]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/md/raid5.c
md/raid5: simplify raid5_compute_sector interface
[net-next-2.6.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
91c00924 48#include <linux/async_tx.h>
bff61975 49#include <linux/seq_file.h>
43b2e5d8 50#include "md.h"
bff61975 51#include "raid5.h"
ef740c37
CH
52#include "raid6.h"
53#include "bitmap.h"
72626685 54
1da177e4
LT
55/*
56 * Stripe cache
57 */
58
59#define NR_STRIPES 256
60#define STRIPE_SIZE PAGE_SIZE
61#define STRIPE_SHIFT (PAGE_SHIFT - 9)
62#define STRIPE_SECTORS (STRIPE_SIZE>>9)
63#define IO_THRESHOLD 1
8b3e6cdc 64#define BYPASS_THRESHOLD 1
fccddba0 65#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
66#define HASH_MASK (NR_HASH - 1)
67
fccddba0 68#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
69
70/* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap. There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
75 * be valid.
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
78 */
79#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80/*
81 * The following can be used to debug the driver
82 */
1da177e4
LT
83#define RAID5_PARANOIA 1
84#if RAID5_PARANOIA && defined(CONFIG_SMP)
85# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86#else
87# define CHECK_DEVLOCK()
88#endif
89
45b4233c 90#ifdef DEBUG
1da177e4
LT
91#define inline
92#define __inline__
93#endif
94
6be9d494
BS
95#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
16a53ecc
N
97#if !RAID6_USE_EMPTY_ZERO_PAGE
98/* In .bss so it's zeroed */
99const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100#endif
101
960e739d 102/*
5b99c2ff
JA
103 * We maintain a biased count of active stripes in the bottom 16 bits of
104 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
105 */
106static inline int raid5_bi_phys_segments(struct bio *bio)
107{
5b99c2ff 108 return bio->bi_phys_segments & 0xffff;
960e739d
JA
109}
110
111static inline int raid5_bi_hw_segments(struct bio *bio)
112{
5b99c2ff 113 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
114}
115
116static inline int raid5_dec_bi_phys_segments(struct bio *bio)
117{
118 --bio->bi_phys_segments;
119 return raid5_bi_phys_segments(bio);
120}
121
122static inline int raid5_dec_bi_hw_segments(struct bio *bio)
123{
124 unsigned short val = raid5_bi_hw_segments(bio);
125
126 --val;
5b99c2ff 127 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
128 return val;
129}
130
131static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
132{
5b99c2ff 133 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
960e739d
JA
134}
135
d0dabf7e
N
136/* Find first data disk in a raid6 stripe */
137static inline int raid6_d0(struct stripe_head *sh)
138{
139 if (sh->qd_idx == sh->disks - 1)
140 return 0;
141 else
142 return sh->qd_idx + 1;
143}
16a53ecc
N
144static inline int raid6_next_disk(int disk, int raid_disks)
145{
146 disk++;
147 return (disk < raid_disks) ? disk : 0;
148}
a4456856 149
d0dabf7e
N
150/* When walking through the disks in a raid5, starting at raid6_d0,
151 * We need to map each disk to a 'slot', where the data disks are slot
152 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153 * is raid_disks-1. This help does that mapping.
154 */
155static int raid6_idx_to_slot(int idx, struct stripe_head *sh, int *count)
156{
157 int slot;
158 if (idx == sh->pd_idx)
159 return sh->disks - 2;
160 if (idx == sh->qd_idx)
161 return sh->disks - 1;
162 slot = (*count)++;
163 return slot;
164}
165
a4456856
DW
166static void return_io(struct bio *return_bi)
167{
168 struct bio *bi = return_bi;
169 while (bi) {
a4456856
DW
170
171 return_bi = bi->bi_next;
172 bi->bi_next = NULL;
173 bi->bi_size = 0;
0e13fe23 174 bio_endio(bi, 0);
a4456856
DW
175 bi = return_bi;
176 }
177}
178
1da177e4
LT
179static void print_raid5_conf (raid5_conf_t *conf);
180
600aa109
DW
181static int stripe_operations_active(struct stripe_head *sh)
182{
183 return sh->check_state || sh->reconstruct_state ||
184 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
185 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
186}
187
858119e1 188static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
189{
190 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
191 BUG_ON(!list_empty(&sh->lru));
192 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 193 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 194 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 195 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
196 blk_plug_device(conf->mddev->queue);
197 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 198 sh->bm_seq - conf->seq_write > 0) {
72626685 199 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
200 blk_plug_device(conf->mddev->queue);
201 } else {
72626685 202 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 203 list_add_tail(&sh->lru, &conf->handle_list);
72626685 204 }
1da177e4
LT
205 md_wakeup_thread(conf->mddev->thread);
206 } else {
600aa109 207 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
208 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
209 atomic_dec(&conf->preread_active_stripes);
210 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
211 md_wakeup_thread(conf->mddev->thread);
212 }
1da177e4 213 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
214 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
215 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 216 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
217 if (conf->retry_read_aligned)
218 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 219 }
1da177e4
LT
220 }
221 }
222}
d0dabf7e 223
1da177e4
LT
224static void release_stripe(struct stripe_head *sh)
225{
226 raid5_conf_t *conf = sh->raid_conf;
227 unsigned long flags;
16a53ecc 228
1da177e4
LT
229 spin_lock_irqsave(&conf->device_lock, flags);
230 __release_stripe(conf, sh);
231 spin_unlock_irqrestore(&conf->device_lock, flags);
232}
233
fccddba0 234static inline void remove_hash(struct stripe_head *sh)
1da177e4 235{
45b4233c
DW
236 pr_debug("remove_hash(), stripe %llu\n",
237 (unsigned long long)sh->sector);
1da177e4 238
fccddba0 239 hlist_del_init(&sh->hash);
1da177e4
LT
240}
241
16a53ecc 242static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 243{
fccddba0 244 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 245
45b4233c
DW
246 pr_debug("insert_hash(), stripe %llu\n",
247 (unsigned long long)sh->sector);
1da177e4
LT
248
249 CHECK_DEVLOCK();
fccddba0 250 hlist_add_head(&sh->hash, hp);
1da177e4
LT
251}
252
253
254/* find an idle stripe, make sure it is unhashed, and return it. */
255static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
256{
257 struct stripe_head *sh = NULL;
258 struct list_head *first;
259
260 CHECK_DEVLOCK();
261 if (list_empty(&conf->inactive_list))
262 goto out;
263 first = conf->inactive_list.next;
264 sh = list_entry(first, struct stripe_head, lru);
265 list_del_init(first);
266 remove_hash(sh);
267 atomic_inc(&conf->active_stripes);
268out:
269 return sh;
270}
271
272static void shrink_buffers(struct stripe_head *sh, int num)
273{
274 struct page *p;
275 int i;
276
277 for (i=0; i<num ; i++) {
278 p = sh->dev[i].page;
279 if (!p)
280 continue;
281 sh->dev[i].page = NULL;
2d1f3b5d 282 put_page(p);
1da177e4
LT
283 }
284}
285
286static int grow_buffers(struct stripe_head *sh, int num)
287{
288 int i;
289
290 for (i=0; i<num; i++) {
291 struct page *page;
292
293 if (!(page = alloc_page(GFP_KERNEL))) {
294 return 1;
295 }
296 sh->dev[i].page = page;
297 }
298 return 0;
299}
300
d710e138 301static void raid5_build_block(struct stripe_head *sh, int i);
911d4ee8
N
302static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
303 struct stripe_head *sh);
1da177e4 304
b5663ba4 305static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4
LT
306{
307 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 308 int i;
1da177e4 309
78bafebd
ES
310 BUG_ON(atomic_read(&sh->count) != 0);
311 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 312 BUG_ON(stripe_operations_active(sh));
d84e0f10 313
1da177e4 314 CHECK_DEVLOCK();
45b4233c 315 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
316 (unsigned long long)sh->sector);
317
318 remove_hash(sh);
16a53ecc 319
b5663ba4 320 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 321 sh->sector = sector;
911d4ee8 322 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
323 sh->state = 0;
324
7ecaa1e6
N
325
326 for (i = sh->disks; i--; ) {
1da177e4
LT
327 struct r5dev *dev = &sh->dev[i];
328
d84e0f10 329 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 330 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 331 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 332 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 333 dev->read, dev->towrite, dev->written,
1da177e4
LT
334 test_bit(R5_LOCKED, &dev->flags));
335 BUG();
336 }
337 dev->flags = 0;
338 raid5_build_block(sh, i);
339 }
340 insert_hash(conf, sh);
341}
342
7ecaa1e6 343static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
1da177e4
LT
344{
345 struct stripe_head *sh;
fccddba0 346 struct hlist_node *hn;
1da177e4
LT
347
348 CHECK_DEVLOCK();
45b4233c 349 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 350 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
7ecaa1e6 351 if (sh->sector == sector && sh->disks == disks)
1da177e4 352 return sh;
45b4233c 353 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
354 return NULL;
355}
356
357static void unplug_slaves(mddev_t *mddev);
165125e1 358static void raid5_unplug_device(struct request_queue *q);
1da177e4 359
b5663ba4
N
360static struct stripe_head *
361get_active_stripe(raid5_conf_t *conf, sector_t sector,
362 int previous, int noblock)
1da177e4
LT
363{
364 struct stripe_head *sh;
b5663ba4 365 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 366
45b4233c 367 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
368
369 spin_lock_irq(&conf->device_lock);
370
371 do {
72626685
N
372 wait_event_lock_irq(conf->wait_for_stripe,
373 conf->quiesce == 0,
374 conf->device_lock, /* nothing */);
7ecaa1e6 375 sh = __find_stripe(conf, sector, disks);
1da177e4
LT
376 if (!sh) {
377 if (!conf->inactive_blocked)
378 sh = get_free_stripe(conf);
379 if (noblock && sh == NULL)
380 break;
381 if (!sh) {
382 conf->inactive_blocked = 1;
383 wait_event_lock_irq(conf->wait_for_stripe,
384 !list_empty(&conf->inactive_list) &&
5036805b
N
385 (atomic_read(&conf->active_stripes)
386 < (conf->max_nr_stripes *3/4)
1da177e4
LT
387 || !conf->inactive_blocked),
388 conf->device_lock,
f4370781 389 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
390 );
391 conf->inactive_blocked = 0;
392 } else
b5663ba4 393 init_stripe(sh, sector, previous);
1da177e4
LT
394 } else {
395 if (atomic_read(&sh->count)) {
78bafebd 396 BUG_ON(!list_empty(&sh->lru));
1da177e4
LT
397 } else {
398 if (!test_bit(STRIPE_HANDLE, &sh->state))
399 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
400 if (list_empty(&sh->lru) &&
401 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
402 BUG();
403 list_del_init(&sh->lru);
1da177e4
LT
404 }
405 }
406 } while (sh == NULL);
407
408 if (sh)
409 atomic_inc(&sh->count);
410
411 spin_unlock_irq(&conf->device_lock);
412 return sh;
413}
414
6712ecf8
N
415static void
416raid5_end_read_request(struct bio *bi, int error);
417static void
418raid5_end_write_request(struct bio *bi, int error);
91c00924 419
c4e5ac0a 420static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
421{
422 raid5_conf_t *conf = sh->raid_conf;
423 int i, disks = sh->disks;
424
425 might_sleep();
426
427 for (i = disks; i--; ) {
428 int rw;
429 struct bio *bi;
430 mdk_rdev_t *rdev;
431 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
432 rw = WRITE;
433 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
434 rw = READ;
435 else
436 continue;
437
438 bi = &sh->dev[i].req;
439
440 bi->bi_rw = rw;
441 if (rw == WRITE)
442 bi->bi_end_io = raid5_end_write_request;
443 else
444 bi->bi_end_io = raid5_end_read_request;
445
446 rcu_read_lock();
447 rdev = rcu_dereference(conf->disks[i].rdev);
448 if (rdev && test_bit(Faulty, &rdev->flags))
449 rdev = NULL;
450 if (rdev)
451 atomic_inc(&rdev->nr_pending);
452 rcu_read_unlock();
453
454 if (rdev) {
c4e5ac0a 455 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
456 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
457
2b7497f0
DW
458 set_bit(STRIPE_IO_STARTED, &sh->state);
459
91c00924
DW
460 bi->bi_bdev = rdev->bdev;
461 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 462 __func__, (unsigned long long)sh->sector,
91c00924
DW
463 bi->bi_rw, i);
464 atomic_inc(&sh->count);
465 bi->bi_sector = sh->sector + rdev->data_offset;
466 bi->bi_flags = 1 << BIO_UPTODATE;
467 bi->bi_vcnt = 1;
468 bi->bi_max_vecs = 1;
469 bi->bi_idx = 0;
470 bi->bi_io_vec = &sh->dev[i].vec;
471 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
472 bi->bi_io_vec[0].bv_offset = 0;
473 bi->bi_size = STRIPE_SIZE;
474 bi->bi_next = NULL;
475 if (rw == WRITE &&
476 test_bit(R5_ReWrite, &sh->dev[i].flags))
477 atomic_add(STRIPE_SECTORS,
478 &rdev->corrected_errors);
479 generic_make_request(bi);
480 } else {
481 if (rw == WRITE)
482 set_bit(STRIPE_DEGRADED, &sh->state);
483 pr_debug("skip op %ld on disc %d for sector %llu\n",
484 bi->bi_rw, i, (unsigned long long)sh->sector);
485 clear_bit(R5_LOCKED, &sh->dev[i].flags);
486 set_bit(STRIPE_HANDLE, &sh->state);
487 }
488 }
489}
490
491static struct dma_async_tx_descriptor *
492async_copy_data(int frombio, struct bio *bio, struct page *page,
493 sector_t sector, struct dma_async_tx_descriptor *tx)
494{
495 struct bio_vec *bvl;
496 struct page *bio_page;
497 int i;
498 int page_offset;
499
500 if (bio->bi_sector >= sector)
501 page_offset = (signed)(bio->bi_sector - sector) * 512;
502 else
503 page_offset = (signed)(sector - bio->bi_sector) * -512;
504 bio_for_each_segment(bvl, bio, i) {
505 int len = bio_iovec_idx(bio, i)->bv_len;
506 int clen;
507 int b_offset = 0;
508
509 if (page_offset < 0) {
510 b_offset = -page_offset;
511 page_offset += b_offset;
512 len -= b_offset;
513 }
514
515 if (len > 0 && page_offset + len > STRIPE_SIZE)
516 clen = STRIPE_SIZE - page_offset;
517 else
518 clen = len;
519
520 if (clen > 0) {
521 b_offset += bio_iovec_idx(bio, i)->bv_offset;
522 bio_page = bio_iovec_idx(bio, i)->bv_page;
523 if (frombio)
524 tx = async_memcpy(page, bio_page, page_offset,
525 b_offset, clen,
eb0645a8 526 ASYNC_TX_DEP_ACK,
91c00924
DW
527 tx, NULL, NULL);
528 else
529 tx = async_memcpy(bio_page, page, b_offset,
530 page_offset, clen,
eb0645a8 531 ASYNC_TX_DEP_ACK,
91c00924
DW
532 tx, NULL, NULL);
533 }
534 if (clen < len) /* hit end of page */
535 break;
536 page_offset += len;
537 }
538
539 return tx;
540}
541
542static void ops_complete_biofill(void *stripe_head_ref)
543{
544 struct stripe_head *sh = stripe_head_ref;
545 struct bio *return_bi = NULL;
546 raid5_conf_t *conf = sh->raid_conf;
e4d84909 547 int i;
91c00924 548
e46b272b 549 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
550 (unsigned long long)sh->sector);
551
552 /* clear completed biofills */
83de75cc 553 spin_lock_irq(&conf->device_lock);
91c00924
DW
554 for (i = sh->disks; i--; ) {
555 struct r5dev *dev = &sh->dev[i];
91c00924
DW
556
557 /* acknowledge completion of a biofill operation */
e4d84909
DW
558 /* and check if we need to reply to a read request,
559 * new R5_Wantfill requests are held off until
83de75cc 560 * !STRIPE_BIOFILL_RUN
e4d84909
DW
561 */
562 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 563 struct bio *rbi, *rbi2;
91c00924 564
91c00924
DW
565 BUG_ON(!dev->read);
566 rbi = dev->read;
567 dev->read = NULL;
568 while (rbi && rbi->bi_sector <
569 dev->sector + STRIPE_SECTORS) {
570 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 571 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
572 rbi->bi_next = return_bi;
573 return_bi = rbi;
574 }
91c00924
DW
575 rbi = rbi2;
576 }
577 }
578 }
83de75cc
DW
579 spin_unlock_irq(&conf->device_lock);
580 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
581
582 return_io(return_bi);
583
e4d84909 584 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
585 release_stripe(sh);
586}
587
588static void ops_run_biofill(struct stripe_head *sh)
589{
590 struct dma_async_tx_descriptor *tx = NULL;
591 raid5_conf_t *conf = sh->raid_conf;
592 int i;
593
e46b272b 594 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
595 (unsigned long long)sh->sector);
596
597 for (i = sh->disks; i--; ) {
598 struct r5dev *dev = &sh->dev[i];
599 if (test_bit(R5_Wantfill, &dev->flags)) {
600 struct bio *rbi;
601 spin_lock_irq(&conf->device_lock);
602 dev->read = rbi = dev->toread;
603 dev->toread = NULL;
604 spin_unlock_irq(&conf->device_lock);
605 while (rbi && rbi->bi_sector <
606 dev->sector + STRIPE_SECTORS) {
607 tx = async_copy_data(0, rbi, dev->page,
608 dev->sector, tx);
609 rbi = r5_next_bio(rbi, dev->sector);
610 }
611 }
612 }
613
614 atomic_inc(&sh->count);
615 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
616 ops_complete_biofill, sh);
617}
618
619static void ops_complete_compute5(void *stripe_head_ref)
620{
621 struct stripe_head *sh = stripe_head_ref;
622 int target = sh->ops.target;
623 struct r5dev *tgt = &sh->dev[target];
624
e46b272b 625 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
626 (unsigned long long)sh->sector);
627
628 set_bit(R5_UPTODATE, &tgt->flags);
629 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
630 clear_bit(R5_Wantcompute, &tgt->flags);
ecc65c9b
DW
631 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
632 if (sh->check_state == check_state_compute_run)
633 sh->check_state = check_state_compute_result;
91c00924
DW
634 set_bit(STRIPE_HANDLE, &sh->state);
635 release_stripe(sh);
636}
637
7b3a871e 638static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
91c00924
DW
639{
640 /* kernel stack size limits the total number of disks */
641 int disks = sh->disks;
642 struct page *xor_srcs[disks];
643 int target = sh->ops.target;
644 struct r5dev *tgt = &sh->dev[target];
645 struct page *xor_dest = tgt->page;
646 int count = 0;
647 struct dma_async_tx_descriptor *tx;
648 int i;
649
650 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 651 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
652 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
653
654 for (i = disks; i--; )
655 if (i != target)
656 xor_srcs[count++] = sh->dev[i].page;
657
658 atomic_inc(&sh->count);
659
660 if (unlikely(count == 1))
661 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
662 0, NULL, ops_complete_compute5, sh);
663 else
664 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
665 ASYNC_TX_XOR_ZERO_DST, NULL,
666 ops_complete_compute5, sh);
667
91c00924
DW
668 return tx;
669}
670
671static void ops_complete_prexor(void *stripe_head_ref)
672{
673 struct stripe_head *sh = stripe_head_ref;
674
e46b272b 675 pr_debug("%s: stripe %llu\n", __func__,
91c00924 676 (unsigned long long)sh->sector);
91c00924
DW
677}
678
679static struct dma_async_tx_descriptor *
680ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
681{
682 /* kernel stack size limits the total number of disks */
683 int disks = sh->disks;
684 struct page *xor_srcs[disks];
685 int count = 0, pd_idx = sh->pd_idx, i;
686
687 /* existing parity data subtracted */
688 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
689
e46b272b 690 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
691 (unsigned long long)sh->sector);
692
693 for (i = disks; i--; ) {
