410MODULE_ALIAS("raid6");