694 struct r5dev *dev = &sh->dev[i];
695 /* Only process blocks that are known to be uptodate */
d8ee0728 696 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
697 xor_srcs[count++] = dev->page;
698 }
699
700 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
701 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
702 ops_complete_prexor, sh);
703
704 return tx;
705}
706
707static struct dma_async_tx_descriptor *
d8ee0728 708ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
709{
710 int disks = sh->disks;
d8ee0728 711 int i;
91c00924 712
e46b272b 713 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
714 (unsigned long long)sh->sector);
715
716 for (i = disks; i--; ) {
717 struct r5dev *dev = &sh->dev[i];
718 struct bio *chosen;
91c00924 719
d8ee0728 720 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
721 struct bio *wbi;
722
723 spin_lock(&sh->lock);
724 chosen = dev->towrite;
725 dev->towrite = NULL;
726 BUG_ON(dev->written);
727 wbi = dev->written = chosen;
728 spin_unlock(&sh->lock);
729
730 while (wbi && wbi->bi_sector <
731 dev->sector + STRIPE_SECTORS) {
732 tx = async_copy_data(1, wbi, dev->page,
733 dev->sector, tx);
734 wbi = r5_next_bio(wbi, dev->sector);
735 }
736 }
737 }
738
739 return tx;
740}
741
742static void ops_complete_postxor(void *stripe_head_ref)
91c00924
DW
743{
744 struct stripe_head *sh = stripe_head_ref;
745 int disks = sh->disks, i, pd_idx = sh->pd_idx;
746
e46b272b 747 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
748 (unsigned long long)sh->sector);
749
750 for (i = disks; i--; ) {
751 struct r5dev *dev = &sh->dev[i];
752 if (dev->written || i == pd_idx)
753 set_bit(R5_UPTODATE, &dev->flags);
754 }
755
d8ee0728
DW
756 if (sh->reconstruct_state == reconstruct_state_drain_run)
757 sh->reconstruct_state = reconstruct_state_drain_result;
758 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
759 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
760 else {
761 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
762 sh->reconstruct_state = reconstruct_state_result;
763 }
91c00924
DW
764
765 set_bit(STRIPE_HANDLE, &sh->state);
766 release_stripe(sh);
767}
768
769static void
d8ee0728 770ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
771{
772 /* kernel stack size limits the total number of disks */
773 int disks = sh->disks;
774 struct page *xor_srcs[disks];
775
776 int count = 0, pd_idx = sh->pd_idx, i;
777 struct page *xor_dest;
d8ee0728 778 int prexor = 0;
91c00924 779 unsigned long flags;
91c00924 780
e46b272b 781 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
782 (unsigned long long)sh->sector);
783
784 /* check if prexor is active which means only process blocks
785 * that are part of a read-modify-write (written)
786 */
d8ee0728
DW
787 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
788 prexor = 1;
91c00924
DW
789 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
790 for (i = disks; i--; ) {
791 struct r5dev *dev = &sh->dev[i];
792 if (dev->written)
793 xor_srcs[count++] = dev->page;
794 }
795 } else {
796 xor_dest = sh->dev[pd_idx].page;
797 for (i = disks; i--; ) {
798 struct r5dev *dev = &sh->dev[i];
799 if (i != pd_idx)
800 xor_srcs[count++] = dev->page;
801 }
802 }
803
91c00924
DW
804 /* 1/ if we prexor'd then the dest is reused as a source
805 * 2/ if we did not prexor then we are redoing the parity
806 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
807 * for the synchronous xor case
808 */
809 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
810 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
811
812 atomic_inc(&sh->count);
813
814 if (unlikely(count == 1)) {
815 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
816 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
d8ee0728 817 flags, tx, ops_complete_postxor, sh);
91c00924
DW
818 } else
819 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
d8ee0728 820 flags, tx, ops_complete_postxor, sh);
91c00924
DW
821}
822
823static void ops_complete_check(void *stripe_head_ref)
824{
825 struct stripe_head *sh = stripe_head_ref;
91c00924 826
e46b272b 827 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
828 (unsigned long long)sh->sector);
829
ecc65c9b 830 sh->check_state = check_state_check_result;
91c00924
DW
831 set_bit(STRIPE_HANDLE, &sh->state);
832 release_stripe(sh);
833}
834
835static void ops_run_check(struct stripe_head *sh)
836{
837 /* kernel stack size limits the total number of disks */
838 int disks = sh->disks;
839 struct page *xor_srcs[disks];
840 struct dma_async_tx_descriptor *tx;
841
842 int count = 0, pd_idx = sh->pd_idx, i;
843 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
844
e46b272b 845 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
846 (unsigned long long)sh->sector);
847
848 for (i = disks; i--; ) {
849 struct r5dev *dev = &sh->dev[i];
850 if (i != pd_idx)
851 xor_srcs[count++] = dev->page;
852 }
853
854 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
855 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
856
91c00924
DW
857 atomic_inc(&sh->count);
858 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
859 ops_complete_check, sh);
860}
861
600aa109 862static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
863{
864 int overlap_clear = 0, i, disks = sh->disks;
865 struct dma_async_tx_descriptor *tx = NULL;
866
83de75cc 867 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
868 ops_run_biofill(sh);
869 overlap_clear++;
870 }
871
7b3a871e
DW
872 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
873 tx = ops_run_compute5(sh);
874 /* terminate the chain if postxor is not set to be run */
875 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
876 async_tx_ack(tx);
877 }
91c00924 878
600aa109 879 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
91c00924
DW
880 tx = ops_run_prexor(sh, tx);
881
600aa109 882 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 883 tx = ops_run_biodrain(sh, tx);
91c00924
DW
884 overlap_clear++;
885 }
886
600aa109 887 if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
d8ee0728 888 ops_run_postxor(sh, tx);
91c00924 889
ecc65c9b 890 if (test_bit(STRIPE_OP_CHECK, &ops_request))
91c00924
DW
891 ops_run_check(sh);
892
91c00924
DW
893 if (overlap_clear)
894 for (i = disks; i--; ) {
895 struct r5dev *dev = &sh->dev[i];
896 if (test_and_clear_bit(R5_Overlap, &dev->flags))
897 wake_up(&sh->raid_conf->wait_for_overlap);
898 }
899}
900
3f294f4f 901static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
902{
903 struct stripe_head *sh;
3f294f4f
N
904 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
905 if (!sh)
906 return 0;
907 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
908 sh->raid_conf = conf;
909 spin_lock_init(&sh->lock);
910
911 if (grow_buffers(sh, conf->raid_disks)) {
912 shrink_buffers(sh, conf->raid_disks);
913 kmem_cache_free(conf->slab_cache, sh);
914 return 0;
915 }
7ecaa1e6 916 sh->disks = conf->raid_disks;
3f294f4f
N
917 /* we just created an active stripe so... */
918 atomic_set(&sh->count, 1);
919 atomic_inc(&conf->active_stripes);
920 INIT_LIST_HEAD(&sh->lru);
921 release_stripe(sh);
922 return 1;
923}
924
925static int grow_stripes(raid5_conf_t *conf, int num)
926{
e18b890b 927 struct kmem_cache *sc;
1da177e4
LT
928 int devs = conf->raid_disks;
929
42b9bebe
N
930 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
931 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
ad01c9e3
N
932 conf->active_name = 0;
933 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 934 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 935 0, 0, NULL);
1da177e4
LT
936 if (!sc)
937 return 1;
938 conf->slab_cache = sc;
ad01c9e3 939 conf->pool_size = devs;
16a53ecc 940 while (num--)
3f294f4f 941 if (!grow_one_stripe(conf))
1da177e4 942 return 1;
1da177e4
LT
943 return 0;
944}
29269553
N
945
946#ifdef CONFIG_MD_RAID5_RESHAPE
ad01c9e3
N
947static int resize_stripes(raid5_conf_t *conf, int newsize)
948{
949 /* Make all the stripes able to hold 'newsize' devices.
950 * New slots in each stripe get 'page' set to a new page.
951 *
952 * This happens in stages:
953 * 1/ create a new kmem_cache and allocate the required number of
954 * stripe_heads.
955 * 2/ gather all the old stripe_heads and tranfer the pages across
956 * to the new stripe_heads. This will have the side effect of
957 * freezing the array as once all stripe_heads have been collected,
958 * no IO will be possible. Old stripe heads are freed once their
959 * pages have been transferred over, and the old kmem_cache is
960 * freed when all stripes are done.
961 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
962 * we simple return a failre status - no need to clean anything up.
963 * 4/ allocate new pages for the new slots in the new stripe_heads.
964 * If this fails, we don't bother trying the shrink the
965 * stripe_heads down again, we just leave them as they are.
966 * As each stripe_head is processed the new one is released into
967 * active service.
968 *
969 * Once step2 is started, we cannot afford to wait for a write,
970 * so we use GFP_NOIO allocations.
971 */
972 struct stripe_head *osh, *nsh;
973 LIST_HEAD(newstripes);
974 struct disk_info *ndisks;
b5470dc5 975 int err;
e18b890b 976 struct kmem_cache *sc;
ad01c9e3
N
977 int i;
978
979 if (newsize <= conf->pool_size)
980 return 0; /* never bother to shrink */
981
b5470dc5
DW
982 err = md_allow_write(conf->mddev);
983 if (err)
984 return err;
2a2275d6 985
ad01c9e3
N
986 /* Step 1 */
987 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
988 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 989 0, 0, NULL);
ad01c9e3
N
990 if (!sc)
991 return -ENOMEM;
992
993 for (i = conf->max_nr_stripes; i; i--) {
994 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
995 if (!nsh)
996 break;
997
998 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
999
1000 nsh->raid_conf = conf;
1001 spin_lock_init(&nsh->lock);
1002
1003 list_add(&nsh->lru, &newstripes);
1004 }
1005 if (i) {
1006 /* didn't get enough, give up */
1007 while (!list_empty(&newstripes)) {
1008 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1009 list_del(&nsh->lru);
1010 kmem_cache_free(sc, nsh);
1011 }
1012 kmem_cache_destroy(sc);
1013 return -ENOMEM;
1014 }
1015 /* Step 2 - Must use GFP_NOIO now.
1016 * OK, we have enough stripes, start collecting inactive
1017 * stripes and copying them over
1018 */
1019 list_for_each_entry(nsh, &newstripes, lru) {
1020 spin_lock_irq(&conf->device_lock);
1021 wait_event_lock_irq(conf->wait_for_stripe,
1022 !list_empty(&conf->inactive_list),
1023 conf->device_lock,
b3b46be3 1024 unplug_slaves(conf->mddev)
ad01c9e3
N
1025 );
1026 osh = get_free_stripe(conf);
1027 spin_unlock_irq(&conf->device_lock);
1028 atomic_set(&nsh->count, 1);
1029 for(i=0; i<conf->pool_size; i++)
1030 nsh->dev[i].page = osh->dev[i].page;
1031 for( ; i<newsize; i++)
1032 nsh->dev[i].page = NULL;
1033 kmem_cache_free(conf->slab_cache, osh);
1034 }
1035 kmem_cache_destroy(conf->slab_cache);
1036
1037 /* Step 3.
1038 * At this point, we are holding all the stripes so the array
1039 * is completely stalled, so now is a good time to resize
1040 * conf->disks.
1041 */
1042 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1043 if (ndisks) {
1044 for (i=0; i<conf->raid_disks; i++)
1045 ndisks[i] = conf->disks[i];
1046 kfree(conf->disks);
1047 conf->disks = ndisks;
1048 } else
1049 err = -ENOMEM;
1050
1051 /* Step 4, return new stripes to service */
1052 while(!list_empty(&newstripes)) {
1053 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1054 list_del_init(&nsh->lru);
1055 for (i=conf->raid_disks; i < newsize; i++)
1056 if (nsh->dev[i].page == NULL) {
1057 struct page *p = alloc_page(GFP_NOIO);
1058 nsh->dev[i].page = p;
1059 if (!p)
1060 err = -ENOMEM;
1061 }
1062 release_stripe(nsh);
1063 }
1064 /* critical section pass, GFP_NOIO no longer needed */
1065
1066 conf->slab_cache = sc;
1067 conf->active_name = 1-conf->active_name;
1068 conf->pool_size = newsize;
1069 return err;
1070}
29269553 1071#endif
1da177e4 1072
3f294f4f 1073static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1074{
1075 struct stripe_head *sh;
1076
3f294f4f
N
1077 spin_lock_irq(&conf->device_lock);
1078 sh = get_free_stripe(conf);
1079 spin_unlock_irq(&conf->device_lock);
1080 if (!sh)
1081 return 0;
78bafebd 1082 BUG_ON(atomic_read(&sh->count));
ad01c9e3 1083 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
1084 kmem_cache_free(conf->slab_cache, sh);
1085 atomic_dec(&conf->active_stripes);
1086 return 1;
1087}
1088
1089static void shrink_stripes(raid5_conf_t *conf)
1090{
1091 while (drop_one_stripe(conf))
1092 ;
1093
29fc7e3e
N
1094 if (conf->slab_cache)
1095 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1096 conf->slab_cache = NULL;
1097}
1098
6712ecf8 1099static void raid5_end_read_request(struct bio * bi, int error)
1da177e4
LT
1100{
1101 struct stripe_head *sh = bi->bi_private;
1102 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1103 int disks = sh->disks, i;
1da177e4 1104 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1105 char b[BDEVNAME_SIZE];
1106 mdk_rdev_t *rdev;
1da177e4 1107
1da177e4
LT
1108
1109 for (i=0 ; i<disks; i++)
1110 if (bi == &sh->dev[i].req)
1111 break;
1112
45b4233c
DW
1113 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1114 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1115 uptodate);
1116 if (i == disks) {
1117 BUG();
6712ecf8 1118 return;
1da177e4
LT
1119 }
1120
1121 if (uptodate) {
1da177e4 1122 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1123 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1124 rdev = conf->disks[i].rdev;
6be9d494
BS
1125 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1126 " (%lu sectors at %llu on %s)\n",
1127 mdname(conf->mddev), STRIPE_SECTORS,
1128 (unsigned long long)(sh->sector
1129 + rdev->data_offset),
1130 bdevname(rdev->bdev, b));
4e5314b5
N
1131 clear_bit(R5_ReadError, &sh->dev[i].flags);
1132 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1133 }
ba22dcbf
N
1134 if (atomic_read(&conf->disks[i].rdev->read_errors))
1135 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1136 } else {
d6950432 1137 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1138 int retry = 0;
d6950432
N
1139 rdev = conf->disks[i].rdev;
1140
1da177e4 1141 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1142 atomic_inc(&rdev->read_errors);
ba22dcbf 1143 if (conf->mddev->degraded)
6be9d494
BS
1144 printk_rl(KERN_WARNING
1145 "raid5:%s: read error not correctable "
1146 "(sector %llu on %s).\n",
1147 mdname(conf->mddev),
1148 (unsigned long long)(sh->sector
1149 + rdev->data_offset),
1150 bdn);
ba22dcbf 1151 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1152 /* Oh, no!!! */
6be9d494
BS
1153 printk_rl(KERN_WARNING
1154 "raid5:%s: read error NOT corrected!! "
1155 "(sector %llu on %s).\n",
1156 mdname(conf->mddev),
1157 (unsigned long long)(sh->sector
1158 + rdev->data_offset),
1159 bdn);
d6950432 1160 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1161 > conf->max_nr_stripes)
14f8d26b 1162 printk(KERN_WARNING
d6950432
N
1163 "raid5:%s: Too many read errors, failing device %s.\n",
1164 mdname(conf->mddev), bdn);
ba22dcbf
N
1165 else
1166 retry = 1;
1167 if (retry)
1168 set_bit(R5_ReadError, &sh->dev[i].flags);
1169 else {
4e5314b5
N
1170 clear_bit(R5_ReadError, &sh->dev[i].flags);
1171 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1172 md_error(conf->mddev, rdev);
ba22dcbf 1173 }
1da177e4
LT
1174 }
1175 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1176 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1177 set_bit(STRIPE_HANDLE, &sh->state);
1178 release_stripe(sh);
1da177e4
LT
1179}
1180
d710e138 1181static void raid5_end_write_request(struct bio *bi, int error)
1da177e4
LT
1182{
1183 struct stripe_head *sh = bi->bi_private;
1184 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1185 int disks = sh->disks, i;
1da177e4
LT
1186 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1187
1da177e4
LT
1188 for (i=0 ; i<disks; i++)
1189 if (bi == &sh->dev[i].req)
1190 break;
1191
45b4233c 1192 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1193 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1194 uptodate);
1195 if (i == disks) {
1196 BUG();
6712ecf8 1197 return;
1da177e4
LT
1198 }
1199
1da177e4
LT
1200 if (!uptodate)
1201 md_error(conf->mddev, conf->disks[i].rdev);
1202
1203 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1204
1205 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1206 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1207 release_stripe(sh);
1da177e4
LT
1208}
1209
1210
1211static sector_t compute_blocknr(struct stripe_head *sh, int i);
1212
d710e138 1213static void raid5_build_block(struct stripe_head *sh, int i)
1da177e4
LT
1214{
1215 struct r5dev *dev = &sh->dev[i];
1216
1217 bio_init(&dev->req);
1218 dev->req.bi_io_vec = &dev->vec;
1219 dev->req.bi_vcnt++;
1220 dev->req.bi_max_vecs++;
1221 dev->vec.bv_page = dev->page;
1222 dev->vec.bv_len = STRIPE_SIZE;
1223 dev->vec.bv_offset = 0;
1224
1225 dev->req.bi_sector = sh->sector;
1226 dev->req.bi_private = sh;
1227
1228 dev->flags = 0;
16a53ecc 1229 dev->sector = compute_blocknr(sh, i);
1da177e4
LT
1230}
1231
1232static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1233{
1234 char b[BDEVNAME_SIZE];
1235 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
45b4233c 1236 pr_debug("raid5: error called\n");
1da177e4 1237
b2d444d7 1238 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 1239 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
1240 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1241 unsigned long flags;
1242 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1243 mddev->degraded++;
c04be0aa 1244 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1245 /*
1246 * if recovery was running, make sure it aborts.
1247 */
dfc70645 1248 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1249 }
b2d444d7 1250 set_bit(Faulty, &rdev->flags);
d710e138
N
1251 printk(KERN_ALERT
1252 "raid5: Disk failure on %s, disabling device.\n"
1253 "raid5: Operation continuing on %d devices.\n",
1254 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4 1255 }
16a53ecc 1256}
1da177e4
LT
1257
1258/*
1259 * Input: a 'big' sector number,
1260 * Output: index of the data and parity disk, and the sector # in them.
1261 */
112bf897 1262static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
911d4ee8
N
1263 int previous, int *dd_idx,
1264 struct stripe_head *sh)
1da177e4
LT
1265{
1266 long stripe;
1267 unsigned long chunk_number;
1268 unsigned int chunk_offset;
911d4ee8 1269 int pd_idx, qd_idx;
1da177e4
LT
1270 sector_t new_sector;
1271 int sectors_per_chunk = conf->chunk_size >> 9;
112bf897
N
1272 int raid_disks = previous ? conf->previous_raid_disks
1273 : conf->raid_disks;
1274 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1275
1276 /* First compute the information on this sector */
1277
1278 /*
1279 * Compute the chunk number and the sector offset inside the chunk
1280 */
1281 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1282 chunk_number = r_sector;
1283 BUG_ON(r_sector != chunk_number);
1284
1285 /*
1286 * Compute the stripe number
1287 */
1288 stripe = chunk_number / data_disks;
1289
1290 /*
1291 * Compute the data disk and parity disk indexes inside the stripe
1292 */
1293 *dd_idx = chunk_number % data_disks;
1294
1295 /*
1296 * Select the parity disk based on the user selected algorithm.
1297 */
911d4ee8 1298 pd_idx = qd_idx = ~0;
16a53ecc
N
1299 switch(conf->level) {
1300 case 4:
911d4ee8 1301 pd_idx = data_disks;
16a53ecc
N
1302 break;
1303 case 5:
1304 switch (conf->algorithm) {
1da177e4 1305 case ALGORITHM_LEFT_ASYMMETRIC:
911d4ee8
N
1306 pd_idx = data_disks - stripe % raid_disks;
1307 if (*dd_idx >= pd_idx)
1da177e4
LT
1308 (*dd_idx)++;
1309 break;
1310 case ALGORITHM_RIGHT_ASYMMETRIC:
911d4ee8
N
1311 pd_idx = stripe % raid_disks;
1312 if (*dd_idx >= pd_idx)
1da177e4
LT
1313 (*dd_idx)++;
1314 break;
1315 case ALGORITHM_LEFT_SYMMETRIC:
911d4ee8
N
1316 pd_idx = data_disks - stripe % raid_disks;
1317 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1318 break;
1319 case ALGORITHM_RIGHT_SYMMETRIC:
911d4ee8
N
1320 pd_idx = stripe % raid_disks;
1321 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1322 break;
1323 default:
14f8d26b 1324 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1da177e4 1325 conf->algorithm);
16a53ecc
N
1326 }
1327 break;
1328 case 6:
1329
1330 /**** FIX THIS ****/
1331 switch (conf->algorithm) {
1332 case ALGORITHM_LEFT_ASYMMETRIC:
911d4ee8
N
1333 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1334 qd_idx = pd_idx + 1;
1335 if (pd_idx == raid_disks-1) {
16a53ecc 1336 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1337 qd_idx = 0;
1338 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1339 (*dd_idx) += 2; /* D D P Q D */
1340 break;
1341 case ALGORITHM_RIGHT_ASYMMETRIC:
911d4ee8
N
1342 pd_idx = stripe % raid_disks;
1343 qd_idx = pd_idx + 1;
1344 if (pd_idx == raid_disks-1) {
16a53ecc 1345 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1346 qd_idx = 0;
1347 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1348 (*dd_idx) += 2; /* D D P Q D */
1349 break;
1350 case ALGORITHM_LEFT_SYMMETRIC:
911d4ee8
N
1351 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1352 qd_idx = (pd_idx + 1) % raid_disks;
1353 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1354 break;
1355 case ALGORITHM_RIGHT_SYMMETRIC:
911d4ee8
N
1356 pd_idx = stripe % raid_disks;
1357 qd_idx = (pd_idx + 1) % raid_disks;
1358 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1359 break;
1360 default:
d710e138
N
1361 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1362 conf->algorithm);
16a53ecc
N
1363 }
1364 break;
1da177e4
LT
1365 }
1366
911d4ee8
N
1367 if (sh) {
1368 sh->pd_idx = pd_idx;
1369 sh->qd_idx = qd_idx;
1370 }
1da177e4
LT
1371 /*
1372 * Finally, compute the new sector number
1373 */
1374 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1375 return new_sector;
1376}
1377
1378
1379static sector_t compute_blocknr(struct stripe_head *sh, int i)
1380{
1381 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1382 int raid_disks = sh->disks;
1383 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1384 sector_t new_sector = sh->sector, check;
1385 int sectors_per_chunk = conf->chunk_size >> 9;
1386 sector_t stripe;
1387 int chunk_offset;
911d4ee8 1388 int chunk_number, dummy1, dd_idx = i;
1da177e4 1389 sector_t r_sector;
911d4ee8 1390 struct stripe_head sh2;
1da177e4 1391
16a53ecc 1392
1da177e4
LT
1393 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1394 stripe = new_sector;
1395 BUG_ON(new_sector != stripe);
1396
16a53ecc
N
1397 if (i == sh->pd_idx)
1398 return 0;
1399 switch(conf->level) {
1400 case 4: break;
1401 case 5:
1402 switch (conf->algorithm) {
1da177e4
LT
1403 case ALGORITHM_LEFT_ASYMMETRIC:
1404 case ALGORITHM_RIGHT_ASYMMETRIC:
1405 if (i > sh->pd_idx)
1406 i--;
1407 break;
1408 case ALGORITHM_LEFT_SYMMETRIC:
1409 case ALGORITHM_RIGHT_SYMMETRIC:
1410 if (i < sh->pd_idx)
1411 i += raid_disks;
1412 i -= (sh->pd_idx + 1);
1413 break;
1414 default:
14f8d26b 1415 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
16a53ecc
N
1416 conf->algorithm);
1417 }
1418 break;
1419 case 6:
d0dabf7e 1420 if (i == sh->qd_idx)
16a53ecc
N
1421 return 0; /* It is the Q disk */
1422 switch (conf->algorithm) {
1423 case ALGORITHM_LEFT_ASYMMETRIC:
1424 case ALGORITHM_RIGHT_ASYMMETRIC:
1425 if (sh->pd_idx == raid_disks-1)
1426 i--; /* Q D D D P */
1427 else if (i > sh->pd_idx)
1428 i -= 2; /* D D P Q D */
1429 break;
1430 case ALGORITHM_LEFT_SYMMETRIC:
1431 case ALGORITHM_RIGHT_SYMMETRIC:
1432 if (sh->pd_idx == raid_disks-1)
1433 i--; /* Q D D D P */
1434 else {
1435 /* D D P Q D */
1436 if (i < sh->pd_idx)
1437 i += raid_disks;
1438 i -= (sh->pd_idx + 2);
1439 }
1440 break;
1441 default:
d710e138
N
1442 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1443 conf->algorithm);
16a53ecc
N
1444 }
1445 break;
1da177e4
LT
1446 }
1447
1448 chunk_number = stripe * data_disks + i;
1449 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1450
112bf897
N
1451 check = raid5_compute_sector(conf, r_sector,
1452 (raid_disks != conf->raid_disks),
911d4ee8
N
1453 &dummy1, &sh2);
1454 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1455 || sh2.qd_idx != sh->qd_idx) {
14f8d26b 1456 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
1457 return 0;
1458 }
1459 return r_sector;
1460}
1461
1462
1463
1464/*
16a53ecc
N
1465 * Copy data between a page in the stripe cache, and one or more bion
1466 * The page could align with the middle of the bio, or there could be
1467 * several bion, each with several bio_vecs, which cover part of the page
1468 * Multiple bion are linked together on bi_next. There may be extras
1469 * at the end of this list. We ignore them.
1da177e4
LT
1470 */
1471static void copy_data(int frombio, struct bio *bio,
1472 struct page *page,
1473 sector_t sector)
1474{
1475 char *pa = page_address(page);
1476 struct bio_vec *bvl;
1477 int i;
1478 int page_offset;
1479
1480 if (bio->bi_sector >= sector)
1481 page_offset = (signed)(bio->bi_sector - sector) * 512;
1482 else
1483 page_offset = (signed)(sector - bio->bi_sector) * -512;
1484 bio_for_each_segment(bvl, bio, i) {
1485 int len = bio_iovec_idx(bio,i)->bv_len;
1486 int clen;
1487 int b_offset = 0;
1488
1489 if (page_offset < 0) {
1490 b_offset = -page_offset;
1491 page_offset += b_offset;
1492 len -= b_offset;
1493 }
1494
1495 if (len > 0 && page_offset + len > STRIPE_SIZE)
1496 clen = STRIPE_SIZE - page_offset;
1497 else clen = len;
16a53ecc 1498
1da177e4
LT
1499 if (clen > 0) {
1500 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1501 if (frombio)
1502 memcpy(pa+page_offset, ba+b_offset, clen);
1503 else
1504 memcpy(ba+b_offset, pa+page_offset, clen);
1505 __bio_kunmap_atomic(ba, KM_USER0);
1506 }
1507 if (clen < len) /* hit end of page */
1508 break;
1509 page_offset += len;
1510 }
1511}
1512
9bc89cd8
DW
1513#define check_xor() do { \
1514 if (count == MAX_XOR_BLOCKS) { \
1515 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1516 count = 0; \
1517 } \
1da177e4
LT
1518 } while(0)
1519
16a53ecc
N
1520static void compute_parity6(struct stripe_head *sh, int method)
1521{
bff61975 1522 raid5_conf_t *conf = sh->raid_conf;
d0dabf7e 1523 int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
16a53ecc
N
1524 struct bio *chosen;
1525 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1526 void *ptrs[disks];
1527
d0dabf7e
N
1528 pd_idx = sh->pd_idx;
1529 qd_idx = sh->qd_idx;
1530 d0_idx = raid6_d0(sh);
16a53ecc 1531
45b4233c 1532 pr_debug("compute_parity, stripe %llu, method %d\n",
16a53ecc
N
1533 (unsigned long long)sh->sector, method);
1534
1535 switch(method) {
1536 case READ_MODIFY_WRITE:
1537 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1538 case RECONSTRUCT_WRITE:
1539 for (i= disks; i-- ;)
1540 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1541 chosen = sh->dev[i].towrite;
1542 sh->dev[i].towrite = NULL;
1543
1544 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1545 wake_up(&conf->wait_for_overlap);
1546
52e5f9d1 1547 BUG_ON(sh->dev[i].written);
16a53ecc
N
1548 sh->dev[i].written = chosen;
1549 }
1550 break;
1551 case CHECK_PARITY:
1552 BUG(); /* Not implemented yet */
1553 }
1554
1555 for (i = disks; i--;)
1556 if (sh->dev[i].written) {
1557 sector_t sector = sh->dev[i].sector;
1558 struct bio *wbi = sh->dev[i].written;
1559 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1560 copy_data(1, wbi, sh->dev[i].page, sector);
1561 wbi = r5_next_bio(wbi, sector);
1562 }
1563
1564 set_bit(R5_LOCKED, &sh->dev[i].flags);
1565 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1566 }
1567
d0dabf7e
N
1568 /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1569 /* FIX: Is this ordering of drives even remotely optimal? */
1570 count = 0;
1571 i = d0_idx;
1572 do {
1573 int slot = raid6_idx_to_slot(i, sh, &count);
1574 ptrs[slot] = page_address(sh->dev[i].page);
1575 if (slot < sh->disks - 2 &&
1576 !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1577 printk(KERN_ERR "block %d/%d not uptodate "
1578 "on parity calc\n", i, count);
1579 BUG();
1580 }
1581 i = raid6_next_disk(i, disks);
1582 } while (i != d0_idx);
1583 BUG_ON(count+2 != disks);
16a53ecc
N
1584
1585 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1586
1587 switch(method) {
1588 case RECONSTRUCT_WRITE:
1589 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1590 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1591 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1592 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1593 break;
1594 case UPDATE_PARITY:
1595 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1596 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1597 break;
1598 }
1599}
1600
1601
1602/* Compute one missing block */
1603static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1604{
f416885e 1605 int i, count, disks = sh->disks;
9bc89cd8 1606 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
d0dabf7e 1607 int qd_idx = sh->qd_idx;
16a53ecc 1608
45b4233c 1609 pr_debug("compute_block_1, stripe %llu, idx %d\n",
16a53ecc
N
1610 (unsigned long long)sh->sector, dd_idx);
1611
1612 if ( dd_idx == qd_idx ) {
1613 /* We're actually computing the Q drive */
1614 compute_parity6(sh, UPDATE_PARITY);
1615 } else {
9bc89cd8
DW
1616 dest = page_address(sh->dev[dd_idx].page);
1617 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1618 count = 0;
16a53ecc
N
1619 for (i = disks ; i--; ) {
1620 if (i == dd_idx || i == qd_idx)
1621 continue;
1622 p = page_address(sh->dev[i].page);
1623 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1624 ptr[count++] = p;
1625 else
1626 printk("compute_block() %d, stripe %llu, %d"
1627 " not present\n", dd_idx,
1628 (unsigned long long)sh->sector, i);
1629
1630 check_xor();
1631 }
9bc89cd8
DW
1632 if (count)
1633 xor_blocks(count, STRIPE_SIZE, dest, ptr);
16a53ecc
N
1634 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1635 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1636 }
1637}
1638
1639/* Compute two missing blocks */
1640static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1641{
f416885e 1642 int i, count, disks = sh->disks;
d0dabf7e
N
1643 int d0_idx = raid6_d0(sh);
1644 int faila = -1, failb = -1;
1645 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1646 void *ptrs[disks];
16a53ecc 1647
d0dabf7e
N
1648 count = 0;
1649 i = d0_idx;
1650 do {
1651 int slot;
1652 slot = raid6_idx_to_slot(i, sh, &count);
1653 ptrs[slot] = page_address(sh->dev[i].page);
1654 if (i == dd_idx1)
1655 faila = slot;
1656 if (i == dd_idx2)
1657 failb = slot;
1658 i = raid6_next_disk(i, disks);
1659 } while (i != d0_idx);
1660 BUG_ON(count+2 != disks);
16a53ecc
N
1661
1662 BUG_ON(faila == failb);
1663 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1664
45b4233c 1665 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
d0dabf7e
N
1666 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1667 faila, failb);
16a53ecc
N
1668
1669 if ( failb == disks-1 ) {
1670 /* Q disk is one of the missing disks */
1671 if ( faila == disks-2 ) {
1672 /* Missing P+Q, just recompute */
1673 compute_parity6(sh, UPDATE_PARITY);
1674 return;
1675 } else {
1676 /* We're missing D+Q; recompute D from P */
d0dabf7e
N
1677 compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1678 dd_idx2 : dd_idx1),
1679 0);
16a53ecc
N
1680 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1681 return;
1682 }
1683 }
1684
d0dabf7e
N
1685 /* We're missing D+P or D+D; */
1686 if (failb == disks-2) {
1687 /* We're missing D+P. */
1688 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1689 } else {
1690 /* We're missing D+D. */
1691 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
16a53ecc 1692 }
d0dabf7e
N
1693
1694 /* Both the above update both missing blocks */
1695 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1696 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
16a53ecc
N
1697}
1698
600aa109 1699static void
1fe797e6 1700schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 1701 int rcw, int expand)
e33129d8
DW
1702{
1703 int i, pd_idx = sh->pd_idx, disks = sh->disks;
e33129d8
DW
1704
1705 if (rcw) {
1706 /* if we are not expanding this is a proper write request, and
1707 * there will be bios with new data to be drained into the
1708 * stripe cache
1709 */
1710 if (!expand) {
600aa109
DW
1711 sh->reconstruct_state = reconstruct_state_drain_run;
1712 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1713 } else
1714 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 1715
600aa109 1716 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
e33129d8
DW
1717
1718 for (i = disks; i--; ) {
1719 struct r5dev *dev = &sh->dev[i];
1720
1721 if (dev->towrite) {
1722 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 1723 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
1724 if (!expand)
1725 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 1726 s->locked++;
e33129d8
DW
1727 }
1728 }
600aa109 1729 if (s->locked + 1 == disks)
8b3e6cdc
DW
1730 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1731 atomic_inc(&sh->raid_conf->pending_full_writes);
e33129d8
DW
1732 } else {
1733 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1734 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1735
d8ee0728 1736 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
1737 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1738 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1739 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
e33129d8
DW
1740
1741 for (i = disks; i--; ) {
1742 struct r5dev *dev = &sh->dev[i];
1743 if (i == pd_idx)
1744 continue;
1745
e33129d8
DW
1746 if (dev->towrite &&
1747 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
1748 test_bit(R5_Wantcompute, &dev->flags))) {
1749 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
1750 set_bit(R5_LOCKED, &dev->flags);
1751 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 1752 s->locked++;
e33129d8
DW
1753 }
1754 }
1755 }
1756
1757 /* keep the parity disk locked while asynchronous operations
1758 * are in flight
1759 */
1760 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1761 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 1762 s->locked++;
e33129d8 1763
600aa109 1764 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 1765 __func__, (unsigned long long)sh->sector,
600aa109 1766 s->locked, s->ops_request);
e33129d8 1767}
16a53ecc 1768
1da177e4
LT
1769/*
1770 * Each stripe/dev can have one or more bion attached.
16a53ecc 1771 * toread/towrite point to the first in a chain.
1da177e4
LT
1772 * The bi_next chain must be in order.
1773 */
1774static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1775{
1776 struct bio **bip;
1777 raid5_conf_t *conf = sh->raid_conf;
72626685 1778 int firstwrite=0;
1da177e4 1779
45b4233c 1780 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
1781 (unsigned long long)bi->bi_sector,
1782 (unsigned long long)sh->sector);
1783
1784
1785 spin_lock(&sh->lock);
1786 spin_lock_irq(&conf->device_lock);
72626685 1787 if (forwrite) {
1da177e4 1788 bip = &sh->dev[dd_idx].towrite;
72626685
N
1789 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1790 firstwrite = 1;
1791 } else
1da177e4
LT
1792 bip = &sh->dev[dd_idx].toread;
1793 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1794 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1795 goto overlap;
1796 bip = & (*bip)->bi_next;
1797 }
1798 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1799 goto overlap;
1800
78bafebd 1801 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
1802 if (*bip)
1803 bi->bi_next = *bip;
1804 *bip = bi;
960e739d 1805 bi->bi_phys_segments++;
1da177e4
LT
1806 spin_unlock_irq(&conf->device_lock);
1807 spin_unlock(&sh->lock);
1808
45b4233c 1809 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
1810 (unsigned long long)bi->bi_sector,
1811 (unsigned long long)sh->sector, dd_idx);
1812
72626685 1813 if (conf->mddev->bitmap && firstwrite) {
72626685
N
1814 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1815 STRIPE_SECTORS, 0);
ae3c20cc 1816 sh->bm_seq = conf->seq_flush+1;
72626685
N
1817 set_bit(STRIPE_BIT_DELAY, &sh->state);
1818 }
1819
1da177e4
LT
1820 if (forwrite) {
1821 /* check if page is covered */
1822 sector_t sector = sh->dev[dd_idx].sector;
1823 for (bi=sh->dev[dd_idx].towrite;
1824 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1825 bi && bi->bi_sector <= sector;
1826 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1827 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1828 sector = bi->bi_sector + (bi->bi_size>>9);
1829 }
1830 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1831 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1832 }
1833 return 1;
1834
1835 overlap:
1836 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1837 spin_unlock_irq(&conf->device_lock);
1838 spin_unlock(&sh->lock);
1839 return 0;
1840}
1841
29269553
N
1842static void end_reshape(raid5_conf_t *conf);
1843
16a53ecc
N
1844static int page_is_zero(struct page *p)
1845{
1846 char *a = page_address(p);
1847 return ((*(u32*)a) == 0 &&
1848 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1849}
1850
911d4ee8
N
1851static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1852 struct stripe_head *sh)
ccfcc3c1
N
1853{
1854 int sectors_per_chunk = conf->chunk_size >> 9;
911d4ee8 1855 int dd_idx;
2d2063ce 1856 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 1857 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 1858
112bf897
N
1859 raid5_compute_sector(conf,
1860 stripe * (disks - conf->max_degraded)
b875e531 1861 *sectors_per_chunk + chunk_offset,
112bf897 1862 previous,
911d4ee8 1863 &dd_idx, sh);
ccfcc3c1
N
1864}
1865
a4456856 1866static void
1fe797e6 1867handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
a4456856
DW
1868 struct stripe_head_state *s, int disks,
1869 struct bio **return_bi)
1870{
1871 int i;
1872 for (i = disks; i--; ) {
1873 struct bio *bi;
1874 int bitmap_end = 0;
1875
1876 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1877 mdk_rdev_t *rdev;
1878 rcu_read_lock();
1879 rdev = rcu_dereference(conf->disks[i].rdev);
1880 if (rdev && test_bit(In_sync, &rdev->flags))
1881 /* multiple read failures in one stripe */
1882 md_error(conf->mddev, rdev);
1883 rcu_read_unlock();
1884 }
1885 spin_lock_irq(&conf->device_lock);
1886 /* fail all writes first */
1887 bi = sh->dev[i].towrite;
1888 sh->dev[i].towrite = NULL;
1889 if (bi) {
1890 s->to_write--;
1891 bitmap_end = 1;
1892 }
1893
1894 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1895 wake_up(&conf->wait_for_overlap);
1896
1897 while (bi && bi->bi_sector <
1898 sh->dev[i].sector + STRIPE_SECTORS) {
1899 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1900 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 1901 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
1902 md_write_end(conf->mddev);
1903 bi->bi_next = *return_bi;
1904 *return_bi = bi;
1905 }
1906 bi = nextbi;
1907 }
1908 /* and fail all 'written' */
1909 bi = sh->dev[i].written;
1910 sh->dev[i].written = NULL;
1911 if (bi) bitmap_end = 1;
1912 while (bi && bi->bi_sector <
1913 sh->dev[i].sector + STRIPE_SECTORS) {
1914 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1915 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 1916 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
1917 md_write_end(conf->mddev);
1918 bi->bi_next = *return_bi;
1919 *return_bi = bi;
1920 }
1921 bi = bi2;
1922 }
1923
b5e98d65
DW
1924 /* fail any reads if this device is non-operational and
1925 * the data has not reached the cache yet.
1926 */
1927 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1928 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1929 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
1930 bi = sh->dev[i].toread;
1931 sh->dev[i].toread = NULL;
1932 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1933 wake_up(&conf->wait_for_overlap);
1934 if (bi) s->to_read--;
1935 while (bi && bi->bi_sector <
1936 sh->dev[i].sector + STRIPE_SECTORS) {
1937 struct bio *nextbi =
1938 r5_next_bio(bi, sh->dev[i].sector);
1939 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 1940 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
1941 bi->bi_next = *return_bi;
1942 *return_bi = bi;
1943 }
1944 bi = nextbi;
1945 }
1946 }
1947 spin_unlock_irq(&conf->device_lock);
1948 if (bitmap_end)
1949 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1950 STRIPE_SECTORS, 0, 0);
1951 }
1952
8b3e6cdc
DW
1953 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1954 if (atomic_dec_and_test(&conf->pending_full_writes))
1955 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
1956}
1957
1fe797e6
DW
1958/* fetch_block5 - checks the given member device to see if its data needs
1959 * to be read or computed to satisfy a request.
1960 *
1961 * Returns 1 when no more member devices need to be checked, otherwise returns
1962 * 0 to tell the loop in handle_stripe_fill5 to continue
f38e1219 1963 */
1fe797e6
DW
1964static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
1965 int disk_idx, int disks)
f38e1219
DW
1966{
1967 struct r5dev *dev = &sh->dev[disk_idx];
1968 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1969
f38e1219
DW
1970 /* is the data in this block needed, and can we get it? */
1971 if (!test_bit(R5_LOCKED, &dev->flags) &&
1fe797e6
DW
1972 !test_bit(R5_UPTODATE, &dev->flags) &&
1973 (dev->toread ||
1974 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1975 s->syncing || s->expanding ||
1976 (s->failed &&
1977 (failed_dev->toread ||
1978 (failed_dev->towrite &&
1979 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
976ea8d4
DW
1980 /* We would like to get this block, possibly by computing it,
1981 * otherwise read it if the backing disk is insync
f38e1219
DW
1982 */
1983 if ((s->uptodate == disks - 1) &&
ecc65c9b 1984 (s->failed && disk_idx == s->failed_num)) {
976ea8d4
DW
1985 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
1986 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
f38e1219
DW
1987 set_bit(R5_Wantcompute, &dev->flags);
1988 sh->ops.target = disk_idx;
1989 s->req_compute = 1;
f38e1219
DW
1990 /* Careful: from this point on 'uptodate' is in the eye
1991 * of raid5_run_ops which services 'compute' operations
1992 * before writes. R5_Wantcompute flags a block that will
1993 * be R5_UPTODATE by the time it is needed for a
1994 * subsequent operation.
1995 */
1996 s->uptodate++;
1fe797e6 1997 return 1; /* uptodate + compute == disks */
7a1fc53c 1998 } else if (test_bit(R5_Insync, &dev->flags)) {
f38e1219
DW
1999 set_bit(R5_LOCKED, &dev->flags);
2000 set_bit(R5_Wantread, &dev->flags);
f38e1219
DW
2001 s->locked++;
2002 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2003 s->syncing);
2004 }
2005 }
2006
1fe797e6 2007 return 0;
f38e1219
DW
2008}
2009
1fe797e6
DW
2010/**
2011 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2012 */
2013static void handle_stripe_fill5(struct stripe_head *sh,
a4456856
DW
2014 struct stripe_head_state *s, int disks)
2015{
2016 int i;
f38e1219 2017
f38e1219
DW
2018 /* look for blocks to read/compute, skip this if a compute
2019 * is already in flight, or if the stripe contents are in the
2020 * midst of changing due to a write
2021 */
976ea8d4 2022 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1fe797e6 2023 !sh->reconstruct_state)
f38e1219 2024 for (i = disks; i--; )
1fe797e6 2025 if (fetch_block5(sh, s, i, disks))
f38e1219 2026 break;
a4456856
DW
2027 set_bit(STRIPE_HANDLE, &sh->state);
2028}
2029
1fe797e6 2030static void handle_stripe_fill6(struct stripe_head *sh,
a4456856
DW
2031 struct stripe_head_state *s, struct r6_state *r6s,
2032 int disks)
2033{
2034 int i;
2035 for (i = disks; i--; ) {
2036 struct r5dev *dev = &sh->dev[i];
2037 if (!test_bit(R5_LOCKED, &dev->flags) &&
2038 !test_bit(R5_UPTODATE, &dev->flags) &&
2039 (dev->toread || (dev->towrite &&
2040 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2041 s->syncing || s->expanding ||
2042 (s->failed >= 1 &&
2043 (sh->dev[r6s->failed_num[0]].toread ||
2044 s->to_write)) ||
2045 (s->failed >= 2 &&
2046 (sh->dev[r6s->failed_num[1]].toread ||
2047 s->to_write)))) {
2048 /* we would like to get this block, possibly
2049 * by computing it, but we might not be able to
2050 */
c337869d
DW
2051 if ((s->uptodate == disks - 1) &&
2052 (s->failed && (i == r6s->failed_num[0] ||
2053 i == r6s->failed_num[1]))) {
45b4233c 2054 pr_debug("Computing stripe %llu block %d\n",
a4456856
DW
2055 (unsigned long long)sh->sector, i);
2056 compute_block_1(sh, i, 0);
2057 s->uptodate++;
2058 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2059 /* Computing 2-failure is *very* expensive; only
2060 * do it if failed >= 2
2061 */
2062 int other;
2063 for (other = disks; other--; ) {
2064 if (other == i)
2065 continue;
2066 if (!test_bit(R5_UPTODATE,
2067 &sh->dev[other].flags))
2068 break;
2069 }
2070 BUG_ON(other < 0);
45b4233c 2071 pr_debug("Computing stripe %llu blocks %d,%d\n",
a4456856
DW
2072 (unsigned long long)sh->sector,
2073 i, other);
2074 compute_block_2(sh, i, other);
2075 s->uptodate += 2;
2076 } else if (test_bit(R5_Insync, &dev->flags)) {
2077 set_bit(R5_LOCKED, &dev->flags);
2078 set_bit(R5_Wantread, &dev->flags);
2079 s->locked++;
45b4233c 2080 pr_debug("Reading block %d (sync=%d)\n",
a4456856
DW
2081 i, s->syncing);
2082 }
2083 }
2084 }
2085 set_bit(STRIPE_HANDLE, &sh->state);
2086}
2087
2088
1fe797e6 2089/* handle_stripe_clean_event
a4456856
DW
2090 * any written block on an uptodate or failed drive can be returned.
2091 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2092 * never LOCKED, so we don't need to test 'failed' directly.
2093 */
1fe797e6 2094static void handle_stripe_clean_event(raid5_conf_t *conf,
a4456856
DW
2095 struct stripe_head *sh, int disks, struct bio **return_bi)
2096{
2097 int i;
2098 struct r5dev *dev;
2099
2100 for (i = disks; i--; )
2101 if (sh->dev[i].written) {
2102 dev = &sh->dev[i];
2103 if (!test_bit(R5_LOCKED, &dev->flags) &&
2104 test_bit(R5_UPTODATE, &dev->flags)) {
2105 /* We can return any write requests */
2106 struct bio *wbi, *wbi2;
2107 int bitmap_end = 0;
45b4233c 2108 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2109 spin_lock_irq(&conf->device_lock);
2110 wbi = dev->written;
2111 dev->written = NULL;
2112 while (wbi && wbi->bi_sector <
2113 dev->sector + STRIPE_SECTORS) {
2114 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2115 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2116 md_write_end(conf->mddev);
2117 wbi->bi_next = *return_bi;
2118 *return_bi = wbi;
2119 }
2120 wbi = wbi2;
2121 }
2122 if (dev->towrite == NULL)
2123 bitmap_end = 1;
2124 spin_unlock_irq(&conf->device_lock);
2125 if (bitmap_end)
2126 bitmap_endwrite(conf->mddev->bitmap,
2127 sh->sector,
2128 STRIPE_SECTORS,
2129 !test_bit(STRIPE_DEGRADED, &sh->state),
2130 0);
2131 }
2132 }
8b3e6cdc
DW
2133
2134 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2135 if (atomic_dec_and_test(&conf->pending_full_writes))
2136 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2137}
2138
1fe797e6 2139static void handle_stripe_dirtying5(raid5_conf_t *conf,
a4456856
DW
2140 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2141{
2142 int rmw = 0, rcw = 0, i;
2143 for (i = disks; i--; ) {
2144 /* would I have to read this buffer for read_modify_write */
2145 struct r5dev *dev = &sh->dev[i];
2146 if ((dev->towrite || i == sh->pd_idx) &&
2147 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2148 !(test_bit(R5_UPTODATE, &dev->flags) ||
2149 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2150 if (test_bit(R5_Insync, &dev->flags))
2151 rmw++;
2152 else
2153 rmw += 2*disks; /* cannot read it */
2154 }
2155 /* Would I have to read this buffer for reconstruct_write */
2156 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2157 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2158 !(test_bit(R5_UPTODATE, &dev->flags) ||
2159 test_bit(R5_Wantcompute, &dev->flags))) {
2160 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2161 else
2162 rcw += 2*disks;
2163 }
2164 }
45b4233c 2165 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2166 (unsigned long long)sh->sector, rmw, rcw);
2167 set_bit(STRIPE_HANDLE, &sh->state);
2168 if (rmw < rcw && rmw > 0)
2169 /* prefer read-modify-write, but need to get some data */
2170 for (i = disks; i--; ) {
2171 struct r5dev *dev = &sh->dev[i];
2172 if ((dev->towrite || i == sh->pd_idx) &&
2173 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2174 !(test_bit(R5_UPTODATE, &dev->flags) ||
2175 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2176 test_bit(R5_Insync, &dev->flags)) {
2177 if (
2178 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2179 pr_debug("Read_old block "
a4456856
DW
2180 "%d for r-m-w\n", i);
2181 set_bit(R5_LOCKED, &dev->flags);
2182 set_bit(R5_Wantread, &dev->flags);
2183 s->locked++;
2184 } else {
2185 set_bit(STRIPE_DELAYED, &sh->state);
2186 set_bit(STRIPE_HANDLE, &sh->state);
2187 }
2188 }
2189 }
2190 if (rcw <= rmw && rcw > 0)
2191 /* want reconstruct write, but need to get some data */
2192 for (i = disks; i--; ) {
2193 struct r5dev *dev = &sh->dev[i];
2194 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2195 i != sh->pd_idx &&
2196 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2197 !(test_bit(R5_UPTODATE, &dev->flags) ||
2198 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2199 test_bit(R5_Insync, &dev->flags)) {
2200 if (
2201 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2202 pr_debug("Read_old block "
a4456856
DW
2203 "%d for Reconstruct\n", i);
2204 set_bit(R5_LOCKED, &dev->flags);
2205 set_bit(R5_Wantread, &dev->flags);
2206 s->locked++;
2207 } else {
2208 set_bit(STRIPE_DELAYED, &sh->state);
2209 set_bit(STRIPE_HANDLE, &sh->state);
2210 }
2211 }
2212 }
2213 /* now if nothing is locked, and if we have enough data,
2214 * we can start a write request
2215 */
f38e1219
DW
2216 /* since handle_stripe can be called at any time we need to handle the
2217 * case where a compute block operation has been submitted and then a
2218 * subsequent call wants to start a write request. raid5_run_ops only
2219 * handles the case where compute block and postxor are requested
2220 * simultaneously. If this is not the case then new writes need to be
2221 * held off until the compute completes.
2222 */
976ea8d4
DW
2223 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2224 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2225 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
1fe797e6 2226 schedule_reconstruction5(sh, s, rcw == 0, 0);
a4456856
DW
2227}
2228
1fe797e6 2229static void handle_stripe_dirtying6(raid5_conf_t *conf,
a4456856
DW
2230 struct stripe_head *sh, struct stripe_head_state *s,
2231 struct r6_state *r6s, int disks)
2232{
2233 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2234 int qd_idx = r6s->qd_idx;
2235 for (i = disks; i--; ) {
2236 struct r5dev *dev = &sh->dev[i];
2237 /* Would I have to read this buffer for reconstruct_write */
2238 if (!test_bit(R5_OVERWRITE, &dev->flags)
2239 && i != pd_idx && i != qd_idx
2240 && (!test_bit(R5_LOCKED, &dev->flags)
2241 ) &&
2242 !test_bit(R5_UPTODATE, &dev->flags)) {
2243 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2244 else {
45b4233c 2245 pr_debug("raid6: must_compute: "
a4456856
DW
2246 "disk %d flags=%#lx\n", i, dev->flags);
2247 must_compute++;
2248 }
2249 }
2250 }
45b4233c 2251 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
a4456856
DW
2252 (unsigned long long)sh->sector, rcw, must_compute);
2253 set_bit(STRIPE_HANDLE, &sh->state);
2254
2255 if (rcw > 0)
2256 /* want reconstruct write, but need to get some data */
2257 for (i = disks; i--; ) {
2258 struct r5dev *dev = &sh->dev[i];
2259 if (!test_bit(R5_OVERWRITE, &dev->flags)
2260 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2261 && !test_bit(R5_LOCKED, &dev->flags) &&
2262 !test_bit(R5_UPTODATE, &dev->flags) &&
2263 test_bit(R5_Insync, &dev->flags)) {
2264 if (
2265 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2266 pr_debug("Read_old stripe %llu "
a4456856
DW
2267 "block %d for Reconstruct\n",
2268 (unsigned long long)sh->sector, i);
2269 set_bit(R5_LOCKED, &dev->flags);
2270 set_bit(R5_Wantread, &dev->flags);
2271 s->locked++;
2272 } else {
45b4233c 2273 pr_debug("Request delayed stripe %llu "
a4456856
DW
2274 "block %d for Reconstruct\n",
2275 (unsigned long long)sh->sector, i);
2276 set_bit(STRIPE_DELAYED, &sh->state);
2277 set_bit(STRIPE_HANDLE, &sh->state);
2278 }
2279 }
2280 }
2281 /* now if nothing is locked, and if we have enough data, we can start a
2282 * write request
2283 */
2284 if (s->locked == 0 && rcw == 0 &&
2285 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2286 if (must_compute > 0) {
2287 /* We have failed blocks and need to compute them */
2288 switch (s->failed) {
2289 case 0:
2290 BUG();
2291 case 1:
2292 compute_block_1(sh, r6s->failed_num[0], 0);
2293 break;
2294 case 2:
2295 compute_block_2(sh, r6s->failed_num[0],
2296 r6s->failed_num[1]);
2297 break;
2298 default: /* This request should have been failed? */
2299 BUG();
2300 }
2301 }
2302
45b4233c 2303 pr_debug("Computing parity for stripe %llu\n",
a4456856
DW
2304 (unsigned long long)sh->sector);
2305 compute_parity6(sh, RECONSTRUCT_WRITE);
2306 /* now every locked buffer is ready to be written */
2307 for (i = disks; i--; )
2308 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
45b4233c 2309 pr_debug("Writing stripe %llu block %d\n",
a4456856
DW
2310 (unsigned long long)sh->sector, i);
2311 s->locked++;
2312 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2313 }
8b3e6cdc
DW
2314 if (s->locked == disks)
2315 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2316 atomic_inc(&conf->pending_full_writes);
a4456856
DW
2317 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2318 set_bit(STRIPE_INSYNC, &sh->state);
2319
2320 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2321 atomic_dec(&conf->preread_active_stripes);
2322 if (atomic_read(&conf->preread_active_stripes) <
2323 IO_THRESHOLD)
2324 md_wakeup_thread(conf->mddev->thread);
2325 }
2326 }
2327}
2328
2329static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2330 struct stripe_head_state *s, int disks)
2331{
ecc65c9b 2332 struct r5dev *dev = NULL;
bd2ab670 2333
a4456856 2334 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2335
ecc65c9b
DW
2336 switch (sh->check_state) {
2337 case check_state_idle:
2338 /* start a new check operation if there are no failures */
bd2ab670 2339 if (s->failed == 0) {
bd2ab670 2340 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2341 sh->check_state = check_state_run;
2342 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2343 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2344 s->uptodate--;
ecc65c9b 2345 break;
bd2ab670 2346 }
ecc65c9b
DW
2347 dev = &sh->dev[s->failed_num];
2348 /* fall through */
2349 case check_state_compute_result:
2350 sh->check_state = check_state_idle;
2351 if (!dev)
2352 dev = &sh->dev[sh->pd_idx];
2353
2354 /* check that a write has not made the stripe insync */
2355 if (test_bit(STRIPE_INSYNC, &sh->state))
2356 break;
c8894419 2357
a4456856 2358 /* either failed parity check, or recovery is happening */
a4456856
DW
2359 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2360 BUG_ON(s->uptodate != disks);
2361
2362 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2363 s->locked++;
a4456856 2364 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2365
a4456856 2366 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2367 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2368 break;
2369 case check_state_run:
2370 break; /* we will be called again upon completion */
2371 case check_state_check_result:
2372 sh->check_state = check_state_idle;
2373
2374 /* if a failure occurred during the check operation, leave
2375 * STRIPE_INSYNC not set and let the stripe be handled again
2376 */
2377 if (s->failed)
2378 break;
2379
2380 /* handle a successful check operation, if parity is correct
2381 * we are done. Otherwise update the mismatch count and repair
2382 * parity if !MD_RECOVERY_CHECK
2383 */
2384 if (sh->ops.zero_sum_result == 0)
2385 /* parity is correct (on disc,
2386 * not in buffer any more)
2387 */
2388 set_bit(STRIPE_INSYNC, &sh->state);
2389 else {
2390 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2391 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2392 /* don't try to repair!! */
2393 set_bit(STRIPE_INSYNC, &sh->state);
2394 else {
2395 sh->check_state = check_state_compute_run;
976ea8d4 2396 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2397 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2398 set_bit(R5_Wantcompute,
2399 &sh->dev[sh->pd_idx].flags);
2400 sh->ops.target = sh->pd_idx;
2401 s->uptodate++;
2402 }
2403 }
2404 break;
2405 case check_state_compute_run:
2406 break;
2407 default:
2408 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2409 __func__, sh->check_state,
2410 (unsigned long long) sh->sector);
2411 BUG();
a4456856
DW
2412 }
2413}
2414
2415
2416static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2417 struct stripe_head_state *s,
2418 struct r6_state *r6s, struct page *tmp_page,
2419 int disks)
2420{
2421 int update_p = 0, update_q = 0;
2422 struct r5dev *dev;
2423 int pd_idx = sh->pd_idx;
2424 int qd_idx = r6s->qd_idx;
2425
2426 set_bit(STRIPE_HANDLE, &sh->state);
2427
2428 BUG_ON(s->failed > 2);
2429 BUG_ON(s->uptodate < disks);
2430 /* Want to check and possibly repair P and Q.
2431 * However there could be one 'failed' device, in which
2432 * case we can only check one of them, possibly using the
2433 * other to generate missing data
2434 */
2435
2436 /* If !tmp_page, we cannot do the calculations,
2437 * but as we have set STRIPE_HANDLE, we will soon be called
2438 * by stripe_handle with a tmp_page - just wait until then.
2439 */
2440 if (tmp_page) {
2441 if (s->failed == r6s->q_failed) {
2442 /* The only possible failed device holds 'Q', so it
2443 * makes sense to check P (If anything else were failed,
2444 * we would have used P to recreate it).
2445 */
2446 compute_block_1(sh, pd_idx, 1);
2447 if (!page_is_zero(sh->dev[pd_idx].page)) {
2448 compute_block_1(sh, pd_idx, 0);
2449 update_p = 1;
2450 }
2451 }
2452 if (!r6s->q_failed && s->failed < 2) {
2453 /* q is not failed, and we didn't use it to generate
2454 * anything, so it makes sense to check it
2455 */
2456 memcpy(page_address(tmp_page),
2457 page_address(sh->dev[qd_idx].page),
2458 STRIPE_SIZE);
2459 compute_parity6(sh, UPDATE_PARITY);
2460 if (memcmp(page_address(tmp_page),
2461 page_address(sh->dev[qd_idx].page),
2462 STRIPE_SIZE) != 0) {
2463 clear_bit(STRIPE_INSYNC, &sh->state);
2464 update_q = 1;
2465 }
2466 }
2467 if (update_p || update_q) {
2468 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2469 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2470 /* don't try to repair!! */
2471 update_p = update_q = 0;
2472 }
2473
2474 /* now write out any block on a failed drive,
2475 * or P or Q if they need it
2476 */
2477
2478 if (s->failed == 2) {
2479 dev = &sh->dev[r6s->failed_num[1]];
2480 s->locked++;
2481 set_bit(R5_LOCKED, &dev->flags);
2482 set_bit(R5_Wantwrite, &dev->flags);
2483 }
2484 if (s->failed >= 1) {
2485 dev = &sh->dev[r6s->failed_num[0]];
2486 s->locked++;
2487 set_bit(R5_LOCKED, &dev->flags);
2488 set_bit(R5_Wantwrite, &dev->flags);
2489 }
2490
2491 if (update_p) {
2492 dev = &sh->dev[pd_idx];
2493 s->locked++;
2494 set_bit(R5_LOCKED, &dev->flags);
2495 set_bit(R5_Wantwrite, &dev->flags);
2496 }
2497 if (update_q) {
2498 dev = &sh->dev[qd_idx];
2499 s->locked++;
2500 set_bit(R5_LOCKED, &dev->flags);
2501 set_bit(R5_Wantwrite, &dev->flags);
2502 }
2503 clear_bit(STRIPE_DEGRADED, &sh->state);
2504
2505 set_bit(STRIPE_INSYNC, &sh->state);
2506 }
2507}
2508
2509static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2510 struct r6_state *r6s)
2511{
2512 int i;
2513
2514 /* We have read all the blocks in this stripe and now we need to
2515 * copy some of them into a target stripe for expand.
2516 */
f0a50d37 2517 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2518 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2519 for (i = 0; i < sh->disks; i++)
a2e08551 2520 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
911d4ee8 2521 int dd_idx, j;
a4456856
DW
2522 struct stripe_head *sh2;
2523
2524 sector_t bn = compute_blocknr(sh, i);
911d4ee8
N
2525 sector_t s = raid5_compute_sector(conf, bn, 0,
2526 &dd_idx, NULL);
b5663ba4 2527 sh2 = get_active_stripe(conf, s, 0, 1);
a4456856
DW
2528 if (sh2 == NULL)
2529 /* so far only the early blocks of this stripe
2530 * have been requested. When later blocks
2531 * get requested, we will try again
2532 */
2533 continue;
2534 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2535 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2536 /* must have already done this block */
2537 release_stripe(sh2);
2538 continue;
2539 }
f0a50d37
DW
2540
2541 /* place all the copies on one channel */
2542 tx = async_memcpy(sh2->dev[dd_idx].page,
2543 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2544 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2545
a4456856
DW
2546 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2547 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2548 for (j = 0; j < conf->raid_disks; j++)
2549 if (j != sh2->pd_idx &&
d0dabf7e 2550 (!r6s || j != sh2->qd_idx) &&
a4456856
DW
2551 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2552 break;
2553 if (j == conf->raid_disks) {
2554 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2555 set_bit(STRIPE_HANDLE, &sh2->state);
2556 }
2557 release_stripe(sh2);
f0a50d37 2558
a4456856 2559 }
a2e08551
N
2560 /* done submitting copies, wait for them to complete */
2561 if (tx) {
2562 async_tx_ack(tx);
2563 dma_wait_for_async_tx(tx);
2564 }
a4456856 2565}
1da177e4 2566
6bfe0b49 2567
1da177e4
LT
2568/*
2569 * handle_stripe - do things to a stripe.
2570 *
2571 * We lock the stripe and then examine the state of various bits
2572 * to see what needs to be done.
2573 * Possible results:
2574 * return some read request which now have data
2575 * return some write requests which are safely on disc
2576 * schedule a read on some buffers
2577 * schedule a write of some buffers
2578 * return confirmation of parity correctness
2579 *
1da177e4
LT
2580 * buffers are taken off read_list or write_list, and bh_cache buffers
2581 * get BH_Lock set before the stripe lock is released.
2582 *
2583 */
a4456856 2584
df10cfbc 2585static bool handle_stripe5(struct stripe_head *sh)
1da177e4
LT
2586{
2587 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
2588 int disks = sh->disks, i;
2589 struct bio *return_bi = NULL;
2590 struct stripe_head_state s;
1da177e4 2591 struct r5dev *dev;
6bfe0b49 2592 mdk_rdev_t *blocked_rdev = NULL;
e0a115e5 2593 int prexor;
1da177e4 2594
a4456856 2595 memset(&s, 0, sizeof(s));
600aa109
DW
2596 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2597 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2598 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2599 sh->reconstruct_state);
1da177e4
LT
2600
2601 spin_lock(&sh->lock);
2602 clear_bit(STRIPE_HANDLE, &sh->state);
2603 clear_bit(STRIPE_DELAYED, &sh->state);
2604
a4456856
DW
2605 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2606 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2607 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
def6ae26 2608
83de75cc 2609 /* Now to look around and see what can be done */
9910f16a 2610 rcu_read_lock();
1da177e4
LT
2611 for (i=disks; i--; ) {
2612 mdk_rdev_t *rdev;
a4456856 2613 struct r5dev *dev = &sh->dev[i];
1da177e4 2614 clear_bit(R5_Insync, &dev->flags);
1da177e4 2615
b5e98d65
DW
2616 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2617 "written %p\n", i, dev->flags, dev->toread, dev->read,
2618 dev->towrite, dev->written);
2619
2620 /* maybe we can request a biofill operation
2621 *
2622 * new wantfill requests are only permitted while
83de75cc 2623 * ops_complete_biofill is guaranteed to be inactive
b5e98d65
DW
2624 */
2625 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
83de75cc 2626 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
b5e98d65 2627 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
2628
2629 /* now count some things */
a4456856
DW
2630 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2631 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 2632 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 2633
b5e98d65
DW
2634 if (test_bit(R5_Wantfill, &dev->flags))
2635 s.to_fill++;
2636 else if (dev->toread)
a4456856 2637 s.to_read++;
1da177e4 2638 if (dev->towrite) {
a4456856 2639 s.to_write++;
1da177e4 2640 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2641 s.non_overwrite++;
1da177e4 2642 }
a4456856
DW
2643 if (dev->written)
2644 s.written++;
9910f16a 2645 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
2646 if (blocked_rdev == NULL &&
2647 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
2648 blocked_rdev = rdev;
2649 atomic_inc(&rdev->nr_pending);
6bfe0b49 2650 }
b2d444d7 2651 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 2652 /* The ReadError flag will just be confusing now */
4e5314b5
N
2653 clear_bit(R5_ReadError, &dev->flags);
2654 clear_bit(R5_ReWrite, &dev->flags);
2655 }
b2d444d7 2656 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 2657 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2658 s.failed++;
2659 s.failed_num = i;
1da177e4
LT
2660 } else
2661 set_bit(R5_Insync, &dev->flags);
2662 }
9910f16a 2663 rcu_read_unlock();
b5e98d65 2664
6bfe0b49 2665 if (unlikely(blocked_rdev)) {
ac4090d2
N
2666 if (s.syncing || s.expanding || s.expanded ||
2667 s.to_write || s.written) {
2668 set_bit(STRIPE_HANDLE, &sh->state);
2669 goto unlock;
2670 }
2671 /* There is nothing for the blocked_rdev to block */
2672 rdev_dec_pending(blocked_rdev, conf->mddev);
2673 blocked_rdev = NULL;
6bfe0b49
DW
2674 }
2675
83de75cc
DW
2676 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2677 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2678 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2679 }
b5e98d65 2680
45b4233c 2681 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 2682 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
2683 s.locked, s.uptodate, s.to_read, s.to_write,
2684 s.failed, s.failed_num);
1da177e4
LT
2685 /* check if the array has lost two devices and, if so, some requests might
2686 * need to be failed
2687 */
a4456856 2688 if (s.failed > 1 && s.to_read+s.to_write+s.written)
1fe797e6 2689 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 2690 if (s.failed > 1 && s.syncing) {
1da177e4
LT
2691 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2692 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2693 s.syncing = 0;
1da177e4
LT
2694 }
2695
2696 /* might be able to return some write requests if the parity block
2697 * is safe, or on a failed drive
2698 */
2699 dev = &sh->dev[sh->pd_idx];
a4456856
DW
2700 if ( s.written &&
2701 ((test_bit(R5_Insync, &dev->flags) &&
2702 !test_bit(R5_LOCKED, &dev->flags) &&
2703 test_bit(R5_UPTODATE, &dev->flags)) ||
2704 (s.failed == 1 && s.failed_num == sh->pd_idx)))
1fe797e6 2705 handle_stripe_clean_event(conf, sh, disks, &return_bi);
1da177e4
LT
2706
2707 /* Now we might consider reading some blocks, either to check/generate
2708 * parity, or to satisfy requests
2709 * or to load a block that is being partially written.
2710 */
a4456856 2711 if (s.to_read || s.non_overwrite ||
976ea8d4 2712 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
1fe797e6 2713 handle_stripe_fill5(sh, &s, disks);
1da177e4 2714
e33129d8
DW
2715 /* Now we check to see if any write operations have recently
2716 * completed
2717 */
e0a115e5 2718 prexor = 0;
d8ee0728 2719 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
e0a115e5 2720 prexor = 1;
d8ee0728
DW
2721 if (sh->reconstruct_state == reconstruct_state_drain_result ||
2722 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
600aa109 2723 sh->reconstruct_state = reconstruct_state_idle;
e33129d8
DW
2724
2725 /* All the 'written' buffers and the parity block are ready to
2726 * be written back to disk
2727 */
2728 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2729 for (i = disks; i--; ) {
2730 dev = &sh->dev[i];
2731 if (test_bit(R5_LOCKED, &dev->flags) &&
2732 (i == sh->pd_idx || dev->written)) {
2733 pr_debug("Writing block %d\n", i);
2734 set_bit(R5_Wantwrite, &dev->flags);
e0a115e5
DW
2735 if (prexor)
2736 continue;
e33129d8
DW
2737 if (!test_bit(R5_Insync, &dev->flags) ||
2738 (i == sh->pd_idx && s.failed == 0))
2739 set_bit(STRIPE_INSYNC, &sh->state);
2740 }
2741 }
2742 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2743 atomic_dec(&conf->preread_active_stripes);
2744 if (atomic_read(&conf->preread_active_stripes) <
2745 IO_THRESHOLD)
2746 md_wakeup_thread(conf->mddev->thread);
2747 }
2748 }
2749
2750 /* Now to consider new write requests and what else, if anything
2751 * should be read. We do not handle new writes when:
2752 * 1/ A 'write' operation (copy+xor) is already in flight.
2753 * 2/ A 'check' operation is in flight, as it may clobber the parity
2754 * block.
2755 */
600aa109 2756 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
1fe797e6 2757 handle_stripe_dirtying5(conf, sh, &s, disks);
1da177e4
LT
2758
2759 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
2760 * Any reads will already have been scheduled, so we just see if enough
2761 * data is available. The parity check is held off while parity
2762 * dependent operations are in flight.
1da177e4 2763 */
ecc65c9b
DW
2764 if (sh->check_state ||
2765 (s.syncing && s.locked == 0 &&
976ea8d4 2766 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
ecc65c9b 2767 !test_bit(STRIPE_INSYNC, &sh->state)))
a4456856 2768 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 2769
a4456856 2770 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
2771 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2772 clear_bit(STRIPE_SYNCING, &sh->state);
2773 }
4e5314b5
N
2774
2775 /* If the failed drive is just a ReadError, then we might need to progress
2776 * the repair/check process
2777 */
a4456856
DW
2778 if (s.failed == 1 && !conf->mddev->ro &&
2779 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2780 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2781 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 2782 ) {
a4456856 2783 dev = &sh->dev[s.failed_num];
4e5314b5
N
2784 if (!test_bit(R5_ReWrite, &dev->flags)) {
2785 set_bit(R5_Wantwrite, &dev->flags);
2786 set_bit(R5_ReWrite, &dev->flags);
2787 set_bit(R5_LOCKED, &dev->flags);
a4456856 2788 s.locked++;
4e5314b5
N
2789 } else {
2790 /* let's read it back */
2791 set_bit(R5_Wantread, &dev->flags);
2792 set_bit(R5_LOCKED, &dev->flags);
a4456856 2793 s.locked++;
4e5314b5
N
2794 }
2795 }
2796
600aa109
DW
2797 /* Finish reconstruct operations initiated by the expansion process */
2798 if (sh->reconstruct_state == reconstruct_state_result) {
2799 sh->reconstruct_state = reconstruct_state_idle;
f0a50d37 2800 clear_bit(STRIPE_EXPANDING, &sh->state);
23397883 2801 for (i = conf->raid_disks; i--; ) {
ccfcc3c1 2802 set_bit(R5_Wantwrite, &sh->dev[i].flags);
23397883 2803 set_bit(R5_LOCKED, &sh->dev[i].flags);
efe31143 2804 s.locked++;
23397883 2805 }
f0a50d37
DW
2806 }
2807
2808 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
600aa109 2809 !sh->reconstruct_state) {
f0a50d37
DW
2810 /* Need to write out all blocks after computing parity */
2811 sh->disks = conf->raid_disks;
911d4ee8 2812 stripe_set_idx(sh->sector, conf, 0, sh);
1fe797e6 2813 schedule_reconstruction5(sh, &s, 1, 1);
600aa109 2814 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
ccfcc3c1 2815 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 2816 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
2817 wake_up(&conf->wait_for_overlap);
2818 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2819 }
2820
0f94e87c 2821 if (s.expanding && s.locked == 0 &&
976ea8d4 2822 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 2823 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 2824
6bfe0b49 2825 unlock:
1da177e4
LT
2826 spin_unlock(&sh->lock);
2827
6bfe0b49
DW
2828 /* wait for this device to become unblocked */
2829 if (unlikely(blocked_rdev))
2830 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2831
600aa109
DW
2832 if (s.ops_request)
2833 raid5_run_ops(sh, s.ops_request);
d84e0f10 2834
c4e5ac0a 2835 ops_run_io(sh, &s);
1da177e4 2836
a4456856 2837 return_io(return_bi);
df10cfbc
DW
2838
2839 return blocked_rdev == NULL;
1da177e4
LT
2840}
2841
df10cfbc 2842static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1da177e4 2843{
bff61975 2844 raid5_conf_t *conf = sh->raid_conf;
f416885e 2845 int disks = sh->disks;
a4456856
DW
2846 struct bio *return_bi = NULL;
2847 int i, pd_idx = sh->pd_idx;
2848 struct stripe_head_state s;
2849 struct r6_state r6s;
16a53ecc 2850 struct r5dev *dev, *pdev, *qdev;
6bfe0b49 2851 mdk_rdev_t *blocked_rdev = NULL;
1da177e4 2852
d0dabf7e 2853 r6s.qd_idx = sh->qd_idx;
45b4233c 2854 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
a4456856
DW
2855 "pd_idx=%d, qd_idx=%d\n",
2856 (unsigned long long)sh->sector, sh->state,
2857 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2858 memset(&s, 0, sizeof(s));
72626685 2859
16a53ecc
N
2860 spin_lock(&sh->lock);
2861 clear_bit(STRIPE_HANDLE, &sh->state);
2862 clear_bit(STRIPE_DELAYED, &sh->state);
2863
a4456856
DW
2864 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2865 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2866 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 2867 /* Now to look around and see what can be done */
1da177e4
LT
2868
2869 rcu_read_lock();
16a53ecc
N
2870 for (i=disks; i--; ) {
2871 mdk_rdev_t *rdev;
2872 dev = &sh->dev[i];
2873 clear_bit(R5_Insync, &dev->flags);
1da177e4 2874
45b4233c 2875 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc
N
2876 i, dev->flags, dev->toread, dev->towrite, dev->written);
2877 /* maybe we can reply to a read */
2878 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2879 struct bio *rbi, *rbi2;
45b4233c 2880 pr_debug("Return read for disc %d\n", i);
16a53ecc
N
2881 spin_lock_irq(&conf->device_lock);
2882 rbi = dev->toread;
2883 dev->toread = NULL;
2884 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2885 wake_up(&conf->wait_for_overlap);
2886 spin_unlock_irq(&conf->device_lock);
2887 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2888 copy_data(0, rbi, dev->page, dev->sector);
2889 rbi2 = r5_next_bio(rbi, dev->sector);
2890 spin_lock_irq(&conf->device_lock);
960e739d 2891 if (!raid5_dec_bi_phys_segments(rbi)) {
16a53ecc
N
2892 rbi->bi_next = return_bi;
2893 return_bi = rbi;
2894 }
2895 spin_unlock_irq(&conf->device_lock);
2896 rbi = rbi2;
2897 }
2898 }
1da177e4 2899
16a53ecc 2900 /* now count some things */
a4456856
DW
2901 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2902 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
1da177e4 2903
16a53ecc 2904
a4456856
DW
2905 if (dev->toread)
2906 s.to_read++;
16a53ecc 2907 if (dev->towrite) {
a4456856 2908 s.to_write++;
16a53ecc 2909 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2910 s.non_overwrite++;
16a53ecc 2911 }
a4456856
DW
2912 if (dev->written)
2913 s.written++;
16a53ecc 2914 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
2915 if (blocked_rdev == NULL &&
2916 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
2917 blocked_rdev = rdev;
2918 atomic_inc(&rdev->nr_pending);
6bfe0b49 2919 }
16a53ecc
N
2920 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2921 /* The ReadError flag will just be confusing now */
2922 clear_bit(R5_ReadError, &dev->flags);
2923 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 2924 }
16a53ecc
N
2925 if (!rdev || !test_bit(In_sync, &rdev->flags)
2926 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2927 if (s.failed < 2)
2928 r6s.failed_num[s.failed] = i;
2929 s.failed++;
16a53ecc
N
2930 } else
2931 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
2932 }
2933 rcu_read_unlock();
6bfe0b49
DW
2934
2935 if (unlikely(blocked_rdev)) {
ac4090d2
N
2936 if (s.syncing || s.expanding || s.expanded ||
2937 s.to_write || s.written) {
2938 set_bit(STRIPE_HANDLE, &sh->state);
2939 goto unlock;
2940 }
2941 /* There is nothing for the blocked_rdev to block */
2942 rdev_dec_pending(blocked_rdev, conf->mddev);
2943 blocked_rdev = NULL;
6bfe0b49 2944 }
ac4090d2 2945
45b4233c 2946 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 2947 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
2948 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2949 r6s.failed_num[0], r6s.failed_num[1]);
2950 /* check if the array has lost >2 devices and, if so, some requests
2951 * might need to be failed
16a53ecc 2952 */
a4456856 2953 if (s.failed > 2 && s.to_read+s.to_write+s.written)
1fe797e6 2954 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 2955 if (s.failed > 2 && s.syncing) {
16a53ecc
N
2956 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2957 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2958 s.syncing = 0;
16a53ecc
N
2959 }
2960
2961 /*
2962 * might be able to return some write requests if the parity blocks
2963 * are safe, or on a failed drive
2964 */
2965 pdev = &sh->dev[pd_idx];
a4456856
DW
2966 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2967 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2968 qdev = &sh->dev[r6s.qd_idx];
2969 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2970 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2971
2972 if ( s.written &&
2973 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 2974 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
2975 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2976 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 2977 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856 2978 && test_bit(R5_UPTODATE, &qdev->flags)))))
1fe797e6 2979 handle_stripe_clean_event(conf, sh, disks, &return_bi);
16a53ecc
N
2980
2981 /* Now we might consider reading some blocks, either to check/generate
2982 * parity, or to satisfy requests
2983 * or to load a block that is being partially written.
2984 */
a4456856
DW
2985 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
2986 (s.syncing && (s.uptodate < disks)) || s.expanding)
1fe797e6 2987 handle_stripe_fill6(sh, &s, &r6s, disks);
16a53ecc
N
2988
2989 /* now to consider writing and what else, if anything should be read */
a4456856 2990 if (s.to_write)
1fe797e6 2991 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
16a53ecc
N
2992
2993 /* maybe we need to check and possibly fix the parity for this stripe
a4456856
DW
2994 * Any reads will already have been scheduled, so we just see if enough
2995 * data is available
16a53ecc 2996 */
a4456856
DW
2997 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
2998 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
16a53ecc 2999
a4456856 3000 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3001 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3002 clear_bit(STRIPE_SYNCING, &sh->state);
3003 }
3004
3005 /* If the failed drives are just a ReadError, then we might need
3006 * to progress the repair/check process
3007 */
a4456856
DW
3008 if (s.failed <= 2 && !conf->mddev->ro)
3009 for (i = 0; i < s.failed; i++) {
3010 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3011 if (test_bit(R5_ReadError, &dev->flags)
3012 && !test_bit(R5_LOCKED, &dev->flags)
3013 && test_bit(R5_UPTODATE, &dev->flags)
3014 ) {
3015 if (!test_bit(R5_ReWrite, &dev->flags)) {
3016 set_bit(R5_Wantwrite, &dev->flags);
3017 set_bit(R5_ReWrite, &dev->flags);
3018 set_bit(R5_LOCKED, &dev->flags);
3019 } else {
3020 /* let's read it back */
3021 set_bit(R5_Wantread, &dev->flags);
3022 set_bit(R5_LOCKED, &dev->flags);
3023 }
3024 }
3025 }
f416885e 3026
a4456856 3027 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
f416885e
N
3028 /* Need to write out all blocks after computing P&Q */
3029 sh->disks = conf->raid_disks;
911d4ee8 3030 stripe_set_idx(sh->sector, conf, 0, sh);
f416885e
N
3031 compute_parity6(sh, RECONSTRUCT_WRITE);
3032 for (i = conf->raid_disks ; i-- ; ) {
3033 set_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3034 s.locked++;
f416885e
N
3035 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3036 }
3037 clear_bit(STRIPE_EXPANDING, &sh->state);
a4456856 3038 } else if (s.expanded) {
f416885e
N
3039 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3040 atomic_dec(&conf->reshape_stripes);
3041 wake_up(&conf->wait_for_overlap);
3042 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3043 }
3044
0f94e87c 3045 if (s.expanding && s.locked == 0 &&
976ea8d4 3046 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3047 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3048
6bfe0b49 3049 unlock:
16a53ecc
N
3050 spin_unlock(&sh->lock);
3051
6bfe0b49
DW
3052 /* wait for this device to become unblocked */
3053 if (unlikely(blocked_rdev))
3054 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3055
f0e43bcd 3056 ops_run_io(sh, &s);
16a53ecc 3057
f0e43bcd 3058 return_io(return_bi);
df10cfbc
DW
3059
3060 return blocked_rdev == NULL;
16a53ecc
N
3061}
3062
df10cfbc
DW
3063/* returns true if the stripe was handled */
3064static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
16a53ecc
N
3065{
3066 if (sh->raid_conf->level == 6)
df10cfbc 3067 return handle_stripe6(sh, tmp_page);
16a53ecc 3068 else
df10cfbc 3069 return handle_stripe5(sh);
16a53ecc
N
3070}
3071
3072
3073
3074static void raid5_activate_delayed(raid5_conf_t *conf)
3075{
3076 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3077 while (!list_empty(&conf->delayed_list)) {
3078 struct list_head *l = conf->delayed_list.next;
3079 struct stripe_head *sh;
3080 sh = list_entry(l, struct stripe_head, lru);
3081 list_del_init(l);
3082 clear_bit(STRIPE_DELAYED, &sh->state);
3083 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3084 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3085 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3086 }
6ed3003c
N
3087 } else
3088 blk_plug_device(conf->mddev->queue);
16a53ecc
N
3089}
3090
3091static void activate_bit_delay(raid5_conf_t *conf)
3092{
3093 /* device_lock is held */
3094 struct list_head head;
3095 list_add(&head, &conf->bitmap_list);
3096 list_del_init(&conf->bitmap_list);
3097 while (!list_empty(&head)) {
3098 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3099 list_del_init(&sh->lru);
3100 atomic_inc(&sh->count);
3101 __release_stripe(conf, sh);
3102 }
3103}
3104
3105static void unplug_slaves(mddev_t *mddev)
3106{
3107 raid5_conf_t *conf = mddev_to_conf(mddev);
3108 int i;
3109
3110 rcu_read_lock();
3111 for (i=0; i<mddev->raid_disks; i++) {
3112 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3113 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 3114 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
16a53ecc
N
3115
3116 atomic_inc(&rdev->nr_pending);
3117 rcu_read_unlock();
3118
2ad8b1ef 3119 blk_unplug(r_queue);
16a53ecc
N
3120
3121 rdev_dec_pending(rdev, mddev);
3122 rcu_read_lock();
3123 }
3124 }
3125 rcu_read_unlock();
3126}
3127
165125e1 3128static void raid5_unplug_device(struct request_queue *q)
16a53ecc
N
3129{
3130 mddev_t *mddev = q->queuedata;
3131 raid5_conf_t *conf = mddev_to_conf(mddev);
3132 unsigned long flags;
3133
3134 spin_lock_irqsave(&conf->device_lock, flags);
3135
3136 if (blk_remove_plug(q)) {
3137 conf->seq_flush++;
3138 raid5_activate_delayed(conf);
72626685 3139 }
1da177e4
LT
3140 md_wakeup_thread(mddev->thread);
3141
3142 spin_unlock_irqrestore(&conf->device_lock, flags);
3143
3144 unplug_slaves(mddev);
3145}
3146
f022b2fd
N
3147static int raid5_congested(void *data, int bits)
3148{
3149 mddev_t *mddev = data;
3150 raid5_conf_t *conf = mddev_to_conf(mddev);
3151
3152 /* No difference between reads and writes. Just check
3153 * how busy the stripe_cache is
3154 */
3155 if (conf->inactive_blocked)
3156 return 1;
3157 if (conf->quiesce)
3158 return 1;
3159 if (list_empty_careful(&conf->inactive_list))
3160 return 1;
3161
3162 return 0;
3163}
3164
23032a0e
RBJ
3165/* We want read requests to align with chunks where possible,
3166 * but write requests don't need to.
3167 */
cc371e66
AK
3168static int raid5_mergeable_bvec(struct request_queue *q,
3169 struct bvec_merge_data *bvm,
3170 struct bio_vec *biovec)
23032a0e
RBJ
3171{
3172 mddev_t *mddev = q->queuedata;
cc371e66 3173 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e
RBJ
3174 int max;
3175 unsigned int chunk_sectors = mddev->chunk_size >> 9;
cc371e66 3176 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3177
cc371e66 3178 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3179 return biovec->bv_len; /* always allow writes to be mergeable */
3180
3181 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3182 if (max < 0) max = 0;
3183 if (max <= biovec->bv_len && bio_sectors == 0)
3184 return biovec->bv_len;
3185 else
3186 return max;
3187}
3188
f679623f
RBJ
3189
3190static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3191{
3192 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3193 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3194 unsigned int bio_sectors = bio->bi_size >> 9;
3195
3196 return chunk_sectors >=
3197 ((sector & (chunk_sectors - 1)) + bio_sectors);
3198}
3199
46031f9a
RBJ
3200/*
3201 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3202 * later sampled by raid5d.
3203 */
3204static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3205{
3206 unsigned long flags;
3207
3208 spin_lock_irqsave(&conf->device_lock, flags);
3209
3210 bi->bi_next = conf->retry_read_aligned_list;
3211 conf->retry_read_aligned_list = bi;
3212
3213 spin_unlock_irqrestore(&conf->device_lock, flags);
3214 md_wakeup_thread(conf->mddev->thread);
3215}
3216
3217
3218static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3219{
3220 struct bio *bi;
3221
3222 bi = conf->retry_read_aligned;
3223 if (bi) {
3224 conf->retry_read_aligned = NULL;
3225 return bi;
3226 }
3227 bi = conf->retry_read_aligned_list;
3228 if(bi) {
387bb173 3229 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3230 bi->bi_next = NULL;
960e739d
JA
3231 /*
3232 * this sets the active strip count to 1 and the processed
3233 * strip count to zero (upper 8 bits)
3234 */
46031f9a 3235 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3236 }
3237
3238 return bi;
3239}
3240
3241
f679623f
RBJ
3242/*
3243 * The "raid5_align_endio" should check if the read succeeded and if it
3244 * did, call bio_endio on the original bio (having bio_put the new bio
3245 * first).
3246 * If the read failed..
3247 */
6712ecf8 3248static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3249{
3250 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3251 mddev_t *mddev;
3252 raid5_conf_t *conf;
3253 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3254 mdk_rdev_t *rdev;
3255
f679623f 3256 bio_put(bi);
46031f9a
RBJ
3257
3258 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3259 conf = mddev_to_conf(mddev);
3260 rdev = (void*)raid_bi->bi_next;
3261 raid_bi->bi_next = NULL;
3262
3263 rdev_dec_pending(rdev, conf->mddev);
3264
3265 if (!error && uptodate) {
6712ecf8 3266 bio_endio(raid_bi, 0);
46031f9a
RBJ
3267 if (atomic_dec_and_test(&conf->active_aligned_reads))
3268 wake_up(&conf->wait_for_stripe);
6712ecf8 3269 return;
46031f9a
RBJ
3270 }
3271
3272
45b4233c 3273 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3274
3275 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3276}
3277
387bb173
NB
3278static int bio_fits_rdev(struct bio *bi)
3279{
165125e1 3280 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173
NB
3281
3282 if ((bi->bi_size>>9) > q->max_sectors)
3283 return 0;
3284 blk_recount_segments(q, bi);
960e739d 3285 if (bi->bi_phys_segments > q->max_phys_segments)
387bb173
NB
3286 return 0;
3287
3288 if (q->merge_bvec_fn)
3289 /* it's too hard to apply the merge_bvec_fn at this stage,
3290 * just just give up
3291 */
3292 return 0;
3293
3294 return 1;
3295}
3296
3297
165125e1 3298static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
f679623f
RBJ
3299{
3300 mddev_t *mddev = q->queuedata;
3301 raid5_conf_t *conf = mddev_to_conf(mddev);
911d4ee8 3302 unsigned int dd_idx;
f679623f
RBJ
3303 struct bio* align_bi;
3304 mdk_rdev_t *rdev;
3305
3306 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3307 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3308 return 0;
3309 }
3310 /*
3311 * use bio_clone to make a copy of the bio
3312 */
3313 align_bi = bio_clone(raid_bio, GFP_NOIO);
3314 if (!align_bi)
3315 return 0;
3316 /*
3317 * set bi_end_io to a new function, and set bi_private to the
3318 * original bio.
3319 */
3320 align_bi->bi_end_io = raid5_align_endio;
3321 align_bi->bi_private = raid_bio;
3322 /*
3323 * compute position
3324 */
112bf897
N
3325 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3326 0,
911d4ee8 3327 &dd_idx, NULL);
f679623f
RBJ
3328
3329 rcu_read_lock();
3330 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3331 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3332 atomic_inc(&rdev->nr_pending);
3333 rcu_read_unlock();
46031f9a
RBJ
3334 raid_bio->bi_next = (void*)rdev;
3335 align_bi->bi_bdev = rdev->bdev;
3336 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3337 align_bi->bi_sector += rdev->data_offset;
3338
387bb173
NB
3339 if (!bio_fits_rdev(align_bi)) {
3340 /* too big in some way */
3341 bio_put(align_bi);
3342 rdev_dec_pending(rdev, mddev);
3343 return 0;
3344 }
3345
46031f9a
RBJ
3346 spin_lock_irq(&conf->device_lock);
3347 wait_event_lock_irq(conf->wait_for_stripe,
3348 conf->quiesce == 0,
3349 conf->device_lock, /* nothing */);
3350 atomic_inc(&conf->active_aligned_reads);
3351 spin_unlock_irq(&conf->device_lock);
3352
f679623f
RBJ
3353 generic_make_request(align_bi);
3354 return 1;
3355 } else {
3356 rcu_read_unlock();
46031f9a 3357 bio_put(align_bi);
f679623f
RBJ
3358 return 0;
3359 }
3360}
3361
8b3e6cdc
DW
3362/* __get_priority_stripe - get the next stripe to process
3363 *
3364 * Full stripe writes are allowed to pass preread active stripes up until
3365 * the bypass_threshold is exceeded. In general the bypass_count
3366 * increments when the handle_list is handled before the hold_list; however, it
3367 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3368 * stripe with in flight i/o. The bypass_count will be reset when the
3369 * head of the hold_list has changed, i.e. the head was promoted to the
3370 * handle_list.
3371 */
3372static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3373{
3374 struct stripe_head *sh;
3375
3376 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3377 __func__,
3378 list_empty(&conf->handle_list) ? "empty" : "busy",
3379 list_empty(&conf->hold_list) ? "empty" : "busy",
3380 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3381
3382 if (!list_empty(&conf->handle_list)) {
3383 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3384
3385 if (list_empty(&conf->hold_list))
3386 conf->bypass_count = 0;
3387 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3388 if (conf->hold_list.next == conf->last_hold)
3389 conf->bypass_count++;
3390 else {
3391 conf->last_hold = conf->hold_list.next;
3392 conf->bypass_count -= conf->bypass_threshold;
3393 if (conf->bypass_count < 0)
3394 conf->bypass_count = 0;
3395 }
3396 }
3397 } else if (!list_empty(&conf->hold_list) &&
3398 ((conf->bypass_threshold &&
3399 conf->bypass_count > conf->bypass_threshold) ||
3400 atomic_read(&conf->pending_full_writes) == 0)) {
3401 sh = list_entry(conf->hold_list.next,
3402 typeof(*sh), lru);
3403 conf->bypass_count -= conf->bypass_threshold;
3404 if (conf->bypass_count < 0)
3405 conf->bypass_count = 0;
3406 } else
3407 return NULL;
3408
3409 list_del_init(&sh->lru);
3410 atomic_inc(&sh->count);
3411 BUG_ON(atomic_read(&sh->count) != 1);
3412 return sh;
3413}
f679623f 3414
165125e1 3415static int make_request(struct request_queue *q, struct bio * bi)
1da177e4
LT
3416{
3417 mddev_t *mddev = q->queuedata;
3418 raid5_conf_t *conf = mddev_to_conf(mddev);
911d4ee8 3419 int dd_idx;
1da177e4
LT
3420 sector_t new_sector;
3421 sector_t logical_sector, last_sector;
3422 struct stripe_head *sh;
a362357b 3423 const int rw = bio_data_dir(bi);
c9959059 3424 int cpu, remaining;
1da177e4 3425
e5dcdd80 3426 if (unlikely(bio_barrier(bi))) {
6712ecf8 3427 bio_endio(bi, -EOPNOTSUPP);
e5dcdd80
N
3428 return 0;
3429 }
3430
3d310eb7 3431 md_write_start(mddev, bi);
06d91a5f 3432
074a7aca
TH
3433 cpu = part_stat_lock();
3434 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3435 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3436 bio_sectors(bi));
3437 part_stat_unlock();
1da177e4 3438
802ba064 3439 if (rw == READ &&
52488615
RBJ
3440 mddev->reshape_position == MaxSector &&
3441 chunk_aligned_read(q,bi))
3442 return 0;
3443
1da177e4
LT
3444 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3445 last_sector = bi->bi_sector + (bi->bi_size>>9);
3446 bi->bi_next = NULL;
3447 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3448
1da177e4
LT
3449 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3450 DEFINE_WAIT(w);
16a53ecc 3451 int disks, data_disks;
b5663ba4 3452 int previous;
b578d55f 3453
7ecaa1e6 3454 retry:
b5663ba4 3455 previous = 0;
b578d55f 3456 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
7ecaa1e6
N
3457 if (likely(conf->expand_progress == MaxSector))
3458 disks = conf->raid_disks;
3459 else {
df8e7f76
N
3460 /* spinlock is needed as expand_progress may be
3461 * 64bit on a 32bit platform, and so it might be
3462 * possible to see a half-updated value
3463 * Ofcourse expand_progress could change after
3464 * the lock is dropped, so once we get a reference
3465 * to the stripe that we think it is, we will have
3466 * to check again.
3467 */
7ecaa1e6
N
3468 spin_lock_irq(&conf->device_lock);
3469 disks = conf->raid_disks;
b5663ba4 3470 if (logical_sector >= conf->expand_progress) {
7ecaa1e6 3471 disks = conf->previous_raid_disks;
b5663ba4
N
3472 previous = 1;
3473 } else {
b578d55f
N
3474 if (logical_sector >= conf->expand_lo) {
3475 spin_unlock_irq(&conf->device_lock);
3476 schedule();
3477 goto retry;
3478 }
3479 }
7ecaa1e6
N
3480 spin_unlock_irq(&conf->device_lock);
3481 }
16a53ecc
N
3482 data_disks = disks - conf->max_degraded;
3483
112bf897
N
3484 new_sector = raid5_compute_sector(conf, logical_sector,
3485 previous,
911d4ee8 3486 &dd_idx, NULL);
45b4233c 3487 pr_debug("raid5: make_request, sector %llu logical %llu\n",
1da177e4
LT
3488 (unsigned long long)new_sector,
3489 (unsigned long long)logical_sector);
3490
b5663ba4
N
3491 sh = get_active_stripe(conf, new_sector, previous,
3492 (bi->bi_rw&RWA_MASK));
1da177e4 3493 if (sh) {
7ecaa1e6
N
3494 if (unlikely(conf->expand_progress != MaxSector)) {
3495 /* expansion might have moved on while waiting for a
df8e7f76
N
3496 * stripe, so we must do the range check again.
3497 * Expansion could still move past after this
3498 * test, but as we are holding a reference to
3499 * 'sh', we know that if that happens,
3500 * STRIPE_EXPANDING will get set and the expansion
3501 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3502 */
3503 int must_retry = 0;
3504 spin_lock_irq(&conf->device_lock);
3505 if (logical_sector < conf->expand_progress &&
3506 disks == conf->previous_raid_disks)
3507 /* mismatch, need to try again */
3508 must_retry = 1;
3509 spin_unlock_irq(&conf->device_lock);
3510 if (must_retry) {
3511 release_stripe(sh);
3512 goto retry;
3513 }
3514 }
e464eafd
N
3515 /* FIXME what if we get a false positive because these
3516 * are being updated.
3517 */
3518 if (logical_sector >= mddev->suspend_lo &&
3519 logical_sector < mddev->suspend_hi) {
3520 release_stripe(sh);
3521 schedule();
3522 goto retry;
3523 }
7ecaa1e6
N
3524
3525 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3526 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3527 /* Stripe is busy expanding or
3528 * add failed due to overlap. Flush everything
1da177e4
LT
3529 * and wait a while
3530 */
3531 raid5_unplug_device(mddev->queue);
3532 release_stripe(sh);
3533 schedule();
3534 goto retry;
3535 }
3536 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
3537 set_bit(STRIPE_HANDLE, &sh->state);
3538 clear_bit(STRIPE_DELAYED, &sh->state);
1da177e4 3539 release_stripe(sh);
1da177e4
LT
3540 } else {
3541 /* cannot get stripe for read-ahead, just give-up */
3542 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3543 finish_wait(&conf->wait_for_overlap, &w);
3544 break;
3545 }
3546
3547 }
3548 spin_lock_irq(&conf->device_lock);
960e739d 3549 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
3550 spin_unlock_irq(&conf->device_lock);
3551 if (remaining == 0) {
1da177e4 3552
16a53ecc 3553 if ( rw == WRITE )
1da177e4 3554 md_write_end(mddev);
6712ecf8 3555
0e13fe23 3556 bio_endio(bi, 0);
1da177e4 3557 }
1da177e4
LT
3558 return 0;
3559}
3560
52c03291 3561static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 3562{
52c03291
N
3563 /* reshaping is quite different to recovery/resync so it is
3564 * handled quite separately ... here.
3565 *
3566 * On each call to sync_request, we gather one chunk worth of
3567 * destination stripes and flag them as expanding.
3568 * Then we find all the source stripes and request reads.
3569 * As the reads complete, handle_stripe will copy the data
3570 * into the destination stripe and release that stripe.
3571 */
1da177e4
LT
3572 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3573 struct stripe_head *sh;
ccfcc3c1 3574 sector_t first_sector, last_sector;
f416885e
N
3575 int raid_disks = conf->previous_raid_disks;
3576 int data_disks = raid_disks - conf->max_degraded;
3577 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
3578 int i;
3579 int dd_idx;
3580 sector_t writepos, safepos, gap;
3581
3582 if (sector_nr == 0 &&
3583 conf->expand_progress != 0) {
3584 /* restarting in the middle, skip the initial sectors */
3585 sector_nr = conf->expand_progress;
f416885e 3586 sector_div(sector_nr, new_data_disks);
52c03291
N
3587 *skipped = 1;
3588 return sector_nr;
3589 }
3590
3591 /* we update the metadata when there is more than 3Meg
3592 * in the block range (that is rather arbitrary, should
3593 * probably be time based) or when the data about to be
3594 * copied would over-write the source of the data at
3595 * the front of the range.
3596 * i.e. one new_stripe forward from expand_progress new_maps
3597 * to after where expand_lo old_maps to
3598 */
3599 writepos = conf->expand_progress +
f416885e
N
3600 conf->chunk_size/512*(new_data_disks);
3601 sector_div(writepos, new_data_disks);
52c03291 3602 safepos = conf->expand_lo;
f416885e 3603 sector_div(safepos, data_disks);
52c03291
N
3604 gap = conf->expand_progress - conf->expand_lo;
3605
3606 if (writepos >= safepos ||
f416885e 3607 gap > (new_data_disks)*3000*2 /*3Meg*/) {
52c03291
N
3608 /* Cannot proceed until we've updated the superblock... */
3609 wait_event(conf->wait_for_overlap,
3610 atomic_read(&conf->reshape_stripes)==0);
3611 mddev->reshape_position = conf->expand_progress;
850b2b42 3612 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 3613 md_wakeup_thread(mddev->thread);
850b2b42 3614 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
3615 kthread_should_stop());
3616 spin_lock_irq(&conf->device_lock);
3617 conf->expand_lo = mddev->reshape_position;
3618 spin_unlock_irq(&conf->device_lock);
3619 wake_up(&conf->wait_for_overlap);
3620 }
3621
3622 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3623 int j;
3624 int skipped = 0;
b5663ba4 3625 sh = get_active_stripe(conf, sector_nr+i, 0, 0);
52c03291
N
3626 set_bit(STRIPE_EXPANDING, &sh->state);
3627 atomic_inc(&conf->reshape_stripes);
3628 /* If any of this stripe is beyond the end of the old
3629 * array, then we need to zero those blocks
3630 */
3631 for (j=sh->disks; j--;) {
3632 sector_t s;
3633 if (j == sh->pd_idx)
3634 continue;
f416885e 3635 if (conf->level == 6 &&
d0dabf7e 3636 j == sh->qd_idx)
f416885e 3637 continue;
52c03291 3638 s = compute_blocknr(sh, j);
f233ea5c 3639 if (s < mddev->array_sectors) {
52c03291
N
3640 skipped = 1;
3641 continue;
3642 }
3643 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3644 set_bit(R5_Expanded, &sh->dev[j].flags);
3645 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3646 }
3647 if (!skipped) {
3648 set_bit(STRIPE_EXPAND_READY, &sh->state);
3649 set_bit(STRIPE_HANDLE, &sh->state);
3650 }
3651 release_stripe(sh);
3652 }
3653 spin_lock_irq(&conf->device_lock);
6d3baf2e 3654 conf->expand_progress = (sector_nr + i) * new_data_disks;
52c03291
N
3655 spin_unlock_irq(&conf->device_lock);
3656 /* Ok, those stripe are ready. We can start scheduling
3657 * reads on the source stripes.
3658 * The source stripes are determined by mapping the first and last
3659 * block on the destination stripes.
3660 */
52c03291 3661 first_sector =
112bf897 3662 raid5_compute_sector(conf, sector_nr*(new_data_disks),
911d4ee8 3663 1, &dd_idx, NULL);
52c03291 3664 last_sector =
112bf897
N
3665 raid5_compute_sector(conf, ((sector_nr+conf->chunk_size/512)
3666 *(new_data_disks) - 1),
911d4ee8 3667 1, &dd_idx, NULL);
58c0fed4
AN
3668 if (last_sector >= mddev->dev_sectors)
3669 last_sector = mddev->dev_sectors - 1;
52c03291 3670 while (first_sector <= last_sector) {
b5663ba4 3671 sh = get_active_stripe(conf, first_sector, 1, 0);
52c03291
N
3672 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3673 set_bit(STRIPE_HANDLE, &sh->state);
3674 release_stripe(sh);
3675 first_sector += STRIPE_SECTORS;
3676 }
c6207277
N
3677 /* If this takes us to the resync_max point where we have to pause,
3678 * then we need to write out the superblock.
3679 */
3680 sector_nr += conf->chunk_size>>9;
3681 if (sector_nr >= mddev->resync_max) {
3682 /* Cannot proceed until we've updated the superblock... */
3683 wait_event(conf->wait_for_overlap,
3684 atomic_read(&conf->reshape_stripes) == 0);
3685 mddev->reshape_position = conf->expand_progress;
3686 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3687 md_wakeup_thread(mddev->thread);
3688 wait_event(mddev->sb_wait,
3689 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3690 || kthread_should_stop());
3691 spin_lock_irq(&conf->device_lock);
3692 conf->expand_lo = mddev->reshape_position;
3693 spin_unlock_irq(&conf->device_lock);
3694 wake_up(&conf->wait_for_overlap);
3695 }
52c03291
N
3696 return conf->chunk_size>>9;
3697}
3698
3699/* FIXME go_faster isn't used */
3700static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3701{
3702 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3703 struct stripe_head *sh;
58c0fed4 3704 sector_t max_sector = mddev->dev_sectors;
72626685 3705 int sync_blocks;
16a53ecc
N
3706 int still_degraded = 0;
3707 int i;
1da177e4 3708
72626685 3709 if (sector_nr >= max_sector) {
1da177e4
LT
3710 /* just being told to finish up .. nothing much to do */
3711 unplug_slaves(mddev);
29269553
N
3712 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3713 end_reshape(conf);
3714 return 0;
3715 }
72626685
N
3716
3717 if (mddev->curr_resync < max_sector) /* aborted */
3718 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3719 &sync_blocks, 1);
16a53ecc 3720 else /* completed sync */
72626685
N
3721 conf->fullsync = 0;
3722 bitmap_close_sync(mddev->bitmap);
3723
1da177e4
LT
3724 return 0;
3725 }
ccfcc3c1 3726
52c03291
N
3727 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3728 return reshape_request(mddev, sector_nr, skipped);
f6705578 3729
c6207277
N
3730 /* No need to check resync_max as we never do more than one
3731 * stripe, and as resync_max will always be on a chunk boundary,
3732 * if the check in md_do_sync didn't fire, there is no chance
3733 * of overstepping resync_max here
3734 */
3735
16a53ecc 3736 /* if there is too many failed drives and we are trying
1da177e4
LT
3737 * to resync, then assert that we are finished, because there is
3738 * nothing we can do.
3739 */
3285edf1 3740 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 3741 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 3742 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 3743 *skipped = 1;
1da177e4
LT
3744 return rv;
3745 }
72626685 3746 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 3747 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
3748 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3749 /* we can skip this block, and probably more */
3750 sync_blocks /= STRIPE_SECTORS;
3751 *skipped = 1;
3752 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3753 }
1da177e4 3754
b47490c9
N
3755
3756 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3757
b5663ba4 3758 sh = get_active_stripe(conf, sector_nr, 0, 1);
1da177e4 3759 if (sh == NULL) {
b5663ba4 3760 sh = get_active_stripe(conf, sector_nr, 0, 0);
1da177e4 3761 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 3762 * is trying to get access
1da177e4 3763 */
66c006a5 3764 schedule_timeout_uninterruptible(1);
1da177e4 3765 }
16a53ecc
N
3766 /* Need to check if array will still be degraded after recovery/resync
3767 * We don't need to check the 'failed' flag as when that gets set,
3768 * recovery aborts.
3769 */
3770 for (i=0; i<mddev->raid_disks; i++)
3771 if (conf->disks[i].rdev == NULL)
3772 still_degraded = 1;
3773
3774 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3775
3776 spin_lock(&sh->lock);
1da177e4
LT
3777 set_bit(STRIPE_SYNCING, &sh->state);
3778 clear_bit(STRIPE_INSYNC, &sh->state);
3779 spin_unlock(&sh->lock);
3780
df10cfbc
DW
3781 /* wait for any blocked device to be handled */
3782 while(unlikely(!handle_stripe(sh, NULL)))
3783 ;
1da177e4
LT
3784 release_stripe(sh);
3785
3786 return STRIPE_SECTORS;
3787}
3788
46031f9a
RBJ
3789static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3790{
3791 /* We may not be able to submit a whole bio at once as there
3792 * may not be enough stripe_heads available.
3793 * We cannot pre-allocate enough stripe_heads as we may need
3794 * more than exist in the cache (if we allow ever large chunks).
3795 * So we do one stripe head at a time and record in
3796 * ->bi_hw_segments how many have been done.
3797 *
3798 * We *know* that this entire raid_bio is in one chunk, so
3799 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3800 */
3801 struct stripe_head *sh;
911d4ee8 3802 int dd_idx;
46031f9a
RBJ
3803 sector_t sector, logical_sector, last_sector;
3804 int scnt = 0;
3805 int remaining;
3806 int handled = 0;
3807
3808 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 3809 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 3810 0, &dd_idx, NULL);
46031f9a
RBJ
3811 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3812
3813 for (; logical_sector < last_sector;
387bb173
NB
3814 logical_sector += STRIPE_SECTORS,
3815 sector += STRIPE_SECTORS,
3816 scnt++) {
46031f9a 3817
960e739d 3818 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
3819 /* already done this stripe */
3820 continue;
3821
b5663ba4 3822 sh = get_active_stripe(conf, sector, 0, 1);
46031f9a
RBJ
3823
3824 if (!sh) {
3825 /* failed to get a stripe - must wait */
960e739d 3826 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
3827 conf->retry_read_aligned = raid_bio;
3828 return handled;
3829 }
3830
3831 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
3832 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3833 release_stripe(sh);
960e739d 3834 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
3835 conf->retry_read_aligned = raid_bio;
3836 return handled;
3837 }
3838
46031f9a
RBJ
3839 handle_stripe(sh, NULL);
3840 release_stripe(sh);
3841 handled++;
3842 }
3843 spin_lock_irq(&conf->device_lock);
960e739d 3844 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 3845 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
3846 if (remaining == 0)
3847 bio_endio(raid_bio, 0);
46031f9a
RBJ
3848 if (atomic_dec_and_test(&conf->active_aligned_reads))
3849 wake_up(&conf->wait_for_stripe);
3850 return handled;
3851}
3852
3853
3854
1da177e4
LT
3855/*
3856 * This is our raid5 kernel thread.
3857 *
3858 * We scan the hash table for stripes which can be handled now.
3859 * During the scan, completed stripes are saved for us by the interrupt
3860 * handler, so that they will not have to wait for our next wakeup.
3861 */
6ed3003c 3862static void raid5d(mddev_t *mddev)
1da177e4
LT
3863{
3864 struct stripe_head *sh;
3865 raid5_conf_t *conf = mddev_to_conf(mddev);
3866 int handled;
3867
45b4233c 3868 pr_debug("+++ raid5d active\n");
1da177e4
LT
3869
3870 md_check_recovery(mddev);
1da177e4
LT
3871
3872 handled = 0;
3873 spin_lock_irq(&conf->device_lock);
3874 while (1) {
46031f9a 3875 struct bio *bio;
1da177e4 3876
ae3c20cc 3877 if (conf->seq_flush != conf->seq_write) {
72626685 3878 int seq = conf->seq_flush;
700e432d 3879 spin_unlock_irq(&conf->device_lock);
72626685 3880 bitmap_unplug(mddev->bitmap);
700e432d 3881 spin_lock_irq(&conf->device_lock);
72626685
N
3882 conf->seq_write = seq;
3883 activate_bit_delay(conf);
3884 }
3885
46031f9a
RBJ
3886 while ((bio = remove_bio_from_retry(conf))) {
3887 int ok;
3888 spin_unlock_irq(&conf->device_lock);
3889 ok = retry_aligned_read(conf, bio);
3890 spin_lock_irq(&conf->device_lock);
3891 if (!ok)
3892 break;
3893 handled++;
3894 }
3895
8b3e6cdc
DW
3896 sh = __get_priority_stripe(conf);
3897
c9f21aaf 3898 if (!sh)
1da177e4 3899 break;
1da177e4
LT
3900 spin_unlock_irq(&conf->device_lock);
3901
3902 handled++;
16a53ecc 3903 handle_stripe(sh, conf->spare_page);
1da177e4
LT
3904 release_stripe(sh);
3905
3906 spin_lock_irq(&conf->device_lock);
3907 }
45b4233c 3908 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
3909
3910 spin_unlock_irq(&conf->device_lock);
3911
c9f21aaf 3912 async_tx_issue_pending_all();
1da177e4
LT
3913 unplug_slaves(mddev);
3914
45b4233c 3915 pr_debug("--- raid5d inactive\n");
1da177e4
LT
3916}
3917
3f294f4f 3918static ssize_t
007583c9 3919raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 3920{
007583c9 3921 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
3922 if (conf)
3923 return sprintf(page, "%d\n", conf->max_nr_stripes);
3924 else
3925 return 0;
3f294f4f
N
3926}
3927
3928static ssize_t
007583c9 3929raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 3930{
007583c9 3931 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 3932 unsigned long new;
b5470dc5
DW
3933 int err;
3934
3f294f4f
N
3935 if (len >= PAGE_SIZE)
3936 return -EINVAL;
96de1e66
N
3937 if (!conf)
3938 return -ENODEV;
3f294f4f 3939
4ef197d8 3940 if (strict_strtoul(page, 10, &new))
3f294f4f
N
3941 return -EINVAL;
3942 if (new <= 16 || new > 32768)
3943 return -EINVAL;
3944 while (new < conf->max_nr_stripes) {
3945 if (drop_one_stripe(conf))
3946 conf->max_nr_stripes--;
3947 else
3948 break;
3949 }
b5470dc5
DW
3950 err = md_allow_write(mddev);
3951 if (err)
3952 return err;
3f294f4f
N
3953 while (new > conf->max_nr_stripes) {
3954 if (grow_one_stripe(conf))
3955 conf->max_nr_stripes++;
3956 else break;
3957 }
3958 return len;
3959}
007583c9 3960
96de1e66
N
3961static struct md_sysfs_entry
3962raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3963 raid5_show_stripe_cache_size,
3964 raid5_store_stripe_cache_size);
3f294f4f 3965
8b3e6cdc
DW
3966static ssize_t
3967raid5_show_preread_threshold(mddev_t *mddev, char *page)
3968{
3969 raid5_conf_t *conf = mddev_to_conf(mddev);
3970 if (conf)
3971 return sprintf(page, "%d\n", conf->bypass_threshold);
3972 else
3973 return 0;
3974}
3975
3976static ssize_t
3977raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
3978{
3979 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 3980 unsigned long new;
8b3e6cdc
DW
3981 if (len >= PAGE_SIZE)
3982 return -EINVAL;
3983 if (!conf)
3984 return -ENODEV;
3985
4ef197d8 3986 if (strict_strtoul(page, 10, &new))
8b3e6cdc 3987 return -EINVAL;
4ef197d8 3988 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
3989 return -EINVAL;
3990 conf->bypass_threshold = new;
3991 return len;
3992}
3993
3994static struct md_sysfs_entry
3995raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
3996 S_IRUGO | S_IWUSR,
3997 raid5_show_preread_threshold,
3998 raid5_store_preread_threshold);
3999
3f294f4f 4000static ssize_t
96de1e66 4001stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4002{
007583c9 4003 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4004 if (conf)
4005 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4006 else
4007 return 0;
3f294f4f
N
4008}
4009
96de1e66
N
4010static struct md_sysfs_entry
4011raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4012
007583c9 4013static struct attribute *raid5_attrs[] = {
3f294f4f
N
4014 &raid5_stripecache_size.attr,
4015 &raid5_stripecache_active.attr,
8b3e6cdc 4016 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4017 NULL,
4018};
007583c9
N
4019static struct attribute_group raid5_attrs_group = {
4020 .name = NULL,
4021 .attrs = raid5_attrs,
3f294f4f
N
4022};
4023
72626685 4024static int run(mddev_t *mddev)
1da177e4
LT
4025{
4026 raid5_conf_t *conf;
4027 int raid_disk, memory;
4028 mdk_rdev_t *rdev;
4029 struct disk_info *disk;
02c2de8c 4030 int working_disks = 0;
1da177e4 4031
16a53ecc
N
4032 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4033 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
14f8d26b 4034 mdname(mddev), mddev->level);
1da177e4
LT
4035 return -EIO;
4036 }
4037
4bbf3771
N
4038 if (mddev->chunk_size < PAGE_SIZE) {
4039 printk(KERN_ERR "md/raid5: chunk_size must be at least "
4040 "PAGE_SIZE but %d < %ld\n",
4041 mddev->chunk_size, PAGE_SIZE);
4042 return -EINVAL;
4043 }
4044
f6705578
N
4045 if (mddev->reshape_position != MaxSector) {
4046 /* Check that we can continue the reshape.
4047 * Currently only disks can change, it must
4048 * increase, and we must be past the point where
4049 * a stripe over-writes itself
4050 */
4051 sector_t here_new, here_old;
4052 int old_disks;
f416885e 4053 int max_degraded = (mddev->level == 5 ? 1 : 2);
f6705578
N
4054
4055 if (mddev->new_level != mddev->level ||
4056 mddev->new_layout != mddev->layout ||
4057 mddev->new_chunk != mddev->chunk_size) {
f416885e
N
4058 printk(KERN_ERR "raid5: %s: unsupported reshape "
4059 "required - aborting.\n",
f6705578
N
4060 mdname(mddev));
4061 return -EINVAL;
4062 }
4063 if (mddev->delta_disks <= 0) {
f416885e
N
4064 printk(KERN_ERR "raid5: %s: unsupported reshape "
4065 "(reduce disks) required - aborting.\n",
f6705578
N
4066 mdname(mddev));
4067 return -EINVAL;
4068 }
4069 old_disks = mddev->raid_disks - mddev->delta_disks;
4070 /* reshape_position must be on a new-stripe boundary, and one
f416885e
N
4071 * further up in new geometry must map after here in old
4072 * geometry.
f6705578
N
4073 */
4074 here_new = mddev->reshape_position;
f416885e
N
4075 if (sector_div(here_new, (mddev->chunk_size>>9)*
4076 (mddev->raid_disks - max_degraded))) {
4077 printk(KERN_ERR "raid5: reshape_position not "
4078 "on a stripe boundary\n");
f6705578
N
4079 return -EINVAL;
4080 }
4081 /* here_new is the stripe we will write to */
4082 here_old = mddev->reshape_position;
f416885e
N
4083 sector_div(here_old, (mddev->chunk_size>>9)*
4084 (old_disks-max_degraded));
4085 /* here_old is the first stripe that we might need to read
4086 * from */
f6705578
N
4087 if (here_new >= here_old) {
4088 /* Reading from the same stripe as writing to - bad */
f416885e
N
4089 printk(KERN_ERR "raid5: reshape_position too early for "
4090 "auto-recovery - aborting.\n");
f6705578
N
4091 return -EINVAL;
4092 }
4093 printk(KERN_INFO "raid5: reshape will continue\n");
4094 /* OK, we should be able to continue; */
4095 }
4096
4097
b55e6bfc 4098 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
1da177e4
LT
4099 if ((conf = mddev->private) == NULL)
4100 goto abort;
f6705578
N
4101 if (mddev->reshape_position == MaxSector) {
4102 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4103 } else {
4104 conf->raid_disks = mddev->raid_disks;
4105 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4106 }
4107
4108 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
4109 GFP_KERNEL);
4110 if (!conf->disks)
4111 goto abort;
9ffae0cf 4112
1da177e4
LT
4113 conf->mddev = mddev;
4114
fccddba0 4115 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4116 goto abort;
1da177e4 4117
16a53ecc
N
4118 if (mddev->level == 6) {
4119 conf->spare_page = alloc_page(GFP_KERNEL);
4120 if (!conf->spare_page)
4121 goto abort;
4122 }
1da177e4 4123 spin_lock_init(&conf->device_lock);
e7e72bf6 4124 mddev->queue->queue_lock = &conf->device_lock;
1da177e4
LT
4125 init_waitqueue_head(&conf->wait_for_stripe);
4126 init_waitqueue_head(&conf->wait_for_overlap);
4127 INIT_LIST_HEAD(&conf->handle_list);
8b3e6cdc 4128 INIT_LIST_HEAD(&conf->hold_list);
1da177e4 4129 INIT_LIST_HEAD(&conf->delayed_list);
72626685 4130 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
4131 INIT_LIST_HEAD(&conf->inactive_list);
4132 atomic_set(&conf->active_stripes, 0);
4133 atomic_set(&conf->preread_active_stripes, 0);
46031f9a 4134 atomic_set(&conf->active_aligned_reads, 0);
8b3e6cdc 4135 conf->bypass_threshold = BYPASS_THRESHOLD;
1da177e4 4136
45b4233c 4137 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
1da177e4 4138
159ec1fc 4139 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4140 raid_disk = rdev->raid_disk;
f6705578 4141 if (raid_disk >= conf->raid_disks
1da177e4
LT
4142 || raid_disk < 0)
4143 continue;
4144 disk = conf->disks + raid_disk;
4145
4146 disk->rdev = rdev;
4147
b2d444d7 4148 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
4149 char b[BDEVNAME_SIZE];
4150 printk(KERN_INFO "raid5: device %s operational as raid"
4151 " disk %d\n", bdevname(rdev->bdev,b),
4152 raid_disk);
02c2de8c 4153 working_disks++;
8c2e870a
NB
4154 } else
4155 /* Cannot rely on bitmap to complete recovery */
4156 conf->fullsync = 1;
1da177e4
LT
4157 }
4158
1da177e4 4159 /*
16a53ecc 4160 * 0 for a fully functional array, 1 or 2 for a degraded array.
1da177e4 4161 */
02c2de8c 4162 mddev->degraded = conf->raid_disks - working_disks;
1da177e4
LT
4163 conf->mddev = mddev;
4164 conf->chunk_size = mddev->chunk_size;
4165 conf->level = mddev->level;
16a53ecc
N
4166 if (conf->level == 6)
4167 conf->max_degraded = 2;
4168 else
4169 conf->max_degraded = 1;
1da177e4
LT
4170 conf->algorithm = mddev->layout;
4171 conf->max_nr_stripes = NR_STRIPES;
f6705578 4172 conf->expand_progress = mddev->reshape_position;
1da177e4
LT
4173
4174 /* device size must be a multiple of chunk size */
58c0fed4
AN
4175 mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4176 mddev->resync_max_sectors = mddev->dev_sectors;
1da177e4 4177
16a53ecc
N
4178 if (conf->level == 6 && conf->raid_disks < 4) {
4179 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4180 mdname(mddev), conf->raid_disks);
4181 goto abort;
4182 }
1da177e4
LT
4183 if (!conf->chunk_size || conf->chunk_size % 4) {
4184 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4185 conf->chunk_size, mdname(mddev));
4186 goto abort;
4187 }
4188 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4189 printk(KERN_ERR
4190 "raid5: unsupported parity algorithm %d for %s\n",
4191 conf->algorithm, mdname(mddev));
4192 goto abort;
4193 }
16a53ecc 4194 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
4195 printk(KERN_ERR "raid5: not enough operational devices for %s"
4196 " (%d/%d failed)\n",
02c2de8c 4197 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4198 goto abort;
4199 }
4200
16a53ecc 4201 if (mddev->degraded > 0 &&
1da177e4 4202 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4203 if (mddev->ok_start_degraded)
4204 printk(KERN_WARNING
4205 "raid5: starting dirty degraded array: %s"
4206 "- data corruption possible.\n",
4207 mdname(mddev));
4208 else {
4209 printk(KERN_ERR
4210 "raid5: cannot start dirty degraded array for %s\n",
4211 mdname(mddev));
4212 goto abort;
4213 }
1da177e4
LT
4214 }
4215
4216 {
4217 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4218 if (!mddev->thread) {
4219 printk(KERN_ERR
4220 "raid5: couldn't allocate thread for %s\n",
4221 mdname(mddev));
4222 goto abort;
4223 }
4224 }
5036805b 4225 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
1da177e4
LT
4226 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4227 if (grow_stripes(conf, conf->max_nr_stripes)) {
4228 printk(KERN_ERR
4229 "raid5: couldn't allocate %dkB for buffers\n", memory);
4230 shrink_stripes(conf);
4231 md_unregister_thread(mddev->thread);
4232 goto abort;
4233 } else
4234 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4235 memory, mdname(mddev));
4236
4237 if (mddev->degraded == 0)
4238 printk("raid5: raid level %d set %s active with %d out of %d"
4239 " devices, algorithm %d\n", conf->level, mdname(mddev),
4240 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4241 conf->algorithm);
4242 else
4243 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4244 " out of %d devices, algorithm %d\n", conf->level,
4245 mdname(mddev), mddev->raid_disks - mddev->degraded,
4246 mddev->raid_disks, conf->algorithm);
4247
4248 print_raid5_conf(conf);
4249
f6705578
N
4250 if (conf->expand_progress != MaxSector) {
4251 printk("...ok start reshape thread\n");
b578d55f 4252 conf->expand_lo = conf->expand_progress;
f6705578
N
4253 atomic_set(&conf->reshape_stripes, 0);
4254 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4255 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4256 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4257 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4258 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4259 "%s_reshape");
f6705578
N
4260 }
4261
1da177e4 4262 /* read-ahead size must cover two whole stripes, which is
16a53ecc 4263 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
4264 */
4265 {
16a53ecc
N
4266 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4267 int stripe = data_disks *
8932c2e0 4268 (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
4269 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4270 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4271 }
4272
4273 /* Ok, everything is just fine now */
5e55e2f5
N
4274 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4275 printk(KERN_WARNING
4276 "raid5: failed to create sysfs attributes for %s\n",
4277 mdname(mddev));
7a5febe9
N
4278
4279 mddev->queue->unplug_fn = raid5_unplug_device;
f022b2fd 4280 mddev->queue->backing_dev_info.congested_data = mddev;
041ae52e 4281 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
f022b2fd 4282
58c0fed4
AN
4283 mddev->array_sectors = mddev->dev_sectors *
4284 (conf->previous_raid_disks - conf->max_degraded);
7a5febe9 4285
23032a0e
RBJ
4286 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4287
1da177e4
LT
4288 return 0;
4289abort:
4290 if (conf) {
4291 print_raid5_conf(conf);
16a53ecc 4292 safe_put_page(conf->spare_page);
b55e6bfc 4293 kfree(conf->disks);
fccddba0 4294 kfree(conf->stripe_hashtbl);
1da177e4
LT
4295 kfree(conf);
4296 }
4297 mddev->private = NULL;
4298 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4299 return -EIO;
4300}
4301
4302
4303
3f294f4f 4304static int stop(mddev_t *mddev)
1da177e4
LT
4305{
4306 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4307
4308 md_unregister_thread(mddev->thread);
4309 mddev->thread = NULL;
4310 shrink_stripes(conf);
fccddba0 4311 kfree(conf->stripe_hashtbl);
041ae52e 4312 mddev->queue->backing_dev_info.congested_fn = NULL;
1da177e4 4313 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 4314 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
b55e6bfc 4315 kfree(conf->disks);
96de1e66 4316 kfree(conf);
1da177e4
LT
4317 mddev->private = NULL;
4318 return 0;
4319}
4320
45b4233c 4321#ifdef DEBUG
d710e138 4322static void print_sh(struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
4323{
4324 int i;
4325
16a53ecc
N
4326 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4327 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4328 seq_printf(seq, "sh %llu, count %d.\n",
4329 (unsigned long long)sh->sector, atomic_read(&sh->count));
4330 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 4331 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
4332 seq_printf(seq, "(cache%d: %p %ld) ",
4333 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 4334 }
16a53ecc 4335 seq_printf(seq, "\n");
1da177e4
LT
4336}
4337
d710e138 4338static void printall(struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
4339{
4340 struct stripe_head *sh;
fccddba0 4341 struct hlist_node *hn;
1da177e4
LT
4342 int i;
4343
4344 spin_lock_irq(&conf->device_lock);
4345 for (i = 0; i < NR_HASH; i++) {
fccddba0 4346 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
4347 if (sh->raid_conf != conf)
4348 continue;
16a53ecc 4349 print_sh(seq, sh);
1da177e4
LT
4350 }
4351 }
4352 spin_unlock_irq(&conf->device_lock);
4353}
4354#endif
4355
d710e138 4356static void status(struct seq_file *seq, mddev_t *mddev)
1da177e4
LT
4357{
4358 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4359 int i;
4360
4361 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
02c2de8c 4362 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
4363 for (i = 0; i < conf->raid_disks; i++)
4364 seq_printf (seq, "%s",
4365 conf->disks[i].rdev &&
b2d444d7 4366 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 4367 seq_printf (seq, "]");
45b4233c 4368#ifdef DEBUG
16a53ecc
N
4369 seq_printf (seq, "\n");
4370 printall(seq, conf);
1da177e4
LT
4371#endif
4372}
4373
4374static void print_raid5_conf (raid5_conf_t *conf)
4375{
4376 int i;
4377 struct disk_info *tmp;
4378
4379 printk("RAID5 conf printout:\n");
4380 if (!conf) {
4381 printk("(conf==NULL)\n");
4382 return;
4383 }
02c2de8c
N
4384 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4385 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
4386
4387 for (i = 0; i < conf->raid_disks; i++) {
4388 char b[BDEVNAME_SIZE];
4389 tmp = conf->disks + i;
4390 if (tmp->rdev)
4391 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 4392 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
4393 bdevname(tmp->rdev->bdev,b));
4394 }
4395}
4396
4397static int raid5_spare_active(mddev_t *mddev)
4398{
4399 int i;
4400 raid5_conf_t *conf = mddev->private;
4401 struct disk_info *tmp;
4402
4403 for (i = 0; i < conf->raid_disks; i++) {
4404 tmp = conf->disks + i;
4405 if (tmp->rdev
b2d444d7 4406 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
4407 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4408 unsigned long flags;
4409 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 4410 mddev->degraded--;
c04be0aa 4411 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
4412 }
4413 }
4414 print_raid5_conf(conf);
4415 return 0;
4416}
4417
4418static int raid5_remove_disk(mddev_t *mddev, int number)
4419{
4420 raid5_conf_t *conf = mddev->private;
4421 int err = 0;
4422 mdk_rdev_t *rdev;
4423 struct disk_info *p = conf->disks + number;
4424
4425 print_raid5_conf(conf);
4426 rdev = p->rdev;
4427 if (rdev) {
b2d444d7 4428 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
4429 atomic_read(&rdev->nr_pending)) {
4430 err = -EBUSY;
4431 goto abort;
4432 }
dfc70645
N
4433 /* Only remove non-faulty devices if recovery
4434 * isn't possible.
4435 */
4436 if (!test_bit(Faulty, &rdev->flags) &&
4437 mddev->degraded <= conf->max_degraded) {
4438 err = -EBUSY;
4439 goto abort;
4440 }
1da177e4 4441 p->rdev = NULL;
fbd568a3 4442 synchronize_rcu();
1da177e4
LT
4443 if (atomic_read(&rdev->nr_pending)) {
4444 /* lost the race, try later */
4445 err = -EBUSY;
4446 p->rdev = rdev;
4447 }
4448 }
4449abort:
4450
4451 print_raid5_conf(conf);
4452 return err;
4453}
4454
4455static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4456{
4457 raid5_conf_t *conf = mddev->private;
199050ea 4458 int err = -EEXIST;
1da177e4
LT
4459 int disk;
4460 struct disk_info *p;
6c2fce2e
NB
4461 int first = 0;
4462 int last = conf->raid_disks - 1;
1da177e4 4463
16a53ecc 4464 if (mddev->degraded > conf->max_degraded)
1da177e4 4465 /* no point adding a device */
199050ea 4466 return -EINVAL;
1da177e4 4467
6c2fce2e
NB
4468 if (rdev->raid_disk >= 0)
4469 first = last = rdev->raid_disk;
1da177e4
LT
4470
4471 /*
16a53ecc
N
4472 * find the disk ... but prefer rdev->saved_raid_disk
4473 * if possible.
1da177e4 4474 */
16a53ecc 4475 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 4476 rdev->saved_raid_disk >= first &&
16a53ecc
N
4477 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4478 disk = rdev->saved_raid_disk;
4479 else
6c2fce2e
NB
4480 disk = first;
4481 for ( ; disk <= last ; disk++)
1da177e4 4482 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 4483 clear_bit(In_sync, &rdev->flags);
1da177e4 4484 rdev->raid_disk = disk;
199050ea 4485 err = 0;
72626685
N
4486 if (rdev->saved_raid_disk != disk)
4487 conf->fullsync = 1;
d6065f7b 4488 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
4489 break;
4490 }
4491 print_raid5_conf(conf);
199050ea 4492 return err;
1da177e4
LT
4493}
4494
4495static int raid5_resize(mddev_t *mddev, sector_t sectors)
4496{
4497 /* no resync is happening, and there is enough space
4498 * on all devices, so we can resize.
4499 * We need to make sure resync covers any new space.
4500 * If the array is shrinking we should possibly wait until
4501 * any io in the removed space completes, but it hardly seems
4502 * worth it.
4503 */
16a53ecc
N
4504 raid5_conf_t *conf = mddev_to_conf(mddev);
4505
1da177e4 4506 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
f233ea5c
AN
4507 mddev->array_sectors = sectors * (mddev->raid_disks
4508 - conf->max_degraded);
4509 set_capacity(mddev->gendisk, mddev->array_sectors);
44ce6294 4510 mddev->changed = 1;
58c0fed4
AN
4511 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4512 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
4513 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4514 }
58c0fed4 4515 mddev->dev_sectors = sectors;
4b5c7ae8 4516 mddev->resync_max_sectors = sectors;
1da177e4
LT
4517 return 0;
4518}
4519
29269553 4520#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f 4521static int raid5_check_reshape(mddev_t *mddev)
29269553
N
4522{
4523 raid5_conf_t *conf = mddev_to_conf(mddev);
4524 int err;
29269553 4525
63c70c4f
N
4526 if (mddev->delta_disks < 0 ||
4527 mddev->new_level != mddev->level)
4528 return -EINVAL; /* Cannot shrink array or change level yet */
4529 if (mddev->delta_disks == 0)
29269553 4530 return 0; /* nothing to do */
dba034ee
N
4531 if (mddev->bitmap)
4532 /* Cannot grow a bitmap yet */
4533 return -EBUSY;
29269553
N
4534
4535 /* Can only proceed if there are plenty of stripe_heads.
4536 * We need a minimum of one full stripe,, and for sensible progress
4537 * it is best to have about 4 times that.
4538 * If we require 4 times, then the default 256 4K stripe_heads will
4539 * allow for chunk sizes up to 256K, which is probably OK.
4540 * If the chunk size is greater, user-space should request more
4541 * stripe_heads first.
4542 */
63c70c4f
N
4543 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4544 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
29269553
N
4545 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4546 (mddev->chunk_size / STRIPE_SIZE)*4);
4547 return -ENOSPC;
4548 }
4549
63c70c4f
N
4550 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4551 if (err)
4552 return err;
4553
b4c4c7b8
N
4554 if (mddev->degraded > conf->max_degraded)
4555 return -EINVAL;
63c70c4f
N
4556 /* looks like we might be able to manage this */
4557 return 0;
4558}
4559
4560static int raid5_start_reshape(mddev_t *mddev)
4561{
4562 raid5_conf_t *conf = mddev_to_conf(mddev);
4563 mdk_rdev_t *rdev;
63c70c4f
N
4564 int spares = 0;
4565 int added_devices = 0;
c04be0aa 4566 unsigned long flags;
63c70c4f 4567
f416885e 4568 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
4569 return -EBUSY;
4570
159ec1fc 4571 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
4572 if (rdev->raid_disk < 0 &&
4573 !test_bit(Faulty, &rdev->flags))
4574 spares++;
63c70c4f 4575
f416885e 4576 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
4577 /* Not enough devices even to make a degraded array
4578 * of that size
4579 */
4580 return -EINVAL;
4581
f6705578 4582 atomic_set(&conf->reshape_stripes, 0);
29269553
N
4583 spin_lock_irq(&conf->device_lock);
4584 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 4585 conf->raid_disks += mddev->delta_disks;
29269553 4586 conf->expand_progress = 0;
b578d55f 4587 conf->expand_lo = 0;
29269553
N
4588 spin_unlock_irq(&conf->device_lock);
4589
4590 /* Add some new drives, as many as will fit.
4591 * We know there are enough to make the newly sized array work.
4592 */
159ec1fc 4593 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
4594 if (rdev->raid_disk < 0 &&
4595 !test_bit(Faulty, &rdev->flags)) {
199050ea 4596 if (raid5_add_disk(mddev, rdev) == 0) {
29269553
N
4597 char nm[20];
4598 set_bit(In_sync, &rdev->flags);
29269553 4599 added_devices++;
5fd6c1dc 4600 rdev->recovery_offset = 0;
29269553 4601 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
4602 if (sysfs_create_link(&mddev->kobj,
4603 &rdev->kobj, nm))
4604 printk(KERN_WARNING
4605 "raid5: failed to create "
4606 " link %s for %s\n",
4607 nm, mdname(mddev));
29269553
N
4608 } else
4609 break;
4610 }
4611
c04be0aa 4612 spin_lock_irqsave(&conf->device_lock, flags);
63c70c4f 4613 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
c04be0aa 4614 spin_unlock_irqrestore(&conf->device_lock, flags);
63c70c4f 4615 mddev->raid_disks = conf->raid_disks;
f6705578 4616 mddev->reshape_position = 0;
850b2b42 4617 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 4618
29269553
N
4619 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4620 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4621 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4622 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4623 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4624 "%s_reshape");
4625 if (!mddev->sync_thread) {
4626 mddev->recovery = 0;
4627 spin_lock_irq(&conf->device_lock);
4628 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4629 conf->expand_progress = MaxSector;
4630 spin_unlock_irq(&conf->device_lock);
4631 return -EAGAIN;
4632 }
4633 md_wakeup_thread(mddev->sync_thread);
4634 md_new_event(mddev);
4635 return 0;
4636}
4637#endif
4638
4639static void end_reshape(raid5_conf_t *conf)
4640{
4641 struct block_device *bdev;
4642
f6705578 4643 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
58c0fed4 4644 conf->mddev->array_sectors = conf->mddev->dev_sectors *
f416885e 4645 (conf->raid_disks - conf->max_degraded);
f233ea5c 4646 set_capacity(conf->mddev->gendisk, conf->mddev->array_sectors);
44ce6294 4647 conf->mddev->changed = 1;
f6705578
N
4648
4649 bdev = bdget_disk(conf->mddev->gendisk, 0);
4650 if (bdev) {
4651 mutex_lock(&bdev->bd_inode->i_mutex);
f233ea5c
AN
4652 i_size_write(bdev->bd_inode,
4653 (loff_t)conf->mddev->array_sectors << 9);
f6705578
N
4654 mutex_unlock(&bdev->bd_inode->i_mutex);
4655 bdput(bdev);
4656 }
4657 spin_lock_irq(&conf->device_lock);
4658 conf->expand_progress = MaxSector;
4659 spin_unlock_irq(&conf->device_lock);
4660 conf->mddev->reshape_position = MaxSector;
16a53ecc
N
4661
4662 /* read-ahead size must cover two whole stripes, which is
4663 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4664 */
4665 {
4666 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4667 int stripe = data_disks *
4668 (conf->mddev->chunk_size / PAGE_SIZE);
4669 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4670 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4671 }
29269553 4672 }
29269553
N
4673}
4674
72626685
N
4675static void raid5_quiesce(mddev_t *mddev, int state)
4676{
4677 raid5_conf_t *conf = mddev_to_conf(mddev);
4678
4679 switch(state) {
e464eafd
N
4680 case 2: /* resume for a suspend */
4681 wake_up(&conf->wait_for_overlap);
4682 break;
4683
72626685
N
4684 case 1: /* stop all writes */
4685 spin_lock_irq(&conf->device_lock);
4686 conf->quiesce = 1;
4687 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
4688 atomic_read(&conf->active_stripes) == 0 &&
4689 atomic_read(&conf->active_aligned_reads) == 0,
72626685
N
4690 conf->device_lock, /* nothing */);
4691 spin_unlock_irq(&conf->device_lock);
4692 break;
4693
4694 case 0: /* re-enable writes */
4695 spin_lock_irq(&conf->device_lock);
4696 conf->quiesce = 0;
4697 wake_up(&conf->wait_for_stripe);
e464eafd 4698 wake_up(&conf->wait_for_overlap);
72626685
N
4699 spin_unlock_irq(&conf->device_lock);
4700 break;
4701 }
72626685 4702}
b15c2e57 4703
16a53ecc
N
4704static struct mdk_personality raid6_personality =
4705{
4706 .name = "raid6",
4707 .level = 6,
4708 .owner = THIS_MODULE,
4709 .make_request = make_request,
4710 .run = run,
4711 .stop = stop,
4712 .status = status,
4713 .error_handler = error,
4714 .hot_add_disk = raid5_add_disk,
4715 .hot_remove_disk= raid5_remove_disk,
4716 .spare_active = raid5_spare_active,
4717 .sync_request = sync_request,
4718 .resize = raid5_resize,
f416885e
N
4719#ifdef CONFIG_MD_RAID5_RESHAPE
4720 .check_reshape = raid5_check_reshape,
4721 .start_reshape = raid5_start_reshape,
4722#endif
16a53ecc
N
4723 .quiesce = raid5_quiesce,
4724};
2604b703 4725static struct mdk_personality raid5_personality =
1da177e4
LT
4726{
4727 .name = "raid5",
2604b703 4728 .level = 5,
1da177e4
LT
4729 .owner = THIS_MODULE,
4730 .make_request = make_request,
4731 .run = run,
4732 .stop = stop,
4733 .status = status,
4734 .error_handler = error,
4735 .hot_add_disk = raid5_add_disk,
4736 .hot_remove_disk= raid5_remove_disk,
4737 .spare_active = raid5_spare_active,
4738 .sync_request = sync_request,
4739 .resize = raid5_resize,
29269553 4740#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f
N
4741 .check_reshape = raid5_check_reshape,
4742 .start_reshape = raid5_start_reshape,
29269553 4743#endif
72626685 4744 .quiesce = raid5_quiesce,
1da177e4
LT
4745};
4746
2604b703 4747static struct mdk_personality raid4_personality =
1da177e4 4748{
2604b703
N
4749 .name = "raid4",
4750 .level = 4,
4751 .owner = THIS_MODULE,
4752 .make_request = make_request,
4753 .run = run,
4754 .stop = stop,
4755 .status = status,
4756 .error_handler = error,
4757 .hot_add_disk = raid5_add_disk,
4758 .hot_remove_disk= raid5_remove_disk,
4759 .spare_active = raid5_spare_active,
4760 .sync_request = sync_request,
4761 .resize = raid5_resize,
3d37890b
N
4762#ifdef CONFIG_MD_RAID5_RESHAPE
4763 .check_reshape = raid5_check_reshape,
4764 .start_reshape = raid5_start_reshape,
4765#endif
2604b703
N
4766 .quiesce = raid5_quiesce,
4767};
4768
4769static int __init raid5_init(void)
4770{
16a53ecc
N
4771 int e;
4772
4773 e = raid6_select_algo();
4774 if ( e )
4775 return e;
4776 register_md_personality(&raid6_personality);
2604b703
N
4777 register_md_personality(&raid5_personality);
4778 register_md_personality(&raid4_personality);
4779 return 0;
1da177e4
LT
4780}
4781
2604b703 4782static void raid5_exit(void)
1da177e4 4783{
16a53ecc 4784 unregister_md_personality(&raid6_personality);
2604b703
N
4785 unregister_md_personality(&raid5_personality);
4786 unregister_md_personality(&raid4_personality);
1da177e4
LT
4787}
4788
4789module_init(raid5_init);
4790module_exit(raid5_exit);
4791MODULE_LICENSE("GPL");
4792MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
4793MODULE_ALIAS("md-raid5");
4794MODULE_ALIAS("md-raid4");
2604b703
N
4795MODULE_ALIAS("md-level-5");
4796MODULE_ALIAS("md-level-4");
16a53ecc
N
4797MODULE_ALIAS("md-personality-8"); /* RAID6 */
4798MODULE_ALIAS("md-raid6");
4799MODULE_ALIAS("md-level-6");
4800
4801/* This used to be two separate modules, they were: */
4802MODULE_ALIAS("raid5");
4803MODULE_ALIAS("raid6");